WO2007085296A1 - Verfahren zur zerstörungsfreien untersuchung eines wenigstens einen akustisch anisotropen werkstoffbereich aufweisenden prüfkörpers - Google Patents
Verfahren zur zerstörungsfreien untersuchung eines wenigstens einen akustisch anisotropen werkstoffbereich aufweisenden prüfkörpers Download PDFInfo
- Publication number
- WO2007085296A1 WO2007085296A1 PCT/EP2006/012419 EP2006012419W WO2007085296A1 WO 2007085296 A1 WO2007085296 A1 WO 2007085296A1 EP 2006012419 W EP2006012419 W EP 2006012419W WO 2007085296 A1 WO2007085296 A1 WO 2007085296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- ultrasound
- specimen
- transducers
- ultrasonic transducers
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/043—Analysing solids in the interior, e.g. by shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/262—Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/449—Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/024—Mixtures
- G01N2291/02491—Materials with nonlinear acoustic properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0422—Shear waves, transverse waves, horizontally polarised waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/106—Number of transducers one or more transducer arrays
Definitions
- the invention relates to a method for the non-destructive examination of an at least one acoustically anisotropic material region having test specimen by means of ultrasound.
- Non-destructive ultrasonic testing of specimens consisting of acoustically isotropic solid materials and performed for purposes of error testing, i. for finding cracks, material inhomogeneities, etc., are well known.
- the prerequisite for a successful application of such test methods is the requirement for the most uniform and rectilinear propagation of ultrasonic waves coupled within a respective test specimen.
- the material of which a respective test piece is made should have sound-acoustic constant properties over the entire volume to be tested, such as, for example, an isotropic density distribution and isotropic elastic properties.
- these test methods enable a reliable proof of error, an exact spatial fault location and finally also by means of suitable
- Ultraschallallsauszar compiler the realization of an error imaging, based on the shape and size of the fault are recognizable.
- an ultrasound imaging device which provides a phased array ultrasound probe which has a linear array of ultrasound transducers. Includes single transducer elements, which are activated individually or in groups as it progresses in the scan direction with a predetermined scan frequency.
- the quality of the defect image reconstruction which ultimately also determines the quantitative statements regarding the type of defect, defect location and defect size, depends on a number of parameters determining the ultrasound coupling into the test specimen, the ultrasound wave detection and the reconstruction techniques evaluating the received ultrasound signals.
- the materials of the present invention with propagation velocities of acoustic waves that are independent of their direction of propagation are referred to as acoustically isotropic materials.
- acoustically isotropic materials if the sound velocities of the ultrasonic waves coupled into materials depend on their respective propagation directions, then these materials are called anisotropic.
- anisotropic material for example, a known, natural anisotropic material is wood, which can be inspected for material defects using standard ultrasonic testing techniques, if at all, with limitations.
- Other anisotropic material materials for example, fiber composite or layered materials, which are preferably used in modern lightweight constructions.
- anisotropic materials are structure-dependent nature of the propagation of ultrasonic waves with location-dependent and material density-dependent sound velocities.
- anisotropic materials with three propagation modes are to be expected, especially since two orthogonal transverse modes already exist.
- isotropic materials the oscillation of the longitudinal mode is always parallel, that of the transverse mode always oriented perpendicular to the direction of propagation.
- test body PK investigated by means of the ultrasound wave phased array probe US is a test body PK, which has a plane test body surface PKO and consists of carbon fiber composite material, with a fiber orientation of 15 ° to the test body surface PKO.
- the speed of sound in the fiber direction is about 3 times greater than that in the one vertical propagation direction.
- an error point FS introduced as a model reflector is introduced within the test body PK, which is located immediately below the ultrasound wave array radiator US resting on the test body surface PKO.
- Fig. 1a a two-dimensional sector image of a conventionally operated ultrasonic array radiator US is shown, i. All ultrasonic transducers together serve as ultrasonic wave transmitters and are capable of detecting the ultrasonic waves reflected within the test specimen.
- the sound incidence locus i. the location of the Ultraschallwellen- Erasmusnstrahlerprüfkopf
- the received signals occurring in the area of the acoustic coupling originate from coupling effects close to the test specimen surface, but themselves do not represent any defects within the specimen.
- the semicircularly arranged reflection signals spaced from the coupling point represent reflection events on the rear wall of the specimen which occur under almost all insonification angles. Due to the predetermined by the test specimen situation with respect to the position of the artificially introduced into the test specimen flaw, would have in the case of an existing of an isotropic test specimen, the reflector location exactly below the apparent sound entry point. In the sector image according to FIG. 1a, however, one does not obtain an indication below 0 °, but rather a reflector event R at angles around 45 °. This test result makes it clear that the anisotropic material of the test piece leads to a distorted position information of a defect actually present in the test piece.
- FIG. 2 a shows a sector image of a conventionally operated group radiator with a radiation direction along the direction of the fiber structure, from which it can be seen that, due to diffraction phenomena, below almost all insonification angles of the artificially introduced into the test specimen test reflector is to be seen. It can be seen that the basic proof of the presence of defects is indeed possible, but a localization of defects and also a characterization in terms of size and type of defect are not possible ,
- the invention has for its object to provide a method for non-destructive examination of at least one acoustically anisotropic material having test specimens by means of ultrasound such that a reliable error detection with precise information about the spatially exact location, type and size of the located within the acoustically anisotropic material area fault location possible becomes.
- a method for the non-destructive examination of a specimen having at least one acoustically anisotropic material region by means of ultrasound is characterized by the sequence of the following method steps:
- the phase relationships of individual elementary waves originating under different detection directions by corresponding reflection events within the test body are detected.
- the reception of the ultrasonic waves takes place, as it were, in the emission and coupling of ultrasonic waves into the test specimen by means of an ultrasonic wave phased array test head, the directionally selective ultrasonic wave evaluation taking place using a signal evaluation method, which is explained below.
- a signal evaluation method which is explained below.
- an adaptation of the detected ultrasonic wave field to be evaluated is finally carried out, so that a quasi-standard test situation is created, as is also carried out in the evaluation of ultrasound signals originating from acoustically isotropic test specimens.
- an ultrasonic phased array tester having a number n of ultrasound transducers is placed on a surface of the test body via which both ultrasonic waves are coupled into the test body and be coupled out of the test specimen to detect corresponding reflected ultrasonic waves.
- the ultrasonic transducers are preferably applied directly or by means of suitable coupling agents on the surface of the test specimen.
- the ultrasonic transducers can be arranged in the form of one-dimensional arrays (along a row), two-dimensional arrays (field-shaped) or three-dimensional arrays (depending on the three-dimensional surface of the test specimen) on the surface of the specimen.
- ultrasonic transducers are advantageously each suitable for coupling ultrasonic waves into the test specimen as well as to receive ultrasonic waves, i. They are used or controlled both as ultrasonic transmitter and ultrasonic receiver.
- the use of exclusive ultrasonic transmitter and ultrasonic receiver is also conceivable, but this leads to the same spatial resolution of the measurement results in a larger number of ultrasonic transducers to be applied.
- ultrasonic transducer piezoelectric transducer Preferably suitable as ultrasonic transducer piezoelectric transducer, but also the use of transducers based on electromagnetic, optical or mechanical action principles is possible.
- the n ultrasonic transducers are combined in a manually manageable ultrasonic test head, which allows a simple application and application to the specimen surface. Other applications of the ultrasonic transducer, for example.
- On opposite surfaces of the test specimen arise depending on the shape and size of the specimen and the respective task of investigation. It has been shown that with the method according to the solution an optimal spatial resolution of the measurement results can be achieved if the number of ultrasound transducers to be provided is selected equal to or greater than 16.
- a first ultrasonic transducer or a first group of ultrasonic transducers is selected from the total number of n ultrasonic transducers, wherein in the case of selecting a group of ultrasonic transducers, the number i of the ultrasonic transducers belonging to the group should be smaller than the total number n of all ultrasound transducers.
- the determination of the number i of the US transmitters determines the elastic energy injected per activation of the US transmitters into the test body, provided that the i US transmitters are activated at the same time. The greater the number of all simultaneously active transmitters is selected, the higher is the elastic energy coupled into the test body. Furthermore, the determination of i ultrasonic transducers as transmitters advantageously takes place in such a way that i ultrasound transducers arranged immediately adjacent to one another are selected, if possible, as an ultrasound transmitter array connected in a planar manner.
- the number i of the US transmitters and the specific composition of the transmitter group, in particular their arrangement on the test specimen surface also determine the overall emission characteristic (aperture) of the transmitter group and, in addition, the sensitivity and resolving power of the measurements ,
- the ultrasonic waves are reflected at impurities within the test specimen or test specimen surfaces opposite the respective coupling-in areas and pass back to the surface region of the ultrasonic transducers applied to the test specimen surface, all or only a limited part of which receives the ultrasonic waves, the number m always being should be greater than the number i of the ultrasonic transducers involved in the ultrasonic transmission.
- the ultrasound transducers received by the m as US receivers, or the maximum of all ultrasound waves received by all n US converters, are converted to ultrasound signals and stored, i. supplied to a corresponding memory unit and stored there.
- the transmitter serving as ultrasonic transducer transmitter-specific it is not necessary to modulate the transmitter serving as ultrasonic transducer transmitter-specific, ie all US stations are activated identically.
- the ultrasound transducers belonging to a group are activated in a modulated manner, ie each individual ultrasound transducer is activated with a distinguishable modulation, so that the ultrasound waves coupled into the test body can be detected transmitter-specifically. After carrying out one or more measuring cycles, a changed selection of ultrasound wave-generating US transmitters takes place.
- the reflected ultrasound waves with all n ultrasonic transducers or a part m of the ultrasound transducers are received with the new US transmitter constellation and converted into ultrasound signals, which are ultimately also stored. All n or m for the reception of ultrasonic waves serving ultrasonic transducer remain unchanged despite changed US transmitter constellations in order to allow the simplest possible measurement signal evaluation subsequently, as will be seen below.
- n measuring cycles or n measuring cycles each consisting of a selectable number of measuring cycles.
- n measuring cycles each consisting of a selectable number of measuring cycles.
- a multiplicity of the m measuring signals stored per measuring cycle or measuring cycle is obtained which, in the further course, is to be analyzed with the proviso of a targeted test specimen examination.
- a special aspect is the possibility of subsequent evaluation of the stored measurement signals after carrying out the actual measurement of the test specimen.
- the evaluation of the ultrasound signals takes place, as it were, offline with a reconstruction algorithm which is selected in the test specimen with the aid of a virtually predefinable insonification angle and / or a virtual focusing of the coupled ultrasound waves and applied to the stored ultrasound signals. With the aid of such reconstruction algorithms, it is possible to compute synthetically three-dimensional images of the transmission or reflection properties of the test specimen from the stored ultrasound signals, without the need for additional further ultrasound measurements.
- This reconstruction principle is based on the application of the Synthetic Aperture Focussing Technique (SAFT), which consists in that all received ultrasound signals are projected as far as possible on a common time axis.
- SAFT Synthetic Aperture Focussing Technique
- all the ultrasonic signals reflected by a specific reflector or by a specific fault location are added in phase, taking into account the anisotropic sound propagation properties of the specimen material and an associated phase adjustment.
- a subsequent reconstruction of any insonification angle results from a phase-shifted addition of the received signals from different ultrasonic receivers.
- the Off-line evaluation is able to synthetically reconstruct almost every insonification angle and thus perform an ultrasonic sweep (.Sweep 1 ) through the data set.
- the in-phase phased array phased array technique provides error detection as well as defect image reconstruction for anisotropic materials with a quality and reliability equivalent to that of conventional ultrasound technology on isotropic materials.
- the distance and the arrangement of the sensor system optimizations can be made depending on the anisotropy parameters of the test body to be examined.
- Ultrasonic testing in immersion technology is also possible with the aid of the method according to the invention for the examination of heterogeneous or acoustically acoustically anisotropic materials. Due to the acoustic sound coupling via a liquid layer between the phased array head and the test body surface to be examined, it is also possible to access test body geometries with complicatedly designed surface geometries. This option facilitates the manufacture and use of the test system at low cost and low sensor overhead.
- Fig. 1a b sector image representations by an anisotropic test specimen
- Fig. 2 a b sector image representations by an anisotropic specimen
- Fig3 Schematic representation of the experimental test situation.
Landscapes
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Acoustics & Sound (AREA)
- Probability & Statistics with Applications (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Beschrieben wird ein Verfahren zur zerstörungsfreien Untersuchung eines wenigstens einen akustisch anisotropen Werkstoffbereich aufweisenden Prüfkörpers mittels Ultraschall. Die Erfindung zeichnet sich durch folgende Verfahrensschritte aus: a) Ermitteln oder Bereitstellen von den akustisch anisotropen Werkstoffbereich beschreibenden, richtungsspezifischen Schallausbreitungseigenschaften, b) Einkoppeln von Ultraschallwellen in den akustisch anisotropen Werkstoffbereich des Prüfkörpers, c) Empfangen von im Inneren des Prüfkörpers reflektierten Ultraschallwellen mit einer Vielzahl von Ultraschallwandlern, d) Auswerten von mittels der Vielzahl von Ultraschallwandlern generierten Ultraschallsignale derart, dass die Auswertung richtungsselektiv unter Zugrundelegung der richtungsspezifischen Schallausbreitungseigenschaften erfolgt.
Description
Verfahren zur zerstörungsfreien Untersuchung eines wenigstens einen akustisch anisotropen Werkstoffbereich aufweisenden Prüfkörpers
Technisches Gebiet
Die Erfindung bezieht sich auf ein Verfahren zur zerstörungsfreien Untersuchung eines wenigstens einen akustisch anisotropen Werkstoffbereich aufweisenden Prüfkörpers mittels Ultraschall.
Stand der Technik
Zerstörungsfreie Ultraschallprüfverfahren an Prüfkörpern, die aus akustisch isotropen Vollmaterialien bestehen und zu Zwecken einer Fehlerprüfung durchgeführt werden, d.h. zum Auffinden von Rissen, Materialinhomogenitäten etc., sind hinlänglich bekannt. Voraussetzung für eine erfolgreiche Anwendung derartiger Prüfverfahren ist die Forderung nach einer möglichst gleichartigen und geradlinigen Ausbreitung von innerhalb eines jeweiligen Prüfkörpers eingekoppelten Ultraschallwellen. Um dies zu erfüllen sollte das Material, aus dem ein jeweiliger Prüfkörper besteht, über das gesamte zu überprüfende Volumen schallakustisch konstante Eigenschaften verfügen, so beispielsweise eine isotrope Dichteverteilung und isotrope elastische Eigenschaften aufweisen. In Erfüllung dieser Voraussetzung ermöglichen diese Prüfverfahren einen zuverlässigen Fehlernachweis, eine exakte räumliche Fehlerortung sowie letztlich auch mittels geeigneter
Ultraschallsignalauswerteverfahren die Realisierung einer Fehlerbildgebung, anhand der Form und Größe der Fehlerstelle erkennbar sind. Repräsentativ für eine Vielzahl derartiger Ultraschallprüfsysteme sei auf die DE 33 46 534 A1 verwiesen, aus der eine Ultraschall-Bilddarstellungseinrichtung hervorgeht, die einen Gruppenstrahler- Ultraschallprüfkopf vorsieht, der ein lineares Array aus Ultraschall-
Einzelwandlerelementen umfasst, die unter Fortschreiten in Scan-Richtung mit vorgegebener Scan-Frequenz einzeln oder gruppenweise aktiviert werden. Die Qualität der Fehlerbildrekonstruktion, die letztlich auch die quantitativen Aussagen bezüglich Fehlerart, Fehlerlage und Fehlergröße bestimmt, hängt von einer Vielzahl von die Ultraschalleinkopplung in den Prüfkörper, die Ultraschallwellen-Detektion, sowie die empfangene Ultraschallsignale auswertenden Rekonstruktionstechniken bestimmende Parameter ab.
Die der bisherigen Ultraschallprüftechnik zugänglichen Materialien mit Ausbreitungsgeschwindigkeiten von akustischen Wellen, die unabhängig sind von ihrer Ausbreitungsrichtung, werden als akustisch isotrope Materialien bezeichnet. Hängen jedoch die Schallgeschwindigkeiten der in Materialien eingekoppelten Ultraschallwellen von ihren jeweiligen Ausbreitungsrichtungen ab, so werden diese Materialien anisotrop bezeichnet. Ein bekanntes, natürliches anisotropes Material ist beispielsweise Holz, das mittels gängiger Ultraschallprüftechniken, wenn überhaupt nur mit Einschränkungen auf Werkstofffehler überprüft werden kann. Weitere anisotrope Werkstoffmaterialien stellen beispielsweise Faserverbund- oder geschichtete Werkstoffe dar, die bevorzugt in modernen Leichtbaukonstruktionen Anwendung finden. Grund für die unbefriedigende Prüfbarkeit derartiger anisotroper Materialien ist die strukturabhängige Art der Ausbreitung von Ultraschallwellen mit ortsabhängigen und materdichteabhänigen Schallgeschwindigkeiten. Hinzu kommt, dass anders als in isotropen Materialien, in denen lediglich zwei Arten von Schwingungsmoden von Volumenwellen, nämlich longitudinale und transversale Moden, auftreten können, in anisotropen Materialien mit drei Ausbreitungsmoden zu rechnen ist, zumal bereits zwei orthogonale Transversalmoden existieren können. In isotropen Materialien ist die Schwingung des longitudinalen Modes stets parallel, die des transversalen Modes stets senkrecht zur Ausbreitungsrichtung orientiert. In anisotropen Materialien hingegen existieren so genannte quasi-longitudinale und quasi-transversale Wellen, deren Polarisationsabweichungen sogar bei geringen Schallgeschwindigkeitsunterschieden bereits beträchtliche Effekte bei der Fehlerbildrekonstruktion verursachen können.
Aber auch die Untersuchung an Prüfkörpern, die aus unterschiedlichen akustisch isotropen Materialien bestehen, bspw. schichtförmig zusammengesetzte Prüfkörper, vermag mit den derzeitig bekannten Prüfverfahren keine exakte räumliche Fehlerortung innerhalb des Prüfkörpers zu gewährleisten, zumal die Ultraschallwellen an den Grenzflächen aneinander stoßender Materialschichten längs ihrer Ausbreitungsrichtung gebrochen werden. Bereits bei der Ultraschallprüfung in Tauchtechnik treten prinzipiell gesehen derartige, an Grenzflächen zwischen z.B. Wasser und Stahl hervorgerufene Brechungseffekte auf, wodurch die vorstehend beschriebene Fehlerlokalisierung zum Teil erheblich eingeschränkt wird, zumal Brechungs- oder Beugungserscheinungen selbst an Grenzschichten zwischen zwei ansonsten isotropen Werkstoffen, eine Ortung von Fehlern nahezu unmöglich macht. Gründe dafür sind die fehlende Kenntnis des Schalllaufweges, der nicht mehr als geradlinig angenommen werden kann und damit auch die der effektiven Schallgeschwindigkeit. Auch der Fehlernachweis selbst kann unter Verwendung einer begrenzten Zahl von Einschallwinkeln mangelhaft sein, zumal der Schall bedingt durch Beugungseffekte den Fehlerort nicht erreichen kann. Aus diesem Grund werden sicherheitsrelevante Strukturwerkstoffe mit einer möglichst großen Anzahl von Einschallwinkeln geprüft, wobei die so genannte Gruppenstrahlertechnik, wie sie der vorstehend zitierten DE 33 46 534 A1 entnehmbar ist, eingesetzt.
Um einen quantitativen Eindruck von dem Einfluss akustisch anisotroper Materialien auf das tatsächliche Ultraschallwellen-Ausbreitungsverhältnis zu erhalten, sei auf das in Fig. 1a dargestellte Prüfergebnis verwiesen, das mittels eines Ultraschallgruppenstrahler-Prüfkopfes US an einem aus Kohlenfaserverbundwerkstoff bestehenden Prüfkörper PK gewonnen worden ist, gemäß der in Figur 3 skizzierten Prüfsituation. Bei dem mittels des Ultraschallwellen- Gruppenstrahlerprüfkopfes US untersuchten Prüfkörpers PK handelt es sich um einen über eine ebene Prüfkörperoberfläche PKO verfügenden, aus Kohlenfaserverbundwerkstoff bestehenden Prüfkörper PK, mit einer Faserorientierung von 15° zur Prüfkörperoberfläche PKO geneigt. Die Schallgeschwindigkeit in Faserrichtung ist in etwa 3 mal größer als die in der dazu
senkrechten Ausbreitungsrichtung. Ferner ist innerhalb des Prüfkörpers PK eine als Modellreflektor eingebrachte Fehlerstelle FS eingebracht, die sich unmittelbar unterhalb des auf der Prüfkörperoberfläche PKO aufliegenden Ultraschallwellen- Gruppenstrahlers US befindet.
In Fig. 1a ist ein zweidimensionales Sektorbild eines konventionell betriebenen Ultraschallgruppenstrahlers US dargestellt, d.h. sämtliche Ultraschallwandler dienen gemeinsam als Ultraschallwellensender und vermögen die innerhalb des Prüfkörpers reflektierten Ultraschallwellen zu detektieren. Anhand des in Fig. 1 a dargestellten Sektorbildes ist entnehmbar, dass der Schalleinkoppelort, d.h. der Ort des Ultraschallwellen-Gruppenstrahlerprüfkopf, mittig zur Abszisse des dargestellten Koordinatensystems angeordnet ist. Die im Bereich der Schalleinkopplung auftretenden Empfangssignale rühren von Einkoppeleffekten nahe der Prüfkörperoberfläche her, stellen selbst jedoch keine Fehler innerhalb des Prüfkörpers dar. Die von der Einkoppelstelle beabstandeten halbkreisförmig angeordneten Reflexionssignale stellen Reflexionsereignisse an der Rückwand des Prüfkörpers dar, die unter nahezu allen Einschallwinkeln auftreten. Durch die durch den Prüfkörper vorgegebene Messsituation hinsichtlich der Lage der künstlich in den Prüfkörper eingebrachten Fehlerstelle, müsste im Falle eines aus einem isotropen Material bestehenden Prüfkörpers, der Reflektorort exakt unterhalb des erkennbaren Schalleintrittspunktes liegen. Im Sektorbild gemäß Fig. 1a erhält man jedoch keine Anzeige unter 0°, sondern vielmehr ein Reflektorereignis R unter Winkeln um die 45°. Dieses Prüfergebnis macht deutlich, dass das anisotrope Material des Prüfkörpers zu einer verfälschten Lageinformation einer tatsächlich im Prüfkörper vorhandenen Fehlstelle führt.
Auch eine Einkopplung der Ultraschallwellen in Richtung der Faserstruktur führt zu keinem anderen zufrieden stellenden Auswerteergebnis.
In Fig. 2a ist hierzu ein Sektorbild eines konventionell betriebenen Gruppenstrahlers mit Abstrahlrichtung längs zur Richtung der Faserstruktur dargestellt, aus dem entnommen werden kann, dass aufgrund von Beugungserscheinungen unter nahezu
allen Einschallwinkeln der künstlich in den Prüfkörper eingebrachte Testreflektor zu sehen ist. Dieser stellt sich im Sektorbild gemäß Fig. 2a als Halbkreis mit kleinerem Radius dar. Es ist ersichtlich, dass der grundsätzliche Nachweis des Vorhandenseins von Fehlstellen zwar möglich ist, jedoch sind eine Lokalisierung von Fehlstellen sowie auch eine Charakterisierung hinsichtlich Größe und Art der Fehlstelle nicht möglich.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur zerstörungsfreien Untersuchung eines wenigstens einen akustisch anisotropen Werkstoffbereich aufweisenden Prüfkörper mittels Ultraschall derart anzugeben, dass eine zuverlässige Fehlerstellendetektion mit genauer Angabe über die räumlich exakte Lage, Art und Größe der innerhalb des akustisch anisotrope Werkstoffbereiches befindlichen Fehlerstelle möglich wird.
Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Den Erfindungsgedanken vorteilhaft weiterbildende Maßnahmen sind Gegenstand der Unteransprüche sowie der weiteren Beschreibung, insbesondere unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen.
Lösungsgemäß zeichnet sich ein Verfahren zur zerstörungsfreien Untersuchung eines wenigstens einen akustisch anisotropen Werkstoffbereich aufweisenden Prüfkörpers mittels Ultraschall durch die Abfolge folgender Verfahrensschritte aus.:
Zunächst gilt es, die den akustisch anisotropen Werkstoffbereich beschreibenden, richtungsspezifischen Schallausbreitungseigenschaften zu ermitteln bzw. durch Rückgriff auf einen diesbezüglich bereits vorliegenden Datenbestand entsprechend bereitzustellen. Da das Schallausbreitungsverhalten innerhalb von anisotropen Werkstoffbereichen aufweisenden Prüfkörpern beispielsweise auf der Basis elastodynamischer Ansätze im Detail verstanden und beschrieben werden kann, ist es möglich, diesbezügliche detaillierte Kenntnisse vorzugsweise im Rahmen experimenteller Untersuchungen über die schallakustischen Eigenschaften nahezu
beliebiger anisotroper Prüfkörper zu gewinnen und diese mittels geeigneter mathematischer Darstellungen, wie beispielsweise im Rahmen so genannter Steifigkeitsmatrizen, für weiterführende Anwendungen verfügbar zu machen. Insbesondere können aus derartigen Steifigkeitsmatrizen richtungsspezifische Schallausbreitungsgeschwindigkeiten innerhalb jeweils zu untersuchender Prüfkörper entnommen werden.
Mit Hilfe dieser, die schallakustischen Eigenschaften eines zu untersuchenden Prüfkörpers beschreibenden Kenntnisse ist es möglich, durch Einkoppeln von Ultraschallwellen in den akustisch anisotropen Werkstoffbereich des Prüfkörpers und entsprechenden Empfang von im Inneren des Prüfkörpers reflektierten Ultraschallwellen mit einer Vielzahl von Ultraschallwandlern die hierdurch detektierten Ultraschallsignale richtungsselektiv unter Zugrundelegung der richtungsspezifischen Schallausbreitungseigenschaften auszuwerten.
Bei der lösungsgemäßen richtungsselektiven Ultraschallsignalauswertung werden die Phasenbeziehungen einzelner unter unterschiedlichen Detektionsrichtungen durch entsprechende Reflexionsereignisse innerhalb des Prüfkörpers herrührende Elementarwellen erfasst. Der Empfang der Ultraschallwellen erfolgt gleichsam dem Aussenden und Einkoppeln von Ultraschallwellen in den Prüfkörper mittels eines Ultraschallwellen-Gruppenstrahlerprüfkopfes, wobei die richtungsselektive Ultraschallwellenauswertung unter Anwendung eines Signalauswerteverfahrens erfolgt, das im Weiteren erläutert wird. Unter Berücksichtigung der schallakustischen Anisotropie der innerhalb des Prüfkörpers vorhandenen Werkstoffbereiche erfolgt letztlich eine Anpassung des auszuwertenden detektierten Ultraschallwellenfeldes derart, so dass eine quasi Standardprüfsituation geschaffen wird, wie sie auch bei der Auswertung von Ultraschallsignalen durchgeführt wird, die aus akustisch isotropen Prüfkörpern entstammen.
Hierzu werden Schalllaufzeiten berechnet, die jeweils eine Ultraschallwelle benötigt, vom Ort ihrer Entstehung, der dem Einkoppelort an der Prüfkörperoberfläche entspricht und an dem ein als Sender dienendes Ultraschallwandlerelement
vorgesehen ist, zu einem innerhalb eines zu rekonstruierenden Prüfkörperbereiches befindlichen Raumpunkt und zurück an den Ort eines Empfängers unter Berücksichtigung der anisotropen Werkstoffeigenschaften bzw. elastischen Materialkonstanten.
Um eine richtungsselektive Auswertung der innerhalb des Prüfkörpers reflektierten Ultraschallwellen mit dem Anspruch einer weitgehend vollständigen Volumenerfassung des Prüfkörpers durchführen zu können, wird ein mit einer Anzahl n Ultraschallwandler aufweisender Ultraschall-Gruppenstrahlerprüfkopf auf eine Oberfläche des Prüfkörpers aufgesetzt, über die sowohl Ultraschallwellen in den Prüfkörper eingekoppelt sowie auch aus dem Prüfkörper zum Nachweis entsprechender reflektierter Ultraschallwellen ausgekoppelt werden.
Die Ultraschallwandler werden vorzugsweise direkt oder mittels geeigneter Koppelmittel an der Oberfläche des Prüfkörpers appliziert. Dabei können die Ultraschallwandler ungeordnet oder geordnet in Form von eindimensionalen Arrays (längs einer Reihe), von zweidimensionalen Arrays (feldförmig) oder von dreidimensionalen Arrays (in Abhängigkeit von der dreidimensionalen Oberfläche des Prüfkörpers) an der Oberfläche des Prüfkörpers angebracht werden.
Die n Ultraschallwandler eignen sich vorteilhafterweise jeweils dazu Ultraschallwellen in den Prüfkörper einzukoppeln als auch Ultraschallwellen zu empfangen, d.h. sie werden sowohl als Ultraschallsender und Ultraschallempfänger eingesetzt bzw. angesteuert. Der Einsatz ausschließlicher Ultraschallsender und Ultraschallempfänger ist ebenfalls denkbar, dies führt jedoch bei gleicher räumlicher Auflösung der Messergebnisse zu einer größeren Anzahl von zu applizierenden Ultraschallwandlern.
Vorzugsweise eignen sich als Ultraschallwandler piezoelektrische Wandler, aber auch der Einsatz von Wandlern, die auf elektromagnetischen, optischen oder mechanischen Wirkprinzipien beruhen, ist möglich.
In vorteilhafterweise sind die n Ultraschallwandler in einem manuell handhabbaren Ultraschallprüfkopf zusammengefasst, der eine einfache Anwendung und Applizierung an die Prüfkörperoberfläche erlaubt. Andere Applikationen der Ultraschallwandler, bspw. an gegenüberliegenden Oberflächen des Prüfkörpers ergeben sich in Abhängigkeit von Form und Größe des Prüfkörpers sowie der jeweils gestellten Untersuchungsaufgabe. Es hat sich gezeigt, dass mit dem lösungsgemäßen Verfahren eine optimale räumliche Auflösung der Messergebnisse erzielt werden kann, wenn die Zahl der vorzusehenden Ultraschallwandler gleich oder größer als 16 gewählt wird.
In einem zweiten Schritt wird aus der Gesamtzahl der n Ultraschallwandler ein erster Ultraschallwandler oder eine erste Gruppe von Ultraschallwandlern ausgewählt, wobei im Falle der Auswahl einer Gruppe von Ultraschallwandlern die Anzahl i der der Gruppe zugehörigen Ultraschallwandler kleiner als die Gesamtzahl n aller Ultraschallwandler sein sollte.
Die Festlegung der Anzahl i der US-Sender bestimmt die pro Aktivierung der US- Sender in den Prüfkörper eingekoppelte elastische Energie, unter der Voraussetzung, dass die i US-Sender zeitgleich aktiviert werden. Je größer die Anzahl aller gleichzeitig aktiven Sender gewählt wird, umso höher ist die in den Prüfkörper eingekoppelte elastische Energie. Ferner erfolgt die Festlegung von i Ultraschallwandlern als Sender in vorteilhafter weise derart, dass i unmittelbar benachbart angeordnete Ultraschallwandler, möglichst als flächig zusammenhängendes Ultraschallsenderarray ausgewählt werden. Unter der Voraussetzung, dass alle Sender zeitgleich senden, bestimmen die Anzahl i der US- Sender und die konkrete Zusammensetzung der Sendergruppe, insbesondere deren Anordnung auf der Prüfkörperoberfläche, zudem die Gesamtabstrahlcharakteristik (Apertur) der Sendergruppe und darüber hinaus die Empfindlichkeit und das Auflösungsvermögen der Messungen.
Im Weiteren wird der erste Ultraschallwandler, d.h. i=1 , oder alle i der ersten Gruppe angehörigen Ultraschallwandler zum Aussenden von Ultraschallwellen aktiviert, die
in den Prüfkörper einkoppeln. An Störstellen innerhalb des Prüfkörpers oder an den jeweiligen Einkoppelbereichen gegenüberliegenden Prüfkörperoberflächen werden die Ultraschallwellen reflektiert und gelangen wieder zurück an den Oberflächenbereich der n auf der Prüfkörperoberfläche applizierten Ultraschallwandler, von denen alle n oder nur ein begrenzter Teil m die Ultraschallwellen empfängt, wobei die Anzahl m stets größer sein sollte als die Anzahl i der am Ultraschallaussenden beteiligten Ultraschallwandler.
Nach jedem einzelnen Messtakt werden die von den m als US-Empfänger dienenden Ultraschallwandler oder maximal von allen n US-Wandlern empfangenen Ultraschallwellen in Ultraschallsignale umgewandelt und abgespeichert, d.h. einer entsprechenden Speichereinheit zugeführt und dort gespeichert.
Alternativ zu einer zeitgleichen Aktivierung von i ausgewählten, einer Gruppe zugehörigen und als US-Sender dienenden Ultraschallwandler, ist es denkbar die US-Sender phasenverschoben, d.h. teilweise oder vollständig zeitversetzt anzuregen. Dadurch kann, wie vorstehend i.V.m. dem Phased Array-Prinzip beschrieben, die Einschallrichtung bzw. die Fokussierung der elastischen Energie der Ultraschallwellen auf einen bestimmten Volumenbereich innerhalb des Prüfkörpers vorgenommen werden. Auch lässt sich damit u. a. die Apertur der i US- Sender optimiert auf bestimmte Einschallrichtungen oder Fokussierungen einstellen.
Grundsätzlich ist es nicht erforderlich die als Sender dienenden Ultraschallwandler senderspezifisch zu modulieren, d.h. alle US-Sender werden identisch aktiviert. Aus Gründen einer möglicherweise vereinfachten oder speziellen Auswertung der Messsignale könnte es vorteilhaft sein, die empfangenen Messsignale den jeweiligen US-Sendern zuzuordnen. Hierfür werden die i einer Gruppe zugehörigen Ultraschallwandler moduliert aktiviert, d.h. jeder einzelne Ultraschallwandler wird mit einer unterscheidbaren Modulation aktiviert, so dass die in den Prüfkörper eingekoppelten Ultraschallwellen Senderspezifisch detektiert werden können.
Nach Durchführung eines oder mehrerer Messtakte erfolgt eine geänderte Auswahl von Ultraschallwellen erzeugenden US-Sender. - Aus Gründen einer besseren Messempfindlichkeit bietet es sich an mehrere Messtakte mit einer gleich bleibenden US-Senderkonstellation durchzuführen, um im Wege statistischer Signalauswertung ein verbessertes Signal-/Rauschverhältnis zu erhalten. - Im Falle jeweils eines einzigen als US-Sender dienen Ultraschallwandlers wird ein anderer Ultraschallwandler zum Aussenden von Ultraschallwellen ausgewählt. Vorzugsweise wird ein Ultraschallwandler ausgewählt, der unmittelbar benachbart zu jenem Ultraschallwandler liegt, der zuletzt aktiviert worden ist. Im Falle mehrerer, zu einer Gruppe zusammengefasster Ultraschallwandler gilt es erneut eine Gruppe von Ultraschallwandlern zu bilden, deren Anzahl i zwar identisch, jedoch deren Zusammensetzung sich von jener zuvor gewählten Zusammensetzung unterscheiden sollte, zumindest in einem Ultraschallwandler.
Auf diese Weise gelingt es den Prüfkörper aus unterschiedlichen Einkoppelbereichen mit Ultraschallwellen zu beschallen. Gleichsam dem ersten Messtakt oder dem ersten Messzyklus, der sich aus mehreren ersten Messtakten zusammensetzt, werden auch mit der neuen US-Senderkonstellation die reflektierten Ultraschallwellen mit allen n Ultraschallwandler oder einem Teil m der Ultraschallwandler empfangen und in Ultraschallsignale umgewandelt, die letztlich ebenfalls abgespeichert werden. Alle n oder m für den Empfang von Ultraschallwellen dienenden Ultraschallwandler verbleiben trotz veränderter US- Senderkonstellationen unverändert, um eine möglichst einfache Messsignalauswertung nachträglich zu ermöglichen, wie dies im Weiteren noch zu entnehmen ist.
Der vorstehend beschriebenen Verfahrensschritte der wiederholten Aktivierung eines weiteren Ultraschallwandlers oder einer Gruppe von Ultraschallwandlern mit einer geänderten Zusammensetzung an Ultraschallwandlern sowie des Empfangs sowie Abspeicherung der gewonnenen Messsignale werden vorgebbar oft wiederholt, um auf diese Weise das Durchschallungs- bzw. Reflexionsvermögen des Prüfkörpers
aus einer Vielzahl, vorzugsweise aus allen möglichen Einschallungspositionen zu ermitteln.
Wird bspw. lediglich ein Ultraschallwandler, d.h. i=1 , als US-Wandler aktiviert, so können maximal n Messtakte oder n Messzyklen, bestehend jeweils aus einer wählbaren Anzahl von Messtakten, durchgeführt werden. Im Falle der Aktivierung einer aus i Ultraschallwandler bestehenden Gruppe können maximal alle i Permutationen aus n vorhandenen Ultraschallwandler durchgeführt werden.
Als Resultat der Durchführung der vorstehenden Verfahrensschritte wird eine Vielzahl der pro Messtakt bzw. Messzyklus abgespeicherten m Messsignale gewonnen, die es im Weiteren unter Maßgabe einer zielführenden Prüfkörperuntersuchung zu analysieren gilt. Ein besonderer Aspekt kommt der Möglichkeit der nachträglichen Auswertung der abgespeicherten Messsignale zu nach Durchführung der eigentlichen Vermessung des Prüfkörpers. Die Auswertung der Ultraschallsignale erfolgt sozusagen offline mit einem Rekonstruktionsalgorithmus, der unter Maßgabe eines virtuell vorgebbaren Einschallwinkels und/oder einer virtuellen Fokussierungen der eingekoppeltem Ultraschallwellen in den Prüfkörper ausgewählt und auf die abgespeicherten Ultraschallsignale angewendet wird. Mit Hilfe derartiger Rekonstruktionsalgorithmen können aus den gespeicherten Ultraschallsignalen synthetisch dreidimensionale Abbilder der Durchschallungs- bzw. Reflexionseigenschaften des Prüfkörpers errechnet werden, ohne, dass es zusätzlicherweitere Ultraschallmessungen bedarf. Dieses Rekonstruktionsprinzip basiert auf der Anwendung der Synthetic Apertur Focussing Technique (SAFT), die darin besteht, dass alle empfangenen Ultraschallsignale möglichst auf eine gemeinsame Zeitachse projiziert werden. Dabei werden alle von einem bestimmten Reflektor bzw. von einer bestimmten Fehlerstelle reflektierten Ultraschallsignale unter Berücksichtigung der anisotropen Schallausbreitungseigenschaften des Prüfkörpermaterials und einer damit verbundenen Phasenanpassung phasengleich addiert werden. Eine nachträgliche Rekonstruktion beliebiger Einschallwinkel ergibt sich durch eine phasenversetzte Addition der Empfangssignale von verschiedenen Ultraschallempfängern. Durch die
off-line Auswertung ist man in der Lage nahezu jeden Einschallwinkel synthetisch zu rekonstruieren und damit einen Ultraschallschwenk (.Sweep1) durch den Datensatz durchzuführen.
Mit Hilfe der vorstehend beschriebenen Ultraschallprüftechnik unter Verwendung eines so genannten getakteten Gruppenstrahlersystems und einer lösungsgemäß vorgeschlagenen Signalauswertung unter Berücksichtigung der materialeigenen, schallakustisch anisotropen Werkstoffeigenschaften des Prüfkörpers können eine Reihe von Vorteilen im Prinzip der so genannten inversen Phasenanpassung erzielt werden:
So ermöglicht die getaktete Gruppenstrahlertechnik mit inverser Phasenanpassung einen Fehlernachweis sowie eine Fehlerbildrekonstruktion für anisotrope Werkstoffe mit einer Qualität und Zuverlässigkeit, die jener Ultraschalltechnikuntersuchung in herkömmlicher Weise an isotropen Werkstoffen entspricht.
Je nach Wahl der Anzahl der sendenden Ultraschallwandler, des Abstandes sowie der Anordnung des Sensorsystems können Optimierungen in Abhängigkeit von den Anisotropie-Parametern des zu untersuchenden Prüfkörpers vorgenommen werden.
Auch eine Ultraschallprüfung in Tauchtechnik ist mit Hilfe des lösungsgemäßen Verfahrens zur Untersuchung heterogener bzw. schallakustisch anisotroper Materialien möglich. Durch die schallakustische Ankopplung über eine Flüssigkeitsschicht zwischen Gruppenstrahlerkopf und zu untersuchender Prüfkörperoberfläche sind dem Verfahren auch Prüfkörpergeometrien mit kompliziert gestalteten Oberflächengeometrien zugänglich. Diese Möglichkeit erleichtert die Herstellung und den Einsatz des Prüfsystems zu geringen Kosten und geringem sensortechnischen Aufwand.
Kurze Beschreibung der Erfindung
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:
Fig. 1a, b Sektorbilddarstellungen durch einen anisotropen Prüfkörper, Fig. 2 a, b Sektorbilddarstellungen durch einen anisotropen Prüfkörper und Fig3 Schematische Darstellung der experimentellen Prüfsituation.
Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit
Wie bereits vorstehend erwähnt, kann aus dem Sektorbild gemäß Fig. 1a keine Lokalisierung einer Fehlstelle innerhalb eines anisotropen Prüfkörpers vorgenommen werden, lediglich das Vorhandensein einer Fehlstelle ist durch das Rückstreusignal FS erkennbar. Wird hingegen das lösungsgemäße Verfahren wie eingangs beschrieben eingesetzt und die aus sämtlichen Volumenbereichen detektierten Ultraschallwellen unter Maßgabe ihrer richtungsspezifischen Schallwellen- Ausbreitungsgeschwindigkeiten ausgewertet, so kann, selbst bei anisotroper Materialbeschaffenheit des zu untersuchenden Prüfkörpers PK, Lage, Form und Größe einer Fehlstelle FS exakt zur Darstellung gebracht werden. In Fig. 1 b zeigt sich unmittelbar senkrecht unter dem Ort der Schallwelleneinkopplung die räumliche Lage der Fehlstelle FS, wie es auch in der in Figur 3 dargestellten Prüfsituation der Fall ist.
Auch im Falle einer Einstellung von Ultraschallwellen in Richtung der Faserstruktur ist es mit Hilfe des lösungsgemäßen Verfahrens möglich, die exakte Lage der Fehlstelle FS gemäß Sektorbilddarstellung in Fig. 2b zu erfassen und zur Darstellung zu bringen, ganz im Gegensatz zur Anwendung bisher bekannter Ultraschallprüftechniken, die zu einer Sektorbilddarstellung gemäß Fig. 2a führen, die in der Beschreibungseinleitung ausführlich erläutert worden ist.
Bezugszeichenliste
FS Fehlerstelle
US Ultraschall-Gruppenstrahlerprüfkopf
PK Prüfkörper
PKO Prüfkörperoberfläche
Claims
1. Verfahren zur zerstörungsfreien Untersuchung eines wenigstens einen akustisch anisotropen Werkstoffbereich aufweisenden Prüfkörpers mittels Ultraschall, gekennzeichnet durch folgende Verfahrensschritte:
a) Ermitteln oder Bereitstellen von den akustisch anisotropen Werkstoffbereich beschreibenden, richtungsspezifischen Schallausbreitungseigenschaften, b) Einkoppeln von Ultraschallwellen in den akustisch anisotropen Werkstoffbereich des Prüfkörpers, c) Empfangen von im Inneren des Prüfkörpers reflektierten Ultraschallwellen mit einer Vielzahl von Ultraschallwandlern, d) Auswerten von mittels der Vielzahl von Ultraschallwandlern generierten Ultraschallsignale derart, dass die Auswertung richtungsselektiv unter Zugrundelegung der richtungsspezifischen Schallausbreitungseigenschaften erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die richtungsspezifischen Schallausbreitungseigenschaften die richtungsspezifischen
Schallausbreitungsgeschwindigkeiten darstellen und aus einer den wenigstens einen akustisch anisotropen Werkstoffbereich beschreibenden Steifigkeitsmatrix berechnet oder im Wege einer experimentellen richtungsabhängigen Schallgeschwindigkeitsmessung ermittelt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Einkoppeln und Empfangen von
Ultraschallwellen in der nachfolgenden Weise erfolgt: a) Vorsehen von n Ultraschallwandlern an einer Oberfläche eines Prüfkörpers, b) Auswählen und Aktivieren eines ersten oder einer ersten Gruppe mit i Ultraschallwandlern aus den n Ultraschallwandlern zum Aussenden von Ultraschallwellen in den Prüfkörper, mit i < n, c) Empfangen der im Inneren des Prüfkörpers reflektierten Ultraschallwellen mit m Ultraschallwandlern, mit i < m <n, und Generieren von m Ultraschallsignalen, d) Abspeichern der m Ultraschallsignale, e) Auswählen und Aktivieren eines anderen oder einer anderen Gruppe mit i Ultraschallwandlern, die sich wenigstens durch einen Ultraschallwandler von der ersten Gruppe unterscheidet zum Aussenden von Ultraschallwellen und Durchführen der Verfahrensschritte c) und d), f) Wiederholtes Ausführen des Verfahrensschrittes e) mit jeweils der Auswahl eines weiteren Ultraschallwandlers oder einer weiteren Gruppe von i Ultraschallwandlern unter der Maßgabe, dass sich der weitere Ultraschallwandler oder die weitere Gruppe mit i Ultraschallwandlern von einem bereits ausgewählten Ultraschallwandler oder von einer bereits ausgewählten Gruppe mit i Ultraschallwandlern unterscheidet, und e) Auswerten der abgespeicherten Ultraschallsignale.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Vorsehen von n Ultraschallwandlern in einer ein-, zwei- oder dreidimensionalen arrayförmigen Anordnung erfolgt.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Aktivieren aller i einer Gruppe zugehörigen
Ultraschallwandler zeitgleich, d.h. ohne Phasenverschiebung erfolgt.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Aktivieren der i einer Gruppe zugehörigen Ultraschallwandler moduliert durchgeführt wird, d.h. jeder einzelne Ultraschallwandler wird mit einer unterscheidbaren Modulation aktiviert, so dass die in den Prüfkörper eingekoppelten Ultraschallwellen Senderspezifisch detektiert werden.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass das Auswählen der i einer Gruppe zugehörigen Ultraschallwandler derart durchgeführt wird, dass unmittelbar benachbarte Ultraschallwandler gemäß eines Linear- oder Flächenarrays ausgewählt werden.
8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass n >16 gewählt wird.
9. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass Ultraschallwandler eingesetzt werden, die auf einem elektromagnetischen, optischen und/oder mechanischen Wirkprinzip beruhen, insbesondere auf dem piezoelektrischen Wandlerprinzip beruhen.
10. Verfahren nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass das Auswerten der Ultraschallsignale mit einem Rekonstruktionsalgorithmus nach Durchführung der Durchschallung des Prüfkörpers mit Ultraschall, durchgeführt wird, und dass der Rekonstruktionsalgorithmus unter Massgabe eines virtuell vorgebbaren Einschallwinkels und/oder Schnittes und/oder 3D-Bereiches mit einer virtuellen Fokussierung der eingekoppelten Ultraschallwellen in den Prüfkörper ausgewählt und auf die abgespeicherten Ultraschallsignale angewendet wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Auswertung der Ultraschallsignale im Wege einer Phasenanpassung der durch die m Ultraschallwandler empfangenen Ultraschallwellen derart durchgeführt wird, dass Ultraschall-Laufzeiten von jedem als Sender dienenden Ultraschallwandler zu jedem Raumpunkt eines zu rekonstruierenden Prüfkörperbereiches und zurück zu jedem als Empfänger dienenden Ultraschallwandlers unter Berücksichtigung der anisotropen Werkstoffeigenschaften oder elastischen Materialkonstanten rechnerisch ermittelt werden.
12. Verfahren nach einem der Ansprüche 3 bis 11 , dadurch gekennzeichnet, dass das Generieren und Abspeichern jeweils der m Ultraschallsignale im Wege einer Analog-Digital-Wandlung erfolgt, bei der die analogen Ultraschallsignale der m Ultraschallwandler in digitale Signale umgewandelt werden und in serieller Form abgespeichert werden.
13. Verfahren nach einem der Ansprüche 3 bis 12, dadurch gekennzeichnet, dass das Empfangen der im Inneren des Prüfkörpers reflektierten Ultraschallwellen mit sämtlichen an der Oberfläche des Prüfkörpers vorgesehenen Ultraschallwandler durchgeführt wird, d.h. m = n.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Prüfkörper vollständig aus einem akustisch anisotropen Werkstoff besteht.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT06841108T ATE528645T1 (de) | 2006-01-27 | 2006-12-21 | Verfahren zur zerstörungsfreien untersuchung eines wenigstens einen akustisch anisotropen werkstoffbereich aufweisenden prüfkörpers |
JP2008551667A JP2009524803A (ja) | 2006-01-27 | 2006-12-21 | 少なくとも1つの音響異方性材料領域を有する被検体の非破壊検査方法 |
US12/162,225 US20090217764A1 (en) | 2006-01-27 | 2006-12-21 | Method for nondestructive testing of a testing body having at least one acoustically anisotropic material area |
ES06841108T ES2375378T3 (es) | 2006-01-27 | 2006-12-21 | Procedimiento de examen no destructivo de una probeta que presenta al menos una zona material acústicamente anisótropa. |
CA002637249A CA2637249A1 (en) | 2006-01-27 | 2006-12-21 | Method for the non-destructive examination of a test body having at least one acoustically anisotropic material area |
EP06841108A EP1979739B1 (de) | 2006-01-27 | 2006-12-21 | Verfahren zur zerstörungsfreien untersuchung eines wenigstens einen akustisch anisotropen werkstoffbereich aufweisenden prüfkörpers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006003978A DE102006003978A1 (de) | 2006-01-27 | 2006-01-27 | Verfahren zur zerstörungsfreien Untersuchung eines wenigstens einen akustisch anisotropen Werkstoffbereich aufweisenden Prüfkörpers |
DE102006003978.5 | 2006-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007085296A1 true WO2007085296A1 (de) | 2007-08-02 |
Family
ID=37769357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/012419 WO2007085296A1 (de) | 2006-01-27 | 2006-12-21 | Verfahren zur zerstörungsfreien untersuchung eines wenigstens einen akustisch anisotropen werkstoffbereich aufweisenden prüfkörpers |
Country Status (9)
Country | Link |
---|---|
US (1) | US20090217764A1 (de) |
EP (1) | EP1979739B1 (de) |
JP (1) | JP2009524803A (de) |
CN (1) | CN101421610A (de) |
AT (1) | ATE528645T1 (de) |
CA (1) | CA2637249A1 (de) |
DE (1) | DE102006003978A1 (de) |
ES (1) | ES2375378T3 (de) |
WO (1) | WO2007085296A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007057696A1 (de) * | 2007-11-30 | 2009-06-10 | BAM Bundesanstalt für Materialforschung und -prüfung | Vorrichtung und Verfahren zur Detektion von Verbundstörungen |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008051639A2 (en) | 2006-10-25 | 2008-05-02 | Maui Imaging, Inc. | Method and apparatus to produce ultrasonic images using multiple apertures |
US10226234B2 (en) | 2011-12-01 | 2019-03-12 | Maui Imaging, Inc. | Motion detection using ping-based and multiple aperture doppler ultrasound |
US9788813B2 (en) | 2010-10-13 | 2017-10-17 | Maui Imaging, Inc. | Multiple aperture probe internal apparatus and cable assemblies |
US9282945B2 (en) | 2009-04-14 | 2016-03-15 | Maui Imaging, Inc. | Calibration of ultrasound probes |
DE102007049937B4 (de) * | 2007-10-18 | 2011-12-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Durchführung einer Probenuntersuchung mittels eines Ultraschallmikroskops |
DE102008023862A1 (de) * | 2008-05-16 | 2009-11-26 | BAM Bundesanstalt für Materialforschung und -prüfung | Vorrichtung und Verfahren zur Erzeugung eines Ultraschallbildes |
DE102008002860A1 (de) * | 2008-05-28 | 2009-12-03 | Ge Inspection Technologies Gmbh | Verfahren zur zerstörungsfreien Prüfung von Gegenständen mittels Ultraschall |
US8602993B2 (en) | 2008-08-08 | 2013-12-10 | Maui Imaging, Inc. | Imaging with multiple aperture medical ultrasound and synchronization of add-on systems |
WO2010120907A2 (en) | 2009-04-14 | 2010-10-21 | Maui Imaging, Inc. | Multiple aperture ultrasound array alignment fixture |
DE202009014771U1 (de) * | 2009-11-02 | 2011-03-24 | Seuthe, Ulrich | Kopplungselement zur akustischen Ankopplung eines Schallwandlers an einen Körper sowie Schallwandler |
JP6274724B2 (ja) | 2010-02-18 | 2018-02-07 | マウイ イマギング,インコーポレーテッド | 多開口超音波撮像を用いた点音源送信及び音速補正 |
US9668714B2 (en) | 2010-04-14 | 2017-06-06 | Maui Imaging, Inc. | Systems and methods for improving ultrasound image quality by applying weighting factors |
JP6092109B2 (ja) | 2010-10-13 | 2017-03-08 | マウイ イマギング,インコーポレーテッド | 凹面超音波トランスデューサ及び3dアレイ |
US9265484B2 (en) | 2011-12-29 | 2016-02-23 | Maui Imaging, Inc. | M-mode ultrasound imaging of arbitrary paths |
CN104135937B (zh) | 2012-02-21 | 2017-03-29 | 毛伊图像公司 | 使用多孔超声确定材料刚度 |
CN104620128B (zh) | 2012-08-10 | 2017-06-23 | 毛伊图像公司 | 多孔径超声探头的校准 |
CN104582582B (zh) | 2012-08-21 | 2017-12-15 | 毛伊图像公司 | 超声成像系统存储器架构 |
US9510806B2 (en) | 2013-03-13 | 2016-12-06 | Maui Imaging, Inc. | Alignment of ultrasound transducer arrays and multiple aperture probe assembly |
CN103344699B (zh) * | 2013-06-07 | 2015-11-25 | 核工业工程研究设计有限公司 | 建立铸造奥氏体不锈钢等轴晶声学特性计算模型的方法 |
DE102013211064A1 (de) * | 2013-06-13 | 2014-12-18 | Siemens Aktiengesellschaft | SAFT-Analyse oberflächennaher Defekte |
US9883848B2 (en) | 2013-09-13 | 2018-02-06 | Maui Imaging, Inc. | Ultrasound imaging using apparent point-source transmit transducer |
CN106794007B (zh) | 2014-08-18 | 2021-03-09 | 毛伊图像公司 | 基于网络的超声成像系统 |
CN113729764A (zh) | 2016-01-27 | 2021-12-03 | 毛伊图像公司 | 具有稀疏阵列探测器的超声成像 |
FR3062212B1 (fr) * | 2017-01-25 | 2021-10-29 | Safran | Procede et dispositif de controle de pieces par ultrasons multielements |
CN111194443A (zh) * | 2017-09-05 | 2020-05-22 | 肖氏工业集团公司 | 可听声学性能工具 |
CN110418609B (zh) | 2017-10-19 | 2021-04-20 | 深圳迈瑞生物医疗电子股份有限公司 | 一种超声弹性测量装置及弹性对比测量方法 |
JP7120896B2 (ja) * | 2018-12-03 | 2022-08-17 | 三菱重工業株式会社 | 開口合成処理装置、開口合成処理方法、及びそのプログラム |
JP7278525B2 (ja) * | 2019-03-20 | 2023-05-22 | 国立大学法人愛媛大学 | 内部構造評価のためのプログラム、方法および装置 |
CN112083068B (zh) * | 2020-09-10 | 2021-07-30 | 大连理工大学 | 一种非均匀介质组织均匀性超声无损表征方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106327A (en) * | 1977-11-22 | 1978-08-15 | The United States Of America As Represented By The United States Department Of Energy | Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis |
US4328707A (en) * | 1978-06-20 | 1982-05-11 | Agence Nationale De Valorisation De La Recherche | Ultrasonic image reconstruction methods and apparatus |
DE3346534A1 (de) * | 1983-12-22 | 1985-08-14 | Siemens AG, 1000 Berlin und 8000 München | Ultraschall-bilddarstellungseinrichtung und verfahren zum betrieb eines linearen arrays aus ultraschall-wandlerelementen |
GB2279523A (en) * | 1993-03-29 | 1995-01-04 | Krautkraemer Gmbh | Method for the storage and later reconstruction of ultrasonic signals |
US5465722A (en) * | 1991-12-11 | 1995-11-14 | Fort; J. Robert | Synthetic aperture ultrasound imaging system |
EP1550863A2 (de) * | 2003-12-29 | 2005-07-06 | General Electric Company | Akustisches Verfahren zur Detektion von Defekten in anisotropen Materialien |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5115673A (en) * | 1990-07-20 | 1992-05-26 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Non-destructive method for determining elastic moduli of material |
JP2004283490A (ja) * | 2003-03-25 | 2004-10-14 | Fuji Photo Film Co Ltd | 超音波送受信装置 |
DE102004059856B4 (de) * | 2004-12-11 | 2006-09-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur zerstörungsfreien Untersuchung eines Prüfkörpers mittels Ultraschall |
-
2006
- 2006-01-27 DE DE102006003978A patent/DE102006003978A1/de not_active Ceased
- 2006-12-21 US US12/162,225 patent/US20090217764A1/en not_active Abandoned
- 2006-12-21 CN CNA2006800538906A patent/CN101421610A/zh active Pending
- 2006-12-21 WO PCT/EP2006/012419 patent/WO2007085296A1/de active Application Filing
- 2006-12-21 EP EP06841108A patent/EP1979739B1/de not_active Not-in-force
- 2006-12-21 JP JP2008551667A patent/JP2009524803A/ja active Pending
- 2006-12-21 ES ES06841108T patent/ES2375378T3/es active Active
- 2006-12-21 CA CA002637249A patent/CA2637249A1/en not_active Abandoned
- 2006-12-21 AT AT06841108T patent/ATE528645T1/de active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106327A (en) * | 1977-11-22 | 1978-08-15 | The United States Of America As Represented By The United States Department Of Energy | Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis |
US4328707A (en) * | 1978-06-20 | 1982-05-11 | Agence Nationale De Valorisation De La Recherche | Ultrasonic image reconstruction methods and apparatus |
DE3346534A1 (de) * | 1983-12-22 | 1985-08-14 | Siemens AG, 1000 Berlin und 8000 München | Ultraschall-bilddarstellungseinrichtung und verfahren zum betrieb eines linearen arrays aus ultraschall-wandlerelementen |
US5465722A (en) * | 1991-12-11 | 1995-11-14 | Fort; J. Robert | Synthetic aperture ultrasound imaging system |
GB2279523A (en) * | 1993-03-29 | 1995-01-04 | Krautkraemer Gmbh | Method for the storage and later reconstruction of ultrasonic signals |
EP1550863A2 (de) * | 2003-12-29 | 2005-07-06 | General Electric Company | Akustisches Verfahren zur Detektion von Defekten in anisotropen Materialien |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007057696A1 (de) * | 2007-11-30 | 2009-06-10 | BAM Bundesanstalt für Materialforschung und -prüfung | Vorrichtung und Verfahren zur Detektion von Verbundstörungen |
Also Published As
Publication number | Publication date |
---|---|
US20090217764A1 (en) | 2009-09-03 |
CA2637249A1 (en) | 2007-08-02 |
DE102006003978A1 (de) | 2007-08-09 |
ATE528645T1 (de) | 2011-10-15 |
CN101421610A (zh) | 2009-04-29 |
JP2009524803A (ja) | 2009-07-02 |
ES2375378T3 (es) | 2012-02-29 |
EP1979739B1 (de) | 2011-10-12 |
EP1979739A1 (de) | 2008-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1979739B1 (de) | Verfahren zur zerstörungsfreien untersuchung eines wenigstens einen akustisch anisotropen werkstoffbereich aufweisenden prüfkörpers | |
EP1820012B1 (de) | Verfahren zur zerstörungsfreien ultraschalluntersuchung eines prüfkörpers durch speichern und offline-auswerten der mit einem array-sensor erfassten echosignale | |
EP1943508B1 (de) | Verfahren zur zerstörungsfreien untersuchung eines prüfkörpers mittels ultraschall | |
EP2062040B1 (de) | Verfahren und vorrichtung zur zerstörungsfreien prüfkörperuntersuchung mittels ultraschall längs einer prüfkörperoberfläche | |
DE102008002450B4 (de) | Verfahren für die zerstörungsfreie Prüfung eines Prüflings mittels Ultraschall sowie Vorrichtung hierzu | |
EP2032978B1 (de) | Ultraschall-prüfgerät mit array-prüfköpfen | |
EP1943509B1 (de) | Verfahren und vorrichtung zur bildgebenden ultraschallprüfung an eine dreidimensionalen werkstück | |
DE19633813C2 (de) | Verfahren zur zerstörungsfreien dreidimensionalen Erfassung von Strukturen in Bauwerken | |
DE102018208824B4 (de) | Verfahren zur zerstörungsfreien Untersuchung eines Prüfkörpers mittels Ultraschall | |
DE102019106427B4 (de) | Wandler und Wandleranordnung für Ultraschall-Prüfkopfsysteme, Ultraschall-Prüfkopfsystem und Prüfverfahren | |
EP2120045A1 (de) | Vorrichtung und Verfahren zur Erzeugung eines Ultraschallbildes mittels eines Gruppenstrahlers | |
DE69801181T2 (de) | Verfahren und Vorrichtung zur Verarbeitung von aus einer Volumenstruktur übertragenen oder gebeugten Signalen reflektierter Wellen zur Erkundung oder Analyse der Struktur | |
DE102008002860A1 (de) | Verfahren zur zerstörungsfreien Prüfung von Gegenständen mittels Ultraschall | |
DE102011108730B4 (de) | Verfahren und Vorrichtung zur Ultraschallprüfung mit einem Matrix Phased Array Prüfkopf | |
DE60029612T2 (de) | Methode und gerät zum fokussieren von sich ausbreitenden wellen eines phasengesteuerten array in sphärisch begrenzten materialien | |
DE112009000944T5 (de) | System und Verfahren zum Prüfen von Schweißnähten | |
DE102008027384A1 (de) | Verbesserte zerstörungsfreie Ultraschalluntersuchung mit Kopplungskontrolle | |
EP3794342B1 (de) | Verfahren zur justierung und kalibrierung von prüfeinrichtungen zur ultraschallprüfung von werkstücken | |
DE102012109257B4 (de) | Verfahren und Vorrichtung zur Erzeugung eines Ultraschallbildes | |
BE1027960B1 (de) | Zerstörungsfreie Werkstoffprüfung | |
WO2008040407A1 (de) | Ultraschallprüfanordnung | |
DE102009022770A1 (de) | Verfahren und Vorrichtung zur Ultraschalldetektion von Diskontinuitäten in einem Materialbereich |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2637249 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008551667 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006841108 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680053890.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12162225 Country of ref document: US |