WO2007086133A1 - Plasma display apparatus - Google Patents

Plasma display apparatus Download PDF

Info

Publication number
WO2007086133A1
WO2007086133A1 PCT/JP2006/301316 JP2006301316W WO2007086133A1 WO 2007086133 A1 WO2007086133 A1 WO 2007086133A1 JP 2006301316 W JP2006301316 W JP 2006301316W WO 2007086133 A1 WO2007086133 A1 WO 2007086133A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
address driver
display device
display data
plasma display
Prior art date
Application number
PCT/JP2006/301316
Other languages
French (fr)
Japanese (ja)
Inventor
Yasunobu Hashimoto
Akira Otsuka
Original Assignee
Fujitsu Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Hitachi Plasma Display Limited filed Critical Fujitsu Hitachi Plasma Display Limited
Priority to PCT/JP2006/301316 priority Critical patent/WO2007086133A1/en
Priority to JP2007555828A priority patent/JPWO2007086133A1/en
Publication of WO2007086133A1 publication Critical patent/WO2007086133A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • G09G3/2935Addressed by erasing selected cells that are in an ON state
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/298Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/023Power management, e.g. power saving using energy recovery or conservation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/18Use of a frame buffer in a display terminal, inclusive of the display panel

Definitions

  • the present invention relates to a plasma display device.
  • a plasma display panel has an electrode matrix composed of a scan electrode group for row selection and an address electrode group for column selection.
  • a unit display area is defined at the intersection of the scan electrode and the address electrode, and one display element is arranged in each of the unit display areas.
  • the electrode configuration of the surface discharge PDP can be regarded as a simple matrix similar to other PDPs.
  • the contents to be displayed are set by addressing in units of lines, that is, by performing address selection for each line.
  • the address period of one frame in which addressing is performed is divided into the same number of line selection periods as the number of lines on the screen.
  • Each scan electrode is exclusively biased to a predetermined potential in any one row selection period and becomes active, and display data for one row is output in parallel from all the address electrodes. In other words, the potentials of all address electrodes are controlled simultaneously according to the display data.
  • Japanese Patent Laid-Open No. 7-152341 describes masking lower bits of display data when the power consumption of an address driver for driving address electrodes becomes large. Specifically, it describes masking display data of some subframes among a plurality of subframes constituting one frame. This suppresses changes in the potential of the address electrode in the subfield where the display data is masked, thereby reducing power consumption.
  • this method since the number of subframes for performing gradation expression is substantially reduced, gradation expression ability is reduced. Therefore, the gradation of the displayed image becomes rough and the image quality deteriorates.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-152341
  • Patent Document 2 Japanese Patent Laid-Open No. 11-282398
  • An object of the present invention is to make it possible to reduce power consumption of an address driver while suppressing deterioration in image quality with a simple circuit configuration.
  • the plasma display device of the present invention is based on a filter that filters display data, an address electrode for selecting light emission or non-light emission of a display cell, and the filtered display data. And an address driver for driving the address electrode, and controlling characteristics of the filter based on index information relating to power consumption of the address driver.
  • the filter characteristics are controlled so as to suppress the high-frequency component of the display data, thereby suppressing the image quality degradation.
  • the number of potential changes of the loess electrode can be reduced.
  • FIG. 1 is a diagram showing a configuration example of a plasma display device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a main part of the address driver.
  • FIG. 3 is a diagram showing an example of a driving sequence of the plasma display device.
  • FIG. 4 is a diagram showing a configuration example of a plasma display device according to a second embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration example of a plasma display device according to a third embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration example of a plasma display device according to a fourth embodiment of the present invention.
  • FIG. 7 is a diagram showing another example of the configuration of the plasma display device according to the fourth embodiment of the present invention.
  • FIG. 8 is a diagram showing another example of the configuration of the plasma display device according to the fourth embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration example of a plasma display device according to the first embodiment of the present invention.
  • the plasma display apparatus 100 includes an AC drive type (AC type) plasma display panel (PDP) 1 which is a thin color display device, and a drive unit 10 thereof.
  • the plasma display device 100 is used, for example, as a wall-mounted television receiver or a computer system monitor.
  • PDP1 has a plurality of display cells arranged in a matrix that forms a screen of M columns and N rows.
  • PDP1 has an electrode pair for generating a sustaining discharge (also referred to as a display discharge) in each display cell.
  • X electrode first main electrode
  • It has a three-electrode surface discharge structure in which Y1 to YN and address electrodes (third electrodes) A1 to AM for selecting lighting (light emission) or non-lighting (non-light emission) of the display cell intersect.
  • each of the X electrodes X1 to XN or their generic name is referred to as an X electrode Xi
  • each of the Y electrodes Y1 to YN or their generic name is referred to as a Y electrode Yi
  • i means a subscript
  • each of the address electrodes A1 to AM or their generic name is called an address electrode Aj
  • j means a subscript.
  • the X electrodes Xi and the Y electrodes Yi are arranged alternately and in parallel, and the address electrodes Aj are arranged in a direction perpendicular to (intersecting with) these electrodes Xi, Yi.
  • the electrodes Xi and Yi extend in the row direction (horizontal direction) of the screen, and the Y electrode Yi is used as a scan electrode for selecting a display cell for each row during addressing.
  • the address electrode Aj extends in the column direction (vertical direction) of the screen, and is used as an electrode for selecting a display cell for each column during addressing.
  • a range where the X electrode Xi and Y electrode Yi intersect the address electrode Aj is a display area (that is, a screen), and the intersection of the Y electrode Yi and address electrode Aj and adjacent to each other.
  • Each display cell is formed by the X electrode Xi. This display cell corresponds to a pixel, and PDP1 can display a two-dimensional image.
  • the drive unit 10 is for selectively lighting a large number of display cells constituting a screen of M columns and N rows, and includes a controller 11, a low-pass filter 12, a data processing circuit 13, and a power calculation circuit. 14, X driver 15, Y driver 16, and address driver 17.
  • the drive unit 10 includes frame data (display data) in units of pixels indicating the luminance level (gradation level) of each color R (red), G (green), and B (blue) of an external device such as a TV tuner or a computer. D) Df is input together with various sync signals.
  • the controller 11 controls the low-pass filter 12, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals).
  • the low-pass filter 12 is a filter capable of suppressing high-frequency components of input data, and performs filtering processing on frame data Df input from the outside.
  • the filter characteristic of the low-pass filter 12 is controlled by the coefficient designation data Di from the controller 11.
  • the cutoff frequency of the low-pass filter 12 is controlled according to the number designation data Di.
  • the data processing circuit 13 processes the frame data filtered by the low-pass filter 12 and outputs it to the power calculation circuit 14 and the address driver 17. Specifically, the data processing circuit 13 stores the frame data Df filtered by the low-pass filter 12 in the frame memory 13A and then converts it into subframe data Dsf for gradation display. Stored in the subframe memory 13B. In addition, the data processing circuit 13 serially transfers the subframe data Dsf stored in the subframe memory 13B to the address driver 17 and supplies it to the power calculation circuit 14.
  • the value of each bit indicates the necessity of lighting the display cell in the subframe, strictly speaking, the necessity of address discharge.
  • the power calculation circuit 14 calculates the power consumption value of the address driver 17 based on the subframe data Dsf supplied from the data processing circuit 13. An arithmetic expression for calculating the power consumption value is registered in the power arithmetic circuit 14 in advance, and the power consumption value of the address driver 17 is calculated by the arithmetic expression. Further, the power calculation circuit 14 outputs data Dr indicating the power consumption value obtained as a calculation result to the controller 11. Based on this data Dr, the controller 11 determines the coefficient of the low-pass filter 12.
  • the X driver 15 drives the X electrode XI to control its potential.
  • the X driver 15 is a circuit card that repeatedly discharges, and supplies a predetermined voltage to the X electrode XI.
  • the Y driver 16 drives the Y electrode Yi to control its potential.
  • the Y driver 16 includes a circuit that performs line sequential scanning and a circuit that repeats discharge, and supplies a predetermined voltage to the Y electrode Yi.
  • the address driver 17 drives the address electrode Aj and controls its potential.
  • the address driver 17 includes a circuit that selects a column to be displayed, and supplies a predetermined voltage to the address electrode Aj.
  • the address driver 17 includes one push-pull switching circuit 17 1 shown in FIG. 2 for each address electrode Aj.
  • the address driver 17 can independently control the potential of each address electrode Aj in accordance with the subframe data Dsf.
  • the address electrode Aj is biased to a predetermined power supply potential (Va).
  • Va a predetermined power supply potential
  • the switching element Q2 of the switching circuit 171 is turned on, the address electrode Aj becomes the ground potential.
  • the plasma display device 100 shown in FIG. 1 is driven and controlled according to a drive sequence (described later) shown in FIG. 3, and is displayed with a display image power PDP1 based on frame data Df input from an external device force.
  • the plasma display device 100 performs filtering on the input frame data Df and appropriately suppresses the high-frequency components based on the amount of power consumed by the address driver 17. . From this, power consumption is reduced by charging / discharging the capacitance between the address electrodes Aj in addressing and between the address electrodes Aj and the main electrodes Xi, Yi.
  • the plasma display device 100 of the present embodiment as an index of power consumed by the address driver 17, it is calculated from subframe data Ds; f obtained by converting input frame data Df.
  • the power consumption value of the address driver 17 is used. Therefore, the suppression amount of the high frequency component of the frame data Df can be changed according to the subframe data Dsf.
  • the power calculation circuit 14 calculates the power consumption value of the address driver 17 based on the subframe data Dsf, and outputs the calculated power consumption value to the controller 11.
  • the controller 11 determines the coefficient of the low-pass filter 12 according to the power consumption value, and outputs the coefficient designation data Di to the low-pass filter 12 to control the filter characteristics.
  • the determined filter coefficient is applied from the frame data Df of the next frame.
  • the low-pass filter 12 may perform filtering in the vertical direction (direction in which the address electrode Aj extends) on the screen of M columns and N rows in the PDP 1, or in the horizontal direction (direction in which the electrodes Xi and Yi extend). A filtering process may be applied. It is also possible to perform filtering in both the vertical and horizontal directions.
  • the image data of the vertical line (j column) corresponding to the address electrode Aj is L j (y).
  • y is the vertical coordinate of the pixel and is expressed in units of the vertical pixel pitch.
  • the length is expressed in units of pixel pitch.
  • the low-pass filter 12 If the image data after filtering by the low-pass filter 12 is Lj (y), the low-pass filter 12
  • Equation (2) Assuming 0 Z (2 ⁇ ), each coefficient is as shown in Equation (2).
  • 0 is performed as follows, for example.
  • a value of 0 is used as the preset upper limit value ⁇ . Also, let the target value of the power consumption of the address driver 17 be ⁇ .
  • the controller 11 compares the power consumption value of the address driver 17 calculated by the power calculation circuit 14 with the target value P, and determines that the power consumption value of the address driver 17 is equal to or greater than the target value P and is max max. If this happens, decrease the value of ⁇ . On the other hand, the power consumption value of the address driver 17 is
  • L i (x) be the image data of the horizontal line (i column) corresponding to the electrodes Xi and Yi.
  • X is the horizontal coordinate of the pixel and is expressed in units of vertical pixel pitch.
  • the length is expressed in units of pixel pitch.
  • the direction in which the address electrode Aj extends is the column direction
  • the direction orthogonal to the direction in which the address electrode Aj extends is the row direction
  • the subframe data Dsf related to the display cell in the i-th row and j-th column is d (i, j)
  • [d (i, j) ⁇ 0, 1 ⁇ ]
  • the power consumed by the address driver 17 is charging power for the interelectrode capacitance and power due to gas discharge at the time of addressing.
  • the interelectrode capacitance is divided into the interelectrode capacitance between the address electrode Aj and the interelectrode capacitance between the address electrode Aj and the electrodes Xi and Yi.
  • the charging power to the interelectrode capacitance between the address electrodes Aj can be expressed by the difference u (i, j) between the display data of adjacent display cells, and is defined as in equation (4). [0046] [Equation 4]
  • the potential of the address electrode Aj changes, and when the charging energy between the address electrodes Aj increases, power is supplied from the address driver 17.
  • the charging power to the interelectrode capacitance between one address electrode Aj is expressed as f (u (i, j), u ( i + lm
  • p and p are determined by the interelectrode capacitance between the address electrodes Ai and the address pulse waveform.
  • Another element of the interelectrode capacitance is the counterelectrode capacitance between the address electrode Aj and the electrodes Xi and Yi as described above.
  • the power is supplied from the address driver 17 when the subframe data changes from “0” to “1”. Therefore, when the subframe data in the i-th row changes to the subframe data in the (i + 1) -th row, the charging power to the counter electrode capacitance associated with one address electrode Aj is expressed as f (d (i, j), d (i + l, j))
  • p is determined by the capacitance between the counter electrodes and the address pulse waveform.
  • the power supplied by the address driver 17 includes power due to gas discharge at the time of addressing, so-called address discharge power. This address discharge power is supplied when the subframe data is “1”.
  • the address discharge power per display cell is f (d (i, j)) d
  • the power supplied by the address driver 17, that is, the power consumption P is as shown in Equation (8).
  • PA ⁇ ⁇ f m j), u (i + 1, f p [d ⁇ i, j), d (i + 1, f d (d (i,;)) ⁇ ... (8)
  • the screen has a size of M columns and N rows when viewed in units of display cells, and the interelectrode capacitance with a dummy address electrode outside the screen is also taken into consideration. It also takes into account the change from the state before the address period to the state of the first row and the change to the state after the state force address period of the Nth row. Therefore, the definition of data d (i, j) is expanded and values are set as shown in Equation (9).
  • the power consumption value of the address driver 17 in one subframe can be calculated from the above equation (8), the power consumption per frame can be calculated by calculating the power in all the subframes in one frame. it can.
  • This power calculation circuit 14 calculates one frame.
  • the power consumption value may be used as it is for the control of the low-pass filter 12, or the average value of a plurality of frames may be used for the control.
  • FIG. 3 is a diagram showing an example of a driving sequence of the plasma display device in the present embodiment.
  • the image is composed of a plurality of time-series frames f (subscripts indicate display order) such as frames fk 1, fk, fk + 1, etc. shown in FIG.
  • each frame f is divided into, for example, eight subframes sfl, sf2, sf3, sf4, sf5, sf6, sf7, sf Divide into 8.
  • the relative ratio of luminance is, for example, approximately 1: 2: 4: 8: 16: 32: 64:
  • the number of sustaining discharges is set for each of the subframes sfl to sf8.
  • the subframe sfl has the highest luminance weight in the order of the subframes sf2, sf3,... With the lowest luminance weight, and the subframe sf8 has the highest luminance weight.
  • the brightness can be set in 256 steps for each color of R, G, and B by the combination of lighting Z not lighting in each subframe unit, and the number of colors that can be displayed is 256 to the third power.
  • the subframe period Tsf allocated to each of the subframes sfl to sf8 includes a reset period TR, an address period TA, and a sustain (sustain discharge) period TS.
  • the reset period TR the charge distribution of the display cell is initialized.
  • the address period TA a charge distribution corresponding to the display content (subframe data) is formed by row selection.
  • the sustain period TS the lighting state is maintained in order to ensure the luminance according to the gradation level.
  • the address period TA wall charges necessary to maintain the lighting state are formed only in the display cells to be lit in the sustain period TS.
  • row selection is performed in a predetermined order, and a negative scan pulse Py is applied to one Y electrode Yi corresponding to the selected row.
  • the address pulse Pa is applied to the address electrode Aj corresponding to the display cell to be lit.
  • address discharge occurs in the display cell to be lit, and the sustain is A desired wall charge necessary for maintaining the lighting state in the period TS is formed.
  • the sustain pulse Ps is alternately applied to the X electrode XI and the Y electrode Yi. Apply.
  • the sustain pulse Ps is a pulse having a voltage lower than the discharge start voltage. Each time the sustain pulse Ps is applied, a surface discharge occurs in the display cell in which wall charges are formed in the address period TA, that is, the selected display cell, and the display cell emits light.
  • drive waveform shown in FIG. 3 is an example, and various changes can be made without being limited thereto.
  • the low pass when the power consumption value of the address driver 17 calculated by the power calculation circuit 14 is equal to or higher than the target value, the low pass is set so as to lower the cutoff frequency.
  • the filter characteristics of the filter 12 are controlled to suppress high frequency components of the input frame data Df (display image data).
  • the filter characteristics of the low-pass filter 12 are controlled so that the cutoff frequency is increased within the predetermined range without exceeding the predetermined range. That is, the amount of suppression of the high frequency component of the input frame data Df is controlled according to the power consumption value of the address driver 17.
  • the power consumption value of the address driver 17 is equal to or higher than the target value, the high frequency component of the input frame data Df can be suppressed and the number of potential changes at the address electrode Aj can be reduced. Therefore, with a simple circuit configuration without complicating the circuit configuration, the power consumption of the address driver 17 can be suppressed to a target value or less while suppressing deterioration of the image quality of the displayed image and reducing the power consumption. Can do.
  • FIG. 4 is a diagram showing a configuration example of the plasma display device according to the second embodiment of the present invention.
  • blocks having the same functions as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • the driving sequence of the plasma display device according to the second embodiment is the same as that of the first embodiment.
  • the plasma display device 100 obtains the power consumption value of the address driver 17 by calculation based on the subframe data Dsf, and the low-pass filter 12 according to the power consumption value. Control properties.
  • the plasma display apparatus 200 according to the second embodiment shown in FIG. 4 measures the current supplied to the address driver 17 and controls the characteristics of the low-pass filter 12 according to the measurement result.
  • the measured current value supplied to the address driver 17 is an index of the power consumed by the address driver 17.
  • the power consumption of the address driver 17 is reduced by filtering the frame data Df based on the current value supplied to the address driver 17 and appropriately suppressing high frequency components.
  • the plasma display device 200 includes an AC type PDP 1 and a drive unit 20 as shown in FIG.
  • the drive unit 20 also receives frame data Df in units of pixels indicating the luminance level (gradation level) of each color of R, G, and B, as well as various synchronization signals. This is to selectively light up a number of display cells that make up the N-line screen.
  • the drive unit 20 includes a controller 21, a low-pass filter 12, a data processing circuit 13, an X driver 15, a Y driver 16, an address driver 17, and a current measurement circuit 22.
  • the controller 21 controls the low-pass filter 12, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals).
  • the controller 21 receives the measurement result of the current value supplied to the address driver 17 from the current measurement circuit 22, and determines the coefficient of the low-pass filter 12 based on the measurement result. Output coefficient specification data Di. For example, if the current value supplied to the address driver 17 is greater than or equal to a predetermined value, the controller 21 determines the value of ⁇ (cuts the low-pass filter 12).
  • the current measurement circuit 22 measures the current value actually supplied to the address driver 17 and outputs the measurement result to the controller 21.
  • the low-pass filter 12 filter appropriately suppresses the high-frequency component of the frame data Df according to the current value supplied to the address driver 17 measured by the current measurement circuit 22. Characteristics are controlled. As a result, the power consumption of the address driver 17 can be suppressed to a target value or less while suppressing image quality degradation with a simple circuit configuration, and the power consumption can be reduced.
  • FIG. 5 is a diagram showing a configuration example of a plasma display device according to the third embodiment of the present invention.
  • blocks having the same functions as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • the driving sequence of the plasma display device according to the third embodiment is the same as that of the first embodiment.
  • the plasma display device 300 measures the temperature of the address driver 17 and controls the characteristics of the low-pass filter 12 according to the measurement result.
  • the measured temperature of the address driver 17 is an index of the power consumed by the address driver 17.
  • the power consumption of the address driver 17 is reduced by applying a filtering process to the frame data Df and appropriately suppressing high frequency components based on the temperature of the address driver 17.
  • the plasma display device 300 includes an AC type PDP 1 and its drive unit 30 as shown in FIG.
  • the drive unit 30 also has the power of external devices such as TV tuners and computers.
  • Frame data Df for each pixel indicating the luminance level (gradation level) of each color of R, G, and B is used for various synchronization signals.
  • the number of display cells that are input together with the number and constitute the screen of M columns and N rows are selectively lit.
  • the drive unit 30 includes a controller 31, a low-pass filter 12, a data processing circuit 13, an X driver 15, a Y driver 16, an address driver 17, and a temperature measurement circuit 32.
  • the controller 31 controls the low-pass filter 12, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals).
  • the controller 31 is supplied with the temperature measurement result of the address driver 17 from the temperature measurement circuit 22, determines the coefficient of the low-pass filter 12 based on the measurement result, and outputs the coefficient designation data Di. For example, the controller 31 decreases the value of ⁇ (the cutoff frequency of the low-pass filter 12) if the temperature of the address driver 17 is equal to or higher than a predetermined temperature.
  • the temperature measurement circuit 32 measures the temperature of the address driver 17 and outputs the measurement result to the controller 31.
  • a circuit for enabling the driver temperature to be monitored is generally provided, it may be used as the temperature measurement circuit 32 in the present embodiment.
  • the filter characteristics of the low-pass filter 12 are controlled so as to appropriately suppress the high-frequency component of the frame data Df according to the temperature of the address driver 17 measured by the temperature measurement circuit 32. Is done. As a result, the power consumption of the address driver 17 can be reduced while suppressing image quality degradation with a simple circuit configuration. Further, since the control is performed based on the temperature of the address driver 17, it is possible to reliably prevent the address driver 17 from being damaged by heat generation, and the address driver 17 can be protected.
  • the frame data Df inputted from the outside is filtered by the low-pass filter 12.
  • the sub-frame data Dsf is filtered by the low-pass filter.
  • the plasma display device according to the fourth embodiment described below can perform a filtering process for suppressing high frequency components on the subframe data Dsf obtained by processing in the data processing circuit 13. It is a thing.
  • FIG. 6 is a diagram showing a configuration example of a plasma display device according to the fourth embodiment of the present invention.
  • blocks having the same functions as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • the driving sequence of the plasma display device according to the fourth embodiment is the same as that of the first embodiment.
  • the plasma display device 400 includes an AC type PDP 1 and a drive unit 40 thereof.
  • external device power such as a TV tuner or a computer also receives frame data Df in pixel units indicating the luminance level (gradation level) of each color of R, G, and B together with various synchronization signals, and M columns. This is to selectively light up a number of display cells that make up the N-line screen.
  • the drive unit 40 includes a controller 41, a low-pass filter 42, a power calculation circuit 43, a data processing circuit 13, an X driver 15, a Y driver 16, and an address driver 17.
  • the controller 41 controls the low-pass filter 42, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals). Further, the controller 41 is supplied with the power consumption value of the address driver 17 obtained by the power calculation circuit 43, and determines the coefficient of the low-pass filter 42 based on the power consumption value! Is output.
  • the low-pass filter 42 is a filter that can suppress high-frequency components of input data, and performs filtering processing on the subframe data Dsf output from the data processing circuit 13.
  • the low pass filter 42 is provided independently corresponding to each of a plurality of subframes constituting one frame.
  • the filter characteristics of the low-pass filter 42 are controlled by the coefficient specifying data Di from the controller 41. For example, the cutoff frequency of the low-pass filter 42 is controlled according to the coefficient specifying data Di.
  • the power calculation circuit 43 is configured in the same manner as the power calculation circuit 14 in the first embodiment, and is based on the subframe data Dsf filtered by the low-pass filter 42! /, Calculate the power consumption of the address driver 17.
  • the power calculation circuit 43 outputs data Dr indicating the power consumption value obtained as a calculation result to the controller 41.
  • L is a data value after filtering by the low-pass filter 42.
  • FIG. 7 is a diagram showing another configuration example of the plasma display device according to the fourth embodiment of the present invention.
  • blocks having the same functions as those shown in FIGS. 1 and 6 are denoted by the same reference numerals, and redundant description is omitted.
  • the plasma display device 500 shown in FIG. 7 measures the current supplied to the address driver 17 and controls the characteristic of the low-pass filter 42 that filters the subframe data Dsf according to the measurement result.
  • the plasma display device 500 includes an AC type PDP 1 and a drive unit 50 thereof. It is.
  • external device power such as a TV tuner or a computer also receives frame data Df in pixel units indicating the luminance level (gradation level) of each color of R, G, and B together with various synchronization signals. This is to selectively light up a number of display cells that make up the N-line screen.
  • the drive unit 50 includes a controller 51, a low-pass filter 42, a data processing circuit 13, an X driver 15, a Y driver 16, an address driver 17, and a current measurement circuit 52.
  • the controller 51 controls the low-pass filter 42, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals). Further, the controller 51 is supplied with the measurement result of the current value supplied to the address driver 17 from the current measurement circuit 52, and based on the measurement result, determines the coefficient of the low-pass filter 42 to obtain the coefficient designation data Di. Output.
  • the current measurement circuit 52 measures the current value actually supplied to the address driver 17 and outputs the measurement result to the controller 51.
  • FIG. 8 is a diagram showing another configuration example of the plasma display device according to the fourth embodiment of the present invention.
  • blocks having the same functions as those shown in FIGS. 1 and 6 are denoted by the same reference numerals, and redundant description is omitted.
  • the plasma display device 600 shown in FIG. 8 measures the temperature of the address driver 17 and controls the characteristics of the low-pass filter 42 that filters the subframe data Dsf according to the measurement result.
  • Plasma display apparatus 600 includes AC type PDP 1 and drive unit 60 thereof.
  • the drive unit 60 includes a controller 61, a low-pass filter 42, a data processing circuit 13, an X driver 15, a Y driver 16, an address driver 17, and a temperature measurement circuit 62.
  • the controller 61 controls the low-pass filter 42, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals). Further, the controller 61 is supplied with the measurement result of the current value supplied to the address driver 17 from the current measurement circuit 62, and determines the coefficient of the low-pass filter 42 based on the measurement result to obtain the coefficient designation data Di. Output.
  • the temperature measurement circuit 62 measures the temperature of the address driver 17 and outputs the measurement result to the controller 61.
  • the power consumption of the address driver 17 can be reduced while suppressing image quality degradation with a simple circuit configuration. Can do.
  • the sub-frame data Dsf which is the control data itself of the address driver 17, can be controlled for each sub-frame by performing a filtering process by the low-pass filter 42 as a unit. For example, the upper subframe (or subframe group) data with a higher luminance weight is not filtered, and the lower luminance frame! Or lower subframe (or subframe group) data is not filtered.
  • the filtering process using only the low-pass filter 42, the power consumption of the address driver 17 can be reduced while suppressing an increase in gradation error.
  • a low pass filter 42 is provided corresponding to each subframe, but one single pass filter 42 is provided.
  • the coefficient may be changed and controlled for each subframe.
  • a plurality of low-pass filters 42 may be provided in addition to one low-pass filter 42, and the coefficients may be appropriately controlled to be used in V and several subframes.
  • the screen is divided into a plurality of areas and each area is divided.
  • the power consumption value of the address driver 17 may be calculated, and a filtering process using a low-pass filter may be performed so as to suppress high-frequency components only in a region where the power consumption is large.
  • a target value of power consumption of the address driver 17 may be set for each divided area, and filtering may be performed according to a comparison result between the calculated power consumption value and the target value.
  • Such control is suitable, for example, for an image in which a moving image is displayed on a part of the screen and a still image is displayed on the other part.
  • the characteristics of the filter that filters the display data are controlled based on the index information related to the power consumption of the address driver, and the power consumption of the address driver is large.
  • the filter characteristics are controlled so as to suppress the high-frequency component of the display data.

Abstract

The characteristic of a filter (12), which subjects display data to a filtering process, is controlled based on index information related to the power consumption of an address driver (17) that drives address electrodes (A1-AM) for selecting, based on the display data, the light emissions or no light emissions of display cells. When the power consumption of the address driver (17) is large, the characteristic of the filter (12) is so controlled as to suppress the high frequency components of the display data, thereby reducing the number of potential changes of the address electrodes (A1-AM). In this way, the power consumption of the address driver (17) can be reduced, while the degradation of the picture quality being suppressed.

Description

明 細 書  Specification
プラズマディスプレイ装置  Plasma display device
技術分野  Technical field
[0001] 本発明は、プラズマディスプレイ装置に関する。  [0001] The present invention relates to a plasma display device.
背景技術  Background art
[0002] プラズマディスプレイパネル(PDP)は、行選択のためのスキャン電極群と列選択の ためのアドレス電極群とからなる電極マトリクスを有する。スキャン電極とアドレス電極 との交点に単位表示領域が画定され、それら単位表示領域のそれぞれに 1個ずつ 表示素子が配置される。なお、商品化されている面放電型 PDPでは、各行に 2本ず つ電極が配列されている力 一方の電極のみが行選択に用いられる。そのため、表 示素子の択一選択の観点では、面放電型 PDPの電極構成も他の PDPと同様の単 純マトリクスとみなすことができる。  A plasma display panel (PDP) has an electrode matrix composed of a scan electrode group for row selection and an address electrode group for column selection. A unit display area is defined at the intersection of the scan electrode and the address electrode, and one display element is arranged in each of the unit display areas. In commercialized surface discharge PDPs, only one of the two electrodes arranged in each row is used for row selection. Therefore, from the viewpoint of selecting one of the display elements, the electrode configuration of the surface discharge PDP can be regarded as a simple matrix similar to other PDPs.
[0003] 表示する内容は、行単位でのアドレッシング、すなわち各行毎にアドレス選択を行う ことによって設定される。アドレッシングが行われる 1フレームのアドレス期間は、画面 (スクリーン)の行数と同数の行選択期間に分割される。各スキャン電極は、排他的に 何れカゝ 1つの行選択期間において所定電位にバイアスされてアクティブとなり、それ に同期してすべてのアドレス電極から並列に 1行分の表示データが出力される。すな わち、表示データに応じて、すべてのアドレス電極の電位が一斉に制御される。  [0003] The contents to be displayed are set by addressing in units of lines, that is, by performing address selection for each line. The address period of one frame in which addressing is performed is divided into the same number of line selection periods as the number of lines on the screen. Each scan electrode is exclusively biased to a predetermined potential in any one row selection period and becomes active, and display data for one row is output in parallel from all the address electrodes. In other words, the potentials of all address electrodes are controlled simultaneously according to the display data.
[0004] このような駆動方法においては、隣接したアドレス電極間、及びアドレス電極と他の 電極 (例えば、スキャン電極)間の静電容量の充放電が発生し、それに費やされる無 駄な電力が大き!ヽという問題があった。スキャン電極間にも静電容量が存在するが、 スキャン電極の電位変化は表示データに依存しない規則性を有するので LC共振を 利用した電力回収が可能である。  In such a driving method, electrostatic charge / discharge occurs between adjacent address electrodes and between address electrodes and other electrodes (for example, scan electrodes), and wasteful power is consumed. There was a problem of big! Capacitance exists between the scan electrodes, but the potential change of the scan electrodes has regularity that does not depend on the display data, so power recovery using LC resonance is possible.
[0005] また、アドレッシングにおける各電極での電位変化の回数をみると、スキャン電極で は行選択時のみに電位が変化するのに対して、アドレス電極では何度も電位が変化 する。特に、高周波成分が多く含まれる画像についてのアドレッシングにおいては、 アドレス電極の電位が頻繁に変化する。そのような場合に、電極間の静電容量を充 電するための電力が多く消費される。 [0005] Furthermore, when looking at the number of potential changes at each electrode in addressing, the potential changes only at the time of row selection in the scan electrode, whereas the potential changes many times in the address electrode. In particular, in addressing an image containing a large amount of high frequency components, the potential of the address electrode changes frequently. In such a case, charge the capacitance between the electrodes. A large amount of power is consumed to generate electricity.
[0006] この問題に対して、いくつかの対策方法が提案されている。  [0006] Several countermeasures have been proposed for this problem.
例えば、特開平 7— 152341号公報には、アドレス電極を駆動するアドレスドライバ の消費電力が大きくなつた場合に、表示データの下位ビットをマスクすることが記載さ れている。具体的には、 1つのフレームを構成する複数のサブフレームのうち、一部 のサブフレームの表示データをマスクすることが記載されている。これにより、表示デ ータがマスクされるサブフィールドにおけるアドレス電極の電位変化を抑制して消費 電力の低減を図っている。し力しながら、この方法では、実質的に階調表現を行うサ ブフレーム数が減少するために階調表現力が低下する。したがって、表示される画 像の階調が荒くなり、画質が劣化する。  For example, Japanese Patent Laid-Open No. 7-152341 describes masking lower bits of display data when the power consumption of an address driver for driving address electrodes becomes large. Specifically, it describes masking display data of some subframes among a plurality of subframes constituting one frame. This suppresses changes in the potential of the address electrode in the subfield where the display data is masked, thereby reducing power consumption. However, in this method, since the number of subframes for performing gradation expression is substantially reduced, gradation expression ability is reduced. Therefore, the gradation of the displayed image becomes rough and the image quality deteriorates.
[0007] また、例えば、特開平 11— 282398号公報には、アドレスドライバの消費電力が大 きくなつた場合に、サブフレームの表示データの配列を参照して、アドレス電極の電 位変化回数が少なくなるようにアドレスのスキャン順序 (行の選択順序)を変更するこ とが記載されている。しかしながら、この方法は、サブフレームの表示データに応じて スキャン順序を変更するための特殊な回路が必要であり、回路構成が複雑になる。ま た、あらゆる表示データに対応することも困難である。  [0007] Also, for example, in Japanese Patent Laid-Open No. 11-282398, when the power consumption of the address driver increases, the number of potential changes in the address electrode is referred to with reference to the display data array in the subframe. It describes changing the address scanning order (row selection order) so that the number is reduced. However, this method requires a special circuit for changing the scan order according to the display data of the subframe, and the circuit configuration becomes complicated. It is also difficult to deal with any display data.
[0008] 特許文献 1 :特開平 7— 152341号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 7-152341
特許文献 2:特開平 11― 282398号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-282398
発明の開示  Disclosure of the invention
[0009] 本発明は、簡単な回路構成で、画質の劣化を抑制しながらもアドレスドライバの消 費電力を低減できるようにすることを目的とする。  An object of the present invention is to make it possible to reduce power consumption of an address driver while suppressing deterioration in image quality with a simple circuit configuration.
[0010] 本発明のプラズマディスプレイ装置は、表示データにフィルタ処理を施すフィルタと 、表示セルの発光又は非発光を選択するためのアドレス電極と、上記フィルタ処理さ れた表示データに基づ 、て、上記アドレス電極を駆動するアドレスドライバとを有し、 上記アドレスドライバの消費電力に係る指標情報に基づ 、て、上記フィルタの特性を 制御することを特徴とする。  The plasma display device of the present invention is based on a filter that filters display data, an address electrode for selecting light emission or non-light emission of a display cell, and the filtered display data. And an address driver for driving the address electrode, and controlling characteristics of the filter based on index information relating to power consumption of the address driver.
[0011] 本発明によれば、アドレスドライバの消費電力が大きい場合に、表示データの高周 波成分を抑制するようにフィルタの特性を制御することで、画質劣化を抑えながらアド レス電極の電位変化回数を低減することができる。 [0011] According to the present invention, when the power consumption of the address driver is large, the filter characteristics are controlled so as to suppress the high-frequency component of the display data, thereby suppressing the image quality degradation. The number of potential changes of the loess electrode can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、本発明の第 1の実施形態によるプラズマディスプレイ装置の構成例を示 す図である。  FIG. 1 is a diagram showing a configuration example of a plasma display device according to a first embodiment of the present invention.
[図 2]図 2は、アドレスドライバの要部の構成を示す図である。  FIG. 2 is a diagram showing a configuration of a main part of the address driver.
[図 3]図 3は、プラズマディスプレイ装置の駆動シーケンスの一例を示す図である。  FIG. 3 is a diagram showing an example of a driving sequence of the plasma display device.
[図 4]図 4は、本発明の第 2の実施形態によるプラズマディスプレイ装置の構成例を示 す図である。  FIG. 4 is a diagram showing a configuration example of a plasma display device according to a second embodiment of the present invention.
[図 5]図 5は、本発明の第 3の実施形態によるプラズマディスプレイ装置の構成例を示 す図である。  FIG. 5 is a diagram showing a configuration example of a plasma display device according to a third embodiment of the present invention.
[図 6]図 6は、本発明の第 4の実施形態によるプラズマディスプレイ装置の構成例を示 す図である。  FIG. 6 is a diagram showing a configuration example of a plasma display device according to a fourth embodiment of the present invention.
[図 7]図 7は、本発明の第 4の実施形態によるプラズマディスプレイ装置の他の構成例 を示す図である。  FIG. 7 is a diagram showing another example of the configuration of the plasma display device according to the fourth embodiment of the present invention.
[図 8]図 8は、本発明の第 4の実施形態によるプラズマディスプレイ装置の他の構成例 を示す図である。  FIG. 8 is a diagram showing another example of the configuration of the plasma display device according to the fourth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014] (第 1の実施形態) [0014] (First embodiment)
図 1は、本発明の第 1の実施形態によるプラズマディスプレイ装置の構成例を示す 図である。  FIG. 1 is a diagram showing a configuration example of a plasma display device according to the first embodiment of the present invention.
[0015] プラズマディスプレイ装置 100は、薄型カラー表示デバイスである交流駆動型 (AC 型)のプラズマディスプレイパネル(PDP) 1と、その駆動ユニット 10と力も構成される。 プラズマディスプレイ装置 100は、例えば壁掛け式テレビジョン受像機やコンピュータ システムのモニタ等として利用される。  [0015] The plasma display apparatus 100 includes an AC drive type (AC type) plasma display panel (PDP) 1 which is a thin color display device, and a drive unit 10 thereof. The plasma display device 100 is used, for example, as a wall-mounted television receiver or a computer system monitor.
[0016] PDP1は、 M列 N行の画面を構成するマトリクス状に配置された複数の表示セルを 有する。 PDP1は、各表示セルにおいて、点灯維持放電 (表示放電ともいう。)を生じ させるための電極対をなす X電極(第 1の主電極) XI〜: XN及び Y電極(第 2の主電 極) Y1〜YNと、当該表示セルの点灯 (発光)又は非点灯 (非発光)を選択するため のアドレス電極 (第 3の電極) A1〜AMとが交差する 3電極面放電構造を有する。以 下、 X電極 X1〜XNの各々又はそれらの総称を X電極 Xiといい、 Y電極 Y1〜YNの 各々又はそれらの総称を Y電極 Yiといい、 iは添え字を意味する。同様に、アドレス電 極 A1〜AMの各々又はそれらの総称をアドレス電極 Ajといい、 jは添え字を意味す る。 [0016] PDP1 has a plurality of display cells arranged in a matrix that forms a screen of M columns and N rows. PDP1 has an electrode pair for generating a sustaining discharge (also referred to as a display discharge) in each display cell. X electrode (first main electrode) XI˜: XN and Y electrode (second main electrode) Pole) It has a three-electrode surface discharge structure in which Y1 to YN and address electrodes (third electrodes) A1 to AM for selecting lighting (light emission) or non-lighting (non-light emission) of the display cell intersect. Hereinafter, each of the X electrodes X1 to XN or their generic name is referred to as an X electrode Xi, each of the Y electrodes Y1 to YN or their generic name is referred to as a Y electrode Yi, and i means a subscript. Similarly, each of the address electrodes A1 to AM or their generic name is called an address electrode Aj, and j means a subscript.
[0017] X電極 Xi及び Y電極 Yiは、交互かつ平行に配置され、これらの電極 Xi、 Yiと直交 する方向に(交差するように)アドレス電極 Ajが配置される。電極 Xi、 Yiは画面の行 方向(水平方向)に延び、 Y電極 Yiはアドレッシングに際して行単位に表示セルを選 択するためのスキャン電極として用いられる。また、アドレス電極 Ajは画面の列方向( 垂直方向)に延びており、アドレッシングに際して列単位に表示セルを選択するため の電極として用いられる。  [0017] The X electrodes Xi and the Y electrodes Yi are arranged alternately and in parallel, and the address electrodes Aj are arranged in a direction perpendicular to (intersecting with) these electrodes Xi, Yi. The electrodes Xi and Yi extend in the row direction (horizontal direction) of the screen, and the Y electrode Yi is used as a scan electrode for selecting a display cell for each row during addressing. The address electrode Aj extends in the column direction (vertical direction) of the screen, and is used as an electrode for selecting a display cell for each column during addressing.
[0018] 基板面のうち、 X電極 Xi及び Y電極 Yiとアドレス電極 Ajとが交差する範囲が表示領 域 (すなわち画面)となり、 Y電極 Yi及びアドレス電極 Ajの交点並びにそれに対応し て隣接する X電極 Xiにより各表示セルが形成される。この表示セルが画素に対応し、 PDP1は 2次元画像を表示することができる。  [0018] Of the substrate surface, a range where the X electrode Xi and Y electrode Yi intersect the address electrode Aj is a display area (that is, a screen), and the intersection of the Y electrode Yi and address electrode Aj and adjacent to each other. Each display cell is formed by the X electrode Xi. This display cell corresponds to a pixel, and PDP1 can display a two-dimensional image.
[0019] 駆動ユニット 10は、 M列 N行の画面を構成する多数の表示セルを選択的に点灯さ せるためのものであり、コントローラ 11、ローパスフィルタ 12、データ処理回路 13、電 力演算回路 14、 Xドライバ 15、 Yドライバ 16、及びアドレスドライバ 17を有する。駆動 ユニット 10には、 TVチューナーやコンピュータなどの外部装置力 R (赤)、 G (緑)、 B (青)の各色の輝度レベル(階調レベル)を示す画素単位のフレームデータ(表示デ ータ) Dfが各種の同期信号とともに入力される。  [0019] The drive unit 10 is for selectively lighting a large number of display cells constituting a screen of M columns and N rows, and includes a controller 11, a low-pass filter 12, a data processing circuit 13, and a power calculation circuit. 14, X driver 15, Y driver 16, and address driver 17. The drive unit 10 includes frame data (display data) in units of pixels indicating the luminance level (gradation level) of each color R (red), G (green), and B (blue) of an external device such as a TV tuner or a computer. D) Df is input together with various sync signals.
[0020] コントローラ 11は、外部からの入力信号 (フレームデータ Dfや各種同期信号)に基 づいて、ローパスフィルタ 12、 Xドライバ 15、 Yドライバ 16、及びアドレスドライバ 17を 制御する。  The controller 11 controls the low-pass filter 12, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals).
[0021] ローパスフィルタ 12は、入力データの高周波成分を抑制可能なフィルタであり、外 部から入力されるフレームデータ Dfにフィルタ処理を施す。ローパスフィルタ 12のフ ィルタ特性は、コントローラ 11からの係数指定データ Diにより制御される。例えば、係 数指定データ Diに応じて、ローパスフィルタ 12のカットオフ周波数が制御される。 [0021] The low-pass filter 12 is a filter capable of suppressing high-frequency components of input data, and performs filtering processing on frame data Df input from the outside. The filter characteristic of the low-pass filter 12 is controlled by the coefficient designation data Di from the controller 11. For example, The cutoff frequency of the low-pass filter 12 is controlled according to the number designation data Di.
[0022] データ処理回路 13は、ローパスフィルタ 12によりフィルタ処理されたフレームデー タを処理し、電力演算回路 14及びアドレスドライバ 17に出力する。具体的には、デ ータ処理回路 13は、ローパスフィルタ 12でフィルタ処理されたフレームデータ Dfをフ レームメモリ 13Aにー且格納した後、階調表示を行うためのサブフレームデータ Dsf に変換してサブフレームメモリ 13Bに格納する。また、データ処理回路 13は、サブフ レームメモリ 13Bに格納したサブフレームデータ Dsfを、適時アドレスドライバ 17にシ リアル転送するとともに、電力演算回路 14に供給する。ここで、フレームデータ Dfを 変換して得られるサブフレームデータ Dsfは、各ビットの値がサブフレームにおける表 示セルの点灯の要否、厳密にはアドレス放電の要否を示す。  The data processing circuit 13 processes the frame data filtered by the low-pass filter 12 and outputs it to the power calculation circuit 14 and the address driver 17. Specifically, the data processing circuit 13 stores the frame data Df filtered by the low-pass filter 12 in the frame memory 13A and then converts it into subframe data Dsf for gradation display. Stored in the subframe memory 13B. In addition, the data processing circuit 13 serially transfers the subframe data Dsf stored in the subframe memory 13B to the address driver 17 and supplies it to the power calculation circuit 14. Here, in the subframe data Dsf obtained by converting the frame data Df, the value of each bit indicates the necessity of lighting the display cell in the subframe, strictly speaking, the necessity of address discharge.
[0023] 電力演算回路 14は、データ処理回路 13から供給されるサブフレームデータ Dsfに 基づいて、アドレスドライバ 17の消費電力値を計算する。電力演算回路 14には、消 費電力値を計算するための演算式が予め登録されており、当該演算式によってアド レスドライバ 17の消費電力値が算出される。また、電力演算回路 14は、計算結果とし て得られた消費電力値を示すデータ Drをコントローラ 11に出力する。このデータ Dr に基づ 、て、コントローラ 11がローパスフィルタ 12の係数を決定する。  The power calculation circuit 14 calculates the power consumption value of the address driver 17 based on the subframe data Dsf supplied from the data processing circuit 13. An arithmetic expression for calculating the power consumption value is registered in the power arithmetic circuit 14 in advance, and the power consumption value of the address driver 17 is calculated by the arithmetic expression. Further, the power calculation circuit 14 outputs data Dr indicating the power consumption value obtained as a calculation result to the controller 11. Based on this data Dr, the controller 11 determines the coefficient of the low-pass filter 12.
[0024] Xドライバ 15は、 X電極 XIを駆動してその電位を制御する。 Xドライバ 15は、放電を 繰り返す回路カゝらなり、 X電極 XIに所定の電圧を供給する。また、 Yドライバ 16は、 Y 電極 Yiを駆動してその電位を制御する。 Yドライバ 16は、線順次走査する回路と放 電を繰り返す回路とからなり、 Y電極 Yiに所定の電圧を供給する。  [0024] The X driver 15 drives the X electrode XI to control its potential. The X driver 15 is a circuit card that repeatedly discharges, and supplies a predetermined voltage to the X electrode XI. The Y driver 16 drives the Y electrode Yi to control its potential. The Y driver 16 includes a circuit that performs line sequential scanning and a circuit that repeats discharge, and supplies a predetermined voltage to the Y electrode Yi.
[0025] アドレスドライバ 17は、アドレス電極 Ajを駆動してその電位を制御する。アドレスドラ ィバ 17は、表示すべき列を選択する回路からなり、アドレス電極 Ajに所定の電圧を 供給する。アドレスドライバ 17は、図 2に示すプッシュプル構成のスイッチング回路 17 1をアドレス電極 Aj毎に 1個ずつ備えている。アドレスドライバ 17は、サブフレームデ ータ Dsfに応じて各アドレス電極 Ajの電位を独立して制御することが可能である。  The address driver 17 drives the address electrode Aj and controls its potential. The address driver 17 includes a circuit that selects a column to be displayed, and supplies a predetermined voltage to the address electrode Aj. The address driver 17 includes one push-pull switching circuit 17 1 shown in FIG. 2 for each address electrode Aj. The address driver 17 can independently control the potential of each address electrode Aj in accordance with the subframe data Dsf.
[0026] 例えば、スイッチング回路 171のスイッチング素子 Q1がオン状態になれば、ァドレ ス電極 Ajは所定の電源電位 (Va)にバイアスされる。また、例えばスイッチング回路 1 71のスイッチング素子 Q2がオン状態になれば、アドレス電極 Ajは接地電位になる。 [0027] 図 1に示したプラズマディスプレイ装置 100は、図 3に一例を示す駆動シーケンス( 後述する)に従って駆動制御され、外部装置力 入力されるフレームデータ Dfに基 づく表示画像力 PDP1により表示される。その動作において、プラズマディスプレイ装 置 100は、アドレスドライバ 17で消費される電力の指標となる量に基づいて、入力さ れるフレームデータ Dfに対してフィルタ処理を施してその高周波成分を適宜抑制す る。これ〖こより、アドレッシングにおけるアドレス電極 Aj間、及びアドレス電極 Ajと主電 極 Xi、Yiの間の静電容量の充放電による電力消費の低減を図っている。 For example, when the switching element Q1 of the switching circuit 171 is turned on, the address electrode Aj is biased to a predetermined power supply potential (Va). For example, when the switching element Q2 of the switching circuit 171 is turned on, the address electrode Aj becomes the ground potential. The plasma display device 100 shown in FIG. 1 is driven and controlled according to a drive sequence (described later) shown in FIG. 3, and is displayed with a display image power PDP1 based on frame data Df input from an external device force. The In the operation, the plasma display device 100 performs filtering on the input frame data Df and appropriately suppresses the high-frequency components based on the amount of power consumed by the address driver 17. . From this, power consumption is reduced by charging / discharging the capacitance between the address electrodes Aj in addressing and between the address electrodes Aj and the main electrodes Xi, Yi.
[0028] 本実施形態のプラズマディスプレイ装置 100では、アドレスドライバ 17で消費される 電力の指標として、入力されるフレームデータ Dfを変換して得られるサブフレームデ ータ Ds;fより計算して求めたアドレスドライバ 17の消費電力値を用いる。したがって、 サブフレームデータ Dsfに応じて、フレームデータ Dfの高周波成分の抑制量が変更 可能となる。  [0028] In the plasma display device 100 of the present embodiment, as an index of power consumed by the address driver 17, it is calculated from subframe data Ds; f obtained by converting input frame data Df. The power consumption value of the address driver 17 is used. Therefore, the suppression amount of the high frequency component of the frame data Df can be changed according to the subframe data Dsf.
[0029] 具体的には、電力演算回路 14が、サブフレームデータ Dsfに基づいてアドレスドラ ィバ 17の消費電力値を計算し、求めた消費電力値をコントローラ 11に出力する。コ ントローラ 11は、消費電力値に応じてローパスフィルタ 12の係数を決定し、係数指定 データ Diをローパスフィルタ 12に出力してそのフィルタ特性を制御する。なお、決定 されたフィルタ係数は、次のフレームのフレームデータ Dfより適用される。  Specifically, the power calculation circuit 14 calculates the power consumption value of the address driver 17 based on the subframe data Dsf, and outputs the calculated power consumption value to the controller 11. The controller 11 determines the coefficient of the low-pass filter 12 according to the power consumption value, and outputs the coefficient designation data Di to the low-pass filter 12 to control the filter characteristics. The determined filter coefficient is applied from the frame data Df of the next frame.
[0030] 次に、ローパスフィルタ 12の構成について説明する。ローパスフィルタ 12は、 PDP 1における M列 N行の画面上で垂直方向(アドレス電極 Ajが延びる方向)に関してフ ィルタ処理を施すようにしても良いし、水平方向(電極 Xi、 Yiが延びる方向)に関して フィルタ処理を施すようにしても良い。また、垂直方向及び水平方向の両方向に関し てフィルタ処理を施すようにしても良 、。  [0030] Next, the configuration of the low-pass filter 12 will be described. The low-pass filter 12 may perform filtering in the vertical direction (direction in which the address electrode Aj extends) on the screen of M columns and N rows in the PDP 1, or in the horizontal direction (direction in which the electrodes Xi and Yi extend). A filtering process may be applied. It is also possible to perform filtering in both the vertical and horizontal directions.
[0031] PDP 1における M列 N行の画面上で垂直方向に関してフィルタ処理を施す場合に ついて説明する。アドレス電極 Ajに対応する垂直ライン (j列とする)の画像データを L j (y)とする。なお、 yは画素の垂直方向の座標であり、垂直方向の画素ピッチ単位で 表すものとする。以下、長さは画素ピッチ単位で表しているものとする。  [0031] The case of performing filtering in the vertical direction on the screen of M columns and N rows in PDP 1 will be described. The image data of the vertical line (j column) corresponding to the address electrode Aj is L j (y). Note that y is the vertical coordinate of the pixel and is expressed in units of the vertical pixel pitch. Hereinafter, the length is expressed in units of pixel pitch.
[0032] ローパスフィルタ 12によるフィルタリング後の画像データを Lj (y)とすると、ローパス  [0032] If the image data after filtering by the low-pass filter 12 is Lj (y), the low-pass filter 12
f  f
フィルタ 12は式(1)により表される。 [0033] [数 1] / =∑ (ァ-ん)-∑ bi Ljf (y ~ l) … ) Filter 12 is represented by equation (1). [0033] [Equation 1] / = ∑ (ァ-)-∑ b i L jf (y ~ l )…)
[0034] 例えば、ローパスフィルタ 12として 2次のバタワースフィルタを構成する場合には、 Q =R= 2であり、カットオフ周波数を ω For example, when a second-order Butterworth filter is configured as the low-pass filter 12, Q = R = 2 and the cutoff frequency is ω
0 Z (2 π )とすると各係数は式(2)に示すよう になる。  Assuming 0 Z (2 π), each coefficient is as shown in Equation (2).
[0035] [数 2] 0 - « 0 /b0 [0035] [Equation 2] 0-«0 / b 0
Figure imgf000009_0001
Figure imgf000009_0001
[0036] 電力演算回路 14で算出されたアドレスドライバ 17の消費電力値に応じて、 ω の値 [0036] According to the power consumption value of the address driver 17 calculated by the power calculation circuit 14, the value of ω
0 を制御されることによりローパスフィルタ 12のフィルタ特性が制御される。 ωの値の制  By controlling 0, the filter characteristic of the low-pass filter 12 is controlled. Control of the value of ω
0 御は、例えば以下のようにして行われる。  0 is performed as follows, for example.
[0037] アドレスドライバ 17の消費電力値が十分小さいときには、ローパスフィルタ 12の周 波数帯域を制限する必要はないので、コントローラ 11は、 ωの値としてはナイキスト  [0037] When the power consumption value of the address driver 17 is sufficiently small, there is no need to limit the frequency band of the low-pass filter 12, and therefore the controller 11 uses Nyquist as the value of ω.
0  0
限界を与える π、又はそれ以上の値に設定する。この ω  Set to π, which gives a limit, or higher. This ω
0の値を予め設定する上限 値 ω とする。また、アドレスドライバ 17の消費電力の目標値を Ρ とする。  A value of 0 is used as the preset upper limit value ω. Also, let the target value of the power consumption of the address driver 17 be Ρ.
Omax max  Omax max
[0038] コントローラ 11は、電力演算回路 14により計算されたアドレスドライバ 17の消費電 力値と目標値 P とを比較し、アドレスドライバ 17の消費電力値が目標値 P 以上で max max あると判定した場合には ω の値を減らす。一方、アドレスドライバ 17の消費電力値が  [0038] The controller 11 compares the power consumption value of the address driver 17 calculated by the power calculation circuit 14 with the target value P, and determines that the power consumption value of the address driver 17 is equal to or greater than the target value P and is max max. If this happens, decrease the value of ω. On the other hand, the power consumption value of the address driver 17 is
0  0
目標値 Ρ 未満であると判定した場合には ω の値を増やす。ただし、コントローラ 11 max 0  If it is determined that the target value is less than Ρ, increase the value of ω. However, controller 11 max 0
は、 ω の値を ω 以上には設定しない。 [0039] このようにアドレスドライバ 17の消費電力値が所定の値を越えていたら ωの値(口 Does not set the value of ω to be greater than or equal to ω. [0039] If the power consumption value of the address driver 17 exceeds a predetermined value in this way,
0  0
一パスフィルタ 12のカットオフ周波数)を下げるようにコントローラ 1 1により逐次制御 することにより、画像データの高周波成分を抑制してアドレスドライバ 17の消費電力 を目標値以下にほぼ抑えることが可能になる。  By sequentially controlling the controller 11 so that the cut-off frequency of the one-pass filter 12 is lowered, it is possible to suppress the high-frequency component of the image data and to keep the power consumption of the address driver 17 below the target value. .
[0040] PDP 1における Μ列 Ν行の画面上で水平方向に関してフィルタ処理を施す場合に ついても同様である。電極 Xi、 Yiに対応する水平ライン (i列とする)の画像データを L i (x)とする。なお、 Xは画素の水平方向の座標であり、垂直方向の画素ピッチ単位で 表すものとする。以下、長さは画素ピッチ単位で表しているものとする。 The same applies to the case where the filter processing is performed in the horizontal direction on the screen of the row and row in PDP 1. Let L i (x) be the image data of the horizontal line (i column) corresponding to the electrodes Xi and Yi. X is the horizontal coordinate of the pixel and is expressed in units of vertical pixel pitch. Hereinafter, the length is expressed in units of pixel pitch.
ローパスフィルタ 12によるフィルタリング後の画像データを Li (X)とすると、ローパス  If the image data after filtering by the low-pass filter 12 is Li (X),
f  f
フィルタ 12は式(3)により表される。  Filter 12 is expressed by equation (3).
[0041] [数 3] [0041] [Equation 3]
Q R Q R
Lif \x) = 2 akLix _ )—∑ hiLif \x ~ l) …(3) Lif \ x) = 2 a k Li , x _) —∑ h i Li f \ x ~ l )… (3)
(t=0 /=1  (t = 0 / = 1
[0042] アドレスドライバ 17の消費電力値に応じた他(ω の値等)の制御は、垂直方向にフ [0042] Other control (such as the value of ω) according to the power consumption value of the address driver 17 is controlled in the vertical direction.
0  0
ィルタ処理を施す場合と同様であるので、その説明は省略する。ここで、水平方向に は R、 G、 Bの表示セルが配置されているので、同色に対応する表示セル毎にフィル タ処理を施すことは 、うまでもな!/、。  Since this is the same as when the filter process is performed, the description thereof is omitted. Here, since R, G, and B display cells are arranged in the horizontal direction, it is a matter of course to apply filter processing to each display cell corresponding to the same color!
[0043] 次に、電力演算回路 14によるアドレスドライバ 17の消費電力値の計算方法につい て説明する。 Next, a method for calculating the power consumption value of the address driver 17 by the power calculation circuit 14 will be described.
[0044] アドレス電極 Ajが延びる方向を列方向とし、アドレス電極 Ajが延びる方向に直交す る方向を行方向として、第 i行第 j列の表示セルに係るサブフレームデータ Dsfを d (i, j ) [d (i, j) = { 0, 1 }〕とする。アドレスドライバ 17で消費される電力は、電極間容量へ の充電電力と、アドレス時のガス放電による電力である。また、電極間容量は、ァドレ ス電極 Aj間の電極間容量、及びアドレス電極 Ajと電極 Xi、 Yiとの間の電極間容量に 分かれる。  [0044] The direction in which the address electrode Aj extends is the column direction, the direction orthogonal to the direction in which the address electrode Aj extends is the row direction, and the subframe data Dsf related to the display cell in the i-th row and j-th column is d (i, j) Let [d (i, j) = {0, 1}]. The power consumed by the address driver 17 is charging power for the interelectrode capacitance and power due to gas discharge at the time of addressing. The interelectrode capacitance is divided into the interelectrode capacitance between the address electrode Aj and the interelectrode capacitance between the address electrode Aj and the electrodes Xi and Yi.
[0045] アドレス電極 Aj間の電極間容量への充電電力は、隣接する表示セルどうしの表示 データの差 u (i, j)で表すことができ、式 (4)のように定義される。 [0046] [数 4] [0045] The charging power to the interelectrode capacitance between the address electrodes Aj can be expressed by the difference u (i, j) between the display data of adjacent display cells, and is defined as in equation (4). [0046] [Equation 4]
"(/, d(i,j + \)- d(i,j) [ ,ゾ) = {—ι,ο,ι}] (4) "(/, D (i, j + \)-d (i, j) [, z) = {—ι, ο, ι}] (4)
[0047] 行の順番でサブフレームデータが変化するにつれてアドレス電極 Ajの電位が変化 し、アドレス電極 Aj間の充電エネルギーが増える際に、アドレスドライバ 17から電力 供給がある。第 i行のサブフレームデータが第 (i+1)行のサブフレームデータに変化 したときの 1つのアドレス電極 Aj間の電極間容量への充電電力を f (u(i, j), u(i+l m [0047] As the subframe data changes in the row order, the potential of the address electrode Aj changes, and when the charging energy between the address electrodes Aj increases, power is supplied from the address driver 17. When the subframe data in the i-th row changes to the subframe data in the (i + 1) -th row, the charging power to the interelectrode capacitance between one address electrode Aj is expressed as f (u (i, j), u ( i + lm
, j))とすると、式(5)のようになる。  , j)), the following formula (5) is obtained.
[0048] [数 5]  [0048] [Equation 5]
/„,("'")= o (u = ·!_ 1,0,1 / „, (" '") = O (u = ·! _ 1,0,1
(",o)= 0 (M = - 1,0,1  (", O) = 0 (M =-1,0,1
(0,")= Pi (" = {-1,1}) (5)  (0, ") = Pi (" = {-1,1}) (5)
(_ 1,1)= P  (_ 1,1) = P
(1,-1)= P  (1, -1) = P
[0049] ここで、 p、 pは、アドレス電極 Ai間の電極間容量とアドレスパルス波形によって決 Here, p and p are determined by the interelectrode capacitance between the address electrodes Ai and the address pulse waveform.
1 2  1 2
定される。  Determined.
[0050] 電極間容量のもう一つの要素は、上述したようにアドレス電極 Ajと電極 Xi、 Yiとの 間の対向電極間容量である。アドレスドライバ 17から電力が供給されるのは、サブフ レームデータが" 0"から" 1"に変化する場合である。したがって、第 i行のサブフレー ムデータが第(i+1)行のサブフレームデータに変化したときの 1つのアドレス電極 Aj に係る対向電極間容量への充電電力を f (d(i, j), d(i+l, j))とすると、式 (6)のよ  [0050] Another element of the interelectrode capacitance is the counterelectrode capacitance between the address electrode Aj and the electrodes Xi and Yi as described above. The power is supplied from the address driver 17 when the subframe data changes from “0” to “1”. Therefore, when the subframe data in the i-th row changes to the subframe data in the (i + 1) -th row, the charging power to the counter electrode capacitance associated with one address electrode Aj is expressed as f (d (i, j), d (i + l, j))
P  P
うになる。  I will become.
[0051] [数 6] (0,1)= Ps  [0051] [Equation 6] (0,1) = Ps
( , )= 0 ((d、 )≠ (0,1)) (6)  (,) = 0 ((d,) ≠ (0,1)) (6)
[0052] :で、 pは、対向電極間容量とアドレスパルス波形によって決定される。 [0053] この他、アドレスドライバ 17が供給する電力には、アドレス時のガス放電による電力 、いわゆるアドレス放電電力がある。このアドレス放電電力は、サブフレームデータが "1"のときに供給される。 1つの表示セル当たりのアドレス放電電力を f (d (i, j) )とす d In the above, p is determined by the capacitance between the counter electrodes and the address pulse waveform. In addition, the power supplied by the address driver 17 includes power due to gas discharge at the time of addressing, so-called address discharge power. This address discharge power is supplied when the subframe data is “1”. The address discharge power per display cell is f (d (i, j)) d
ると、式(7)のようになる。  Then, it becomes like Formula (7).
[0054] [数 7] [0054] [Equation 7]
fd (d ) = P ,d … ) [0055] 上述したアドレス電極間容量への充電電力 f 、対向電極間容量への充電電力を f m pf d (d) = P, d ...) [0055] The charging power f to the above-mentioned inter-address electrode capacitance f and the charging power to the counter-electrode capacitance fmp
、及びアドレス放電電力 f の和がアドレスドライバ 17が供給する電力であり、 PDP1に d And the sum of the address discharge power f is the power supplied by the address driver 17, and d
対してアドレスドライバ 17が供給する電力すなわち消費電力 Pは、式 (8)のようにな  On the other hand, the power supplied by the address driver 17, that is, the power consumption P is as shown in Equation (8).
A  A
る。  The
[0056] [数 8]  [0056] [Equation 8]
PA =∑∑ \fm j), u(i + 1, fp [d{i, j), d(i + 1, fd (d(i, ;))} …(8)PA = ∑∑ \ f m j), u (i + 1, f p [d {i, j), d (i + 1, f d (d (i,;))}… (8)
,■=0 ゾ =0 , ■ = 0 Z = 0
[0057] なお、式(8)については、画面は表示セル単位で見て M列 N行の大きさであり、画 面外のダミーのアドレス電極との電極間容量も考慮している。また、アドレス期間前の 状態から第 1行の状態への変化時、及び第 N行の状態力 アドレス期間後の状態へ の変化時も考慮してある。そのため、データ d (i, j)の定義を拡張し、式 (9)に示すよう に値を設定する。 Note that, regarding Expression (8), the screen has a size of M columns and N rows when viewed in units of display cells, and the interelectrode capacitance with a dummy address electrode outside the screen is also taken into consideration. It also takes into account the change from the state before the address period to the state of the first row and the change to the state after the state force address period of the Nth row. Therefore, the definition of data d (i, j) is expanded and values are set as shown in Equation (9).
[0058] [数 9] d(0, j) = d {N + \, j) = d(i,0) = d{i, M + \) = 0 - (9)  [0058] [Equation 9] d (0, j) = d (N + \, j) = d (i, 0) = d (i, M + \) = 0-(9)
[0059] 上記式(8)により、 1つのサブフレームにおけるアドレスドライバ 17の消費電力値が 計算できるので、 1フレーム内のすべてのサブフレームで電力計算を行えば 1フレー ム当たりの消費電力が計算できる。この電力演算回路 14で計算された 1フレーム当 たりの消費電力値をそのままローパスフィルタ 12の制御に用いても良いし、複数フレ ームの平均値を制御に用 、ても良 、。 [0059] Since the power consumption value of the address driver 17 in one subframe can be calculated from the above equation (8), the power consumption per frame can be calculated by calculating the power in all the subframes in one frame. it can. This power calculation circuit 14 calculates one frame. The power consumption value may be used as it is for the control of the low-pass filter 12, or the average value of a plurality of frames may be used for the control.
[0060] 図 3は、本実施形態におけるプラズマディスプレイ装置の駆動シーケンスの一例を 示す図である。  FIG. 3 is a diagram showing an example of a driving sequence of the plasma display device in the present embodiment.
画像は、図 3に示すフレーム fk 1、 fk、 fk+ 1等のような時系列の複数のフレーム f (添え字は表示順位を表す。)で構成される。画像の表示においては、各画素単位で の 2値の点灯制御によって階調再現を行うために、各フレーム fを例えば 8個のサブフ レーム sfl、 sf2、 sf3、 sf4、 sf5、 sf6、 sf7、 sf 8に分割する。  The image is composed of a plurality of time-series frames f (subscripts indicate display order) such as frames fk 1, fk, fk + 1, etc. shown in FIG. In the image display, in order to perform gradation reproduction by binary lighting control for each pixel unit, each frame f is divided into, for example, eight subframes sfl, sf2, sf3, sf4, sf5, sf6, sf7, sf Divide into 8.
[0061] サブフレーム sf l〜sf8は、輝度の相対比率が例えばおよそ 1 : 2 :4 : 8 : 16 : 32 : 64 :  [0061] In the subframes sf1 to sf8, the relative ratio of luminance is, for example, approximately 1: 2: 4: 8: 16: 32: 64:
128となるように重み付けされ、各サブフレーム sfl〜sf8の点灯維持放電回数が設 定される。図 3に示す例では、サブフレーム sflは輝度重みが最も低ぐサブフレーム sf2、 sf3、…の順に輝度重みが高くなり、サブフレーム sf8は輝度重みが最も高い。 各サブフレーム単位の点灯 Z非点灯の組合せにより R、 G、 Bの各色毎に 256段階 の輝度設定が可能であり、表示可能な色の数は 256の 3乗となる。  The number of sustaining discharges is set for each of the subframes sfl to sf8. In the example shown in FIG. 3, the subframe sfl has the highest luminance weight in the order of the subframes sf2, sf3,... With the lowest luminance weight, and the subframe sf8 has the highest luminance weight. The brightness can be set in 256 steps for each color of R, G, and B by the combination of lighting Z not lighting in each subframe unit, and the number of colors that can be displayed is 256 to the third power.
[0062] 各サブフレーム sfl〜sf8にそれぞれ割り当てられるサブフレーム期間 Tsfは、リセッ ト期間 TR、アドレス期間 TA、及びサスティン (維持放電)期間 TSからなる。リセット期 間 TRでは、表示セルの帯電分布の初期化を行う。アドレス期間 TAでは、表示内容( サブフレームデータ)に応じた帯電分布を行選択により形成する。サスティン期間 TS では、階調レベルに応じた輝度を確保するために点灯状態を維持する。  [0062] The subframe period Tsf allocated to each of the subframes sfl to sf8 includes a reset period TR, an address period TA, and a sustain (sustain discharge) period TS. In the reset period TR, the charge distribution of the display cell is initialized. In the address period TA, a charge distribution corresponding to the display content (subframe data) is formed by row selection. In the sustain period TS, the lighting state is maintained in order to ensure the luminance according to the gradation level.
[0063] 具体的には、リセット期間 TRにおいて、まず Y電極 Yiに正極性の鈍波 Prlを一斉 に印加して壁電荷を形成する。続いて、 Y電極 Yiに負極性の鈍波 Pr2を一斉に印加 して表示セルの壁電荷量を調節する。  [0063] Specifically, in the reset period TR, first, positive obtuse waves Prl are simultaneously applied to the Y electrode Yi to form wall charges. Next, negative wall wave Pr2 is simultaneously applied to Y electrode Yi to adjust the wall charge amount of the display cell.
[0064] アドレス期間 TAにおいて、サスティン期間 TSで点灯すべき表示セルのみに点灯 状態を維持するのに必要な壁電荷を形成する。すべての X電極 XI及びすベての Y 電極 Yiを所定電位にバイアスした状態で、所定順での行選択を行い、選択した行に 対応する 1つの Y電極 Yiに負極性のスキャンパルス Pyを印加する。そのスキャンパ ルス Pyに対応して、点灯すべき表示セルに対応するアドレス電極 Ajにアドレスパル ス Paを印加する。これにより、点灯すべき表示セルでアドレス放電が生じ、サスティン 期間 TSでの点灯状態の維持に必要な所望の壁電荷が形成される。 [0064] In the address period TA, wall charges necessary to maintain the lighting state are formed only in the display cells to be lit in the sustain period TS. With all X electrodes XI and all Y electrodes Yi biased to a predetermined potential, row selection is performed in a predetermined order, and a negative scan pulse Py is applied to one Y electrode Yi corresponding to the selected row. Apply. Corresponding to the scan pulse Py, the address pulse Pa is applied to the address electrode Aj corresponding to the display cell to be lit. As a result, address discharge occurs in the display cell to be lit, and the sustain is A desired wall charge necessary for maintaining the lighting state in the period TS is formed.
[0065] サスティン期間 TSにおいては、不要の放電を防止するためにすベてのアドレス電 極 Ajを正極性の所定電位にバイアスして、 X電極 XI及び Y電極 Yiに交互にサスティ ンパルス Psを印加する。サスティンパルス Psは、放電開始電圧より低い電圧のパル スである。サスティンパルス Psを印加する毎に、アドレス期間 TAにおいて壁電荷が 形成された表示セル、すなわち選択された表示セルで面放電が生じ、表示セルが発 光する。 [0065] In the sustain period TS, all the address electrodes Aj are biased to a predetermined positive potential in order to prevent unnecessary discharge, and the sustain pulse Ps is alternately applied to the X electrode XI and the Y electrode Yi. Apply. The sustain pulse Ps is a pulse having a voltage lower than the discharge start voltage. Each time the sustain pulse Ps is applied, a surface discharge occurs in the display cell in which wall charges are formed in the address period TA, that is, the selected display cell, and the display cell emits light.
[0066] なお、書込み形式のアドレッシングを行う場合を一例として説明したが、消去アドレ ス形式でアドレッシングを行う場合には、リセット期間 TRで全面を均一に帯電させて おき、アドレス期間 TAにおいて、非点灯とすべき表示セルのみでアドレス放電を生じ させて不要の壁電荷を消去し、点灯すべき表示セルに壁電荷を残すようにすれば良 い。  [0066] Although the case of performing addressing in the writing format has been described as an example, in the case of performing addressing in the erasing address format, the entire surface is uniformly charged in the reset period TR, and non-addressing is performed in the address period TA. It suffices to generate an address discharge only in the display cells to be lit to erase unnecessary wall charges and leave the wall charges in the display cells to be lit.
また、図 3に示した駆動波形は一例であって、これに限定されるものではなぐ種々 の変更が可能である。  In addition, the drive waveform shown in FIG. 3 is an example, and various changes can be made without being limited thereto.
[0067] 以上、第 1の実施形態によれば、電力演算回路 14で計算して求めたアドレスドライ ノ 17の消費電力値が目標値以上である場合には、カットオフ周波数を下げるように ローパスフィルタ 12のフィルタ特性が制御され、入力されるフレームデータ Df (表示 画像データ)の高周波成分を抑制する。一方、アドレスドライバ 17の消費電力値が目 標値未満である場合には、所定範囲を越えな 、範囲でカットオフ周波数をあげるよう にローパスフィルタ 12のフィルタ特性が制御される。すなわち、アドレスドライバ 17の 消費電力値に応じて、入力されるフレームデータ Dfの高周波成分の抑制量を制御 する。  As described above, according to the first embodiment, when the power consumption value of the address driver 17 calculated by the power calculation circuit 14 is equal to or higher than the target value, the low pass is set so as to lower the cutoff frequency. The filter characteristics of the filter 12 are controlled to suppress high frequency components of the input frame data Df (display image data). On the other hand, when the power consumption value of the address driver 17 is less than the target value, the filter characteristics of the low-pass filter 12 are controlled so that the cutoff frequency is increased within the predetermined range without exceeding the predetermined range. That is, the amount of suppression of the high frequency component of the input frame data Df is controlled according to the power consumption value of the address driver 17.
[0068] これにより、アドレスドライバ 17の消費電力値が目標値以上であれば、入力されるフ レームデータ Dfの高周波成分を抑制してアドレス電極 Ajでの電位変化回数を低減 することができる。したがって、回路構成を複雑にすることなく簡単な回路構成で、か つ表示される画像の画質劣化を抑制しながらもアドレスドライバ 17の消費電力を目 標値以下に抑え、消費電力を低減することができる。  Thus, if the power consumption value of the address driver 17 is equal to or higher than the target value, the high frequency component of the input frame data Df can be suppressed and the number of potential changes at the address electrode Aj can be reduced. Therefore, with a simple circuit configuration without complicating the circuit configuration, the power consumption of the address driver 17 can be suppressed to a target value or less while suppressing deterioration of the image quality of the displayed image and reducing the power consumption. Can do.
[0069] (第 2の実施形態) 次に、第 2の実施形態について説明する。 [0069] (Second Embodiment) Next, a second embodiment will be described.
図 4は、本発明の第 2の実施形態によるプラズマディスプレイ装置の構成例を示す 図である。この図 4において、図 1に示したブロック等と同一の機能を有するブロック 等には同一の符号を付し、重複する説明は省略する。また、第 2の実施形態によるプ ラズマディスプレイ装置の駆動シーケンスは、第 1の実施形態と同様である。  FIG. 4 is a diagram showing a configuration example of the plasma display device according to the second embodiment of the present invention. In FIG. 4, blocks having the same functions as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. The driving sequence of the plasma display device according to the second embodiment is the same as that of the first embodiment.
[0070] 上述した第 1の実施形態によるプラズマディスプレイ装置 100は、サブフレームデー タ Dsfに基づ 、て計算によりアドレスドライバ 17の消費電力値を求め、その消費電力 値に応じてローパスフィルタ 12の特性を制御する。図 4に示す第 2の実施形態による プラズマディスプレイ装置 200は、アドレスドライバ 17に供給される電流を測定し、測 定結果に応じてローパスフィルタ 12の特性を制御する。  The plasma display device 100 according to the first embodiment described above obtains the power consumption value of the address driver 17 by calculation based on the subframe data Dsf, and the low-pass filter 12 according to the power consumption value. Control properties. The plasma display apparatus 200 according to the second embodiment shown in FIG. 4 measures the current supplied to the address driver 17 and controls the characteristics of the low-pass filter 12 according to the measurement result.
[0071] 電流値に電源電圧の値を掛ければ電力値となるので、測定されたアドレスドライバ 17に供給する電流値はアドレスドライバ 17で消費される電力の指標となる。第 2の実 施形態では、アドレスドライバ 17に供給される電流値に基づいて、フレームデータ Df に対してフィルタ処理を施して高周波成分を適宜抑制することにより、アドレスドライ バ 17の消費電力を低減させる。  Since the power value is obtained by multiplying the current value by the value of the power supply voltage, the measured current value supplied to the address driver 17 is an index of the power consumed by the address driver 17. In the second embodiment, the power consumption of the address driver 17 is reduced by filtering the frame data Df based on the current value supplied to the address driver 17 and appropriately suppressing high frequency components. Let
[0072] 第 2の実施形態によるプラズマディスプレイ装置 200は、図 4に示すように AC型 PD P1と、その駆動ユニット 20とから構成される。  [0072] The plasma display device 200 according to the second embodiment includes an AC type PDP 1 and a drive unit 20 as shown in FIG.
駆動ユニット 20は、 TVチューナーやコンピュータなどの外部装置力も R、 G、 Bの各 色の輝度レベル(階調レベル)を示す画素単位のフレームデータ Dfが各種の同期信 号とともに入力され、 M列 N行の画面を構成する多数の表示セルを選択的に点灯さ せるためのものである。駆動ユニット 20は、コントローラ 21、ローパスフィルタ 12、デ ータ処理回路 13、 Xドライバ 15、 Yドライバ 16、アドレスドライバ 17、及び電流測定回 路 22を有する。  The drive unit 20 also receives frame data Df in units of pixels indicating the luminance level (gradation level) of each color of R, G, and B, as well as various synchronization signals. This is to selectively light up a number of display cells that make up the N-line screen. The drive unit 20 includes a controller 21, a low-pass filter 12, a data processing circuit 13, an X driver 15, a Y driver 16, an address driver 17, and a current measurement circuit 22.
[0073] コントローラ 21は、外部からの入力信号 (フレームデータ Dfや各種同期信号)に基 づいて、ローパスフィルタ 12、 Xドライバ 15、 Yドライバ 16、及びアドレスドライバ 17を 制御する。  The controller 21 controls the low-pass filter 12, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals).
[0074] また、コントローラ 21は、アドレスドライバ 17に供給される電流値の測定結果が電流 測定回路 22から供給され、その測定結果に基づいてローパスフィルタ 12の係数を決 定して係数指定データ Diを出力する。例えば、コントローラ 21は、アドレスドライバ 17 に供給される電流値が所定の値以上であれば ωの値(ローパスフィルタ 12のカット In addition, the controller 21 receives the measurement result of the current value supplied to the address driver 17 from the current measurement circuit 22, and determines the coefficient of the low-pass filter 12 based on the measurement result. Output coefficient specification data Di. For example, if the current value supplied to the address driver 17 is greater than or equal to a predetermined value, the controller 21 determines the value of ω (cuts the low-pass filter 12).
0  0
オフ周波数)を小さくし、測定された電流値が所定の値未満であれば ω  If the measured current value is less than the specified value
Omaxを越えな い範囲で ω の値を大きくする。  Increase the value of ω within the range not exceeding Omax.
0  0
[0075] 電流測定回路 22は、アドレスドライバ 17に実際に供給される電流値を測定し、測 定結果をコントローラ 21に出力する。  The current measurement circuit 22 measures the current value actually supplied to the address driver 17 and outputs the measurement result to the controller 21.
[0076] 第 2の実施形態によれば、電流測定回路 22により測定されたアドレスドライバ 17に 供給される電流値に応じて、フレームデータ Dfの高周波成分を適切に抑制するよう ローパスフィルタ 12のフィルタ特性が制御される。これにより、簡単な回路構成で画 質劣化を抑制しながらもアドレスドライバ 17の消費電力を目標値以下に抑え、消費 電力を低減することができる。  According to the second embodiment, the low-pass filter 12 filter appropriately suppresses the high-frequency component of the frame data Df according to the current value supplied to the address driver 17 measured by the current measurement circuit 22. Characteristics are controlled. As a result, the power consumption of the address driver 17 can be suppressed to a target value or less while suppressing image quality degradation with a simple circuit configuration, and the power consumption can be reduced.
[0077] (第 3の実施形態)  [0077] (Third embodiment)
次に、第 3の実施形態について説明する。  Next, a third embodiment will be described.
図 5は、本発明の第 3の実施形態によるプラズマディスプレイ装置の構成例を示す 図である。この図 5において、図 1に示したブロック等と同一の機能を有するブロック 等には同一の符号を付し、重複する説明は省略する。また、第 3の実施形態によるプ ラズマディスプレイ装置の駆動シーケンスは、第 1の実施形態と同様である。  FIG. 5 is a diagram showing a configuration example of a plasma display device according to the third embodiment of the present invention. In FIG. 5, blocks having the same functions as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. The driving sequence of the plasma display device according to the third embodiment is the same as that of the first embodiment.
[0078] 図 5に示す第 3の実施形態によるプラズマディスプレイ装置 300は、アドレスドライバ 17の温度を測定し、測定結果に応じてローパスフィルタ 12の特性を制御する。ここで 、消費電力が大きいほどドライバの温度が高くなるので、測定されたアドレスドライバ 1 7の温度はアドレスドライバ 17で消費される電力の指標となる。第 3の実施形態では、 アドレスドライバ 17の温度に基づいて、フレームデータ Dfに対してフィルタ処理を施 して高周波成分を適宜抑制することにより、アドレスドライバ 17の消費電力を低減さ せる。 The plasma display device 300 according to the third embodiment shown in FIG. 5 measures the temperature of the address driver 17 and controls the characteristics of the low-pass filter 12 according to the measurement result. Here, since the driver temperature increases as the power consumption increases, the measured temperature of the address driver 17 is an index of the power consumed by the address driver 17. In the third embodiment, the power consumption of the address driver 17 is reduced by applying a filtering process to the frame data Df and appropriately suppressing high frequency components based on the temperature of the address driver 17.
[0079] 第 3の実施形態によるプラズマディスプレイ装置 300は、図 5に示すように AC型 PD P1と、その駆動ユニット 30とから構成される。  The plasma display device 300 according to the third embodiment includes an AC type PDP 1 and its drive unit 30 as shown in FIG.
駆動ユニット 30は、 TVチューナーやコンピュータなどの外部装置力も R、 G、 Bの各 色の輝度レベル(階調レベル)を示す画素単位のフレームデータ Dfが各種の同期信 号とともに入力され、 M列 N行の画面を構成する多数の表示セルを選択的に点灯さ せるためのものである。駆動ユニット 30は、コントローラ 31、ローパスフィルタ 12、デ ータ処理回路 13、 Xドライバ 15、 Yドライバ 16、アドレスドライバ 17、及び温度測定回 路 32を有する。 The drive unit 30 also has the power of external devices such as TV tuners and computers. Frame data Df for each pixel indicating the luminance level (gradation level) of each color of R, G, and B is used for various synchronization signals. The number of display cells that are input together with the number and constitute the screen of M columns and N rows are selectively lit. The drive unit 30 includes a controller 31, a low-pass filter 12, a data processing circuit 13, an X driver 15, a Y driver 16, an address driver 17, and a temperature measurement circuit 32.
[0080] コントローラ 31は、外部からの入力信号 (フレームデータ Dfや各種同期信号)に基 づいて、ローパスフィルタ 12、 Xドライバ 15、 Yドライバ 16、及びアドレスドライバ 17を 制御する。  The controller 31 controls the low-pass filter 12, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals).
[0081] また、コントローラ 31は、アドレスドライバ 17の温度の測定結果が温度測定回路 22 から供給され、その測定結果に基づいてローパスフィルタ 12の係数を決定して係数 指定データ Diを出力する。例えば、コントローラ 31は、アドレスドライバ 17の温度が 所定の温度以上であれば ωの値(ローノ スフィルタ 12のカットオフ周波数)を小さく  Further, the controller 31 is supplied with the temperature measurement result of the address driver 17 from the temperature measurement circuit 22, determines the coefficient of the low-pass filter 12 based on the measurement result, and outputs the coefficient designation data Di. For example, the controller 31 decreases the value of ω (the cutoff frequency of the low-pass filter 12) if the temperature of the address driver 17 is equal to or higher than a predetermined temperature.
0  0
し、測定された温度が所定の温度未満であれば ω を越えない範囲で ωの値を大  If the measured temperature is lower than the specified temperature, increase the value of ω within a range that does not exceed ω.
Omax 0 さくする。  Omax 0
[0082] 温度測定回路 32は、アドレスドライバ 17の温度を測定して、測定結果をコントロー ラ 31に出力する。なお、プラズマディスプレイ装置においては、ドライバの温度をモ- ター可能にするための回路が一般に設けられているので、それを本実施形態におけ る温度測定回路 32として利用するようにしても良い。  The temperature measurement circuit 32 measures the temperature of the address driver 17 and outputs the measurement result to the controller 31. In the plasma display device, since a circuit for enabling the driver temperature to be monitored is generally provided, it may be used as the temperature measurement circuit 32 in the present embodiment.
[0083] 第 3の実施形態によれば、温度測定回路 32により測定されたアドレスドライバ 17の 温度に応じて、フレームデータ Dfの高周波成分を適切に抑制するようローパスフィル タ 12のフィルタ特性が制御される。これにより、簡単な回路構成で画質劣化を抑制し ながらもアドレスドライバ 17の消費電力を低減することができる。また、アドレスドライ ノ 17の温度に基づいて制御が行われるので、発熱によりアドレスドライバ 17が損傷 することも確実に防止することができ、アドレスドライバ 17の保護も可能となる。  According to the third embodiment, the filter characteristics of the low-pass filter 12 are controlled so as to appropriately suppress the high-frequency component of the frame data Df according to the temperature of the address driver 17 measured by the temperature measurement circuit 32. Is done. As a result, the power consumption of the address driver 17 can be reduced while suppressing image quality degradation with a simple circuit configuration. Further, since the control is performed based on the temperature of the address driver 17, it is possible to reliably prevent the address driver 17 from being damaged by heat generation, and the address driver 17 can be protected.
[0084] (第 4の実施形態)  [0084] (Fourth embodiment)
次に、第 4の実施形態について説明する。  Next, a fourth embodiment will be described.
上述した第 1〜第 3の実施形態によるプラズマディスプレイ装置は、外部から入力さ れるフレームデータ Dfにローパスフィルタ 12によりフィルタ処理を施すようにしている 力 サブフレームデータ Dsfにローパスフィルタによるフィルタ処理を施すようにしても 良い。以下に説明する第 4の実施形態によるプラズマディスプレイ装置は、データ処 理回路 13で処理して得られたサブフレームデータ Dsfに対して高周波成分を抑制す るためのフィルタ処理を施すことを可能にしたものである。 In the plasma display device according to the first to third embodiments described above, the frame data Df inputted from the outside is filtered by the low-pass filter 12. The sub-frame data Dsf is filtered by the low-pass filter. At any rate good. The plasma display device according to the fourth embodiment described below can perform a filtering process for suppressing high frequency components on the subframe data Dsf obtained by processing in the data processing circuit 13. It is a thing.
[0085] 図 6は、本発明の第 4の実施形態によるプラズマディスプレイ装置の構成例を示す 図である。この図 6において、図 1に示したブロック等と同一の機能を有するブロック 等には同一の符号を付し、重複する説明は省略する。また、第 4の実施形態によるプ ラズマディスプレイ装置の駆動シーケンスは、第 1の実施形態と同様である。  FIG. 6 is a diagram showing a configuration example of a plasma display device according to the fourth embodiment of the present invention. In FIG. 6, blocks having the same functions as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. The driving sequence of the plasma display device according to the fourth embodiment is the same as that of the first embodiment.
[0086] 第 4の実施形態によるプラズマディスプレイ装置 400は、図 6に示すように AC型 PD P1と、その駆動ユニット 40とから構成される。  As shown in FIG. 6, the plasma display device 400 according to the fourth embodiment includes an AC type PDP 1 and a drive unit 40 thereof.
駆動ユニット 40は、 TVチューナーやコンピュータなどの外部装置力も R、 G、 Bの各 色の輝度レベル(階調レベル)を示す画素単位のフレームデータ Dfが各種の同期信 号とともに入力され、 M列 N行の画面を構成する多数の表示セルを選択的に点灯さ せるためのものである。駆動ユニット 40は、コントローラ 41、ローパスフィルタ 42、電 力演算回路 43、データ処理回路 13、 Xドライバ 15、 Yドライバ 16、及びアドレスドライ バ 17を有する。  In the drive unit 40, external device power such as a TV tuner or a computer also receives frame data Df in pixel units indicating the luminance level (gradation level) of each color of R, G, and B together with various synchronization signals, and M columns. This is to selectively light up a number of display cells that make up the N-line screen. The drive unit 40 includes a controller 41, a low-pass filter 42, a power calculation circuit 43, a data processing circuit 13, an X driver 15, a Y driver 16, and an address driver 17.
[0087] コントローラ 41は、外部からの入力信号 (フレームデータ Dfや各種同期信号)に基 づいて、ローパスフィルタ 42、 Xドライバ 15、 Yドライバ 16、及びアドレスドライバ 17を 制御する。また、コントローラ 41は、電力演算回路 43で求められたアドレスドライバ 1 7の消費電力値が供給され、その消費電力値に基づ!/、てローパスフィルタ 42の係数 を決定して係数指定データ Diを出力する。  The controller 41 controls the low-pass filter 42, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals). Further, the controller 41 is supplied with the power consumption value of the address driver 17 obtained by the power calculation circuit 43, and determines the coefficient of the low-pass filter 42 based on the power consumption value! Is output.
[0088] ローパスフィルタ 42は、入力データの高周波成分を抑制可能なフィルタであり、デ ータ処理回路 13から出力されたサブフレームデータ Dsfにフィルタ処理を施す。ロー パスフィルタ 42は、 1フレームを構成する複数のサブフレームの各々に対応し独立し て設けられている。ローパスフィルタ 42のフィルタ特性は、コントローラ 41からの係数 指定データ Diにより制御され、例えば、係数指定データ Diに応じてローパスフィルタ 42のカットオフ周波数が制御される。  The low-pass filter 42 is a filter that can suppress high-frequency components of input data, and performs filtering processing on the subframe data Dsf output from the data processing circuit 13. The low pass filter 42 is provided independently corresponding to each of a plurality of subframes constituting one frame. The filter characteristics of the low-pass filter 42 are controlled by the coefficient specifying data Di from the controller 41. For example, the cutoff frequency of the low-pass filter 42 is controlled according to the coefficient specifying data Di.
[0089] 電力演算回路 43は、第 1の実施形態における電力演算回路 14と同様に構成され 、ローパスフィルタ 42によりフィルタ処理されたサブフレームデータ Dsfに基づ!/、て、 アドレスドライバ 17の消費電力値を計算する。電力演算回路 43は、計算結果として 得られた消費電力値を示すデータ Drをコントローラ 41に出力する。 The power calculation circuit 43 is configured in the same manner as the power calculation circuit 14 in the first embodiment, and is based on the subframe data Dsf filtered by the low-pass filter 42! /, Calculate the power consumption of the address driver 17. The power calculation circuit 43 outputs data Dr indicating the power consumption value obtained as a calculation result to the controller 41.
[0090] 図 6に示す第 4の実施形態によるプラズマディスプレイ装置 400では、第 1の実施形 態において示した式(1)における Lj、 Lj、及び式(3)における Li In the plasma display device 400 according to the fourth embodiment shown in FIG. 6, Lj and Lj in the equation (1) shown in the first embodiment and Li in the equation (3)
f 、 Liをそれぞれサブ  f and Li respectively
f  f
フレームデータと読み替えれば良い。ただし、アドレスドライバ 17に入力する際には、 サブフレームデータは" 0"又は" 1"に量子化する必要がある。そこで、ローパスフィル タ 42によりフィルタ処理が施された後、アドレスドライバ 17に入力するデータ Lは、式  It may be read as frame data. However, when input to the address driver 17, the subframe data needs to be quantized to "0" or "1". Therefore, after being filtered by the low-pass filter 42, the data L input to the address driver 17 is expressed by the equation
d  d
(10)に従って量子化される。  Quantized according to (10).
[0091] [数 10] [0091] [Equation 10]
Ld = 0 [L f < 0.5 ) L d = 0 (L f <0.5)
L d = l (L f ≥ 0.5 ) L d = l (L f ≥ 0.5)
[0092] 上記式(10)において、 Lはローパスフィルタ 42によるフィルタ処理後のデータ値で [0092] In the above equation (10), L is a data value after filtering by the low-pass filter 42.
f  f
ある。  is there.
なお、第 4の実施形態によるプラズマディスプレイ装置 400の他の点につ!、ては、 上述した第 1の実施形態によるプラズマディスプレイ装置 100と同様であるので説明 は省略する。  Note that the other points of the plasma display apparatus 400 according to the fourth embodiment are the same as those of the plasma display apparatus 100 according to the first embodiment described above, and thus the description thereof is omitted.
[0093] また、サブフレームデータ Dsfに基づいて計算したアドレスドライバ 17の消費電力 値に限らず、上述した第 2及び第 3の実施形態と同様にして、アドレスドライバ 17に供 給される電流やアドレスドライバ 17の温度を実際に測定し、その測定結果に応じて口 一パスフィルタ 42の特性を制御するようにしても良!、。  Further, not only the power consumption value of the address driver 17 calculated based on the subframe data Dsf but also the current supplied to the address driver 17 and the same as in the second and third embodiments described above. It is also possible to actually measure the temperature of the address driver 17 and control the characteristics of the mouth-pass filter 42 according to the measurement result!
[0094] 図 7は、本発明の第 4の実施形態によるプラズマディスプレイ装置の他の構成例を 示す図である。この図 7において、図 1及び図 6に示したブロック等と同一の機能を有 するブロック等には同一の符号を付し、重複する説明は省略する。図 7に示すプラズ マディスプレイ装置 500は、アドレスドライバ 17に供給される電流を測定し、サブフレ ームデータ Dsfにフィルタ処理を施すローノ スフィルタ 42の特性を測定結果に応じて 制御するものである。  FIG. 7 is a diagram showing another configuration example of the plasma display device according to the fourth embodiment of the present invention. In FIG. 7, blocks having the same functions as those shown in FIGS. 1 and 6 are denoted by the same reference numerals, and redundant description is omitted. The plasma display device 500 shown in FIG. 7 measures the current supplied to the address driver 17 and controls the characteristic of the low-pass filter 42 that filters the subframe data Dsf according to the measurement result.
[0095] プラズマディスプレイ装置 500は、 AC型 PDP1と、その駆動ユニット 50とから構成さ れる。 [0095] The plasma display device 500 includes an AC type PDP 1 and a drive unit 50 thereof. It is.
駆動ユニット 50は、 TVチューナーやコンピュータなどの外部装置力も R、 G、 Bの各 色の輝度レベル(階調レベル)を示す画素単位のフレームデータ Dfが各種の同期信 号とともに入力され、 M列 N行の画面を構成する多数の表示セルを選択的に点灯さ せるためのものである。駆動ユニット 50は、コントローラ 51、ローパスフィルタ 42、デ ータ処理回路 13、 Xドライバ 15、 Yドライバ 16、アドレスドライバ 17、及び電流測定回 路 52を有する。  In the drive unit 50, external device power such as a TV tuner or a computer also receives frame data Df in pixel units indicating the luminance level (gradation level) of each color of R, G, and B together with various synchronization signals. This is to selectively light up a number of display cells that make up the N-line screen. The drive unit 50 includes a controller 51, a low-pass filter 42, a data processing circuit 13, an X driver 15, a Y driver 16, an address driver 17, and a current measurement circuit 52.
[0096] コントローラ 51は、外部からの入力信号 (フレームデータ Dfや各種同期信号)に基 づいて、ローパスフィルタ 42、 Xドライバ 15、 Yドライバ 16、及びアドレスドライバ 17を 制御する。また、コントローラ 51は、アドレスドライバ 17に供給される電流値の測定結 果が電流測定回路 52から供給され、その測定結果に基づ 、てローパスフィルタ 42 の係数を決定して係数指定データ Diを出力する。  The controller 51 controls the low-pass filter 42, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals). Further, the controller 51 is supplied with the measurement result of the current value supplied to the address driver 17 from the current measurement circuit 52, and based on the measurement result, determines the coefficient of the low-pass filter 42 to obtain the coefficient designation data Di. Output.
電流測定回路 52は、アドレスドライバ 17に実際に供給される電流値を測定し、測 定結果をコントローラ 51に出力する。  The current measurement circuit 52 measures the current value actually supplied to the address driver 17 and outputs the measurement result to the controller 51.
[0097] 図 8は、本発明の第 4の実施形態によるプラズマディスプレイ装置の他の構成例を 示す図である。この図 8において、図 1及び図 6に示したブロック等と同一の機能を有 するブロック等には同一の符号を付し、重複する説明は省略する。図 8に示すプラズ マディスプレイ装置 600は、アドレスドライバ 17の温度を測定し、サブフレームデータ Dsfにフィルタ処理を施すローパスフィルタ 42の特性を測定結果に応じて制御するも のである。  FIG. 8 is a diagram showing another configuration example of the plasma display device according to the fourth embodiment of the present invention. In FIG. 8, blocks having the same functions as those shown in FIGS. 1 and 6 are denoted by the same reference numerals, and redundant description is omitted. The plasma display device 600 shown in FIG. 8 measures the temperature of the address driver 17 and controls the characteristics of the low-pass filter 42 that filters the subframe data Dsf according to the measurement result.
[0098] プラズマディスプレイ装置 600は、 AC型 PDP1と、その駆動ユニット 60とから構成さ れる。  [0098] Plasma display apparatus 600 includes AC type PDP 1 and drive unit 60 thereof.
駆動ユニット 60は、 TVチューナーやコンピュータなどの外部装置力も R、 G、 Bの各 色の輝度レベル(階調レベル)を示す画素単位のフレームデータ Dfが各種の同期信 号とともに入力され、 M列 N行の画面を構成する多数の表示セルを選択的に点灯さ せるためのものである。駆動ユニット 60は、コントローラ 61、ローパスフィルタ 42、デ ータ処理回路 13、 Xドライバ 15、 Yドライバ 16、アドレスドライバ 17、及び温度測定回 路 62を有する。 [0099] コントローラ 61は、外部からの入力信号 (フレームデータ Dfや各種同期信号)に基 づいて、ローパスフィルタ 42、 Xドライバ 15、 Yドライバ 16、及びアドレスドライバ 17を 制御する。また、コントローラ 61は、アドレスドライバ 17に供給される電流値の測定結 果が電流測定回路 62から供給され、その測定結果に基づ 、てローパスフィルタ 42 の係数を決定して係数指定データ Diを出力する。 In the drive unit 60, the external device power of the TV tuner, the computer, etc. is also inputted with frame data Df in pixel units indicating the luminance level (gradation level) of each color of R, G, B together with various synchronization signals, and M columns This is to selectively light up a number of display cells that make up the N-line screen. The drive unit 60 includes a controller 61, a low-pass filter 42, a data processing circuit 13, an X driver 15, a Y driver 16, an address driver 17, and a temperature measurement circuit 62. The controller 61 controls the low-pass filter 42, the X driver 15, the Y driver 16, and the address driver 17 based on external input signals (frame data Df and various synchronization signals). Further, the controller 61 is supplied with the measurement result of the current value supplied to the address driver 17 from the current measurement circuit 62, and determines the coefficient of the low-pass filter 42 based on the measurement result to obtain the coefficient designation data Di. Output.
温度測定回路 62は、アドレスドライバ 17の温度を測定して、測定結果をコントロー ラ 61に出力する。  The temperature measurement circuit 62 measures the temperature of the address driver 17 and outputs the measurement result to the controller 61.
[0100] 以上、第 4の実施形態によれば、上述した第 1〜第 3の実施形態と同様に、簡単な 回路構成で画質劣化を抑制しながらもアドレスドライバ 17の消費電力を低減すること ができる。また、アドレスドライバ 17の制御データそのものであるサブフレームデータ Dsfに対し、それを単位としてローパスフィルタ 42によるフィルタ処理を施すことで、 サブフレーム毎に制御することができる。例えば、輝度重みの高い上位のサブフレー ム(又はサブフレーム群)のデータに対してはフィルタ処理を施さずに、輝度重みの 低!、下位のサブフレーム(又はサブフレーム群)のデータに対してのみローパスフィ ルタ 42によるフィルタ処理を施すことで、階調の誤差が大きくなることを抑制しつつァ ドレスドライバ 17の消費電力を低減することができる。  [0100] As described above, according to the fourth embodiment, as in the first to third embodiments described above, the power consumption of the address driver 17 can be reduced while suppressing image quality degradation with a simple circuit configuration. Can do. Further, the sub-frame data Dsf, which is the control data itself of the address driver 17, can be controlled for each sub-frame by performing a filtering process by the low-pass filter 42 as a unit. For example, the upper subframe (or subframe group) data with a higher luminance weight is not filtered, and the lower luminance frame! Or lower subframe (or subframe group) data is not filtered. By performing the filtering process using only the low-pass filter 42, the power consumption of the address driver 17 can be reduced while suppressing an increase in gradation error.
[0101] なお、上述した第 4の実施形態によるプラズマディスプレイ装置においては、各サブ フレームに対応してローパスフィルタ 42をそれぞれ設けるようにして!/、るが、 1つの口 一パスフィルタ 42を設け、サブフレーム毎に係数を変更制御するようにしても良い。 また、 1つのローパスフィルタ 42ではなぐ複数のローパスフィルタ 42を設け、係数を 適宜制御することにより、 V、くつかのサブフレームで用いるようにしても良 、。  [0101] In the plasma display device according to the fourth embodiment described above, a low pass filter 42 is provided corresponding to each subframe, but one single pass filter 42 is provided. The coefficient may be changed and controlled for each subframe. In addition, a plurality of low-pass filters 42 may be provided in addition to one low-pass filter 42, and the coefficients may be appropriately controlled to be used in V and several subframes.
[0102] また、上述した第 1〜第 4の実施形態では、アドレスドライバ 17で消費される電力の 指標として、計算して求めたアドレスドライバ 17の消費電力値、測定されたアドレスド ライバ 17に供給される電流値、及び測定されたアドレスドライバ 17の温度の何れか 1 つのみを用いるようにしているが、これに限定されるものではなぐ任意の複数の指標 を併用して制御を行うようにしても良!、。  [0102] In the first to fourth embodiments described above, as an index of the power consumed by the address driver 17, the calculated power consumption value of the address driver 17 and the measured address driver 17 are used. Only one of the supplied current value and the measured temperature of the address driver 17 is used. However, the present invention is not limited to this. Anyway!
[0103] 複数の指標を併用する場合にはそれぞれの指標に関して目標値を設定しておき、 少なくとも 1つの指標が目標値以上となった場合にはローパスフィルタのカットオフ周 波数を低減し、すべての指標が目標値未満である場合にはローパスフィルタのカット オフ周波数を増大させるように制御すれば良 、。 [0103] When using multiple indicators together, set a target value for each indicator, and when at least one indicator exceeds the target value, the cutoff frequency of the low-pass filter If the wave number is reduced and all indicators are below the target value, control can be performed to increase the cutoff frequency of the low-pass filter.
[0104] また、上述した第 1及び第 4の実施形態のように、アドレスドライバ 17で消費される 電力を計算により求めるようにする場合には、画面を複数の領域に分割して各領域 毎にアドレスドライバ 17の消費電力値を計算し、消費電力が大きい領域についての み高周波成分を抑制するようローパスフィルタによるフィルタ処理を施すようにしても 良い。具体的には、分割した領域毎にアドレスドライバ 17の消費電力の目標値を設 定し、計算して求めた消費電力値と目標値との比較結果に応じてフィルタ処理を施 せば良い。このような制御は、例えば画面の一部に動画が表示され、他の部分が静 止画が表示されるような画像に対して好適である。  [0104] Further, as in the first and fourth embodiments described above, when the power consumed by the address driver 17 is obtained by calculation, the screen is divided into a plurality of areas and each area is divided. Alternatively, the power consumption value of the address driver 17 may be calculated, and a filtering process using a low-pass filter may be performed so as to suppress high-frequency components only in a region where the power consumption is large. Specifically, a target value of power consumption of the address driver 17 may be set for each divided area, and filtering may be performed according to a comparison result between the calculated power consumption value and the target value. Such control is suitable, for example, for an image in which a moving image is displayed on a part of the screen and a still image is displayed on the other part.
[0105] また、上記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一 例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈され てはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴 力も逸脱することなぐ様々な形で実施することができる。  [0105] In addition, each of the above-described embodiments is merely an example of the implementation of the present invention, and the technical scope of the present invention should not be construed in a limited manner. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main characteristic power thereof.
産業上の利用可能性  Industrial applicability
[0106] 本発明によれば、アドレスドライバの消費電力に係る指標情報に基づいて、表示デ ータにフィルタ処理を施すフィルタの特性の制御を行 、、アドレスドライバの消費電力 が大き 、場合に、表示データの高周波成分を抑制するようにフィルタの特性を制御 する。これにより、簡単な回路構成で、表示データに応じてアドレス電極の電位変化 回数を低減することが可能となり、画質の劣化を抑えアドレスドライバの消費電力を低 減することができる。 [0106] According to the present invention, the characteristics of the filter that filters the display data are controlled based on the index information related to the power consumption of the address driver, and the power consumption of the address driver is large. The filter characteristics are controlled so as to suppress the high-frequency component of the display data. As a result, it is possible to reduce the number of potential changes in the address electrode in accordance with display data with a simple circuit configuration, thereby suppressing image quality deterioration and reducing the power consumption of the address driver.

Claims

請求の範囲 The scope of the claims
[1] 表示データにフィルタ処理を施すフィルタと、  [1] A filter that filters the display data,
表示セルの発光又は非発光を選択するためのアドレス電極と、  An address electrode for selecting light emission or non-light emission of the display cell;
上記フィルタ処理された表示データに基づ 、て、上記アドレス電極を駆動するアド レスドライバとを有し、  An address driver for driving the address electrode based on the filtered display data;
上記アドレスドライバの消費電力に係る指標情報に基づ 、て、上記フィルタの特性 を制御することを特徴とするプラズマディスプレイ装置。  A plasma display device, wherein the characteristics of the filter are controlled based on index information relating to power consumption of the address driver.
[2] 上記フィルタは、上記指標情報を基に上記アドレスドライバの消費電力が所定値以 上になると判定された場合には上記表示データの高周波成分を抑制するようカットォ フ周波数を低くし、所定値未満になると判定された場合にはカットオフ周波数を高く するよう制御されることを特徴とする請求項 1記載のプラズマディスプレイ装置。  [2] When the filter determines that the power consumption of the address driver exceeds a predetermined value based on the index information, the filter lowers the cut-off frequency so as to suppress a high-frequency component of the display data, 2. The plasma display device according to claim 1, wherein when it is determined that the value is less than the value, the cutoff frequency is controlled to be increased.
[3] 1フレームの表示データを変換して得られる複数のサブフレームの表示データ単位 で上記フィルタ処理を施すことを特徴とする請求項 1記載のプラズマディスプレイ装 置。  [3] The plasma display device according to [1], wherein the filtering process is performed in units of display data of a plurality of subframes obtained by converting display data of one frame.
[4] 上記複数のサブフレームを輝度重みの高!ヽサブフレーム群と輝度重みの低!ヽサブ フレーム群とに分類し、上記輝度重みの低いサブフレーム群に属するサブフレーム の表示データに対してのみ上記フィルタ処理を施すことを特徴とする請求項 3記載の プラズマディスプレイ装置。  [4] The plurality of subframes are classified into a high luminance weight! ヽ subframe group and a low luminance weight! ヽ subframe group, and the display data of subframes belonging to the subframe group having the low luminance weight 4. The plasma display device according to claim 3, wherein the filtering process is performed only on the screen.
[5] 上記指標情報は、上記表示データを用いて計算して求めた上記アドレスドライバの 消費電力値であることを特徴とする請求項 1記載のプラズマディスプレイ装置。  5. The plasma display device according to claim 1, wherein the index information is a power consumption value of the address driver calculated by using the display data.
[6] 表示データに基づく表示画像が表示される画面を複数の領域に分割して各領域毎 に電力値を計算し、当該電力値を基に各領域に係る表示データに対して上記フィル タ処理を施すことを特徴とする請求項 5記載のプラズマディスプレイ装置。  [6] The screen on which the display image based on the display data is displayed is divided into a plurality of areas, the power value is calculated for each area, and the filter is applied to the display data for each area based on the power value. 6. The plasma display device according to claim 5, wherein treatment is performed.
[7] 上記指標情報は、電流測定回路により測定された上記アドレスドライバに供給され る電流の情報であることを特徴とする請求項 1記載のプラズマディスプレイ装置。  7. The plasma display device according to claim 1, wherein the index information is information on a current supplied to the address driver measured by a current measuring circuit.
[8] 上記指標情報は、温度測定回路により測定された上記アドレスドライバの温度の情 報であることを特徴とする請求項 1記載のプラズマディスプレイ装置。  8. The plasma display device according to claim 1, wherein the index information is temperature information of the address driver measured by a temperature measurement circuit.
[9] 上記アドレスドライバの消費電力に係る複数の指標情報に基づ 、て、上記フィルタ の特性を制御することを特徴とする請求項 1記載のプラズマディスプレイ装置。 [9] Based on a plurality of index information relating to power consumption of the address driver, the filter 2. The plasma display device according to claim 1, wherein the characteristics of the plasma display device are controlled.
[10] 上記複数の指標情報には、上記表示データを用いて計算して求めた上記アドレス ドライバの消費電力値、電流測定回路により測定された上記アドレスドライバに供給 される電流の情報、及び温度測定回路により測定された上記アドレスドライバの温度 の情報のうち少なくとも 2つが含まれることを特徴とする請求項 9記載のプラズマディ スプレイ装置。 [10] The plurality of index information includes a power consumption value of the address driver calculated by using the display data, information on a current supplied to the address driver measured by a current measurement circuit, and a temperature. 10. The plasma display device according to claim 9, wherein at least two pieces of information on the temperature of the address driver measured by a measurement circuit are included.
[11] 表示データに基づく表示画像が表示される画面上で上記アドレス電極が延びる方 向に関し、上記表示データに対して上記フィルタ処理を施すことを特徴とする請求項 1記載のプラズマディスプレイ装置。  11. The plasma display device according to claim 1, wherein the filter processing is performed on the display data in a direction in which the address electrodes extend on a screen on which a display image based on display data is displayed.
[12] 表示データに基づく表示画像が表示される画面上で上記アドレス電極が延びる方 向に直交する方向に関し、同色の表示セルの上記表示データに対して上記フィルタ 処理を施すことを特徴とする請求項 1記載のプラズマディスプレイ装置。  [12] The filter processing is performed on the display data of the display cells of the same color in a direction orthogonal to a direction in which the address electrodes extend on a screen on which a display image based on display data is displayed. The plasma display device according to claim 1.
[13] 表示データに基づく表示画像が表示される画面上で上記アドレス電極が延びる第 1の方向と、該第 1の方向に直交する第 2の方向の双方に関し、同色の表示セルの 上記表示データに対して上記フィルタ処理を施すことを特徴とする請求項 1記載のプ ラズマディスプレイ装置。  [13] The display of display cells of the same color in both the first direction in which the address electrodes extend on the screen on which a display image based on display data is displayed and the second direction orthogonal to the first direction The plasma display device according to claim 1, wherein the filtering process is performed on the data.
[14] 表示セルの発光又は非発光を選択するためのアドレス電極と、  [14] address electrodes for selecting light emission or non-light emission of the display cell;
フィルタ処理された表示データに基づ 、て、上記アドレス電極を駆動するアドレスド ライバと、  Based on the filtered display data, an address driver that drives the address electrodes;
上記フィルタ処理された表示データを用いて、上記アドレスドライバの消費電力値 を算出する電力演算回路と、  A power calculation circuit for calculating a power consumption value of the address driver using the filtered display data;
上記電力演算回路により算出された消費電力値に基づいてフィルタ係数が制御さ れ、表示データに上記フィルタ処理を施すフィルタとを有することを特徴とするプラズ マディスプレイ装置。  A plasma display device comprising: a filter that controls a filter coefficient based on a power consumption value calculated by the power calculation circuit and performs the filtering process on display data.
[15] 表示セルの発光又は非発光を選択するためのアドレス電極と、 [15] An address electrode for selecting light emission or non-light emission of the display cell;
フィルタ処理された表示データに基づ 、て、上記アドレス電極を駆動するアドレスド ライバと、  Based on the filtered display data, an address driver that drives the address electrodes;
上記アドレスドライバに供給される電流を測定する電流測定回路と、 上記電流測定回路での測定結果に基づ 、てフィルタ係数が制御され、表示データ に上記フィルタ処理を施すフィルタとを有することを特徴とするプラズマディスプレイ 装置。 A current measuring circuit for measuring a current supplied to the address driver; A plasma display device, comprising: a filter that controls a filter coefficient based on a measurement result of the current measurement circuit and performs the filter process on display data.
PCT/JP2006/301316 2006-01-27 2006-01-27 Plasma display apparatus WO2007086133A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/301316 WO2007086133A1 (en) 2006-01-27 2006-01-27 Plasma display apparatus
JP2007555828A JPWO2007086133A1 (en) 2006-01-27 2006-01-27 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/301316 WO2007086133A1 (en) 2006-01-27 2006-01-27 Plasma display apparatus

Publications (1)

Publication Number Publication Date
WO2007086133A1 true WO2007086133A1 (en) 2007-08-02

Family

ID=38308944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301316 WO2007086133A1 (en) 2006-01-27 2006-01-27 Plasma display apparatus

Country Status (2)

Country Link
JP (1) JPWO2007086133A1 (en)
WO (1) WO2007086133A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263007A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Planar display device and current control method for the device
JPH096283A (en) * 1995-06-16 1997-01-10 Fujitsu Ltd Temperature compensating method for plasma display panel and device for it, heating preventing method for plasma display panel and device for it, and plasma display device using these
JPH10187093A (en) * 1996-12-27 1998-07-14 Mitsubishi Electric Corp Circuit and method for driving matrix display device
JPH1138930A (en) * 1997-07-22 1999-02-12 Fujitsu Ltd Driving circuit for plane display device
JP2000066638A (en) * 1998-08-19 2000-03-03 Nec Corp Plasma display method, and plasma display device
JP2002023694A (en) * 2000-04-21 2002-01-23 Matsushita Electric Ind Co Ltd Multigradation image display device which reduces power consumption during data writing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263007A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Planar display device and current control method for the device
JPH096283A (en) * 1995-06-16 1997-01-10 Fujitsu Ltd Temperature compensating method for plasma display panel and device for it, heating preventing method for plasma display panel and device for it, and plasma display device using these
JPH10187093A (en) * 1996-12-27 1998-07-14 Mitsubishi Electric Corp Circuit and method for driving matrix display device
JPH1138930A (en) * 1997-07-22 1999-02-12 Fujitsu Ltd Driving circuit for plane display device
JP2000066638A (en) * 1998-08-19 2000-03-03 Nec Corp Plasma display method, and plasma display device
JP2002023694A (en) * 2000-04-21 2002-01-23 Matsushita Electric Ind Co Ltd Multigradation image display device which reduces power consumption during data writing

Also Published As

Publication number Publication date
JPWO2007086133A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
EP1667096B1 (en) Plasma display and driving method thereof
US7342557B2 (en) Driving method of plasma display panel and display device thereof
JP2006301571A (en) Plasma display apparatus and driving method thereof
JP4956911B2 (en) Driving method of plasma display panel
JP2008287244A (en) Drive method of plasma display panel
US20080143645A1 (en) Method of driving discharge display panel having driving waveform varying in first reset period
EP1981017A2 (en) Plasma display panel and method of driving the same
US20080191973A1 (en) Method of driving plasma display apparatus
US20070216603A1 (en) Method of driving plasma display apparatus
US20060007062A1 (en) Plasma display panel and driving method and apparatus thereof
JPWO2008087805A1 (en) Plasma display panel driving method and plasma display device
JP2008083137A (en) Plasma display panel drive method
JP2008287245A (en) Method for driving plasma display panel
JP5003191B2 (en) Driving method of plasma display device
WO2008056397A1 (en) Plasma display device
KR100747169B1 (en) Plasma Display Apparatus and Driving Method for Plasma Display Apparatus
JP2005321802A (en) Plasma display apparatus and its driving method
WO2007086133A1 (en) Plasma display apparatus
US20120081418A1 (en) Driving method for plasma display panel, and plasma display device
US20080191970A1 (en) Method of driving plasma display apparatus
JP4997932B2 (en) Plasma display panel driving method and plasma display device
KR100502359B1 (en) Method for driving discharge display panel by address-display mixing and apparatus thereof
KR100612385B1 (en) Plasma display panel and driving method thereof
KR100560513B1 (en) Driving method of plasma display panel and plasma display device
KR100599648B1 (en) Plasma display panel and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007555828

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A SENT ON 19/11/08 .

122 Ep: pct application non-entry in european phase

Ref document number: 06712482

Country of ref document: EP

Kind code of ref document: A1