WO2007081239A1 - Procede de fabrication d'un composant d'electrolyte a base d'hexafluorophosphate de lithium - Google Patents

Procede de fabrication d'un composant d'electrolyte a base d'hexafluorophosphate de lithium Download PDF

Info

Publication number
WO2007081239A1
WO2007081239A1 PCT/RU2006/000641 RU2006000641W WO2007081239A1 WO 2007081239 A1 WO2007081239 A1 WO 2007081239A1 RU 2006000641 W RU2006000641 W RU 2006000641W WO 2007081239 A1 WO2007081239 A1 WO 2007081239A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene carbonate
solution
hexafluorophosphate
lithium
mass
Prior art date
Application number
PCT/RU2006/000641
Other languages
English (en)
Russian (ru)
Inventor
Boris Ananievich Knyazev
Nikolay Georgievich Vasiliev
Evgeny Aleksandrovich Smirnov
Zoya Vasilievna Kosheleva
Antonina Nikolaevna Bolshakova
Original Assignee
Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie 'gosudarstvenny Institut Tekhnologii Organicheskogo Sinteza S Opytnym Zavodom (Fgup 'gitos')
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie 'gosudarstvenny Institut Tekhnologii Organicheskogo Sinteza S Opytnym Zavodom (Fgup 'gitos') filed Critical Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie 'gosudarstvenny Institut Tekhnologii Organicheskogo Sinteza S Opytnym Zavodom (Fgup 'gitos')
Publication of WO2007081239A1 publication Critical patent/WO2007081239A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a technology for producing an electrolyte component for lithium current sources (HIT).
  • HIT lithium current sources
  • electrolytes for lithium chitosan are multicomponent systems including, as the main constituents, a solvent (more often a mixture of solvents) and dissolved salt, as well as functional additives [Demakhin A.G., Ovsyannikov BM, Ponomarenko SM. / Electrolyte systems of lithium chit , publishing house of Saratov University, 1993; Kedrinsky I.A., Yakovlev V.G. / Li-ion batteries. IPK “Platina”, Krasnoyarsk, 2002].
  • the mixed solvent as a rule, contains propylene carbonate (or another carbonic ester), as a compound very electrochemical stable and inert with respect to lithium metal.
  • lithium perchlorate LiClCH lithium hexafluorophosphate LiPFb and lithium hexafluoroarsenate Li ⁇ sFb are of the greatest practical importance.
  • mixtures with lithium perchlorate are potentially explosive, and when using lithium hexafluoroarsenate, certain environmental problems are noted due to the presence of arsenic in the composition of this salt.
  • lithium hexafluorophosphate is widely used in electrolytes for lithium ChIT. It can be obtained, for example, by the interaction of phosphorus pentafluoride with lithium fluoride in liquid hydrogen fluoride [Vyushkov B.B., Grachev C.E., Korobtsev VP, Matyukha SV., Smagin AA // Patent of the Russian Federation N ° 2075435, 1997], however, such processes are difficult for practical use.
  • Pyridinium hexafluorophosphate is a good initial product for the synthesis of lithium hexafluorophosphate, which can be relatively easily and purely synthesized according to the method described in our application for the invention [Knyazev B.A., Vasiliev H.G., Smirnov EA, Kosheleva Z.V. .// Application for a patent of the Russian Federation M> 2005144299/04 (016409) dated 05/11/2005].
  • Several variants of metabolic reactions for producing lithium hexafluorophosphate from the corresponding pyridinium or other amine salts have been published.
  • the amine hexafluorophosphoric salt is reacted with an inorganic lithium salt in organic solvents.
  • the reaction proceeds for a long time, for about 24 hours with a continuous supply of ammonia into the reaction mass.
  • the side salt is filtered off.
  • the lithium hexafluorophosphate solution obtained in this way always contains a significant admixture of side salt, which is unacceptable for use in the electrolyte.
  • the reaction proceeds at room temperature for several minutes. Then, during the reaction in alcohol, water is removed with benzene, then the alcohol is completely distilled off, and the solid solvate LiPFb-C5ffiN obtained in the residue is decomposed under vacuum to form free lithium hexafluorophosphate.
  • the synthesized solution of the solvate in tetrahydrofuran is treated with a stoichiometric amount of concentrated sulfuric acid, the precipitate of pyridinium sulfate is separated by filtration, the solvent is completely distilled off under vacuum at a temperature of not more than 50 ° C, and in the residue lithium hexafluorophosphate is obtained in the individual state.
  • the solvents used are not used for the preparation of electrolytes, and their low boiling points do not allow the production of lithium hexafluorophosphate directly during synthesis, leading ultimately to a two-stage process: first, synthesis and isolation of the pyridine solvate Li ⁇ F ⁇ , and then its decomposition in one way or another .
  • the aim of the present invention is to obtain directly the electrolyte component in the form of a solution of LiPFb salt in a suitable solvent.
  • This goal is achieved by the fact that the interaction of pyridinium hexafluorophosphate with lithium hydroxide is carried out in propylene carbonate, followed by removal of most of the water by azeotropic drying using benzene and then complete removal of all volatile components as a result of their distillation with part of the propylene carbonate under vacuum.
  • the residual pressure in the system is 100-150 mm Hg
  • the boiling point of the distillate is ⁇ 30 0 C.
  • the amount of benzene is increased compared to theoretical; per 1 g of water removed is taken 37-38 g of benzene.
  • a decrease in the amount of benzene leads to an increase in the proportion of water in the residue; an increase is undesirable due to an increase in the volume of distillate.
  • the pyridine solvate of lithium hexafluorophosphate is more thermally stable than an individual salt [Willmapp R., Najus R., Coudert R., Lemordant OJ / US Patent JNb 5993767, 1999].
  • hexafluorophosphate lithium is not released, but re-solvated by propylene carbonate, which helps to some extent prevent its thermal decomposition. It was experimentally shown that in the system under consideration, a noticeable decomposition of lithium hexafluorophosphate into LiF and PF 5 is observed at temperatures above 65-70 0 C.
  • This value is the upper temperature limit of the distillation process.
  • the corresponding residual pressure in the system is ⁇ 1 mmHg to ensure boiling of propylene carbonate.
  • the lower temperature limit is determined by the capabilities of the vacuum equipment; in order to avoid unnecessarily complicating the process, it is advisable to distill off the propylene carbonate at a moderate pressure of 0.2-0.4 mm Hg.
  • the distillation temperature is 40-50 0 C.
  • the distillation residue (target product) must meet certain requirements for the concentration of lithium hexafluorophosphate in it. This is because the dilution of the indicated solution with another solvent (for example, 1,2-dimethoxyethane) in an approximate ratio of 1: 1 by volume [Demakhin A.G., Ovsyannikov BM, Ponomarenko SM. / Electrolyte systems of lithium HIT, Saratovsky Publishing House University, 1993; Kedrinsky I.A., Yakovlev V.G. / Li-ion batteries. IPK “Platina”, Krasnoyarsk, 2002] should ensure the production of a finished electrolyte with a salt concentration of 1-1.5 mol / liter.
  • the solution of lithium hexafluorophosphate in propylene carbonate should also be homogeneous in a practically important temperature range, from minus 30 0 C to plus 30 0 C.
  • the temperature dependence of the solubility of lithium hexafluorophosphate in propylene carbonate is complex - with a solubility maximum of 31.48% of the mass at -18.5 ° ⁇ and its decrease with increasing temperature [Plahotnik BM, Goncharova I.V.// Ukrainian Chemical Journal. 2000, v. 66, Ns 3, p. 31-33.].
  • the conversion of the starting materials and the selectivity of the proposed process for the resulting product are close to 100%.
  • the method of producing an electrolyte component by this method is simple to implement, does not require the use of hazardous reagents such as liquid hydrogen fluoride and extreme process parameters.
  • Example 1 Preparation of a solution of a solvate of lithium hexafluorophosphate with pyridine.
  • the reaction is carried out at initial room temperature for 30-40 minutes; the disappearance of the solid phases of the starting components and an increase in the temperature of the reaction mass by 4–6 ° C are observed. If there is a slight turbidity after the completion of the reaction (which indicates a violation of the stoichiometric ratio of the reactants during loading), the liquid is filtered. Get 72.738 g of a solution of a solvate of lithium hexafluorophosphate with pyridine containing 15.88% of the mass of the solvate and ⁇ 1.27% of the mass of water. The solvate yield is close to theoretical value.
  • Example 2 Azeotropic drying of a solution of lithium hexafluorophosphate solvate with pyridine.
  • the solvate solution obtained as described in example 1 is not subject to long-term storage due to the presence of water and must be immediately exposed azeotropic drying operations.
  • the stage is carried out in a standard vacuum distillation unit with the supply of nitrogen or argon through a capillary. 72.738 g of the solvate solution obtained as described in Example 1 is poured into the cube of the distillation unit, 40 ml (34.92 g) of benzene are added and light impurities are distilled off at a residual pressure of 100-150 mm Hg, the temperature of the heating coolant is about 50 0 C and boiling point distillation 30-35 0 C. The operation of distillation stops after the termination of the flow of condensate under the above conditions.
  • Example 3 Obtaining a solution of lithium hexafluorophosphate in propylene carbonate.
  • 36.1 g of the target product, a solution of hexafluorophosphate, are obtained in a cube lithium in propylene carbonate with a salt content of 21.0% of the mass and a water content (of an undesirable impurity in the electrolyte composition) at the level of 0.008–0.009% of the mass (recommended norm [Demakhin A.G., Ovsyannikov BM, Ponomarenko SM. / Electrolyte systems of lithium ChIT, publishing house of Saratov University, 1993; Kedrinsky I.A., Yakovlev V.G. / Li-ion batteries. na ”, Krasnoyarsk, 2002] - as a rule, not more than 0.01% of the mass).
  • the residue in the cube of the distillation unit is cooled to room temperature, the vacuum is quenched with argon and the product is drained (clear, colorless liquid) into an argon-blown container made of Teflon or stainless steel 12X18Hl OT.
  • the product yield is close to theoretical value.
  • Example 4 The definition of the upper limit of the temperature stability of the reaction mass.
  • reaction masses obtained after azeotropic drying were kept for 2 hours at a residual pressure in the system of the order of 2 mm Hg. Art. (to prevent the distillation of propylene carbonate) and various temperatures.
  • a temperature in the mixture of 65-70 0 C and the above conditions at the end of the process, a slight turbidity of the solution appeared without changing color (the liquid phase remained colorless).
  • the specified suspension was filtered off, dried and accumulated for analysis; it is lithium fluoride. In this case, an F " ion was detected in the solution only at the sensitivity limit of the procedure, ⁇ 10 " 3 - 10 ⁇ % of the mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un composant d'électrolyte destiné aux sources de courant à base de lithium, le composé se présentant comme une solution d'hexafluorophosphate de lithium dans du carbonate de propylène avec une concentration de sel entre 20 et 22 % en poids. On obtient d'abord une solution de solvate LiPF6 . C5H5N dans le solvant susmentionné par la réaction de l'hexafluorophosphate de pyridinium avec l'hydroxyde de lithium dans du carbonate de propylène (pour 1 g d'hexafluorophosphate de pyridinium, on prend environ 4,5 ml de carbonate de propylène). Cette solution est ensuite exposée à une déshydratation azéotropique avec du benzol, à une pression résiduelle de 100÷150 mm de mercure et une température de distillation de 30÷35 °C; pour 1 g d'eau évacuée, on prend 37-38 g de benzol. Au terme de cette opération, on obtient une solution de solvate LiPF6 . C5H5N avec une concentration d'eau n'excédant pas 0,2 % en poids puis on distille le carbonate de propylène en excès avec des produits légers (benzol, pyridine, résidus d'eau) à une température inférieure ou égale à 65÷70 °C et une pression résiduelle inférieure ou égale à 1 mm de mercure. On obtient ainsi un produit final avec une concentration de sel de 20÷22 % en poids (solution saturée à 20÷25 °C) et une concentration résiduelle d'eau inférieure ou égale à 0,008÷0,009 % en poids. La dissolution de cette solution par un autre solvant adéquat permet d'obtenir un électrolyte présentant une concentration de LiPF6 de 1÷1,5 mole / litre.
PCT/RU2006/000641 2006-01-10 2006-11-29 Procede de fabrication d'un composant d'electrolyte a base d'hexafluorophosphate de lithium WO2007081239A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006101015/15A RU2308415C1 (ru) 2006-01-10 2006-01-10 Способ получения компонента электролита на основе гексафторфосфата лития
RU2006101015 2006-01-10

Publications (1)

Publication Number Publication Date
WO2007081239A1 true WO2007081239A1 (fr) 2007-07-19

Family

ID=38256561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000641 WO2007081239A1 (fr) 2006-01-10 2006-11-29 Procede de fabrication d'un composant d'electrolyte a base d'hexafluorophosphate de lithium

Country Status (2)

Country Link
RU (1) RU2308415C1 (fr)
WO (1) WO2007081239A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442698B2 (en) * 2014-03-31 2019-10-15 The South African Nuclear Energy Corporation Limited Production of a hexafluorophosphate salt and of phosphorous pentafluoride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2075435C1 (ru) * 1994-12-21 1997-03-20 Сибирский химический комбинат Способ получения гексафторфосфата лития
JPH09165210A (ja) * 1995-12-14 1997-06-24 Central Glass Co Ltd ヘキサフルオロリン酸リチウムの製造方法
US5993767A (en) * 1996-06-19 1999-11-30 Centre National D'etudes Spatiales Solvate of lithium hexafluorophosphate and pyridine, its preparation and preparation process for lithium hexafluorophosphate using said solvate
RU2184079C1 (ru) * 2001-01-15 2002-06-27 Федеральное государственное унитарное предприятие "Сибирский химический комбинат" Способ получения гексафторфосфата лития и реактор для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2075435C1 (ru) * 1994-12-21 1997-03-20 Сибирский химический комбинат Способ получения гексафторфосфата лития
JPH09165210A (ja) * 1995-12-14 1997-06-24 Central Glass Co Ltd ヘキサフルオロリン酸リチウムの製造方法
US5993767A (en) * 1996-06-19 1999-11-30 Centre National D'etudes Spatiales Solvate of lithium hexafluorophosphate and pyridine, its preparation and preparation process for lithium hexafluorophosphate using said solvate
RU2184079C1 (ru) * 2001-01-15 2002-06-27 Федеральное государственное унитарное предприятие "Сибирский химический комбинат" Способ получения гексафторфосфата лития и реактор для его осуществления

Also Published As

Publication number Publication date
RU2308415C1 (ru) 2007-10-20
RU2006101015A (ru) 2007-08-10

Similar Documents

Publication Publication Date Title
CN108368132B (zh) 双(氟磺酰基)酰亚胺锂的新型制造方法
JP6226643B2 (ja) ジフルオロリン酸リチウムの製造方法
EP2383276B1 (fr) Procédé de production d'une solution de difluorobis(oxalato)phosphate de lithium
EP0735983B1 (fr) Preparation de solutions d'hexafluorophosphate de lithium
CN101861323B (zh) 结晶的完全溶解的双(草酸)硼酸锂(LiBOB)
CN107720717B (zh) 一种二氟磷酸锂的制备方法
EP2857408B1 (fr) Procédé de fabrication d'une solution de tétrafluoro(oxalate)phosphate
US20140205916A1 (en) Manufacture of mixtures comprising lipo2f2 and lipf6
CN101519398B (zh) 4-氟-1,3-二氧戊环-2-酮的制造方法
US20130108933A1 (en) Manufacture of LiPO2F2 and crystalline LiPO2F2
KR100971065B1 (ko) 리튬이온전지용 전해액의 제조방법 및 이를 사용한리튬이온전지
KR101955096B1 (ko) 매우 간단하고 효율적인 리튬 비스(플루오로술포닐)이미드의 새로운 제조방법
JP2015535789A (ja) リチウムビス(フルオロスルホニル)イミドの製造方法
WO2021025107A1 (fr) Procédé de production de difluorophosphate de lithium, procédé de production d'ester de difluorophosphate, difluorophosphate de lithium, procédé de production d'une solution d'électrolyte non aqueux, et procédé de production d'une batterie secondaire non aqueuse
KR20200049164A (ko) 매우 효율적인 리튬 비스(플루오로술포닐)이미드의 새로운 제조방법
JP6199117B2 (ja) ジフルオロリン酸塩の製造方法
EP2899157A1 (fr) Procédé de production de difluorophosphate
CA2433095C (fr) Methode de preparation de solutions d'iodure de lithium
WO2007081239A1 (fr) Procede de fabrication d'un composant d'electrolyte a base d'hexafluorophosphate de lithium
EP2881366A1 (fr) Procédé de fabrication de NaPO2F2
JP5151121B2 (ja) リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
CN115893335A (zh) 一种双氟磺酰亚胺钠的制备方法
US20230187700A1 (en) 1,4-dioxane slovate of lithium difluorobis(oxalato)phosphate, method for preparing the same, and electrolyte composition comprising the same
JP3555720B2 (ja) ヘキサフルオロリン酸リチウムの付加化合物及びその製造方法並びにそれを用いた電解液
WO2000006538A1 (fr) Procedes de purification de sels de lithium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843989

Country of ref document: EP

Kind code of ref document: A1