WO2007088817A1 - 光源装置、基板処理装置、基板処理方法 - Google Patents

光源装置、基板処理装置、基板処理方法 Download PDF

Info

Publication number
WO2007088817A1
WO2007088817A1 PCT/JP2007/051406 JP2007051406W WO2007088817A1 WO 2007088817 A1 WO2007088817 A1 WO 2007088817A1 JP 2007051406 W JP2007051406 W JP 2007051406W WO 2007088817 A1 WO2007088817 A1 WO 2007088817A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
substrate
microwave
light source
process space
Prior art date
Application number
PCT/JP2007/051406
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Oshima
Nobuaki Takahashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2007800008302A priority Critical patent/CN101341582B/zh
Priority to US12/162,617 priority patent/US20090173715A1/en
Publication of WO2007088817A1 publication Critical patent/WO2007088817A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit

Definitions

  • the present invention generally relates to semiconductor device manufacturing, and more particularly to a light source device used in a semiconductor device manufacturing process and a substrate processing apparatus including the light source device.
  • Ultraviolet light sources are widely used to modify films formed on a substrate by ultraviolet light and to generate radicals such as oxygen radicals and halogen radicals in the manufacturing process of semiconductor devices including liquid crystal display devices. It is used.
  • a technique is known in which an oxygen gas is excited using an ultraviolet light source and the surface of a silicon substrate is oxidized by the formed oxygen radicals. Also known is an etching technique that uses halogen radicals excited by ultraviolet light.
  • an ultraviolet light source a high-pressure mercury lamp, a low-pressure mercury lamp, an excimer lamp, and the like are widely used. These are tubular or point light sources having a tubular shape, and have a large area. In order to generate ultraviolet light uniformly, it was necessary to provide a plurality of light sources or to use a complicated mechanism such as rotating a substrate to be processed.
  • the present invention provides an ultraviolet light source device capable of performing uniform ultraviolet light emission over a large area, and a substrate processing apparatus having a powerful ultraviolet light source device.
  • Patent Document 1 JP-A-7-106299
  • the present invention provides:
  • a plasma formation chamber for generating light emission by forming a Jerusalema;
  • a light source device comprising an optical window that defines a lower end of a plasma forming region in the plasma forming chamber and transmits the light emission
  • a microphone aperture transmission window for introducing a microwave for generating the plasma is formed,
  • the present invention provides a light source device characterized in that a microwave antenna that is coupled to the microwave window and introduces the microwave is provided outside the microwave transmission window.
  • the present invention provides:
  • a processing container that defines a process space and is provided with a substrate holder that holds a substrate to be processed in the process space;
  • a substrate processing apparatus comprising: a light source device provided on an upper portion of the processing container so as to face a substrate to be processed on the substrate holding table;
  • the light source device is
  • a plasma forming chamber that includes a plasma forming region and generates plasma by forming a plasma by electrodeless discharge over the plasma forming region;
  • a microphone mouth wave transmission window for introducing a microwave for generating the plasma is formed,
  • a microwave antenna that is coupled to the microwave window and introduces the microwave is provided,
  • first gas introduction port for introducing a first gas into the plasma formation region
  • second gas introduction for introducing a second gas into the process space
  • a substrate processing apparatus comprising an opening that is provided in a part of the optical window and connects the plasma forming chamber and the process space.
  • the present invention defines a process space,
  • a substrate comprising: a processing container provided with a substrate holding table for holding a substrate to be processed; and a light source device provided above the processing container so as to face the substrate to be processed on the substrate holding table.
  • a processing device comprising:
  • the light source device is
  • a plasma forming chamber that includes a plasma forming region and generates plasma by forming a plasma by electrodeless discharge over the plasma forming region;
  • a microphone mouth wave transmission window for introducing a microwave for generating the plasma is formed,
  • a microwave antenna that is coupled to the microwave window and introduces the microwave is provided,
  • a first gas inlet for introducing a first gas into the plasma forming chamber
  • a second gas inlet for introducing a second gas into the process space
  • a substrate processing apparatus comprising: a second exhaust port for exhausting the process space.
  • the present invention provides:
  • a processing container that defines a process space and is provided with a substrate holder that holds a substrate to be processed in the process space;
  • a substrate processing method by a substrate processing apparatus comprising: a light source device provided on an upper portion of the processing container so as to face a substrate to be processed on the substrate holding table;
  • the light source device is
  • a plasma forming chamber that includes a plasma forming region and generates plasma by forming a plasma by electrodeless discharge over the plasma forming region;
  • a microwave antenna that is coupled to the microwave window and introduces the microwave is provided,
  • a first valve provided at the first exhaust port
  • a second valve provided in the second exhaust port
  • a substrate processing method by a substrate processing apparatus comprising: a third valve provided in the communication path,
  • a substrate processing method including one of them.
  • plasma is formed by electrodeless discharge by a microwave antenna in a plasma formation region via a microwave transmission window facing the optical window, and light emitted from the formed plasma is optically emitted.
  • a microwave antenna By radiating the window force, uniform light emission over a large area is realized, and a large-diameter light source with a long lifetime can be obtained.
  • Such a light source can be integrated with a substrate processing apparatus using plasma.
  • FIG. 1 is a diagram showing a configuration of a substrate processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is another diagram showing the configuration of the substrate processing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a spectrum of Xe emitted from the light source cover of FIG.
  • FIG. 4 is a diagram showing a configuration of a substrate processing apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of a light source device according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of another light source device according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a substrate processing apparatus according to a third embodiment of the present invention.
  • FIG. 8A is a diagram showing an operation mode of the substrate processing apparatus of FIG.
  • 8B is a diagram showing another operation mode of the substrate processing apparatus of FIG. 6.
  • FIG. 1 shows a configuration of a substrate processing apparatus 50 provided with a microwave plasma light source apparatus according to the first embodiment of the present invention.
  • a substrate processing apparatus 50 includes a processing container 51, and a substrate holding table 52 that holds a substrate W to be processed is provided in the processing container 51.
  • the processing vessel 51 is evacuated through a space 51C formed so as to surround the substrate holder 52 at an exhaust port 51D.
  • the substrate holder 52 is provided with a heater 52A, and the heater 52A is driven by a power source 52C through a drive line 52B.
  • an optical window 61A made of quartz glass such as a dielectric material that transmits ultraviolet rays facing the substrate to be processed W, A1N, Al 2 O, or Y 2 O is disposed,
  • the optical window 61A divides the space in the processing chamber into an upper plasma formation space 51A and a lower process space 51B.
  • the plasma formation space 51A and the process space 51B communicate with each other through the opening 6la provided in the optical window 61A outside the substrate W to be processed.
  • the opening 61a is formed into a plurality of holes or slits. Any shape is possible as long as communication is possible.
  • An opening is formed in the upper portion of the processing container 51 so as to face the optical window 61A.
  • the opening is formed on a top plate 53 made of quartz glass such as a dielectric, A1N, Al 2 O, or YO. It is more tightly closed.
  • a gas inlet 54 such as a gas ring provided with a gas inlet and a number of nozzle openings communicating with the gas inlet is provided below the top plate 53 and above the optical window 61A.
  • a rare gas such as Ar, Kr, Xe, He, or Ne is introduced into the plasma formation space 51A.
  • the processing vessel 51 is provided with another gas ring 54B under the optical window 61A.
  • oxygen gas for example, oxygen gas, nitrogen gas, N 2 O gas, NO gas, N
  • the top plate 53 functions as a microwave transmission window, and an antenna portion 55 constituting a radial line slot antenna 55 C is provided on the top plate 53. It is also possible to use a horn antenna instead of the microphone mouth wave antenna.
  • the antenna portion 55 includes a flat conductor portion 55A, a slow wave plate 55B, and a planar antenna plate 55C.
  • the slow wave plate 55B is provided so as to cover the planar antenna plate 55C and is made of a dielectric such as quartz or alumina.
  • the planar antenna plate 55C is formed with a number of slots 55a and 55b described with reference to FIG. 4. Further, the antenna 55 is connected to the coaxial waveguide 56 composed of an external waveguide 56A and an internal waveguide 56B.
  • the waveguide 56A is connected to the conductor 55A of the antenna 55, and the internal waveguide 56B is connected to the planar antenna plate 55C through the slow wave plate 55B and coupled thereto.
  • the internal waveguide is connected to a waveguide 110B having a rectangular cross section via a mode converter 110A, and the waveguide 110B is coupled to a microwave source 112 via an impedance matching device 111. Therefore, the microwave formed by the microwave source 112 is supplied to the antenna 55 through the rectangular waveguide 110B and the coaxial waveguide 56.
  • a cooling unit 55D is provided in the conductor portion 55A.
  • FIG. 2 shows the configuration of the radial line slot antenna 55C in detail. However, FIG. 2 is a top view of the planar antenna plate 55C.
  • the planar antenna plate 55C has a large number of slots 55a and 55b concentric. It can be seen that the slots 55a and 55b adjacent to each other are formed in a circular shape so as to be orthogonal to each other.
  • the slots 55a and 55b may be spiral or linear.
  • microwaves are supplied to the radial line slot antenna 55C from the coaxial waveguide 56, the microwaves propagate in the antenna 55C while spreading in the radial direction, and at this time, the retardation plate Receives wavelength compression by 55B. Therefore, microwaves are radiated as circularly polarized waves from the slots 55a and 55b, generally in a direction substantially perpendicular to the planar antenna plate 55C.
  • the plasma forming space 51A and the process space 51B force in the processing vessel 51 are set to a predetermined pressure by the exhaust through the exhaust port 51C, and rare gases such as Ar, Kr, Xe, and Ne A gas is introduced into the plasma formation space 51A from the gas introduction part 54A.
  • a microwave having a frequency of 1 to 20 GHz, for example, 2.45 GHz is introduced into the process space 51A from the microwave source 112 via the antenna 55, and as a result, on the surface of the substrate W to be processed.
  • the plasma density is 10 11 ⁇ : L0 13 Zcm 3 high density plasma is excited.
  • the plasma excited by microwaves introduced through the antenna is characterized by a low electron temperature of 0.5-7 eV or less.
  • ultraviolet light having the Xe continuous spectrum shown in FIG. 3 is formed in the plasma forming space 51A.
  • the substrate gas can be processed by exciting the processing gas with the emission intensity.
  • the emission intensity wavelength varies depending on the excitation gas, it is preferable to select a gas that emits light optimally and efficiently. Therefore, the substrate processing apparatus 50 of FIGS. 1 and 2 can perform the substrate processing in the process space 51B by using plasma light emission by electrodeless discharge in the plasma forming space 51A as a light source.
  • the portion above the optical window 61A constitutes a microwave plasma light source device.
  • the plasma is uniformly formed by the microwave antenna having a large diameter.
  • the light source can be configured by arranging a number of discharge tubes with short lifetimes, There is no need to rotate the substrate to be processed.
  • substrate processing costs can be greatly reduced in ultraviolet light treatment, acid treatment using oxygen radicals, and etching treatment.
  • FIG. 4 shows a configuration of a substrate processing apparatus 50A including an electrodeless discharge light source apparatus according to the second embodiment of the present invention.
  • the same reference numerals are assigned to the portions corresponding to the portions described above, and the description thereof is omitted.
  • a quartz optical window 61B that separates without forming a communication portion between the plasma forming space 51A and the process space 51B is provided. Further, an exhaust port 51E for exhausting the plasma formation region 51A is formed in the processing vessel 51.
  • the plasma forming region 51 A force is independent of the process space 51 B in this way, and the base below the optical window 61 B is above the optical window 61 B.
  • a light source device independent of the plate processing apparatus is formed.
  • a plasma gas such as a rare gas is introduced into the plasma processing apparatus 50A from a gas ring 54A to generate plasma, and ultraviolet light is generated.
  • the process gas supplied by the gas inlet 54B force is excited by ultraviolet light accompanying the plasma formed in the plasma formation region 51A, and the process gas formed as a result is excited.
  • the substrate of the substrate to be processed W is processed by the active radical of the process gas.
  • FIG. 7 shows a configuration of a substrate processing apparatus 50B according to the third embodiment of the present invention.
  • the same reference numerals are assigned to the portions corresponding to the portions described above, and the description is omitted.
  • a substrate processing apparatus 50B connects the plasma forming space 51A and the process space 51B to the outside of a force processing vessel 51 having the same configuration as the substrate processing apparatus 50A.
  • a line 71 is provided, and a valve 71A is provided in the line 71.
  • the exhaust port 51D is exhausted through the valve 5 Id and exhausted through the exhaust port 51E and the valve 5 le.
  • the plasma formation space 54A and the process space 51B may be exhausted separately.
  • the nove 71A is released when the radicals formed in the plasma formation space 51A are introduced into the process space 51B.
  • 8A and 8B show two operation modes of the substrate processing apparatus 50B of FIG.
  • the bulb 71A is closed and the bulbs 51d and 51e are opened, so that the light source unit including the optical window 61B and the plasma forming space 51A on the upper side thereof becomes the optical window 61B. It is driven independently with respect to the lower substrate processing unit, and the target substrate W on the substrate holding table 52 is irradiated with light emitted from the plasma formed in the plasma forming space.
  • valve 71A is opened while the valve 51e is closed.
  • the operation mode of FIG. 8A and the operation mode of FIG. 8B are independent and can be executed separately. It is also possible to execute the operation mode of Fig. 8A after the operation mode of Fig. 7B. It is also possible to execute the operation mode of FIG. 8B after the operation mode of FIG. 7A.
  • the present invention Since the present invention has low damage, it can be applied to curing of a low-K (low dielectric constant) film, optical tailing, and the like.
  • the present invention includes the entire contents of Japanese Patent Application No. 2006-02328 3 filed on January 31, 2006, which is the basis for claiming priority.
  • plasma is formed by electrodeless discharge by a microwave antenna in the plasma formation region via the microwave transmission window facing the optical window, and light emission associated with the formed plasma is optically generated.
  • a microwave antenna By radiating the window force, uniform light emission over a large area is realized, and a large-diameter light source with a long lifetime can be obtained.
  • Such a light source can be integrated with a substrate processing apparatus using plasma.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 光源装置は、プラズマ形成領域を含み、前記プラズマ形成領域において無電極放電によりプラズマを形成して発光を生成するプラズマ形成室と、前記プラズマ形成室中におけるプラズマ領域の下端を画成し、前記発光を透過する光学窓とよりなり、前記プラズマ形成室内には、前記プラズマを生成するためのマイクロ波を導入するマイクロ波透過窓が形成されており、さらに前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ波を導入するマイクロ波アンテナが設けられている。

Description

光源装置、基板処理装置、基板処理方法
技術分野
[0001] 本発明は一般に半導体装置の製造に係り、特に半導体装置の製造工程で使われ る光源装置、およびかかる光源装置を備えた基板処理装置に関する。
背景技術
[0002] 紫外光源は、液晶表示装置を含む半導体装置の製造工程において、紫外光により 基板上に形成された膜などの改質や、酸素ラジカルやハロゲンラジカルなどのラジカ ルを発生させるのに広く使われている。
[0003] 例えば紫外光源を使って酸素ガスを励起し、形成された酸素ラジカルによりシリコン 基板表面を酸化する技術が知られて ヽる。また紫外光励起されたハロゲンラジカル を使って行うエッチング技術が知られて 、る。
発明の開示
発明が解決しょうとする課題
[0004] このような紫外光源としては、従来高圧水銀ランプ、低圧水銀ランプ、エキシマラン プなどが広く使われているが、これらは管状形状を有した管状あるいは点状の光源 であり、大面積にわたり一様に紫外光を発生させようとすると、光源を複数設けたり、 被処理基板を回転させるなどの複雑な機構を用いたりする必要があった。
[0005] また従来、これらの光源は寿命が短ぐ頻繁に交換する必要があり、特に複数の光 源を使って大口径基板を処理する基板処理装置においては、紫外光源の費用が半 導体装置の製造費用を押し上げる要因となっている。
[0006] 本発明は、大面積にわたり、一様な紫外発光を行うことのできる紫外光源装置、お よび力かる紫外光源装置を有する基板処理装置を提供する。
特許文献 1 :特開平 7— 106299号公報
課題を解決するための手段
[0007] 一の側面によれば本発明は、
プラズマ形成領域を含み、前記プラズマ形成領域にぉ ヽて無電極放電によりブラ ズマを形成して発光を生成するプラズマ形成室と、
前記プラズマ形成室中におけるプラズマ形成領域の下端を画成し、前記発光を透 過する光学窓とよりなる光源装置であって、
前記プラズマ形成室内に、前記プラズマを生成するためのマイクロ波を導入するマ イク口波透過窓が形成されており、
さらに前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ 波を導入するマイクロ波アンテナが設けられていることを特徴とする光源装置を提供 する。
[0008] 他の側面によれば本発明は、
プロセス空間を画成し、前記プロセス空間中に被処理基板を保持する基板保持台 を設けられた処理容器と、
前記処理容器の上部に、前記基板保持台上の被処理基板に対向するように設けら れた光源装置と、を備えた基板処理装置であって、
前記光源装置は、
プラズマ形成領域を含み、前記プラズマ形成領域にぉ ヽて無電極放電によりブラ ズマを形成して発光を生成するプラズマ形成室と、
前記プラズマ形成室中におけるプラズマ形成領域の下端を画成し、前記発光を透 過する光学窓とよりなり、
前記プラズマ形成室内に、前記プラズマを生成するためのマイクロ波を導入するマ イク口波透過窓が形成され、
前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ波を 導入するマイクロ波アンテナが設けられ、
さらに前記プラズマ形成領域に第 1のガスを導入する第 1のガス導入口と、 前記プロセス空間に第 2のガスを導入する第 2のガス導入と、
前記プロセス空間を排気する排気口と、
前記光学窓の一部に設けられ、前記プラズマ形成室と前記プロセス空間を接続す る開口部と、を備えたことを特徴とする基板処理装置を提供する。
[0009] さらに他の側面によれば、本発明はプロセス空間を画成し、前記プロセス空間中に 被処理基板を保持する基板保持台を設けられた処理容器と、 前記処理容器の上部に、前記基板保持台上の被処理基板に対向するように設けら れた光源装置と、を備えた基板処理装置であって、
前記光源装置は、
プラズマ形成領域を含み、前記プラズマ形成領域にぉ ヽて無電極放電によりブラ ズマを形成して発光を生成するプラズマ形成室と、
前記プラズマ形成室中におけるプラズマ形成領域の下端を画成し、前記発光を透 過する光学窓とよりなり、
前記プラズマ形成室内に、前記プラズマを生成するためのマイクロ波を導入するマ イク口波透過窓が形成され、
前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ波を 導入するマイクロ波アンテナが設けられ、
さらに前記プラズマ形成室に第 1のガスを導入する第 1のガス入り口と、
前記プロセス空間に第 2のガスを導入する第 2のガス入り口と、
前記プラズマ形成室を排気する第 1の排気口と、
前記プロセス空間を排気する第 2の排気口と、を備えたことを特徴とする基板処理 装置を提供する。
さらに他の側面によれば本発明は、
プロセス空間を画成し、前記プロセス空間中に被処理基板を保持する基板保持台 を設けられた処理容器と、
前記処理容器の上部に、前記基板保持台上の被処理基板に対向するように設けら れた光源装置と、を備えた基板処理装置による基板処理方法であって、
前記光源装置は、
プラズマ形成領域を含み、前記プラズマ形成領域にぉ ヽて無電極放電によりブラ ズマを形成して発光を生成するプラズマ形成室と、
前記プラズマ形成室中におけるプラズマ形成領域の下端を画成し、前記発光を透 過する光学窓とよりなり、
前記プラズマ形成室内に、前記プラズマを生成するためのマイクロ波を導入するマ イク口波透過窓が形成され、
前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ波を 導入するマイクロ波アンテナが設けられ、
さらに前記プラズマ形成室に第 1のガスを導入する第 1のガス入り口と、 前記プロセス空間に第 2のガスを導入する第 2のガス入り口と、
前記プラズマ形成室を排気する第 1の排気口と、
前記プロセス空間を排気する第 2の排気口と、
前記第 1の排気口に設けられた第 1のバルブと、
前記第 2の排気口に設けられた第 2のバルブと、
前記プラズマ形成室と前記プロセス空間とを結合する連通路と、
前記連通路に設けられた第 3のバルブと、を備えた基板処理装置による基板処理 方法であって、
前記第 3のバルブを閉鎖し、前記第 1および第 2のバルブを開放した状態で、前記 プラズマ形成領域にプラズマを形成し、前記被処理基板表面をプラズマ発光に対し て露光する第 1の工程と、
前記第 2および第 3のバルブを開放し、前記第 1のバルブを閉鎖した状態で、前記 プロセス空間において前記被処理基板表面を、前記プラズマに伴うラジカルにより処 理する第 2の工程の、少なくとも一方を含むことを特徴とする基板処理方法を提供す る。
発明の効果
[0011] 本発明によれば、光学窓に対向したマイクロ波透過窓を介して、プラズマ形成領域 中にマイクロ波アンテナによる無電極放電によりプラズマを形成し、形成されたプラズ マに伴う発光を光学窓力 放射することにより、大面積にわたり一様な発光が実現さ れ、寿命の長い大口径の光源が得られる。このような光源を使うことにより、高品質な 基板処理を安価に行うことが可能となる。このような光源は、プラズマを使った基板処 理装置に一体ィ匕することが可能である。
図面の簡単な説明
[0012] [図 1]本発明の第 1の実施形態による基板処理装置の構成を示す図である。 [図 2]本発明の第 1の実施形態による基板処理装置の構成を示す別の図である。
[図 3]図 1の光源カゝら放射される Xeのスペクトルを示す図である。
[図 4]本発明の第 2の実施形態による基板処理装置の構成を示す図である。
[図 5]本発明の第 2の実施形態による光源装置の構成を示す図である。
[図 6]本発明の第 2の実施形態による別の光源装置の構成を示す図である。
[図 7]本発明の第 3の実施形態による基板処理装置の構成を示す図である。
[図 8A]図 6の基板処理装置の運転モードを示す図である。
[図 8B]図 6の基板処理装置の別の運転モードを示す図である。
発明を実施するための最良の形態
[0013] [第 1の実施形態]
図 1は、本発明の第 1の実施形態による、マイクロ波プラズマ光源装置を備えた基 板処理装置 50の構成を示す。
[0014] 図 1を参照するに、基板処理装置 50は処理容器 51を含み、前記処理容器 51中に は、被処理基板 Wを保持する基板保持台 52が設けられている。前記処理容器 51は 排気ポート 51Dにおいて、前記基板保持台 52を囲むように形成された空間 51Cを 介して排気される。
[0015] 前記基板保持台 52はヒータ 52Aを設けられ、前記ヒータ 52Aは電源 52Cにより、 駆動ライン 52Bを介して駆動される。
[0016] 前記処理容器 51中には、前記被処理基板 Wに対面して紫外線を透過する誘電体 等の石英ガラス, A1N, Al Oあるいは Y Oよりなる光学窓 61Aが配置されており、
2 3 2 3
前記光学窓 61Aにより、前記処理容器内の空間は、上方のプラズマ形成空間 51Aと 、下方のプロセス空間 51Bとに分けられる。図示の実施形態では、前記プラズマ形成 空間 51 Aとプロセス空間 51Bとは、前記被処理基板 Wの外側に前記光学窓 61 Aに 設けられた開口部 6 laを介して連通している。
[0017] 開口部 61aは、複数の孔又はスリット状に形成する。連通可能であれば、どのような 形状でもよい。
[0018] 前記処理容器 51上部には、前記光学窓 61Aに対面して開口部が形成されており 、前記開口部は誘電体等の石英ガラス, A1N, Al Oあるいは Y Oよりなる天板 53に より気密に塞がれている。また前記天板 53の下方、前記光学窓 61Aの上方には、ガ ス入口およびこれに連通する多数のノズル開口部を設けられたガスリング等のガス導 入部 54が設けられ、ガス導入部 54Aは、 Ar、 Kr, Xe、 He, Neなどの希ガスが、前 記プラズマ形成空間 51Aに導入される。
[0019] さらに、前記処理容器 51には、前記光学窓 61Aの下に別のガスリング 54Bが設け られ、前記プロセス空間 51Bに、例えば酸素ガス、窒素ガス、 N Oガス、 NOガス、 N
2
Oガス、炭化水素ガス、フルォロカーボンガスや希ガスなど力 前記被処理基板 Wの
2
基板処理の目的で導入される。
[0020] ここで前記天板 53はマイクロ波透過窓として機能し、前記天板 53の上部には、ラジ アルラインスロットアンテナ 55Cを構成するアンテナ部 55が設けられて 、る。前記マ イク口波アンテナの代わりにホーンアンテナを使うことも可能である。
[0021] 図示の例ではラジアルラインスロットアンテナ 55Cからなる平面状のアンテナで形成 されており、従って前記アンテナ部 55は、平坦な導体部 55Aと遅波板 55Bと平面ァ ンテナ板 55Cを含んで 、る。遅波板 55Bは平面アンテナ板 55Cを覆うように設けられ 、石英あるいはアルミナなどの誘電体で構成する。
[0022] 平面アンテナ板 55Cは図 4で説明する多数のスロット 55a, 55bを形成されており、 さらにアンテナ 55は、外部導波路 56Aと内部導波路 56Bよりなる同軸導波管 56に、 前記外部導波路 56Aが前記アンテナ 55の導体部 55Aに、また前記内部導波路 56 Bが前記平面アンテナ板 55Cに前記遅波板 55Bを貫通して接続され、結合されて!ヽ る。
[0023] 前記内部導波路はモード変換部 110Aを介して矩形断面の導波路 110Bに接続さ れ、前記導波路 110Bはマイクロ波源 112にインピーダンス整合器 111を介して結合 される。そこで前記マイクロ波源 112で形成されたマイクロ波は矩形導波管 110Bお よび同軸導波管 56を介してアンテナ 55に供給される。
[0024] また図 1の構成では、前記導体部 55Aに冷却ユニット 55Dが設けられている。
[0025] 図 2は、前記ラジアルラインスロットアンテナ 55Cの構成を詳細に示す。ただし図 2 は、前記平面アンテナ板 55Cの上面図になっている。
[0026] 図 2を参照するに、前記平面アンテナ板 55Cには多数のスロット 55a, 55bが同心 円状に、かつ隣接するスロット 55aと 55bが直交するような向きで形成されているのが わかる。前記スロット 55a, 55bはらせん状でも直線状でもよい。
[0027] そこで、このようなラジアルラインスロットアンテナ 55Cにマイクロ波が同軸導波管 56 から供給されると、マイクロ波はアンテナ 55C中を径方向に広がりながら伝播し、その 際に前記遅波板 55Bにより波長圧縮を受ける。そこでマイクロ波は前記スロット 55a, 55bから、一般に平面アンテナ板 55Cに略垂直方向に、円偏波として放射される。
[0028] 動作時には、前記処理容器 51内のプラズマ形成空間 51Aおよびプロセス空間 51 B力 前記排気口 51Cを介した排気により、所定の圧力に設定され、 Ar, Kr, Xe, N eなどの希ガスが、前記ガス導入部 54Aから、前記プラズマ形成空間 51Aに導入さ れる。
[0029] さらに前記プロセス空間 51Aには周波数が l〜20GHz、例えば 2. 45GHzのマイ クロ波が、前記マイクロ波源 112からアンテナ 55を介して導入され、その結果、前記 被処理基板 Wの表面にはプラズマ密度が 1011〜: L013Zcm3の高密度プラズマが励 起される。このようにアンテナを介して導入されたマイクロ波により励起されたプラズマ は、 0. 5〜7eVあるいはそれ以下の低い電子温度を特徴とする。
[0030] このようなプラズマ励起にともない、前記プラズマ形成空間 51Aには、図 3に示す X e連続スペクトルを有する紫外光が形成される。紫外光領域は 10〜400nmが好まし ぐ石英窓使用の場合、好ましくは 200nm以上が好ましい。このように発光強度によ り処理ガスを励起して基板処理することが可能になる。また、励起ガスにより発光強度 波長が異なるので、最適に効率良く発光するガスを選択することが良い。そこで、図 1 , 2の基板処理装置 50では、前記プロセス空間 51Bにおける基板処理を、前記ブラ ズマ形成空間 51Aにおける無電極放電によるプラズマ発光を光源として、行うことが 可能となる。この場合、前記光学窓 61Aよりも上方の部分が、マイクロ波プラズマ光 源装置を構成する。
[0031] 図 1の構成では、前記プラズマ形成空間 51Aは前記プロセス空間 51Bと、前記開 口部 61aを介して連通しているため、前記プラズマ形成空間 51Aは、前記プロセス空 間と同時に排気される。
[0032] 図 1, 2の構成によれば、プラズマが大口径のマイクロ波アンテナにより均一に形成 され、プラズマに伴う紫外光により、大面積を有する被処理体に単一の光源で、均一 に照射することが可能となり、光源を寿命の短い放電管を多数配列することにより構 成したり、被処理基板を回転させたりする必要がない。その結果、紫外光処理や酸素 ラジカルを使った酸ィ匕処理、エッチング処理などにおいて、基板処理費用を大きく低 減することが可能となる。
[第 2の実施形態]
図 4は、本発明の第 2の実施形態による、無電極放電光源装置を備えた基板処理 装置 50Aの構成を示す。ただし図中、先に説明した部分に対応する部分には同一 の参照符号を付し、説明を省略する。
[0033] 図 4を参照するに、本実施形態では前記光学窓 61 Aの代わりに、前記プラズマ形 成空間 51Aとプロセス空間 51Bの間に連通部を形成することなく分離する石英光学 窓 61Bが設けられており、さらに前記処理容器 51には、前記プラズマ形成領域 51A を排気する排気口 51Eが形成されて 、る。
[0034] 図 4の構成では、このように、前記プラズマ形成領域 51 A力 前記プロセス空間 51 Bに対して独立しており、前記光学窓 61Bの上方には、前記光学窓 61Bの下方の基 板処理装置とは独立の光源装置が形成される。プラズマ処理装置 50Aに希ガス等 のプラズマガスをガスリング 54Aカゝら導入してプラズマを生成し、紫外光が生成される
[0035] この場合、前記プロセス空間 51Bにおいては、前記プラズマ形成領域 51 Aにおい て形成されたプラズマに伴う紫外光により前記ガス入り口 54B力 供給されたプロセ スガスが励起され、その結果形成された前記プロセスガスの活性ラジカルにより、被 処理基板 Wの基板処理がなされる。
[0036] さらに、図 4の構成のうち、光源装置部分だけを図 5に示すように分離させ、独立し た光源装置 70を構成することも可能である。また、図 6に示すように、前記光源装置 7 0において、ガス入り口 54Aおよび排気口 51Eを省略し、前記プラズマ形成領域 51 Aに Ar, Kr, Xe, Ne, Heなどの希ガスを封入した光源装置 70Aを構成することも可 能である。
[第 3の実施形態] 図 7は、本発明の第 3の実施形態による基板処理装置 50Bの構成を示す。ただし 図中、先に説明した部分に対応する部分には同一の参照符号を付し、説明を省略 する。
[0037] 図 7を参照するに、基板処理装置 50Bは前記基板処理装置 50Aと同様な構成を 有している力 処理容器 51の外部に、前記プラズマ形成空間 51Aとプロセス空間 51 Bを連結するライン 71を設け、さらに前記ライン 71中にバルブ 71Aを設けている。さ らに図 6の構成では、前記排気口 51Dを、バルブ 5 Idを介して排気し、排気口 51E、 バルブ 5 leを介して排気している。プラズマ形成空間 54Aとプロセス空間 51Bの排 気は、別々に排気してもよい。
[0038] 前記ノ レブ 71Aは、前記プラズマ形成空間 51Aで形成されたラジカルを前記プロ セス空間 51Bに導入する場合に開放される。
[0039] 図 8Aおよび図 8Bは、図 7の基板処理装置 50Bの二つの運転モードを示す。
[0040] 図 8Aの運転モードでは、前記バルブ 71Aは閉鎖され、前記バルブ 51dおよび 51e を開放することにより、前記光学窓 61Bおよびその上側のプラズマ形成空間 51Aを 含む光源部が、前記光学窓 61Bより下方の基板処理部に対して独立に駆動され、前 記基板保持台 52上の被処理基板 Wが、前記プラズマ形成空間に形成されたプラズ マに伴う発光が照射される。
[0041] これに対し図 8Bの運転モードでは、前記バルブ 71Aは開放され、一方バルブ 51e は閉鎖される。
[0042] その結果、例えば前記プラズマ形成空間 51Aに Arガスなどの希ガスとともに酸素 ガスある 、は窒素ガスを導入した場合、前記プラズマ形成空間 51Aにお ヽて形成さ れた酸素ラジカルあるいは窒素ラジカル力 前記排気口 51Dおよびバルブ 5 Idを介 した排気作用の結果、前記ライン 71を通ってプロセス空間 51Bに流れ、前記被処理 基板 W表面に対して酸素ラジカル処理が施される。本実施形態では、処理容器 51 内の有機物 (C、 Hなどの炭化水素等)を、酸素、水素を用い、紫外線照射して活性 化し、クリーニングすることができる。
[0043] 図 8Aの運転モードおよび図 8Bの運転モードは独立であり、別々に実行することが 可能である。また、図 8Aの運転モードを図 7Bの運転モードの後で実行することも可 能であるし、図 8Bの運転モードを図 7Aの運転モードの後で実行することも可能であ る。
[0044] 以上、本発明をこのましい実施例について説明したが、本発明は力かる特定の実 施形態に限定されるものではなく、特許請求の範囲に記載した要旨内にお 、て様々 な変形 '変更が可能である。
[0045] また本発明は低ダメージのため、 Low— K (低誘電率)膜のキュアリングや光タリー ニング等にも適用できる。
[0046] 本発明は優先権主張の基礎となる 2006年 1月 31日に出願の特願 2006— 02328 3の全内容を含むものである。
[0047] 本発明によれば、光学窓に対向したマイクロ波透過窓を介して、プラズマ形成領域 中にマイクロ波アンテナによる無電極放電によりプラズマを形成し、形成されたプラズ マに伴う発光を光学窓力 放射することにより、大面積にわたり一様な発光が実現さ れ、寿命の長い大口径の光源が得られる。このような光源を使うことにより、高品質な 基板処理を安価に行うことが可能となる。このような光源は、プラズマを使った基板処 理装置に一体ィ匕することが可能である。

Claims

請求の範囲
[1] プラズマ形成領域を含み、前記プラズマ形成領域にぉ ヽて無電極放電によりブラ ズマを形成して発光を生成するプラズマ形成室と、
前記プラズマ形成室中におけるプラズマ形成領域の下端を画成し、前記発光を透 過する光学窓とよりなる光源装置であって、
前記プラズマ形成室内に、前記プラズマを生成するためのマイクロ波を導入するマ イク口波透過窓が形成されており、
さらに前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ 波を導入するマイクロ波アンテナが設けられていることを特徴とする光源装置。
[2] 前記マイクロ波アンテナは、複数のスロットを形成する平面アンテナであることを特 徴とする請求項 1記載の光源装置。
[3] 前記プラズマ形成室は排気口を介して排気され、さらに前記プラズマ形成室には、 前記プラズマ形成領域にガスを供給するガス入り口が形成されて ヽることを特徴とす る請求項 1記載の光源装置。
[4] 前記プラズマ形成室内には、前記プラズマ形成領域と前記光学窓の下側領域とを 結ぶ連通路が設けられており、前記排気口は、前記下側領域に設けられることを特 徴とする請求項 3記載の光源装置。
[5] 前記プラズマ形成室には、前記プラズマ形成領域に排気口が形成されて ヽることを 特徴とする請求項 3記載の光源装置。
[6] プロセス空間を画成し、前記プロセス空間中に被処理基板を保持する基板保持台 を設けられた処理容器と、
前記処理容器の上部に、前記基板保持台上の被処理基板に対向するように設けら れた光源装置と、を備えた基板処理装置であって、
前記光源装置は、
プラズマ形成領域を含み、前記プラズマ形成領域にぉ ヽて無電極放電によりブラ ズマを形成して発光を生成するプラズマ形成室と、
前記プラズマ形成室中におけるプラズマ形成領域の下端を画成し、前記発光を透 過する光学窓とよりなり、 前記プラズマ形成室内に、前記プラズマを生成するためのマイクロ波を導入するマ イク口波透過窓が形成され、
前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ波を 導入するマイクロ波アンテナが設けられ、
さらに前記プラズマ形成領域に第 1のガスを導入する第 1のガス導入口と、 前記プロセス空間に第 2のガスを導入する第 2のガス導入と、
前記プロセス空間を排気する排気口と、
前記光学窓の一部に設けられ、前記プラズマ形成室と前記プロセス空間を接続す る開口部と、を備えたことを特徴とする基板処理装置。
[7] 前記開口部は、前記基板保持台上の被処理基板の外側に対応して形成されてい ることを特徴とする請求項 6記載の基板処理装置。
[8] プロセス空間を画成し、前記プロセス空間中に被処理基板を保持する基板保持台 を設けられた処理容器と、
前記処理容器の上部に、前記基板保持台上の被処理基板に対向するように設けら れた光源装置と、を備えた基板処理装置であって、
前記光源装置は、
プラズマ形成領域を含み、前記プラズマ形成領域にぉ ヽて無電極放電によりブラ ズマを形成して発光を生成するプラズマ形成室と、
前記プラズマ形成室中におけるプラズマ形成領域の下端を画成し、前記発光を透 過する光学窓とよりなり、
前記プラズマ形成室内に、前記プラズマを生成するためのマイクロ波を導入するマ イク口波透過窓が形成され、
前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ波を 導入するマイクロ波アンテナが設けられ、
さらに前記プラズマ形成室に第 1のガスを導入する第 1のガス入り口と、 前記プロセス空間に第 2のガスを導入する第 2のガス入り口と、
前記プラズマ形成室を排気する第 1の排気口と、
前記プロセス空間を排気する第 2の排気口と、を備えたことを特徴とする基板処理 装置。
[9] 前記処理容器の外部に設けられ、前記プラズマ形成室と前記プロセス空間とを接 続する連通路と、
前記連通路に設けられたバルブと、をさらに備えたことを特徴とする請求項 8記載の 基板処理装置。
[10] 前記マイクロ波アンテナは、複数のスロットを形成する平面アンテナであることを特 徴とする請求項 6記載の基板処理装置。
[11] 前記第 1の排気口には第 1の排気バルブが設けられ、前記第 2の排気口には第 2の 排気バルブが設けられていることを特徴とする請求項 6記載の基板処理装置。
[12] プロセス空間を画成し、前記プロセス空間中に被処理基板を保持する基板保持台 を設けられた処理容器と、
前記処理容器の上部に、前記基板保持台上の被処理基板に対向するように設けら れた光源装置と、を備えた基板処理装置による基板処理方法であって、
前記光源装置は、
プラズマ形成領域を含み、前記プラズマ形成領域にぉ ヽて無電極放電によりブラ ズマを形成して発光を生成するプラズマ形成室と、
前記プラズマ形成室中におけるプラズマ形成領域の下端を画成し、前記発光を透 過する光学窓とよりなり、
前記プラズマ形成室内に、前記プラズマを生成するためのマイクロ波を導入するマ イク口波透過窓が形成され、
前記マイクロ波透過窓の外側には、前記マイクロ波窓に結合し、前記マイクロ波を 導入するマイクロ波アンテナが設けられ、
さらに前記プラズマ形成室に第 1のガスを導入する第 1のガス入り口と、 前記プロセス空間に第 2のガスを導入する第 2のガス入り口と、
前記プラズマ形成室を排気する第 1の排気口と、
前記プロセス空間を排気する第 2の排気口と、
前記第 1の排気口に設けられた第 1のバルブと、
前記第 2の排気口に設けられた第 2のバルブと、 前記プラズマ形成室と前記プロセス空間とを結合する連通路と、
前記連通路に設けられた第 3のバルブと、を備えた基板処理装置による基板処理 方法であって、
前記第 3のバルブを閉鎖し、前記第 1および第 2のバルブを開放した状態で、前記 プラズマ形成領域にプラズマを形成し、前記被処理基板表面をプラズマ発光に対し て露光する第 1の工程と、
前記第 2および第 3のバルブを開放し、前記第 1のバルブを閉鎖した状態で、前記 プロセス空間において前記被処理基板表面を、前記プラズマに伴うラジカルにより処 理する第 2の工程の、少なくとも一方を含むことを特徴とする基板処理方法。
前記第 1おのび第 2の工程は、前記第 2の工程が前記第 1の工程の後で行われる 第 1のシーケンスおよび前記第 1の工程が前記第 2の工程の後で行われる第 2のシ 一ケンスのいずれか一方に従って実行されることを特徴とする請求項 12記載の基板 処理方法。
PCT/JP2007/051406 2006-01-31 2007-01-29 光源装置、基板処理装置、基板処理方法 WO2007088817A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800008302A CN101341582B (zh) 2006-01-31 2007-01-29 光源装置、基板处理装置、基板处理方法
US12/162,617 US20090173715A1 (en) 2006-01-31 2007-01-29 Light source device, substrate treating device, and substrate treating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006023283A JP4947982B2 (ja) 2006-01-31 2006-01-31 基板処理方法
JP2006-023283 2006-08-31

Publications (1)

Publication Number Publication Date
WO2007088817A1 true WO2007088817A1 (ja) 2007-08-09

Family

ID=38327390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051406 WO2007088817A1 (ja) 2006-01-31 2007-01-29 光源装置、基板処理装置、基板処理方法

Country Status (5)

Country Link
US (1) US20090173715A1 (ja)
JP (1) JP4947982B2 (ja)
KR (1) KR100945316B1 (ja)
CN (1) CN101341582B (ja)
WO (1) WO2007088817A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150118416A1 (en) * 2013-10-31 2015-04-30 Semes Co., Ltd. Substrate treating apparatus and method
JP7030915B2 (ja) * 2020-08-28 2022-03-07 芝浦メカトロニクス株式会社 プラズマ処理方法、およびプラズマ処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074426A (ja) * 1983-09-29 1985-04-26 Ulvac Corp 光励起プロセス装置
JP2003037105A (ja) * 2001-07-26 2003-02-07 Tokyo Electron Ltd プラズマ処理装置及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262471A (ja) * 1987-04-20 1988-10-28 Nec Corp 光化学気相成長装置
US5359177A (en) * 1990-11-14 1994-10-25 Mitsubishi Denki Kabushiki Kaisha Microwave plasma apparatus for generating a uniform plasma
JP2989063B2 (ja) * 1991-12-12 1999-12-13 キヤノン株式会社 薄膜形成装置および薄膜形成方法
JPH07106299A (ja) * 1993-09-30 1995-04-21 Sony Corp エッチング方法及びエッチング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074426A (ja) * 1983-09-29 1985-04-26 Ulvac Corp 光励起プロセス装置
JP2003037105A (ja) * 2001-07-26 2003-02-07 Tokyo Electron Ltd プラズマ処理装置及び方法

Also Published As

Publication number Publication date
US20090173715A1 (en) 2009-07-09
JP4947982B2 (ja) 2012-06-06
KR20080064166A (ko) 2008-07-08
CN101341582A (zh) 2009-01-07
JP2007207915A (ja) 2007-08-16
KR100945316B1 (ko) 2010-03-05
CN101341582B (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
JP5243457B2 (ja) マイクロ波プラズマ処理装置の天板、プラズマ処理装置およびプラズマ処理方法
TW559988B (en) Method and apparatus for micro-jet enabled, low-energy ion generation and transport in plasma processing
KR100960424B1 (ko) 마이크로파 플라즈마 처리 장치
JP4555143B2 (ja) 基板の処理方法
WO2007091672A1 (ja) プラズマ処理装置及びプラズマ処理方法
EP2276328A1 (en) Microwave plasma processing device
KR20170141117A (ko) 질화 규소막의 처리 방법 및 질화 규소막의 형성 방법
JP2006086449A (ja) プラズマ処理装置およびプラズマ処理方法
WO2003001578A1 (fr) Dispositif de traitement au plasma par micro-ondes, procede de traitement au plasma, et organe de rayonnement de micro-ondes
TW201001620A (en) Method and apparatus for UV curing with water vapor
WO2005064998A1 (ja) プラズマ処理装置
JP2008235611A (ja) プラズマ処理装置及びプラズマ処理方法
WO2007088817A1 (ja) 光源装置、基板処理装置、基板処理方法
JPH1079380A (ja) 改質方法及びその装置
US20090266711A1 (en) Substrate processing apparatus
JP3062116B2 (ja) 成膜・改質集合装置
KR20190001518A (ko) 플라즈마 처리 장치
WO2011007745A1 (ja) マイクロ波プラズマ処理装置およびマイクロ波プラズマ処理方法
JP2002083803A (ja) エッチング装置やアッシング装置といったようなドライプロセッシング装置
US20130160793A1 (en) Plasma generating apparatus and process for simultaneous exposure of a workpiece to electromagnetic radiation and plasma
JP7339396B2 (ja) 基板処理装置及び基板処理方法
WO2024029388A1 (ja) 基板処理装置、流体活性化装置、基板処理方法及び流体活性化方法
JPH1150272A (ja) プラズマプロセス装置
JPH11172448A (ja) 光学部品の製造法
JP2015135924A (ja) 基板処理装置及び基板処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000830.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087011870

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12162617

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707637

Country of ref document: EP

Kind code of ref document: A1