WO2007076689A1 - Procede et dispositif de transmission de signaux lan dans un reseau de transport optique - Google Patents

Procede et dispositif de transmission de signaux lan dans un reseau de transport optique Download PDF

Info

Publication number
WO2007076689A1
WO2007076689A1 PCT/CN2006/003577 CN2006003577W WO2007076689A1 WO 2007076689 A1 WO2007076689 A1 WO 2007076689A1 CN 2006003577 W CN2006003577 W CN 2006003577W WO 2007076689 A1 WO2007076689 A1 WO 2007076689A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
optical channel
module
adaptation protocol
channel data
Prior art date
Application number
PCT/CN2006/003577
Other languages
English (en)
French (fr)
Inventor
Shimin Zou
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CNA2006800117540A priority Critical patent/CN101156414A/zh
Priority to EP06840628.9A priority patent/EP1881669B1/en
Priority to ES06840628.9T priority patent/ES2442693T3/es
Publication of WO2007076689A1 publication Critical patent/WO2007076689A1/zh
Priority to US11/955,640 priority patent/US7944928B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • H04J2203/0094Virtual Concatenation

Definitions

  • the present invention relates to data transmission technology in Optical Transport Networks (OTN), and more particularly to an implementation method and apparatus for transmitting a local area network (LAN) signal in an optical transport network.
  • OTN Optical Transport Networks
  • LAN local area network
  • the OTN network introduced to meet the future growth of data services is a kind of OAM&P (Operation, Administration, Maintenance and Provision) capability, large-capacity long-distance transmission capability and large-capacity scheduling capability. network of.
  • OAM&P Operaation, Administration, Maintenance and Provision
  • OT's customer service has a constant bit rate (CBR) CBR 2.5G, CBR 10G, CBR 40G, General Framing Procedure (GFP), etc.
  • OTN can provide transparent transmission capability to the above CBR rate. This transparency is mainly bit (BIT) transparent; when the client signal is Gigabit Ethernet (GE, Gigabyte Ethernet), 10GE LAN service, the client signal is adapted to OTO through the GFP protocol, and the OTN can guarantee the GFP signal.
  • BIT bit
  • Byte transparency and frame transparency also ensure the transparency of Ethernet Media Access Control (MAC) frames; among them, MAC frame transparency is the main requirement for Ethernet data transmission.
  • MAC Media Access Control
  • Ethernet will be the most important data service in the future.
  • Two interfaces are defined in the Institute of Electrical and Electronics Engineers (IEEE) standard 802.ae, one is a 10GE wide area network (WAN) interface at a rate of OC-192/STM-64 (10Gbase-W); the other is 10GE
  • the LAN interface (10Gbase-R) is transmitted using 64B/66B encoding.
  • the 10GE LAN service signal is removed from the 64B/66B code, and then GFP is adapted to the five OPU1 virtual concatenation signals, that is, OPU1-5V, and then uploaded on the OTN.
  • the disadvantage of this method is that 5 OPU1 is needed. If the line rate is level 1 optical channel transmission unit (OTU1), 5 color wavelengths are needed to transmit; even if the line rate is OTU2, an OTU2 is required to transmit 4 OPU1, and Another ODU1 in another OTU2 is required to pass another OPU1.
  • OTU1 level 1 optical channel transmission unit
  • OTU2 optical channel transmission unit
  • Another ODU1 in another OTU2 is required to pass another OPU1.
  • LCAS link capacity adjustment mechanism
  • embodiments of the present invention provide a method and apparatus for implementing transmission of a local area network signal in an optical transport network, which improves bandwidth utilization while realizing transparent transmission of a local area network signal in an optical transport network.
  • the invention discloses a method for realizing transmission of a local area network signal in an optical transport network, comprising: A. Mapping the LAN signal to the adaptation protocol frame;
  • the invention also discloses an implementation device for transmitting a local area network signal in an optical transport network, the device comprising:
  • the adaptation protocol frame mapping unit is configured to map the local area network signal to the adaptation protocol frame;
  • the virtual concatenation module is configured to receive the adaptation protocol frame output by the adaptation protocol module and map to the optical channel data unit consisting of more than one lGbps level In the virtual concatenation group;
  • a multiplexing module configured to receive at least one of the 1 Gbps optical channel data units output by the virtual concatenation module, and multiplexed into the high-order optical channel data unit supported by the optical transport network, and then map the high-order optical channel data unit into a high-order optical channel
  • the transmitting unit outputs to the optical transport network.
  • the method and device for implementing the transmission of the local area network signal in the optical transport network realizes the transparent transmission of the LAN service by using the bandwidth adjustment granularity of the LAN service as a 1GE level. At the same time, it improves bandwidth utilization; it does not change the line rate, is compatible with the existing OTN system, and can further implement LCAS with GE as the bandwidth unit, and network terminal multiplexer (TMUX); realize point-to-point transmission of 10GELAN. Business, or mixed delivery with TDM services. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of an adaptation process of a 10GE LAN service signal to an OPU1 in the prior art
  • FIG. 2 is a schematic diagram of an implementation method for transmitting a 10GE LAN signal in an optical transport network according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an apparatus for implementing transmission of a 10GE LAN signal in an optical transport network according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an apparatus for implementing an OTN or Dense Wavelength Division Multiplexing (DWDM) terminal multiplexer according to an embodiment of the present invention. Mode for carrying out the invention
  • DWDM Dense Wavelength Division Multiplexing
  • the 10GE LAN signal is taken as an example to describe the implementation of the 10GE LAN signal transmission in the optical transport network:
  • the 64B/66B includes a control signal step 201 for mapping the 10GE LAN signal to the GFP frame. The specific mapping process is as follows: Decoding the 10GE LAN client signal according to the 64B/66B decoding method and extracting the MAC frame therein, and then encapsulating the extracted MAC frame into the GFP frame.
  • the GFP encapsulation process here includes transparent GFP (GFP-T) encapsulation and framing mapping GFP (GFP-F) encapsulation; the content extracted during the MAC frame extraction process includes extracting MAC information and control information.
  • GFP-T transparent GFP
  • GFP-F framing mapping GFP
  • GFP-T encapsulation there are two cases of encapsulation from 10GE LAN signal to GFP.
  • One is to extract the MAC frame directly from the 10GE LAN port and encapsulate it into a GFP frame, which is called frame mapping.
  • Decoding the 64B/66B signal and also need to remove the Inter-Packet Gap (IPG), which is the Ethernet IPG; the other is After decoding the 64B/66B signal on the lOGE LAN, a 10GE signal is obtained, and then the 10GE signal is encoded into a GFP frame format suitable for the GFP-T encapsulation by using a block coding method.
  • IPG Inter-Packet Gap
  • the GFP frame is taken as an example.
  • the 10GE LAN signal is also adapted to other adaptation protocol frames such as LAPS frame and HDLC.
  • Step 202 Map the GFP frame to a virtual concatenation group consisting of multiple sub-rates ODU0.
  • the subrate here usually refers to the subrate of the 1G level.
  • an IGbps-level optical channel data unit ODU0
  • Its payload unit is OPU0, which is called the IGbps level optical channel payload unit.
  • ODU0 OH The data management overhead area (ODU0 OH ) of the first row to the fourth row of the first 14 columns ODU0, the 15 and 16 columns are the payload management overhead (OPU0 OH ); the 3808 columns after the 17 columns are the payload area ( OPU0 ), and finally FEC.
  • ODU0 OH the payload management overhead
  • OPU0 the payload area
  • FEC the payload area
  • the definition of each byte of ODU0 OH is the same as the ODU OH defined by the digital encapsulation technology, so that there is an end-to-end management overhead for the IGbps-class service, which can implement GE, etc. End-to-end performance management of the business.
  • the first line of columns 1 - 7 contains FAS Direct, where the first column of the 7th column is the MFAS byte, which is used to indicate the frame number corresponding to the overhead byte of the multi-frame bearer.
  • OPU0 OH contains PSI bytes, which are located in the fifth row of 15 columns, and corresponding to MFAS 0 to 255, respectively, there are 255 multiplexed bytes, including PT bytes and reserved bytes.
  • ODU0/OPU0 can also pass the management frame of GFP as needed. This guarantees the implementation of separate GFP transport, management, and maintenance functions for each low-rate service.
  • a certain number of idle (IDLE) frames need to be inserted according to the GFi> mapping method, so that the total rate of the GFP signal and the idle frame is exactly equal to the rate of the OPU0 payload area.
  • the method of inserting an idle frame can refer to the ITU-T Recommendation G.709.
  • Step 203 using LCAS to control the link capacity.
  • LCAS Configure LCAS through the NMS so that the link capacity meets the capacity required by the customer. For example: Although the customer's 10GE LAN port rate is 10G, if the traffic is small, only 5GE bandwidth is needed, and LCAS can be used to adjust the link capacity. It is ODU0-5 V; LCAS can be adjusted between 1 ODU0 to 9 X ODU0.
  • the NMS processes the current traffic information and automatically configures LCAS to make the capacity of the ODU0-XV.
  • the size is best for the 10GE LAN traffic that is currently being delivered.
  • step 204 the 1G-level ODU0 is multiplexed onto the high-order ODUK to form a high-order OTUK, and then transmitted on the OTN line.
  • an apparatus for implementing transmission of a 10GE LAN in an optical transport network includes: a GFP frame mapping unit, a virtual concatenation module, a multiplexing module, and a control and management unit.
  • the GFP frame mapping unit is composed of a physical interface module, a MAC processing module, and a GFP module;
  • the control and management unit is composed of a controller and a network management module. The functions of each module are described in detail below:
  • PMA/PCS Physical Interface Module for encoding and decoding 10GE LAN signals, mainly 64B/66B codec.
  • the MAC processing module receives the signal of the physical interface module in the sending direction, extracts the MAC frame, and further performs traffic monitoring on the MAC frame, and sends the result of the traffic monitoring to the controller; in the receiving direction, receives the MAC sent by the GFP module. Frame, converted to a signal that the physical interface module needs to process.
  • the GFP module receives the MAC frame sent by the MAC processing module in the sending direction, and inserts the IDLE frame into the GFP frame as needed; in the receiving direction, the GFP frame sent from the ODU0-XV virtual concatenation module is removed, and the IDLE frame is removed. Restore to a MAC frame and send it to the MAC processing module.
  • the ODU0-XV virtual concatenation module maps the GFP frame sent by the GFP module to the ODU0-XV in the sending direction; and further includes the LCAS function, and the LCAS determines the link capacity according to the network management configuration.
  • the virtual concatenation group consisting of the lGbps-level optical channel data units output by the multiplexing module is received, and the received virtual concatenation group is demapped into a GFP frame.
  • ⁇ from the OTN is received and mapped to ODUK, and then the ODUK is demultiplexed.
  • the controller is responsible for collecting or receiving MAC traffic monitoring data from the MAC processing module, and transmitting the MAC traffic monitoring data to the network management module for processing; the network management module according to the received traffic
  • the information is used to calculate the optimal ODU-XV link capacity, and the LCAS generates the link capacity adjustment value and sends it to the controller.
  • the controller generates a capacity control command according to the capacity adjustment value and sends the capacity control command to the virtual concatenation module.
  • the joint module configures a link capacity between itself and the multiplexing module according to the adjustment command.
  • the network management module starts LCAS according to the manually configured link capacity to generate a link capacity adjustment value and sends the link capacity adjustment value to the controller, and the controller generates a capacity control according to the received capacity adjustment value.
  • the command is sent to the virtual concatenation module, and the virtual concatenation module configures the link capacity between itself and the multiplexing module according to the adjustment command.
  • the controller and the network management module may be disposed in the same physical entity.
  • the foregoing apparatus of the embodiment of the present invention may be disposed at an OTN or DWDM terminal for implementing an OTN or DWDM terminal multiplexer.
  • a plurality of such devices are built in a terminal multiplexer, thereby realizing service aggregation of signals such as multiple 10GE LANs and 10GE FCs, and implementing point-to-point transmission through the OTN network.
  • the embodiment of the present invention can implement transparent transmission of the bandwidth of the 10GE LAN service, and the adjusted granularity is 1GE level. For example, if the 10GE LAN client requires only 5 GE bandwidths, the LCAS is adjusted to the capacity of the ODU0-5V. The 10GE LAN signal is transmitted at full rate, and the LCAS is adjusted to ODU0-9V; 8 ODU0s occupy 1 OTU2, another ODU0 is transmitted from another OTU2, and the remaining capacity of this OTU2 can transmit other ODU1 or ODU0 signals, and multiplex the OD0 to OTU2, thereby saving the total line capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Small-Scale Networks (AREA)

Description

局域网信号在光传送网中传输的实现方法和装置
技术领域
本发明涉及光传送网 (OTN, Optical Transport Networks ) 中的数据 传输技术, 特别是指一种局域网 (LAN )信号在光传送网中传输的实现 方法和装置。 发明背景
为满足未来数据业务增长需求所推出的 OTN 网絡是一种同时具有 运行、管理、维护和指配 ( OAM&P, Operation, Administration, Maintenance and Provision ) 能力、 大容量长距离传送能力和大容量的调度能力的网 络。
OT 的客户业务有恒定比特率( CBR, Constant Bit Rate )CBR 2.5G、 CBR 10G、 CBR 40G、 通用成帧规程 ( GFP, General Framing Procedure ) 等; OTN能提供对以上 CBR速率的业务透明传送能力, 这种透明性主 要是比特( BIT )透明;当客户信号为千兆以太网( GE, Gigabyte Ethernet )、 10GE的 LAN业务时, 客户信号通过 GFP协议适配到 OTO, OTN能保 证 GFP信号的字节透明性和帧透明性,同时也能保证以太网媒体访问控 制 (MAC )帧的透明性; 其中, MAC帧透明是以太网数据传送的主要 需求。
随着数据业务的增长, 同步数字系列 (SDH, Synchronous Digital Hierarchy )、 同步光纤网络 ( SONET, Synchronous Optical Network )等 网络的建网减少, 以太网将是未来最主要的数据业务。 电气与电子工程 师协会 (IEEE)标准 802.ae 中定义了两种接口, 一种是 10GE 的广域网 ( WAN )接口, 速率为 OC-192/STM-64(10Gbase-W); 另一种是 10GE 的 LAN接口(10Gbase-R), 利用 64B/66B编码传送。 骨干路由器或数据 交换机互连, 虽然有 10G WAN接口, 但由于 10G WAN接口成本较高, 因此很多骨干路由器选择 10GE LAN接口 , 这样 OTN必须解决 10GE LAN接口如何在 OTN上传送的问题。 OTN传送 1 OGE LAN接口的主要 问题在于, OTN中 2级光通道净荷单元( OPU2 )净荷区的速率比 10GE LAN的信息速率小,一般, 10GE LAN 的信息速率为 10.0000 ± 100 ppm Gbit/s;而 OPU2净荷区的速率为 9.9953土 20 ppm Gbit/s„显然, 10GE LAN 是不可能直接映射到 OPU2的,
为了在 OTN上传送 10GE LAN业务, 目前业界提出了一些技术方 案。
参见图 1所示, 将 10GE LAN业务信号去除 64B/66B编码后, 通过 GFP适配到 5个 OPU1的虚级联信号, 即 OPU1-5V, 然后在 OTN上传 送。
该方法的缺点是需要 5个 OPU1 , 如果线路速率为 1级光通道传送 单元(OTU1 ), 则需要 5个彩色波长来传递; 即使线路速率为 OTU2, 也需要一个 OTU2传其中 4个 OPU1 , 并需要另外一个 OTU2中的一个 ODU1来传递另一个 OPUl。 当客户需要以一个 GE为单位进行带宽调 整时, 该方法的 2.5G的颗粒太粗, 链路容量调整机制 (LCAS )只能以 2.5G为单位进行带宽调整。总的来说这种方法效率不高,浪费带宽资源。 发明内容
有鉴于此, 本发明实施例提供一种局域网信号在光传送网中传输的 实现方法和装置, 在实现局域网信号在光传送网中的透明传送的同时, 提高带宽利用率。
本发明公开了一种局域网信号在光传送网中传输的实现方法,包括: A. 将局域网信号映射到适配协议帧;
B. 将适配协议帧映射到由一个以上 lGbps级别光通道数据单元组 成的虚级联组中;
C. 将所述虛级联组中至少一个所述 lGbps级别光通道数据单元复 用到光传送网支持的高阶光通道数据单元中 , 再将所述高阶光通道数据 单元映射为高阶光通道传送单元输出到所述光传送网中。
本发明还公开了一种局域网信号在光传送网中传输的实现装置, 该 装置包括:
适配协议帧映射单元, 用于将局域网信号映射到适配协议帧; 虚级联模块, 用于接收适配协议模块输出的适配协议帧并映射到由 一个以上 lGbps级别光通道数据单元组成的虚级联组中;
复用模块, 用于接收虚级联模块输出的至少一个所述 lGbps级别光 通道数据单元并复用到光传送网支持的高阶光通道数据单元中 , 再将所 述高阶光通道数据单元映射为高阶光通道传送单元输出到所述光传送 网中。
从上面所述可以看出, 本发明实施例提供的局域网信号在光传送网 中传输的实现方法和装置, 通过将 LAN业务的带宽调整颗粒为 1GE级 别等技术手段, 实现 LAN业务的透明传送的同时, 提高了带宽利用率; 并且不改变线路速率, 兼容现有的 OTN体制, 进一步还可以实现以 GE 为带宽单位的 LCAS, 以及网络终端复用器(TMUX ); 实现点到点的传 送 10GELAN业务, 或与 TDM业务混合传送。 附图简要说明
图 1为现有技术 10GE LAN业务信号到 OPU1的适配过程示意图; 图 2为本发明实施例 10GE LAN信号在光传送网中传输的实现方法 的流程示意图;
图 3为本发明实施例的 ODU0帧格式;
图 4为本发明实施例 10GE LAN信号在光传送网中传输的实现装置 的结构示意图;
图 5 为本发明实施例装置用来实现 OTN 或密集波分复用系统 ( DWDM )终端复用器的示意图。 实施本发明的方式
下面结合附图及具体实施例对本发明进行伴细描述。
参见图 2所示, 下面以 10GE LAN信号为例, 对 10GE LAN信号在 光传送网中传输的实现方法进行相应描述:
10GE LAN 信号 经 64B/66B 编码后 的速率为 10G 66/64=10.3125GBIT/S±100ppm, 将 10GE LAN信号按 64B/66B解码后, 得到的信号速率为 10G BIT/S±100ppm。其中, 64B/66B中包含有控制信 步骤 201 , 将 10GE LAN信号映射到 GFP帧。 具体的映射过程为: 按 64B/66B解码方法解码 10GE LAN客户信号并提取其中的 MAC帧, 再将提取的 MAC帧封装到 GFP帧中。
当然, 这里的 GFP封装过程包括透明 GFP ( GFP-T )封装和成帧映 射 GFP ( GFP-F )封装; MAC帧提取过程中提取的内容包括提取 MAC 信息和控制信息。
以 GFP-T封装为例, 从 10GE LAN信号到 GFP的封装有两种情况: 一种是直接从 10GE LAN端口提取 MAC帧并封装到 GFP帧 ,也就是所 谓的帧映射; 这种方式需要先对 64B/66B信号进行解码处理, 同时也需 要去掉包间间隔(IPG, Inter-Packet Gap ), 即 Ethernet IPG; 另外一种是 对 lOGE LAN进行 64B/66B信号解码后得到 10GE信号, 再利用一种块 编码方式把 10GE信号编码到适合 GFP-T封装的 GFP帧格式。
这里仅是以 GFP帧为例, 居实际情况所述 10GE LAN信号也适配 为如 LAPS帧、 HDLC等其他适配协议帧。
步骤 202, 将 GFP帧映射到由多个子速率 ODU0组成的虚级联组。 这里的子速率通常是指 1G级别的子速率。 在本发明的一个实施例 中, 针对 GE、 FC等 IGbps级别的低速率业务, 参照国际电信联盟电信 标准部( ITU-T )G.709建议,定义了 IGbps级别光通道数据单元( ODU0 ), 其净荷单元为 OPU0, 称为 IGbps级別的光通道净荷单元。
参见图 3所示, 图中示出了本发明实施例的 ODU0帧格式。 其中, 前 14列的第二行到第四行为 ODU0的数据管理开销区 (ODU0 OH ), 15、 16列为净荷管理开销 (OPU0 OH ); 17列以后的 3808列为净荷区 ( OPU0 ), 最后为 FEC。 在本发明的一个较佳实施例中, ODU0 OH各 字节的定义与数字包封技术所定义的 ODU OH相同, 以使得对 IGbps 级别的业务有一个端到端的管理开销, 能实现对 GE等业务端到端的性 能管理。 参考 ITU-T建议 G.709, 1 - 7列的第一行包含 FAS直接, 其中 第 7列第一行为 MFAS字节, 用于指示多帧承载时开销字节所对应的帧 号。 其中, OPU0 OH包含 PSI字节, 位于的 15列第四行, 对应 MFAS 为 0 ~ 255的分别有 255个复用字节, 其中包含 PT字节及保留字节。
ODU0是基于 ITU-T G.709建议定义的, 因此其结构框架符合该建 议, 与 ODUK ( K = l, 2, 3 )相似, 关键的区别在于 ODU0的速率级別 是符合低速率业务需求的。 在优选实施方案中, ODU0 的比特率为 (STM-16速率) /2 ±20 ppm=1244160Kbps土 20ppm,容量为 4 χ 3824字节; ODU0净荷区 OPU0的大小为 4 X 3810字节。
而子速率 OPU0 的净荷为 4 x 3808 字节, 比特率对应为: ( 3808/3824 ) x (124416020 + 20ppm ) = ( 238/239 ) x ( 124416020土 20ppm ) = 1238954.31Kbps ± 20ppm。 如果要完全传递 10GE LAN 的 MAC帧速率,需要 9个子速率 OPU0的净荷区容量, 9 X 1238954.31Kbps 土 20ppm = 11150588.79Kbps 土 20ppm; 由于虚级联组的总容量大于 10GE, 因而可以完全实现 10GE的 MAC帧透明传送。
ODU0/OPU0根据需要, 还可以传递 GFP的管理帧。 这保证了对于 每个低速率业务的单独 GFP传输、 管理、 维护功能的实现。 在 GFP映 射填充到 ODU0/OPU0的净荷区时,需要按照 GFi>映射方法插入一定数 量的空闲 (IDLE ) 帧, 使得 GFP信号和空闲帧的总速率恰好与 OPU0 净荷区的速率相等。 插入空闲帧的方法可以参考 ITU-T G.709建议。
步骤 203, 利用 LCAS来控制链路容量大小。
通过网管配置 LCAS, 使链路容量符合客户需要的容量, 例如: 虽 然客户的 10GE LAN端口速率 10G级别, 但在业务量较小时, 只需要 提供 5GE的带宽,就可以利用 LCAS来调整链路容量为 ODU0-5 V; LCAS 可在 1 ODU0到 9 X ODU0之间调整。
除了通过网管来配置 LCAS, 也可以通过设置一种流量监视装置, 监视 10GE LAN中的 MAC帧流量, 报告给网管; 网管才艮据当前流量信 息进行处理, 自动配置 LCAS, 使 ODU0-XV的容量大小最适合当前要 传递的 10GE LAN流量。
步骤 204, 将 1G级别的 ODU0复用到高阶 ODUK上, 组成高阶 OTUK, 然后在 OTN线路上传输。
在复用时,根据 LCAS控制的所分配链路带宽(通常指容量的大小), 每个 ODUK中复用的可以完全是上面步骤得到的 ODU0信号, 完成 X X ODU0到 OTU 的复用, 其中 K = 1, 2, 3 , 比如: 2个 ODU0复用到 1 个 ODU1、 8个 ODU0复用到一个 ODU2、 32个 ODU0复用到 1个 ODU3; 也可以是一个所述虚级联组中的所有或部分 ODU0信号与其他链路上的 信号夹杂在一起复用在一个 ODUK上, 比如: 完成 X x ODUO与 Y x ODUJ到 ODUK/OTU 的混合复用 , 其中 J=0, 1, 2; K = 1, 2, 3; K>J。 当然, 也可以将来自更多路的信号复用在一起。
参见图 4所示, 为本发明较佳实施例的 10GE LAN在光传送网中传 输的实现装置, 该装置包括: GFP帧映射单元、 虚级联模块、 复用模块 以及控制和管理单元。 其中, GFP 帧映射单元由物理接口模块、 MAC 处理模块和 GFP模块組成;控制和管理单元由控制器和网络管理模块组 成。 下面分别对各模块的功能进行详细说明:
物理接口模块 ( PMA/PCS ), 用于对 10GE LAN信号的编码和解码, 主要是 64B/66B编解码。
MAC处理模块,在发送方向,接收物理接口模块的信号,提取 MAC 帧, 并可进一步对 MAC帧进行流量监视, 将流量监视的结果发送至控 制器; 在接收方向, 接收 GFP模块送来的 MAC帧, 转换为物理接口模 块需要处理的信号。
GFP模块, 在发送方向, 接收 MAC处理模块送来的 MAC帧, 根 据需要插入 IDLE帧封装到 GFP帧; 在接收方向, 将从 ODU0-XV虚级 联模块送来的 GFP帧, 去除 IDLE帧, 还原成 MAC帧, 送到 MAC处 理模块。
ODU0-XV虚级联模块, 在发送方向, 将 GFP模块送来的 GFP帧映 射到 ODU0-XV; 并可进一步包括 LCAS功能, LCAS根据网管配置来 确定链路容量的大小。 在接收方向, 接收复用模块输出的 lGbps级别光 通道数据单元所组成的虚级联组, 并将收到的虚级联组解映射为 GFP 帧。
复用模块, 在发送方向, 完成 X x ODUO到 ODUK的复用, 或 Χ χ ODU0与 Y x ODUJ、 甚至更多路 ODU信号到 ODU 的混合复用, 将 信号映射为 OTUK信号后输出; 其中 J=0、 1、 2; 其中, K>J。 在接收 方向,接收来自 OTN的 οτυκ并解映射为 ODUK,再对 ODUK进行解 复用处理。
如果所述 MAC处理模块监视 MAC流量,则控制器负责采集或接收 来自 MAC处理模块的 MAC流量监视数据,并将 MAC流量监视数据发 送到网络管理模块以进行处理; 网络管理模块根据收到的流量信息, 计 算出最优的 ODU-XV链路容量, 启动 LCAS生成链路容量调整值并发 送给控制器 , 控制器根据容量调整值产生容量控制命令并发送给所述虚 级联模块, 虚级联模块根据所述调整命令配置自身与所述复用模块之间 的链路容量。
如果所述 MAC处理模块没有 MAC流量监视功能,则网络管理模块 根据人工配置的链路容量启动 LCAS以生成链路容量调整值并发送给控 制器, 控制器根据收到的容量调整值产生容量控制命令并发送给所述虚 级联模块, 虚级联模块根据所述调整命令配置自身与所述复用模块之间 的链路容量。
其中, 所述控制器和网络管理模块可以设置于同一物理实体中。 参见图 5所示,本发明实施例的上述装置可以设置在 OTN或 DWDM 终端, 用来实现 OTN或 DWDM终端复用器。在一个终端复用器中内置 多个这样的装置,从而实现对多个 10GE LAN 、 10GE FC等信号的业务 汇聚, 并通过 OTN网络来实现点到点的传送。
本发明实施例可以实现对 10GE LAN业务的带宽可调整的透明传 送, 调整的颗粒为 1GE级别, 例如, 10GE LAN客户要求只需要 5个 GE带宽,就配置 LCAS调整到 ODU0-5V的容量,如果全速率传送 10GE LAN信号, 就配置 LCAS调整到 ODU0-9V; 其中 8个 ODU0占用 1个 OTU2, 另一个 ODU0从另外的 OTU2传送, 此 OTU2的剩余容量可以 来传送其他的 ODU1或 ODU0信号, 与此 OD0复用到 OTU2, 从而节 省总的线路容量。
本领域人员应该知道, 除 1 OGE LAN信号以外, 本发明实施例方案 对其它速率的 LAN信号也可适用。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种局域网信号在光传送网中传输的实现方法, 其特征在于, 包 括:
A. 将局域网信号映射到适配协议帧;
B. 将适配协议帧映射到由一个以上 IGbps级别光通道数据单元组 成的虚级联组中;
C. 将所述虚级联组中所述 IGbps级别光通道数据单元复用到光传 送网支持的高阶光通道数据单元中 , 再将所述高阶光通道数据单元映射 为高阶光通道传送单元输出到所述光传送网中。
2、 根据权利要求 1所述的方法, 其特征在于, 步骤 A所述映射过 程包括: 将局域网信号进行解码后, 提取其中的 MAC帧并封装到适配 协议帧中。
3、根据权利要求 2所述的方法, 其特征在于, 所述适配协议为 GFP 协议; 所述 MAC帧到适配协议帧的封装为 GFP-T封装或 GFP-F封装。
4、 根据权利要求 3所述的方法, 其特征在于, 所述封装为 GFP-T 封装, 该 GFP-T封装过程包括: 将完成解码后的局域网信号去掉: IPG, 从中提取出 MAC帧并封装至 GFP帧。
5、 根据权利要求 3所述的方法, 其特征在于, 所述封装为 GFP-T 封装, 该 GFP-T封装过程包括: 利用块编码方式将完成解码后的的局域 网信号编码到适合 GFP-T封装的 GFP帧格式中。
6、 根据权利要求 2所述的方法, 其特征在于, 步骤 C中, 所述复 用是 X X 1 Gbps级别光通道数据单元到高阶光通道数据单元的复用; 或 者, 是所述虛级联组中的所有或部分 IGbps级别光通道数据单元与其他 链路上的信号夹杂在一起复用在一个 ODU上。
7、根据权利要求 2所述的方法, 其特征在于, 所述适配协议帧封装 过程进一步包括:根据实际需要在适配协议帧中插入空闲帧和 /或适配协 议的管理帧。
8、 根据权利要求 1 所述的方法, 其特征在于, 所述局域网信号为 10GE局域网信号;步骤 B中,所述每个适配协议帧映射到由 9个 IGbps 级别光通道数据单元组成的虚级联组中。
9、 根据权利要求 1所述的方法, 其特征在于:
步骤 C中,每个高阶光通道数据单元中复用的所述 IGbps级别光通 道数据单元的数量是通过 LCAS控制。
10、 根据权利要求 9所述的方法, 其特征在于, 所述 LCAS是预先 配置的, 或是才艮据当前局域网信号的流量动态配置的。
11、根据权利要求 1所述的方法, 其特征在于, 该方法进一步包括: 将来自光传送网的高阶光通道传送单元解映射为高阶光通道数据单元, 并对完成解映射处理的高阶光通道数据单元进行解复用处理, 再将解复 用处理后得到的 IGbps级别光通道数据单元組成的虚级联组解映射为适 配协议帧; 将得到的适配协议帧解映射为局域网信号。
12、根据权利要求 11所述的方法, 其特征在于, 所述将适配协议帧 解映射为局域网信号的方法包括:
将适配协议帧还原为 MAC帧, 将还原出的 MAC帧进行编码后生 成局域网信号输出到局域网中。
13、根据权利要求 12所述的方法,其特征在于,所述编码为 64B/66B 编码。
14、根据权利要求 1、 2、 7至 12任意一项所述的方法,其特征在于, 所述适配协议为 GFP协议、 LAPS协议或 HDLC。
15、 一种局域网信号在光传送网中传输的实现装置, 其特征在于, 该装置包括:
适配协议帧映射单元, 用于将局域网信号映射到适配协议帧; 虚级联模块, 用于接收适配协议模块输出的适配协议帧并映射到由 一个以上 lGbps级别光通道数据单元组成的虚级联组中;
复用模块, 用于接收虚级联模块输出的至少一个所述 lGbps级别光 通道数据单元并复用到光传送网支持的高阶光通道数据单元中, 再将所 述高阶光通道数据单元映射为高阶光通道传送单元输出到所述光传送 网中。
16、根据权利要求 15所述的装置, 其特征在于, 所述适配协议帧映 射单元包括:
物理接口模块, 用于对输入的局域网信号进行解码;
MAC 处理模块, 用于接收物理接口模块输出的信号并提取其中的 MAC帧;
适配协议模块, 用于接收 MAC处理模块输出的 MAC帧并封装到 适配协议帧中。
17、根据权利要求 16所述的装置,其特征在于,该装置进一步包括: 控制器和网络管理模块;
所述 MAC处理模块, 进一步用于对 MAC帧的流量进行监视; 控制器, 用于采集或接收 MAC处理模块的流量监视的结果并发送 给网络管理模块 , 以及根据收到的容量调整值产生容量控制命令并发送 给所述虚级联模块;
网络管理模块, 用于根据收到的流量监视结果计算出最优的链路容 量, 启动 LCAS并生成链路容量调整值, 再将生成的链路容量调整值发 送给控制器;
虚级联模块, 进一步用于根据所述调整命令配置自身与所述复用模 块之间的链路容量。
18、根据权利要求 16所述的装置,其特征在于,该装置进一步包括: 控制器和网络管理模块;
网络管理模块, 用于根据预先配置的链路容量启动 LCAS并生成链 路容量调整值, 再将生成的链路容量调整值发送给控制器;
控制器, 用于根据收到的容量调整值产生容量控制命令并发送给所 述虚级联模块;
虚级联模块, 进一步用于根据所述调整命令配置自身与所述复用模 块之间的链路容量。
19、 根据权利要求 16所述的装置, .其特征在于:
所述复用模块, 进一步用于接收来自光传送网的高阶光通道传送单 元并解映射为高阶光通道数据单元 , 再对高阶光通道数据单元进行解复 用处理;
所述虚级联模块, 进一步用于接收所述复用模块输出的 lGbps级別 光通道数据单元所组成的虚级联组, 并将收到的虚级联组解映射为适配 协议帧;
所述适配协议模块,进一步用于接收虚级联模块输出的适配协议帧, 并将收到的适配协议帧还原为 MAC帧;
所述 MAC 处理模块, 进一步用于接收适配协议模块输出的 MAC 帧并转换为所述物理接口模块需要处理的信号;
所述物理接口模块, 进一步用于接收 MAC处理模块输出的信号, 将对收到的信号进行编码处理后所生成的局域网信号输出到局域网中。
20、 根据权利要求 15至 19任意一项所述的装置, 其特征在于, 所 述适配协议为 GFP协议、 LAPS协议或 HDLC。
PCT/CN2006/003577 2005-12-31 2006-12-25 Procede et dispositif de transmission de signaux lan dans un reseau de transport optique WO2007076689A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNA2006800117540A CN101156414A (zh) 2005-12-31 2006-12-25 局域网信号在光传送网中传输的实现方法和装置
EP06840628.9A EP1881669B1 (en) 2005-12-31 2006-12-25 Implementing method and device for transmitting lan signals in otn
ES06840628.9T ES2442693T3 (es) 2005-12-31 2006-12-25 Implementación de un método y de un equipo para transmitir señales de LAN en una OTN
US11/955,640 US7944928B2 (en) 2005-12-31 2007-12-13 Method and apparatus for transporting local area network signals in optical transport network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510137825.9 2005-12-31
CNB2005101378259A CN100401715C (zh) 2005-12-31 2005-12-31 局域网信号在光传送网中传输的实现方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/955,640 Continuation US7944928B2 (en) 2005-12-31 2007-12-13 Method and apparatus for transporting local area network signals in optical transport network

Publications (1)

Publication Number Publication Date
WO2007076689A1 true WO2007076689A1 (fr) 2007-07-12

Family

ID=37133685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003577 WO2007076689A1 (fr) 2005-12-31 2006-12-25 Procede et dispositif de transmission de signaux lan dans un reseau de transport optique

Country Status (5)

Country Link
US (1) US7944928B2 (zh)
EP (1) EP1881669B1 (zh)
CN (2) CN100401715C (zh)
ES (1) ES2442693T3 (zh)
WO (1) WO2007076689A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401715C (zh) 2005-12-31 2008-07-09 华为技术有限公司 局域网信号在光传送网中传输的实现方法和装置
CN101242232B (zh) 2007-02-09 2013-04-17 华为技术有限公司 实现以太网信号在光传送网中传输的方法、装置及系统
CN101335751A (zh) 2007-06-29 2008-12-31 华为技术有限公司 将以太网编码块映射到光传输网络传输的方法及装置
CN101170550B (zh) * 2007-11-22 2010-05-26 中兴通讯股份有限公司 一种万兆以太网信号在光传送网络中透明传送的方法
CN101615967B (zh) * 2008-06-26 2011-04-20 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
CN101355821B (zh) * 2008-09-03 2011-07-13 中兴通讯股份有限公司 10吉比特光纤信道业务在光传输网中传输的方法和装置
CN101729089B (zh) * 2008-10-23 2013-07-10 弥亚微电子(上海)有限公司 通信系统的发射机、接收机及其同步方法
JP5215881B2 (ja) * 2009-01-08 2013-06-19 アンリツ株式会社 エラー付加装置
CN101873517B (zh) * 2009-04-24 2013-08-07 华为技术有限公司 光传送网的信号传送方法、设备及通信系统
CA2749958C (en) * 2009-05-11 2014-09-09 Huawei Technologies Co., Ltd. Method, system, and device for transmitting data in optical transport network
CA2761388C (en) * 2009-07-27 2016-12-13 Huawei Technologies Co., Ltd. Signal transmission processing method and apparatus and distributed base station
US8279891B2 (en) * 2009-12-15 2012-10-02 Cisco Technology, Inc. Techniques for ethernet optical reach improvement
CN102195859B (zh) * 2010-03-04 2015-05-06 中兴通讯股份有限公司 基于gfp的灵活光通道数据单元带宽调整方法及系统
US20120327786A1 (en) * 2011-06-23 2012-12-27 Exar Corporation Method for mapping generic client signals into a generic framing procedure (gfp) path
US9819546B2 (en) 2011-07-07 2017-11-14 Ciena Corporation Data connectivity systems and methods through packet-optical switches
US9148223B2 (en) * 2011-07-07 2015-09-29 Ciena Corporation Ethernet private local area network systems and methods
US9236969B2 (en) * 2011-10-28 2016-01-12 Infinera Corporation Super optical channel data unit signal supported by multiple wavelengths
EP3306840B1 (en) * 2012-06-14 2024-05-08 Huawei Technologies Co., Ltd. Method and apparatus for transmitting and receiving client signal
US9647788B2 (en) 2013-02-12 2017-05-09 Applied Micro Circuits Corporation Low latency multiplexing for optical transport networks
US20140255028A1 (en) * 2013-03-08 2014-09-11 Altera Corporation Sub-rate mapping for lowest-order optical data unit
JP6355693B2 (ja) * 2016-09-23 2018-07-11 Nttエレクトロニクス株式会社 フレーム処理回路およびマルチチャネル伝送システム
CN107920030B (zh) * 2016-10-11 2021-01-22 深圳市中兴微电子技术有限公司 一种光通道数据单元帧的映射方法和装置
CN106656595B (zh) * 2016-12-21 2020-02-14 深圳市恒扬数据股份有限公司 一种数据传输方法及装置
IT201700045533A1 (it) * 2017-04-27 2018-10-27 Sm Optics S R L Metodo per mappare un segnale digitale in una rete di trasporto ottica e relativi elementi di rete, rete di telecomunicazioni ottica e trama per rete di telecomunicazioni ottica
CN109347648B (zh) * 2017-09-21 2020-10-16 中国移动通信有限公司研究院 Oam消息传输方法、传输设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161344A1 (en) * 2002-02-22 2003-08-28 Alcatel Method and device for transporting ethernet frames over transport SDH/SONET network
EP1414173A2 (en) 2002-10-23 2004-04-28 Broadcom Corporation Multi-service channelized sonet mapper frame
US20040205230A1 (en) * 2003-03-28 2004-10-14 Alcatel Method for mapping layer-3 packets over SDH/SONET or OTN via GFP layer
WO2005036828A1 (en) * 2003-10-13 2005-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Transport of ethernet frames over an sdh network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100544457C (zh) * 2004-04-09 2009-09-23 Ut斯达康通讯有限公司 基于射频拉远的基站的信号传输方法和系统
CN100349390C (zh) 2004-08-11 2007-11-14 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
CN100401715C (zh) 2005-12-31 2008-07-09 华为技术有限公司 局域网信号在光传送网中传输的实现方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161344A1 (en) * 2002-02-22 2003-08-28 Alcatel Method and device for transporting ethernet frames over transport SDH/SONET network
EP1414173A2 (en) 2002-10-23 2004-04-28 Broadcom Corporation Multi-service channelized sonet mapper frame
US20040205230A1 (en) * 2003-03-28 2004-10-14 Alcatel Method for mapping layer-3 packets over SDH/SONET or OTN via GFP layer
WO2005036828A1 (en) * 2003-10-13 2005-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Transport of ethernet frames over an sdh network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN YONGGANG HUAWEI TECHNOLOGIES CO ET AL.: "Justification for the support of data service mapping in OTN using lower order ODUO; D 294", ITU-T DRAFT STUDY PERIOD 2005-2008, INTERNATIONAI TELECOMMUNICM-ION UNION, vol. 15, 16 May 2005 (2005-05-16), pages 1 - 5
MAARTEN VISSERS ALCATEL SEL GERMANT ET AL.: "Definition of a new transport entity ODUO; D 92", ITU-T DRAFT STUDY PERIOD 2005-2008, INTERNATIONAI TELECOMMUNICM'ION UNION, vol. 15, 29 November 2004 (2004-11-29), pages 1 - 3
See also references of EP1881669A4 *

Also Published As

Publication number Publication date
US20080124079A1 (en) 2008-05-29
ES2442693T3 (es) 2014-02-12
US7944928B2 (en) 2011-05-17
CN100401715C (zh) 2008-07-09
CN101156414A (zh) 2008-04-02
EP1881669B1 (en) 2013-10-23
CN1852215A (zh) 2006-10-25
EP1881669A4 (en) 2010-05-19
EP1881669A1 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
CN100401715C (zh) 局域网信号在光传送网中传输的实现方法和装置
US11658759B2 (en) Method and apparatus for transmitting a signal in optical transport network
EP1826926B1 (en) An implement method of short rate traffic signal transmitted in optical transport network
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
JP4708482B2 (ja) Otn上でdtmを伝送するための方法、装置、及び応用装置
US20070264015A1 (en) Uniform Switching System and Method for Synchronous Optical Network and Optical Transport Network
WO2008035769A1 (fr) SystÈme de transmission multiplex et procÉDÉ de transmission multiplex
WO2006021157A1 (fr) Procede et equipement pour la transmission transparente de signaux a faible vitesse dans un reseau de transmission optique
WO2008098466A1 (fr) Procédé, appareil et système pour la transmission de signaux ethernet dans un réseau de transport optique
WO2013189034A1 (zh) 一种分配光频谱带宽资源的方法及装置
WO2012014310A1 (ja) 信号収容方法、フレーム生成装置、フレーム受信装置及び伝送システム
WO2011113257A1 (zh) 光传送网络设备和光传送网络的带宽调整方法
CN101217334A (zh) 光传送网中传输低速率业务信号的方法及其装置
EP2093916B1 (en) Optical transport hierarchy gateway interface
JP2013175931A (ja) 伝送装置、伝送システム及び伝送プログラム
Ellanti et al. Next Generation Transport Technologies
WO2008074180A1 (fr) Procédé de transfert d'un signal stm/sts à faible vitesse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680011754.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006840628

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006840628

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11955640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE