WO2007077924A1 - 脱臭方法 - Google Patents

脱臭方法 Download PDF

Info

Publication number
WO2007077924A1
WO2007077924A1 PCT/JP2006/326245 JP2006326245W WO2007077924A1 WO 2007077924 A1 WO2007077924 A1 WO 2007077924A1 JP 2006326245 W JP2006326245 W JP 2006326245W WO 2007077924 A1 WO2007077924 A1 WO 2007077924A1
Authority
WO
WIPO (PCT)
Prior art keywords
deodorizing
porous body
ceramic porous
ceramic
acidic
Prior art date
Application number
PCT/JP2006/326245
Other languages
English (en)
French (fr)
Inventor
Kinji Takeuchi
Yoshitada Yamagishi
Hideo Igami
Original Assignee
Kinji Takeuchi
Yoshitada Yamagishi
Hideo Igami
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinji Takeuchi, Yoshitada Yamagishi, Hideo Igami filed Critical Kinji Takeuchi
Priority to JP2007529283A priority Critical patent/JP4063316B2/ja
Publication of WO2007077924A1 publication Critical patent/WO2007077924A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/42Basic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0076Deodorizing agents

Definitions

  • the present invention relates to deodorization of water-soluble malodorous gas and removal of unsaturated fatty acids generated by, for example, organic matter rot, fermentation, oxidation, etc. in food processing plants, fertilizer feed plant, livestock barn, sewage, human waste treatment plant Further, the present invention relates to a method for detoxifying malodorous gas generated by organic matter decay, fermentation, oxidation, etc. in an asphalt regeneration plant. More specifically, for example, ammonia-based malodors such as ammonia and trimethylamine, organic acids such as acetic acid and isovaleric acid, fatty acids, and hydrocarbons generated in asphalt regeneration plants, which are generated in food factories and composting facilities.
  • the present invention relates to a method for removing malodorous substances and harmful substances contained in the air for the purpose of reducing malodorous substances such as sulfur-containing odorous substances and oil mist.
  • the cleaning method has a low construction cost and is suitable for removing the ammonia odor, and is suitable for the treatment of malodorous gases having a low concentration and a large air volume. For this reason, the cleaning method is widely used in fertilizers' feed factories, fried food factories, sewage and sewage treatment plants. However, the cleaning method has a problem in that the running cost is high for removing ammonia dissolved in water and treating a large amount of wastewater used for cleaning.
  • the adsorption method is a method used in fertilizers such as feed plants, sewage / sewage treatment plants, and the like.
  • the adsorption method includes a method using activated carbon as an adsorbing material and a method using ion exchange resin.
  • Activated carbon is used for low-concentration mixed malodorous gas, and the initial equipment cost is relatively low, but it is not very effective for basic malodor such as ammonia.
  • ion exchange resin is used as an adsorbing material, it is effective for a slightly high concentration of bad odor, but has a drawback of lacking stability.
  • the adsorption method frequently exchanges adsorbent materials. It is necessary to change.
  • the neutralization method is easy to handle and is used in food factories, chemical factories, sewage and sewage treatment plants, and the like.
  • the neutralization method has a limited application range where the effect on ammonia is low.
  • the neutralization method requires a chemical for neutralization (neutralizing agent), and the running cost is high due to its replenishment.
  • the cleaning method, the adsorption method, and the neutralization method have a low construction cost and are easy to maintain.
  • chemicals for neutralization are required, construction costs are relatively low, and maintenance is easy, the higher the raw odor concentration, the higher the cost of regeneration of the adsorbent and the replenishment of the neutralizing agent. The cost of running back to the running cost.
  • the catalytic combustion method is applied to a high-concentration malodor that has a very high malodor removal efficiency.
  • the catalytic combustion method is not applied to the livestock industry because of the high equipment and running costs.
  • the oxidation method is suitable for small-scale equipment, and is used in fertilizers, feed plants, food factories, petrochemical plants, sewage and human waste treatment plants! RU
  • the oxidation method includes an ozone oxidation method and a chlorine oxidation method. Any of them has an effect on sulfur-containing malodors. Almost no effect on basic odors such as ammonia.
  • the photocatalytic method is expensive in mechanical equipment, inferior in cost performance, and is not suitable for large-capacity treatment, so it is limited to removing low-concentration and small air volume odors. Although applied to facilities, the deodorizing effect is low.
  • the biological deodorization method uses the deodorizing effect of soil and the soil microorganisms that inhabit it, and is effective for almost all malodorous fields, and can be applied to almost all except chemical plants. .
  • the biological deodorization method has an advantage that equipment costs and running costs are low.
  • the biological deodorization method requires a large area in the facility, and complete deodorization is impossible, and the concentration of bad odor is high, and the effect is not recognized.
  • the masking method is a method of concealing low-concentration malodor with another odor such as perfume that is not removed by removing the original odor gas, and is not a fundamental solution and has limited applications.
  • an oxidation catalyst layer obtained by impregnating a porous ceramics hard cam body with a catalyst metal is provided in a vertical cylinder, and a water spray nozzle is disposed above the catalyst layer, and a hot air supply nozzle is disposed below the catalyst layer.
  • the exhaust pipe at the top of the cylinder, the exhaust gas supply pipe to the lower part, the exhaust gas processing apparatus has been proposed that the discharge pipe at the bottom respectively attached (see Patent Document 1.) o in this air pollution control apparatus, the ⁇ Sufuaruto regeneration furnace Preheated exhaust gas at 200 to 250 ° C containing exhausted harmful substances such as carbon monoxide and hydrocarbons, carbon pitch, etc., and heated up to 300 to 400 ° C, then from the exhaust gas supply pipe It is supplied into the cylinder and passed through the oxidation catalyst layer to be converted into a harmless substance such as carbon dioxide, carbon, hydrogen, etc., and exhausted from the exhaust pipe at the top of the cylinder.
  • the ⁇ Sufuaruto regeneration furnace Preheated exhaust gas at 200 to 250 ° C containing exhausted harmful substances such as carbon monoxide and hydrocarbons, carbon pitch, etc., and heated up to 300 to 400 ° C, then from the exhaust gas supply pipe It is supplied into the cylinder and passed through the oxidation catalyst layer to be converted into a harmless
  • the washing water is sprayed from the water spray pipe to the catalyst layer, and the dust adhering to the catalyst layer is washed with water.
  • the hot air of 500 to 700 ° C is supplied from the hot air supply nozzle and the remaining heated material such as carbon and pitch that adheres to the catalyst layer is incinerated and removed to activate the catalyst, thereby extending the life of the catalyst.
  • this exhaust gas treatment device is effective for detoxifying carbon monoxide, hydrocarbons, etc. discharged from asphalt regeneration furnaces. The deodorization of deodorization cannot be expected.
  • the sprayed water is used to stop the supply of exhaust gas and clean the catalyst, and serves to reactivate the catalyst.
  • a deodorization tower is formed by forming an odor gas outlet at the lower part and forming a deodorization gas outlet at the upper part.
  • a chemical solution circulation tank storing a circulating solution containing caustic soda is provided at the bottom of the deodorization tower, and the chemical solution circulation tank is circulated and supplied between the odor gas inlet and the deodorization gas outlet in the deodorization tower.
  • a spray nozzle for spraying a chemical solution is provided, and a carbon ceramic filler layer having a cylindrical or prismatic shape with a diameter or length of 1 cm or more and a hole with a diameter of 100 A or more is provided below the spray nozzle to deodorize it.
  • a deodorizing device that removes malodorous components in the odorous gas flowing into the tower (see Patent Document 2;). But this The deodorization device detoxifies hydrogen sulfide generated in human waste treatment facilities, etc. by reaction with caustic soda, and the carbon ceramic filler is merely a catalyst for promoting the reaction, other than hydrogen sulfide. The effect of removing (deodorizing) ammonia and organic acid odors cannot be expected.
  • Ball (sphere) and cylinder made of O and having countless needle-shaped fine pores of 0.2 nm to 20 nm
  • the ceramics are composed of Mg as the nucleus, with 0 (oxygen atom), Si (silicon), OH (hydroxyl group), A1 (aluminum), etc. It is presumed that a matrix (three-dimensional lattice) is formed, and when water adheres to the acicular micropores, water molecules (HO)
  • oxygen (O) sticks to the acicular micropores in the form of oxygen ions.
  • this flue equipment is limited to the detoxification of malodorous substances in exhaust gas discharged from the waste gas lump treatment equipment.
  • no consideration is given to the application to the detoxification treatment of exhaust gas containing various malodorous substances such as alkaline gas.
  • the ceramics filled in the catalytic reaction tower are relatively soft and soft ceramics fired at a low temperature of 250 to 300 ° C, and are not so strong. Care must be taken in handling, and durability may not be sufficient depending on the application.
  • Patent Document 1 Japanese Utility Model Publication No. 3-54731
  • Patent Document 2 Japanese Patent Laid-Open No. 9882
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-232232
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-301336
  • the present invention has been made in view of the various problems associated with the conventional methods, and an object thereof is to provide a high-efficiency, low-cost deodorization method.
  • the present inventors have made the best use of the structural effectiveness of ceramics in place of the existing catalytic method, and have developed an acidic or basic malodorous component in the air.
  • Provide an environment for primary modification of harmful components hereinafter collectively referred to as “original odor substances”
  • original odor substances harmful components
  • the present inventors have found a deodorizing method capable of deodorizing with higher efficiency by introducing the raw odor substance in the air to the active site on the ceramic and employing water as a medium for contacting with the ceramic. .
  • a deodorizing method for discharging as converted air wherein the ceramic porous body has an acidic substance or a basic substance supported on the ceramic porous body having continuous through pores, and the acidic component in the air is It is characterized in that it is removed by passing through a ceramic porous body carrying a basic substance, and the basic component in the air is removed by passing through a ceramic porous body carrying an acidic substance.
  • the step of primary modification by a neutralization reaction in a basic atmosphere the basic odor in an acidic atmosphere, and the primary modified odor.
  • the ceramic porous body according to the malodorous or harmful component using the ceramic porous body as a carrier, and further the malodor contained in the air.
  • a ceramic porous body having good continuous through-holes can be obtained, and MgO, MnO, FeO, CaO, SiO, contained in the slag can be obtained.
  • the ceramic porous body particles, preferably spherical ones, are filled in an air permeable case to form a deodorizing layer, whereby the air resistance is reduced, and the ceramic porous body during ventilation is reduced. This vibration increases the chance of contact with the raw odor substance in the air and improves the removal efficiency of the original odor substance.
  • the deodorization efficiency is further improved by interposing moisture when the air containing the raw odor substance is in contact with the porous ceramic body.
  • this deodorization method combines the advantages of the conventional deodorization methods of the adsorption method, neutralization method and cleaning method, and is characterized by the original odorous substances (ammonia, trimethyla contained in the air) that are characteristic of ceramics.
  • Min acetic acid, isovaleric acid, fatty acids, (Sulfur-containing odorous substances, oil mist, other malodorous or harmful components) are easily captured in an acidic atmosphere or basic atmosphere with an acidic substance or basic substance supported on a porous ceramic body.
  • Water is used as a medium for primary modification of the raw odor substance and at the same time as a transfer medium for bringing the raw odor substance into contact with the ceramic porous body. That is, in the present invention, water is not simply collected for regeneration of the catalytic activity as in the prior art. For example, the raw odor substance is removed from the water by the wind force constantly maintaining the wind speed of 0.5 mZs to 4. OmZs.
  • the present invention provides a new deodorizing system with unprecedented high efficiency and low cost, forcibly flowing and moving to the catalytic active point on the ceramic porous body.
  • a plurality of deodorizing layers provided so as to divide the main body into a plurality of spaces and air containing malodorous or harmful components are supplied into the device main body and are forced to pass through the deodorizing layer to be detoxified.
  • the deodorizing layer is a ceramic porous body having continuous through pores, and is made of a ceramic porous body carrying an acidic substance or a basic substance.
  • a water supply means for supplying water to the ceramic porous body of the deodorizing layer is provided.
  • the original odor contained in the air at low cost can be obtained by forcibly passing the air containing the malodorous component or harmful component through the deodorizing layer having the ceramic porous body strength. Substances can be removed with high efficiency and discharged as harmless air. Therefore, according to the present invention, it is possible to improve a working environment such as a factory, a surrounding living environment, an environment in a store such as a pet shop, and an indoor environment such as an office or a house.
  • water as a medium promotes the oxidation-reduction reaction, and as a result, removal of all offensive components such as ammonia, organic acid, sulfur-containing malodorous substances and fatty acids, that is, mixed malodors. It is also effective for deodorization.
  • a solid basic substance having a pH of 8.0 to 10.0 for example, is used for an acidic odor, and a pH 3.0 to 5 is used for a basic odor, for example.
  • 0 solid acid substances By using 0 solid acid substances, a large amount of water is not required to create an acidic or basic atmosphere, and wastewater treatment costs can be kept low.
  • it has the function of transferring the hydrodynamic original odor substance to the detoxifying active site on the ceramic porous body, so no neutralizer is required to maintain the deodorizing ability, and the normal force can be processed at room temperature. Light energy does not require heat energy to remove raw odor substances, and can be deodorized at low cost.
  • the deodorization method according to the present invention is a continuous treatment method with little environmental burden, such as the cost of wastewater treatment being zero, since almost no odorous substances or harmful substances are mixed in the wastewater.
  • FIG. 1 is a schematic view (plan view) of an embodiment of a deodorizing apparatus used for carrying out the method of the present invention.
  • FIG. 2 is a cross-sectional plan view of the deodorizing apparatus used in the examples.
  • FIG. 3 is a cross-sectional plan view of another deodorizing apparatus used in the examples.
  • FIG. 4 is a plan sectional view of still another deodorizing apparatus used in the examples.
  • the deodorization method according to the present invention forcibly applies a malodorous component or air containing a harmful component (hereinafter also referred to as "odorous gas” or “raw gas”) to a deodorizing layer having a ceramic porous body force. It is a deodorizing method for removing the malodorous component or harmful component by passing it through.
  • odorous gas a malodorous component or air containing a harmful component
  • raw gas a deodorizing method for removing the malodorous component or harmful component by passing it through.
  • malodorous or harmful components in the odor gas to be treated by the method of the present invention include ammonia, trimethylamine, acetic acid, isovaleric acid, fatty acids, sulfur-containing odorous substances, oil mist, and other malodorous and harmful components. There is no particular limitation.
  • FIG. 1 shows an embodiment of a deodorizing apparatus for carrying out the deodorizing method of the present invention. Note that the form of the apparatus shown in FIG. 1 does not limit the deodorizing apparatus used in the practice of the present invention.
  • the deodorizing apparatus 1 shown in the figure has an odor gas (air containing odorous and harmful components) to be treated from one side (right side in the figure) to the other side (left side in the figure) of the apparatus body 2. ) Is forcibly passed to remove raw odorous substances such as odorous and harmful components contained in the odor gas, and exhausted from the device body 2 as detoxified air.
  • odor gas air containing odorous and harmful components
  • the apparatus main body 2 is a box having a corrosion-resistant material such as stainless steel, and has an intake port on one side and an exhaust port on the other side, and a plurality of deodorizing layers are provided in the inside. 3 is provided so as to partition the inside of the apparatus main body 2 between the intake side and the exhaust side into a plurality of spaces.
  • a ceramic porous body 4 is filled in a gas-permeable case whose both surfaces are covered with a metal mesh or the like.
  • a watering nozzle 6 connected to a water supply means (not shown) is provided toward the deodorizing layer 3.
  • the reference numeral 5 indicates a water stop cock
  • the reference numeral 7 indicates a drain outlet connected to the drain pipe 8.
  • the drain pipe 8 may be connected to a water supply means to circulate and use water.
  • the deodorizing apparatus 1 shown in the figure is a horizontal type, but may be a vertical type or may be inclined.
  • the deodorizing operation by the deodorizing apparatus 1 is performed using air (odor gas) containing various offensive odor components and harmful components such as exhaust gas from a food processing plant, exhaust gas generated at a human waste treatment plant, and exhaust gas from an asphalt regeneration plant. ) Is sucked in by a suction means such as a sirocco fan, forcibly introduced into the device body 2 and scattered when passing through the ceramic porous body 4 of the deodorizing layer 3.
  • a suction means such as a sirocco fan
  • the mechanism of deodorization in the present invention is considered as follows. That is, the odor gas to be treated first comes into contact with a basic substance or an acidic substance supported on the ceramic porous body, and the acidic odor is a basic odor in a basic atmosphere of the basic substance. Is first-modified quickly by a neutralization reaction in an acidic atmosphere of the acidic substance. Further, in the present invention, the catalytic metal contained in the odor gas power ceramic porous body primarily modified as described above, or the basic material or acidic substance attached using the ceramic porous body as a carrier is contacted. The raw odor substance contained in the odor gas is removed.
  • the ceramic porous body 4 constituting the deodorizing layer 3 is obtained by supporting a basic substance or acidic substance on a ceramic porous body having continuous through pores.
  • the method for producing the ceramic porous body for example, clay as a ceramic raw material and a foaming agent are mixed, water is added and kneaded, and then molded into a predetermined shape and fired.
  • the ceramic porous body 4 contains a catalytic metal such as vanadium, iron, platinum and nickel. These catalytic metals may be contained in the ceramic raw material! Or may be added with the fired ceramic porous body as a support.
  • a catalytic metal such as vanadium, iron, platinum and nickel.
  • a composition obtained by adding water to pig iron slag and plastic clay, mixing and kneading is molded into a desired shape and dried.
  • Examples include foamed and fired at a temperature in the range of 900 to 1150 ° C.
  • the amorphous slag produced during the manufacture of pig iron products is crushed and sieved and adjusted to a particle size range of 0.25 to 2.
  • Omm, 50 to 80% by weight, and plastic clay is 20 to 50% by weight.
  • the mixture is molded into a desired shape and dried. Foamed and fired at temperature It is a thing.
  • the ceramic porous body using the pig iron slag is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-47075. More specifically, the amorphous slag produced during the manufacture of ductile pig iron products is crushed and sieved, and the particles are sized in the range of 0.25 to 2. Omm, and the individual particles are wrapped with plastic clay. The slag particles are individually foamed and sintered together by heating in a temperature range of 900 to 1150 ° C. It is a ceramic porous body which has.
  • the chemical components of the pig iron slag are the same as those of the glass composition disclosed in, for example, Japanese Patent Laid-Open No. 10-7433 (Patent No. 2899954), and include 35 to 45% by weight of SiO and 10% of Al 2 O 3. ⁇
  • MnO, CaO comprises a S or the like, and (CaO + MgO) / weight ratio of SiO is 0. 9 to 1. 2, Al O / SiO ratio is between 0.25 and 0.35
  • Pig iron slag as described above is mixed with plastic clay, kneaded with water, and molded so that individual slag particles are encased in plastic clay, and in a temperature range of 900-1150 ° C.
  • the individual ceramic slag particles are foamed as individual pieces and sintered together to obtain a porous ceramic body used in the present invention having continuous through pores. This is because when glassy slag having a specific chemical composition as described above is heated above 700 ° C, crystals such as SiO-AlO-CaO are leached, and in parallel with this.
  • the liquid phase is separated, and the decomposition volatile component SO is combined with iron and manganese in the glass phase.
  • the raw materials that enclose individual slag particles are plastic clays such as Kibushi clay, Sasame clay, and bentonite that sinter at around 900 ° C where slag particles foam and are suitable for the reaction system with slag.
  • Plastic clay needs to be at least 20% by weight. If the strength exceeds 50% by weight, the expansion ratio is greatly reduced. 0% by weight.
  • This plastic clay also serves as a forming binder when forming a ceramic kneaded material.
  • the amount of water stored in the mixture of pig iron slag and plastic clay is 12 to 25 parts by weight, more preferably 13 to 15 parts by weight with respect to 100 parts by weight of the mixture.
  • the molding method of the kneaded product is not particularly limited. When molding into a granule, a method of extruding the kneaded product into a rod having an appropriate length from an extruder and shaping it with a granulator such as a Malmerizer, or the kneaded product A method of granulating while stirring in an omnimixer can be employed.
  • a composition obtained by adding water to the pig iron slag and the plastic clay and mixing and kneading is molded into a desired shape, and then dried to a moisture content of 1% or less. After that, from room temperature to 700 ° C, sufficient uniform heating is performed according to the size and thickness of the molded body. This is a temperature force exceeding 700 ° C. Since the crystallization of pig iron slag begins and phase separation and liquid phase formation occur, it is an important temperature range of the foaming mechanism. It is necessary to dehydrate the clay crystal water almost uniformly from the surface to the inside.
  • the slag particles are rapidly heated at a temperature rising rate of 20 to 40 ° C / min to foam individual slag particles at once.
  • sintering is performed at a temperature of 1000-1150 ° C. More preferably, from 700 ° C up to about 850 ° C where foaming starts, the heating rate is about 10 ° CZ, and the surface and internal temperatures are made uniform by heating slowly. Up to 1000 ° C, it is preferable to increase the rate of temperature rise, rapidly reduce the viscosity, and foam slag particles and weld particles at once.
  • the temperature rising rate is appropriately adjusted depending on the size and thickness of the ceramic molded body. In the temperature range of 1000 ° C or higher, the strength of the compact can be increased by increasing the heating temperature.
  • an acidic odor is primarily modified by a neutralization reaction in a basic atmosphere, and a basic odor is acidic in an acidic atmosphere.
  • the basic porous substance 4 is supported on the ceramic porous body 4 so that an acidic raw odor substance such as acetic acid in the air passing through the porous ceramic body is removed in a basic atmosphere.
  • an acidic raw odor substance such as acetic acid in the air passing through the porous ceramic body is removed in a basic atmosphere.
  • a solid basic substance having a pH of 8.0 to 10.0 is supported on the ceramic porous body 4 and used as the deodorizing layer 3.
  • Preferred examples of the solid basic substance include active magnesium and Z or active magnesia, and an odor having an acetate group. Particularly suitable for the ingredients.
  • a ceramic porous body is impregnated with a slurry in which magnesium oxide is dispersed in an aqueous silica sol solution, dried at a temperature of 200 to 250 ° C., and supported on the ceramic porous body.
  • an aqueous lithium silicate solution is preferably used as the silica sol.
  • the main component of the solid basic substance supported on the ceramic porous body is magnesia oxysulfide composed of 5 MgO -MgSO ⁇ 8 ⁇ .
  • a ceramic-supported slurry containing a small amount of charcoal and calcium sulfate (CaSO) is added.
  • the MgO component is believed to generate magnesium acetate ion, which reacts very well with acetic acid, and then reduces the raw odorant by the CaS ion (S—) to decompose it.
  • the basic porous odor substance such as ammonia in the air passing through the porous ceramic body can be removed from the acidic atmosphere by supporting the porous ceramic body 4 with the acidic substance.
  • the ceramic porous body 4 in which a solid acidic substance having a pH of 3.0 to 5.0 is supported is used as the deodorizing layer 3.
  • the solid acidic substance include clay minerals having a two-dimensional layered structural force, such as acidic clay, montmorillonite, kaolinite, and halloysite.
  • the clay mineral having the two-dimensional layered structure is preferably used after being heated to a temperature in the range of 300 to 600 ° C. to dehydrate the interlayer water and then acid-treated.
  • the dehydrated clay mineral is dispersed in an aqueous solution of an inorganic acid such as sulfuric acid, nitric acid, phosphoric acid or the like adjusted to a hydrogen ion concentration (PH) of about 2 to 5, and the impregnating liquid contains the impregnating liquid.
  • an inorganic acid such as sulfuric acid, nitric acid, phosphoric acid or the like adjusted to a hydrogen ion concentration (PH) of about 2 to 5
  • PH hydrogen ion concentration
  • the ceramic porous body is immersed and impregnated, dried at 150 to 250 ° C., and acid-treated to pH 3.0 to 5.0.
  • the ceramic porous body 4 more preferably includes carbon having an adsorption function on the surface, pores or pore inner surfaces.
  • a ceramic porous body containing carbon and supporting a solid acidic substance include clay minerals having a two-dimensional layered structural force such as acidic clay, montmorillonite, carolinite, rhosite, and leucite. After impregnating the pores dehydrated with interlayer water by heating to a temperature in the range of 300-600 ° C, impregnating with petroleum or vegetable oil, etc., the temperature of 600-700 ° C or 800-1000 ° C By firing at a temperature within the range, an activated carbon film is formed in the pores to obtain a clay mineral with improved hydrophobicity.
  • This clay mineral containing active carbon on the surface is mixed with sulfuric acid and glass adjusted to a hydrogen ion concentration (PH) of about 2 to 5. Disperse in an aqueous solution of an inorganic acid such as acid or phosphoric acid to make an impregnating solution.
  • the porous ceramic is immersed in the impregnating solution, impregnated, dried at 150 to 250 ° C, and pH 3.0 to 5. Acid treatment to 0.
  • This porous ceramic body carrying a solid acidic substance with carbon on its surface is composed of macropores and micropores, and is hydrophobic, but has high affinity with organic compounds that are malodorous components. Demonstrate quick adsorption of malodorous components. The component adsorbed by the carbon film moves through the pores to the active site on the surface of the porous ceramic body, and is rendered harmless.
  • odor gas air containing the original odor substance
  • the ceramic porous body 4 of the deodorization layer 3 in a dry state.
  • deodorization efficiency is improved.
  • any of a method of supplying water to the deodorizing layer 3 to wet the ceramic porous body 4 and a method of supplying odor to the deodorizing layer 3 in a humidified state may be used.
  • the humidity is 50% or more, preferably 50 to 70%.
  • the water supplied to the ceramic porous body 4 is preferably tap water. This is because tap water is generally contained in tap water, and it is considered that the redox reaction on the surface of the ceramic porous body 4 is promoted. Normally, the chlorine content of this water does not need to be adjusted and can be used regardless of the chlorine content.
  • water may be directly supplied to the ceramic porous body 4 by drip water injection, or may be performed from a water spray nozzle 6 (spray nozzle) as shown in FIG. In addition, a micromist nozzle can be used to spray water.
  • the standard water supply is 1Z3 capacity per hour for the ceramic porous body capacity per hour.
  • the deodorizing method of the present invention comprises a step of primary modification with a solid basic substance or a solid acidic substance in which a plurality of deodorizing layers 3 are connected in series and water is appropriately interposed, and
  • the process of detoxifying malodorous or harmful components by contact with a porous tassel can be repeated multiple times, but it is not always necessary to repeat it multiple times.
  • a single deodorizing operation can be performed. Both acidic and basic components can be removed from the air.
  • the ceramic porous body 4 of the deodorizing layer 3 may be in the form of a block, but it is granular.
  • the contact area with the raw odor substance in the odor gas is large, and the ceramics due to the passing air Due to the vibration of the porous body 4, the contact frequency between the raw odor substance and the active point on the ceramic porous body 4 is increased, and the ventilation resistance is reduced, so that the deodorization efficiency is good.
  • the ceramic porous body 4 preferably has a porosity of at least 50% or a specific surface area of 3 m 2 Zg or more from the viewpoint of ventilation resistance and deodorization efficiency.
  • the size and shape of the granular ceramic porous body are not particularly limited, but the diameter or length is 2 mn from the viewpoint of filling efficiency of the case, ventilation resistance, handling, etc.!
  • the shape that is preferably 20 mm, more preferably 3.5 mm to 15 mm is not particularly limited, but a spherical shape is preferable from the viewpoint of filling efficiency and uniform filling.
  • the supply rate of the odorous gas to the deodorizing layer 3 is 0.3 mZs to 4. Om / s, and more preferably 0.
  • the deodorizing layer 3 can be appropriately set depending on the required processing amount, the concentration of the raw odor substance in the odor gas, and the like.
  • the deodorization efficiency is improved by removing the oil mist in advance before passing through the ceramic porous body 4.
  • a porous ceramic body or a ceramic layer with gypsum attached which supports the acidic substance or the basic substance, can be used, but it is not limited thereto.
  • Clay and a foaming agent were mixed, mixed with water, kneaded, formed into a spherical shape having a diameter of 3.5 to 15 mm with a granulator (Malmerizer 1), and dried. This was fired to obtain a granular (spherical) ceramic porous body A (untreated ceramic porous body) containing a metal such as iron (Fe) or vanadium (V).
  • This ceramic porous body A had a specific surface area of 1.7 m 2 / g.
  • the granular ceramic porous body A is impregnated by dipping in an aqueous sulfuric acid solution containing acid clay and adjusted to a pH of about 2 to 5, acid-treated to pH 3.0 to 5.0, dried, and iron (Fe ), Vanadium (V), sulfur (S), etc., an acidic supported ceramic A of PH 4.65 was obtained.
  • the specific surface area of the acidic supported ceramic A was 47. Om 2 / g, and the specific gravity was 0.59.
  • the granular ceramic porous body A is impregnated with an aqueous magnesium sulfate solution containing magnesia (MgO), dried, and added with iron (Fe), vanadium (V), etc., and sulfur (S), magnesium (Mg), etc.
  • An Mg-based supported ceramic A containing was obtained.
  • the original odor removal rate was investigated when the aeration amount of mixed malodor of ammonia and trimethylamine whose concentration was adjusted by the malodor generator was changed.
  • a test deodorization tower filled with 196.25 mL (10 cm layer height) of the above acid-supported ceramics A in an experimental tower with an inner diameter of 5 cm and a height of 70 cm was aerated at 10 VVM, 20 WM, 30 WM and 50 W M, and 1 hour later Inlet concentration and outlet concentration of Gastec detector tube made by Gastec Co., Ltd., ammonia No. 3L ((l) to 30ppm; l suction time about 1 minute), amines No. 180L ((0.5 )-: L0 ppm; l suction time of about 1 minute), and measured according to a conventional method.
  • Table 1 shows the odor removal rate.
  • %%%%% En E Nia 8 0 100 9 0 100 9 2 78 9 6 33 Tolylamine 3.3 0 100 3.4 0 100 3.2 1.4 56 3.2 2.8 13 [0064] As shown in Table 1, ammonia and trimethylamine could be removed 100% at aeration of 10WM and 20WM. The removal rate of ammonia was 78% at a ventilation rate of 30 WM, the removal rate of trimethylamine was 56%, and the removal rate of 50 WM was 33% and 13%, respectively.
  • Example 2 The concentration was adjusted in the same manner as in Example 1 except that 196.25 mL (layer height: 10 cm) of acidic supported ceramics A packed in the experimental deodorization tower was infiltrated with 10 mL of water at the start of the experiment. A mixed odor of ammonia and trimethylamine was aerated for 1 hour. Table 2 shows the odor removal rate.
  • the air flow rate to the experimental deodorizing tower filled with the acidic supported ceramic A of Example 2 and the experimental deodorizing tower packed with the Mg based ceramic of Example 3 was fixed to 50 VVM, once every Z days, on time LOOmL of water was replenished by automatic spraying, and continuous operation was performed for 12 weeks. Concentration of mixed raw odors was measured by gas-tech detector tubes at the inlet and outlet, respectively. Table 4 shows the measurement results for each week.
  • the ammonium ion concentration was measured by the Nessler method, the nitrite ion was measured by the GR method, and the nitrate ion was measured by the Brucine method. Table 5 shows the measured concentrations of each nitrogen state.
  • pig iron slag obtained by crushing the amorphous slag produced during the manufacture of the ductile pig iron product and 30 parts by weight of glazed clay were mixed.
  • 14 parts by weight of water was added and mixed and kneaded by a mixer.
  • This kneaded product is extruded into a rod shape from an extruder, further formed into a spherical shape by a granulator (Malmerizer), dried, fired at 1000 ° C, and directly A spherical ceramic porous body B having a diameter of 3.5 to 15 mm was obtained.
  • Table 6 shows the chemical composition of the pig iron slag used.
  • the acid clay with the oils and fats attached by filtering margarine was baked in a firing furnace to carbonize the oils and fats, and an acid clay with a carbon film formed on the surface, pores or inner surfaces of the fine pores was obtained.
  • 1.4 kg of white clay containing carbon on the surface was dispersed in 20 L of sulfuric acid to obtain an impregnation solution.
  • the spherical ceramic porous body B is added to this impregnating solution, and the mixture is stirred for 15 minutes with a mixer.
  • the ceramic porous body B is loaded with white clay containing carbon on the surface to obtain an acidic supported ceramics B. It was.
  • Mg (OH) was baked in a baking furnace and oxidized to obtain MgO.
  • a slurry obtained by adding 2.8 kg of MgO to a 20 L lithium silicate aqueous solution (lithium silicate 35, manufactured by Nissan Chemical Industries, Ltd.) was used as an impregnation solution.
  • the spherical ceramic porous body B was added to this impregnating solution and stirred with a mixer for 15 minutes, and MgO and lithium silicate were supported on the ceramic porous body B to obtain an Mg-based supported ceramic B.
  • Air (raw gas) containing ammonia or trimethylamine as a raw odor substance was forcibly passed through a column packed with the above-mentioned acidic support ceramic B, and the deodorizing effect by wind speed was examined. The results are shown in Table 7.
  • Example 8 Deodorization of complex odor in composting facility
  • a deodorizing apparatus 1 A having a watering nozzle 6 in each of the two deodorized layers 3 filled was used (see FIG. 2).
  • Sprinkling nozzle 6 force Composting facility power of composting facility is intermittently sprinkled on each deodorizing layer 3 and the air (raw gas) containing composite odor is discharged into Mg-based ceramics B (4 (Mg)) , Acid-supported ceramic B (4 (acidic)) in the order of 1800 m 3 / h for deodorization treatment, and the gas detector tube (Gas Co., Ltd.) (Manufactured by Tech). The results are shown in Table 9.
  • Two deodorizing devices 1A (see Fig. 2), each equipped with a water spray nozzle 6 in each of the two deodorized layers 3 filled, were connected in series.
  • Mg-based carrier ceramics B (4 (Mg)) with an acidic carrier based ceramics B and (4 (acidic)
  • Two deodorizers 1A (see Fig. 2), each equipped with a water spray nozzle 6 in each of the two layers of deodorized layers, were connected in series.
  • a first deodorizing device 1A (see Fig. 2) equipped with a watering nozzle 6 in each of the two layers of deodorized layers 3 filled, with a ventilation area of 1.44m 2 (1.2m X l. 2m) and a thickness of 100mm.
  • a second deodorizing device 1A ' (similar structure to the deodorizing device 1A shown in Fig. 2), in which each of the two deodorizing layers is filled with Mg-based supported ceramic B and acidic-based supported ceramic B. And two large ones in series.
  • Air containing a large amount of ammonia discharged from the high-speed composting facility of the composting facility while watering intermittently from the sprinkling nozzle 6 to each deodorizing layer 3 is used as the Mg in the first deodorizing device 1A.
  • -Based supported ceramics B (4 (Mg)), acidic-based supported ceramics B (4 (Mg)), Mg-based supported ceramics B (4 (Mg)) of the second deodorizing device 1A, acidic-based supported ceramics B ( 4 (acidic)) in the order of 1800m 3 Zh, and processed in the air before and after the treatment.
  • the ammonia concentration was measured with a gas detector tube (manufactured by Gastec Co., Ltd.). The results are shown in Table 12.
  • Example 12 Deodorization of acetic acid odor in a fishery food processing plant
  • a deodorizing layer 3 with a ventilation area of 3.24m 2 (1.8mX l. 8m) and a thickness of 100mm was coated with Mg-supported ceramic B (4 (Mg)) and acidic-supported ceramic B (4 (acidic)).
  • a deodorizing apparatus 1B (see FIG. 3) having a watering nozzle 6 in each of the two deodorized layers 3 filled was used.
  • Sprinkling nozzle 6 force Air containing acetic acid (raw gas) discharged from the fishery food processing plant's power while intermittently sprinkling each deodorizing layer 3, Mg-supported ceramic B (4 (Mg)), acidic-supported Ceramics B (4 (acidic)) were passed through 18000 m 3 Zh in this order, and the concentration of acetic acid in the air before and after the treatment was measured with a gas detector tube (manufactured by Gastec Co., Ltd.). The results are shown in Table 13.
  • Table 1 3 Deodorization of acetic acid odor at seafood processing plant
  • a deodorizing layer 3 with a ventilation area of 0.09 m 2 (0.3 mX 0.3 m) and a thickness of 100 mm was coated with Mg-based ceramic B (4 (Mg)) and acidic-based ceramic B (4 (acidic)).
  • a deodorizing apparatus 1C (see Fig. 4) equipped with two filled deodorizing layers was used.
  • the air in the pet shop's bird display room and dog display room is supplied from the intake side of the deodorization device 1C through the duct and supplied to each deodorization layer 3, while the Mg-based ceramics B (4 (Mg)), acidic system Passing ceramic B (4 (acidic)) in this order, a circulation path is established to return to each exhibition room again through the duct from the exhaust side, and the odor intensity at the height of lm from the indoor floor is measured using an indoor odor measuring instrument ( Measurement was made with a handy type odor measuring device “e-nose mobil” manufactured by Futaba Electric Nitas Co., Ltd.).
  • the bird exhibition room where the odor intensity was about 1100 was the dog exhibition room where the odor intensity dropped to about 700 and the odor intensity was 750 to 800 in 7.5 hours after the start of the operation of the deodorizer.
  • the odor intensity inside the pet shop store other than the exhibition room was about 500.
  • the odorous substances and harmful substances can be removed from the air simply by passing the air containing the odorous substances and harmful substances through the deodorizing layer made of the ceramic porous body. It can contribute to prevention of environmental degradation such as indoors and the atmosphere and environmental improvement.
  • the method of the present invention can improve the removal efficiency of the odorous substances and harmful substances by interposing moisture when the treatment object and the ceramic porous body are brought into contact with each other, the odorous substances and harmful substances in the air can be improved. It can also be expected to remove harmful substances in the water using only substances, and can also be applied to water purification.

Abstract

 悪臭成分又は有害成分を含む空気を、連続貫通気孔を有し、固体酸性物質又は固体塩基性物質を担持させたセラミックス多孔体からなる脱臭層を強制的に通過させると、空気中の酸性成分は、固体塩基性物質を担持させたセラミックス多孔体を通過させる際に除去され、空気中の塩基性成分は、固体酸性物質を担持させたセラミックス多孔体を通過させる際に除去され、高効率、低コストで空気を脱臭できる。脱臭操作に際して脱臭層のセラミックス多孔体に水分を供給すると脱臭効果が更に向上する。

Description

明 細 書
脱臭方法
技術分野
[0001] 本発明は、例えば食品加工工場における有機物の腐敗、発酵、酸化等により発生 する水溶性悪臭ガスの脱臭及び不飽和脂肪酸の除去や、肥料'飼料工場、畜舎、下 水、し尿処理場、アスファルト再生プラント等における、有機物の腐敗、発酵、酸化等 により発生する悪臭ガスの無害化方法に関する。更に詳しくは、例えば、食品工場や 堆肥化施設で発生する、アンモニア、トリメチルァミン等のアンモニア系悪臭、酢酸や イソ吉草酸等の有機酸、脂肪酸類、アスファルト再生プラント等で発生する炭化水素 類ゃ含硫臭気物質、更にはオイルミスト等による悪臭の軽減を目的として、空気中に 含まれる悪臭物質や有害物質を除去する方法に関する。
背景技術
[0002] 従来から、各種工場や処理場から排出される排ガスの脱臭方法として、対象とする 原臭の種類、濃度、処理量、予算及び最終要求基準等により、洗浄法、吸着法、燃 焼法、触媒燃焼法、酸化法、中和法、光触媒法、生物脱臭法、マスキング法等、様 々な方法が実施されている。
[0003] これら各種脱臭方法のうち、洗浄法は、建設費が安く済み、アンモニア臭の除去に 適した方法で、低濃度、大風量の悪臭ガス処理に適している。このため、洗浄法は、 肥料 '飼料工場、铸物工場、下水 ·し尿処理場等で広く採用されている。しかし、洗浄 法は、水に溶け込んだアンモニアの除去及び洗浄に使用される多量の廃水処理に ランニングコストが高くつくと 、う問題がある。
[0004] また、吸着法は、肥料 '飼料工場、下水 ·し尿処理場等で採用されて!、る方法であ る。吸着法には、吸着資材として活性炭を用いる方法と、イオン交換榭脂を用いる方 法とがある。活性炭は、低濃度の混合悪臭ガスに対して用いられ、初期設備費は比 較的少なくて済むが、アンモニア等の塩基性の悪臭には余り効果が認められない。 一方、イオン交換榭脂を吸着資材として用いる場合、やや高濃度の悪臭に効果は認 められるが、安定性に欠ける欠点がある。更に、吸着法では、吸着資材を頻繁に交 換する必要がある。
[0005] 中和法は取扱が簡単であり、食品工場、化学工場、下水 ·し尿処理場等で採用さ れている。しかし、中和法は、アンモニアに効果が低ぐ適用範囲が限定される。更に 、中和法は、中和用化学薬品(中和剤)が必要で、その補充等のためランニングコス トも高くつく。
[0006] このように、従来の脱臭方法のうち、洗浄法、吸着法及び中和法は、建設費が安価 で維持管理も容易である力 いずれの方法も、多量の処理水、吸着剤又は中和用化 学薬品が必要で、建設費が比較的安価で維持管理も容易とはいうものの、処理原臭 濃度が高くなるほど、それに比例して吸着剤の再生費用や中和剤補充のための費 用等がランニングコストに跳ね返ってくる。
[0007] また、触媒燃焼法は、悪臭除去効率は非常に高ぐ高濃度の悪臭に適用される。し かし、触媒燃焼法は、設備費及びランニングコストが高くつくため、畜産業には適用さ れていない。
[0008] 酸化法は、小規模な装置向きであり、肥料 ·飼料工場、食品工場、石油化学工場、 下水 ·し尿処理場等で採用されて!、る。酸化法にはオゾン酸化法と塩素酸化法とが ある。何れも含硫悪臭には効果がある力 アンモニアなど塩基性の悪臭に殆ど効果 は認められない。
[0009] また、光触媒法は、機械装置が高価で、コストパフォーマンスに劣り、かつ、大容量 処理には向いていないため、低濃度、小風量の悪臭除去に限られ、厨房等の小規 模施設に適用されているが、脱臭効果は低い。
[0010] 生物的脱臭法は、土壌と、そこに生息する土壌微生物の脱臭効果を利用するもの であり、ほぼ全ての悪臭原に効果があり、化学工場以外のほぼ全てに適用可能であ る。また、生物的脱臭法は、設備費やランニングコストが安いという利点もある。しかし 、生物的脱臭法は、施設に広い面積が必要とされ、また完全な脱臭は不可能で、悪 臭濃度が高 、場合には効果が認められな 、。
[0011] 更に、マスキング法は、原臭ガスの除去ではなぐ香水等の別の匂いで低濃度の悪 臭を隠蔽させる方法で、根本的な解決法にはならず、用途が限定される。
[0012] このように、現状では、悪臭を除去するための決定的な解決手法は、未だ無い。 [0013] また、水洗により触媒を再活性化する方法も提案されている。例えば、竪型筒体内 に、ポーラスなセラミックス製ハ-カム体に触媒金属を含浸させた酸化触媒層を設け 、この触媒層の上方に散水ノズル、下方に熱風供給ノズルを配設するとともに、前記 筒体の上部に排気管、下部に排ガス供給管、底部に排水管をそれぞれ取り付けた 排ガス処理装置が提案されている (特許文献 1参照。 ) oこの排ガス処理装置では、ァ スフアルト再生炉等から排出された、一酸化炭素、炭化水素等の有害物質、更には カーボンピッチ等を含む 200〜250°Cの排ガスを、予熱して 300〜400°Cに昇温し た後、排ガス供給管から筒体内に供給し、酸化触媒層を通過させることにより二酸ィ匕 炭素、水素等の無害物質に変換し、筒体上部の排気管から排気する。そして、排ガ ス処理により触媒層が被毒されて触媒性能が低下した場合には、散水管から触媒層 に洗浄水を散布して触媒層に付着して ヽるダスト等を水洗した後、熱風供給ノズルか ら 500〜700°Cの熱風を供給して触媒層に付着して ヽるカーボン、ピッチ等の残留 加熱物を焼却除去して触媒を賦活させ、触媒の超寿命化を図るというものである。し かし、この排ガス処理装置は、アスファルト再生炉等力 排出される一酸ィ匕炭素、炭 化水素等の無害化には効果がある力 それ以外の、例えばアンモニア系悪臭や有 機酸系悪臭の無害化 (脱臭)は期待できない。また、散布される水は、排ガスの供給 を停止して触媒を洗浄するために用いられて触媒の再活性化の作用を果たして 、る に過ぎず、悪臭の無害化に関与するものではない。更に、この排ガス処置装置では 、触媒による無害化処理に先立ち、予熱により排ガスを 300〜400°Cにまで昇温する 必要があり、燃料費等のランニングコストも高くつく。
[0014] また、し尿処理施設等で硫化水素等の悪臭成分を除去するための脱臭装置として 、下部に臭気ガス流出口を形成し、上部に脱臭ガス流出口を形成して脱臭塔を構成 し、この脱臭塔の底部に、苛性ソーダを含んだ循環液を貯留した薬液循環槽を設け 、脱臭塔内における臭気ガス流入口と脱臭ガス流出口との間に、前記薬液循環槽ょ り循環供給される薬液を散水するスプレーノズルを設け、このスプレーノズルの下方 に、直径又は長さ lcm以上の円柱状又は角柱状をなし、孔径 100A以上の孔を有 するカーボンセラミック充填材層を設けて、脱臭塔内に流入した臭気ガス中の悪臭成 分を除去するようにした脱臭装置が提案されている (特許文献 2参照。;)。しかし、この 脱臭装置は、し尿処理施設等で発生する硫化水素を、苛性ソーダとの反応により無 害化するものであり、カーボンセラミック充填材は単に前記反応を促進するための触 媒に過ぎず、硫化水素以外のアンモニア系悪臭や有機酸系悪臭の除去 (脱臭)効果 は期待できない。
更に、廃アスファルト塊再生設備力もでる排ガス中のアンモニア、メチルメルカプタ ン等の悪臭物質を無臭化するため、廃アスファルト塊再生設備の煙道に、 Mg、 SiO
2
、 Al O、バインダを混合し、 250〜300°Cで半溶融晶結した、 Mgを含む SiO、 A1
2 3 2 2
Oからなり、 0. 2nm〜20nm系の針状微細孔を無数に有するボール(球)、シリンダ
3
(筒)、コーン(円錐)等各種形状に形成したソフトセラミックスを充填した触媒反応タヮ 一と、前記セラミックスに適量の水を供給する供給手段を介設した廃アスファルト塊生 成設備の煙道設備が提案されている (特許文献 3参照。 ) 0この煙道設備によれば、 セラミックスの針状微細孔を水で濡らした状態で、悪臭物質を含む排ガスを接触させ ることで、イオン交換反応作用、分子分級効果及び酸化 ·還元作用により悪臭成分が 崩壊'分解され更に無臭物質に変換'変性された後、無臭が針状微細孔力 離れ、 煙突を通じて大気に放散されると 、うものである。前記悪臭成分の無害物質への変 換 '変性については、前記セラミックスが、 Mgを核とし、 0 (酸素原子)、 Si (硅素)、 O H (水酸基)、 A1 (アルミニウム)等が付いて、全体的にマトリックス(立体格子)を形成 しているものと推定されており、前記針状微細孔に水が付着すると、水の分子 (H O)
2 がマトリックスを構成する Mg、 Si、 Al等の元素の触媒作用により、酸素イオンと水酸 基イオンに分解し、且つ酸素 (O )が酸素イオンの形で針状微細孔に張り付いている
2
ところへ、臭気を含んだ排ガスが到達し、タール臭やゴム臭の元となる悪臭物質が酸 化若しくは還元されて、結果的に H Oと COと電子 (e)とに変化し、 H Oの一部は分
2 2 2
解して無臭化作用を発揮すると説明されている。しかし、この煙道設備は、廃ァスファ ルト塊処理設備力 排出される排ガス中の悪臭物質の無害化に限定され、それ以外 の、例えば食品工業や、し尿処理設備等から排出される、酸性ガス、アルカリ性ガス 等の多様な悪臭物質を含む排ガスの無害化処理への適用につ 、ては全く考慮され ていない。更に、触媒反応タワーに充填されるセラミックスは、 250〜300°Cという低 温で焼成した比較的軟らカ 、ソフトセラミックスであり、あまり強度が大きくないため取 り扱いに注意が必要で、また用途によっては耐久性が十分でない場合がある。
[0016] また、家庭、オフィス、病院内等の室内空間において、調理臭、食品臭、タバコ臭、 体臭、ペット臭、トイレ臭、介護臭等の悪臭や、トルエン、キシレン、ホルムアルデヒド、 ノ ラジクロ口ベンゼン、クロルピリホス、ェチルベンゼン、スチレン、フタル酸ブチル等 の揮発性の有害物質を、連続的に、長期間にわたって除去して、空気を浄化するた めの気相反応方法として、ペルォキソチタン酸溶液を加熱して結晶化することにより 得られるペルォキソ基を含有するアナターゼ型酸化チタン分散液を用いて製造され た光触媒体に光を照射させつつ、光触媒体の表面に、断続的に水を塗布する気相 反応方法が提案されている (特許文献 4参照。 )0しかし、この気相反応方法では、前 記のような室内空間における悪臭等の有害物質は除去することはできても、例えば 食品工場や、し尿処理設備で発生する、悪臭成分を高濃度で含有する排ガスの無 害化は困難である。更に、このような光触媒を用いた処理方法の場合には、前記した ように機械装置が高価でコストパフォーマンスに劣る、大容量処理には向 、て 、な ヽ 、といった問題がある。また、この気相反応方法では、水は触媒活性を再生するに過 ぎず、悪臭成分の無害化には関与していない。
特許文献 1 :実開平 3— 54731号公報
特許文献 2:特開平 9 882号公報
特許文献 3 :特開 2001— 232153号公報
特許文献 4:特開 2002— 301336号公報
発明の開示
発明が解決しょうとする課題
[0017] 本発明は、上記従来法が有する種々の問題に鑑み、高効率、低コストの脱臭方法 を提供することを目的とする。
課題を解決するための手段
[0018] 上記の目的を達成するために、本発明者等は、既存の触媒法に代わり、セラミック スの構造上の有効性を最大限に引き出し、空気中の酸性又は塩基性の悪臭成分や 有害成分 (以下、これらをまとめて「原臭物質」ということもある。)を一次変性する環境 を提供し、この一次変性した空気中の原臭物質をセラミックス多孔体と接触させること により、高効率、低コストで脱臭可能な新たな脱臭方法を見出した。更に、本発明者 らは、空気中の原臭物質をセラミックス上の活性点へ誘導し、セラミックスと接触させ る媒体として水を採用することで、更に高効率で脱臭可能な脱臭方法を見出した。
[0019] 即ち、本発明に係る脱臭方法は、悪臭成分又は有害成分を含む空気を、セラミック ス多孔体力 なる脱臭層を強制的に通過させることで、前記悪臭成分又は有害成分 を除去し、無害化された空気として排出する脱臭方法であって、前記セラミックス多孔 体が、連続貫通気孔を有するセラミックス多孔体に酸性物質又は塩基性物質を担持 させたものであり、空気中の酸性成分は、前記塩基性物質を担持させたセラミックス 多孔体を通過させることにより除去し、空気中の塩基性成分は、前記酸性物質を担 持させたセラミックス多孔体を通過させることにより除去することを特徴とする。
[0020] 本発明に係る脱臭方法では、酸性の臭気は塩基性の雰囲気中で、塩基性の臭気 は酸性の雰囲気中で、中和反応により一次変性する工程と、前記一次変性された臭 気を、セラミックス多孔体を担体として前記悪臭成分又は有害成分に応じて前記セラ ミックス多孔体に担持させた塩基性物質や酸性物質と、更にはセラミックス多孔体と 接触させて、空気中に含まれる悪臭成分又は有害成分を除去して無害化した空気と して排出する。
[0021] また、前記セラミックス多孔体として、铸鉄スラグを用いると、良好な連続貫通気孔を 有するセラミックス多孔体が得られるとともに、該スラグ中に含まれる MgO、 MnO、 F eO、 CaO、 SiO、 Al O等の金属酸化物の作用により、空気中に含まれる原臭物質
2 3
力 り効率よく除去される。
[0022] また、前記セラミックス多孔体として、粒状、好ましくは球状のものを、通気可能なケ ースに充填して脱臭層とすることで、通気抵抗が低減され、また通気時のセラミックス 多孔体の振動により、空気中の原臭物質との接触機会が増大し、原臭物質の除去効 率が向上する。
[0023] 更に、原臭物質を含む空気とセラミックス多孔体との接触時に水分を介在させること で、より脱臭効率が向上する。即ち、この脱臭方法は、従来の脱臭方法である吸着法 、中和法及び洗浄法の長所を併せ持つものであり、セラミックスの特徴である原臭物 質 (空気中に含まれる、アンモニア、トリメチルァミン、酢酸、イソ吉草酸、脂肪酸類、 含硫臭気物質、オイルミスト、その他の悪臭成分や有害成分)の物理的な捕獲を容 易ならしめ、セラミックス多孔体に担持させた酸性物質又は塩基性物質による酸性雰 囲気又は塩基性雰囲気中での前記原臭物質の一次変性の媒体として、また同時に 、原臭物質をセラミックス多孔体と接触させるための移動の媒体として、水を用いるも のである。即ち、本発明では、従来のように触媒活性の再生のために単に水をカ卩える のではなぐ例えば、 0. 5mZs〜4. OmZsの風速を常時維持した風力により、原臭 物質を水を介してセラミックス多孔体上の触媒活性点へ強制的に流動移動させると いう、従来にない高効率、低コストの新たな脱臭システムを提供するものである。
[0024] また、上記脱臭方法を実施するための脱臭装置は、一側側に吸気口を設け、他側 側に排気口を設けた装置本体と、前記吸気口と排気口との間の装置本体内を複数 の空間に区画するように設けた複数の脱臭層と、悪臭成分又は有害成分を含む空 気を、前記装置本体内に供給し、前記脱臭層を強制的に通過させて無害化された 空気として排出する送気手段とを備え、前記脱臭層が、連続貫通気孔を有するセラミ ックス多孔体であって、酸性物質又は塩基性物質を担持させたセラミックス多孔体か らなることを特徴とする。前記脱臭装置の好ましい実施形態では、前記脱臭層のセラ ミックス多孔体に水を供給するための給水手段を備えている。
発明の効果
[0025] 本発明に係る脱臭方法によれば、悪臭成分又は有害成分等を含む空気を、セラミ ックス多孔体力 なる脱臭層を強制的に通過させるだけで、低コストで空気中に含ま れる原臭物質を高効率で除去して無害な空気として排出することができる。従って、 本発明によれば、工場等の作業環境、その周辺の住環境、ペットショップ等の店舗内 の環境、更にはオフィス、住宅等の室内環境等を改善することができる。
[0026] また、酸化雰囲気及び還元雰囲気の別々の脱臭層において、アンモニア系、有機 酸系及び含硫悪臭物質を除去することで、結果として塩基性及び酸性の原臭物質 の両方を除去することができる。
[0027] 更に、原臭物質を含む空気を脱臭層のセラミックス多孔体と接触させる際に水を介 在させることにより、水により原臭物質の一次変性の場をより多く提供すると共に、セ ラミックス多孔体上の無害化活性点との接触頻度を増大させることで、高効率の脱臭 作用を実現しうる。即ち、水を媒体とすることで、一次変性に続く二次変性をセラミック ス多孔体上で高頻度で行うことを可能とし、脱臭層から排出される空気中に臭気が少 量リークされる可能性を、より低くすることができる。また、媒体として水を使用すること で、酸化還元反応が促進され、結果として、アンモニア系、有機酸系、含硫悪臭物質 及び脂肪酸等の全ての悪臭'有害成分の除去、即ち、混合悪臭の脱臭にも有効であ る。
[0028] 更には、無害化機能を促進する物質として、酸性の臭気には、例えば pH8. 0〜10 . 0の固体塩基性物質を、また塩基性の臭気には、例えば pH3. 0〜5. 0の固体酸 性物質を使用することで、酸性又は塩基性の雰囲気の創出に多量の水を必要とせ ず、廃水処理コストも低く抑えることができる。また、水力 原臭物質をセラミックス多 孔体上の無害化活性点への移送機能を奏することで、脱臭能の維持に中和剤を必 要とせず、し力も、常温処理が可能であり、原臭物質の除去に光エネルギーゃ熱ェ ネルギーを必要とせず、低コストで脱臭可能である。
[0029] また、一次変性工程の前にオイルミスト除去工程を設けることで、ェマルジヨン状の 不飽和脂肪酸やオイルミストを効率よく多量に吸着し、除去することができ、且つ予め 前記オイルミスト等の除去を行うことで、それに続ぐ脱臭層における原臭物質の除 去効率も向上する。
[0030] 本発明による脱臭方法は、廃水中へは臭気物質や有害物質は殆ど混入しな 、の で、廃水処理に要するコストはゼロに等しぐ環境負荷の少ない持続的な処理法であ る。
図面の簡単な説明
[0031] [図 1]本発明方法の実施に使用する脱臭装置の一実施形態の模式図 (平断面図)で ある。
[図 2]実施例に使用した脱臭装置の平断面図である。
[図 3]実施例に使用した他の脱臭装置の平断面図である。
[図 4]実施例に使用した更に他の脱臭装置の平断面図である。
符号の説明
[0032] 1 脱臭装置、 2 脱臭装置本体、 3 脱臭層、 4 セラミックス多孔体、 5 止水栓、 6 散水ノズル、 7 排水口、 8 排水管。
発明を実施するための最良の形態
[0033] 本発明に係る脱臭方法は、悪臭成分又は有害成分を含む空気 (以下、「臭気ガス」 または「原ガス」ということもある。)を、セラミックス多孔体力もなる脱臭層を強制的に 通過させて前記悪臭成分又は有害成分を除去する脱臭方法である。本発明方法の 処理対象となる臭気ガス中の悪臭成分又は有害成分としては、アンモニア、トリメチ ルァミン、酢酸、イソ吉草酸、脂肪酸類、含硫臭気物質、オイルミスト、その他の悪臭 成分や有害成分等、特に限定はない。
[0034] 本発明の脱臭方法を実施するための脱臭装置の一実施形態を、図 1に示す。なお 、図 1に示す装置の形態は、本発明の実施に使用される脱臭装置を限定するもので はない。
[0035] 図例の脱臭装置 1は、装置本体 2の一方 (図中、右側)から他方 (図中、左側)に向 けて、処理対象である臭気ガス (悪臭成分や有害成分を含む空気)を強制的に通過 させて、臭気ガス中に含まれる悪臭成分や有害成分等の原臭物質を除去し、無害化 された状態の空気として装置本体 2から排気する。
[0036] 装置本体 2は、ステンレス等の耐腐食性材料力 なる箱状で、その一側に吸気口を 設け、他側側に排気口を設けてあり、その内部には、複数の脱臭層 3が、吸気側と排 気側との間の装置本体 2内を複数の空間に区画するように設けてある。脱臭層 3は、 両面が金網等により覆われた、通気可能なケース内に、セラミック多孔体 4を充填し てある。また、各脱臭層 3間の空間には、図示しない給水手段に連結された散水ノズ ル 6を脱臭層 3に向けて設けてある。なお、図中、符号 5で示すものは止水栓であり、 符号 7で示すものは排水管 8に連なる排水口である。排水管 8は、給水手段に接続し て、水を循環使用するようにしてもよい。また、図例の脱臭装置 1は、横型であるが、 竪型でもよぐ傾斜していてもよい。
[0037] この脱臭装置 1による脱臭操作は、例えば食品加工工場力 の排ガスや、し尿処理 場で発生する排ガス、アスファルト再生プラントからの排出ガス等、各種悪臭成分や 有害成分を含む空気 (臭気ガス)を、シロッコファン等の吸気手段により吸気して、装 置本体 2内に強制的に導入し、脱臭層 3のセラミックス多孔体 4を通過する際に、散 水ノズル 6から供給される水により湿潤状態にあるセラミックス多孔体 4の表面、孔隙 又は気孔の表面に接触することで、空気中の原臭物質が、水を媒体として、酸性の 臭気は塩基性の雰囲気中で、塩基性の臭気は酸性の雰囲気中で、それぞれ変性さ れ、かつセラミックス多孔体と接触することで、空気中から悪臭物質や有害物質が除 去され、無害化された状態の空気が装置本体 2から排気される。
[0038] 本発明における脱臭のメカニズムは、以下のようなものであると考えられる。即ち、 処理対象である臭気ガスは、先ず、セラミックス多孔体に担持された塩基性物質又は 酸性物質に接触し、酸性の臭気は前記塩基性物質による塩基性の雰囲気中で、塩 基性の臭気は前記酸性物質による酸性の雰囲気中で、中和反応により速やかに一 次変性される。更に、本発明では、前記のようにして一次変性された臭気ガス力 セ ラミックス多孔体に含まれる触媒金属や、セラミックス多孔体を担体として添着された 前記塩基性物資や酸性物質と接触して、臭気ガス中に含まれる原臭物質が除去さ れる。
[0039] 前記脱臭層 3を構成するセラミックス多孔体 4は、連続貫通気孔を有するセラミック ス多孔体に塩基性物質又は酸性物質を担持させたものである。
[0040] 前記セラミックス多孔体の製造方法としては、例えば、セラミックス原料である粘土と 発泡剤を混合し、水を加えて混練した後、所定の形状に成形し、焼成する。
[0041] 前記セラミックス多孔体 4は、例えば、バナジウム、鉄、白金及びニッケル等の触媒 金属を含有するものであることがより好ましい。これら触媒金属は、セラミックス原料中 に含有されて!、てもよ!、し、また焼成したセラミックス多孔体を担体として触媒金属を 添着するようにしてもよ ヽ。
[0042] また、本発明のセラミックス多孔体 4のより好ましいものとしては、铸鉄スラグと可塑 性粘土に水分を加えて混合、混練した組成物を、所望の形状に成形し、乾燥した後 、 900〜1150°Cの範囲の温度で発泡、焼成したものが挙げられる。好ましくは、铸鉄 製品の製造時に生成される非晶質のスラグを破砕篩別して 0. 25〜2. Ommの粒度 範囲に調整したものを 50〜80重量%と、可塑性粘土を 20〜50重量%の割合で混 合した混合物 100重量部に対して水を 12〜25重量部加えて混合、混練した組成物 を、所望の形状に成形し、乾燥した後、 900〜1150°Cの範囲の温度で発泡、焼成し たものである。
[0043] 前記铸鉄スラグを用いたセラミックス多孔体は、例えば特開 2002— 47075号公報 に開示されたものである。より詳しくは、ダクタイル铸鉄製品の製造時に生成される非 晶質のスラグを破砕篩別して、 0. 25〜2. Ommの粒度範囲に整粒したものを、個々 の粒子が可塑性粘土によって包まれた状態となるように成形し、これを 900〜1150 °Cの温度範囲で加熱することにより、個々のスラグ粒子を、個々として発泡させ、かつ 、相互に焼結させたもので、連続貫通気孔を有するセラミックス多孔体である。
[0044] 前記铸鉄スラグの化学成分は、例えば特開平 10— 7433号 (特許第 2899954号) 公報に開示されたガラス組成物と同様であり、 SiOを 35〜45重量%、 Al Oを 10〜
2 2 3
15重量0 /0、 MgOを 1〜5重量0 /0、その他、 MnO、 CaO、 S等を含み、かつ(CaO + MgO) /SiOの重量比が 0. 9〜1. 2であり、 Al O /SiOの比が 0. 25〜0. 35で
2 2 3 2
ある。具体的には、例えば、 SiOを 40〜41重量%、 Al Oを 13重量%、 MnOを 1.
2 2 3
5〜2. 5重量0 /0、 FeOを 0. 5〜1. 0重量0 /0、 CaOを 39〜40重量0 /0、 MgOを 2重量 %、 Sを 0. 4〜1. 0重量%程度、それぞれ含有するものである。
[0045] 前記のような铸鉄スラグを可塑性粘土と混合し、水で混練し、個々のスラグ粒子が 可塑性粘土によって包まれた状態となるように成形し、 900〜1150°Cの温度範囲で 焼成することで、個々のスラグ粒子を個として発泡させ、かつ、相互に焼結させること で、連続貫通気孔を有する、本発明に使用するセラミックス多孔体が得られる。これ は、前記のような特定の化学組成をもったガラス質スラグが 700°Cを超えて加熱され ると、 SiO— Al O—CaO等の結晶の拆出が起こると共に、これと併行して低粘度の
2 2 3
液相を分相し、分解揮発成分である SOは、鉄、マンガンと結合した形でガラス相内
3
に存在し、温度の上昇によるガラス相の粘度の低下により、潜在蓄積されたガス成分 力^ 00°C付近で発泡し、発泡体を形成するものと考えられて!/ヽる。
[0046] 前記スラグの粒度は、大きいほど発泡倍率は高くなり、 0. 25mm未満の微粒では 充分に発泡しないことがある。また、個々のスラグ粒子を包み込む原料は、スラグ粒 子が発泡する 900°C付近で焼結し、スラグとの反応系に適する木節粘土、蛙目粘土 、ベントナイトなどの可塑性粘土である。可塑性粘土は最低 20重量%が必要である 力 50重量%を超えると発泡倍率が大きく低下するため、粘土の配合比率は 20〜5 0重量%とする。この可塑性粘土は、セラミックスの混練物を成形する際の成形結合 剤を兼ねる。
[0047] 前記铸鉄スラグと可塑性粘土との混合物にカ卩える水の量は、前記混合物 100重量 部に対して 12〜25重量部、より好ましくは 13〜15重量部である。混練物の成形方 法は特に限定されなず、粒状に成形する場合には、混練物を押出機から適宜長さの 棒状に押し出し、マルメライザ一等の造粒機で整形する方法や、混練物をォムニミキ サー内で攪拌しながら造粒する方法等を採用することができる。
[0048] 前記セラミックス多孔体の好ましい焼成条件としては、前記铸鉄スラグと可塑性粘土 に水を加えて混合、混練した組成物を、所望の形状に成形した後、含水率 1%以下 に乾燥し、その後、常温〜 700°C迄は、成形体の大きさや厚みに応じて充分な均一 加熱を行なう。これは、 700°Cを超えた温度力 铸鉄スラグの結晶化が始まり分相し て液相が生成される間が、発泡機構の重要な温度範囲であるので、それまでに、成 形生地を表面から内部まで、ほぼ均一に畜熱し、粘土結晶水の脱水を行なう必要が ある力 である。しかる後、 700〜1000°Cの温度範囲では、 20〜40°C/分の昇温 速度で急速に加熱し、個々のスラグ粒子を一気に発泡させる。更にその後、 1000- 1150°Cの温度で焼結させる。より好ましくは、 700°Cを超えて発泡開始の約 850°C 迄は、加熱昇温速度を 10°CZ分程度とゆっくり加熱して表面と内部の温度の均一化 を図り、 850°Cから 1000°C迄の間は昇温速度を高めて、急速な粘性の低下を図り、 スラグ粒子の発泡と粒子溶着を一挙に行なうことが好ましい。なお、昇温速度は、セラ ミックス成形体の大きさや厚みによって、適宜調整する。 1000°C以上の温度域では 、加熱温度の上昇によって成形体の強度を高めることが出来る。
[0049] 本発明の脱臭方法では、酸性の臭気は塩基性の雰囲気中で、塩基性の臭気は酸 性の雰囲気中で、臭気を中和反応により一次変性する。
[0050] 本発明では、前記セラミックス多孔体 4に塩基性物質を担持させておくことで、該セ ラミックス多孔体を通過する空気中の酢酸等の酸性の原臭物質を、塩基性の雰囲気 中で一次変性する。例えば、前記セラミックス多孔体 4に pH8. 0〜10. 0の固体塩基 性物質を担持させて脱臭層 3として用いる。前記固体塩基性物質の好ましいものとし ては、活性マグネシウム及び Z又は活性マグネシアが挙げられ、酢酸基を持つ臭気 成分に特に好適なものである。具体的には、酸ィ匕マグネシウムをシリカゾル水溶液に 分散したスラリーをセラミックス多孔体に含浸し、 200〜250°Cの温度で乾燥してセラ ミックス多孔体に担持させる。前記シリカゾルとしては、リチウムシリケート水溶液を用 いることが好ましい。セラミックス多孔体に担持された固体塩基性物質の主成分は、 5 MgO -MgSO · 8Η Οからなるマグネシアォキシサルファイドである。更に、強い還元
4 2
作用を示す木炭及び硫酸カルシウム(CaSO )を少量添加したスラリーをセラミック担
4
持体の気孔内に含浸添着してもよい。 MgO成分は酢酸と極めて反応が良ぐ酢酸マ グネシゥムイオンを生成した後、 CaSのィォウイオン (S— )によって原臭物質を還元し、 分解すると考えられる。
[0051] また、本発明では、セラミックス多孔体 4に酸性物質を担持させておくことで、該セラ ミックス多孔体を通過する空気中のアンモニア等の塩基性の原臭物質を、酸性の雰 囲気中で一次変性する。例えば、前記セラミックス多孔体 4に、 pH3. 0〜5. 0の固 体酸性物質を担持させたものを脱臭層 3として用いる。前記固体酸性物質としては、 例えば、酸性白土、モンモリロナイト、カロリナイト、ハロイサイト等の二次元層状構造 力もなる粘土鉱物が挙げられる。更に、前記二次元層状構造からなる粘土鉱物を、 3 00〜600°Cの範囲の温度に加熱して層間水を脱水させた後、酸処理したものが好 適に使用される。より詳しくは、前記脱水した粘土鉱物を、水素イオン濃度 (PH) 2〜 5程度に調整された硫酸、硝酸、リン酸等の無機酸の水溶液に分散して含浸液とし、 この含浸液に前記セラミックス多孔体を浸漬して含浸し、 150〜250°Cで乾燥して p H3. 0〜5. 0に酸処理する。
[0052] 更に、前記セラミックス多孔体 4としては、その表面、孔隙若しくは気孔内面に、吸 着機能を有する炭素を含むものがより好ましい。このような炭素を含み、固体酸性物 質を担持させたセラミックス多孔体の具体例としては、例えば、酸性白土、モンモリロ ナイト、カロリナイト、ノ、ロイサイト等の二次元層状構造力もなる粘土鉱物を、 300〜6 00°Cの範囲の温度に加熱して層間水を脱水させた気孔内に、石油類や植物油類等 を含浸させた後、 600〜700°C、あるいは 800〜1000°Cの範囲の温度で焼成し、気 孔内に活性炭素膜を形成させ疎水性を向上させた粘土鉱物を得る。この、表面に活 性炭素を含む粘土鉱物を、水素イオン濃度 (PH) 2〜5程度に調整された硫酸、硝 酸、リン酸等の無機酸の水溶液に分散して含浸液とし、この含浸液に前記多孔質セ ラミックスを浸漬して含浸し、 150〜250°Cで乾燥して pH3. 0〜5. 0に酸処理する。 この、表面に炭素を有する固体酸性物質を担持させたセラミック多孔体は、気孔がマ クロ孔とミクロ孔とからなり、疎水性であるが、悪臭成分である有機化合物との親和性 が高ぐ悪臭成分の迅速な吸着作用を発揮する。炭素膜によって吸着された成分は 、気孔を通って母体である多孔質セラミックス表面の活性点へ移行し、無害化される
[0053] 次に、脱臭層 3のセラミックス多孔体 4への水分の供給方法について説明する。本 発明の脱臭方法においては、臭気ガス (原臭物質を含む空気)を乾燥状態で脱臭層 3のセラミックス多孔体 4と接触させてもよいが、接触の際に水分を介在させると脱臭 効率が更に向上する。水分を介在させる方法としては、脱臭層 3に水を供給してセラ ミックス多孔体 4を濡らす方法と、臭気を加湿状態で脱臭層 3へ供給する方法とがあ る力 いずれでもよい。臭気ガスを加湿して供給する場合は、その湿度を 50%以上、 好ましくは 50〜70%とする。セラミックス多孔体 4に供給する水は、水道水を用いるこ とが好ましい。これは、一般に水道水には塩素イオンが含まれており、セラミックス多 孔体 4表面における酸化還元反応を促進すると考えられるからである。通常、この水 道水の含有塩素量は調整不要で、塩素量に関係なく使用することが出来る。供給方 法としては、セラミックス多孔体 4に、直接、点滴注水で水を供給してもよいし、図 1〖こ 示す如ぐ散水ノズル 6 (噴霧ノズル)〖こより行うこともできる。更に、水の散布に、マイ クロミストノズルを使用することもできる。水の供給量は、 1時間当たりセラミックス多孔 体の容量 1に対して 1Z3容量を標準とする。
[0054] 本発明の脱臭方法は、図 1に示すように、複数の脱臭層 3を直列に連結して、適宜 水を介在させた固体塩基性物質又は固体酸性物質による一次変性工程と、セラミツ タス多孔体との接触による悪臭成分又は有害成分の無害化工程を複数回繰り返して 行うこともできるが、必ずしも複数回繰り返す必要はない。また、前記固体塩基性物 質を担持させたセラミックス多孔体による処理工程と、前記固体酸性物質を担持させ たセラミックス多孔体による処理工程との両方を直列に設けることで、一度の脱臭操 作で酸性及び塩基性の両成分を空気中から除去化することができる。 [0055] 脱臭層 3の前記セラミックス多孔体 4は、ブロック状であってもよいが、粒状である方 力 臭気ガス中の原臭物質との接触面積が大きぐまた、通過する空気によるセラミツ タス多孔体 4の振動により、原臭物質とセラミックス多孔体 4上の活性点との接触頻度 が増大し、かつ通気抵抗も低下することから、脱臭効率がよい。前記セラミックス多孔 体 4は、少なくとも 50%以上の空隙率を有する、または、比表面積が 3m2Zg以上で あることが、通気抵抗、脱臭効率の点で好ましい。気孔が小さく比表面積が大きくなる ほど通過する空気中の原臭物質との接触面積は大きくなり反応点は増大するが、気 孔が小さすぎると、例え空隙率が大きくても通気抵抗が増大し、かえって脱臭効率を 低下させる結果となる。前記粒状のセラミックス多孔体の大きさや形状は特に制限は ないが、ケースへの充填効率、通気抵抗、取り扱い性等の観点から、直径又は長さ が 2mn!〜 20mm、更に好ましくは 3. 5mm〜 15mmであることが好ましぐ形状も特 に限定されないが、球状であることが、充填効率、均一充填等の観点から好ましい。
[0056] 前記脱臭層 3に対する臭気ガスの供給速度は、 0. 3mZs〜4. Om/s,更には 0.
5mZs〜2. 5mZsの範囲内とすることが好ましい。供給速度が小さいと処理効率が 悪ぐまたセラミックス多孔体 4の深部への臭気の浸透が実現されず、脱臭効率が低 下する。その一方で、供給速度が大きすぎると無害化反応が不十分であったり、通気 抵抗が増大して処理効率が低下する恐れがある。また、脱臭層 3の容量、通気面積 等は、必要とされる処理量、臭気ガス中の原臭物質濃度等により適宜設定できる。
[0057] なお、ェマルジヨン状の不飽和脂肪酸やオイルミストを含む排ガスの処理に際して は、前記セラミックス多孔体 4を通過させる前に、予めオイルミストを除去しておくこと で、脱臭効率が向上する。オイルミスト除去工程としては、例えば、前記酸性物質や 塩基性物質を担持させて ヽな 、セラミックス多孔体や石膏添着のセラミックス層等を 用いることができるが、これらに限定されるものではな 、。
実施例
[0058] 以下、実施例及び比較例によって本発明を更に詳しく説明するが、本発明はこれら により、何ら限定されるものではない。
[0059] 1.セラミックス多孔体 A
(セラミックス多孔体の製造) 粘土と発泡剤とを混合し、水を加えて混練し、造粒機 (マルメライザ一)にて直径 3. 5〜 15mmの球状に成形し、乾燥した。これを焼成し、鉄 (Fe)、バナジウム (V)等の 金属を含む粒 (球)状セラミックス多孔体 A (無処理セラミックス多孔体)を得た。このセ ラミックス多孔体 Aの比表面積は 1. 7m2/gであった。
[0060] (酸性系処理)
前記粒状セラミックス多孔体 Aを、酸性白土を含み、 PH2〜5程度に調整された硫 酸水溶液に浸漬して含浸し、 pH3. 0〜5. 0に酸処理し、乾燥して、鉄 (Fe)、バナジ ゥム (V)、硫黄 (S)等を含む、 PH4. 65の酸性系担持セラミックス Aを得た。この酸性 系担持セラミックス Aの比表面積は 47. Om2/g、比重は 0. 59であった。
[0061] (Mg系処理)
前記粒状セラミックス多孔体 Aを、マグネシア (MgO)を含む硫酸マグネシウム水溶 液に含浸し、乾燥して、鉄 (Fe)、バナジウム (V)等に加え、硫黄 (S)、マグネシウム( Mg)等を含む Mg系担持セラミックス Aを得た。
[0062] (実施例 1)
悪臭発生装置により濃度調整されたアンモニアとトリメチルァミンの混合悪臭の通気 量を変化させた場合の原臭除去率を調べた。
内径 5cm、高さ 70cmの実験塔に、前記酸性系担持セラミックス Aを 196. 25mL ( 10cmの層高)充填した実験用脱臭塔に、 10VVM、 20WM、 30WM及び 50W Mで通気し、 1時間後の入口濃度と出口濃度を (株)ガステック製のガステック検知管 、アンモニア No. 3L ( (l)〜30ppm; l回の吸引時間約 1分)、アミン類 No. 180L ( ( 0. 5)〜: L0ppm; l回の吸引時間約 1分)により、定法に従い測定した。臭気の除去 率を表 1に示す。
[0063] [表 1] 表 1 アンモ::ァとトリ ルァミン原臭の通気量を変化させた場合の除去率 (%)
10VVM 20VVM 30VVM 50VVM 原臭物質 入 出 除 入 出 除 人 出 除 入 出 除 门 □ 去 □ Π 去 U U 去 Π P 去 Pm Pm 率 ppm m 率 ppm PPm 率 PPm 率
% % % % アン :Eニァ 8 0 100 9 0 100 9 2 78 9 6 33 トリ ルァミン 3.3 0 100 3.4 0 100 3.2 1.4 56 3.2 2.8 13 [0064] 表 1に示すとおり、通気量 10WM、 20WMではアンモニア及びトリメチルァミンを 100%除去できた。また、通気量 30WMではアンモニアの除去率は 78%、トリメチ ルァミンの除去率は 56%、通気量 50WMでは、夫々 33%と 13%であった。
[0065] (実施例 2)
前記実験用脱臭塔内に充填した酸性系担持セラミックス A、 196. 25mL (層高 10c m)に、水 lOOmLを実験開始時に浸透させた以外は実施例 1と同様にして、濃度調 整されたアンモニアとトリメチルァミンの混合臭を 1時間通気した。臭気の除去率を表 2に示す。
[0066] [表 2] 表 2 水の存&下にアンモ;:ァとトリ; ίチルァミン原臭の通 量を変化させた場合の除去率 (%)
Figure imgf000019_0001
[0067] 表 2に示すように、前記酸性系担持セラミックス Aに水を浸透させた場合、通気量 1 OVVM、 20WM、 30VVM及び 50VVMのいずれの場合も、アンモニア及びトリメ チルァミンの混合臭は、ガステック検知管で計測する限り、いずれも 100%の除去率 を示し、水を介在させな!/、実施例 1に比べて除去効率が向上した。
[0068] (実施例 3)
前記と同じ実験用脱臭塔内に、 Mg系担持セラミックス Aを 196. 25mL (層高 10c m)充填し、これに水 lOOmLを実験開始時に浸透させ、濃度調整された酢酸臭の 1 時間通気後の入口濃度と出口濃度を (株)ガステック製のガステック検知管、酢酸 No . 81L ( (0. 25)〜10. Oppm; l回の吸引時間約 1分)により、定法に従い測定した。 結果を表 3に示す。
[0069] [表 3] 表 3 酢酸原臭の通気量を変化させた場合の除去率 (%)
Figure imgf000020_0001
[0070] 実施例 2と同様に、 10WM、 20WM、 30VVM及び 50VVMで、酢酸臭の除去 率は、ガステック検知管で測定する限り 100%であった。
[0071] (実施例 4)
前記実施例 2の酸性系担持セラミックス Aを充填した実験用脱臭塔、前記実施例 3 の Mg系担持セラミックスを充填した実験用脱臭塔への通気量を 50VVMに固定し、 1回 Z日、定時に自動噴霧で lOOmLの水を補給し、 12週間の連続運転を行い、夫 々入口と出口でガステックの検知管により、混合原臭の濃度測定を行った。表 4に 1 週毎の測定結果を示す。
[0072] [表 4] 表 4 1 2週間の連続通気時における混合原炅の人口と出 U濃度 ( ppm)
Figure imgf000020_0002
[0073] 表 4に示すように、アンモニア、トリメチルァミン及び酢酸臭の 12週間の連続通気に おいても、毎日定時に lOOmLの水を補給することで、本発明の酸性系担持セラミツ タス及び Mg系担持セラミックス多孔体を併用した脱臭方法により、これら 3種の悪臭 を 100%除去できた。 [0074] (実施例 5)
内径 5cm、高さ 70cmの実験塔に前記酸性系担持セラミックス A、無処理セラミック ス (セラミックス多孔体 A)を夫々 10cmの層高に充填した実験区と、対象としてセラミ ックス未充填の実験区との、計 3実験区で脱臭実験を行った。アンモニア入口濃度 1 2. 8ppm、通気量 50VVM、水道水噴霧量 200mLZ分で 4分間通気し、脱臭層下 方の貯留水 8Lを分析に供した。アンモ-ゥムイオンはネスラー法、亜硝酸イオンは G R法、硝酸イオンはブルシン法により吸光度を測定し、窒素態の濃度値とした。表 5に 各窒素態の測定濃度を示す。
[0075] [表 5] 表 5 3水準実験区における窒素態濃度 (ppm)
Figure imgf000021_0001
[0076] 表 5に示すように、酸性系担持セラミックス Aの実験区における水中アンモ-ゥムィ オン濃度は 1. lppm、亜硝酸イオン濃度は 0. 01ppm、硝酸イオン濃度は 0. 3ppm 、無処理セラミックスの実験区【こお ヽて ίま夫々 6. 4ppm、 0. 02ppm、 0. 3ppm、セ ラミックス未充填の実験区では夫々 26. 8ppm、 0. 06ppm、 0. 3ppmであった。 この実験装置においては、原臭は脱臭層下方力 供給され、一方、水は脱臭層上 方力 散水されるため、脱臭層下方空間での水へのアンモニアの若干の溶解を示す 結果であつたが、脱臭層そのものの性能評価に影響を及ぼす数値ではな力つた。
[0077] 2.セラミックス多孔体 B
(セラミックス多孔体の製造)
ダクタイル铸鉄製品の製造時に生成される非晶質のスラグを破砕篩別した铸鉄スラ グ 70重量部と、蛙目粘土 30重量部とを混合した。この混合物 100重量部に水 14重 量部を加えてミキサーにて混合、混練した。この混練物を、押出機から棒状に押し出 し、更に造粒機 (マルメライザ一)にて球状に成形し、乾燥し、 1000°Cで焼成し、直 径 3. 5〜 15mmの球状のセラミックス多孔体 Bを得た。使用した铸鉄スラグの化学組 成を表 6に示す。
[表 6] 表 6 铸鉄スラグの化学組成
Figure imgf000022_0001
[0079] (酸性系処理)
マーガリンを濾過して油脂分を付着させた酸性白土を焼成炉にて焼成して油脂分 を炭化させ、表面、孔隙もしくは微細気孔の内面に炭素膜が形成された酸性白土を 得た。この表面に炭素を含む白土 1. 4kgを、硫酸 20Lに分散させ含浸液とした。こ の含浸液に、前記球状セラミックス多孔体 Bを加えてミキサーにて 15分間攪拌し、セ ラミックス多孔体 Bに、前記表面に炭素を含む白土を担持させ、酸性系担持セラミック ス Bを得た。
[0080] (Mg系処理)
Mg (OH)を焼成炉にて焼成して酸化し、 MgOとした。 20Lのリチウムシリケート水 溶液(日産化学工業株式会社製、リチウムシリケート 35)に前記 MgOを 2. 8kgの割 合で添加したスラリーを含浸液とした。この含浸液に、前記球状セラミックス多孔体 B をカロえてミキサーにて 15分間攪拌し、セラミックス多孔体 Bに、 MgOとリチウムシリケ 一トを担持させ、 Mg系担持セラミックス Bを得た。
[0081] (実施例 6:酸性系担持セラミックス Bの脱臭試験)
原臭物質としてアンモニア又はトリメチルァミンを含む空気 (原ガス)を、前記酸性系 担持セラミックス Bを充填したカラムを強制的に通過させて処理し、風速別の脱臭効 果を調べた。結果を表 7に示す。
[0082] [表 7] S 7 酸性系セラミ ックス Bによる脱臭効 fi
Figure imgf000023_0002
[0083] (実施例 7: Mg系担持セラミックス Bの脱臭試験)
原臭物質として酢酸を含む空気 (原ガス)を、前記 Mg系担持セラミックス Bを充填し たカラムを強制的に通過させて処理し、風速及び水分介在の有無(ドライ及びゥエツ ト)による脱臭効果を調べた。結果を表 8に示す。
[0084] [表 8]
Figure imgf000023_0001
Figure imgf000023_0003
[0085] (実施例 8 :堆肥化施設の複合臭の脱臭)
通気面積 0. 36m2 (0. 6mX 0. 6m)、厚さ 100mmの脱臭層 3に、 Mg系担持セラ ミックス B (4 (Mg) )と酸性系担持セラミックス B (4 (酸性) )とを充填した 2層の脱臭層 3 のそれぞれに散水ノズル 6を備えた脱臭装置 1 Aを用いた(図 2参照)。散水ノズル 6 力 各脱臭層 3に間欠的に散水しながら、堆肥化施設の堆肥化装置力 排出された 、複合臭を含む空気 (原ガス)を、 Mg系担持セラミックス B (4 (Mg) )、酸性系担持セ ラミックス B (4 (酸性) )の順に 1800m3/hで通過させて脱臭処理し、処理前後の空 気中の原臭物質のガス濃度をガス検知管 ((株)ガステック製)で測定した。結果を表 9 に示す。
[0086] [表 9] 表 9 堆肥化施設での複合臭の脱臭
Figure imgf000024_0001
[0087] (実施例 9 :堆肥化施設のアンモニア臭の脱臭)
通気面積 0. 36m2 (0. 6mX 0. 6m)、厚さ 100mmの脱臭層 3に、 Mg系担持セラ ミックス B (4 (Mg) )と酸性系担持セラミックス B (4 (酸性) )とを充填した 2層の脱臭層 3 のそれぞれに散水ノズル 6を備える脱臭装置 1A (図 2参照。)を直列に 2台連結して 用いた。散水ノズル 6から各脱臭層 3に間欠的に散水しながら、堆肥化施設の堆肥化 装置力 排出された、多量のアンモニアを含む空気 (原ガス)を、 Mg系担持セラミック ス B (4 (Mg) )、酸性系担持セラミックス B (4 (酸性) )、 Mg系担持セラミックス B (4 (M g) )、酸性系担持セラミックス B (4 (酸性) )の順に 1800m3/hで通過させて処理し、 処理前後の空気中のアンモニア濃度をガス検知管 ((株)ガステック製)で測定した。 結果を表 10に示す。
[0088] [表 10] 表 1 0 堆肥化施設でのアンモニア臭の脱臭
Figure imgf000024_0002
[0089] (実施例 10 :アスファルト再生工場の脱臭)
通気面積 0. 36m2 (0. 6mX 0. 6m)、厚さ 100mmの脱臭層 3に、 Mg系担持セラ ミックス B (4 (Mg) )と酸性系担持セラミックス B (4 (酸性) )とを充填した 2層の脱臭層 のそれぞれに散水ノズル 6を備える脱臭装置 1A (図 2参照。)を直列に 2台連結して 用いた。散水ノズル 6から各脱臭層 3に間欠的に散水しながら、アスファルト再生工場 力も排出された、各種悪臭成分を含む空気 (原ガス)を、 Mg系担持セラミックス B (4 ( Mg) )、酸性系担持セラミックス B (4 (酸性) )、 Mg系担持セラミックス B (4 (Mg) )、酸 性系担持セラミックス B (4 (酸性) )の順に 1800m3Zhで通過させて処理し、処理前 後の空気中の各種原臭物質の濃度をガス検知管 ((株)ガステック製)で測定した。測 定は、脱臭装置設置当日と、設置 25日目の 2度行った。結果を表 11に示す。
[0090] [表 11] 表 1 1 アスファルト再生工場での複合臭の脱臭
Figure imgf000025_0001
[0091] (実施例 11 :堆肥化施設の脱臭)
通気面積 0. 36m2 (0. 6mX 0. 6m)、厚さ 100mmの脱臭層 3に、 Mg系担持セラ ミックス B (4 (Mg) )と酸性系担持セラミックス B (4 (酸性) )とを充填した 2層の脱臭層 3 のそれぞれに散水ノズル 6を備える第 1の脱臭装置 1A (図 2参照。)と、通気面積 1. 44m2 (1. 2m X l. 2m)、厚さ 100mmの脱臭層に、 Mg系担持セラミックス Bと酸性 系担持セラミックス Bとを充填した 2層の脱臭層のそれぞれに散水ノズルを備える第 2 の脱臭装置 1A' (図 2に示す脱臭装置 1Aと同様の構造で大型のもの)とを直列に 2 台連結して用いた。散水ノズル 6から各脱臭層 3に間欠的に散水しながら、堆肥化施 設の高速堆肥化装置から排出された、多量のアンモニアを含む空気 (原ガス)を、第 1の脱臭装置 1Aの Mg系担持セラミックス B (4 (Mg) )、酸性系担持セラミックス B (4 ( Mg) )、第 2の脱臭装置 1A,の Mg系担持セラミックス B (4 (Mg) )、酸性系担持セラミ ックス B (4 (酸性) )の順に 1800m3Zhで通過させて処理し、処理前後の空気中のァ ンモニァ濃度をガス検知管 ((株)ガステック製)で測定した。結果を表 12に示す。
[0092] [表 12] 堆肥化工場でのアンモニア臭の脱臭
Figure imgf000026_0001
[0093] (実施例 12 :水産食品加工工場の酢酸臭の脱臭)
通気面積 3. 24m2 (1. 8mX l. 8m)、厚さ 100mmの脱臭層 3に、 Mg系担持セラ ミックス B (4 (Mg) )と酸性系担持セラミックス B (4 (酸性) )とを充填した 2層の脱臭層 3 のそれぞれに散水ノズル 6を備える脱臭装置 1B (図 3参照)を用いた。散水ノズル 6 力 各脱臭層 3に間欠的に散水しながら、水産食品加工工場力 排出された、酢酸 を含む空気 (原ガス)を、 Mg系担持セラミックス B (4 (Mg) )、酸性系担持セラミックス B (4 (酸性) )の順に 18000m3Zhで通過させて処理し、処理前後の空気中の酢酸 濃度をガス検知管 ((株)ガステック製)で測定した。結果を表 13に示す。
[0094] [表 13]
表 1 3 水産食品加工工場での酢酸臭の脱臭
Figure imgf000026_0002
[0095] (実施例 13:室内のホルムアルデヒド臭の脱臭)
通気面積 0. 09m2 (0. 3mX O. 3m)、厚さ 100mmの脱臭層 3に、 Mg系担持セラ ミックス B (4 (Mg) )と酸性系担持セラミックス B (4 (酸性) )とを充填した 2層の脱臭層 を備える脱臭装置(図 4参照。)を用いた。容積 26. 8m3 (W: 3640mm X D: 2730m m X H : 2700mm)の内部ステンレス張りの実験室中に、ホルムアルデヒドの発生源 として、コンクリート型枠用合板(900mm X 900mm)を入れて密閉し、室内のホルム アルデヒド濃度が 15ppm (高濃度)、 1. 5ppm (低濃度)となるように調整した。この実 験室内の空気を、ダクトを通じて前記脱臭装置 1Cの吸気側から供給し、各脱臭層 3 に給水しながら、 Mg系担持セラミックス B (4 (Mg) )、酸性系担持セラミックス B (4 (酸 性))の順に通過させ、排気側からダクトを通じて再び実験室内へ戻す循環経路を設 け、室内のホルムアルデヒド濃度の変化をホータブルガスモニター(サーモエレクト口 ン社製、「Model INNOVA」)で測定した。この結果、高濃度(15ppm)の場合は、 脱臭装置の運転開始後、約 1日で室内のホルムアルデヒド濃度は 3ppmまで低下し た。また、低濃度(1. 5ppm)の場合は、約 14時間後には室内のホルムアルデヒド濃 度は 0. 6ppmまで低下した。
[0096] (実施例 13:ペットショップの脱臭)
通気面積 0. 09m2 (0. 3mX 0. 3m)、厚さ 100mmの脱臭層 3に、 Mg系担持セラ ミックス B (4 (Mg) )と酸性系担持セラミックス B (4(酸性) )とを充填した 2層の脱臭層を 備える脱臭装置 1C (図 4参照。)を用いた。ペットショップの鳥展示部屋及び犬展示 部屋の空気を、ダクトを通じて前記脱臭装置 1Cの吸気側から供給し、各脱臭層 3に 給水しながら、 Mg系担持セラミックス B (4 (Mg) )、酸性系担持セラミックス B (4 (酸性 ) )の順に通過させ、排気側からダクトを通じて再び各展示室内へ戻す循環経路を設 け、室内の床から lmの高さの臭気強度を、室内用臭気測定器 (株式会社双葉エレク トロ二タス製、ハンディタイプ臭気測定装置「e— nose mobil」)で測定した。その結果 、臭気強度が約 1100であった鳥展示室は、脱臭装置の運転開始後、 7. 5時間で臭 気強度が約 700まで低下し、臭気強度が 750〜800であった犬展示室は、脱臭装置 の運転開始後、 6時間で臭気強度が約 600まで低下した。なお、展示室以外のペット ショップ店舗内の臭気強度は約 500であった。
産業上の利用可能性
[0097] 本発明によれば、臭気物質や有害物質を含有する空気を、セラミックス多孔体から なる脱臭層を通過させるだけで、空気中から前記臭気物質や有害物質を除去するこ とができ、室内や大気等の環境の悪ィ匕防止や環境改善に寄与することができる。ま た、本発明方法は、処理対象とセラミックス多孔体との接触に際して水分を介在させ ることで、前記臭気物質や有害物質の除去効率を向上させることができることから、 空気中の臭気物質や有害物質のみでなぐ水中の有害物質などの除去効果も期待 でき、水質浄化への応用も期待できる。

Claims

請求の範囲
[1] 悪臭成分又は有害成分を含む空気を、セラミックス多孔体力 なる脱臭層を強制的 に通過させることで、前記悪臭成分又は有害成分を除去し、無害化された空気として 排出する脱臭方法であって、
前記セラミックス多孔体が、連続貫通気孔を有するセラミックス多孔体に酸性物質 又は塩基性物質を担持させたものであり、
空気中の酸性成分は、前記塩基性物質を担持させたセラミックス多孔体を通過さ せることにより除去し、空気中の塩基性成分は、前記酸性物質を担持させたセラミック ス多孔体を通過させることにより除去することを特徴とする脱臭方法。
[2] 前記セラミックス多孔体が、铸鉄スラグと可塑性粘土に水分を加えて混合、混練し た組成物を、所望の形状に成形し、乾燥した後、 900〜1150°Cの範囲の温度で焼 成したものである請求項 1記載の脱臭方法。
[3] 前記セラミックス多孔体が、铸鉄製品の製造時に生成される非晶質のスラグを破砕 篩別して 0. 25〜2. Ommの粒度範囲に調整したものを 50〜80重量%と、可塑性粘 土を 20〜50重量%の割合で混合した混合物 100重量部に対して水を 12〜25重量 部加えて混合、混練した組成物を、所望の形状に成形し、乾燥した後、 900〜1150 °Cの範囲の温度で発泡、焼成したものである請求項 2記載の脱臭方法。
[4] 前記セラミックス多孔体が、粒状である請求項 1〜3のいずれかに記載の脱臭方法
[5] 前記セラミックス多孔体力 直径 2mn!〜 20mmの球状である請求項 4記載の脱臭 方法。
[6] 前記セラミックス多孔体が、前記塩基性物質として固体塩基性物質を担持させたも のである請求項 1〜5のいずれかに記載の脱臭方法。
[7] 前記固体塩基性物質が活性マグネシウム及び Z又は活性マグネシアである請求 項 6記載の脱臭方法。
[8] 前記セラミックス多孔体力 該セラミックス多孔体に、酸ィ匕マグネシウムをシリカゾル とともに含浸し、乾燥したものである請求項 7記載の脱臭方法。
[9] 前記シリカゾルとして、リチウムシリケート水溶液を用いてなる請求項 8記載の脱臭 方法。
[10] 前記セラミックス多孔体が、前記酸性物質として固体酸性物質を担持させたもので ある請求項 1〜5のいずれかに記載の脱臭方法。
[11] 前記固体酸性物質が、二次元層状構造からなる粘土鉱物の層間水を脱水させた 後、酸処理したものである請求項 10記載の脱臭方法。
[12] 前記粘土鉱物が、その表面又は孔隙若しくは微細気孔内面に、吸着機能を有する 炭素を含むことを特徴とする請求項 11に記載の脱臭方法。
[13] 前記粘土鉱物が酸性白土である請求項 11又は 12に記載の脱臭方法。
[14] 前記セラミックス多孔体が、該セラミックス多孔体に、前記粘土鉱物を、無機酸ととも に含浸し、乾燥したものである請求項 11〜13のいずれかに記載の脱臭方法。
[15] 前記無機酸が、硫酸である請求項 14記載の脱臭方法。
[16] 空気中の酸性成分を、塩基性物質を担持させたセラミックス多孔体により除去する 工程と、空気中の塩基性成分を、酸性物質を担持させたセラミックス多孔体により除 去する工程との両方の工程を備える請求項 1〜15のいずれかに記載の脱臭方法。
[17] 前記酸性成分を除去する工程と、前記塩基性成分を除去する工程とを連続して行 う請求項 16記載の脱臭方法。
[18] 前記酸性成分を除去する工程と、前記塩基性成分を除去する工程とを繰り返し行う 請求項 17記載の脱臭方法。
[19] 前記悪臭成分又は有害成分を含む空気を、セラミックス多孔体力 なる脱臭層を通 過させる際に、前記セラミックス多孔体との間に水分を介在させることを特徴とする請 求項 1〜18のいずれかに記載の脱臭方法。
[20] 前記セラミックス多孔体に水分を供給して湿潤状態とし、この湿潤状態のセラミック ス多孔体を、有害成分又は悪臭成分を含む空気を通過させることを特徴とする請求 項 19記載の脱臭方法。
[21] 前記悪臭成分又は有害成分を含む空気を、 0. 5mZs〜4. OmZsの速度で脱臭 層を強制的に通過させる請求項 1〜20のいずれかに記載の脱臭方法。
[22] 前記セラミックス多孔体による脱臭工程の前に、オイルミスト除去工程を行うことを特 徴とする請求項 1〜21のいずれかに記載の脱臭方法。
[23] 一側側に吸気口を設け、他側側に排気口を設けた装置本体と、前記吸気口と排気 口との間の装置本体内を複数の空間に区画するように設けた複数の脱臭層と、悪臭 成分又は有害成分を含む空気を、前記装置本体内に供給し、前記脱臭層を強制的 に通過させて無害化された空気として排出する送気手段とを備え、請求項 1〜22の 脱臭方法を実施するための脱臭装置であって、
前記脱臭層が、連続貫通気孔を有するセラミックス多孔体であって、酸性物質又は 塩基性物質を担持させたセラミックス多孔体力もなることを特徴とする脱臭装置。
[24] 前記脱臭層のセラミックス多孔体に水を供給するための給水手段を備えた請求項 2 3記載の脱臭装置。
PCT/JP2006/326245 2005-12-28 2006-12-28 脱臭方法 WO2007077924A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007529283A JP4063316B2 (ja) 2005-12-28 2006-12-28 脱臭方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005378378 2005-12-28
JP2005-378378 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007077924A1 true WO2007077924A1 (ja) 2007-07-12

Family

ID=38228273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326245 WO2007077924A1 (ja) 2005-12-28 2006-12-28 脱臭方法

Country Status (2)

Country Link
JP (1) JP4063316B2 (ja)
WO (1) WO2007077924A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2606952A1 (en) * 2007-08-29 2013-06-26 SpectraSensors, Inc. Scrubber for reactive gases
WO2014175209A1 (ja) * 2013-04-25 2014-10-30 小松精練株式会社 ガス浄化装置及びガス浄化方法
JP2014213266A (ja) * 2013-04-25 2014-11-17 小松精練株式会社 ガス浄化装置及びガス浄化方法
JP2014213267A (ja) * 2013-04-25 2014-11-17 小松精練株式会社 廃棄物処理装置
JP2015044179A (ja) * 2013-08-02 2015-03-12 小松精練株式会社 乾燥処理装置
JP2016043038A (ja) * 2014-08-22 2016-04-04 小松精練株式会社 脱臭装置および脱臭方法
WO2017178766A1 (fr) * 2016-04-14 2017-10-19 Deltalys Nouveau procédé d'épuration ou de désodorisation de gaz
CN110124421A (zh) * 2018-02-02 2019-08-16 刘庆军 空气净化系统和空气净化方法
CN111013526A (zh) * 2019-11-18 2020-04-17 昆明理工大学 一种基于锑尾矿吸附材料及其制备方法和应用
JP2020199237A (ja) * 2019-06-06 2020-12-17 無臭元工業株式会社 アスファルト用防臭剤及びアスファルトの防臭方法
JP7430562B2 (ja) 2020-04-01 2024-02-13 水澤化学工業株式会社 プリン体用吸着剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734185B1 (ko) 2016-12-05 2017-05-11 (주)신화엔바텍 가변형 적층 흡수식 복합오염 악취물질 탈취 시스템, 이를 이용한 탈취 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243383A (ja) * 1995-03-10 1996-09-24 Nikki Universal Co Ltd 疎水性脱臭材およびその再生方法
JPH09876A (ja) * 1995-03-27 1997-01-07 Agency Of Ind Science & Technol 耐水蒸気性を有する二酸化炭素親和性体
JPH107433A (ja) * 1996-06-20 1998-01-13 Hideo Igami 多孔質結晶化ガラス組成物
JPH1085316A (ja) * 1996-09-13 1998-04-07 Green Tec:Kk 空気浄化装置
JPH11285380A (ja) * 1998-04-03 1999-10-19 Green Tec:Kk 微生物担体
JPH11333226A (ja) * 1998-05-26 1999-12-07 Takasago Thermal Eng Co Ltd 空気浄化フィルタ及びその製造方法及び高度清浄装置
JP2000157835A (ja) * 1998-11-27 2000-06-13 Shinsei Dental Laboratory:Kk ごみ焼却炉の排ガス処理装置
JP2002047075A (ja) * 2000-08-02 2002-02-12 Clay Baan Gijutsu Kenkyusho:Kk セラミックス多孔体及びその製造方法
JP2003117341A (ja) * 2001-10-17 2003-04-22 Ebara Corp アンモニア含有ガスの処理方法及びその装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243383A (ja) * 1995-03-10 1996-09-24 Nikki Universal Co Ltd 疎水性脱臭材およびその再生方法
JPH09876A (ja) * 1995-03-27 1997-01-07 Agency Of Ind Science & Technol 耐水蒸気性を有する二酸化炭素親和性体
JPH107433A (ja) * 1996-06-20 1998-01-13 Hideo Igami 多孔質結晶化ガラス組成物
JPH1085316A (ja) * 1996-09-13 1998-04-07 Green Tec:Kk 空気浄化装置
JPH11285380A (ja) * 1998-04-03 1999-10-19 Green Tec:Kk 微生物担体
JPH11333226A (ja) * 1998-05-26 1999-12-07 Takasago Thermal Eng Co Ltd 空気浄化フィルタ及びその製造方法及び高度清浄装置
JP2000157835A (ja) * 1998-11-27 2000-06-13 Shinsei Dental Laboratory:Kk ごみ焼却炉の排ガス処理装置
JP2002047075A (ja) * 2000-08-02 2002-02-12 Clay Baan Gijutsu Kenkyusho:Kk セラミックス多孔体及びその製造方法
JP2003117341A (ja) * 2001-10-17 2003-04-22 Ebara Corp アンモニア含有ガスの処理方法及びその装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2606952A1 (en) * 2007-08-29 2013-06-26 SpectraSensors, Inc. Scrubber for reactive gases
WO2014175209A1 (ja) * 2013-04-25 2014-10-30 小松精練株式会社 ガス浄化装置及びガス浄化方法
JP2014213266A (ja) * 2013-04-25 2014-11-17 小松精練株式会社 ガス浄化装置及びガス浄化方法
JP2014213267A (ja) * 2013-04-25 2014-11-17 小松精練株式会社 廃棄物処理装置
JP2015044179A (ja) * 2013-08-02 2015-03-12 小松精練株式会社 乾燥処理装置
JP2016043038A (ja) * 2014-08-22 2016-04-04 小松精練株式会社 脱臭装置および脱臭方法
WO2017178766A1 (fr) * 2016-04-14 2017-10-19 Deltalys Nouveau procédé d'épuration ou de désodorisation de gaz
FR3050122A1 (fr) * 2016-04-14 2017-10-20 Deltalys Nouveau procede de depollution ou de desodorisation de gaz
CN110124421A (zh) * 2018-02-02 2019-08-16 刘庆军 空气净化系统和空气净化方法
JP2020199237A (ja) * 2019-06-06 2020-12-17 無臭元工業株式会社 アスファルト用防臭剤及びアスファルトの防臭方法
CN111013526A (zh) * 2019-11-18 2020-04-17 昆明理工大学 一种基于锑尾矿吸附材料及其制备方法和应用
CN111013526B (zh) * 2019-11-18 2022-02-11 昆明理工大学 一种基于锑尾矿吸附材料及其制备方法和应用
JP7430562B2 (ja) 2020-04-01 2024-02-13 水澤化学工業株式会社 プリン体用吸着剤

Also Published As

Publication number Publication date
JP4063316B2 (ja) 2008-03-19
JPWO2007077924A1 (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4063316B2 (ja) 脱臭方法
CN103537255A (zh) 一种具有分解、杀菌性能的纳米氧化物陶瓷净化吸附材料
KR20010000418A (ko) 악취가스 흡착탈취제 및 그의 제조방법
KR20230107822A (ko) 악취 또는 유해 가스 제거 또는 저감용 반응기
CN201564831U (zh) 生化-物化组合式除臭装置
KR100773913B1 (ko) 열교환기용 필터 부재의 제조 방법
JP3530516B2 (ja) 空気浄化用吸着材及び空気浄化装置
KR102152773B1 (ko) 실내의 산소농도유지와 휘발성 유기화합물과 유해가스를 동시에 처리가능토록 되는 공기청정장치
KR20230081778A (ko) VOCs 저감장치
JPH0739749A (ja) 空間内に設置する空気清浄化剤と空気清浄化法
CN1865790B (zh) 一种用于空调器的生化膜及其生产方法
KR100879178B1 (ko) 탈취재 및 이의 제조방법
CN209237705U (zh) 一种合成革行业中二甲胺废气治理装置
KR20160063108A (ko) 악취 및 휘발성유기화합물 제거를 위한 하이브리드형 바이오필터
JPS6115732B2 (ja)
KR960000552B1 (ko) 원적외선 방사 세라믹 탈취제 및 그의 제조방법
JP2000107555A (ja) 脱臭方法
KR101455227B1 (ko) 유기성 폐기물 처리장치의 복합 탈취시스템
JP2002219497A (ja) 汚物・汚泥の処理方法及びその方法で得られた炭化処理物、並びに炭化処理物を用いた普通肥料
JP2003210931A (ja) 脱臭処理方法
CN103252156A (zh) 生化-物化组合式除臭装置
JP2002079050A (ja) 脱臭方法及び脱臭装置
KR20110080454A (ko) 탈취제 조성물, 이를 이용한 탈취제 가공방법 및 탈취제
JP2011212539A (ja) 脱臭システム及び脱臭システムの使用方法
JP3141913U (ja) 汚染物質無害化処理用布帛

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007529283

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843623

Country of ref document: EP

Kind code of ref document: A1