WO2007080776A1 - 徐放性製剤およびその製造方法 - Google Patents

徐放性製剤およびその製造方法 Download PDF

Info

Publication number
WO2007080776A1
WO2007080776A1 PCT/JP2006/325824 JP2006325824W WO2007080776A1 WO 2007080776 A1 WO2007080776 A1 WO 2007080776A1 JP 2006325824 W JP2006325824 W JP 2006325824W WO 2007080776 A1 WO2007080776 A1 WO 2007080776A1
Authority
WO
WIPO (PCT)
Prior art keywords
sustained
independent
release preparation
release
forming polymer
Prior art date
Application number
PCT/JP2006/325824
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Takeda
Masayuki Watanabe
Ayumu Nishida
Original Assignee
Kissei Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kissei Pharmaceutical Co., Ltd. filed Critical Kissei Pharmaceutical Co., Ltd.
Priority to EP06843208A priority Critical patent/EP1974725A4/en
Priority to US12/159,281 priority patent/US20100172988A1/en
Priority to JP2007553867A priority patent/JP5124286B2/ja
Priority to CA002632962A priority patent/CA2632962A1/en
Publication of WO2007080776A1 publication Critical patent/WO2007080776A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/222Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers

Definitions

  • the present invention is useful as a therapeutic agent for pollakiuria and urinary incontinence.
  • the present invention relates to a sustained-release preparation of 1-methylethyl] amino] ethyl] 2,5 dimethylphenoxy] acetyl hydrochloride and a method for producing the same.
  • Sustained-release preparations have advantages over conventional immediate-release preparations such as sustained drug efficacy by controlling the blood concentration of the drug, reducing side effects, and improving compliance by reducing the number of doses. Therefore, in recent years, sustained-release preparations have been developed for many drugs. It is well known about pH fluctuations in the human gastrointestinal tract. For example, it is reported that the pH is around pHl in the stomach, pH 5-6 in the duodenum, pH 6-7 in the jejunum, and pH 8 in the ileum.
  • Compound (I) is superior
  • Adrenergic receptor stimulation It is a compound useful as a therapeutic agent for pollakiuria and urinary incontinence.
  • This compound (I) has the highest dissolution rate at pH 4 near pHl. 2 corresponding to gastric juice and pH 6.8 corresponding to intestinal fluid. Have problems.
  • pH-independent gel-forming polymers such as hydroxypropylcellulose are widely used as sustained-release bases, sustained-release using such pH-independent gel-forming polymers.
  • the pH in the swollen and gelled matrix in the gastrointestinal tract changes basically depending on the pH in the environment, so if the active ingredient has a pH-dependent dissolution rate, it is pH-independent. It is thought that elution control cannot be performed (for example, see Non-Patent Document 1, Patent Documents 1 and 2).
  • WO2004Z047830 discloses a film-coated tablet or capsule formulation comprising compound (I) and duloxetine hydrochloride as active ingredients (see, for example, Patent Document 8).
  • WO2004Z047838 discloses a formulation such as a film-coated tablet or a sugar-coated tablet comprising Compound (I) and an antimuscarinic agent as active ingredients (see, for example, Patent Document 9).
  • WO2005Z042021 also includes compound (I) And capsules containing tamsulosin hydrochloride as active ingredients are disclosed (for example, see Patent Document 10).
  • all of the formulations disclosed in these patent documents are intended for immediate-release or enteric-coated formulations, and are controlled release products that are controlled in a pH-independent manner! What is listed here!
  • Non-Patent Document 1 Huang Y.B et al., International Journal of Pharmaceutics J, 2005, 28 9 ⁇ , p.87-95
  • Patent Document 1 JP-A-1-100134
  • Patent Document 2 Pamphlet of International Publication No. 2003Z000293
  • Patent Document 3 Japanese Patent Laid-Open No. 6-9388
  • Patent Document 4 JP-A-2-223533
  • Patent Document 5 JP-A-3-204810
  • Patent Document 6 Japanese Patent Laid-Open No. 62-242615
  • Patent Document 7 JP-A-6-199657
  • Patent Document 8 International Publication No. 2004Z047830 Pamphlet
  • Patent Document 9 Pamphlet of International Publication No. 2004Z047838
  • Patent Document 10 International Publication No. 2005Z042021 Pamphlet
  • the object of the present invention is (1) 1-2- [4- [2 — [[(lS, 213 ⁇ 4-2-2-hydroxy-2- (4-hydroxyphenyl) 1-methylethyl] amino] ethyl]- 2,5 Dimethylphenoxy] It is to provide a sustained-release preparation whose production is controlled independently of pH, and a method for producing the same, using ethyl acetate hydrochloride as an active ingredient.
  • the inventors of the present invention investigated the dissolution properties by adding various ingredients for adjusting the solubility of the drug to the active ingredients that should solve the above problems.
  • an acid addition salt of a basic drug since an acidic component is often added, the present inventors first tried the power of adding various acidic components to the compound (I). The pH-dependent dissolution was not improved at all.
  • the present inventors added a basic component or an enteric base to compound (I). Although the elution property of sucrose was examined, the effect on pH fluctuation could still not be improved sufficiently.
  • the basic component is added, the decomposition of the compound (I) itself is promoted, so that it is difficult to use the basic component.
  • the sustained-release base is generally roughly classified into a water-insoluble polymer and a hydrophilic polymer, and the water-insoluble polymer and the hydrophilic polymer are classified into a pH-dependent polymer and a pH, respectively. It is classified as a non-dependent polymer. Therefore, the present inventors examined the dissolution properties of preparations containing these various sustained-release bases. As a result, although pH-dependent polymers and water-insoluble polymers could not improve pH-dependent dissolution, surprisingly, even among pH-independent polymers, gels in aqueous media It was found that the addition of a hydrophilic polymer that forms a layer makes it possible to control pH-independent release without using other additives having pH buffering ability.
  • PH-independent gel-forming polymer showed excellent pH buffering capacity for drugs with higher elution rates at pH 4 than around pHl. 2 and around pH 6.8, as in Compound (I) That was totally unexpected.
  • the present invention provides
  • Is a sustained-release preparation with controlled release independent of pH contains (1) 1 2- [4— [2— [[(IS, 2R) — 2 hydroxy 2— (4-Hydroxyphenyl) 1-methylethyl] amino] ethyl] -2,5 dimethylphenoxy] acetyl hydrochloride and a pH-independent gel-forming polymer [3] pH-independent controlled-release controlled release containing active ingredients with a higher elution rate at pH 4 compared to pH l.2 or pH6.8 (1) 1 2- [4— [2— [[(IS, 2R) — 2 Hydroxy 2 (4-hydroxyphenyl) 1-methylethyl] amino] ethyl] -2, 5 Dimethylphenoxy] acetyl hydrochloride And a pH-independent gel-forming polymer, and contains substantially no pH adjusting agent other than the pH-independent gel-forming polymer;
  • the pH-independent gel-forming polymer is at least one selected from the group power consisting of hydroxypropyl methylcellulose, polyethylene oxide, polybutyl alcohol, hydroxypropyl cellulose, and methylcellulose, (1) to (3)
  • the sustained-release preparation according to any one of
  • sustained-release preparation according to any one of [1] to [3], further comprising a water-insoluble substance;
  • the water-insoluble substance is at least one selected from higher alcohols, waxes, hydrogenated oils, ethyl cellulose, and ethyl acrylate 'methyl methacrylate copolymer and aminoalkyl methacrylate copolymer RS.
  • a sustained-release preparation as described above;
  • a pH adjuster comprising a pH-independent gel-forming polymer, which is used for a sustained-release preparation with controlled release independent of pH, comprising ethyl acetate hydrochloride;
  • the "sustained release preparation whose release is controlled independently of pH” means pHl. 2-6.
  • pH-independent release control is performed according to the 14th revised Japanese Pharmacopoeia 'dissolution test method method 2 (paddle method), tests of pHl. 2, pH4 and pH6.8. Using the liquid When the dissolution test was performed at a rotational speed of lOOrpm, the difference in dissolution rate between the drug dissolution rates of 20-40%, 40-60%, and 70% or more, that is, the maximum dissolution The difference between the high rate and the lowest elution rate is preferably within 20%, more preferably within 15%, and most preferably within 10%.
  • the pH-independent gel-forming polymer used in the sustained-release preparation of the present invention is a hydrophilic polymer that swells in an aqueous medium and forms a gel layer in a pH-independent manner.
  • a pH-independent gel-forming polymer for example, hydroxypropyl methylcellulose, polyethylene oxide, polyvinyl alcohol, hydroxypropyl cellulose, methyl cell mouthpiece, and the like can be used.
  • HPMC Hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • examples of hydroxypropyl methylcellulose (HP MC) suitably used in the sustained-release preparation of the present invention include, for example, HPMC having a hydroxypropoxyl group content power of 12% and a methoxy group content of 19-30%. It is done.
  • Specific examples of such HPMC include, for example, hydroxypropylmethylcellulose 2910 (for example, Metroses 60SH type (manufactured by Shin-Etsu Chemical Co., Ltd.) having a hydroxypropoxyl group content of 7-12% and a methoxy group content of 28-30%.
  • TC-5 type (manufactured by Shin-Etsu Chemical Co., Ltd.), METHOCEL E type (manufactured by Dow Chemical Co., Ltd.), etc.) Hydroxypropylmethylcellulose 2906 with hydroxypropoxyl group content ⁇ 7.5% and methoxy group content 27-30%
  • Metroze 65SH type (manufactured by Shin-Etsu Chemical Co., Ltd.) or METHOCEL F type (manufactured by Dow Chemical) etc.
  • pyrmethylcellulose 2208 for example, Metroles 90SH type (manufactured by Shin-Etsu Chemical Co., Ltd.), ME THOCEL K type (manufactured by Dow Chemical), etc.).
  • HPMC with a hydroxypropoxyl group content of 7-12% and a methoxy group content of 28-30% (for example, Metroles 60SH type (Shin-Etsu Chemical Co., Ltd.), TC-5 type (Shin-Etsu Megumi Kogyo), METHOCEL E type (Dow Chemical), etc.); HM PC with 4 to 12% hydroxypropoxyl group content and 19 to 24% methoxy group content (for example, Metroise 90SH type (manufactured by Shin-Etsu Chemical Co., Ltd.), METHOCEL K type (manufactured by Dow Chemical)), pH buffer HPMC with a hydroxypropoxyl group content of 7-12% and a methoxy group content of 28-30% (for example, Metrows 60SH type (Shin-Etsu Chemical Co., Ltd.), TC-5 type (Shin-Etsu) Chemical Industry), METHOCEL E type (Dow Chemical), etc.) Power Most suitable in
  • the viscosity of HPMC is not particularly limited, but generally, as the viscosity of HPMC increases, the dissolution of the drug becomes more delayed, so that the viscosity of 2% aqueous solution at 20 ° C is adjusted to the target dissolution profile.
  • the range force of 3 to: LOOOOOmPa's can be selected and used as appropriate. Among them, HPMC having a viscosity in the range of 15 to 10000 mPa's is preferable in terms of sustained release effect.
  • HPMCs may be used in combination of two or more types having different hydroxypropoxyl group contents, methoxy group contents and viscosities as required.
  • PEO power S having a molecular weight of 100 000 to 7000000 is suitably used.
  • PEO polyethylene oxide
  • Specific examples of such PEO include, for example, PEO with a 5% aqueous solution at 25 ° C of 30 to 17600 mPa's (for example, those with a viscosity of 30 to 50 mPa's are POLYOX Water- Soluble Resin WSR N-10 NF; POLYOX Water— Soluble Resin WSR N— 80 NF; Viscosity 600-1200 m Pa's POLYOX Water— Soluble Resin WSR N— 750 NF; Viscosity 4500-880 OmPa's Resin WSR—205 NF; 3 ⁇ 4i3 ⁇ 48800 ⁇ 176 As OOmPa's, POLYOX Water- Soluble Resin WSR-1105 NF (both manufactured by Dowke Mical), etc .; Viscosity of 2% a
  • the saponification degree is S78.0 mol% to 96.0 mol%
  • the viscosity of a 4% aqueous solution at 20 ° C is 2 to: LOOmPa • s Is PVA.
  • PVA having a saponification degree of 86.5 to 89.0 mol% and a viscosity of 4% aqueous solution at 20 ° C of 4.8 to 46.0 mPa's for example, EG-05, EL as a viscosity of 4.8 to 5.8 mPa's) -05; EG-25 as viscosity 20.5-24.5 mPa's; EG-30, GH-17 as viscosity 27.0-33.0 mPa's; EG-40 (V, deviation is Nippon Synthetic Chemical) as viscosity 40.0-46.0 mPa's Etc.) are suitable in terms of pH buffering ability and sustained release effect.
  • the content of these pH-independent gel-forming polymers varies depending on the type of polymer. Usually, the amount of pH-independent gel-forming polymer is 10% by weight or more based on the active ingredient. PH buffering capacity can be exhibited, and the content of the pH-independent gel-forming polymer is usually at least 10% by weight or more based on the total weight of the preparation. More specifically, when hydroxypropylmethylcellulose is used, the preferred content of hydroxypropylmethylcellulose is 30% by weight or more with respect to the active ingredient, and more preferably 40% by weight or more with respect to the active ingredient. It is.
  • the preferable content of polyethylene oxide is 10% by weight or more with respect to the active ingredient, and more preferably 15% by weight or more with respect to the active ingredient.
  • the preferable content of polyvinyl alcohol is 35% by weight or more with respect to the active ingredient, and more preferably 40% by weight or more with respect to the active ingredient.
  • pH-independent gel-forming polymers hydroxypropyl methylcellulose, polyethylene oxide, or polybutyl alcohol is preferable, and hydroxypropyl methylcellulose or polyethylene oxide is more preferable.
  • these pH-independent gel-forming polymers may be used in combination of two or more, if necessary, and the types of pH-independent gel-forming polymers and their viscosities. It is possible to arbitrarily adjust the elution rate of compound (I) from the matrix by changing the amount of added calories.
  • the sustained-release preparation of the present invention substantially contains no pH adjuster other than a pH-independent gel-forming polymer, but this is a pH adjuster other than a pH-independent gel-forming polymer (for example, This is because the acidic component, basic component, enteric base, pH-dependent polymer, etc.) work to reduce the pH-independent release control which is the effect of the present invention.
  • “substantially” means that the addition of a pH adjusting agent other than the pH-independent gel-forming polymer is allowed as long as the amount does not affect the effect of the present invention.
  • sustained-release preparation of the present invention a pH-independent gel-forming polymer and other sustained-release bases are appropriately combined with each other to the extent that the pH-independent release control is not impaired. You may do it.
  • sustained release bases include pH-dependent gel-forming polymers and water-insoluble substances.
  • pH-dependent gel-forming polymer used in the sustained-release preparation of the present invention include, for example, carboxyvinyl polymer, sodium alginate and the like. These pH-dependent gel-forming polymers may be used alone or in combination of two or more.
  • the water-insoluble substance used in the sustained-release preparation of the present invention is not particularly limited as long as it does not exhibit pH buffering capacity and has an action of adjusting, particularly delaying, the elution rate of the active ingredient.
  • higher alcohols eg, myristyl alcohol, cetyl alcohol, stearyl alcohol
  • waxes eg, carnapar wax, beeswax, lanolin, microcrystalline wax
  • hardened oils eg, castor oil, cottonseed oil, soybean oil, Rapeseed oil, beef tallow oil, etc.
  • ethyl cellulose methacrylic acid copolymer (for example, aminoalkyl methacrylate copolymer RS, ethyl acrylate acrylate methyl methacrylate copolymer, etc.).
  • water-insoluble substances may be used alone or in combination of two or more. Combining such water-insoluble substances with pH-independent gel-forming polymers Can further increase the sustained release effect. Further, by changing the mixing ratio of these water-insoluble substance and P H non dependence gel-forming polymer can be adjusted arbitrarily the dissolution rate of the compound from the matrix (I).
  • the sustained-release preparation of the present invention may contain various additives used for the preparation of the preparation in addition to the above-mentioned sustained-release base, as long as the effects of the invention are not hindered.
  • additives include excipients, binders, disintegrants, lubricants, fluidizing agents, coating agents, buffering agents, and coloring agents.
  • excipients include lactose, crystalline cellulose, mannitol, starch and the like.
  • binder include hydroxypropylcellulose, hydroxypropylmethylcellulose, gelatin, gum arabic, sodium alginate, polyethylene glycol, stearyl alcohol, carnauba wax and the like.
  • disintegrant include low-substituted hydroxypropylcellulose, croscarmellose sodium, carmellose calcium, crospovidone, and carboxymethyl starch sodium.
  • the lubricant include magnesium stearate, stearic acid, calcium stearate, talc, and sodium stearyl fumarate.
  • Examples of the dosage form of the sustained-release preparation in the present invention include various dosage forms such as powders, granules, tablets, capsules and the like, and are not particularly limited, but tablets are preferred.
  • the method for producing the sustained-release preparation of the present invention is not particularly limited as long as the compound (I) is dispersed in a matrix of a pH-independent gel-forming polymer.
  • the following method is used.
  • Compound (I) is mixed with a pH-independent gel-forming polymer and, if necessary, other additives. Next, using an appropriate binder, granulate by conventional granulation methods such as high-speed agitation granulation method, fluidized bed granulation method, rolling granulation method, etc., and dry and size the granules to obtain granules .
  • conventional granulation methods such as high-speed agitation granulation method, fluidized bed granulation method, rolling granulation method, etc.
  • compound (I) and other additives as necessary are mixed, and then, using a suitable binder, high-speed agitation granulation method, fluidized bed granulation method, Granulate by conventional granulation methods such as dynamic granulation. Furthermore, drying and sizing are performed and mixed with a pH-independent gel-forming polymer to obtain granules.
  • a suitable binder such as methanol and ethanol, an organic solvent such as acetone and methylene chloride, or water used as a binding liquid, or these organic solvents
  • a solution or suspension in which the binder is dissolved or suspended in a solvent or water is suitable for obtaining good pH buffering ability.
  • compound (I) in the case of a formulation in which a component having a low melting point (for example, higher alcohol or wax, polyethylene glycol, etc.) is added, compound (I), a pH-independent gel-forming polymer, a component having a low melting point, If necessary, other additives are mixed, granulated by the melt granulation method, and then granulated to obtain granules.
  • a component having a low melting point for example, higher alcohol or wax, polyethylene glycol, etc.
  • a lubricant is added to the granules prepared according to the method as described above, and tablets are obtained by tableting with a tableting machine.
  • a lubricant is added, the granule and lubricant may be mixed and tableted by a conventional mixing method using various powder mixers, but an external lubricant method may be used.
  • a good pH buffering ability can be obtained by tableting.
  • the sustained-release preparation of the present invention produced in this way is pH-independent controlled release and has a constant dissolution rate, so it has a sustained effect, such as frequent urination, urinary incontinence, etc. It is extremely useful as a remedy for these diseases.
  • the invention's effect is pH-independent controlled release and has a constant dissolution rate, so it has a sustained effect, such as frequent urination, urinary incontinence, etc. It is extremely useful as a remedy for these diseases.
  • the sustained-release preparation of the present invention exhibits elution independent of pH in the range of pH 1.2 to 6.8, and further exhibits a constant elution rate over a long period of time. Therefore, the sustained-release preparation of the present invention exhibits a constant elution rate without being affected by the pH environment in the digestive tract, and exhibits an excellent sustained effect with little variation within an individual or between individuals. Can do.
  • the sustained-release preparation of the present invention can be prepared without the addition of other components having pH buffering capacity by using a pH-independent gel-forming polymer. Production ⁇ This; 1 ⁇ 0
  • FIG. 1 shows the dissolution rate of Compound (I) with tablet strength consisting of Compound (I) and lactose. o
  • the vertical axis represents the dissolution rate (%), and the horizontal axis represents the dissolution time (minutes).
  • FIG. 2 shows the dissolution rate of Compound (I) from tablets prepared by adding ethyl cellulose as a pH-independent water-insoluble polymer to Compound (I) and lactose.
  • the vertical axis shows the elution rate (%), and the horizontal axis shows the elution time (min).
  • FIG. 3 shows the dissolution rate of compound (I) from tablets prepared by adding succinic acid as an acidic substance to compound (I) and lactose.
  • the vertical axis shows the elution rate (%), and the horizontal axis shows the elution time (min).
  • FIG. 4 shows the dissolution rate of compound (I) from tablets prepared by adding dipotassium hydrogen phosphate as a basic substance to compound (I) and lactose.
  • the vertical axis shows the elution rate (%), and the horizontal axis shows the elution time (min).
  • FIG. 5 shows the dissolution rate of compound (I) from tablets prepared by adding methacrylic acid copolymer (Eudragit S) as an enteric polymer to compound (I) and lactose.
  • the vertical axis shows the dissolution rate (%), and the horizontal axis shows the dissolution time (minutes).
  • FIG. 6 shows the dissolution rate of compound (I) having a tablet strength prepared by adding carboxybulu polymer as a pH-dependent gel-forming polymer to compound (I) and lactose.
  • the vertical axis shows the dissolution rate (%), and the horizontal axis shows the dissolution time (minutes).
  • FIG. 7 shows the dissolution rate of compound (I) from tablets prepared by adding hydroxypropylmethylcellulose 2910 as a pH-independent gel-forming polymer to compound (I) and lactose.
  • the vertical axis represents the dissolution rate (%), and the horizontal axis represents the dissolution time (minutes).
  • FIG. 8 shows the dissolution rate of Compound (I) from a tablet prepared by adding polyethylene oxide as a pH-independent gel-forming polymer to Compound (I) and lactose.
  • the vertical axis shows the dissolution rate (%), and the horizontal axis shows the elution time (min).
  • FIG. 9 shows a tablet-powered compound (I) prepared by adding hydroxypropylmethylcellulose 2910 as a pH-independent gel-forming polymer and stearyl alcohol as a water-insoluble substance to compound (I) and lactose. The dissolution rate was indicated. The vertical axis shows the elution rate (%), and the horizontal axis shows the elution time (min).
  • FIG. 10 shows the preparation of a mixture of compound (1), hydroxypropylmethylcellulose 2910 and polyethylene glycol as a pH-independent gel-forming polymer by melt granulation.
  • the dissolution rate of compound (I) with tablet strength was shown.
  • the vertical axis shows the elution rate (%), and the horizontal axis shows the elution time (min).
  • FIG. 11 shows the results from a tablet prepared by granulating a mixture of compound (I) and hydroxypropylmethylcellulose 2910 as a pH-independent gel-forming polymer using an ethanolic solution of hydroxypropylcellulose.
  • the elution rate of compound (I) was shown.
  • the vertical axis shows the elution rate (%), and the horizontal axis shows the elution time (min).
  • FIG. 12 shows the granulation of a mixture of compound (I) and lactose using an aqueous solution of hydroxypropylcellulose, followed by addition of hydroxypropylmethylcellulose 2910 as a pH-independent gel-forming polymer.
  • the dissolution rate of compound (I) from the prepared tablets was shown.
  • the vertical axis represents the dissolution rate (%), and the horizontal axis represents the dissolution time (minutes).
  • FIG. 13 shows the dissolution rate of compound (I) from a tablet prepared by adding polyvinyl alcohol as a pH-independent gel-forming polymer to compound (I).
  • the vertical axis represents the dissolution rate (%), and the horizontal axis represents the dissolution time (minutes).
  • FIG. 14 shows a tablet-strength compound (I) prepared by mixing hydroxypropyl methylcellulose 2910 as a pH-independent gel-forming polymer with compound (I) and further adding magnesium stearate. ) Elution rate.
  • the vertical axis shows the dissolution rate (%), and the horizontal axis shows the dissolution time (minutes).
  • FIG. 15 shows that compound (I) was prepared by adding hydroxypropyl methylcellulose 2910 as a pH-independent gel-forming polymer, and then magnesium stearate was thinly attached to the pestle and mortar during tableting.
  • the dissolution rate of compound (I) from tableted tablets was shown.
  • the vertical axis shows the dissolution rate (%), and the horizontal axis shows the elution time (min).
  • FIG. 16 shows the dissolution rate of compound (I) from tablets prepared by adding hydroxypropylmethylcellulose 2208 as a pH-independent gel-forming polymer to compound (I) and lactose. Indicated. The vertical axis represents the dissolution rate (%), and the horizontal axis represents the dissolution time (minutes).
  • Total 150mgZl tablets [0048] Based on the above formulation, 500 mg of Compound (I), 700 mg of lactose and 300 mg of a methacrylic acid copolymer (Eudragit S, manufactured by Degussa) as an enteric base were mixed in a mortar, and the resulting powder was mixed into a single shot. Compressed with a tablet machine to obtain 150mg tablets per tablet. Figure 5 shows the results of the dissolution test.
  • compound (I) 500mg, lactose 700mg and carboxybule polymer (Carbopol 974P NF, manufactured by Noveon) 300mg were mixed in a mortar, and the resulting powder was compressed with a single-punch tablet press. Molded to obtain 150 mg tablets per tablet. The results of the dissolution test are shown in Fig. 6.
  • Example 1 has a dissolution rate of 20 to 40%, 40 to 60%, or 70% or more. Even within this range, the difference in dissolution rate between the first solution, pH4 test solution, and second solution was remarkably improved, and the pH-independent dissolution was exhibited.
  • the dissolution rate between the first solution, the pH 4 test solution, and the second solution was within the range of 20-40%, 40-60%, 70% or more.
  • the difference in dissolution rate was remarkably improved, and the pH-independent dissolution was demonstrated.
  • compound (I) 500 mg, lactose 500 mg, hydroxypropyl methylcellulose 2910 (Metroses 60SH50, manufactured by Shin-Etsu Chemical Co., Ltd.) 250 mg and stearyl alcohol 250 mg were mixed in a mortar, and the resulting powder was tested. It was put into a tube and melt granulated in water heated to about 75 ° C. The granulated product was pulverized and sized in a mortar, and the granules that passed through a 50-mesh sieve were compression-molded with a single tableting machine to obtain 150 mg tablets per tablet. The results of the dissolution test are shown in FIG.
  • the dissolution rate between the first solution, the pH 4 test solution, and the second solution was within the range of 20-40%, 40-60%, 70% or more. Remarkably improved elution rate difference It was improved and showed pH-independent elution.
  • the dissolution rate between the first solution, the pH 4 test solution, and the second solution was within the range of 20-40%, 40-60%, 70% or more.
  • the difference in dissolution rate was remarkably improved, and the pH-independent dissolution was demonstrated.
  • the dissolution rate between the first solution, the pH 4 test solution, and the second solution was within the range of 20-40%, 40-60%, 70% or more.
  • the difference in dissolution rate was remarkably improved, and the pH-independent dissolution was demonstrated.
  • the dissolution rate between the first solution, the pH4 test solution, and the second solution was within the range of 20-40%, 40-60%, 70% or more.
  • the difference in dissolution rate was remarkably improved, and the pH-independent dissolution was demonstrated.
  • Example 7 had a dissolution rate of 20-40%, 40-60%, 70% or more. Even within this range, the difference in dissolution rate between the first solution, pH4 test solution, and second solution was remarkably improved, and the pH-independent dissolution was exhibited.
  • the dissolution rate between the first solution, the pH 4 test solution, and the second solution was within the range of 20-40%, 40-60%, 70% or more.
  • the difference in dissolution rate was remarkably improved, and the pH-independent dissolution was demonstrated.
  • Example 9 the dissolution rate between the first solution, the pH 4 test solution, and the second solution was within the range of 20-40%, 40-60%, 70% or more. The difference in dissolution rate was remarkably improved, and the pH-independent dissolution was demonstrated. In addition, magnesium stearate The formulation of Example 9 showed a better pH-independent dissolution than that of Example 8 prepared by ordinary lubrication.
  • Example 10 As a result, in the preparation of Example 10, the dissolution between the first solution, the pH 4 test solution, and the second solution was observed regardless of whether the dissolution rate was 20 to 40%, 40 to 60%, or 70% or more. The difference in rate was remarkably improved and showed pH-independent dissolution.
  • the sustained-release preparation of the present invention exhibits a pH-independent dissolution property in the range of pH 1 to 6.8, and further exhibits a constant dissolution rate over a long period of time. It is useful as a treatment for urinary incontinence.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

 pH1.2またはpH6.8に比べてpH4において高い溶出速度を有する有効成分を含有する、pH非依存的に放出制御された徐放性製剤であって、有効成分として(-)-2-[4-[2-[[(1S,2R)-2-ヒドロキシ-2-(4-ヒドロキシフェニル)-1-メチルエチル]アミノ]エチル]-2,5-ジメチルフェノキシ]酢酸エチル塩酸塩とpH非依存性ゲル形成高分子とを含有し、実質的にpH非依存性ゲル形成高分子以外のpH調整剤を含有しないことを特徴とする徐放性製剤。本発明の徐放性製剤は、pH1.2~6.8の範囲においてpH非依存的な溶出性を示し、さらには長時間に亘って一定の溶出率を示すので、持続性効果を有する頻尿・尿失禁治療剤として有用である。

Description

徐放性製剤およびその製造方法
技術分野
[0001] 本発明は、頻尿、尿失禁治療剤として有用である(一) 2— [4 [2 [ [ (IS, 2R )—2—ヒドロキシ— 2— (4—ヒドロキシフエ-ル)— 1—メチルェチル]ァミノ]ェチル] 2, 5 ジメチルフエノキシ]酢酸ェチル塩酸塩の徐放性製剤およびその製造方法 に関する。
背景技術
[0002] 徐放性製剤は、通常の速放性製剤に比べて、薬物の血中濃度の制御による薬効 の持続ィ匕ゃ副作用の軽減、投与回数の減少によるコンプライアンスの向上等の利点 を有することから、近年、多くの薬物を対象に徐放性製剤の開発が進められている。 ヒト消化管における pH変動に関しては良く知られており、例えば、胃では pHl付近、 十二指腸では pH5〜6、空腸では pH6〜7、回腸では pH8付近であると報告されて V、る。そのため pH依存的な溶解度または溶出速度を有する薬物を有効成分とする 製剤では、消化管内の pH変化の影響を受け易ぐ消化管の部位によって製剤から の薬物の溶出が異なる問題点が指摘されている。従って、 PH依存的な溶解度また は溶出速度を有する薬物を有効成分とする徐放性製剤の開発に際しては、 PH非依 存的に放出制御された徐放性製剤が求められている。
[0003] 式(I) :
Figure imgf000002_0001
で表される(ー)ー2—[4 [2—[ [ (13, 21¾—2—ヒドロキシー2—(4ーヒドロキシフ ェ-ル) 1ーメチルェチル]ァミノ]ェチル ] 2, 5 ジメチルフエノキシ]酢酸ェチル 塩酸塩 (以下、化合物 (I)と称する)は、優れた )8 —アドレナリン受容体刺激作用を 有し、頻尿、尿失禁治療剤として有用な化合物である。この化合物 (I)は、胃液に相 当する pHl. 2付近、腸液に相当する pH6. 8付近に比べて pH4付近で最も溶出速 度が速ぐ pH変動による溶出性の差が大き!/ヽ問題点を有して 、る。
[0004] ヒドロキシプロピルセルロースなどの pH非依存性ゲル形成高分子は徐放性基剤と して広く用 、られて 、るが、このような pH非依存性ゲル形成高分子を利用する徐放 性製剤では、消化管内において膨潤しゲルィ匕したマトリクス中の pHは基本的に環境 中の pHに依存して変化するため、有効成分が pH依存的な溶出速度を有する場合、 pH非依存的な溶出制御をなし得ないと考えられている(例えば、非特許文献 1、特 許文献 1および 2参照)。
[0005] pH依存的な溶出速度を有する薬物の徐放製剤化に対しては、従来、徐放性基剤 とともに、薬物の周囲に、薬物の溶解性を調節するための成分を添加する放出制御 方法が数多く報告されている。例えば、化合物 (I)のような塩基性薬物の酸付加塩の 場合、通常、酸性領域の pHにおいて溶解度が高ぐ pHが高くなるにつれて溶解度 が低くなることから、酸性成分を添加する方法 (例えば、特許文献 3参照)や、腸溶性 成分中に薬物を分散させる方法 (例えば、特許文献 4参照)が提案されている。また 有効成分が酸性薬物の場合には pHが高くなるにつれて溶解度が増すことから、塩 基性成分の添加が行われている(例えば、特許文献 5参照)。また、マトリクス基剤に p H緩衝剤を添加する提案もなされている (例えば、特許文献 6参照)。また、胃液と腸 液の中間付近の pHにお 、て薬物溶出速度が高 、薬物に対しては、 pH3付近より高 V、pH領域にぉ 、て膨潤が起こるポリマーとしてカルボキシビュルポリマーまたはメチ ルビ-ルエーテル無水マレイン酸コポリマーと、腸溶性基剤とを組み合わせて添カロ する徐放性製剤が提案されている (例えば、特許文献 7参照)。
[0006] 化合物 (I)を有効成分として含有する医薬組成物として、次のような特許文献が知 られている。 WO2004Z047830には、化合物(I)と塩酸デュロキセチンとを有効成 分として含有してなる、フィルムコーティング錠またはカプセル処方が開示されて 、る (例えば、特許文献 8参照)。 WO2004Z047838には、化合物 (I)と抗ムスカリン剤 とを有効成分として含有してなる、フィルムコーティング錠、糖衣錠などの処方が開示 されている(例えば、特許文献 9参照)。また、 WO2005Z042021には、化合物 (I) と塩酸タムスロシンとを有効成分として含有してなるカプセル処方が開示されて 、る ( 例えば、特許文献 10参照)。し力しながら、これらの特許文献に開示された処方は、 いずれも即時放出性または腸溶性の製剤処方を意図したものであり、 pH非依存的 に放出制御された徐放性製剤につ!、ては何ら記載されて!、な 、。
非特許文献 1: Huang Y.Bら, international Journal of Pharmaceutics J , 2005年, 28 9卷, p.87-95
特許文献 1 :特開平 1— 100134号公報
特許文献 2:国際公開第 2003Z000293号パンフレット
特許文献 3:特開平 6— 9388号公報
特許文献 4:特開平 2— 223533号公報
特許文献 5:特開平 3 - 204810号公報
特許文献 6:特開昭 62— 242615号公報
特許文献 7:特開平 6— 199657号公報
特許文献 8:国際公開第 2004Z047830号パンフレット
特許文献 9:国際公開第 2004Z047838号パンフレット
特許文献 10 :国際公開第 2005Z042021号パンフレット
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、(一)一2—[4—[2—[ [ (lS, 21¾—2—ヒドロキシー2—(4ーヒ ドロキシフエ-ル) 1—メチルェチル]ァミノ]ェチル ]—2, 5 ジメチルフエノキシ] 酢酸ェチル塩酸塩を有効成分としてなり、 pH非依存的に放出制御された徐放性製 剤およびその製造方法を提供することである。
課題を解決するための手段
[0008] 本発明者らは、上記課題を解決すベぐ有効成分に、薬物の溶解性を調整するた めの成分を種々加えて溶出性を調べてみた。前述したように塩基性薬物の酸付加塩 の場合には、しばしば酸性成分の添加が行われることから、本発明者らは、まず化合 物 (I)に種々の酸性成分を添加してみた力 pH依存的な溶出性は全く改善されなか つた。また、本発明者らは、化合物 (I)に、塩基性成分や腸溶性基剤を添加した場合 の溶出性を調べてみたが、依然として pH変動における影響を十分に改善することが できなかった。また、塩基性成分を添加する場合には化合物 (I)自体の分解が促進 されるため、塩基性成分の使用は困難であった。
[0009] 徐放性基剤は、一般的に水不溶性高分子と親水性高分子に大別され、さらに水不 溶性高分子および親水性高分子は、それぞれ pH依存性を有する高分子と pH非依 存を有する高分子に分類される。そこで本発明者らは、これらの種々の徐放性基剤 を含有する製剤の溶出性について検討した。その結果、 pH依存性高分子、水不溶 性高分子では pH依存的な溶出性を改善することはできな力つたが、驚くべきことに p H非依存性高分子の中でも水性媒体中でゲル層を形成する親水性高分子の添加に よって、 pH緩衝能を有する他の添加剤を使用することなぐ pH非依存的な放出制御 が可能であることを見出した。これまで有効成分が pH依存的な溶出速度を有する場 合に、実質的に pH非依存性ゲル形成高分子のみを用いて、 pH非依存的に放出制 御された徐放性製剤は知られておらず、化合物 (I)のように pHl. 2付近および pH6 . 8付近に比べて pH4において高い溶出速度を有する薬物において、 pH非依存性 ゲル形成高分子が優れた pH緩衝能を示したことは全く予想外であった。
[0010] このように、本発明は、
〔1〕 有効成分として(ー)ー2—[4 [2—[ [ (13, 21¾—2—ヒドロキシー2—(4ーヒ ドロキシフエ-ル) 1—メチルェチル]ァミノ]ェチル ]—2, 5 ジメチルフエノキシ] 酢酸ェチル塩酸塩と、 PH非依存性ゲル形成高分子とを含有する徐放性製剤; 〔2〕 pHl. 2または pH6. 8に比べて pH4において高い溶出速度を有する有効成 分を含有する、 pH非依存的に放出制御された徐放性製剤であって、有効成分とし て(一)一 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ 2— (4 ヒドロキシフヱ-ル) 1ーメチルェチル]ァミノ]ェチル ]—2, 5 ジメチルフヱノキシ]酢酸ェチル塩酸塩 と、 pH非依存性ゲル形成高分子とを含有することを特徴とする徐放性製剤; 〔3〕 pHl. 2または pH6. 8に比べて pH4において高い溶出速度を有する有効成 分を含有する、 pH非依存的に放出制御された徐放性製剤であって、有効成分とし て(一)一 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ 2— (4 ヒドロキシフヱ-ル) 1ーメチルェチル]ァミノ]ェチル ]—2, 5 ジメチルフヱノキシ]酢酸ェチル塩酸塩 と、 pH非依存性ゲル形成高分子とを含有し、実質的に pH非依存性ゲル形成高分 子以外の pH調整剤を含有しな ヽことを特徴とする徐放性製剤;
〔4〕 pH非依存性ゲル形成高分子が、ヒドロキシプロピルメチルセルロース、ポリエ チレンォキシド、ポリビュルアルコール、ヒドロキシプロピルセルロースおよびメチルセ ルロース力もなる群力も選択される少なくとも 1種である、〔1〕〜〔3〕のいずれか一項 記載の徐放性製剤;
〔5〕 pH非依存性ゲル形成高分子が、ヒドロキシプロピルメチルセルロース、ポリエ チレンォキシドまたはポリビュルアルコール力 選択される少なくとも 1種である、〔4〕 記載の徐放性製剤;
〔6〕 pH非依存性ゲル形成高分子の含有量が、製剤全重量に対して 10重量%以 上である、〔1〕〜〔3〕の 、ずれか一項記載の徐放性製剤
〔7〕 pH非依存性ゲル形成高分子の含有量が、有効成分に対して 10重量%以上 である、〔1〕〜〔3〕の 、ずれか一項記載の徐放性製剤;
〔8〕 pH非依存性ゲル形成高分子が、ヒドロキシプロピルメチルセルロースである、〔 4〕記載の徐放性製剤;
〔9〕 ヒドロキシプロボキシル基含量が 7〜12%、メトキシ基含量が 28〜30%であるヒ ドロキシプロピルメチルセルロースを含有する、〔8〕記載の徐放性製剤;
〔10〕 ヒドロキシプロポキシノレ基含量力 〜 12%、メトキシ基含量が 19〜24%である ヒドロキシプロピルメチルセルロースを含有する、〔8〕記載の徐放性製剤;
〔11〕 ヒドロキシプロピルメチルセルロースの含有量力 有効成分に対して 30重量% 以上である、〔8〕記載の徐放性製剤;
〔12〕 ヒドロキシプロピルメチルセルロースの含有量力 有効成分に対して 40重量% 以上である、〔8〕記載の徐放性製剤;
〔13〕 さらに水不溶性物質を含有する、〔1〕〜〔3〕のいずれか一項記載の徐放性製 剤;
〔14〕 水不溶性物質が、高級アルコール、ワックス、硬化油、ェチルセルロースおよ びアクリル酸ェチル 'メタクリル酸メチルコポリマーおよびアミノアルキルメタタリレート コポリマー RSから選択される少なくとも 1種である、〔13〕記載の徐放性製剤; 〔15〕 水不溶性物質が、高級アルコールおよびワックス力 選択される少なくとも 1種 である、〔13〕記載の徐放性製剤;
〔16〕 (一)一 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキシフエ- ル) 1—メチルェチル]ァミノ]ェチル] 2, 5 ジメチルフエノキシ]酢酸ェチル塩 酸塩を有効成分として含有する徐放性製剤の pH非依存的な放出制御方法であって 、該方法は、 (一)一 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキシ フエ-ル) 1ーメチルェチル]ァミノ]ェチル ] 2, 5 ジメチルフエノキシ]酢酸ェチ ル塩酸塩を pH非依存性ゲル形成高分子のマトリクス中に分散させることを特徴とす る方法;
〔17〕 (一)一 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキシフエ- ル) 1—メチルェチル]ァミノ]ェチル] 2, 5 ジメチルフエノキシ]酢酸ェチル塩 酸塩を含有してなる pH非依存的に放出制御された徐放性製剤用である、 pH非依 存性ゲル形成高分子からなる pH調整剤;
〔18〕 (一)一 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキシフエ- ル) 1—メチルェチル]ァミノ]ェチル] 2, 5 ジメチルフエノキシ]酢酸ェチル塩 酸塩を有効成分として含有する、 pH非依存的に放出制御された徐放性製剤の製造 方法であって、該方法は、(一) 2— [4 [2 [ [ (IS, 2R)— 2 ヒドロキシー 2—( 4 ヒドロキシフエ-ル)— 1—メチルェチル]ァミノ]ェチル ]—2, 5 ジメチルフエノ キシ]酢酸ェチル塩酸塩を PH非依存性ゲル形成高分子のマトリクス中に分散させる ことを特徴とする方法、を提供するものである。
[0011] 本発明において「pH非依存的に放出制御された徐放性製剤」とは、 pHl. 2〜6.
8の範囲において pH非依存的に放出制御された徐放性製剤であり、好適には、第 1 4改正日本薬局方 '溶出試験法第 2法 (パドル法)に従って、 pHl. 2、 pH4および p H6. 8の試験液を用いて、パドル回転数 lOOrpmで溶出試験を行った場合に、薬物 の溶出率が 20〜40%、 40〜60%および 70%以上のいずれの範囲においても pH 非依存的に放出制御された徐放性製剤である。
[0012] 本発明にお 、て「pH非依存的な放出制御」は、第 14改正日本薬局方 '溶出試験 法第 2法 (パドル法)に従って、 pHl. 2、 pH4および pH6. 8の試験液を用いて、パド ル回転数 lOOrpmで溶出試験を行った場合に、薬物の溶出率が 20〜40%、 40〜6 0%および 70%以上のいずれの範囲においても、それらの溶出率の差、すなわち最 も溶出率の高いものと最も溶出率の低いものとの差が 20%以内であることが好ましく 、 15%以内であることがさらに好適であり、 10%以内であることが最も好適である。
[0013] 本発明の徐放性製剤に用いられる pH非依存性ゲル形成高分子は、 pH非依存的 に水性媒体中で膨潤しゲル層を形成する、親水性高分子である。このような pH非依 存性ゲル形成高分子としては、例えば、ヒドロキシプロピルメチルセルロース、ポリエ チレンォキシド、ポリビニルアルコール、ヒドロキシプロピルセルロース、メチルセル口 一ス等を用いることができる。
[0014] ヒドロキシプロピルメチルセルロース(HPMC)は、分子内にヒドロキシプロボキシル 基とメトキシ基とを有するセルロース誘導体であり、ヒドロキシプロボキシル基含量とメ トキシ基含量の異なる、様々なグレードのヒドロキシプロピルメチルセルロースが知ら れている。
本発明の徐放性製剤に好適に使用されるヒドロキシプロピルメチルセルロース (HP MC)としては、例えば、ヒドロキシプロボキシル基含量力 〜 12%、メトキシ基含量が 19〜30%の範囲である HPMCが挙げられる。このような HPMCの具体的としては、 例えば、ヒドロキシプロボキシル基含量が 7〜12%、メトキシ基含量が 28〜30%であ るヒドロキシプロピルメチルセルロース 2910 (例えば、メトローズ 60SHタイプ(信越化 学工業製) , TC - 5タイプ (信越化学工業製) , METHOCEL Eタイプ (ダウケミカル 製)など);ヒドロキシプロボキシル基含量力 〜7. 5%、メトキシ基含量が 27〜30% であるヒドロキシプロピルメチルセルロース 2906 (例えば、メトローズ 65SHタイプ(信 越ィ匕学工業製)、または METHOCEL Fタイプ (ダウケミカル製)など);およびヒドロキ シプロポキシル基含量力 〜 12%、メトキシ基含量が 19〜24%であるヒドロキシプロ ピルメチルセルロース 2208 (例えば、メトローズ 90SHタイプ(信越化学工業製), ME THOCEL Kタイプ (ダウケミカル製)など)が挙げられる。
これらの HPMCの中では、ヒドロキシプロポキシル基含量が 7〜12%、メトキシ基含 量が 28〜30%である HPMC (例えば、メトローズ 60SHタイプ (信越化学工業製) , TC— 5タイプ (信越ィ匕学工業製), METHOCEL Eタイプ (ダウケミカル製)など);およ びヒドロキシプロポキシル基含量が 4〜 12%、メトキシ基含量が 19〜24%である HM PC (例えば、メトローズ 90SHタイプ(信越化学工業製), METHOCEL Kタイプ(ダウ ケミカル製)など)力 pH緩衝能の面で好適であり、ヒドロキシプロボキシル基含量が 7〜12%、メトキシ基含量が 28〜30%である HPMC (例えば、メトローズ 60SHタイ プ (信越化学工業製), TC - 5タイプ (信越化学工業製) , METHOCEL Eタイプ (ダ ゥケミカル製)など)力 pH緩衝能の面で最も好適である。
HPMCの粘度は特に制限されないが、一般的に HPMCの粘度が増大するに従つ て、薬物の溶出がより遅延することから、 目的とする溶出プロファイルに合わせて、 20 °Cにおける 2%水溶液粘度が 3〜: LOOOOOmPa'sである範囲力も適宜選択して使用 することができる。中でも 15〜10000mPa'sの範囲の粘度の HPMCが徐放効果の 面で好適である。
これらの HPMCは、必要に応じて、ヒドロキシプロポキシル基含量、メトキシ基含量 および粘度の異なるものを、 2種以上組み合わせて使用してもよ 、。
本発明の徐放性製剤に用いられるポリエチレンォキシド (PEO)として、分子量 100 000〜7000000の PEO力 S好適に使用される。このような PEOの具体例としては、例 えば、 25°Cにおける 5%水溶液の粘度が 30〜17600mPa'sの PEO (例えば、粘度 3 0〜50mPa'sのものは POLYOX Water- Soluble Resin WSR N- 10 NF;粘度 55〜90m Pa'sのものとして POLYOX Water— Soluble Resin WSR N— 80 NF;粘度 600〜 1200m Pa'sのものとして POLYOX Water— Soluble Resin WSR N— 750 NF;粘度 4500〜880 OmPa'sのものとして POLYOX Water— Soluble Resin WSR— 205 NF;¾i¾8800~176 OOmPa'sのものとして POLYOX Water- Soluble Resin WSR-1105 NF (いずれもダウケ ミカル製)など); 25°Cにおける 2%水溶液の粘度力 00〜4000mPa'sの PEO (例え ば、粘度 400〜800mPa'sのものとして POLYOX Water- Soluble Resin WSR N-12K NF;粘度 2000〜4000mPa'sのものとして POLYOX Water- Soluble Resin WSR N- 60 K NF (いずれもダウケミカル製)など);25°Cにおける 1%水溶液の粘度が 1650〜10 OOOmPa'sの PEO (例えば、粘度 1650〜5500mPa'sのものとして POLYOX Water— Soluble Resin WSR- 301 NF;粘度 5500〜7500mPa,sのものとして POLYOX Water- Soluble Resin WSR Coagulant NF;粘度 7500〜: LOOOOmPa'sのものとして POLYOX Water- Soluble Resin WSR- 303 NF (いずれもダウケミカル製)など)などが挙げられる さらに好ましくは、分子量 100000〜5000000であって、 25°Cにおける 5%水溶 液の粘度が 30〜17600mPa'sの PEO ; 25°Cにおける 2%水溶液の粘度力 00〜4 OOOmPa · sの PEO;および 25°Cにおける 1 %水溶液の粘度が 1650〜7500mPa · sの PEOが、 pH緩衝能および徐放効果の面で好適である。
[0016] 本発明の徐放性製剤に用いられるポリビニルアルコール (PVA)として、けん化度 力 S78.0mol%〜96.0mol%であり、 20°Cにおける 4%水溶液の粘度が 2〜: LOOmPa •sである PVAが挙げられる。より具体的には、けん化度が 86.5〜89.0mol%であり、 20°Cにおける 4%水溶液の粘度が 4.8〜46.0mPa'sである PVA (例えば、粘度 4.8 〜5.8mPa'sのものとして EG- 05、 EL- 05;粘度 20.5〜24.5mPa'sのものとして EG- 25 ;粘度 27.0〜33.0mPa'sのものとして EG- 30、 GH- 17 ;粘度 40.0〜46.0mPa's のものとして EG- 40 (V、ずれも日本合成化学製)など)が、 pH緩衝能および徐放効 果の面で好適である。
[0017] これらの pH非依存性ゲル形成高分子の含有量は、高分子の種類によっても異なる 力 通常、有効成分に対して 10重量%以上の pH非依存性ゲル形成高分子を添カロ すれば pH緩衝能を発揮することが可能であり、当該 pH非依存性ゲル形成高分子の 含有量は、通常、製剤全重量に対して少なくとも 10重量%以上配合される。より具体 的には、ヒドロキシプロピルメチルセルロースを用いた場合、ヒドロキシプロピルメチル セルロースの好ましい含有量は、有効成分に対して 30重量%以上であり、さらに好 適には有効成分に対して 40重量%以上である。ポリエチレンォキシドを用いた場合 、ポリエチレンォキシドの好ましい含有量は、有効成分に対して 10重量%以上であり 、さらに好適には有効成分に対して 15重量%以上である。ポリビニルアルコールを 用いた場合、ポリビニルアルコールの好ましい含有量は、有効成分に対して 35重量 %以上であり、さらに好適には有効成分に対して 40重量%以上である。
[0018] これらの pH非依存性ゲル形成高分子の中では、ヒドロキシプロピルメチルセルロー ス、ポリエチレンォキシドまたはポリビュルアルコールが好適であり、ヒドロキシプロピ ルメチルセルロースまたはポリエチレンォキシドがさらに好適である。 [0019] また、これらの pH非依存性ゲル形成高分子は、必要に応じて、 2種以上を組み合 わせて使用してもよぐ pH非依存性ゲル形成高分子の種類やそれらの粘度や添カロ 量を変化させることにより、マトリクス中からの化合物 (I)の溶出速度を任意に調節す ることがでさる。
[0020] 本発明の徐放性製剤は、実質的に pH非依存性ゲル形成高分子以外の pH調整剤 を含有しないが、これは pH非依存性ゲル形成高分子以外の pH調整剤 (例えば、酸 性成分、塩基性成分、腸溶性基剤、 pH依存性高分子など)は、本発明の効果である pH非依存的な放出制御を減じる方向に働くためである。本発明において、実質的に とは、本発明の効果に影響を与えない量であれば、 pH非依存性ゲル形成高分子以 外の pH調整剤の配合を許容することを意味する。
[0021] 本発明の徐放性製剤では、 pH非依存的な放出制御を損なわな 、程度に、 pH非 依存性ゲル形成高分子と、それ以外の徐放性基剤とを適宜組み合わせて使用して もよい。このような徐放性基剤としては、例えば、 pH依存性ゲル形成高分子および水 不溶性物質などが挙げられる。
[0022] 本発明の徐放性製剤に用いられる pH依存性ゲル形成高分子の具体例としては、 例えば、カルボキシビ二ルポリマー、アルギン酸ナトリウムなどが挙げられる。これらの pH依存性ゲル形成高分子は、単独でも 2種以上組み合わせて使用してもよ ヽ。
[0023] 本発明の徐放性製剤に用いられる水不溶性物質は、 pH緩衝能を示さず、かつ活 性成分の溶出速度を調整、特に遅延する作用を有するものであれば特に制限されな いが、例えば、高級アルコール(例えば、ミリスチルアルコール、セチルアルコール、 ステアリルアルコールなど);ワックス(例えば、カルナパロウ、蜜ロウ、ラノリン、マイクロ クリスタリンワックスなど);硬化油(例えば、ヒマシ油、綿実油、大豆油、菜種油、牛脂 油など);ェチルセルロース;メタクリル酸コポリマー(例えば、アミノアルキルメタクリレ 一トコポリマー RS、アクリル酸ェチル 'メタクリル酸メチルコポリマーなど)等が挙げら れる。より具体的には、高級アルコール、ワックスまたはェチルセルロースが好適であ り、中でもステアリルアルコール、カルナゥバワックスまたはェチルセルロースがさらに 好適である。これらの水不溶性物質は、単独でも 2種以上組み合わせて使用してもよ い。このような水不溶性物質と、 pH非依存性ゲル形成高分子とを組み合わせること によってさらに徐放効果を増すことができる。また、これらの水不溶性物質と PH非依 存性ゲル形成高分子との配合比を変化させることによって、マトリクス中からの化合物 (I)の溶出速度を任意に調節することができる。
[0024] また、本発明の徐放性製剤は、発明の効果に支障のない限り、上記の徐放性基剤 以外に、製剤の製造に用いられる種々の添加剤を含有してもよい。このような添加剤 としては、例えば、賦形剤、結合剤、崩壊剤、滑沢剤、流動化剤、コーティング剤、緩 衝剤、着色剤等が挙げられる。
[0025] このような賦形剤としては、例えば、乳糖、結晶セルロース、マン-トール、デンプン などが挙げられる。結合剤としては、例えば、ヒドロキシプロピルセルロース、ヒドロキ シプロピルメチルセルロース、ゼラチン、アラビアゴム、アルギン酸ナトリウム、ポリェチ レンダリコール、ステアリルアルコール、カルナゥバワックスなどが挙げられる。崩壊剤 としては、低置換度ヒドロキシプロピルセルロース、クロスカルメロースナトリウム、カル メロースカルシウム、クロスポビドン、カルボキシメチルスターチナトリウムなどが挙げら れる。滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン酸、ステアリン酸 カルシウム、タルク、フマル酸ステアリルナトリウムなどが挙げられる。
[0026] 本発明における徐放性製剤の剤形としては、例えば、散剤、顆粒剤、錠剤、カプセ ル剤等の様々な剤形が挙げられ、特に限定されないが、錠剤が好適である。
[0027] 次に本発明の徐放性製剤の製造方法について説明する。
本発明の徐放性製剤は、化合物 (I)が pH非依存性ゲル形成高分子のマトリクス中 に分散していればよぐその製造方法は、特に制限されないが、例えば、以下のよう な方法に従って製造することができる。
[0028] 化合物 (I)と、 pH非依存性ゲル形成高分子、必要に応じてその他の添加剤とを混 合する。次いで、適切な結合剤を使用して、高速撹拌造粒法、流動層造粒法、転動 造粒法など常法の造粒法により造粒し、乾燥、整粒を行い、顆粒を得る。
[0029] また、化合物 (I)と、必要に応じてその他の添加剤とを混合し、次 、で、適切な結合 剤を使用して、高速撹拌造粒法、流動層造粒法、転動造粒法など常法の造粒法によ り造粒する。さらに、乾燥、整粒を行い、 pH非依存性ゲル形成高分子と混合し、顆粒 を得る。 [0030] なお、上記の造粒時に用いる結合剤としては、メタノール、エタノールなどのアルコ ール類、アセトン、塩化メチレン等の有機溶媒または水を結合液として用いる力、ある いは、これらの有機溶媒または水に結合剤を溶解もしくは懸濁した溶液または懸濁 液が、良好な pH緩衝能を得る上で好適である。
[0031] また、乾式造粒法に従って製造する場合は、通常の乾式造粒装置を用いて、化合 物 (I)と、 pH非依存性ゲル形成高分子、必要に応じてその他の添加剤との混合物に 、圧力を加えて塊状とし、整粒を行い、顆粒を得る。
[0032] さらに、低融点の成分 (例えば、高級アルコールまたはワックス、ポリエチレングリコ ールなど)を添加する処方の場合、化合物 (I)と pH非依存性ゲル形成高分子、低融 点の成分、必要に応じてその他の添加剤とを混合し、溶融造粒法により造粒を行つ た後、整粒を行い、顆粒を得る。
[0033] 上記のような方法に従って調製された顆粒に、必要に応じて滑沢剤を添加し、打錠 機で打錠することにより錠剤を得る。なお、滑沢剤を添加する場合、各種の粉体混合 機を用いた常法の混合法により、顆粒と滑沢剤とを混合し打錠しても良いが、外部滑 沢法を用いて打錠することにより、良好な pH緩衝能を得ることができる。
[0034] このようにして製造される本発明の徐放性製剤は、 pH非依存的に放出制御され、 かつ一定した溶出速度を有するので、持続的な効果を有する、頻尿、尿失禁等の疾 患の治療薬として極めて有用である。 発明の効果
[0035] 本発明の徐放性製剤は、 pH1.2〜6.8の範囲において pH非依存的な溶出を示し 、さらには長時間に亘つて一定の溶出率を示す。従って、本発明の徐放性製剤は、 消化管内の pH環境に影響されることなく一定した溶出速度を示し、個体内または個 体間でのバラツキの少ない、優れた持続性効果を発揮することができる。また、本発 明の徐放性製剤は、 pH非依存性ゲル形成高分子を使用することにより、 pH緩衝能 を有する他の成分を添加することなく調製できるので、製造が容易であり工業的生産 【こ; 1≤して 0
図面の簡単な説明
[0036] [図 1]図 1は、化合物 (I)および乳糖からなる錠剤力 の化合物 (I)の溶出率を示した o縦軸は溶出率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 2]図 2は、化合物 (I)および乳糖に、 pH非依存性の水不溶性高分子としてェチル セルロースを添加して調製した錠剤からの化合物 (I)の溶出率を示した。縦軸は溶出 率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 3]図 3は、化合物 (I)および乳糖に、酸性物質としてコハク酸を添加して調製した 錠剤からの化合物 (I)の溶出率を示した。縦軸は溶出率 (%)を示し、横軸は溶出時 間 (分)を示す。
[図 4]図 4は、化合物 (I)および乳糖に、塩基性物質としてリン酸水素二カリウムを添 加して調製した錠剤からの化合物 (I)の溶出率を示した。縦軸は溶出率(%)を示し、 横軸は溶出時間 (分)を示す。
[図 5]図 5は、化合物 (I)および乳糖に、腸溶性ポリマーとしてメタクリル酸コポリマー( Eudragit S)を添加して調製した錠剤からの化合物 (I)の溶出率を示した。縦軸は 溶出率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 6]図 6は、化合物 (I)および乳糖に、 pH依存性ゲル形成高分子としてカルボキシ ビュルポリマーを添加して調製した錠剤力もの化合物 (I)の溶出率を示した。縦軸は 溶出率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 7]図 7は、化合物 (I)および乳糖に、 pH非依存性ゲル形成高分子としてヒドロキシ プロピルメチルセルロース 2910を添加して調製した錠剤からの化合物 (I)の溶出率 を示した。縦軸は溶出率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 8]図 8は、化合物 (I)および乳糖に、 pH非依存性ゲル形成高分子としてポリェチ レンォキシドを添加して調製した錠剤からの化合物 (I)の溶出率を示した。縦軸は溶 出率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 9]図 9は、化合物 (I)および乳糖に、 pH非依存性ゲル形成高分子としてヒドロキシ プロピルメチルセルロース 2910および水不溶性物質としてステアリルアルコールを 添加して調製した錠剤力もの化合物 (I)の溶出率を示した。縦軸は溶出率(%)を示 し、横軸は溶出時間 (分)を示す。
[図 10]図 10は、化合物 (1)、 pH非依存性ゲル形成高分子としてヒドロキシプロピルメ チルセルロース 2910およびポリエチレングリコールの混合物を溶融造粒法により調 製した錠剤力もの化合物 (I)の溶出率を示した。縦軸は溶出率 (%)を示し、横軸は 溶出時間 (分)を示す。
[図 11]図 11は、化合物 (I)および pH非依存性ゲル形成高分子としてヒドロキシプロピ ルメチルセルロース 2910の混合物を、ヒドロキシプロピルセルロースのエタノール溶 液を用いて造粒して調製した錠剤からの化合物 (I)の溶出率を示した。縦軸は溶出 率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 12]図 12は、化合物(I)および乳糖の混合物を、ヒドロキシプロピルセルロースの 水溶液を用いて造粒し、続、て pH非依存性ゲル形成高分子としてヒドロキシプロピ ルメチルセルロース 2910を添加して調製した錠剤からの化合物 (I)の溶出率を示し た。縦軸は溶出率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 13]図 13は、化合物 (I)に、 pH非依存性ゲル形成高分子としてポリビニルアルコ ールを添加して調製した錠剤からの化合物 (I)の溶出率を示した。縦軸は溶出率(% )を示し、横軸は溶出時間 (分)を示す。
[図 14]図 14は、化合物 (I)に、 pH非依存性ゲル形成高分子としてヒドロキシプロピル メチルセルロース 2910を混合した後に、さらにステアリン酸マグネシウムを添カ卩して 調製した錠剤力もの化合物 (I)の溶出率を示した。縦軸は溶出率 (%)を示し、横軸 は溶出時間 (分)を示す。
[図 15]図 15は、化合物 (I)に、 pH非依存性ゲル形成高分子としてヒドロキシプロピル メチルセルロース 2910を添加して調製した後、ステアリン酸マグネシウムを打錠時に 杵と臼に薄く付着させ、打錠した錠剤からの化合物 (I)の溶出率を示した。縦軸は溶 出率 (%)を示し、横軸は溶出時間 (分)を示す。
[図 16]図 16は、化合物 (I)および乳糖に、 pH非依存性ゲル形成高分子としてヒドロ キシプロピルメチルセルロース 2208を添カ卩して調製した錠剤からの化合物(I)の溶 出率を示した。縦軸は溶出率 (%)を示し、横軸は溶出時間 (分)を示す。
発明を実施するための最良の形態
本発明の内容を以下の実施例、比較例および試験例によりさらに詳細に説明する 力 本発明の内容はこれらに限定されるものではない。
実施例 [0038] 試験例 1
溶出試験
以下に示す比較例 1〜6および実施例 1〜5で調製された錠剤を使用し、これらの 錠剤から化合物 (I)の溶出率を調べた。溶出率の評価は、第 14改正日本薬局方溶 出試験法第 2法 (パドル法)に従って、第 14改正日本薬局方崩壊試験法で規定され た第 1液(pHl . 2)および第 2液(pH6. 8)、並びに Mcllvaineの緩衝液(pH4. 0) 各 900mlを用い、製剤をシンカーに入れ、パドル回転数 lOOrpmにて行った。溶出 試験開始後、経時的にサンプリングを行い、吸光度計 (測定波長 225nm)によりサン プルの吸光度を求め、化合物 (I)の溶出率を求めた。
[0039] 比較例 1
化合物(I) 50mg
乳糖 lOOmg
(合計 150mgZl錠)
[0040] 化合物 (I) 500mgおよび乳糖 lOOOmgを乳鉢で混合し、得られた粉末を、単発式 打錠機で圧縮成形し、 1錠当たり 150mgの錠剤を得た。溶出試験の結果を図 1に示 した。
その結果、比較例 1の製剤では、 pH4の試験液の溶出率が最も高ぐ次いで第 2液 の溶出率がやや低ぐ第 1液での溶出率が顕著に低力つた。
[0041] 比較例 2
化合物(I) 50mg
乳糖 70mg
ェチルセルロース 30mg
(合計 150mgZl錠)
[0042] 上記処方に基づき、化合物(I) 500mg、乳糖 700mgおよびェチルセルロース 300 mgを乳鉢で混合し、得られた粉末を、単発式打錠機で圧縮成形し、 1錠当たり 150 mgの錠剤を得た。溶出試験の結果を図 2に示した。
その結果、 pH非依存性で、ゲル層を形成しない水不溶性高分子であるェチルセ ルロースを添加した比較例 2の製剤は、比較例 1の溶出率が遅延されただけで、溶出 率の pH依存性に変化はな力つた。
[0043] 比較例 3
化合物(I) 50mg
乳糖 50mg
コノヽク酸 50mg
(合計 150mgZl錠)
[0044] 上記処方に基づき、化合物(I) 500mg、乳糖 500mgおよびコハク酸 500mgを乳 鉢で混合し、得られた粉末を、単発式打錠機で圧縮成形し、 1錠当たり 150mgの錠 剤を得た。溶出試験の結果を図 3に示した。
その結果、酸性物質としてコハク酸を添加した参考例 3の製剤は、 pH4の試験液と 第 2液との溶出率の差は改善された力 第 1液の溶出率が顕著に低ぐ溶出率の pH 依存性は完全に改善されな力つた。
[0045] 比較例 4
化合物(I) 50mg
乳糖 50mg
リン酸水素二カリウム 50mg
(合計 150mgZl錠)
[0046] 上記処方に基づき、化合物(I) 500mg、乳糖 500mgおよびリン酸水素二カリウム 5
OOmgを乳鉢で混合し、得られた粉末を、単発式打錠機で圧縮成形し、 1錠当たり 15
Omgの錠剤を得た。溶出試験の結果を図 4に示した。
その結果、塩基性物質としてリン酸水素二カリウムを添加した比較例 4の製剤は、 p
H4の試験液と第 2液との溶出率の差は改善されたが、第 1液の溶出率が顕著に低く
、溶出率の pH依存性は完全に改善されな力つた。
[0047] 比較例 5
化合物(I) 50mg
乳糖 70mg
メタクリル酸コポリマー 30mg
(合計 150mgZl錠) [0048] 上記処方に基づき、化合物 (I) 500mg、乳糖 700mgおよび腸溶性基剤としてメタ クリル酸コポリマー(Eudragit S、 Degussa製) 300mgを乳鉢で混合し、得られた粉 末を、単発式打錠機で圧縮成形し、 1錠当たり 150mgの錠剤を得た。溶出試験の結 果を図 5に示した。
その結果、腸溶性ポリマーである Eudragit Sを添加した比較例 5の製剤は、比較 例 1の溶出率が遅延されただけで、溶出率の pH依存性に変化はな力つた。
[0049] 比較例 6
化合物(I) 50mg
乳糖 70mg
カノレボキシビニノレポリマー 30mg
(合計 150mgZl錠)
[0050] 上記処方に基づき、化合物(I) 500mg、乳糖 700mgおよびカルボキシビュルポリ マー(カーボポール 974P NF、 Noveon製) 300mgを乳鉢で混合し、得られた粉末 を、単発式打錠機で圧縮成形し、 1錠当たり 150mgの錠剤を得た。溶出試験の結果 は図 6に示した。
その結果、 pH依存性ゲル形成高分子としてカルボキシビュルポリマーを添加した 比較例 6の製剤は、第 2液に比べて第 1液および pH4における溶出性が顕著に低く 、溶出率の pH依存性は改善されな力つた。
[0051] 実施例 1
化合物(I) 50mg
乳糖 50mg
ヒドロキシプロピルメチルセルロース 2910 50mg
(合計 150mgZl錠)
[0052] 上記処方に基づき、化合物(I) 500mg、乳糖 500mgおよびヒドロキシプロピルメチ ルセルロース 2910 (メトローズ 60SH50、信越化学工業製) 500mgを乳鉢で混合し 、得られた粉末を、単発式打錠機で圧縮成形し、 1錠当たり 150mgの錠剤を得た。 溶出試験の結果を図 7に示した。
その結果、実施例 1の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。
[0053] 実施例 2
化合物(I) 50mg
乳糖 50mg
ポリエチレンォキシド 50mg
(合計 150mgZl錠)
[0054] 上記処方に基づき、化合物(I) 500mg、乳糖 500mgおよびポリエチレンォキシド( POLYOX WSR301、ダウケミカル製) 500mgを乳鉢で混合し、得られた粉末を、 単発式打錠機で圧縮成形し、 1錠当たり 150mgの錠剤を得た。溶出試験の結果を 図 8に示した。
その結果、実施例 2の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。
[0055] 実施例 3
化合物(I) 50mg
乳糖 50mg
ヒドロキシプロピルメチルセルロース 2910 25mg
ステアリルアルコール 25mg
(合計 150mgZl錠)
[0056] 上記処方に基づき、化合物(I) 500mg、乳糖 500mg、ヒドロキシプロピルメチルセ ルロース 2910 (メトローズ 60SH50、信越化学工業製) 250mgおよび、ステアリルァ ルコール 250mgを乳鉢で混合し、得られた粉末を試験管に入れ、約 75°Cに加温し た水中で溶融造粒を行った。この造粒物を乳鉢で粉砕して整粒し、 50メッシュの篩を 通過した顆粒を単発式打錠機で圧縮成形し、 1錠当たり 150mgの錠剤を得た。溶出 試験の結果を図 9に示した。
その結果、実施例 3の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。
[0057] 実施例 4
化合物(I) 160mg
ヒドロキシプロピルメチルセルロース 2910 260mg
ポジエチレング IJn—ノレ 6000 105mg
ステアリン酸マグネシウム 0.53mg
(合計 525.53mgZl錠)
[0058] 上記処方に基づき、化合物(I) 320g、ヒドロキシプロピルメチルセルロース 2910 (T C- 5R、信越化学工業製) 520gおよびポリエチレングリコール 6000 (三洋化成工業 製) 210gを、加温した高速混合撹拌造粒機 (VG- 10、バウレック製)で混合、ポリエ チレングリコール 6000により溶融造粒し、パワーミル(P- 02S、ダルトン製)により整 粒した。得られた粉末にステアリン酸マグネシウム (太平ィ匕学産業製) 1.06gを添加し 、 V型混合機により滑沢混合を行い、ロータリー打錠機により圧縮成形し、 1錠当たり 525.53mgの錠剤を得た。溶出試験の結果を図 10に示した。
その結果、実施例 4の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。
[0059] 実施例 5
化合物(I) 160mg
ヒドロキシプロピルメチルセルロース 2910 240mg
ヒドロキシプロピルセルロース I6mg
ステアリン酸マグネシウム 2.08mg
(合計 418.08mgZl錠)
[0060] 上記処方に基づき、化合物(I) 320g、ヒドロキシプロピルメチルセルロース 2910 (T C- 5S、信越ィ匕学工業製) 480gを高速混合撹拌造粒機 (VG- 10、バウレック製)で 混合し、 5%ヒドロキシプロピルセルロース(HPC- L、 日本槽達製)エタノール溶液 64 Ogを添加し、造粒した。得られた造粒物を乾燥した後、パワーミル (P- 02S、ダルトン 製)により整粒し、ステアリン酸マグネシウム(太平ィ匕学産業製) 4.16gを添加し、 V型 混合機により滑沢混合を行う。得られた混合末をロータリー打錠機により圧縮成形し
、 1錠当たり 418.08mgの錠剤を得た。溶出試験の結果を図 11に示した。
その結果、実施例 5の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。
[0061] 実施例 6
化合物(I) 50mg
乳糖 50mg
ヒドロキシプロピルメチルセルロース 2910 50mg
ヒドロキシプロピルセルロース 1.25mg
(合計 151.25mgZl錠)
[0062] 上記処方に基づき、化合物(I) 1000mg、乳糖 lOOOmgを乳鉢で混合し、そこへ 5 o/oヒドロキシプロピルセルロース(HPC— L、 日本曹達株式会社製)水溶液 500mgを 添カロし造粒した。得られた造粒物を乾燥し、ヒドロキシプロピルメチルセルロース 291 0 (メトローズ 60SH50、信越化学工業製) lOOOmgをカ卩え、乳鉢で混合した。得られ た混合物を単発式打錠機で圧縮成形し、 1錠当たり 151. 25mgの錠剤を得た。溶出 試験の結果を図 12に示した。
その結果、実施例 6の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。
[0063] 実施例 7
化合物(I) 50mg
ポリビュルアルコール lOOmg
(合計 150mgZl錠)
[0064] 上記処方に基づき、化合物(I) 500mgおよびポリビュルアルコール(GH— 17、 日 本合成化学製) lOOOmgを乳鉢で混合し、得られた混合末を単発式打錠機で圧縮 成形し、 1錠当たり 150mgの錠剤を得た。溶出試験の結果を図 13に示した。
その結果、実施例 7の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。
[0065] 実施例 8
化合物(I) 50mg
ヒドロキシプロピルメチルセルロース 2910 lOOmg
ステアリン酸マグネシウム 1.5mg
(合計 151.5mgZl錠)
[0066] 上記処方に基づき、化合物(I) 500mgおよびヒドロキシプロピルメチルセルロース 2 910 (TC5— S、信越化学工業製) lOOOmgを乳鉢で混合し、得られた粉末にステア リン酸マグネシウム (太平ィ匕学産業製) 15mgを加え、ビニール袋内で混合した。得ら れた混合末を単発式打錠機で圧縮成形し、 1錠当たり 151.5mgの錠剤を得た。溶出 試験の結果を図 14に示した。
その結果、実施例 8の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。
[0067] 実施例 9
化合物(I) 50mg
ヒドロキシプロピルメチルセルロース 2910 lOOmg
ステアリン酸マグネシウム 微量
(合計 150mgZl錠)
[0068] 上記処方に基づき、化合物(I) 500mgおよびヒドロキシプロピルメチルセルロース 2 910 (TC5— S、信越化学工業製) lOOOmgを乳鉢で混合し、得られた粉末を、杵と 臼にステアリン酸マグネシウム (太平化学産業製)を付着させ、余分なステアリン酸マ グネシゥムを圧縮エアーで取り除いた単発式打錠機で圧縮成形し、 1錠当たり 150m gの錠剤を得た。溶出試験の結果を図 15に示した。
その結果、実施例 9の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のいず れの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に改 善され、 pH非依存的な溶出性を示した。また、ステアリン酸マグネシウムを外部滑沢 した実施例 9の製剤では、通常の滑沢混合により調製した実施例 8に比べて、さらに 良好な pH非依存的な溶出性を示した。
[0069] 実施例 10
化合物(I) 50mg
乳糖 50mg
ヒドロキシプロピルメチルセルロース 2208 50mg
(合計 150mgZl錠)
[0070] 上記処方に基づき、化合物(I) 500mg、乳糖 500mgおよびヒドロキシプロピルメチル セルロース 2208 (メトローズ 90SH100SR、信越化学工業製) 500mgを乳鉢で混合 し、得られた粉末を、単発式打錠機で圧縮成形し、 1錠当たり 150mgの錠剤を得た。 溶出試験の結果を図 16に示した。
その結果、実施例 10の製剤は、溶出率が 20〜40%、 40〜60%、 70%以上のい ずれの範囲においても、第 1液、 pH4の試験液、第 2液の間の溶出率の差が顕著に 改善され、 pH非依存的な溶出性を示した。
産業上の利用可能性
[0071] 本発明の徐放性製剤は、 pHl. 2〜6. 8の範囲において pH非依存的な溶出性を 示し、さらには長時間に亘つて一定の溶出率を示すので、持続性効果を有する頻尿 '尿失禁治療剤として有用である。

Claims

請求の範囲
[1] 有効成分として(一)一 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキ シフエ-ル)— 1—メチルェチル]ァミノ]ェチル ]—2, 5 ジメチルフエノキシ]酢酸ェ チル塩酸塩と、 pH非依存性ゲル形成高分子とを含有する徐放性製剤。
[2] pHl. 2または pH6. 8に比べて pH4において高い溶出速度を有する有効成分を含 有する、 pH非依存的に放出制御された徐放性製剤であって、有効成分として(一) — 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ 2— (4 ヒドロキシフエ-ル) 1 メ チルェチル]ァミノ]ェチル] 2, 5 ジメチルフエノキシ]酢酸ェチル塩酸塩と、 pH 非依存性ゲル形成高分子とを含有することを特徴とする徐放性製剤。
[3] pHl. 2または pH6. 8に比べて pH4において高い溶出速度を有する有効成分を含 有する、 pH非依存的に放出制御された徐放性製剤であって、有効成分として(一) — 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ 2— (4 ヒドロキシフエ-ル) 1 メ チルェチル]ァミノ]ェチル] 2, 5 ジメチルフエノキシ]酢酸ェチル塩酸塩と、 pH 非依存性ゲル形成高分子とを含有し、実質的に pH非依存性ゲル形成高分子以外 の pH調整剤を含有しな 、ことを特徴とする徐放性製剤。
[4] pH非依存性ゲル形成高分子が、ヒドロキシプロピルメチルセルロース、ポリエチレン ォキシド、ポリビュルアルコール、ヒドロキシプロピルセルロースおよびメチルセルロー スカ なる群力 選択される少なくとも 1種である、請求項 1〜3のいずれか一項記載 の徐放性製剤。
[5] pH非依存性ゲル形成高分子が、ヒドロキシプロピルメチルセルロース、ポリエチレン ォキシドまたはポリビュルアルコール力 選択される少なくとも 1種である、請求項 4記 載の徐放性製剤。
[6] pH非依存性ゲル形成高分子の含有量が、製剤全重量に対して 10重量%以上であ る、請求項 1〜3のいずれか一項記載の徐放性製剤。
[7] pH非依存性ゲル形成高分子の含有量が、有効成分に対して 10重量%以上である
、請求項 1〜3のいずれか一項記載の徐放性製剤。
[8] pH非依存性ゲル形成高分子が、ヒドロキシプロピルメチルセルロースである、請求項
4記載の徐放性製剤。
[9] ヒドロキシプロポキシル基含量が 7〜12%、メトキシ基含量が 28〜30%であるヒドロ キシプロピルメチルセルロースを含有する、請求項 8記載の徐放性製剤。
[10] ヒドロキシプロポキシル基含量が 4〜12%、メトキシ基含量が 19〜24%であるヒドロ キシプロピルメチルセルロースを含有する、請求項 8記載の徐放性製剤。
[11] ヒドロキシプロピルメチルセルロースの含有量力 有効成分に対して 30重量%以上 である、請求項 8記載の徐放性製剤。
[12] ヒドロキシプロピルメチルセルロースの含有量力 有効成分に対して 40重量%以上 である、請求項 8記載の徐放性製剤。
[13] さらに水不溶性物質を含有する、請求項 1〜3のいずれか一項記載の徐放性製剤。
[14] 水不溶性物質が、高級アルコール、ワックス、硬化油、ェチルセルロースおよびアタリ ル酸ェチル 'メタクリル酸メチルコポリマーおよびアミノアルキルメタクリレートコポリマ 一 RSから選択される少なくとも 1種である、請求項 13記載の徐放性製剤。
[15] 水不溶性物質が、高級アルコールおよびワックス力 選択される少なくとも 1種である
、請求項 13記載の徐放性製剤。
[16] (― )— 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキシフエ-ル)一 1ーメチルェチル]ァミノ]ェチル] 2, 5 ジメチルフヱノキシ]酢酸ェチル塩酸塩を 有効成分として含有する徐放性製剤の pH非依存的な放出制御方法であって、該方 法は、 (一)一 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキシフエ- ル) 1—メチルェチル]ァミノ]ェチル] 2, 5 ジメチルフエノキシ]酢酸ェチル塩 酸塩を pH非依存性ゲル形成高分子のマトリクス中に分散させることを特徴とする方 法。
[17] (― )— 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキシフエ-ル)一 1ーメチルェチル]ァミノ]ェチル] 2, 5 ジメチルフヱノキシ]酢酸ェチル塩酸塩を 含有してなる pH非依存的に放出制御された徐放性製剤用である、 pH非依存性ゲ ル形成高分子からなる pH調整剤。
[18] (― )— 2— [4— [2— [ [ (IS, 2R)— 2 ヒドロキシ一 2— (4 ヒドロキシフエ-ル)一 1ーメチルェチル]ァミノ]ェチル] 2, 5 ジメチルフヱノキシ]酢酸ェチル塩酸塩を 有効成分として含有する、 pH非依存的に放出制御された徐放性製剤の製造方法で あって、該方法は、(一)一 2— [4— [2— [ [ (IS, 2R)— 2—ヒドロキシ一 2— (4—ヒド ロキシフエ-ル)— 1—メチルェチル]ァミノ]ェチル ]—2, 5—ジメチルフエノキシ]酢 酸ェチル塩酸塩を pH非依存性ゲル形成高分子のマトリクス中に分散させることを特 徴とする方法。
PCT/JP2006/325824 2006-01-10 2006-12-26 徐放性製剤およびその製造方法 WO2007080776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06843208A EP1974725A4 (en) 2006-01-10 2006-12-26 PREPARATION WITH DELAYED RELEASE AND METHOD OF MANUFACTURING THEREOF
US12/159,281 US20100172988A1 (en) 2006-01-10 2006-12-26 Sustained release preparation and method for production thereof
JP2007553867A JP5124286B2 (ja) 2006-01-10 2006-12-26 徐放性製剤およびその製造方法
CA002632962A CA2632962A1 (en) 2006-01-10 2006-12-26 Sustained release preparation and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006002164 2006-01-10
JP2006-002164 2006-01-10

Publications (1)

Publication Number Publication Date
WO2007080776A1 true WO2007080776A1 (ja) 2007-07-19

Family

ID=38256188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325824 WO2007080776A1 (ja) 2006-01-10 2006-12-26 徐放性製剤およびその製造方法

Country Status (5)

Country Link
US (1) US20100172988A1 (ja)
EP (1) EP1974725A4 (ja)
JP (1) JP5124286B2 (ja)
CA (1) CA2632962A1 (ja)
WO (1) WO2007080776A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968779B2 (en) 2010-06-16 2015-03-03 Teijin Pharma Limited Controlled release coat-core tablet
JP2015535255A (ja) * 2012-10-24 2015-12-10 オニキス セラピューティクス, インク.Onyx Therapeutics, Inc. オプロゾミブの放出調節製剤
JP2018530537A (ja) * 2015-09-14 2018-10-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 媒体に依存しない活性成分の放出を有する錠剤

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478712B (zh) 2008-09-30 2015-04-01 Astellas Pharma Inc 釋控性醫藥組成物
US20120070465A1 (en) 2010-03-29 2012-03-22 Astellas Pharma Inc. Pharmaceutical composition for modified release
MY191357A (en) * 2012-11-15 2022-06-19 Incyte Holdings Corp Sustained-release dosage forms of ruxolitinib
US12097189B1 (en) 2024-02-09 2024-09-24 Astellas Pharma Inc. Pharmaceutical composition for modified release

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069388A (ja) * 1992-06-24 1994-01-18 Kodama Kk 徐放性塩酸オキシブチニン製剤
WO2004047838A2 (de) * 2002-11-27 2004-06-10 Boehringer Ingelheim International Gmbh Pharmazeutische zusammensetzung aus beta-3-adrenozeptor-agonisten und antimuskarinika

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695591A (en) * 1985-03-29 1987-09-22 Schering Corporation Controlled release dosage forms comprising hydroxypropylmethylcellulose
US4792452A (en) * 1987-07-28 1988-12-20 E. R. Squibb & Sons, Inc. Controlled release formulation
DE10356112A1 (de) * 2003-11-27 2005-06-23 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pharmazeutische Zusammensetzung aus einem Beta-3-Adrenozeptor-Agonisten und einem in den Prostglandinstoffwechsel eingreifendem Wirkstoff

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069388A (ja) * 1992-06-24 1994-01-18 Kodama Kk 徐放性塩酸オキシブチニン製剤
WO2004047838A2 (de) * 2002-11-27 2004-06-10 Boehringer Ingelheim International Gmbh Pharmazeutische zusammensetzung aus beta-3-adrenozeptor-agonisten und antimuskarinika

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1974725A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968779B2 (en) 2010-06-16 2015-03-03 Teijin Pharma Limited Controlled release coat-core tablet
JP2015535255A (ja) * 2012-10-24 2015-12-10 オニキス セラピューティクス, インク.Onyx Therapeutics, Inc. オプロゾミブの放出調節製剤
JP2018530537A (ja) * 2015-09-14 2018-10-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 媒体に依存しない活性成分の放出を有する錠剤

Also Published As

Publication number Publication date
CA2632962A1 (en) 2007-07-19
JPWO2007080776A1 (ja) 2009-06-11
JP5124286B2 (ja) 2013-01-23
EP1974725A1 (en) 2008-10-01
EP1974725A4 (en) 2012-12-05
US20100172988A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5739080B2 (ja) レベチラセタムの徐放性製剤
JP4971159B2 (ja) プラミペキソール又はその薬学的に許容しうる塩を含有する徐放性ペレット製剤、その製法及び使用
US20110071137A1 (en) Process for preparing sustained release tablets
US20060088594A1 (en) Highly compressible controlled delivery compositions of metformin
JP5420590B2 (ja) pH非依存延長放出性医薬組成物
WO2001035958A1 (en) Carvedilol methanesulfonate
AU5290698A (en) Modified release matrix formulation of cefaclor and cephalexin
WO2007080776A1 (ja) 徐放性製剤およびその製造方法
JP2017531637A (ja) プレガバリン徐放性製剤
US8445020B2 (en) High-loading, controlled-release magnesium oral dosage forms and methods of making and using same
WO2006123213A1 (en) Modified release formulations of gliclazide
US20060147530A1 (en) Sustained release compositions containing alfuzosin
EP2503996A2 (en) Controlled release pharmaceutical compositions of galantamine
US20070160667A1 (en) Controlled release formulation of divalproex sodium
JP2017214352A (ja) 高負荷、制御放出マグネシウム経口剤形およびそれを作製および使用するための方法
EP1815850B1 (en) Controlled release formulation of divalproic acid and its derivatives
TW202143959A (zh) 一種非布司他片
JP2018508501A (ja) タムスロシン塩酸塩含有徐放性顆粒を含む経口用薬剤学的製剤
WO2007081341A1 (en) Controlled release formulation of divalproic acid and its derivatives
WO2023002004A1 (en) Multiparticulate pharmaceutical composition
CN112137978A (zh) 一种胃保留改性释放的固体药物组合物、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2632962

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007553867

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12159281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006843208

Country of ref document: EP