WO2007077121A1 - Verfahren zur enzymatischen herstellung von citronellal - Google Patents

Verfahren zur enzymatischen herstellung von citronellal Download PDF

Info

Publication number
WO2007077121A1
WO2007077121A1 PCT/EP2006/069894 EP2006069894W WO2007077121A1 WO 2007077121 A1 WO2007077121 A1 WO 2007077121A1 EP 2006069894 W EP2006069894 W EP 2006069894W WO 2007077121 A1 WO2007077121 A1 WO 2007077121A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
reduction
polypeptide sequence
citronellal
carried out
Prior art date
Application number
PCT/EP2006/069894
Other languages
English (en)
French (fr)
Inventor
Andreas SCHÄDLER
Thomas Friedrich
Rainer STÜRMER
Sabine Rinck-Jahnke
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2008547946A priority Critical patent/JP5705410B2/ja
Priority to US12/159,531 priority patent/US8206957B2/en
Priority to AT06841443T priority patent/ATE513054T1/de
Priority to EP06841443A priority patent/EP1974045B1/de
Priority to CN2006800469376A priority patent/CN101331233B/zh
Publication of WO2007077121A1 publication Critical patent/WO2007077121A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)

Definitions

  • the invention relates to an enzymatic process for the preparation of optically active saturated aldehydes or alcohols of the formula from ⁇ , ⁇ -unsaturated aldehydes, in particular a process for the preparation of citronellal.
  • (R) - (+) citronellal is an important chemical intermediate used, for example, in the production of menthol.
  • the object was to provide a process for the production of citronellal by enantiose- lective reduction of citral, which provides citronellal enantiomerically pure in a high chemical yield.
  • the present invention relates to a process for preparing optically active saturated aldehydes or alcohols of the formula (2) from ⁇ , ⁇ -unsaturated aldehydes of the formula (1) by reduction in the presence of an enoate reductase (i) with the polypeptide sequence SEQ ID NO: 1 or 2, or (ii) having a polypeptide sequence having at least 80% sequence identity with SEQ ID NO: 1 or 2.
  • the process according to the invention can be carried out with ⁇ , ⁇ -unsaturated aldehydes of the formula (1) in which R 1 and R 2 independently of one another have the meaning H, C 1 -C 4 -alkyl in branched and unbranched form, R 3 is H, C 1 -C 6 - Have alkyl or alkenyl in a branched and unbranched form.
  • the alkyl or alkenyl radicals can also be monosubstituted or polysubstituted.
  • the enoate reductases used according to the invention sometimes also reduce the carbonyl function itself, as a result of which the corresponding alcohol is then formed.
  • Suitable enoate reductases for the process according to the invention are those enzymes which are capable of reacting 2-methylpent-2-en-1-al in an NADPH-dependent reaction to give (S) -2-methylpentan-1-al to reduce. This reaction is also called model reaction in the following.
  • the enoate reductases suitable for the process according to the invention have a polypeptide sequence according to SEQ ID NO: 1 or NO: 2 or a polypeptide sequence which is at least 80%, preferably at least 90%, particularly preferably at least 95% and in particular at least 97%, 98% or 99% sequence identity with SEQ ID NO: 1 or 2.
  • a polypeptide with SEQ ID NO: 1 is the OYE2 gene from baker's yeast (Saccharomyces cerevisiae gene locus YHR179W).
  • a polypeptide with SEQ ID NO: 2 is the OYE3 gene from baker's yeast (Saccharomyces cerevisiae gene locus YPL171 C). Sequence identity determination for the purposes described herein is to be carried out by the GAP computer program of the University of Wisconsin's Genetics Computer Group (GCG) using version 10.3 using the standard parameters recommended by GCG.
  • GCG Genetics Computer Group
  • Such enoate reductases can be obtained from SEQ ID NO: 1 or 2 by targeted or randomized mutagenesis methods known to those skilled in the art.
  • microorganisms preferably in the genera Alishewanella, Alterococcus, Aquamonas, Aranicola, Arsenophonus, Azotivirga, Brenneria, Buchnera (aphid P-endosymbionts), Budvicia, Buttiauxella, Candidatus Phlomobacter, Cedecea, Citrobacter, Dickeya, Edwardsieila, Enterobacter , Erwinia, Escherichia, Ewingella, Grimontella, Hafnia, Klebsiella, Kluyvera, Leclercia, Leminorel Ia, Moellerella, Morganella, Obesumbacterium, Pantoea, Pectobacterium, Photorhabdus, Plesiomonas, Pragia, Proteus, Providencia
  • the enoate reductase can be used in purified or partially purified form or else in the form of the microorganism itself. Methods for the recovery and purification of dehydrogenases from microorganisms are well known to those skilled in the art.
  • the enantioselective reduction is carried out with the enoate reductase in the presence of a suitable cofactor (also referred to as cosubstrate).
  • a suitable cofactor also referred to as cosubstrate.
  • cofactors for the reduction of the ketone is usually NADH and / or NADPH.
  • enoate reductases can be used as cellular systems which inherently contain co-factor, or alternative redox mediators are added (A. Schmidt, F. Hollmann and B. Buehler "Oxidation of Alcohols" in K. Drauz and H. Waldmann, Enzymes Catalysis in Organic Synthesis 2002, Vol. IM, 991-1032, Wiley-VCH, Weinheim).
  • the enantioselective reduction with the enoate reductase preferably takes place in the presence of a suitable reducing agent which regenerates the oxidized cofactor in the course of the reduction.
  • suitable reducing agents are sugars, in particular hexoses, such as glucose, mannose, fructose, and / or oxidizable Alcohols, especially ethanol, propanol or isopropanol, and formate, phosphite or molecular hydrogen.
  • a second dehydrogenase such as, for example, glucose dehydrogenase using glucose as reducing agent or formate dehydrogenase when using formate as reducing agent, can be added.
  • This can be used as a free or immobilized enzyme or in the form of free or immobilized cells. They can be produced either separately or by coexpression in a (recombinant) reductase strain.
  • a preferred embodiment of the claimed process is the regeneration of the cofactors by an enzymatic system in which a second dehydrogenase, more preferably a glucose dehydrogenase, is used.
  • Another object of the invention is the use of enoate reductase for the production of citronellal.
  • NAD + or NADP + are preferably used as cofactors, which can be regenerated with corresponding cosubstrates (oxidizing agents).
  • the cosubstrate used here can preferably be acetone, which regenerates the cofactor with the already existing ADH and / or an additionally used dehydrogenase, reducing it to isopropanol.
  • Enantioselectivity in the context of the present invention means that the enantiomeric excess ee (in%) of the S-enantiomer which is calculated in a known manner according to:
  • the enoate reductases used according to the invention can be used freely or immobilized.
  • An immobilized enzyme is an enzyme which is fixed to an inert carrier. Suitable support materials and the enzymes immobilized thereon are disclosed in EP-A-1149849, EP-A-1 069 183 and DE-OS
  • Suitable support materials include, for example, clays, clay minerals such as kaolinite, diatomaceous earth, perlite, silica, alumina, sodium carbonate, calcium carbonate, cellulose powder, anion exchange materials, synthetic polymers such as polystyrene, acrylic resins, phenolformaldehyde resins, polyurethanes and polyolefins such as polyethylene and polypropylene.
  • the support materials are usually used in a finely divided, particulate form for the preparation of the supported enzymes, with porous forms being preferred.
  • the particle size of the carrier material is usually not more than 5 mm, in particular not more than 2 mm (grading curve).
  • Carrier materials are, for example, calcium alginate, and carrageenan.
  • Enzymes as well as cells can also be crosslinked directly with glutaraldehyde (cross-linking to CLEAs). Corresponding and further immobilization methods are described, for example, in J. Lalonde and A. Margolin "Immobilization of Enzymes" in K. Drauz and H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol. IM, 991-1032, Wiley-VCH, Weinheim.
  • the reaction can be carried out in aqueous or non-aqueous reaction media or in 2-phase systems or (micro) emulsions.
  • the aqueous reaction media are preferably buffered solutions which generally have a pH of from 4 to 8, preferably from 5 to 8.
  • the aqueous solvent may also contain, besides water, at least one alcohol, e.g. Ethanol or isopropanol or dimethyl sulfoxide.
  • Non-aqueous reaction media are understood as meaning reaction media which contain less than 1% by weight, preferably less than 0.5% by weight, of water, based on the total weight of the reaction medium.
  • the reaction is carried out in an organic solvent.
  • Suitable solvents are, for example, aliphatic hydrocarbons, preferably having 5 to 8 carbon atoms, such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane or cyclooctane, halogenated aliphatic hydrocarbons, preferably having one or two carbon atoms, such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane or tetrachloroethane, aromatic hydrocarbons, such as benzene, toluene, xylenes, chlorobenzene or dichlorobenzene, aliphatic a cyclic and cyclic ethers or alcohols, preferably having 4 to 8 carbon atoms, such as diethyl ether, methyl tert-butyl ether, ethyl tert-butyl butyl ether, dipropyl ether,
  • the reduction with the enoate reductase is preferably carried out in an aqueous-organic, in particular aqueous reaction medium.
  • the substrate (1) is preferably used in a concentration of 0.1 g / l to 500 g / l, more preferably from 1 g / l to 50 g / l in the enzymatic reduction and can be adjusted continuously or discontinuously.
  • the enzymatic reduction is generally carried out at a reaction temperature below the deactivation of the reductase used and above -10 0 C. It is particularly preferably in the range of 0 to 100 0 C, in particular from 15 to 60 0 C and especially from 20 to 40 0 C, eg at about 30 ° C.
  • the substrate (1) with the enoate reductase, the solvent and optionally the coenzymes, optionally a second dehydrogenase for the regeneration of the coenzyme and / or further Reduktions mit- presented and mix the mixture, for. B. by stirring or shaking.
  • the mixture can be circulated through the reactor until the desired conversion is achieved.
  • the double bond in ⁇ , ß-position to the carbonyl function is reduced to the single bond; Occasionally there is also a reduction in the carbonyl function itself to the alcohol function. As a rule, the reduction will lead to a conversion of at least 70%, particularly preferably of at least 85% and in particular of at least 95%, based on the substrate contained in the mixture.
  • the progress of the reaction ie the sequential reduction of the double bond can be followed by conventional methods such as gas chromatography or high pressure liquid chromatography.
  • “functional equivalents" or analogues of the enzymes specifically disclosed are different polypeptides which furthermore have the desired biological activity, such as substrate specificity.
  • “functional equivalents” are enzymes which catalyze the model reaction and which has at least 20%, preferably 50%, particularly preferably 75%, very particularly preferably 90% of the activity of an enzyme comprising one of the amino acid sequences listed under SEQ ID NO: 1 or 2.
  • Functional equivalents are also preferably stable between pH 4 to 10 and advantageously have a pH optimum between pH 5 and 8 and a temperature optimum in the range of 20 ° C to 80 ° C.
  • “functional equivalents” are in particular also understood as meaning mutants which, in at least one sequence position of the abovementioned amino acid sequences, have a different amino acid than the one specifically mentioned but nevertheless have one of the abovementioned biological activities
  • “Functional equivalents” thus include those represented by a or multiple amino acid additions, substitutions, deletions and / or inversions of available mutants, said changes may occur in any sequence position, as long as they lead to a mutant with the property profile according to the invention.
  • functional equivalence also exists when the reactivity patterns between mutant and unmodified polypeptide are qualitatively consistent, i. For example, the same substrates are reacted at different speeds. Examples of suitable amino acid substitutions are given in the following table:
  • Precursors are natural or synthetic precursors of the polypeptides with or without the desired biological activity.
  • “Functional derivatives” of polypeptides of the invention may also be produced at functional amino acid side groups or at their N- or C-terminal end by known techniques
  • Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups obtainable by reaction with ammonia or with a primary or secondary amine; N-acyl derivatives of free amino groups prepared by reaction with acyl groups; or O-acyl derivatives of free hydroxy groups prepared by reaction with acyl groups.
  • “functional equivalents” include proteins of the abovementioned type in deglycosylated or glycosylated form as well as modified forms obtainable by altering the glycosylation pattern.
  • “functional equivalents” also include polypeptides that are accessible from other organisms, as well as naturally occurring variants. For example, it is possible to determine regions of homologous sequence regions by sequence comparison and to determine equivalent enzymes on the basis of the specific requirements of the invention. "Functional equivalents” likewise include fragments, preferably individual domains or sequence motifs, of the polypeptides according to the invention which, for example, have the desired biological function.
  • Fusion equivalents are also fusion proteins which have one of the above-mentioned polypeptide sequences or functional equivalents derived therefrom and at least one further functionally distinct heterologous sequence in functional N- or C-terminal linkage (ie without substantial substantial functional impairment of the fusion protein moieties)
  • heterologous sequences are, for example, signal peptides or enzymes.
  • Homologs of the proteins of the invention can be prepared by screening combinatorial libraries of mutants, e.g. Shortening mutants, to be identified.
  • a variegated library of protein variants can be generated by combinatorial mutagenesis at the nucleic acid level, e.g. by enzymatic ligation of a mixture of synthetic oligonucleotides.
  • degenerate gene set allows for the provision of all sequences in a mixture that encode the desired set of potential protein sequences.
  • Methods of synthesizing degenerate oligonucleotides are known to those skilled in the art (eg, Narang, SA (1983) Tetrahedron 39: 3; Itakura et al. (1984) Annu. Rev. Biochem. 53: 323; Itakura et al., (1984) Science 198: 1056; Ike et al. (1983) Nucleic Acids Res. 1 1: 477).
  • REM Recursive ensemble mutagenesis
  • the invention furthermore relates to nucleic acid sequences (single-stranded and double-stranded DNA and RNA sequences, such as, for example, cDNA and mRNA) which code for an enzyme with reductase activity according to the invention.
  • nucleic acid sequences which are e.g. for amino acid sequences according to SEQ ID NO: 1 or 2 or characteristic partial sequences thereof.
  • nucleic acid sequences mentioned herein can be prepared in a manner known per se by chemical synthesis from the nucleotide units, for example by fragment condensation of individual overlapping, complementary nucleic acid units of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner by the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the attachment of synthetic oligonucleotides and filling of gaps with the aid of the Klenow fragment of the DNA polymerase and ligation reactions and general cloning methods are described in Sambrook et al. (1989), Molecular Cloning: A laboratory manual, CoId Spring Harbor Laboratory Press.
  • the enoate reductases can be used in the process of the invention as a free or immobilized enzyme.
  • the inventive method is advantageously carried out at a temperature between 0 ° C to 95 ° C, preferably between 10 ° C to 85 ° C, more preferably between 15 ° C to 75 ° C.
  • the pH in the process according to the invention is advantageously maintained between pH 4 and 12, preferably between pH 4.5 and 9, particularly preferably between pH 5 and 8.
  • Enantiomerically pure or chiral products (2) are to be understood in the process according to the invention as enantiomers which show an enantiomeric enrichment.
  • enantiomeric purities of at least 70% ee preferably from min. 80% ee, more preferably from min. 90% ee, very preferably min. 98% ee achieved.
  • Growing cells containing the nucleic acids, nucleic acid constructs or vectors according to the invention can be used for the method according to the invention.
  • dormant or open cells can be used.
  • open cells is meant, for example, cells that have been rendered permeable through treatment with, for example, solvents, or cells that have been disrupted by enzyme treatment, mechanical treatment (e.g., French Press or ultrasound) or otherwise.
  • the crude extracts thus obtained are advantageously suitable for the process according to the invention.
  • purified or purified enzymes can be used for the process.
  • immobilized microorganisms or enzymes that can be used advantageously in the reaction.
  • the process according to the invention can be operated batchwise, semi-batchwise or continuously.
  • the operation of the process may advantageously be carried out in bioreactors, e.g. in Biotechnology, Volume 3, 2nd Edition, Rehm et al. Ed., (1993), especially Chapter II.
  • Biotransformations were performed in 500 ml baffled Erlenmeyer flasks. 126 ml of transformation solution were initially introduced. To the batches was added 21 g of D-glucose. The desired pH (between 6 and 8.5) was set. The amount of substrate per flask was 200 mg of 2-methylpent-2-en-1-al. To the Starting time 21 g of baker's yeast were added and the batches at the desired temperature (between 28 and 37 ° C) placed in the incubation (shaken with 240 rpm). After 6, 12, 18, 24, 36, 48 hours samples were taken and analyzed by gas chromatography.
  • Biotransformations were performed in 500 ml baffled Erlenmeyer flasks. 126 ml of transformation solution were initially introduced. To the batches was added 21 g of D-glucose. The desired pH (between 6 and 8.5) was set. The amount of substrate was 210 mg citral per flask. (Citral was a cis / trans mixture of 70:30) At the start time, 21 g bakers yeast was added and the batches placed in the incubation cabinet at the desired temperature (between 28 and 37 ° C) (shaken at 240 rpm). After 6, 12, 18, 24, 36, 48 hours, samples were taken and analyzed by gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Verfahren zur Herstellung von optisch aktiven gesättigten Aldehyden oder Alkoholen der Formel (2) aus α,β-ungesättigten Aldehyden der Formel (1) durch Reduktion in Gegenwart einer Enoat-Reduktase (i) mit der Polypeptidsequenz SEQ ID NO:1 oder 2, oder (ii) mit einer Polypeptidsequenz, die mindestens 80% Sequenzidentität mit SEQ ID NO:1 oder 2 aufweist.

Description

Verfahren zur enzymatischen Herstellung von Citronellal
Die Erfindung betrifft ein enzymatisches Verfahren zur Herstellung von optisch aktiven gesättigten Aldehyden oder Alkoholen der Formel aus α,ß- ungesättigten Aldehyden, insbesondere ein Verfahren zur Herstellung von Citronellal.
Stand der Technik
(R)-(+) Citronellal ist ein wichtiges chemisches Zwischenprodukt, das beispielsweise bei der Herstellung von Menthol eingesetzt wird.
Die chemischen Methoden zur Herstellung von (R)-(+) Citronellal ausgehend von Citral erfordern sehr aufwändige Methoden (Ausschluß von Sauerstoff und Wasser), die bei einer technischen Synthese zu hohen Kosten führen.
Aufgabenstellung
Es bestand die Aufgabe, ein Verfahren zur Herstellung von Citronellal durch enantiose- lektive Reduktion von Citral bereitzustellen, das in einer hohen chemischen Ausbeute Citronellal möglichst enantiomerenrein liefert.
Beschreibung der Erfindung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von optisch aktiven gesättigten Aldehyden oder Alkoholen der Formel (2) aus α,ß- ungesättigten Aldehyden der Formel (1 ) durch Reduktion in Gegenwart einer Enoat-Reduktase (i) mit der Polypeptidsequenz SEQ ID NO:1 oder 2, oder (ii) mit einer Polypeptidsequenz, die mindestens 80% Sequenzidentität mit SEQ ID NO:1 oder 2 aufweist.
Figure imgf000002_0001
(1 ) (2)
[20040469] DP, 08.12.2006_Ass wobei R1 und R2 unabhängig voneinander die Bedeutung H, CrC4- Alkyl, R3 die Bedeutung H, C-i-Cβ- Alkyl oder Alkenyl bedeuten in verzweigter und unverzweigter Form besitzen.
Das erfindungsgemäße Verfahren kann mit α,ß- ungesättigten Aldehyden der Formel (1 ) durchgeführt werden, in denen R1 und R2 unabhängig voneinander die Bedeutung H, CrC4- Alkyl in verzweigter und unverzweigter Form, R3 die Bedeutung H, C1-C6- Alkyl oder Alkenyl in verzweigter und unverzweigter Form besitzen. Die Alkyl- bzw. Alkenylreste können auch ein- oder mehrfach substituiert sein.
Besonders geeignete Substrate für das erfindungsgemäße Verfahren sind solche α,ß- ungesättigten Aldehyden der Formel (1 ), bei denen R1 die Bedeutung H, R2 die Bedeutung CH3 und R3 die Bedeutung -CH2-CH2-CH=(CH3)2 besitzen (Citral in eis oder trans Form) und solche, bei denen R1 die Bedeutung CH3, R2 die Bedeutung H und R3 die Bedeutung CH3 besitzen (2-Methyl-pent-2-en-1-al).
Die erfindungsgemäß verwendeten Enoat-Reduktasen reduzieren gelegentlich teilweise neben der Doppelbindung in α,ß-Position zur Carbonylfunktion auch die Carbonyl- funktion selbst, wodurch dann der entsprechende Alkohol gebildet wird.
Für das erfindungsgemässe Verfahren geeignete Enoat-Reduktasen sind solche Enzyme, die in der Lage sind, 2-Methyl-pent-2-en-1-al in einer NADPH abhängigen Reaktion zu (S)-2-Methyl-pentan-1-al zu reduzieren. Diese Reaktion wird im Folgenden auch Modellreaktion genannt.
Weiterhin besitzen die für das erfindungsgemässe Verfahren geeigneten Enoat- Reduktasen eine Polypeptidsequenz gemäss SEQ ID NO:1 oder NO:2 oder eine PoIy- peptidsequenz, die mindestens 80%, bevorzugt mindestens 90%, besonders bevorzugt mindestens 95% und insbesondere mindestens 97%, 98% oder 99% Sequenzidentität mit SEQ ID NO:1 oder 2 aufweist.
Ein Polypeptid mit der SEQ ID NO:1 ist das OYE2 Gen aus Bäckerhefe (Saccharomy- ces cerevisiae Genlocus YHR179W).
Ein Polypeptid mit der SEQ ID NO:2 ist das OYE3 Gen aus Bäckerhefe (Saccharomy- ces cerevisiae Genlocus YPL171 C). Die Ermittlung der Sequenzidentität soll für die hier beschriebenen Zwecke durch das Computerprogramm „GAP" der Genetics Computer Group (GCG) der University of Wisconsin erfolgen, wobei die Version 10.3 unter Verwendung der von GCG empfohlenen Standardparameter zum Einsatz kommen soll.
Solche Enoat-Reduktasen können ausgehend von SEQ ID NO:1 oder 2 durch dem Fachmann bekannte gezielte oder randomisierte Mutageneseverfahren erhalten werden. Alternativ kann jedoch auch in Mikroorganismen , bevorzugt in solchen der Gattungen Alishewanella, Alterococcus, Aquamonas, Aranicola, Arsenophonus, Azotivirga, Brenneria, Buchnera (aphid P-endosymbionts), Budvicia, Buttiauxella, Candidatus Phlomobacter, Cedecea, Citrobacter, Dickeya, Edwardsieila, Enterobacter, Erwinia, Escherichia, Ewingella, Grimontella, Hafnia, Klebsiella, Kluyvera, Leclercia, Leminorel- Ia, Moellerella, Morganella, Obesumbacterium, Pantoea, Pectobacterium, Photorhab- dus, Plesiomonas, Pragia, Proteus, Providencia, Rahnella, Raoultella, Salmonella, Samsonia, Serratia, Shigella, Sodalis, Tatumella, Trabulsiella, Wigglesworthia, Xe- norhabdus, Yersinia oder Yokenella, nach Enoat-Reduktasen gesucht werden, die die o.g. Modellreaktion katalysieren und deren Aminosäuresequenz die geforderte Sequenzidentität zu SEQ ID NO:1 oder 2 bereits aufweist oder durch Mutageneseverfahren erhalten wird.
Die Enoat-Reduktase kann in gereinigter oder teilweise gereinigter Form oder auch in Form des Mikroorganismus selbst verwendet werden. Verfahren zur Gewinnung und Aufreinigung von Dehydrogenasen aus Mikroorganismen sind dem Fachmann hinreichend bekannt.
Bevorzugt erfolgt die die enantioselektive Reduktion mit der Enoat-Reduktase in Gegenwart eines geeigneten Cofaktors (auch als Cosubstrat bezeichnet). Als Cofaktoren für die Reduktion des Ketons dient üblicherweise NADH und/oder NADPH. Daneben können Enoat-Reduktasen als zelluläre Systeme eingesetzt werden, die inherent Co- faktor enthalten, oder alternative Redoxmediatoren zugesetzt werden (A. Schmidt, F. Hollmann und B. Bühler „Oxidation of Alcohols" in K. Drauz und H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol. IM, 991-1032, Wiley-VCH, Weinheim).
Bevorzugt erfolgt die enantioselektive Reduktion mit der Enoat-Reduktase außerdem in Gegenwart eines geeigneten Reduktionsmittels, welches den im Verlauf der Reduktion oxidierten Cofaktor regeneriert. Beispiele für geeignete Reduktionsmittels sind Zucker, insbesondere Hexosen, wie Glucose, Mannose, Fructose, und/oder oxidierbare Alkohole, insbesondere Ethanol, Propanol oder Isopropanol, sowie Formiat, Phosphit oder molekularer Wasserstoff. Zur Oxidation des Reduktionsmittels und damit verbunden zur Regeneration des Coenzyms kann eine zweite Dehydrogenase, wie z.B. GIu- cosedehydrogenase bei Verwendung von Glucose als Reduktionsmittel oder Formiat- Dehydrogenase bei der Verwendung von Formiat als Reduktionsmittel, zugesetzt werden. Diese kann als freies oder immobilisiertes Enzym oder in Form von freien oder immobilisierten Zellen eingesetzt werden. Ihre Herstellung kann sowohl separat als auch durch Coexpression in einem (rekombinanten) Reduktase-Stamm erfolgen.
Eine bevorzugte Ausführungsform des beanspruchten Verfahrens ist die Regenerierung der Cofaktoren durch ein enzymatisches System, bei dem eine zweite Dehydrogenase, besonders bevorzugt eine Glucosedehydrogenase, verwendet wird.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der Enoat-Reduktase zur Herstellung von Citronellal.
Bei dieser Ausführungsform werden bevorzugt NAD+ bzw. NADP+ als Cofaktoren verwendet, die mit entsprechenden Cosubstaten (Oxidationsmitteln) wieder regeneriert werden können. Als Cosubstrat kann hier bevorzugt Aceton eingesetzt werden, das mit der bereits vorhandenen ADH und/oder einer zusätzlich verwendeten Dehydrogenase den Cofaktor regeneriert, wobei es zum Isopropanol reduziert wird.
„Enantioselektivität" im Rahmen der vorliegenden Erfindung bedeutet, dass der Enanti- omerenüberschuss ee (in %) des S-Enantiomers, der sich in bekannter Weise berech- net nach:
ee (%) = S-Enantiomer - R-Enantiomer / (S-Enantiomer - R-Enantiomer) x 100
wenigstens 80 %, vorzugsweise wenigstens 90 %, insbesondere wenigstens 95 % und speziell wenigstens 97 % beträgt.
Die erfindungsgemäß verwendeten Enoat-Reduktasen können frei oder immobilisiert eingesetzt werden. Unter einem immobilisierten Enzym versteht man ein Enzym, das an einen inerten Träger fixiert ist. Geeignete Trägermaterialien sowie die darauf immo- bilisierten Enzyme sind aus der EP-A-1149849, EP-A-1 069 183 und der DE-OS
100193773 sowie aus den darin zitierten Literaturstellen bekannt. Auf die Offenbarung dieser Schriften wird diesbezüglich in vollem Umfang Bezug genommen. Zu den ge- eigneten Trägermaterialien gehören beispielsweise Tone, Tonmineralien, wie Kaolinit, Diatomeenerde, Perlit, Siliciumdioxid, Aluminiumoxid, Natriumcarbonat, Calciumcarbonat, Cellulosepulver, Anionenaustauschermaterialien, synthetische Polymere, wie Polystyrol, Acrylharze, Phenolformaldehydharze, Polyurethane und Polyolefine, wie PoIy- ethylen und Polypropylen. Die Trägermaterialien werden zur Herstellung der geträger- ten Enzyme üblicherweise in einer feinteiligen, partikelförmigen Form eingesetzt, wobei poröse Formen bevorzugt sind. Die Partikelgröße des Trägermaterials beträgt üblicherweise nicht mehr als 5 mm, insbesondere nicht mehr als 2 mm (Sieblinie). Analog kann bei Einsatz der Dehydrogenase als Ganzzell-Katalysator eine freie oder immobili- serte Form gewählt werden. Trägermaterialien sind z.B. Ca-Alginat, und Carrageenan. Enzyme wie auch Zellen können auch direkt mit Glutaraldehyd vernetzt werden (Cross- linking zu CLEAs). Entsprechende und weitere Immobilisierungsverfahren sind beispielsweise in J. Lalonde und A. Margolin „Immobilization of Enzymes" in K. Drauz und H. Waldmann, Enzyme Catalysis in Organic Synthesis 2002, Vol. IM, 991-1032, Wiley- VCH, Weinheim beschrieben.
Die Umsetzung kann in wässrigen oder nichtwässrigen Reaktionsmedien oder in 2- Phasensystemen oder (Mikro-)Emulsionen erfolgen. Bei den wässrigen Reaktionsmedien handelt es sich vorzugsweise um gepufferte Lösungen, die in der Regel einen pH- Wert von 4 bis 8, vorzugsweise von 5 bis 8, aufweisen. Das wässrige Lösungsmittel kann neben Wasser außerdem wenigstens einen Alkohol, z.B. Ethanol oder Isopropa- nol oder Dimethylsulfoxid enthalten.
Unter nicht-wässrigen Reaktionsmedien werden Reaktionsmedien verstanden, die weniger als 1 Gew.-%, vorzugsweise weniger als 0,5 Gew.-% Wasser, bezogen auf das Gesamtgewicht des Reaktionsmediums, enthalten. Vorzugsweise wird die Umsetzung in einem organischen Lösungsmittel durchgeführt.
Geeignete Lösungsmittel sind beispielsweise aliphatische Kohlenwasserstoffe, vorzugsweise mit 5 bis 8 Kohlenstoffatomen, wie Pentan, Cyclopentan, Hexan, Cyclohe- xan, Heptan, Octan oder Cyclooctan, halogenierte aliphatische Kohlenwasserstoffe, vorzugsweise mit einem oder zwei Kohlenstoffatomen, wie Dichlormethan, Chloroform, Tetrachlorkohlenstoff, Dichlorethan oder Tetrachlorethan, aromatische Kohlenwasser- Stoffe, wie Benzol, Toluol, die XyIoIe, Chlorbenzol oder Dichlorbenzol, aliphatische a- cyclische und cyclische Ether oder Alkohole, vorzugsweise mit 4 bis 8 Kohlenstoffatomen, wie Diethylether, Methyl-tert-butylether, Ethyl-tert-butylether, Dipropylether, Dii- sopropylether, Dibutylether, Tetrahydrofuran oder Ester wie Ethylacetat oder n- Butylacetat oder Ketone wie Methylisobutylketon oder Dioxan oder Gemische davon. Besonders bevorzugt werden die vorgenannten Ether, insbesondere Tetrahydrofuran, verwendet.
Bevorzugt wird die Reduktion mit der Enoat-Reduktase in einem wässrig-organischen, insbesondere wässrigen Reaktionsmedium durchgeführt.
Das Substrat (1 ) wird vorzugsweise in einer Konzentration von 0,1 g/l bis 500 g/l, besonders bevorzugt von 1 g/l bis 50 g/l in die enzymatische Reduktion eingesetzt und kann kontinuierlich oder diskontinuierlich nachgeführt werden.
Die enzymatische Reduktion erfolgt in der Regel bei einer Reaktionstemperatur unterhalb der Desaktivierungstemperatur der eingesetzten Reduktase und oberhalb von -10 0C. Besonders bevorzugt liegt sie im Bereich von 0 bis 100 0C, insbesondere von 15 bis 60 0C und speziell von 20 bis 40 0C, z.B. bei etwa 30 °C.
Zur Durchführung kann man beispielsweise das Substrat (1 ) mit der Enoat-Reduktase, dem Lösungsmittel und gegebenenfalls den Coenzymen, gegebenenfalls einer zweiten Dehydrogenase zur Regenerierung des Coenzyms und/oder weiteren Reduktionsmit- teln vorlegen und das Gemisch durchmischen, z. B. durch Rühren oder Schütteln. Es ist aber auch möglich, die Reduktase in einem Reaktor, beispielsweise in einer Säule, zu immobilisieren, und durch den Reaktor eine das Substrat und gegebenenfalls Coenzyme und/oder Cosubstrate enthaltende Mischung zu leiten. Hierzu kann man die Mischung im Kreislauf durch den Reaktor leiten bis der gewünschte Umsatz erreicht ist.
Dabei wird die Doppelbindung in α,ß-Position zur Carbonylfunktion zur Einfachbindung reduziert; gelegentlich erfolgt auch eine Reduktion der Carbonylfunktion selbst zur Alkoholfunktion. In der Regel wird man die Reduktion bis zu einem Umsatz von wenigs- tens 70 %, besonders bevorzugt von wenigstens 85 % und insbesondere von wenigstens 95%, bezogen auf das in der Mischung enthaltene Substrat führen. Das Fortschreiten der Reaktion, d. h. die sequentielle Reduktion der Doppelbindung kann dabei durch übliche Methoden wie Gaschromatographie oder Hochdruckflüssigkeitschromatographie verfolgt werden. „Funktionale Äquivalente" oder Analoga der konkret offenbarten Enzyme sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, welche weiterhin die gewünschte biologische Aktivität, wie z.B. Substratspezifität, besitzen. So versteht man beispielsweise unter „funktionalen Äquivalenten" Enzyme, die die Modellreaktion kata- lysieren und die mindestens 20 %, bevorzugt 50 %, besonders bevorzugt 75 %, ganz besonders bevorzugt 90 % der Aktivität eines Enzyms, umfassend eine der unter SEQ ID NO:1 oder 2 aufgeführten Aminosäuresequenzen, aufweist. Funktionale Äquivalente sind außerdem vorzugsweise zwischen pH 4 bis 10 stabil und besitzen vorteilhaft ein pH-Optimum zwischen pH 5 und 8 sowie ein Temperaturoptimum im Bereich von 20°C bis 80°C.
Unter „funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere auch Mutanten, welche in wenigstens einer Sequenzposition der oben genannten Aminosäuresequenzen eine andere als die konkret genannte Aminosäure aufweisen aber trotz- dem eine der oben genannten biologischen Aktivitäten besitzen. „Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, - Substitutionen, -Deletionen und/oder -Inversionen erhältlichen Mutanten, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil führen. Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn die Reaktivitätsmuster zwischen Mutante und unverändertem Polypeptid qualitativ übereinstimmen, d.h. beispielsweise gleiche Substrate mit unterschiedlicher Geschwindigkeit umgesetzt werden. Beispiele für geeignete Aminosäuresubstitutionen sind folgender Tabelle zu entneh- men:
Ursprünglicher Rest Beispiele der Substitution
AIa Ser
Arg Lys
Asn GIn; His
Asp GIu
Cys Ser
GIn Asn
GIu Asp
GIy Pro
His Asn ; GIn He Leu; VaI
Leu Me; VaI
Lys Arg ; GIn ; GIu
Met Leu ; He
Phe Met ; Leu ; Tyr
Ser Thr
Thr Ser
Trp Tyr
Tyr Trp ; Phe
VaI Me; Leu
„Funktionale Äquivalente" im obigen Sinne sind auch „Präkursoren" der beschriebenen Polypeptide sowie „funktionale Derivate" .
„Präkursoren" sind dabei natürliche oder synthetische Vorstufen der Polypeptide mit oder ohne der gewünschten biologischen Aktiviät.
„Funktionale Derivate" erfindungsgemäßer Polypeptide können an funktionellen Aminosäure-Seitengruppen oder an deren N- oder C-terminalen Ende mit Hilfe bekannter Techniken ebenfalls hergestellt werden. Derartige Derivate umfassen beispielsweise aliphatische Ester von Carbonsäuregruppen, Amide von Carbonsäuregruppen, erhältlich durch Umsetzung mit Ammoniak oder mit einem primären oder sekundären Amin; N-Acylderivate freier Aminogruppen, hergestellt durch Umsetzung mit Acylgruppen; oder O-Acylderivate freier Hydroxygruppen, hergestellt durch Umsetzung mit Acylgrup- pen.
Im Falle einer möglichen Proteinglykosylierung umfassen erfindungsgemäße „funktionale Äquivalente" Proteine des oben bezeichneten Typs in deglykosylierter bzw. glyko- sylierter Form sowie durch Veränderung des Glykosylierungsmusters erhältliche abge- wandelte Formen.
"Funktionale Äquivalente" umfassen natürlich auch Polypeptide welche aus anderen Organismen zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln. „Funktionale Äquivalente" umfassen ebenfalls Fragmente, vorzugsweise einzelne Domänen oder Sequenzmotive, der erfindungsgemäßen Polypeptide, welche z.B. die gewünschte biologische Funktion aufweisen.
„Funktionale Äquivalente" sind außerdem Fusionsproteine, welche eine der oben genannten Polypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funktioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitigen wesentliche funktionelle Beeinträchtigung der Fusionsproteinteile) aufweisen. Nichtlimitierende Beispie- Ie für derartige heterologe Sequenzen sind z.B. Signalpeptide oder Enzyme.
Homologe des erfindungsgemäßen Proteine können durch Screening kombinatorischer Banken von Mutanten, wie z.B. Verkürzungsmutanten, identifiziert werden. Beispielsweise kann eine variegierte Bank von Protein-Varianten durch kombinatorische Muta- genese auf Nukleinsäureebene erzeugt werden, wie z.B. durch enzymatisches Ligieren eines Gemisches synthetischer Oligonukleotide. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller Homologer aus einer degenerierten Oligo- nukleotidsequenz verwendet werden können. Die chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in einen geeigneten Expressionsvektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen in einem Gemisch, die den gewünschten Satz an potentiellen Proteinsequenzen kodieren. Verfahren zur Synthese degenerierter Oligonukleotide sind dem Fachmann bekannt (z.B. Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al. (1983) Nucleic Acids Res. 1 1 :477).
Im Stand der Technik sind mehrere Techniken zum Screening von Genprodukten kombinatorischer Banken, die durch Punktmutationen oder Verkürzung hergestellt worden sind, und zum Screening von cDNA-Banken auf Genprodukte mit einer ausgewählten Eigenschaft bekannt. Diese Techniken lassen sich an das schnelle Screening der Genbanken anpassen, die durch kombinatorische Mutagenese erfindungsgemäßer Homologer erzeugt worden sind. Die am häufigsten verwendeten Techniken zum Screening großer Genbanken, die einer Analyse mit hohem Durchsatz unterliegen, umfassen das Klonieren der Genbank in replizierbare Expressionsvektoren, Transformieren der geeigneten Zellen mit der resultierenden Vektorenbank und Exprimieren der kombinatorischen Gene unter Bedingungen, unter denen der Nachweis der ge- wünschten Aktivität die Isolation des Vektors, der das Gen kodiert, dessen Produkt nachgewiesen wurde, erleichtert. Recursive-Ensemble-Mutagenese (REM), eine Technik, die die Häufigkeit funktioneller Mutanten in den Banken vergrößert, kann in Kombination mit den Screeningtests verwendet werden, um Homologe zu identifizieren (Arkin und Yourvan (1992) PNAS 89:781 1 -7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331 ).
Gegenstand der Erfindung sind weiterhin Nukleinsäuresequenzen (einzel- und dop- pelsträngige DNA- und RNA-Sequenzen, wie z.B. cDNA und mRNA), die für ein Enzym mit erfindungsgemäßer Reduktase -Aktivität kodieren. Bevorzugt sind Nukleinsäuresequenzen, welche z.B. für Aminosäuresequenzen gemäß SEQ ID NO:1 oder 2 oder charakteristische Teilsequenzen davon kodieren.
Alle hierin erwähnten Nukleinsäuresequenzen sind in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen, wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seiten 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mit Hilfe des Klenow-Fragmentes der DNA- Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular Cloning: A laboratory manual, CoId Spring Harbor Laboratory Press, beschrieben.
Weitere Ausgestaltungen zur Durchführung des erfindungsgemäßen enzymatischen Reduktionsverfahrens
Die Enoat-Reduktasen können im erfindungsgemäßen Verfahren als freies oder immobilisiertes Enzym verwendet werden.
Das erfindungsgemäße Verfahren wird vorteilhaft bei einer Temperatur zwischen 0 °C bis 95 °C, bevorzugt zwischen 10 °C bis 85 °C, besonders bevorzugt zwischen 15 °C bis 75 °C durchgeführt.
Der pH-Wert im erfindungsgemäßen Verfahren wird vorteilhaft zwischen pH 4 und 12, bevorzugt zwischen pH 4,5 und 9, besonders bevorzugt zwischen pH 5 und 8 gehalten. Unter enantiomerenreinen bzw. chiralen Produkten (2) sind im erfindungsgemäßen Verfahren Enantiomere zu verstehen, die eine Enantiomerenanreicherung zeigen. Bevorzugt werden im Verfahren Enantiomerenreinheiten von mindestens 70 %ee, bevorzugt von min. 80 %ee, besonders bevorzugt von min. 90 %ee, ganz besonders bevor- zugt min. 98 %ee erreicht.
Für das erfindungsgemäße Verfahren können wachsende Zellen verwendet werden, die die erfindungsgemäßen Nukleinsäuren, Nukleinsäurekonstrukte oder Vektoren enthalten. Auch ruhende oder aufgeschlossene Zellen können verwendet werden. Unter aufgeschlossenen Zellen sind beispielsweise Zellen zu verstehen, die über eine Behandlung mit beispielsweise Lösungsmitteln durchlässig gemacht worden sind, oder Zellen die über eine Enzymbehandlung, über eine mechanische Behandlung (z.B. French Press oder Ultraschall) oder über eine sonstige Methode aufgebrochen wurden. Die so erhaltenen Rohextrakte sind für das erfindungsgemäße Verfahren vorteilhaft geeignet. Auch gereinigte oder angereinigte Enzyme können für das Verfahren verwendet werden. Ebenfalls geeignet sind immobilisierte Mikroorganismen oder Enzyme, die vorteilhaft in der Reaktion Anwendung finden können.
Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuier- lieh betrieben werden.
Die Durchführung des Verfahrens kann vorteilhafterweise in Bioreaktoren erfolgen, wie z.B. beschrieben in Biotechnology, Band 3, 2. Auflage, Rehm et al Hrsg., (1993) insbesondere Kapitel II.
Die nachfolgenden Beispiele sollen die Erfindung veranschaulichen, ohne sie jedoch einzuschränken. Hierbei wird auf beiliegende Abbildungen Bezug genommen, dabei zeigt:
Experimenteller Teil
Biotransformation von 2-Methyl-pent-2-en-1-al mit Saccharomyces cerevisiae
Die Biotransformationen wurden in 500 ml Erlenmeyerkolben mit Schikanen durchgeführt. Es wurden 126 ml Transformationslösung vorgelegt. Zu den Ansätzen wurden 21 g D-Glucose zugegeben. Es wurde der gewünschte pH-Wert (zwischen 6 und 8,5) eingestellt. Die Substratmenge betrug pro Kolben 200 mg 2-Methyl-pent-2-en-1-al. Zum Startzeitpunkt wurden 21 g Bäckerhefe dazugegeben und die Ansätze bei der gewünschten Temperatur (zwischen 28 und 37°C) in den Inkubationsschrank gestellt (mit 240 rpm geschüttelt). Nach 6, 12, 18, 24, 36, 48 Stunden wurden Proben entnommen und gaschromatographisch analysiert.
Die höchsten Umsatzraten wurden bei pH-Werten zwischen 7,5 und 8,5 erreicht (40- 70%). Die optische Reinheit betrug bei pH= 8,5 und T=37°C: ee=92,1 bei einem Umsatz von 66,6%.
Biotransformation von Citral mit Saccharomyces cerevisiae
Die Biotransformationen wurden in 500 ml Erlenmeyerkolben mit Schikanen durchgeführt. Es wurden 126 ml Transformationslösung vorgelegt. Zu den Ansätzen wurden 21 g D-Glucose zugegeben. Es wurde der gewünschte pH-Wert (zwischen 6 und 8,5) eingestellt. Die Substratmenge betrug pro Kolben 210 mg Citral. (Citral war ein cis/trans Gemisch von 70:30) Zum Startzeitpunkt wurden 21 g Bäckerhefe dazugegeben und die Ansätze bei der gewünschten Temperatur (zwischen 28 und 37°C) in den Inkubationsschrank gestellt (mit 240 rpm geschüttelt). Nach 6, 12, 18, 24, 36, 48 Stunden wur- den Proben entnommen und gaschromatographisch analysiert.
Man erhielt neben (R)-(+)-Citronellal auch noch (R)-(+)-ß-Citronellol sowie Nerol und Geraniol.
Transformationslösung
53,4 g Na2HPO4 und 21 g D-Glucose und 126 ml Wasser dest. (pH eingestellt zwischen 6 und 8,5).

Claims

Patentansprüche
1. Verfahren zur Herstellung von optisch aktiven gesättigten Aldehyden oder Alkoholen der Formel (2) aus α,ß- ungesättigten Aldehyden der Formel (1 ) durch Reduktion in Gegenwart einer Enoat-Reduktase
(i) mit der Polypeptidsequenz SEQ ID NO:1 oder 2, oder (ii) mit einer Polypeptidsequenz, die mindestens 80% Sequenzidentität mit SEQ ID NO:1 oder 2 aufweist
Figure imgf000014_0001
(1 ) (2)
wobei R1 und R2 unabhängig voneinander die Bedeutung H, CrC4- Alkyl, R3 die Bedeutung H, CrC6- Alkyl oder Alkenyl bedeuten in verzweigter und u n verzweigter Form besitzen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Reduktion mit NADPH als Cofaktor ausgeführt wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der verwendete Cofaktor enzymatisch regeneriert wird.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Cofaktor- Regenerierung durch Glucose-Dehydrogenase erfolgt.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Reduktion in wässrigem System durchgeführt wird.
[20040469] DP, 08.12.2006
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Enoat-Reduktase immobilisiert vorliegt.
7. Verwendung einer Enoat-Reduktase
(i) mit der Polypeptidsequenz SEQ ID NO:1 oder 2, oder
(ii) mit einer Polypeptidsequenz, die mindestens 80% Sequenzidentität mit SEQ ID NO:1 oder 2 aufweist, in einem Verfahren zur Herstellung von (R)-(+)Citronellal aus Citral.
PCT/EP2006/069894 2005-12-30 2006-12-19 Verfahren zur enzymatischen herstellung von citronellal WO2007077121A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008547946A JP5705410B2 (ja) 2005-12-30 2006-12-19 シトロネラールの酵素的調製方法
US12/159,531 US8206957B2 (en) 2005-12-30 2006-12-19 Process for the enzymatic preparation of citronellal
AT06841443T ATE513054T1 (de) 2005-12-30 2006-12-19 Verfahren zur enzymatischen herstellung von citronellal
EP06841443A EP1974045B1 (de) 2005-12-30 2006-12-19 Verfahren zur enzymatischen herstellung von citronellal
CN2006800469376A CN101331233B (zh) 2005-12-30 2006-12-19 酶促制备香茅醛的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005063191.6 2005-12-30
DE102005063191A DE102005063191A1 (de) 2005-12-30 2005-12-30 Verfahren zur enzymatischen Herstellung von Citronellal

Publications (1)

Publication Number Publication Date
WO2007077121A1 true WO2007077121A1 (de) 2007-07-12

Family

ID=37882426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/069894 WO2007077121A1 (de) 2005-12-30 2006-12-19 Verfahren zur enzymatischen herstellung von citronellal

Country Status (8)

Country Link
US (1) US8206957B2 (de)
EP (1) EP1974045B1 (de)
JP (1) JP5705410B2 (de)
CN (1) CN101331233B (de)
AT (1) ATE513054T1 (de)
DE (1) DE102005063191A1 (de)
ES (1) ES2367847T3 (de)
WO (1) WO2007077121A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123767A1 (de) * 2008-05-20 2009-11-25 DSM IP Assets B.V. Herstellung von Epsilon-Caprolactam mittels Lysinzyklisierung
WO2009142490A1 (en) * 2008-05-20 2009-11-26 Dsm Ip Assets B.V. Preparation of epsilon-caprolactam from (z)-6,7-dihydro-1h-azepin-2(5h)-one
WO2020128644A1 (en) * 2018-12-18 2020-06-25 Tojo Vikas Biotech Pvt. Ltd. A process for bio-transformation and production of d-lactones thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007460A2 (en) * 2007-07-11 2009-01-15 Dsm Ip Assets B.V. Enantioselective reduction
WO2010139651A2 (en) 2009-06-04 2010-12-09 Basf Se A process for the enzymatic reduction of enoates
KR20200095534A (ko) 2017-12-07 2020-08-10 지머젠 인코포레이티드 발효에 의한 (6e)-8-히드록시제라니올의 제조를 위해 조작된 생합성 경로
JP2021506316A (ja) 2017-12-21 2021-02-22 ザイマージェン インコーポレイテッド ネペタラクトールオキシドレダクターゼ、ネペタラクトールシンターゼ、及びネペタラクトンを産生する能力がある微生物
CN111454918B (zh) * 2020-03-10 2022-05-24 浙江工业大学 一种烯醇还原酶突变体及其在制备(r)-香茅醛中的应用
CN113337450B (zh) * 2021-04-25 2023-03-31 华东理工大学 一种大肠杆菌基因工程菌、构建方法以及全细胞催化生产(r)-香茅醛的方法
CN114807247B (zh) * 2022-04-29 2023-08-11 苏州百福安酶技术有限公司 路比利丝孢酵母在催化柠檬醛生成右旋香茅醛中的应用及制备左旋异胡薄荷醇的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557459A1 (de) * 1997-09-09 2005-07-27 Cerveceria Polar, Ca Malzgetränk mit stabilisiertem Geschmack und Verfahren zu seiner Herstellung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137685A (ja) * 1986-11-29 1988-06-09 Agency Of Ind Science & Technol l−メント−ルの製造法
JPH03103185A (ja) * 1989-09-19 1991-04-30 Nippon Oil Co Ltd イソオレフィン化合物の製造方法
JPH0898696A (ja) * 1994-09-30 1996-04-16 Fuji Oil Co Ltd 微生物による化合物の還元方法
DE10019377A1 (de) 2000-04-19 2001-10-25 Basf Ag Verfahren zur Immobilisierung von biologisch aktiven Stoffen auf Trägermaterialien und Verwendung der mit biologisch aktiven Stoffen geträgerten Materialien für chirale Synthesen
JP4213524B2 (ja) * 2003-04-17 2009-01-21 ダイセル化学工業株式会社 新規なカルボニル還元酵素、その酵素をコードするdnaを含むポリヌクレオチド、その製造方法、およびこれを利用した光学活性アルコールの製造方法
CN1232493C (zh) * 2004-02-20 2005-12-21 中国科学院广州化学研究所 甲氧基香茅醛的合成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557459A1 (de) * 1997-09-09 2005-07-27 Cerveceria Polar, Ca Malzgetränk mit stabilisiertem Geschmack und Verfahren zu seiner Herstellung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HALL M ET AL: "ASYMMETRIC WHOLE-CELL BIOREDUCTION OF AN ÄALPHAÜ,ÄBETAÜ-UNSATURATED ALDEHYDE (CITRAL): COMPETING PRIM-ALCOHOL DEHYDROGENASE AND C-C LYASE ACTIVITIES", TETRAHEDRON: ASYMMETRY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 17, no. 21, 17 November 2006 (2006-11-17), pages 3058 - 3062, XP008075048, ISSN: 0957-4166 *
MULLER ET AL: "Enzymatic reduction of the alpha, beta-unsaturated carbon bond in citral", JOURNAL OF MOLECULAR CATALYSIS. B, ENZYMATIC, ELSEVIER, AMSTERDAM,, NL, vol. 38, no. 3-6, 15 March 2006 (2006-03-15), pages 126 - 130, XP005309486, ISSN: 1381-1177 *
WILLIAMS RICHARD E ET AL: "'New uses for an Old Enzyme': The Old Yellow Enzyme family of flavoenzymes", MICROBIOLOGY, SOCIETY FOR GENERAL MICROBIOLOGY, READING, GB, vol. 148, no. 6, June 2002 (2002-06-01), pages 1607 - 1614, XP002419724, ISSN: 1350-0872 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123767A1 (de) * 2008-05-20 2009-11-25 DSM IP Assets B.V. Herstellung von Epsilon-Caprolactam mittels Lysinzyklisierung
WO2009142490A1 (en) * 2008-05-20 2009-11-26 Dsm Ip Assets B.V. Preparation of epsilon-caprolactam from (z)-6,7-dihydro-1h-azepin-2(5h)-one
WO2020128644A1 (en) * 2018-12-18 2020-06-25 Tojo Vikas Biotech Pvt. Ltd. A process for bio-transformation and production of d-lactones thereof

Also Published As

Publication number Publication date
DE102005063191A1 (de) 2007-07-05
JP2009521915A (ja) 2009-06-11
ES2367847T3 (es) 2011-11-10
ATE513054T1 (de) 2011-07-15
US8206957B2 (en) 2012-06-26
CN101331233A (zh) 2008-12-24
EP1974045A1 (de) 2008-10-01
CN101331233B (zh) 2012-09-05
EP1974045B1 (de) 2011-06-15
JP5705410B2 (ja) 2015-04-22
US20080293111A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
EP1974045B1 (de) Verfahren zur enzymatischen herstellung von citronellal
Musa et al. Xerogel-encapsulated W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus performs asymmetric reduction of hydrophobic ketones in organic solvents
Poessl et al. Non‐racemic halohydrins via biocatalytic hydrogen‐transfer reduction of halo‐ketones and one‐pot cascade reaction to enantiopure epoxides
DE102006010994A1 (de) Verfahren zur enzymatischen Herstellung von chiralen Alkoholen
WO2008058951A1 (de) Verfahren zur enzymatischen reduktion von alkenderivaten
EP2171074B1 (de) Verfahren zur Herstellung optisch aktiver Alkohole unter Verwendung einer Dehydrogenase aus Azoarcus sp. EbN1
EP1285962A1 (de) NADH-Oxidase aus Lactobacillus
DE10218689A1 (de) ADH aus Rhodococcus erythropolis
WO2011099595A1 (ja) (s)-1,1,1-トリフルオロ-2-プロパノールの工業的な製造方法
EP2061880B1 (de) Verfahren zur enzymatischen reduktion von alkinderivaten
WO2007014544A2 (de) Stereoselektive synthese von chiralen diolen
EP1815002B1 (de) Verfahren zur herstellung von (s)-butan-2-ol
AT501928B1 (de) Verfahren zur herstellung von chiralen alkoholen
WO2009074524A2 (de) Verfahren zur enzymatischen reduktion von alpha-dehydroaminosäuren unter verwendung von enoat dehydrogenasen
WO2014086702A2 (de) Enzymatische reduktion von hydroxymethylfurfuralen
DE60038281T2 (de) Verfahren zur herstellung von optisch aktiven pyridinethanol-derivaten
DE102005043152A1 (de) Alkoholdehydrogenase aus Nocardia globerula und deren Verwendung
DE102006039189B4 (de) Enantioselektive Darstellung von aliphatischen azyklischen Estern und Ketonen
WO2008074506A1 (en) Optical resolution of a mixture of enantiomers of butynol or butenol
Nakamura et al. Enzymatic reduction reaction
EP1959019A1 (de) Verfahren zur enzymatischen Reduktion von Alkenderivaten
Wohlgemuth Large-scale applications of biocatalysis in the asymmetric synthesis of laboratory chemicals
DE102009007272A1 (de) Alkoholdehydrogenase aus Gluconobacter oxydans und deren Verwendung
Nakamura et al. Enzyme‐Catalyzed Reduction of Carbonyl Compounds
Díaz-Rodríguez et al. 1.2 Strategies and Methods in Biocatalysis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046937.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006841443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008547946

Country of ref document: JP

Ref document number: 12159531

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006841443

Country of ref document: EP