WO2007074849A1 - 電源回路及び照明システム - Google Patents

電源回路及び照明システム Download PDF

Info

Publication number
WO2007074849A1
WO2007074849A1 PCT/JP2006/326003 JP2006326003W WO2007074849A1 WO 2007074849 A1 WO2007074849 A1 WO 2007074849A1 JP 2006326003 W JP2006326003 W JP 2006326003W WO 2007074849 A1 WO2007074849 A1 WO 2007074849A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
unit
fluorescent lamp
power supply
Prior art date
Application number
PCT/JP2006/326003
Other languages
English (en)
French (fr)
Inventor
Junichi Matsuda
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007551997A priority Critical patent/JPWO2007074849A1/ja
Priority to US12/159,296 priority patent/US8164407B2/en
Priority to EP06843385.3A priority patent/EP1983633A4/en
Publication of WO2007074849A1 publication Critical patent/WO2007074849A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present invention relates to a power supply circuit, and more particularly to a technology of a power supply circuit that acquires lighting device power.
  • a technique for specifying the position of a terminal with high accuracy indoors has attracted attention.
  • technologies that use wireless LAN (Local Area Network) signals set by companies and stores and location identification technologies that use Bluetooth (Bluetooth) and RFID (Radio Frequency Identification) are known.
  • Bluetooth Bluetooth
  • RFID Radio Frequency Identification
  • the terminal side has a function of receiving weak radio waves or infrared rays.
  • the position of the transmitter transmitting the weak radio waves or infrared rays is set as the terminal location. Therefore, the reach of weak radio waves and infrared rays is the positioning accuracy, and pinpoint positioning is possible, but it is necessary to place many transmitters on the wall or ceiling.
  • a power supply is required for a transmitter disposed on a wall or ceiling.
  • a method of wiring the power supply to supply the DC power for driving the transmitter can be considered.
  • Another method is to install an AC-DC converter for each transmitter installed on the ceiling, wall, etc., and have the AC power line already wired in the place where the transmitter is installed! It is conceivable to branch the input and input to the AC-DC converter.
  • the above two methods are methods of supplying power directly to a transmitter using power supply wiring.
  • a coil and supplying power via a magnetic field contactlessness is achieved. It is also possible to supply power.
  • the AC power line that has already been wired The AC power line is routed, and a magnetic field is generated that includes a primary coil that generates a magnetic field that periodically changes depending on where the transmitter is installed.
  • Install the equipment A secondary coil is provided inside the transmitter, and the transmitter is driven using the induced electromotive force generated in the secondary coil by installing the transmitter in the magnetic field generated by the primary coil.
  • a method is conceivable.
  • the problem to be solved by the present invention is that the installation cost is high when installing a transmitter that transmits weak radio waves such as Bluetooth or RFID or a transmitter that transmits infrared rays.
  • a DC power line may be wired or AC power This is because it is necessary to install an AC-DC converter and magnetic field generator by drawing the wire.
  • the problem to be solved by the present invention is to provide a power supply apparatus that can be used indoors at low cost.
  • a first invention for solving the above-described problems is
  • It has an electric power acquisition part which acquires electric power using the magnetic field which generate
  • a second invention for solving the above-described problem is the above-described first invention
  • the fluorescent lamp is a fluorescent lamp that is lit by an alternating current having a frequency higher than that of a commercial power source
  • the power acquisition unit acquires power by electromagnetic induction from a magnetic field generated by the alternating current.
  • a second invention for solving the above-described problems is the above first or second invention,
  • the power acquisition unit is a coil.
  • a fourth invention for solving the above-mentioned problems is any one of the first to third inventions described above.
  • the power acquisition unit includes a magnetic body and a coil wound around the magnetic body.
  • a fifth invention for solving the above-described problems is the above-mentioned fourth invention.
  • a sixth invention for solving the above-mentioned problems is characterized in that, in the fourth or fifth invention, the magnetic body is attached so as to surround a glass tube of the fluorescent lamp.
  • the magnetic body surrounds an electric wire for supplying a current for lighting the fluorescent lamp. It is attached so that it may be attached.
  • An eighth invention for solving the above-mentioned problems is any one of the above fourth to seventh inventions.
  • the magnetic body has a plurality of magnetic forces.
  • a ninth invention for solving the above-mentioned problems is any one of the first to eighth inventions.
  • the power acquisition unit has a rectification unit that rectifies the supplied AC voltage into a DC voltage.
  • a tenth invention for solving the above-mentioned problems is the above-mentioned ninth invention.
  • It has a voltage conversion part which converts the DC voltage supplied from the rectification part into a predetermined voltage.
  • An eleventh invention for solving the above-mentioned problems is any one of the first to tenth inventions,
  • the power acquisition unit has a power storage unit that holds the supplied power.
  • a twelfth invention for solving the above-mentioned problems is any one of the ninth to eleventh inventions.
  • a voltage limiting unit is provided between the rectifying unit and the voltage converting unit to limit a DC voltage output from the rectifying unit to a voltage having a predetermined value.
  • a thirteenth invention for solving the above-mentioned problems is the above-mentioned twelfth invention.
  • the voltage limiting unit is configured by a Zener diode.
  • a fourteenth invention for solving the above-mentioned problems is any one of the above tenth to thirteenth inventions.
  • the voltage converter boosts the voltage to a predetermined voltage when a voltage lower than the predetermined voltage is input, and reduces the voltage to the predetermined voltage when a voltage higher than the predetermined voltage is input. It is characterized by.
  • a fifteenth invention for solving the above-mentioned problems is any one of the above tenth to fourteenth inventions.
  • the power acquisition unit is configured such that the AC voltage supplied to the voltage conversion unit by the rectification unit is greater than the output voltage of the voltage conversion unit. And adjusting the voltage so as to be higher, and outputting a built-up voltage to the rectifying unit.
  • a sixteenth invention for solving the above-described problems is any one of the eleventh to fifteenth inventions.
  • a turn-off detection unit that detects that the fluorescent lamp is turned off
  • a seventeenth invention for solving the above-mentioned problems is the above-mentioned sixteenth invention.
  • the turn-off detection unit monitors the output voltage of the power acquisition unit, and determines that the fluorescent lamp is turned off when the output voltage becomes lower than a predetermined voltage.
  • the extinguishing detection unit monitors the output voltage of the rectifying unit, and determines that the fluorescent lamp is extinguished when the output voltage becomes lower than a predetermined voltage.
  • the extinction detection unit monitors the output voltage of the voltage conversion unit, and the output voltage is lower than a predetermined voltage. It is judged that the fluorescent lamp is extinguished when
  • a twentieth invention for solving the above-mentioned problems is any one of the eleventh to fifteenth inventions,
  • a turn-off detection unit that detects that the fluorescent lamp is turned off
  • the power storage unit starts supplying the stored power when the turn-off detection unit detects that the fluorescent lamp is turned off.
  • a twenty-first invention for solving the above-described problems is the above-mentioned eleventh invention.
  • the power storage unit has a power supply control unit that starts power supply to an external device.
  • It has a power supply control unit that starts power supply from the power storage unit to an external device when predetermined sensor information is detected or every predetermined time.
  • a twenty-third invention for solving the above-mentioned problems is characterized in that, in the above-mentioned twenty-first or twenty-second invention, the sensor information is information on whether or not a person has power.
  • a twenty-fourth invention for solving the above-described problems is
  • a power acquisition unit that acquires power using a magnetic field generated by a current for lighting a fluorescent lamp of the lighting device
  • a twenty-fifth aspect of the invention for solving the above-described problems is the twenty-fourth aspect of the invention.
  • the fluorescent lamp is a fluorescent lamp that is lit by an alternating current having a frequency higher than that of a commercial power source
  • the power acquisition unit generates power by electromagnetic induction from a magnetic field generated by the alternating current. It is characterized by acquiring force.
  • a twenty-sixth invention for solving the above-mentioned problems is characterized in that in the above-mentioned twenty-fourth or twenty-fifth invention, the power acquisition unit is a coil.
  • a twenty-seventh aspect of the present invention for solving the above-mentioned problems is any one of the twenty-fourth to the twenty-sixth aspects of the invention.
  • the power acquisition unit includes a magnetic body and a coil wound around the magnetic body.
  • a twenty-ninth invention for solving the above-mentioned problems is characterized in that, in the twenty-seventh or twenty-eighth invention, the magnetic body is attached so as to surround a glass tube of the fluorescent lamp.
  • the magnetic body is attached so as to surround an electric wire that supplies a current for lighting the fluorescent lamp. It is characterized by that.
  • a thirty-first invention for solving the above-described problems is any one of the twenty-seventh to thirtieth inventions,
  • the magnetic body has a plurality of magnetic forces.
  • a thirty-second invention for solving the above-mentioned problems is any one of the twenty-fourth to thirty-first inventions,
  • the power acquisition unit has a rectification unit that rectifies the supplied AC voltage into a DC voltage.
  • a thirty-third invention for solving the above-mentioned problems is the above-mentioned thirty-second invention.
  • It has a voltage conversion part which converts the DC voltage supplied from the rectification part into a predetermined voltage.
  • a thirty-fourth invention for solving the above-mentioned problems is any one of the above twenty-fourth to thirty-third inventions.
  • the power acquisition unit has a power storage unit that holds the supplied power.
  • a thirty-fifth aspect of the present invention for solving the above-mentioned problems is the invention according to any one of the thirty-second to thirty-fourth aspects of the present invention.
  • a voltage limiting unit is provided between the rectifying unit and the voltage converting unit to limit a DC voltage output from the rectifying unit to a voltage having a predetermined value.
  • a thirty-sixth aspect of the present invention for solving the above-described problems is the above-described thirty-fifth aspect of the present invention.
  • the voltage limiting unit is configured by a Zener diode.
  • a thirty-seventh aspect of the present invention for solving the above-mentioned problems is the invention according to any one of the thirty-third to thirty-sixth aspects of the present invention.
  • the voltage converter boosts the voltage to a predetermined voltage when a voltage lower than the predetermined voltage is input, and reduces the voltage to the predetermined voltage when a voltage higher than the predetermined voltage is input. It is characterized by.
  • a thirty-eighth aspect of the present invention for solving the above-mentioned problems is any of the thirty-third to thirty-seventh aspects of the invention.
  • the power acquisition unit is configured such that the AC voltage supplied to the voltage conversion unit by the rectification unit is greater than the output voltage of the voltage conversion unit. And adjusting the voltage so as to be higher, and outputting a built-up voltage to the rectifying unit.
  • a thirty-ninth aspect of the present invention for solving the above-mentioned problems is the invention according to any one of the thirty-fourth to thirty-eighth aspects of the invention.
  • a turn-off detection unit that detects that the fluorescent lamp is turned off
  • the turn-off detection unit monitors the output voltage of the power acquisition unit, and determines that the fluorescent lamp is turned off when the output voltage becomes lower than a predetermined voltage.
  • the forty-first invention for solving the above-mentioned problems is the above-mentioned thirty-ninth invention.
  • the extinguishing detection unit monitors the output voltage of the rectifying unit, and determines that the fluorescent lamp is extinguished when the output voltage becomes lower than a predetermined voltage.
  • a forty-second invention for solving the above-mentioned problems is the above-mentioned thirty-ninth invention.
  • the extinction detection unit monitors the output voltage of the voltage conversion unit, and determines that the fluorescent lamp is extinguished when the output voltage becomes lower than a predetermined voltage.
  • a forty-third invention for solving the above-mentioned problems is any one of the thirty-fourth to thirty-eighth inventions,
  • a turn-off detection unit that detects that the fluorescent lamp is turned off
  • the power storage unit starts supplying the stored power when the turn-off detection unit detects that the fluorescent lamp is turned off.
  • the forty-fourth invention for solving the above-mentioned problems is the above-mentioned thirty-fourth invention.
  • the power storage unit has a power supply control unit that starts power supply to an external device.
  • the forty-fifth invention for solving the above-mentioned problems is the above-mentioned thirty-fourth invention.
  • It has a power supply control unit that starts power supply from the power storage unit to an external device when predetermined sensor information is detected or every predetermined time.
  • a forty-sixth aspect of the present invention for solving the above-mentioned problems is characterized in that, in the above-mentioned forty-fourth or forty-fifth aspect, the sensor information is information on whether or not a person has power.
  • a forty-seventh aspect of the present invention for solving the above-described problems is any one of the twenty-third to the forty-sixth aspects of the invention.
  • the power acquisition unit force a photographing unit for photographing using the supplied power
  • a wireless unit that transmits the captured image data using power supplied from the power acquisition unit
  • a forty-eighth aspect of the present invention for solving the above-described problems is any one of the twenty-third to the forty-sixth aspects of the invention,
  • the power acquisition unit force a photographing unit for photographing using the supplied power;
  • a storage unit for storing the captured image data
  • a wireless unit that transmits the image data of the storage unit using the power supplied from the power acquisition unit;
  • a radio base station that transmits the transmitted image data to a monitoring server
  • the fifty invention for solving the above-described problems is:
  • a power acquisition unit that acquires power using a magnetic field generated by a current for turning on the fluorescent lamp
  • the fifty-first invention for solving the above-described problems is the fifty-fifth invention
  • the fluorescent lamp is a fluorescent lamp that is lit by an alternating current having a frequency higher than that of a commercial power source
  • the power acquisition unit acquires power by electromagnetic induction from a magnetic field generated by the alternating current.
  • a fifty-second invention for solving the above-mentioned problems is
  • a power acquisition unit that acquires power using a magnetic field generated by a current for lighting a fluorescent lamp of the lighting device
  • the fluorescent lamp is a fluorescent lamp that is lit by an alternating current having a frequency higher than that of a commercial power source
  • the power acquisition unit acquires power by electromagnetic induction from a magnetic field generated by the alternating current.
  • the power supply installation cost can be reduced indoors.
  • FIG. 1 is a diagram showing functional blocks of a lighting device A1 and a power supply circuit A2 in the first embodiment.
  • FIG. 2 is a diagram showing a structure of an energy acquisition unit A5 in Modification 1 of the first embodiment.
  • FIG. 3 is a diagram showing a structure of an energy acquisition unit A5 in Modification 2 of the first embodiment.
  • FIG. 4 is a diagram showing functional blocks of an internal circuit A8 in Modification 2 of the first embodiment.
  • FIG. 5 is a diagram showing functional blocks of an internal circuit A8 in Modification 3 of the first embodiment.
  • FIG. 6 is a diagram showing functional blocks of lighting apparatus A1 and power supply circuit A2 in the second embodiment.
  • FIG. 7 is a diagram showing a structure of an energy acquisition unit in the second embodiment.
  • FIG. 8 is a diagram showing a structure of an energy acquisition unit in a modification of the second embodiment
  • FIG. 9 is a diagram showing a structure of an energy acquisition unit in the third embodiment.
  • FIG. 10 is a diagram showing functional blocks of an internal circuit AA1 in Modification 4 of the first embodiment.
  • FIG. 11 is a diagram showing a configuration of a power supply circuit A2 in Modification 6 of the first embodiment.
  • FIG. 12 is a functional block diagram of the internal circuit AC1 in Modification 7 of the first embodiment.
  • FIG. 13 is a diagram showing functional blocks of an internal circuit AD1 in Modification 8 of the first embodiment.
  • FIG. 14 is a diagram showing functional blocks of an internal circuit AE1 in Modification 9 of the first embodiment.
  • FIG. 15 is a diagram showing a configuration of a monitoring system using the internal circuit AE1 in Modification 9 of the first embodiment.
  • FIG. 16 is a diagram showing a configuration of a power supply circuit AF3 in Modification 9 of the first embodiment.
  • FIG. 17 is a diagram showing a configuration of a camera node AF2 in Modification 9 of the first embodiment.
  • FIG. 18 is a diagram showing a configuration of a camera node ⁇ ⁇ ⁇ ⁇ in Modification 9 of the first embodiment.
  • FIG. 19 is a diagram showing a configuration of a camera node AJ1 in Modification 10 of the first embodiment.
  • Fig. 1 is a block diagram showing a functional block between the illumination device A1 and the power supply circuit A2 which are illumination systems in the present invention.
  • the ballast A3 supplies an alternating current to the fluorescent lamp A4, and the fluorescent lamp A4 is turned on by the supplied alternating current.
  • the power supply circuit A2 includes an energy acquisition unit A5 and an internal circuit A8. Energy The energy acquisition unit A5 and the internal circuit A8 are connected via the acquisition unit connection interface A6, and the internal circuit A8 and the external device are connected via the external device connection interface A7.
  • the energy acquisition unit A5 acquires energy using a magnetic field generated by an alternating current flowing in the fluorescent lamp A4, and transmits the acquired energy to the internal circuit A8 via the energy acquisition unit connection interface A6.
  • the internal circuit A8 generates the voltage and current necessary to drive the external device through the energy acquisition unit connection interface A6, and the external device through the external device connection interface A7. Supply the generated voltage and current
  • a coil can be considered.
  • FIG. 2 is a diagram showing a configuration of the energy acquisition unit A5 in the present modification.
  • the alternating current flowing through the glass tube B 3 generates a magnetic field in the direction indicated by 12.
  • the coil is placed beside glass tube B3 so that the magnetic field generated by the alternating current flowing through glass tube B3 penetrates the center of coil II.
  • An induced electromotive force is generated by changing the magnetic field penetrating the coil II.
  • the generated induced electromotive force is supplied to the internal circuit A8.
  • the number of turns of coil II in Fig. 2 is 4 turns.
  • the number of turns may be 4 turns or less, and may be any number of turns.
  • FIG. 3 is a diagram showing a configuration of the internal circuit A8 in the present modification.
  • the internal circuit A8 includes a rectifier D1 and a voltage converter D2.
  • the internal circuit A8 is connected to the energy acquisition unit A5 via the energy acquisition unit connection interface A6.
  • the internal circuit A8 is connected to the external device via the external device connection interface A7.
  • the rectifying unit D1 receives the energy via the energy acquisition unit connection interface A6.
  • the AC voltage acquired from the acquisition unit A5 is rectified to generate a DC voltage.
  • the generated DC voltage is transmitted to the voltage conversion unit D2, which converts the voltage to a predetermined value and supplies the converted voltage to the external device via the external device connection interface A7. .
  • the energy acquisition unit A5 As another specific example of the energy acquisition unit A5, a coil having a magnetic material that goes around the glass tube portion of the fluorescent lamp as a core can be considered.
  • the energy acquisition unit A5 is a coil whose core is a magnetic body that goes around the glass tube portion of the fluorescent lamp.
  • FIG. 4 is a diagram showing a configuration of the energy acquisition unit in this modification.
  • the magnetic body B1 is installed so as to surround the glass tube B3, and the coil B2 is configured by winding a copper wire around the magnetic body B1!
  • the drawing of the present embodiment shows a case where the magnetic body is cylindrical
  • the shape of the magnetic body may be other than a cylinder, as long as the magnetic body can be installed around the glass tube.
  • the number of turns of the coil B2 is three turns, the number of turns may be three turns or more, and may be any number of turns.
  • the external device connected to the power supply circuit A2 is connected to a device of a type that requires a large current instantaneously but has a small average power consumption.
  • the supply capacity of the power supply circuit A2 may be exceeded instantaneously, and a sufficient current may not be supplied. Therefore, in this modification, a case will be described in which a power storage unit is configured so that a sufficient current can be supplied even when a device of a type that instantaneously requires a large current is connected.
  • FIG. 5 is a diagram showing a configuration of the internal circuit A8 in the present modification.
  • the internal circuit A8 includes a rectification unit Dl, a voltage conversion unit D2, and a power storage unit El.
  • a rectification unit Dl a voltage conversion unit D2
  • a power storage unit El a power storage unit
  • the power storage unit E1 is composed of a capacitor, and is charged when the external device does not require a large amount of electric power. Supply to equipment.
  • the energy that can be acquired by the energy acquisition unit A5 is converted into a fluorescent lamp using
  • ballast A3 The amplitude and frequency of the alternating current supplied to fluorescent lamp A4 are various types.
  • the voltage conversion unit D2 when the voltage conversion unit D2 is designed in conformity with the ballast A3 whose amplitude of the alternating current supplied to the fluorescent lamp A4 is small and low in frequency, it is lit by the ballast A3 having a large amplitude and a high frequency.
  • the energy acquisition unit A5 acquires energy from the fluorescent lamp
  • the voltage output from the rectification unit D1 of the power circuit A2 increases, and the voltage conversion unit D2 may be damaged. Therefore, in this modified example, the function of protecting the voltage converter D2 is obtained even when the fluorescent lamp A4 power that is lit by the alternating current supplied by the ballast A3 with high amplitude and high frequency is acquired. This is explained by the configuration with added.
  • FIG. 10 is a diagram showing a configuration of the internal circuit AA1 in the present modification.
  • the internal circuit AA1 includes a rectifying unit Dl, a voltage limiting unit AA2, a voltage converting unit D2, and a power storage unit El. Note that the functions of the rectifier D1 and the voltage converter D2 are the same as those of Modification 1, and the function of the power storage unit E1 is the same as that of Modification 3, so the description thereof is omitted.
  • the voltage limiting unit AA2 is composed of a Zener diode. When a voltage higher than a predetermined voltage is supplied from the rectifier D1, the voltage is suppressed to a predetermined voltage, and a voltage higher than the predetermined voltage is input to the voltage conversion unit D2. To prevent it.
  • the value of the DC voltage output from the rectifier D1 also fluctuates, which is higher than the output voltage of the voltage converter D2 set in the voltage converter D2, and lower than the voltage or output voltage! , The case is also conceivable.
  • the voltage converter D2 boosts when the input voltage is lower than the output voltage, If the voltage is high, a step-down / step-down DC / DC converter can be used as the voltage converter.
  • FIG. 11 is a drawing showing a configuration of the power supply circuit A2 in the present modification.
  • the power supply circuit A2 includes a magnetic body Bl, a coil B2, a rectifying unit Dl, a voltage limiting unit AA2, a voltage converting unit D2, and a power storage unit El.
  • the function of the magnetic body B1 is the same as that of the second modification
  • the function of the power storage unit E1 is the same as that of the third modification, and thus the description thereof is omitted.
  • the voltage converter D1 is a DC / DC converter or regulator that steps down an input voltage, and is designed on the assumption that a voltage higher than a predetermined output voltage is input.
  • the output voltage is assumed to be 3.3V.
  • the maximum input voltage is assumed to be 10V.
  • JIS C 7617-2 stipulates that the current supplied to the fluorescent lamp for inverter during the lighting test has an amplitude (effective value) of 255 mA and a frequency of 45 kHz. In addition, it supplies high-frequency alternating current to the fluorescent lamp with a larger amplitude than specified in the commercially available ballast miS C 7617-2. Therefore, when the alternating current specified in JIS C 7617-2 is supplied to the fluorescent lamp, the amplitude of the alternating current voltage supplied to the rectifier D1 is set to 3.3 V or more so that the coil B2 Adjust the number of turns.
  • the rectifier D1 is composed of a full-wave rectifier circuit, and the DC voltage output from the rectifier D1 is 3.3V or higher. This DC voltage is stepped down by the voltage converter D1, and from the voltage converter D1 Outputs a DC voltage of 3.3V.
  • the alternating current supplied to the fluorescent lamp varies depending on the ballast.
  • a voltage limiting unit AA2 is provided to protect the voltage conversion unit D1.
  • Voltage limiter AA2 clamps the input voltage to a predetermined voltage of 8V so that the input voltage to voltage converter D1 does not exceed the maximum input voltage of 10V of voltage converter D1.
  • the power storage unit E1 When the internal circuit AA1 has the power storage unit E1, the power storage unit holds power even after the fluorescent lamp is turned off, and gradually releases power. For this reason, a gradually decreasing voltage is applied to the output terminal of the voltage converter D2. Thereafter, when the fluorescent lamp is turned on again, a DC voltage is supplied from the rectifier D1, and a predetermined voltage is output from the voltage converter D2.
  • FIG. 12 is a diagram showing functional blocks of the internal circuit AC1 in the present modification.
  • the internal circuit AC1 includes a rectification unit Dl, a voltage conversion unit D2, a power storage unit El, a discharge unit AC2, and a turn-off detection unit AC3. Note that the functions of the rectifier Dl, the voltage converter D2, and the power storage unit El are the same as those of the third modification, and thus the description thereof is omitted here.
  • the extinction detector AC3 is output from the rectifier D1 and monitors the voltage input to the voltage converter D2. When the monitored voltage falls below the specified value, the discharge detector AC2 Send a control signal.
  • the discharge unit AC2 When the discharge unit AC2 receives the control signal from the extinction detection unit, it is composed of a capacitor.
  • the power storage unit El is connected to the ground and held to discharge the electric power.
  • the extinction detector AC3 has been described using the case of monitoring the output voltage of the rectifier D1, but the monitored voltage may be the amplitude of the AC voltage input to the rectifier, The output voltage of the voltage converter may be used. In addition, the extinguishing detector AC3 may monitor the current.
  • FIG. 13 is a diagram showing a configuration of the internal circuit AD1 in the present modification.
  • the internal circuit AD1 includes a rectifier D1, a voltage converter D2, a supply controller AD2, and a lithium ion battery AD3. Note that the functions of the rectifier Dl and the voltage converter D2 are the same as in the third modification, and a description thereof is omitted here.
  • the supply controller AD2 monitors the voltage output from the rectifier D1 and input to the voltage converter D2. When the monitored voltage falls below a predetermined value, the switch AD4 is operated to operate the lithium ion It has the function of separating battery AD3 and voltage converter D2. Further, when the monitored voltage exceeds a predetermined value, the switch AD4 is operated to connect the lithium ion battery AD3 and the voltage converter D2.
  • the lithium ion battery AD3 While being connected to the voltage converter D2 via the switch AD4, the lithium ion battery AD3 is connected via the external device connection interface A7 while being charged with the power supplied from the voltage converter D2. To supply power to external devices. When the voltage conversion unit D2 is disconnected by the switch AD4, the charged electric power is supplied to the external device connected via the external device connection interface A7.
  • the lithium ion battery AD3 is charged by the voltage output from the voltage converter D2.
  • FIG. 14 is a diagram showing a configuration of the internal circuit AE1 in the present modification.
  • the internal circuit AE1 includes a rectifier D1, a voltage converter D2, a supply controller AE2, and a lithium ion battery AD3. Note that the functions of the rectifier Dl and the voltage converter D2 are the same as in the third modification, and a description thereof is omitted here.
  • the human sensor AE3 senses the presence of a person and, when detecting the presence of the person, applies a predetermined voltage to the supply control unit AE2.
  • Supply control unit AE2 when voltage is applied from human sensor AE3, operates switch AD4 to connect lithium ion battery AD3 and the external device via external device connection interface A7.
  • the external device is a transmitter that transmits weak radio waves such as Bluetooth, RFID, and wireless LAN, or a security camera installed on the ceiling.
  • the lithium ion battery AD3 supplies power to the external device and the human sensor AE3 while being charged by the voltage supplied from the voltage conversion unit D2 while the fluorescent lamp is lit. On the other hand, while the fluorescent lamp is off, the charged power is supplied to the external device and the human sensor AE3.
  • FIG. 15 is a diagram showing an overview of a monitoring system using the power supply circuit of the present modification.
  • This system includes a camera node AF2, a power supply circuit AF3, a radio base station AF4, and a monitoring server A F5.
  • a camera node AF2 a power supply circuit AF3, a radio base station AF4, and a monitoring server A F5.
  • a power supply circuit AF3 a power supply circuit AF3
  • a radio base station AF4 a radio base station AF4
  • a F5 For convenience of explanation, only two camera nodes are shown in the drawing, but the number of camera nodes is not limited. Similarly, there is no limit to the number of radio base stations AF4.
  • FIG. 16 is a diagram showing a configuration of the power supply circuit AF3.
  • the power supply circuit AF3 includes a magnetic body Bl, a coil B2, and an internal circuit AE1.
  • FIG. 17 is a diagram showing the configuration of the camera node.
  • the camera node AF2 includes a control unit AH1, a CCD camera AH2, a wireless communication unit AH3, and a CCD camera AH2.
  • control unit AH1 When power is supplied from the power supply circuit AF3 via the power supply circuit connection interface AH5, the control unit AH1 operates the CCD camera AH2 to take a picture, and when the photography is completed, Transmit to the radio base station AF4 via the radio communication unit AH3.
  • the wireless base station AF4 Upon receiving the image data transmitted from the camera node AF2, the wireless base station AF4 that has transmitted the image data transmits the image data to the monitoring server AF5.
  • Surveillance Sano AF5 accumulates the received data of the radio base station AF4, and stores it in a state that the administrator can view at any time.
  • the camera node and the power supply circuit are separated from each other in this modification, they may be integrated.
  • FIG. 18 is a diagram showing a configuration when the camera node and the power supply circuit are integrated.
  • the image data captured by the CCD camera AH2 is transmitted to the monitoring server AF5 using the wireless communication unit AH3 every time it is captured.
  • a description will be given of a configuration in which a memory is provided in a camera node, image data captured is temporarily stored in the memory, and the data stored in the memory is periodically transmitted to the monitoring server.
  • FIG. 19 is a diagram showing a configuration of a camera node according to this modification.
  • Camera node AJ1 includes control unit AH1, CCD camera AH2, wireless communication unit AH3, CCD camera AH2, memory AJ4, switch AD4, lithium ion battery AD3, voltage conversion unit D2, rectification unit Dl, supply control unit AJ2, It consists of timer AJ3 and human sensor AE3.
  • the functions of the control unit AH1, CCD camera AH2, wireless communication unit AH3, CCD camera AH2, switch AD 4, lithium ion battery AD3, voltage conversion unit D2, rectification unit Dl, and human sensor AE3 are the same as in Modification 11. Therefore, detailed description is omitted here.
  • the human sensor AE3 senses the presence of a person and, when detecting the presence of the person, applies a predetermined voltage to the supply control unit AJ2.
  • Supply control unit AJ2 to which voltage is applied from human sensor AE3, operates switch AD4. Then, the lithium ion battery AD3 and the control unit AHl are connected, and the control unit AH1 supplied with power from the lithium ion battery AD3 starts operation.
  • control unit AH1 When power is supplied from the lithium ion battery AD3, the control unit AH1 operates the CCD camera AH2 to take a picture, and when the photography is completed, the taken image data is stored in the memory AJ4.
  • Timer AJ3 applies a predetermined voltage to supply control unit AJ2 and control unit AH1 at predetermined intervals.
  • Control unit AH1 to which a predetermined voltage is applied from timer AJ3 and power is supplied from lithium ion battery AD3 reads image data stored in memory AJ4, and wireless base station AF4 via wireless communication unit AH3 Send to.
  • ballast A3 is an electronic ballast called an inverter.
  • Such an electronic ballast does not supply AC current at the frequency of the commercial power supply to the fluorescent lamp A4 (frequency that is generally supplied by the power supplier: 50 or 60 Hz in Japan) 50 ⁇ : LOOkHz Supply high-frequency alternating current.
  • the energy acquisition unit A5 acquires power by electromagnetic induction as in Modification 1 described above, the amount of power that can be acquired is proportional to the value of the current flowing through the fluorescent lamp A4 and the frequency. Therefore, it can be expected that more electric power can be obtained by using an electronic ballast.
  • the force described in the method for obtaining magnetic field force energy generated by the current flowing in the glass tube of the fluorescent lamp is connected to the fluorescent lamp A4 and the stabilizer A3. It is also possible to acquire energy from the current flowing in the cable. Therefore, in the present embodiment, a configuration will be described in which energy is acquired from the current flowing in the electric wire connecting fluorescent lamp A4 and ballast A3.
  • FIG. 6 is a block diagram showing functional blocks for obtaining energy from the electric wire connecting the fluorescent lamp A4 and the ballast A3.
  • the energy acquisition unit A5 is installed beside the fluorescent lamp A4 and the ballast A3. Placed.
  • FIG. 7 is a diagram showing the structure of the energy acquisition unit in the present embodiment.
  • the force that directly connects the pin of fluorescent lamp A4 and the electric wire are connected using a connector.
  • the energy acquisition unit A5 includes a coil G2 and a magnetic body G3. One of the wires connecting the pin of the fluorescent lamp A4 and the ballast A3 passes through the inside of the magnetic body G3.
  • the drawing of the present embodiment shows a case where the magnetic body is cylindrical, but the shape of the magnetic body may be other than a cylinder, and the magnetic body can be installed so as to go around the glass tube.
  • the number of turns of the coil G2 is three turns, but the number of turns may be three turns or more, and may be any number of turns.
  • the coil 5 may be configured.
  • the coil is placed beside the electric wire so that the magnetic field generated by the alternating current flowing in the electric wire penetrates the center of the coil G2.
  • FIG. 8 is a diagram showing the structure of the energy acquisition unit in this modification.
  • the energy acquisition unit A5 is installed beside the fluorescent lamp A4 and the ballast A3.
  • the energy acquisition unit A5 includes a coil G2 and a magnetic body G3. Both wires that connect the pin of the fluorescent lamp A4 and the ballast A3 pass through the inside of the magnetic body G3.
  • the drawing of this modification shows the case where the magnetic body is cylindrical, but the shape of the magnetic body is a circle. It doesn't matter if it's other than a tube, so long as the magnetic material can be installed around the glass tube.
  • the number of turns of the coil G2 is 3 turns.
  • the number of turns may be 3 turns or more, and may be any number of turns.
  • the energy acquisition unit A includes only the coil G2.
  • the coil 5 may be configured.
  • the coil is placed beside the electric wire so that the magnetic field generated by the alternating current flowing in the electric wire penetrates the center of the coil G2.
  • a cylindrical magnetic body is used as an example.
  • a configuration in which the magnetic body is divided into two parts and connected to a fluorescent lamp is also conceivable. Therefore, in this embodiment, a configuration in which the magnetic material is divided into two parts and connected to the fluorescent lamp will be described.
  • FIG. 9 is a diagram showing a connection form of a magnetic body and a fluorescent lamp in the present embodiment.
  • the energy acquisition unit in the present embodiment includes magnetic body J2_l, magnetic body J2_2, and coil J1, which are divided into two.
  • the magnetic material J2_l and the magnetic material J2_2 divided into two are joined together so as to sandwich the glass tube B3.
  • J2_l or the magnetic body J2_2 is provided with a fastener J4, and the fastener is provided and fixed with a round pin J3 provided on the other magnetic body.
  • the fixing may be performed as long as the magnetic body J2-1 and the magnetic body J2_2 are put together so as to sandwich the glass tube B3.
  • the number of division may be any number.

Abstract

【課題】BluetoothやRFID等の微弱電波を発信する発信機や赤外線を発信する発信機や画像を撮影するカメラ等の電気機器を室内に導入すると、コストが高くなってしまう。本発明は、このような問題点を解決することを課題とする。 【解決手段】照明装置の蛍光ランプを点灯させるための電流が発生させる磁界からエネルギーを取得して、BluetoothやRFID等の微弱電波を発信する発信機や赤外線を発信する発信機や画像を撮影するカメラ等の電気機器を駆動させる。

Description

明 細 書
電源回路及び照明システム
技術分野
[0001] 本発明は、電源回路に関し、特に照明装置力 電力を取得する電源回路の技術に 関する。
背景技術
[0002] 屋内において、高精度に端末の位置を特定するための技術が注目されている。具 体的には企業や店舗等が設定する無線 LAN(Local Area Network)の信号を用 いる技術や、 Bluetooth (ブルートゥース)や RFID(Radio Frequency Identificatio n)などを用いる位置特定技術が知られて 、る。
[0003] しかし、無線 LANを用いて高精度に端末の位置を特定するためには、 3つ以上の 無線 LAN基地局からの信号が受信できる必要があり、何の設計もなされず、適当な 位置に基地局が設置されることの多 、無線 LANでは、 3つ以上の無線 LAN基地局 力 の信号が受信できる保証がな 、。
[0004] Bluetoothや RFID等の微弱電波を発信する発信機や赤外線を発信する発信機 を用いた端末の位置特定の場合、端末側は微弱電波や赤外線の受信機能を有して いる。端末が微弱電波や赤外線を受信した場合、その微弱電波あるいは赤外線を発 信している発信機の位置を端末の位置とする。従って、微弱電波や赤外線の到達距 離が測位精度となり、ピンポイントでの測位が可能になるが、発信機を壁や天井に数 多く配置する必要がある。
[0005] 壁や天井に配置する発信機には、給電が必要である。給電方法の一つとしては、 発信機駆動用直流電源を供給するための電源配線工事を行う方法が考えられる。
[0006] また別の方法としては、天井や壁などに設置される発信機ごとに交流-直流変換装 置を設置し、発信機が設置される場所にすでに配線されて!ヽる交流電源線を分岐さ せ交流-直流変換装置に入力する方法が考えられる。
発明の開示
発明が解決しょうとする課題 [0007] 上記の二つの方法は、電源配線を用いて発信機に対して直接電力を供給する方 法であるが、コイルを利用し、磁界を介して電力を供給することで、非接触で電力を 供給することも可能である。
[0008] この場合は、すでに配線されている交流電源ライン力 交流電源線を引き回し、発 信機が設置される場所ごとに周期的に変化する磁界を発生させる一次側コイルを内 蔵した磁界発生装置を設置する。発信機内部には二次側コイルが設けられており、 一次側コイルが発生させる磁界内に発信機を設置することで、二次側コイルに発生 した誘導起電力を用いて発信機を駆動する方法が考えられる。
[0009] 本発明が解決しょうとする課題は、 Bluetoothや RFID等の微弱電波を発信する発 信機あるいは赤外線を発信する発信機などを設置する際の設置コストが高いことで ある。
[0010] その理由は、 Bluetoothや RFID等の微弱電波を発信する発信機や赤外線を発 信する発信機を設置するためには、電源の確保の目的で直流電源線を配線したり、 交流電源線を引き回して交流-直流変換装置や磁界発生装置を設置したりする必要 があるためである。
[0011] そこで、本発明が解決しょうとする課題は、屋内において低コストで利用可能な電 源装置を提供することにある。
課題を解決するための手段
[0012] 上記課題を解決するための第 1の発明は、
照明装置力 電力を取得する電源回路であって、
前記照明装置の蛍光ランプを点灯するための電流によって発生する磁界を利用し て電力を取得する電力取得部を有することを特徴とする。
[0013] 上記課題を解決するための第 2の発明は、上記第 1の発明において、
前記蛍光ランプが商用電源よりも高い周波数の交流電流によって点灯する蛍光ラ ンプである場合、
前記電力取得部は、前記交流電流によって発生する磁界から電磁誘導によって電 力を取得することを特徴とする。
[0014] 上記課題を解決するための第 2の発明は、上記第 1又は第 2の発明において、 前記電力取得部がコイルであることを特徴とする。
[0015] 上記課題を解決するための第 4の発明は、上記第 1から第 3のいずれかの発明に おいて、
前記電力取得部が、磁性体とこの磁性体に巻かれたコイルとを有することを特徴と する。
[0016] 上記課題を解決するための第 5の発明は、上記第 4の発明において、
前記磁性体カ^ング状であることを特徴とする。
[0017] 上記課題を解決するための第 6の発明は、上記第 4又は第 5の発明において、 前記磁性体は、前記蛍光ランプのガラス管を取り囲むように取り付けられることを特 徴とする。
[0018] 上記課題を解決するための第 7の発明は、上記第 4又は第 5の発明にお 、て、 前記磁性体は、前記蛍光ランプを点灯させるための電流を供給する電線を取り囲 むように取り付けられることを特徴とする。
[0019] 上記課題を解決するための第 8の発明は、上記第 4から第 7のいずれかの発明に おいて、
前記磁性体が複数の磁性体力 構成されていることを特徴とする。
[0020] 上記課題を解決するための第 9の発明は、上記第 1から第 8のいずれかの発明に おいて、
前記電力取得部力 供給された交流電圧を直流電圧に整流する整流部を有する ことを特徴とする。
[0021] 上記課題を解決するための第 10の発明は、上記第 9の発明において、
前記整流部から供給された直流電圧を、所定の電圧に変換する電圧変換部を有し ていることを特徴とする。
[0022] 上記課題を解決するための第 11の発明は、上記第 1から第 10のいずれかの発明 において、
前記電力取得部力 供給された電力を保持しておく蓄電部を有していることを特徴 とする。
[0023] 上記課題を解決するための第 12の発明は、上記第 9から第 11のいずれかの発明 において、
前記整流部と前記電圧変換部との間に、前記整流部が出力する直流電圧を所定 の値の電圧に制限する電圧制限部を有することを特徴とする。
[0024] 上記課題を解決するための第 13の発明は、上記第 12の発明において、
前記電圧制限部は、ツエナーダイオードによって構成されていることを特徴とする。
[0025] 上記課題を解決するための第 14の発明は、上記第 10から第 13のいずれかの発明 において、
前記電圧変換部は、所定の電圧よりも低い電圧が入力された場合にはその所定の 電圧に昇圧し、所定の電圧よりも高い電圧が入力された場合にはその所定の電圧に 降圧することを特徴とする。
[0026] 上記課題を解決するための第 15の発明は、上記第 10から第 14のいずれかの発明 において、
前記電圧変換部が、前記整流部からの直流電圧を降圧する構成である場合、 前記電力取得部は、前記整流部が前記電圧変換部に供給する交流電圧が、前記 電圧変換部の出力電圧よりも高い電圧になるように調整して、前記整流部に建立電 圧を出力することを特徴とする。
[0027] 上記課題を解決するための第 16の発明は、上記第 11から第 15のいずれかの発明 において、
前記蛍光ランプが消灯したことを検出する消灯検出部と、
前記消灯検出部が前記蛍光ランプが消灯したことを検出すると、前記蓄電部に保 持されて!ヽる電力を放出させる放電部と
を有することを特徴とする。
[0028] 上記課題を解決するための第 17の発明は、上記第 16の発明において、
前記消灯検出部は、前記電力取得部の出力電圧を監視し、該出力電圧が所定の 電圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする。
[0029] 上記課題を解決するための第 18の発明は、上記第 16の発明において、
前記消灯検出部は、前記整流部の出力電圧を監視し、その出力電圧が所定の電 圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする。 [0030] 上記課題を解決するための第 19の発明は、上記第 16の発明において、 前記消灯検出部は、前記電圧変換部の出力電圧を監視し、その出力電圧が所定 の電圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする
[0031] 上記課題を解決するための第 20の発明は、上記第 11から第 15のいずれかの発明 において、
前記蛍光ランプが消灯したことを検出する消灯検出部を有し、
前記蓄電部は、前記消灯検出部が前記蛍光ランプが消灯したことを検出すると、蓄 電された電力の供給を開始すること
を特徴とする。
[0032] 上記課題を解決するための第 21の発明は、上記第 11の発明において、
所定のセンサ情報を検出すると、前記蓄電部力 外部機器への電力供給を開始さ せる給電制御部を有することを特徴とする。
[0033] 上記課題を解決するための第 22の発明は、上記第 11の発明において、
所定のセンサ情報を検出した場合、もしくは所定の時間ごとに、前記蓄電部から外 部機器への電力供給を開始させる給電制御部を有することを特徴とする。
[0034] 上記課題を解決するための第 23の発明は、上記第 21又は第 22の発明において、 前記センサ情報が、人が存在する力否かの情報であることを特徴とする。
[0035] 上記課題を解決するための第 24の発明は、
照明システムであって、
照明装置と、
前記照明装置の蛍光ランプを点灯するための電流によって発生する磁界を利用し て電力を取得する電力取得部と
を有することを特徴とする。
[0036] 上記課題を解決するための第 25の発明は、上記第 24の発明において、
前記蛍光ランプが商用電源よりも高い周波数の交流電流によって点灯する蛍光ラ ンプである場合、
前記電力取得部は、前記交流電流によって発生する磁界から電磁誘導によって電 力を取得することを特徴とする。
[0037] 上記課題を解決するための第 26の発明は、上記第 24又は第 25の発明において、 前記電力取得部がコイルであることを特徴とする。
[0038] 上記課題を解決するための第 27の発明は、上記第 24から第 26のいずれかの発明 において、
前記電力取得部が、磁性体とこの磁性体に巻かれたコイルとから構成されて ヽるこ とを特徴とする。
[0039] 上記課題を解決するための第 28の発明は、上記第 27の発明において、
前記磁性体カ^ング状であることを特徴とする。
[0040] 上記課題を解決するための第 29の発明は、上記第 27又は第 28の発明において、 前記磁性体は、前記蛍光ランプのガラス管を取り囲むように取り付けられることを特 徴とする。
[0041] 上記課題を解決するための第 30の発明は、上記第 27又は第 28の発明において、 前記磁性体は、前記蛍光ランプを点灯させるための電流を供給する電線を取り囲 むように取り付けられることを特徴とする。
[0042] 上記課題を解決するための第 31の発明は、上記第 27から第 30のいずれかの発明 において、
前記磁性体が複数の磁性体力 構成されていることを特徴とする。
[0043] 上記課題を解決するための第 32の発明は、上記第 24から第 31のいずれかの発明 において、
前記電力取得部力 供給された交流電圧を直流電圧に整流する整流部を有する ことを特徴とする。
[0044] 上記課題を解決するための第 33の発明は、上記第 32の発明において、
前記整流部から供給された直流電圧を、所定の電圧に変換する電圧変換部を有し ていることを特徴とする。
[0045] 上記課題を解決するための第 34の発明は、上記第 24から第 33のいずれかの発明 において、
前記電力取得部力 供給された電力を保持しておく蓄電部を有していることを特徴 とする。
[0046] 上記課題を解決するための第 35の発明は、上記第 32から第 34のいずれかの発明 において、
前記整流部と前記電圧変換部との間に、前記整流部が出力する直流電圧を所定 の値の電圧に制限する電圧制限部を有することを特徴とする。
[0047] 上記課題を解決するための第 36の発明は、上記第 35の発明において、
前記電圧制限部は、ツエナーダイオードによって構成されていることを特徴とする。
[0048] 上記課題を解決するための第 37の発明は、上記第 33から第 36のいずれかの発明 において、
前記電圧変換部は、所定の電圧よりも低い電圧が入力された場合にはその所定の 電圧に昇圧し、所定の電圧よりも高い電圧が入力された場合にはその所定の電圧に 降圧することを特徴とする。
[0049] 上記課題を解決するための第 38の発明は、上記第 33から第 37のいずれかの発明 において、
前記電圧変換部が、前記整流部からの直流電圧を降圧する構成である場合、 前記電力取得部は、前記整流部が前記電圧変換部に供給する交流電圧が、前記 電圧変換部の出力電圧よりも高い電圧になるように調整して、前記整流部に建立電 圧を出力することを特徴とする。
[0050] 上記課題を解決するための第 39の発明は、上記第 34から第 38のいずれかの発明 において、
前記蛍光ランプが消灯したことを検出する消灯検出部と、
前記消灯検出部が前記蛍光ランプが消灯したことを検出すると、前記蓄電部に保 持されて!ヽる電力を放出させる放電部と
を有することを特徴とする。
[0051] 上記課題を解決するための第 40の発明は、上記第 39の発明において、
前記消灯検出部は、前記電力取得部の出力電圧を監視し、該出力電圧が所定の 電圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする。
[0052] 上記課題を解決するための第 41の発明は、上記第 39の発明において、 前記消灯検出部は、前記整流部の出力電圧を監視し、その出力電圧が所定の電 圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする。
[0053] 上記課題を解決するための第 42の発明は、上記第 39の発明において、
前記消灯検出部は、前記電圧変換部の出力電圧を監視し、その出力電圧が所定 の電圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする
[0054] 上記課題を解決するための第 43の発明は、上記第 34から第 38のいずれかの発明 において、
前記蛍光ランプが消灯したことを検出する消灯検出部を有し、
前記蓄電部は、前記消灯検出部が前記蛍光ランプが消灯したことを検出すると、蓄 電された電力の供給を開始すること
を特徴とする。
[0055] 上記課題を解決するための第 44の発明は、上記第 34の発明において、
所定のセンサ情報を検出すると、前記蓄電部力 外部機器への電力供給を開始さ せる給電制御部を有することを特徴とする。
[0056] 上記課題を解決するための第 45の発明は、上記第 34の発明において、
所定のセンサ情報を検出した場合、もしくは所定の時間ごとに、前記蓄電部から外 部機器への電力供給を開始させる給電制御部を有することを特徴とする。
[0057] 上記課題を解決するための第 46の発明は、上記第 44又は第 45の発明において、 前記センサ情報が、人が存在する力否かの情報であることを特徴とする。
[0058] 上記課題を解決するための第 47の発明は、上記第 23から第 46のいずれかの発明 において、
前記電源取得部力 供給される電力を用いて撮影する撮影部と、
前記電源取得部カゝら供給される電力を用いて、前記撮影された画像データを送信 する無線部と
を有することを特徴とする。
[0059] 上記課題を解決するための第 48の発明は、上記第 23から第 46のいずれかの発明 において、 前記電源取得部力 供給される電力を用いて撮影する撮影部と、
前記撮影された画像データが格納される格納部と、
前記電源取得部から供給される電力を用いて、前記格納部の画像データを送信す る無線部と
を有することを特徴とする。
[0060] 上記課題を解決するための第 49の発明は、上記第 47又は第 48の発明において、 前記送信された画像データを監視サーバに送信する無線基地局と、
前記該無線基地局からの画像データを蓄積するサーバと
を有することを特徴とする。
[0061] 上記課題を解決するための第 50の発明は、
電源回路であって、
蛍光ランプを点灯するための電流が発生する磁界を利用して電力を取得する電力 取得部と、
前記取得した電力を用いて信号を発信する発信機を接続するインターフェースと を有することを特徴とする。
[0062] 上記課題を解決するための第 51の発明は、上記第 50の発明において、
前記蛍光ランプが商用電源よりも高い周波数の交流電流によって点灯する蛍光ラ ンプである場合、
前記電力取得部は、前記交流電流によって発生する磁界から電磁誘導によって電 力を取得することを特徴とする。
[0063] 上記課題を解決するための第 52の発明は、
照明システムであって、
照明装置と、
前記照明装置の蛍光ランプを点灯するための電流が発生する磁界を利用して電力 を取得する電力取得部と、
前記取得した電力を用いて動作する電気機器を接続するためのインターフェースと を有することを特徴とする。
[0064] 上記課題を解決するための第 53の発明は、上記第 52の発明において、 前記蛍光ランプが商用電源よりも高い周波数の交流電流によって点灯する蛍光ラ ンプである場合、
前記電力取得部は、前記交流電流によって発生する磁界から電磁誘導によって電 力を取得することを特徴とする。
発明の効果
[0065] 本発明によると、屋内において電源設置コストを低減できることである。
[0066] その理由は、電源の敷設工事をすることなぐ既設の照明設備から電力を取得でき るよう〖こなる力らである。
図面の簡単な説明
[0067] [図 1]第一の実施の形態における照明装置 A1と電源回路 A2の機能ブロックを示す 図である。
[図 2]第一の実施の形態の変形例 1におけるエネルギー取得部 A5の構造を示す図 である。
[図 3]第一の実施の形態の変形例 2におけるエネルギー取得部 A5の構造を示す図 である。
[図 4]第一の実施の形態の変形例 2における内部回路 A8の機能ブロックを示す図で ある。
[図 5]第一の実施の形態の変形例 3における内部回路 A8の機能ブロックを示す図で ある。
[図 6]第二の実施の形態における照明装置 A1と電源回路 A2の機能ブロックを示す 図である。
[図 7]第二の実施の形態におけるエネルギー取得部の構造を示す図である。
[図 8]第二の実施の形態の変形例におけるエネルギー取得部の構造を示す図である
[図 9]第三の実施の形態におけるエネルギー取得部の構造を示す図である。
[図 10]第一の実施の形態の変形例 4における内部回路 AA1の機能ブロックを示す 図である。
[図 11]第一の実施の形態の変形例 6における電源回路 A2の構成を示す図である。 圆 12]第一の実施の形態の変形例 7における内部回路 AC1の機能ブロックを示す 図である。
[図 13]第一の実施の形態の変形例 8における内部回路 AD1の機能ブロックを示す 図である。
[図 14]第一の実施の形態の変形例 9における内部回路 AE1の機能ブロックを示す図 である。
圆 15]第一の実施の形態の変形例 9における内部回路 AE1を利用した監視システム の構成を示す図である。
[図 16]第一の実施の形態の変形例 9における電源回路 AF3の構成を示す図である
[図 17]第一の実施の形態の変形例 9におけるカメラノード AF2の構成を示す図であ る。
[図 18]第一の実施の形態の変形例 9におけるカメラノード ΑΠの構成を示す図である
[図 19]第一の実施の形態の変形例 10におけるカメラノード AJ1の構成を示す図であ る。
符号の説明
A1 照明装置
A2 電源回路
A3 安定器
A4 蛍光ランプ
A5 エネルギー取得部
A6 エネルギー取得部接続インターフェース
A7 外部機器接続インターフェース
A8, AA1, AC1, AD1, AE1 内部回路
Bl, J2_l, J2_2 磁性体
B2, G2, II, J1 コイル
B3 ガラス管 Dl 整流部
D2 電圧変換部
E1 蓄電部
12 磁界の方向
J3 丸ピン
J4 留め具
AA2 電圧制限部
AC2 放電部
AC3 消灯検出部
AD2, AE2, AJ2 供給制御部
AD3 Li- ionバッテリ
AD4 スィッチ
AE3 人感センサ
AF1 照明器具
AF2, All, AJ1 カメラノード
AF3 電源回路
AH1 制御部
AH2 CCDカメラ
AH3 無線通信部
AJ3 タイマ
AJ4 メモリ
発明を実施するための最良の形態
[0069] 本発明の第 1の実施の形態について図面を参照して詳細に説明する。
[0070] 図 1は本発明における照明システムである照明装置 A1と電源回路 A2との機能プロ ックを示すブロック図である。
[0071] 安定器 A3は蛍光ランプ A4に交流電流を供給し、蛍光ランプ A4は供給された交流 電流によって点灯する。
[0072] 電源回路 A2は、エネルギー取得部 A5及び内部回路 A8を有する。エネルギー取 得部接続インターフェース A6を介してエネルギー取得部 A5と内部回路 A8とが接続 されており、外部機器接続インターフェース A7を介して内部回路 A8と外部機器とが 接続されている。
[0073] エネルギー取得部 A5は、蛍光ランプ A4内部を流れる交流電流によって発生する 磁界を利用してエネルギーを取得し、エネルギー取得部接続インターフェース A6を 介して内部回路 A8に取得したエネルギーを伝達する。
[0074] 内部回路 A8はエネルギー取得部接続インターフェース A6を介して伝達されたェ ネルギ一力 外部機器を駆動するのに必要な電圧および電流を発生し、外部機器 接続インターフェース A7を介して、外部機器に発生した電圧および電流を供給する
[0075] 尚、外部機器として各種電気機器が想定できるが、以下の説明では Bluetoothや RFID等の微弱電波を発信する発信機あるいは赤外線を発信する発信機を想定して 説明する。
[0076] く変形例 1〉
エネルギー取得部 A5の具体例としては、コイルが考えられる。
[0077] 図 2は、本変形例におけるエネルギー取得部 A5の構成を示す図面である。
[0078] ガラス管 B3内を流れる交流電流は 12で示されている方向に磁界を発生させる。ガ ラス管 B3内を流れる交流電流が発生させる磁界がコイル IIの中心を貫くようにコイル をガラス管 B3の脇に設置される。そして、このコイル IIを貫く磁界が変化することによ り誘導起電力を発生する。発生した誘導起電力が内部回路 A8へ供給される。
[0079] なお、図 2のコイル IIの巻き数は 4ターンとなっている力 ターン数は 4ターン以下で も以上でも構わず、任意の巻き数でよい。
[0080] 図 3は、本変形例における内部回路 A8の構成を示す図である。
[0081] 内部回路 A8は、整流部 D1と電圧変換部 D2とを有する。内部回路 A8は、エネル ギー取得部接続インターフェース A6を介して、エネルギー取得部 A5と接続して 、る 。また、内部回路 A8は、外部機器接続インターフェース A7を介して外部機器と接続 している。
[0082] 整流部 D1は、エネルギー取得部接続インターフェース A6を介して、エネルギー取 得部 A5から取得した交流電圧を整流して、直流電圧を生成する。生成した直流電 圧は電圧変換部 D2に伝達され、電圧変換部 D2はあらカゝじめ定められた値に電圧を 変換し、外部機器接続インターフェース A7を介して変換した電圧を外部機器に供給 する。
[0083] く変形例 2〉
エネルギー取得部 A5の別の具体例としては、蛍光ランプのガラス管部分を一周す る磁性体をコアとするコイルが考えられる。本変形例では、エネルギー取得部 A5が、 蛍光ランプのガラス管部分を一周する磁性体をコアとするコイルである場合について 説明する。
[0084] 図 4は、本変形例におけるエネルギー取得部の構成を示す図面である。
[0085] 磁性体 B1はガラス管 B3を取り囲むように設置され、この磁性体 B1に銅線を巻きつ けることでコイル B2は構成されて!、る。
[0086] 蛍光ランプ A4の内部には交流電流が流れている。そのため、磁性体 B1の中を通 る磁束密度が変化し、コイル B2は誘導起電力を発生する。発生した誘導起電力が 内部回路 A8へ供給される。
[0087] 本実施例の図面では磁性体が円筒状の場合を示しているが、磁性体の形状は円 筒以外でも構わず、磁性体がガラス管を一周するように設置できればょ 、。
[0088] また、コイル B2の巻き数は 3ターンとして 、るが、巻き数は 3ターン以上でも以下で も構わず、任意の巻き数でよい。
[0089] く変形例 3〉
電源回路 A2に接続される外部機器には、平均消費電力は小さいが瞬間的に大き な電流を要求するタイプの機器が接続されることも想定される。このような場合、瞬間 的には電源回路 A2の供給能力を超えてしまい、十分な電流を供給できない可能性 が考えられる。そこで、本変形例では、瞬間的に大きな電流を要求するタイプの機器 が接続されても、十分な電流を供給できるようにするために、蓄電部を構成させた場 合について説明する。
[0090] 図 5は、本変形例における内部回路 A8の構成を示す図である。
[0091] 内部回路 A8は、整流部 Dl、電圧変換部 D2、及び蓄電部 Elを有する。なお、整 流部 Dl及び電圧変換部 D2の機能は変形例 1と同一であるため、説明を省略する。
[0092] 蓄電部 E1はコンデンサで構成され、外部機器が大きな電力を必要としないときに 充電され、外部機器が電力を必要とするときに一気に放電することで、瞬間的に大き な電力を外部機器に供給する。
[0093] く変形例 4〉
エネルギー取得部 A5が取得できるエネルギーは、安定器 A3によって蛍光ランプ
A4に供給されている交流電流の振幅と周波数とに比例する。また、安定器 A3には 様々な種類があり、蛍光ランプ A4に供給する交流電流の振幅や周波数は安定器 A
3によって変動する。
[0094] 例えば、蛍光ランプ A4に供給する交流電流の振幅が小さぐ周波数も低い安定器 A3に合せて電圧変換部 D2を設計した場合、振幅が大きく周波数の高い安定器 A3 によって点灯している蛍光ランプからエネルギーをエネルギー取得部 A5が取得した 場合、電源回路 A2の整流部 D1が出力する電圧が高くなり、電圧変換部 D2が破損 する可能性がある。そこで、本変形例では、振幅が大きく周波数の高い安定器 A3が 供給する交流電流によって点灯している蛍光ランプ A4力 電力を取得している場合 であっても、電圧変換部 D2を保護する機能を追加した構成にっ 、て説明する。
[0095] 図 10は、本変形例における内部回路 AA1の構成を示す図である。
内部回路 AA1は、整流部 Dl、電圧制限部 AA2、電圧変換部 D2、及び蓄電部 El を有する。なお、整流部 D1及び電圧変換部 D2の機能は変形例 1と同一であり、蓄 電部 E1の機能は変形例 3と同一であるため、説明を省略する。
電圧制限部 AA2はッヱナ一ダイオードで構成され、整流部 D1から所定電圧よりも 高い電圧が供給された場合には電圧を所定電圧に抑え、電圧変換部 D2に所定電 圧よりも高い電圧が入力されることを防ぐ。
[0096] く変形例 5〉
上記変形例 4で述べたように、安定器 A3には様々な種類があり、蛍光ランプ A4に 供給する交流電流の振幅や周波数は安定器 A3によって変動する。そのため、整流 部 D1が出力する直流電圧の値も変動し、電圧変換部 D2に設定されている電圧変 換部 D2の出力電圧よりも高 、電圧の場合や出力電圧よりも低!、場合も考えられる。 このように電圧変換部 D2への入力電圧が出力電圧よりも高くなつたり低くなつたりす ることを考慮し、電圧変換部 D2には、入力電圧が出力電圧よりも低い場合には昇圧 し、高い場合には降圧する昇降圧 DC/DCコンバータを電圧変換部として利用するこ とが考えられる。
[0097] なお、電圧変換部 D2として利用する昇高圧 DC/DCコンバータを保護するために 、変形例 4で述べた電圧制限部 AA2と組み合わせてもよ 、。
[0098] く変形例 6〉
変形例 4、 5で述べたように安定器 A3には様々な種類があり、蛍光ランプ A4に供 給する交流電流の振幅や周波数は安定器 A3によって変動する。そのため、ェネル ギー取得部 A5が出力する交流電圧の値も変動し、安定器 A3によっては整流部 D1 の出力する直流電圧が、電圧変換部 D2が昇圧可能な最低電圧を下回る場合が考 えられる。そこで、本変形例ではこのような場合を想定した構成について説明する。
[0099] 図 11は、本変形例における電源回路 A2の構成を示す図面である。
[0100] 電源回路 A2は、磁性体 Bl、コイル B2、整流部 Dl、電圧制限部 AA2、電圧変換 部 D2、蓄電部 Elで構成される。なお、磁性体 B1の機能は変形例 2と同一であり、蓄 電部 E1の機能は変形例 3と同一であるため、説明を省略する。
[0101] 電圧変換部 D1は、入力された電圧を降圧する DC/DCコンバータあるいはレギュ レータであり、所定の出力電圧よりも高い電圧が入力されることを前提として設計され ている。なお、ここでは説明のために出力電圧は 3.3Vに定められているものとする。 また、最大入力電圧は 10Vであるとする。
[0102] JIS C 7617-2では、点灯試験時にインバータ用蛍光ランプに供給される電流は 振幅 (実効値) 255mA、周波数 45kHzと規定している。また、市販されている安定器 miS C 7617-2の規定よりも大きな振幅で高い周波数の交流電流を蛍光ランプに 供給している。そこで、 JIS C 7617-2で規定された交流電流が蛍光ランプに供給さ れて 、るときに、整流部 D1に供給される交流電圧の振幅が 3.3V以上になるようにコ ィル B2の巻き数を調整する。
[0103] 整流部 D1は全波整流回路で構成されており、整流部 D1から出力される直流電圧 は 3.3V以上となる。この直流電圧は電圧変換部 D1で降圧され、電圧変換部 D1から は 3.3Vの直流電圧が出力される。
[0104] 先に述べたように蛍光ランプに供給される交流電流は、安定器によって変動する。
そのため、 JIS C
7617-2の規定よりも振幅が大きく周波数の高い交流電流が供給されることが考えら れ、場合によっては整流部 D1から出力され、電圧変換部 D1に入力される直流電圧 力 以上になることが考えられる。そこで、電圧変換部 D1を保護するために電圧 制限部 AA2を設けている。
[0105] 電圧制限部 AA2は、電圧変換部 D1への入力電圧が電圧変換部 D1の最大入力 電圧 10Vを超えな 、ように所定電圧である 8Vに入力電圧をクランプする。
[0106] く変形例 7〉
内部回路 AA1が蓄電部 E1を有している場合、蛍光ランプが消灯した後も蓄電部 は電力を保持し、徐々に電力を放出していく。そのため、電圧変換部 D2の出力端子 には徐々に下がっていく電圧が印加されている。その後、蛍光ランプが再点灯すると 、整流部 D1から直流電圧が供給され、電圧変換部 D2から所定の電圧が出力される
[0107] ただし、電圧変換部 D2に DC/DCコンバータを利用した場合などには、出力端子 にある一定の範囲にある電圧が印加された状態で整流部 D1から直流電圧が印加さ れると電圧変換部 D2が異常動作を起こすことが考えられる。
[0108] 本変形例では、電圧変換部 D2の異常動作を防ぐために消灯検出部と放電部とを 追加した構成について説明する。
[0109] 図 12は、本変形例における内部回路 AC1の機能ブロックを示す図である。
[0110] 内部回路 AC1は、整流部 Dl、電圧変換部 D2、蓄電部 El、放電部 AC2、消灯検 出部 AC3によって構成されている。なお、整流部 Dl、電圧変換部 D2、蓄電部 Elの 機能は変形例 3と同一であるため、ここでの説明は省略する。
[0111] 消灯検出部 AC3は整流部 D1が出力し、電圧変換部 D2に入力される電圧をモ- タしており、モニタしている電圧が規定の値以下になると放電部 AC2に対して制御信 号を送信する。
[0112] 放電部 AC2は消灯検出部からの制御信号を受信すると、コンデンサで構成されて 、る蓄電部 Elをグランドに接続し、保持して 、る電力を放電させる。
[0113] なお、本変形例では、消灯検出部 AC3は整流部 D1の出力電圧をモニタする場合 を用いて説明したが、モニタする電圧は整流部に入力される交流電圧の振幅でもよ いし、電圧変換部の出力電圧でもよい。また消灯検出部 AC3がモニタするのは電流 でもよい。
[0114] く変形例 8〉
本変形例では、蓄電部 E1にリチウムイオンバッテリなどを用いることによって、蛍光 ランプが消灯した場合にも外部機器に電力を供給し続ける構成につちえ説明する。
[0115] 図 13は、本変形例における内部回路 AD1の構成を示す図面である。
[0116] 内部回路 AD1は、整流部 Dl、電圧変換部 D2、供給制御部 AD2、リチウムイオン ノ ッテリ AD3によって構成されている。なお、整流部 Dl、電圧変換部 D2の機能に 関しては変形例 3と同一であり、ここでは説明を省略する。
[0117] 供給制御部 AD2は、整流部 D1から出力され電圧変換部 D2に入力される電圧を モニタし、モニタされた電圧が所定の値以下になったらスィッチ AD4を操作して、リチ ゥムイオンバッテリ AD3と電圧変換部 D2を切り離す機能を有している。さらにモニタ された電圧が所定の値以上になったらスィッチ AD4を操作して、リチウムイオンバッ テリ AD3と電圧変換部 D2を接続する機能を有して 、る。
[0118] リチウムイオンバッテリ AD3は、スィッチ AD4を介して電圧変換部 D2と接続してい る間は電圧変換部 D2から供給される電力で充電されながら、外部機器接続インター フェース A7を介して接続されて 、る外部機器に電力を供給する。スィッチ AD4によ つて電圧変換部 D2と切り離されている場合は、充電された電力を、外部機器接続ィ ンターフェース A7を介して接続されている外部機器に供給する。
[0119] 蛍光ランプが消灯した場合、整流部 D1が出力する電圧が低下し、電圧をモニタし て ヽる供給制御部 AD2がそれを検出する。電圧低下を検出した供給制御部 AD2は スィッチ AD4を操作して、リチウムイオンバッテリ AD3と電圧変換部 D2とを切り離し、 切り離されたリチウムイオンバッテリ AD3は充電された電力を外部機器に供給する。 再び蛍光灯ランプが点灯すると、整流部 D1が出力する電圧が上昇し、電圧をモニタ して ヽる供給制御部 AD2がそれを検出する。電圧上昇を検出した供給制御部 AD2 はスィッチ AD4を操作して、リチウムイオンバッテリ AD3と電圧変換部 D2とを接続し
、リチウムイオンバッテリ AD3は電圧変換部 D2が出力する電圧によって充電される。
[0120] く変形例 9〉
変形例 8では、蛍光ランプが消灯して 、るかどうかを検出して電力供給の方法を切 り替えているが、本実施例では蛍光ランプの消灯以外のコンテキスト情報を取得して 電力供給を制御する構成について説明する。
[0121] 図 14は、本変形例における内部回路 AE1の構成を示す図面である。
[0122] 内部回路 AE1は、整流部 Dl、電圧変換部 D2、供給制御部 AE2、リチウムイオン ノ ッテリ AD3によって構成されている。なお、整流部 Dl、電圧変換部 D2の機能に 関しては変形例 3と同一であり、ここでは説明を省略する。
[0123] 人感センサ AE3は、人の存在をセンシングしていて、人の存在を検出したら所定の 電圧を供給制御部 AE2に対して印加する。
[0124] 供給制御部 AE2は人感センサ AE3から電圧を印加されると、スィッチ AD4を操作 して、外部機器接続インターフェース A7を介してリチウムイオンバッテリ AD3と外部 機器を接続する。
[0125] 尚、ここでは、外部機器として、 Bluetoothや RFID、無線 LAN等の微弱電波を発 信する発信機あるいは天井に設置される防犯カメラ等を想定して説明する。
[0126] リチウムイオンバッテリ AD3は、蛍光ランプが点灯している間は電圧変換部 D2から 供給される電圧によって充電されながら外部機器と人感センサ AE3とに対して電力 を供給する。一方、蛍光ランプが消灯している間は充電された電力を外部機器と人 感センサ AE3とに対して供給する。
[0127] 図 15は、本変形例の電源回路を用いた監視システムの概要を示す図である。
[0128] 本システムは、カメラノード AF2、電源回路 AF3、無線基地局 AF4、監視サーバ A F5によって構成されている。なお、説明の都合上、図面には二つのカメラノードしか 記載されていないが、カメラノードの数に制限はない。同様に無線基地局 AF4の数 にも制限はない。
[0129] 図 16は、電源回路 AF3の構成を示す図である。
[0130] 電源回路 AF3は、磁性体 Bl、コイル B2、内部回路 AE1によって構成されている。 [0131] 図 17は、カメラノードの構成を示す図である。
[0132] カメラノード AF2は、制御部 AH1、 CCDカメラ AH2、無線通信部 AH3、 CCDカメ ラ AH2によって構成されて 、る。
[0133] 制御部 AH1は、電源回路接続インターフェース AH5を介して電源回路 AF3から 電力が供給されると、 CCDカメラ AH2を操作して写真を撮影し、撮影が完了したら 撮影された画像データを、無線通信部 AH3を介して無線基地局 AF4に送信する。
[0134] 画像データを送信された無線基地局 AF4はカメラノード AF2から送信された画像 データを受信すると、画像データを監視サーバ AF5に送信する。監視サーノ AF5は 無線基地局 AF4力 受信したデータを蓄積し、管理者がいつでも閲覧できるような 状態にして保存する。
[0135] なお、本変形例ではカメラノードと電源回路を別体としたが、一体型としてもよい。
図 18は、カメラノードと電源回路とを一体型にした場合の構成を示す図である。
[0136] く変形例 10〉
変形例 9のカメラノード AF2および Allでは、 CCDカメラ AH2によって撮影された 画像データは、撮影されるたびに無線通信部 AH3を用いて監視サーバ AF5に送信 していた。本変形例では、カメラノード内にメモリを設けて撮影された画像データを一 且メモリに保存し、メモリ保存されたデータを定期的に監視サーバに送信する構成に ついて説明する。
[0137] 図 19は、本変形例のカメラノードの構成を示す図である。
[0138] カメラノード AJ1は、制御部 AH1、 CCDカメラ AH2、無線通信部 AH3、 CCDカメラ AH2、メモリ AJ4、スィッチ AD4、リチウムイオンバッテリ AD3、電圧変換部 D2、整流 部 Dl、供給制御部 AJ2、タイマ AJ3、人感センサ AE3によって構成されている。なお 、制御部 AH1、 CCDカメラ AH2、無線通信部 AH3、 CCDカメラ AH2、スィッチ AD 4、リチウムイオンバッテリ AD3、電圧変換部 D2、整流部 Dl、人感センサ AE3の機 能は変形例 11と同一であり、ここでは詳細な説明を省略する。
[0139] 人感センサ AE3は、人の存在をセンシングしていて、人の存在を検出したら所定の 電圧を供給制御部 AJ2に対して印加する。
[0140] 人感センサ AE3から電圧を印加された供給制御部 AJ2は、スィッチ AD4を操作し てリチウムイオンバッテリ AD3と制御部 AHlを接続し、リチウムイオンバッテリ AD3か ら電力を供給された制御部 AH1は動作を開始する。
[0141] 制御部 AH1はリチウムイオンバッテリ AD3から電力を供給されると、 CCDカメラ A H2を操作して写真を撮影し、撮影が完了したら撮影した画像データをメモリ AJ4〖こ 格納する。
[0142] タイマ AJ3は所定の間隔で供給制御部 AJ2と制御部 AH1に対して所定の電圧を 印加する。タイマ AJ3から電圧を印加された供給制御部 AJ2はスィッチ AD4を操作し てリチウムイオンバッテリ AD3と制御部 AH1を接続する。
[0143] タイマ AJ3から所定の電圧を印加され、リチウムイオンバッテリ AD3から電力を供給 された制御部 AH1はメモリ AJ4に格納されている画像データを読み出し、無線通信 部 AH3を介して無線基地局 AF4に送信する。
[0144] く変形例 11〉
安定器 A3の具体例として、インバータと呼ばれる電子式安定器が考えられる。この ような電子式安定器は、蛍光ランプ A4に商用電源の周波数 (電力供給者力も一般 に供給される周波数:日本においては 50あるいは 60Hz)の交流電流を供給するの ではなぐ 50〜: LOOkHzの高周波の交流電流を供給する。エネルギー取得部 A5が 上述の変形例 1のように電磁誘導によって電力を取得する場合、取得できる電力量 は蛍光ランプ A4に流れる電流値と周波数に比例する。従って、電子式安定器を利 用することにより、より多くの電力を取得できることが期待できる。
[0145] 次に、本発明における第二の実施の形態について説明する。
[0146] 上記した第一の実施の形態では、蛍光ランプのガラス管内部を流れる電流が発生 させる磁場力 エネルギーを取得する方法にっ 、て記載した力 蛍光ランプ A4と安 定器 A3とを接続する電線に流れる電流から、エネルギーを取得する方法も考えられ る。そこで、本実施の形態では、蛍光ランプ A4と安定器 A3とを接続する電線に流れ る電流から、エネルギーを取得する構成について説明する。
[0147] 図 6は、蛍光ランプ A4と安定器 A3とを接続する電線カゝらエネルギーを取得する場 合の機能ブロックを示すブロック図である。
[0148] 本実施の形態では、エネルギー取得部 A5は、蛍光灯 A4と安定器 A3との傍に設 置される。
[0149] 図 7は、本実施の形態におけるエネルギー取得部の構造を示す図である。なお、説 明のため、図では蛍光ランプ A4のピンと電線が直接接続されている力 実際にはコ ネクタを利用して蛍光ランプ A4と電線は接続される。
[0150] エネルギー取得部 A5は、コイル G2及び磁性体 G3を有する。蛍光ランプ A4のピン と安定器 A3とを接続する電線の内、どちらか片方が磁性体 G3の内部を通過する。
[0151] これにより電線を流れる交流電流により発生する磁界力 コイル G2に誘導起電力を 発生させ、電源回路 A2へ発生した電圧が伝達される。
[0152] 本実施例の図面では磁性体が円筒状の場合を示しているが、磁性体の形状は円 筒以外でも構わず、磁性体がガラス管を一周するように設置できればょ 、。
[0153] また、コイル G2の巻き数は 3ターンとして 、るが、巻き数は 3ターン以上でも以下で も構わず、任意の巻き数でよい。
[0154] 更に、第一の実施の形態の変形例 1と同様にコイル G2のみでエネルギー取得部 A
5が構成されても構わない。この場合、電線内を流れる交流電流が発生させる磁界が コイル G2の中心を貫くようにコイルを電線の脇に設置される。
[0155] く変形例 1〉
第二の実施の形態では、蛍光ランプ A4の二本のピンに接続されている電線のうち 一方を磁性体 G3の中に通すことでエネルギーを取得して!/、たが、蛍光ランプ A4の 二本とも磁性体 G3の中を通す構成が考えられる。そこで、本実施の形態では、蛍光 ランプ A4の二本とも磁性体 G3の中を通す構成について説明する。
[0156] 図 8は本変形例におけるエネルギー取得部の構造を示す図である。
[0157] 本変形例にお!、ても、エネルギー取得部 A5は、蛍光灯 A4と安定器 A3との傍に設 置される。
[0158] エネルギー取得部 A5は、コイル G2及び磁性体 G3を有する。蛍光ランプ A4のピン と安定器 A3とを接続する両方の電線が磁性体 G3の内部を通過する。
[0159] これにより電線を流れる交流電流により発生する磁界力 コイル G2に誘導起電力を 発生させ、電源回路 A2へ発生した電圧が伝達される。
[0160] 本変形例の図面では磁性体が円筒状の場合を示しているが、磁性体の形状は円 筒以外でも構わず、磁性体がガラス管を一周するように設置できればょ 、。
[0161] また、コイル G2の巻き数は 3ターンとしている力 巻き数は 3ターン以上でも以下で も構わず、任意の巻き数でよい。
[0162] 更に、第一の実施の形態の変形例 1と同様にコイル G2のみでエネルギー取得部 A
5が構成されても構わない。この場合、電線内を流れる交流電流が発生させる磁界が コイル G2の中心を貫くようにコイルを電線の脇に設置される。
[0163] 次に、本発明の第三の実施の形態について説明する。
[0164] 上記第一の形態では、一例として円筒状の磁性体を利用したが、磁性体を二つに 分割し、蛍光ランプに接続する構成も考えられる。そこで、本実施の形態では、磁性 体を二つに分割し、蛍光ランプに接続する構成について説明する。
[0165] 図 9は、本実施の形態における磁性体と蛍光ランプの接続形態を示す図である。
[0166] 本実施の形態におけるエネルギー取得部は、二つに分割された磁性体 J2_l及び 磁性体 J2_2とコイル J 1とを有する。
[0167] 二つに分割された磁性体 J2_l及び磁性体 J2_2をガラス管 B3に取り付ける際には、 例えば、磁性体 J2_lと磁性体 J2_2とがガラス管 B3をはさみこむ形で合わせられ、磁 性体 J2_l又は磁性体 J2_2に具備されて 、る留め具 J4と、留め具が具備されて 、な ヽ 方の磁性体に具備されている丸ピン J3とを用いて固定される。尚、固定は、磁性体 J2 —1と磁性体 J2_2とがガラス管 B3をはさみこむ形で合わせられれば良いとする。また、 磁性体が 2つに分割された場合について説明したが、分割される数は任意の数であ つてよい。

Claims

請求の範囲
[I] 照明装置力 電力を取得する電源回路であって、
前記照明装置の蛍光ランプを点灯するための電流によって発生する磁界を利用し て電力を取得する電力取得部を有することを特徴とする電源回路。
[2] 前記蛍光ランプが商用電源よりも高い周波数の交流電流によって点灯する蛍光ラ ンプである場合、
前記電力取得部は、前記交流電流によって発生する磁界から電磁誘導によって電 力を取得することを特徴とする請求項 1に記載の電源回路。
[3] 前記電力取得部がコイルであることを特徴とする請求項 1に記載の電源回路。
[4] 前記電力取得部が、磁性体とこの磁性体に巻かれたコイルとを有することを特徴と する請求項 1に記載の電源回路。
[5] 前記磁性体カ^ング状であることを特徴とする請求項 4に記載の電源回路。
[6] 前記磁性体は、前記蛍光ランプのガラス管を取り囲むように取り付けられることを特 徴とする請求項 4に記載の電源回路。
[7] 前記磁性体は、前記蛍光ランプを点灯させるための電流を供給する電線を取り囲 むように取り付けられることを特徴とする請求項 4に記載の電源回路。
[8] 前記磁性体が複数の磁性体から構成されていることを特徴とする請求項 4に記載 の電源回路。
[9] 前記電力取得部から供給された交流電圧を直流電圧に整流する整流部を有する ことを特徴とする請求項 1に記載の電源回路。
[10] 前記整流部から供給された直流電圧を、所定の電圧に変換する電圧変換部を有し ていることを特徴とする請求項 9に記載の電源回路。
[II] 前記電力取得部力 供給された電力を保持しておく蓄電部を有していることを特徴 とする請求項 1に記載の電源回路。
[12] 前記整流部と前記電圧変換部との間に、前記整流部が出力する直流電圧を所定 の値の電圧に制限する電圧制限部を有することを特徴とする請求項 9に記載の電源 回路。
[13] 前記電圧制限部は、ツエナーダイオードによって構成されていることを特徴とする請 求項 12に記載の電源回路。
[14] 前記電圧変換部は、所定の電圧よりも低い電圧が入力された場合にはその所定の 電圧に昇圧し、所定の電圧よりも高い電圧が入力された場合にはその所定の電圧に 降圧することを特徴とする請求項 10に記載の電源回路。
[15] 前記電圧変換部が、前記整流部からの直流電圧を降圧する構成である場合、 前記電力取得部は、前記整流部が前記電圧変換部に供給する交流電圧が、前記 電圧変換部の出力電圧よりも高い電圧になるように調整して、前記整流部に建立電 圧を出力することを特徴とする請求項 10に記載の電源回路。
[16] 前記蛍光ランプが消灯したことを検出する消灯検出部と、
前記消灯検出部が前記蛍光ランプが消灯したことを検出すると、前記蓄電部に保 持されて!ヽる電力を放出させる放電部と
を有することを特徴とする請求項 11に記載の電源回路。
[17] 前記消灯検出部は、前記電力取得部の出力電圧を監視し、該出力電圧が所定の 電圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする請 求項 16に記載の電源回路。
[18] 前記消灯検出部は、前記整流部の出力電圧を監視し、その出力電圧が所定の電 圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする請求 項 16に記載の電源回路。
[19] 前記消灯検出部は、前記電圧変換部の出力電圧を監視し、その出力電圧が所定 の電圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする 請求項 16に記載の電源回路。
[20] 前記蛍光ランプが消灯したことを検出する消灯検出部を有し、
前記蓄電部は、前記消灯検出部が前記蛍光ランプが消灯したことを検出すると、蓄 電された電力の供給を開始すること
を特徴とする請求項 11に記載の電源回路。
[21] 所定のセンサ情報を検出すると、前記蓄電部力 外部機器への電力供給を開始さ せる給電制御部を有することを特徴とする請求項 11に記載の電源回路。
[22] 所定のセンサ情報を検出した場合、もしくは所定の時間ごとに、前記蓄電部から外 部機器への電力供給を開始させる給電制御部を有することを特徴とする請求項 11 に記載の電源回路。
[23] 前記センサ情報が、人が存在するか否かの情報であることを特徴とする請求項 21 に記載の電源回路。
[24] 照明システムであって、
照明装置と、
前記照明装置の蛍光ランプを点灯するための電流によって発生する磁界を利用し て電力を取得する電力取得部と
を有することを特徴とする照明システム。
[25] 前記蛍光ランプが商用電源よりも高 、周波数の交流電流によって点灯する蛍光ラ ンプである場合、
前記電力取得部は、前記交流電流によって発生する磁界から電磁誘導によって電 力を取得することを特徴とする請求項 24に記載の照明システム。
[26] 前記電力取得部がコイルであることを特徴とする請求項 24に記載の照明システム。
[27] 前記電力取得部が、磁性体とこの磁性体に巻かれたコイルとから構成されて 、るこ とを特徴とする請求項 24に記載の照明システム。
[28] 前記磁性体カ^ング状であることを特徴とする請求項 27に記載の照明システム。
[29] 前記磁性体は、前記蛍光ランプのガラス管を取り囲むように取り付けられることを特 徴とする請求項 27に記載の照明システム。
[30] 前記磁性体は、前記蛍光ランプを点灯させるための電流を供給する電線を取り囲 むように取り付けられることを特徴とする請求項 27に記載の照明システム。
[31] 前記磁性体が複数の磁性体力 構成されていることを特徴とする請求項 27に記載 の照明システム。
[32] 前記電力取得部から供給された交流電圧を直流電圧に整流する整流部を有する ことを特徴とする請求項 24に記載の照明システム。
[33] 前記整流部から供給された直流電圧を、所定の電圧に変換する電圧変換部を有し ていることを特徴とする請求項 32に記載の照明システム。
[34] 前記電力取得部力 供給された電力を保持しておく蓄電部を有していることを特徴 とする請求項 24に記載の照明システム。
[35] 前記整流部と前記電圧変換部との間に、前記整流部が出力する直流電圧を所定 の値の電圧に制限する電圧制限部を有することを特徴とする請求項 32に記載の照 明システム。
[36] 前記電圧制限部は、ツエナーダイオードによって構成されていることを特徴とする請 求項 35に記載の照明システム。
[37] 前記電圧変換部は、所定の電圧よりも低い電圧が入力された場合にはその所定の 電圧に昇圧し、所定の電圧よりも高い電圧が入力された場合にはその所定の電圧に 降圧することを特徴とする請求項 33に記載の照明システム。
[38] 前記電圧変換部が、前記整流部からの直流電圧を降圧する構成である場合、 前記電力取得部は、前記整流部が前記電圧変換部に供給する交流電圧が、前記 電圧変換部の出力電圧よりも高い電圧になるように調整して、前記整流部に建立電 圧を出力することを特徴とする請求項 33に記載の照明システム。
[39] 前記蛍光ランプが消灯したことを検出する消灯検出部と、
前記消灯検出部が前記蛍光ランプが消灯したことを検出すると、前記蓄電部に保 持されて!ヽる電力を放出させる放電部と
を有することを特徴とする請求項 34に記載の照明システム。
[40] 前記消灯検出部は、前記電力取得部の出力電圧を監視し、該出力電圧が所定の 電圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする請 求項 39に記載の照明システム。
[41] 前記消灯検出部は、前記整流部の出力電圧を監視し、その出力電圧が所定の電 圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする請求 項 39に記載の照明システム。
[42] 前記消灯検出部は、前記電圧変換部の出力電圧を監視し、その出力電圧が所定 の電圧よりも低くなつた場合に前記蛍光ランプが消灯したと判断することを特徴とする 請求項 39に記載の照明システム。
[43] 前記蛍光ランプが消灯したことを検出する消灯検出部を有し、
前記蓄電部は、前記消灯検出部が前記蛍光ランプが消灯したことを検出すると、蓄 電された電力の供給を開始すること
を特徴とする請求項 34に記載の照明システム。
[44] 所定のセンサ情報を検出すると、前記蓄電部力 外部機器への電力供給を開始さ せる給電制御部を有することを特徴とする請求項 34に記載の照明システム。
[45] 所定のセンサ情報を検出した場合、もしくは所定の時間ごとに、前記蓄電部から外 部機器への電力供給を開始させる給電制御部を有することを特徴とする請求項 34 に記載の照明システム。
[46] 前記センサ情報が、人が存在するか否かの情報であることを特徴とする請求項 44 に記載の照明システム。
[47] 前記電源取得部力 供給される電力を用いて撮影する撮影部と、
前記電源取得部カゝら供給される電力を用いて、前記撮影された画像データを送信 する無線部と
を有することを特徴とする請求項 23に記載の照明システム。
[48] 前記電源取得部力 供給される電力を用いて撮影する撮影部と、
前記撮影された画像データが格納される格納部と、
前記電源取得部から供給される電力を用いて、前記格納部の画像データを送信す る無線部と
を有することを特徴とする請求項 23に記載の照明システム。
[49] 前記送信された画像データを監視サーバに送信する無線基地局と、
前記該無線基地局からの画像データを蓄積するサーバと
を有することを特徴とする請求項 47に記載の照明システム。
[50] 電源回路であって、
蛍光ランプを点灯するための電流が発生する磁界を利用して電力を取得する電力 取得部と、
前記取得した電力を用いて信号を発信する発信機を接続するインターフェースと を有することを特徴とする電源回路。
[51] 前記蛍光ランプが商用電源よりも高い周波数の交流電流によって点灯する蛍光ラ ンプである場合、 前記電力取得部は、前記交流電流によって発生する磁界から電磁誘導によって電 力を取得することを特徴とする請求項 50に記載の電源回路。
[52] 照明システムであって、
照明装置と、
前記照明装置の蛍光ランプを点灯するための電流が発生する磁界を利用して電力 を取得する電力取得部と、
前記取得した電力を用いて動作する電気機器を接続するためのインターフェースと を有することを特徴とする照明システム。
[53] 前記蛍光ランプが商用電源よりも高 、周波数の交流電流によって点灯する蛍光ラ ンプである場合、
前記電力取得部は、前記交流電流によって発生する磁界から電磁誘導によって電 力を取得することを特徴とする請求項 52に記載の照明システム。
PCT/JP2006/326003 2005-12-28 2006-12-27 電源回路及び照明システム WO2007074849A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007551997A JPWO2007074849A1 (ja) 2005-12-28 2006-12-27 電源回路及び照明システム
US12/159,296 US8164407B2 (en) 2005-12-28 2006-12-27 Power supply circuit and illumination system
EP06843385.3A EP1983633A4 (en) 2005-12-28 2006-12-27 POWER SUPPLY CIRCUIT AND LIGHTING SYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-377865 2005-12-28
JP2005377865 2005-12-28
JP2006-349351 2006-12-26
JP2006349351 2006-12-26

Publications (1)

Publication Number Publication Date
WO2007074849A1 true WO2007074849A1 (ja) 2007-07-05

Family

ID=38218070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326003 WO2007074849A1 (ja) 2005-12-28 2006-12-27 電源回路及び照明システム

Country Status (4)

Country Link
US (1) US8164407B2 (ja)
EP (1) EP1983633A4 (ja)
JP (2) JPWO2007074849A1 (ja)
WO (1) WO2007074849A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140130A1 (ja) * 2007-05-16 2008-11-20 Nec Corporation 電力取得装置および電力取得方法
WO2009063923A1 (ja) * 2007-11-13 2009-05-22 Nec Corporation 電気機器
WO2009063746A1 (ja) * 2007-11-13 2009-05-22 Nec Corporation 電力取得装置
WO2009136590A1 (ja) * 2008-05-07 2009-11-12 日本電気株式会社 電源装置
JP2016024958A (ja) * 2014-07-19 2016-02-08 浜井電球工業株式会社 Led照明装置、およびそれを利用した情報通信システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2575084A1 (en) * 2011-09-30 2013-04-03 Nxp B.V. Security token and authentication system
JP6638113B2 (ja) * 2016-08-22 2020-01-29 シグニファイ ホールディング ビー ヴィSignify Holding B.V. インタフェース回路及び外部回路
JP7146561B2 (ja) * 2018-10-16 2022-10-04 キヤノン株式会社 結像光学系、それを備える撮像装置及びアクセサリ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022483U (ja) * 1995-09-07 1996-03-26 ワイエイシイ株式会社 パチンコ台の電源装置
JPH08203324A (ja) * 1995-01-24 1996-08-09 Sanyo Electric Co Ltd ショーケースの照明装置
JP2001251238A (ja) * 2000-03-08 2001-09-14 Fujitsu Ltd 無線通信システム、無線通信方法、および無線通信システムにおいて使用される無線通信デバイス
JP2002245571A (ja) * 2001-02-16 2002-08-30 East Japan Railway Co セキュリティシステム及びセキュリティ装置
JP2005354888A (ja) * 2004-05-12 2005-12-22 Seiko Instruments Inc 電波発電回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982140A (en) * 1989-10-05 1991-01-01 General Electric Company Starting aid for an electrodeless high intensity discharge lamp
US5030889A (en) * 1989-12-21 1991-07-09 General Electric Company Lamp ballast configuration
JPH0823335A (ja) * 1994-07-08 1996-01-23 Oki Electric Ind Co Ltd 無線集中制御装置
JP2778554B2 (ja) * 1995-10-12 1998-07-23 日本電気株式会社 圧電トランス駆動回路
JP2000138511A (ja) * 1998-10-31 2000-05-16 Masatake Akagawa アンテナの発射電波を利用した充電装置
EP1089600A4 (en) * 1999-04-16 2006-07-05 Toshiba Lighting & Technology LIGHTING UNIT WITH DISCHARGE LAMP
US6246183B1 (en) * 2000-02-28 2001-06-12 Litton Systems, Inc. Dimmable electrodeless light source
DE10190933B3 (de) * 2000-03-09 2011-08-11 Mitsubishi Denki K.K. Schaltungsanordnung zum Steuern von zu einer Entladungslampe gelieferter elektrischer Leistung
JP3946621B2 (ja) 2002-11-15 2007-07-18 理想科学工業株式会社 給電装置
JP5056009B2 (ja) * 2004-03-03 2012-10-24 日本電気株式会社 測位システム、測位方法、及びそのプログラム
TWI277282B (en) * 2004-04-26 2007-03-21 Delta Electronics Inc New structured power supply system for a LCD apparatus
JP2007127414A (ja) * 2004-07-21 2007-05-24 Konica Minolta Medical & Graphic Inc 放射線画像検出器及び放射線画像撮影システム
US20060186833A1 (en) * 2005-02-23 2006-08-24 Yu Chung-Che Fluorescent tube driver circuit system of pulse-width modulation control
US7397194B2 (en) * 2005-07-11 2008-07-08 Varon Lighting, Inc. Auxiliary quartz lamp lighting system for high intensity discharge lamp ballasts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203324A (ja) * 1995-01-24 1996-08-09 Sanyo Electric Co Ltd ショーケースの照明装置
JP3022483U (ja) * 1995-09-07 1996-03-26 ワイエイシイ株式会社 パチンコ台の電源装置
JP2001251238A (ja) * 2000-03-08 2001-09-14 Fujitsu Ltd 無線通信システム、無線通信方法、および無線通信システムにおいて使用される無線通信デバイス
JP2002245571A (ja) * 2001-02-16 2002-08-30 East Japan Railway Co セキュリティシステム及びセキュリティ装置
JP2005354888A (ja) * 2004-05-12 2005-12-22 Seiko Instruments Inc 電波発電回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1983633A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140130A1 (ja) * 2007-05-16 2008-11-20 Nec Corporation 電力取得装置および電力取得方法
US8618901B2 (en) 2007-05-16 2013-12-31 Nec Corporation Power acquisition device and power acquisition method
JP5382619B2 (ja) * 2007-05-16 2014-01-08 日本電気株式会社 電力取得装置および電力取得方法
WO2009063923A1 (ja) * 2007-11-13 2009-05-22 Nec Corporation 電気機器
WO2009063746A1 (ja) * 2007-11-13 2009-05-22 Nec Corporation 電力取得装置
JPWO2009063923A1 (ja) * 2007-11-13 2011-03-31 日本電気株式会社 電気機器
WO2009136590A1 (ja) * 2008-05-07 2009-11-12 日本電気株式会社 電源装置
JPWO2009136590A1 (ja) * 2008-05-07 2011-09-08 日本電気株式会社 電源装置
JP2016024958A (ja) * 2014-07-19 2016-02-08 浜井電球工業株式会社 Led照明装置、およびそれを利用した情報通信システム

Also Published As

Publication number Publication date
JP2009112189A (ja) 2009-05-21
US8164407B2 (en) 2012-04-24
US20100231784A1 (en) 2010-09-16
EP1983633A4 (en) 2013-06-12
JPWO2007074849A1 (ja) 2009-06-04
EP1983633A1 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
WO2007074849A1 (ja) 電源回路及び照明システム
US10361583B2 (en) Power over ethernet emergency lighting system and method of detecting power loss of a link segment thereof
US20160356469A1 (en) Supplemental, backup or emergency lighting systems and methods
KR20170104477A (ko) 자립형 에너지 채취 시스템
US9635720B2 (en) Alternating current (AC)-direct current (DC) power booster and AC-DC power control module for AC and DC illuminations
US20100033882A1 (en) Circuit Arrangement and Method for Increasing the Safety of an Electronic Operating Device
US11139700B2 (en) Leakage detector, wireless power transmitting device, wireless power receiving device, and wireless power transmission system
US20130234516A1 (en) Electricity generation controller, electricity generation control system, and electricity generation control method
MX2015002620A (es) Administracion de energia de dispositivos de control energizados por bateria.
US20090021077A1 (en) Device, system and method for charger switch adaptor
JP2015076955A (ja) 無線センサ端末
US9307591B2 (en) Systems, methods, and devices for providing a luminaire inductively coupled to a power transmission line
JP2010029006A (ja) アンテナ整流装置対応充電器
US11714472B2 (en) Power over ethernet emergency lighting system and method of detecting power loss of a link segment thereof
CN103105516B (zh) 测量物理量的系统及与其相关的电源设备和配置方法
KR20150109162A (ko) 조명 시스템 및 그 구동 방법
JP5371820B2 (ja) 時限点灯装置
JP6072495B2 (ja) 光源点灯装置及び照明システム
KR101746182B1 (ko) 상용전원의 전기사용으로 발생되는 전자기장을 활용한 비상등, 휴대폰 등의 충전장치
US20200378569A1 (en) Battery power auxiliary device system powered by remotely-controlled streetlamp
CN101589604A (zh) 电话线供电照明设备和使用该设备的方法
WO2009136590A1 (ja) 電源装置
CN109982477A (zh) 具有多个驱动器的固态照明
KR20200123542A (ko) 엘이디 조명등의 전원 공급 장치
EP3772047B1 (en) A sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049956.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007551997

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006843385

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12159296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE