WO2007074715A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2007074715A1
WO2007074715A1 PCT/JP2006/325534 JP2006325534W WO2007074715A1 WO 2007074715 A1 WO2007074715 A1 WO 2007074715A1 JP 2006325534 W JP2006325534 W JP 2006325534W WO 2007074715 A1 WO2007074715 A1 WO 2007074715A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
value
front wheel
state quantity
rear wheel
Prior art date
Application number
PCT/JP2006/325534
Other languages
English (en)
French (fr)
Inventor
Toru Takenaka
Takayuki Toyoshima
Hiroyuki Urabe
Hiroshi Kono
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to EP06835095A priority Critical patent/EP1958839B1/en
Priority to JP2007533811A priority patent/JP4226059B2/ja
Priority to DE602006012727T priority patent/DE602006012727D1/de
Priority to CA2633315A priority patent/CA2633315C/en
Priority to KR1020107014885A priority patent/KR101051053B1/ko
Priority to CN2006800482489A priority patent/CN101341057B/zh
Priority to US12/097,130 priority patent/US8027775B2/en
Publication of WO2007074715A1 publication Critical patent/WO2007074715A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17552Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve responsive to the tire sideslip angle or the vehicle body slip angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/101Side slip angle of tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • B60W2050/0033Single-track, 2D vehicle model, i.e. two-wheel bicycle model
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • B60W2050/0034Multiple-track, 2D vehicle model, e.g. four-wheel model
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/20Sideslip angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data

Definitions

  • the present invention relates to a control device for a vehicle having a plurality of wheels, such as an automobile (engine automobile), a hybrid vehicle, and a motorcycle.
  • a driving system that transmits driving force to a wheel from a propulsive force generation source such as an engine or imparts braking force and a steering wheel of the vehicle are operated.
  • a steering system steering system
  • a suspension system for elastically supporting the vehicle body on wheels are provided.
  • these systems can be used as a steering wheel (a handle) by a driver, an accelerator pedal, a brake pedal, etc. It is equipped with various electric or hydraulic actuators that can be operated passively in response to the operation of the vehicle (manual operation), and the operation of the actuator is active according to the vehicle running conditions and environmental conditions. The ones that are (actively) controlled are known.
  • the feedforward target value of the rear wheel rudder angle is determined according to the front wheel rudder angle, and the normative state quantity (normative lateral rate and normative lateral acceleration) and actual state quantity (yorate detection).
  • a technique has been proposed in which a feedback target value of the rear wheel steering angle is determined according to a deviation between the value and the detected value of the lateral acceleration, and the rear wheel steering angle follows the sum of these target values.
  • the reference state quantity is set according to the steering angle of the front wheels.
  • the transfer function parameters or gains of the feedforward control unit, the feedback control unit, and the reference state quantity determination unit are adjusted according to the estimated value of the friction coefficient of the road surface.
  • the present invention has been made in view of such a background, and appropriately controls the road surface reaction force acting on the front wheels of the vehicle and the road surface reaction force acting on the rear wheels, so that the actual vehicle motion can be achieved. It is an object of the present invention to provide a vehicle control device that can appropriately control a desired operation. It is another object of the present invention to provide a vehicle control device capable of appropriately controlling the movement of the vehicle by enhancing robustness against disturbance factors or changes thereof.
  • the vehicle control device of the first invention of the present application detects a driving operation amount indicating a driving operation state of the vehicle by a driver of the vehicle having a plurality of wheels.
  • a vehicle control device comprising: detection means; an actuator device provided in the vehicle so as to be able to operate a driving force of each wheel of the vehicle; and an actuator device control means for sequentially controlling the operation of the actuator device.
  • the first actual state value which is the value of the first state quantity related to the actual rotational movement of the vehicle in the direction of the vehicle or the first state quantity related to the rotational movement of the direction of the vehicle and the translational motion in the lateral direction.
  • State quantity grasping means
  • a normative value determining means for determining a first normative value that is a normative value of the first state quantity according to at least the detected driving operation amount
  • State quantity deviation calculating means for calculating a first state quantity deviation which is a deviation between the detected or estimated first actual state quantity and the determined first reference value;
  • Basic required manipulated variable determining means for determining a basic required manipulated variable for operating the actuator device so that the first state variable deviation approaches 0 according to the calculated first state variable deviation;
  • control of the driving and braking force of each of the front and rear wheels of the specific set Driving / braking force operation control input is determined so that the relationship between at least the change in the basic required operation amount and the change in the drive / braking force operation control input is proportional.
  • Control input determining means
  • the actuator device control means controls the operation of the actuator device according to at least the determined driving / braking force operation control input, thereby driving the braking force of each of the front wheels and the rear wheels of the specific group. Is a means for operating through the actuator device,
  • the drive'braking force operation control input determining means includes a state quantity relating to a lateral movement of at least one front wheel of the actual vehicle, a state quantity relating to a lateral movement of a predetermined position of the front portion of the vehicle, One of the lateral force acting on the road surface force on at least one front wheel of the vehicle and a parameter having a correlation with either of the state quantity and the lateral force is used as the front wheel side gain adjustment parameter.
  • At least the front wheel side gain which is the ratio of the change in the control input for driving and braking force operation of each specific front wheel to the change in the basic required operation amount, changes according to the front wheel side gain adjustment parameter.
  • the control input for driving and braking force operation of the specific set of front wheels is determined.
  • the state quantity relating to the lateral movement of one rear wheel, the state quantity relating to the lateral movement at a predetermined position of the rear part of the vehicle, the lateral force acting on the road surface force on at least one rear wheel of the vehicle, and these states Any one of the parameters correlated with either the amount or the lateral force is used as a rear wheel side gain adjustment parameter, and the rear wheel of each specific group for the change in the basic required manipulated variable is used.
  • the control input for driving the rear wheel'braking force is determined.
  • the basic required operation amount is determined so that the first state quantity deviation approaches 0.
  • the control input for driving / braking force operation of each of the front wheels and the rear wheels of each specific group is proportional to the relationship between the change in the basic required operation amount and the change in the control input for driving / braking force operation. To be determined.
  • the control input for driving / braking force operation is determined so that the amount of change in the value becomes proportional to the amount of change in the basic required operation amount. For example, the value obtained by multiplying the control input for driving 'braking force operation of each wheel (front wheel or rear wheel) of each specific group by the gain in the determined basic required operation amount.
  • the driving and braking forces of the front wheels and the rear wheels of each specific group are operated so that the first state quantity deviation approaches zero. That is, the first actual state value, which is the value of the first state quantity related to the rotational movement in the direction of the actual vehicle or the value of the first state quantity related to the rotational movement in the direction of direction and the translational movement in the lateral direction, is the first criterion.
  • the driving / braking force of each front wheel and rear wheel of each specific group is manipulated to approach the value.
  • the lateral rotation motion or lateral translation motion of the vehicle is also affected by the lateral force that is not only the driving and braking force out of the road surface reaction force that also exerts the road surface force on each wheel.
  • the lateral force of each wheel changes in accordance with changes in the slip angle of the wheel, driving and braking force. Therefore, it is desirable that the driving input for controlling the braking force for bringing the first state quantity deviation close to 0 is determined in consideration of the lateral force of each wheel or the side slip of the vehicle or the wheel.
  • a state quantity relating to the lateral movement of at least one front wheel of the actual vehicle for example, a side slip angle of the front wheel
  • a predetermined position of the front portion of the vehicle are determined.
  • State quantities related to lateral movement for example, a side slip angle at a predetermined position in the front of the vehicle
  • lateral forces acting on at least one front wheel of the vehicle and these state quantities and lateral forces of Any one of the parameters correlated with at least one of them is used as the front wheel side gain adjustment parameter.
  • the front wheel side gain which is the ratio of the change in the control input for driving and braking force operation of each specific front wheel with respect to the change in the basic required operation amount, changes according to the front wheel side gain adjustment parameter.
  • a control input for driving and braking force operation of the specific set of front wheels is determined according to at least the front wheel side gain adjustment parameter and the determined basic required operation amount.
  • a state quantity relating to lateral movement of at least one rear wheel of the actual vehicle a state quantity relating to lateral movement of a predetermined position of the rear part of the vehicle, and at least one rear wheel of the vehicle
  • One of the lateral force acting on the road surface and a parameter correlated with at least one of these state quantities and lateral forces is used as the rear wheel gain adjustment parameter.
  • the rear wheel side gain which is the ratio of the change in the control input for driving and braking force operation of each specific rear wheel to the change in the basic required operation amount, changes according to the rear wheel side gain adjustment parameter.
  • the control input for driving / braking force operation of the specific rear wheel is determined according to at least the rear wheel gain adjustment parameter and the determined basic required operation amount.
  • the first state quantity deviation is considered while taking into account the influence of the change in lateral force accompanying the operation of the braking force for each of the specific set of front wheels and rear wheels. It is possible to determine an appropriate control input for driving 'braking force operation' when bringing the value close to 0. Therefore, according to the first invention, the road surface reaction force (driving 'braking force and lateral force) acting on the front wheel of the vehicle and the road surface reaction force (driving' braking force and lateral force) acting on the rear wheel are appropriately adjusted.
  • the actual vehicle motion (a one-way rotational motion, or a one-way rotational motion and a lateral rotational motion and a lateral motion) is performed so that the first actual state quantity of the actual vehicle approaches the first reference value that is the reference value. It is possible to appropriately control the direction translation). That is, according to the first invention, the actual vehicle motion is appropriately controlled to a desired motion by appropriately operating the road surface reaction force acting on the front wheels of the vehicle and the road surface reaction force acting on the rear wheels. It becomes possible to do. Further, the first state quantity deviation is reduced to 0 by making the change in the driving input of the braking force operation of each specific front wheel and rear wheel proportional to the change in the basic required operation amount.
  • the "correlation parameter" is a state quantity related to a lateral movement of at least one front wheel of the actual vehicle (a side wheel of the front wheel).
  • a state quantity related to lateral movement of a predetermined position of the front portion of the vehicle such as a slip angle of a predetermined position of the front portion of the vehicle
  • at least one of the vehicle A lateral force acting on the front wheel of the road from the road surface
  • a parameter that determines the value according to one value of these state quantities and lateral forces for example, approximately the state quantity related to the lateral motion of one front wheel
  • One or more parameters that define at least one of the proportional value, the state quantity related to the lateral motion of the front wheels, or at least one of the state quantity and lateral force for example, the state Quantity or lateral force It means a plurality of variable amounts the plurality of variable amounts in the case of can be expressed as a function of (such as the steering angle of the vehicles speed and the steering wheel)). The same applies to the “parameter having correlation” related to the rear wheel gain adjustment parameter.
  • the "specific set” means a set of front wheels and rear wheels when the vehicle is, for example, a two-wheeled vehicle.
  • the vehicle is a four-wheeled vehicle including a pair of left and right front wheels and a rear wheel behind the front wheel, for example, a left front wheel and rear wheel group and a right front wheel and rear wheel group And one of them, or a combination of both. This applies not only to the first invention but also to each invention described later.
  • the basic required operation amount includes an external force (moment or translational force) to be additionally applied to the vehicle in order to bring the first state quantity deviation close to zero.
  • examples of the first state quantity related to the rotational movement of the vehicle in one direction include yorate and the like
  • examples of the first state quantity related to the lateral translational movement include the side slip angle of the wheel or vehicle at a predetermined position
  • Examples include slip speed (time change rate of side slip angle), side slip acceleration (time change rate of side slip speed), and lateral acceleration.
  • an operation for detecting a driving operation amount indicating a driving operation state of the vehicle by a driver of the vehicle having a plurality of wheels is provided.
  • a vehicle control device comprising a heater device control means
  • the first actual state value which is the value of the first state quantity related to the actual rotational movement of the vehicle in the direction of the vehicle or the first state quantity related to the rotational movement of the direction of the vehicle and the translational motion in the lateral direction.
  • State quantity grasping means
  • the first model state quantity which is the value of the first state quantity of the vehicle on the vehicle model preliminarily determined as a model representing the dynamic characteristics of the vehicle, is determined according to at least the detected driving operation quantity.
  • State quantity deviation calculating means for calculating a first state quantity deviation which is a deviation between the detected or estimated first actual state quantity and the determined first model state quantity
  • Basic required manipulated variable determining means for determining a basic required manipulated variable for operating the actuator device so that the first state variable deviation approaches 0 according to the calculated first state variable deviation;
  • control of the driving and braking force of each of the front and rear wheels of the specific set is determined so that at least the relationship between the change in the basic required operation amount and the change in the drive and braking force operation control input is proportional.
  • Control input determining means for power operation
  • Control input determining means For vehicle model operation for determining a vehicle model operation control input for operating a vehicle on the vehicle model so that the first state quantity deviation approaches 0, according to at least the calculated first state quantity deviation.
  • the actuator device control means controls the operation of the actuator device according to at least the determined driving / braking force operation control input, thereby driving the braking force of each of the front wheels and the rear wheels of the specific group. Is a means for operating through the actuator device,
  • the model state quantity determining means is a means for determining the first model state quantity according to at least the detected driving operation input and the determined vehicle model operation control input,
  • the drive'braking force operation control input determining means is an actual vehicle that is the actual vehicle. Or a state quantity related to the lateral movement of at least one front wheel of the model vehicle, which is a vehicle on the vehicle model, Either the lateral force acting on at least one front wheel of the actual vehicle or model vehicle from the road surface and at least one of these state quantities and lateral forces are correlated to the front wheel side. Used as a gain adjustment parameter
  • the front wheel gain which is the ratio of the change in the control input for driving / braking force operation of each specific front wheel with respect to the change in the basic required operation amount, is changed according to the front wheel gain adjustment parameter. Determining at least one of the front wheel side gain adjustment parameter and the determined basic required operation amount, a control input for driving the braking force operation of the specific set of front wheels and at least one of the actual vehicle or the model vehicle.
  • the basic force is determined by using any one of the lateral force to be adjusted and the parameter having a correlation with any of the state quantity and the lateral force as a rear wheel gain adjustment parameter.
  • At least the rear wheel gain which is the ratio of the change in the control input for driving and braking force operation of each specific rear wheel with respect to the change in the operation amount, changes according to the rear wheel gain adjustment parameter.
  • the rear wheel side gain adjustment parameter and the determined basic required operation amount are used to drive the rear wheel of the specific group * the control input for braking force operation is determined.
  • the driving / braking power control inputs for the front wheels and the rear wheels of the specific groups are determined in the same manner as in the first invention, and this driving'braking force braking control is determined.
  • the driving force and braking force of each front wheel and rear wheel of each specific group are operated.
  • the driving / braking force of each of the front wheels and the rear wheels of each specific group is manipulated so that the first state quantity deviation approaches zero.
  • a vehicle (model vehicle) on the vehicle model is operated so that the first state quantity deviation approaches 0 by the vehicle model operation control input. Therefore, the value of the first state quantity related to the rotational movement of the actual vehicle (actual vehicle) in the horizontal direction or The first actual state quantity, which is the value of the first state quantity regarding the rotational movement in the horizontal direction and the translational movement in the horizontal direction, approaches the first state quantity of the model so that the front wheels and rear In addition to operating the driving force and braking force of each wheel, the model vehicle is operated so that the model first state quantity approaches the first actual state quantity. For this reason, in the second invention, the movement of the actual vehicle and the movement of the model vehicle do not greatly deviate. For example, the value of the lateral force acting on the wheels of the actual vehicle and the slip angle of the actual vehicle or its wheels are relatively small from those of the model vehicle.
  • the driving / braking force operation control input for bringing the first state quantity deviation close to 0 is the lateral force of each wheel or the vehicle. It is also desirable to determine it taking into account the effects of wheel slip.
  • a state quantity relating to a lateral movement of at least one front wheel of the actual vehicle or the model vehicle for example, a lateral slip angle of the front wheel of the actual vehicle or the model vehicle
  • a state quantity relating to lateral movement of a predetermined position of the front portion of the vehicle or model vehicle for example, a lateral slip angle of a predetermined position of the front portion of the real vehicle or model vehicle
  • One of the lateral force acting on the road surface force on the two front wheels and a parameter correlated with at least one of these state quantities and lateral forces is used as a front wheel gain adjustment parameter.
  • the front wheel gain which is the ratio of the change in the control input for driving and braking force operation of each specific front wheel with respect to the change in the basic required operation amount, is changed according to the front wheel gain adjustment parameter.
  • the control input for driving and braking force operation of the specific set of front wheels is determined according to at least the front wheel gain adjustment parameter and the determined basic required operation amount.
  • a state quantity relating to lateral movement of at least one rear wheel of the actual vehicle or model vehicle and a state quantity relating to lateral movement of a predetermined position of the rear part of the actual vehicle or model vehicle, Any one of the lateral force acting on the road surface force on at least one rear wheel of the actual vehicle or the model vehicle and a parameter having a correlation with either of the state quantity and the lateral force on the rear wheel side. Used as a gain adjustment parameter.
  • a rear wheel side gain which is a ratio of a change in control input for driving and braking force operation of each specific rear wheel with respect to a change in the basic required operation amount, changes in accordance with the rear wheel side gain adjustment parameter.
  • at least the rear wheel side gain adjustment parameter and the determined basic required operation amount determine the rear wheel driving * braking force operation control input for the specific group.
  • the movement of the actual vehicle and the movement of the model vehicle do not greatly deviate from each other, so that the first state quantity deviation does not become excessive. For this reason, it is possible to avoid a situation in which the basic required operation amount and the control input for driving and braking force operation of each specific set of front wheels and rear wheels become excessive or limited by the limiter. As a result, it is possible to improve the stability of the operation control of the actual vehicle actuator device according to the first state quantity deviation.
  • the road surface reaction force (driving 'braking force and lateral force) acting on the front wheels of the vehicle and the road surface reaction force (driving' braking force and lateral force) acting on the rear wheels are reduced.
  • the actual vehicle motion one-way rotational motion, or two-way rotational motion and lateral translation motion
  • the actual vehicle motion is appropriately controlled to a desired motion by appropriately operating the road surface reaction force acting on the front wheels of the vehicle and the road surface reaction force acting on the rear wheels. Is possible.
  • the "correlation parameter" is a state quantity related to a lateral movement of at least one front wheel of the actual vehicle or model vehicle (front wheel Side slip angle) and the actual vehicle or model vehicle
  • a state quantity related to lateral movement of a predetermined position of the front part such as a side slip angle of a predetermined position of the front part of the actual vehicle or model vehicle
  • road force on at least one front wheel of the actual vehicle or model vehicle A parameter whose value is determined according to the value of at least one of the acting lateral forces (e.g., a value approximately proportional to the amount of state related to the lateral movement of one front wheel, or the state related to the lateral movement of multiple front wheels
  • one or more parameters that define at least one of the state quantity and lateral force e.g., the state quantity or lateral force is a plurality of variable quantities (vehicle The number of variables) that can be expressed as a function of the speed and steering angle of the steering wheel.
  • the following example is given when the above-mentioned “parameter having correlation” is used as the front wheel side gain adjustment parameter and the rear wheel side gain adjustment parameter. That is, as the front wheel side gain adjustment parameter, a combined value of a state quantity related to lateral movement of at least one front wheel of the actual vehicle and a state quantity related to lateral movement of at least one front wheel of the model vehicle, and the actual vehicle A combined value of a state quantity relating to lateral movement at a predetermined position of the front part of the vehicle and a state quantity relating to lateral movement at a predetermined position of the front part of the model vehicle, and a lateral force acting on at least one front wheel of the actual vehicle.
  • One of the combined values of the force and the combined lateral force acting on at least one front wheel of the model vehicle can be used.
  • a combined value of a state quantity related to lateral movement of at least one rear wheel of the actual vehicle and a state quantity related to lateral movement of at least one rear wheel of the model vehicle can be used.
  • at least one rear wheel of the actual vehicle and a combined value of the state amount related to the lateral movement of the predetermined position at the rear of the actual vehicle and the state quantity related to the lateral movement of the predetermined position at the rear of the model vehicle.
  • Any composite value of a lateral force acting and a lateral force acting on at least one rear wheel of the model vehicle can be used (third invention).
  • the side slip angle of the rear wheel of the actual vehicle and the model A combined value with the side slip angle of the rear wheel of the vehicle can be used as the rear wheel gain adjustment.
  • synthetic Examples of the value include a weighted average value and a weighted average value.
  • control input determining means for driving'braking force operation includes a state quantity relating to a lateral movement of at least one front wheel of the actual vehicle and a lateral direction of a predetermined position of the front portion of the actual vehicle.
  • State quantity relating to lateral movement of at least one rear wheel of the model vehicle State quantity relating to lateral movement of a predetermined position of the rear part of the model vehicle, and road surface force acting on at least one rear wheel of the model vehicle Corresponding to each specific set of rear wheels according to any one of the following lateral force and a parameter correlated with at least one of these state quantities and lateral forces.
  • a combined value for front wheel gain operation obtained by combining the first provisional value and the second provisional value for operation of the front wheel side gain corresponding to the front wheel of each specific group; and a rear wheel of the specific group A means for determining a rear wheel side gain operation composite value obtained by combining the first provisional value and the second provisional value for operation of the corresponding rear wheel side gain; At least the front wheel side gain operation combined value and the determined basic request operation so that the front wheel side gain is proportional to the determined front wheel side gain operation combined value corresponding to each specific set of front wheels.
  • the control input for driving the braking force operation of the specific group according to the amount and the braking force operation is determined, and the rear wheel gain operation composite value corresponding to the rear wheel of the specific group is set to the rear wheel Means for determining the control input for driving / braking power control of the specific rear wheel in accordance with at least the composite value for operating the rear wheel side gain and the determined basic required operation amount so as to make the side gain proportional (4th invention).
  • the front wheel side gain changes in proportion to the front wheel side gain operation composite value.
  • the composite value for operating the front wheel side gain is the first provisional value for operating the front wheel side gain determined according to the state quantity related to the lateral movement of the rear wheel of the actual vehicle and the rear wheel of the model vehicle. This is a composite of the second provisional value determined according to the state quantity related to the lateral motion. Further, control inputs for driving and braking force operation of a specific set of front wheels are determined so that the front wheel side gain is proportional to the front wheel side gain operation composite value.
  • the front wheel side gain corresponding to each specific set of front wheels is proportional to a front wheel side gain operating component whose value changes in accordance with the front wheel side gain adjustment parameter.
  • the rear wheel gain corresponding to the specific rear wheel is proportional to the rear wheel gain operating component whose value changes according to the rear wheel gain adjustment parameter.
  • the drive'braking force operation control input determining means includes the front wheel side gain operation component corresponding to the specific group of front wheels and the rear wheel side gain operation component corresponding to the specific group of rear wheels, respectively.
  • Side gain The control input for driving / braking force operation of each specific set of front wheels is determined according to the operation component and the determined basic required operation amount, and at least the rear wheel side gain operation component and the determined basic It is preferable to include means for determining a control input for driving the braking force of each specific group according to the required operation amount (fifth invention). Also, in the second to fourth inventions, it is preferable to provide a technique equivalent to
  • the sum of the front wheel side gain operation component and the rear wheel side gain operation component corresponding to each specific set of front wheels and rear wheels is substantially constant ( It is possible to maintain the predetermined value or a value close thereto.
  • the total road surface reaction force generated at the front wheels and rear wheels is reduced to 0. It is possible to operate appropriately so that it can be approached.
  • the basic required manipulated variable determining means includes a means for determining the feedback manipulated variable based on the feedback control law for the first state quantity deviation force, and the feedback manipulated variable. And determining the basic required manipulated variable according to the feedback manipulated variable when the predetermined required dead zone is in the vicinity of the feedback manipulated variable force So.
  • the basic required operation amount is determined by setting the value of the feedback operation amount to 0 (seventh invention).
  • the feedback manipulated variable when the feedback manipulated variable is a value close to 0, that is, when the first state quantity deviation is sufficiently close to 0, the feedback manipulated variable
  • the basic required operation amount is determined with the value of the amount set to 0. For this reason, when the first state quantity deviation is sufficiently close to 0, the control input for driving / braking force operation of the front wheel and the rear wheel of the specific group substantially depends on the first state quantity deviation. Will not change. As a result, it is possible to prevent the driving force and braking force of the front wheels and the rear wheels from frequently changing according to the first state quantity deviation.
  • the control input determining means for driving and braking force operation corresponds to the front wheels of each specific group with respect to the front wheel gain adjustment parameter.
  • the front wheel side gain changes substantially continuously
  • the rear wheel side gain corresponding to each specific set of rear wheels changes substantially continuously with respect to the rear wheel side gain adjustment parameter.
  • the driving / braking force of the front wheel and rear wheel of the specific group changes continuously and smoothly with respect to changes in the front wheel side gain adjustment parameter and the rear wheel side gain adjustment parameter. Can be made.
  • the front wheel side gain adjustment parameter and the rear wheel side gain adjustment parameter are parameters of the same type
  • the drive The braking force operation control input determining means is configured to determine whether the front wheel side gain adjustment parameter and the rear wheel side gain adjustment parameter change while taking the same value.
  • the front and rear wheel ratio which is the ratio between the gain and the rear wheel side gain corresponding to the specific rear wheel, is monotonous with respect to changes in the values of the front wheel side gain adjustment parameter and the rear wheel side gain adjustment parameter.
  • the control input for driving / braking force operation of each of the specific group of front wheels and rear wheels is determined so as to change (increase monotonously or decrease monotonously) (invention 11).
  • the sixth invention, the eighth invention, and the tenth invention it is preferable that a technique equivalent to that of the eleventh invention is provided (the twelfth invention).
  • the fifth invention As the state quantity relating to the lateral movement of the front wheel or the rear wheel, the front wheel or the rear wheel is laid down. Any one of a corner angle, a side slip velocity, and a lateral acceleration can be used, and a state quantity relating to a lateral movement of a predetermined position of the front portion or the rear portion of the vehicle is set as the state amount of the predetermined position.
  • a slip angle, a side slip speed, and a lateral acceleration can be used (Thirteenth Invention). The same applies to the second to fourth inventions, the sixth invention, the eighth invention, the tenth invention, and the twelfth invention (fourteenth invention).
  • Still another aspect of the vehicle control apparatus of the present invention is a driving operation amount detecting means for detecting a driving operation amount indicating a driving operation state of the vehicle by a driver of the vehicle having a plurality of wheels, and the vehicle
  • a vehicle control device comprising: an actuator device provided in the vehicle so that the driving and braking force of each wheel can be operated; and an actuator device control means for sequentially controlling the operation of the actuator device;
  • the first actual state value which is the value of the first state quantity related to the actual rotational movement of the vehicle in the direction of the vehicle or the first state quantity related to the rotational movement of the direction of the vehicle and the translational motion in the lateral direction.
  • State quantity grasping means
  • a normative value determining means for determining a first normative value that is a normative value of the first state quantity according to at least the detected driving operation amount
  • State quantity deviation calculating means for calculating a first state quantity deviation which is a deviation between the detected or estimated first actual state quantity and the determined first reference value
  • Basic required manipulated variable determining means for determining a basic required manipulated variable for operating the actuator device so that the first state variable deviation approaches 0 according to the calculated first state variable deviation;
  • control input for driving the braking force of each of the front and rear wheels of the specific set Drive and braking force operation control input determining means for determining the drive and braking force operation control input
  • the actuator device control means controls the operation of the actuator device in accordance with at least the determined driving / braking force operation control input, thereby controlling the driving force of each of the specific set of front wheels and rear wheels. It is a means to operate through the actuator device,
  • the control input determining means for driving'braking force operation is based on a state quantity related to a lateral movement of at least one front wheel of the actual vehicle and a lateral movement of a predetermined position of the front portion of the vehicle.
  • the front wheel gain adjustment is performed on one of a state quantity related to the vehicle, a lateral force acting on the road surface force on at least one front wheel of the vehicle, and a parameter having a correlation with either of the state quantity or the side force.
  • the same front wheel gain adjustment parameter and rear wheel gain adjustment parameter as in the first aspect are used, and at least these gain adjustment parameters and the basic required manipulated variable are used for the drive control. It is input to the control input determining means for power operation. Then, the drive / braking force operation control input determining means determines and outputs the drive / braking force operation control inputs of the specific front wheel and rear wheel according to the input. At this time, when only the front wheel gain adjustment parameter changes monotonously, the change in the control input for driving / braking force operation of the specific front wheel and when only the rear wheel gain adjustment parameter changes monotonously.
  • the road surface reaction force (driving 'braking force and lateral force) acting on the front wheel of the vehicle and the road surface reaction force (driving' braking force and lateral force) acting on the rear wheel are appropriately adjusted.
  • the actual vehicle motion (the one-way rotational motion or the one-way rotational motion and the lateral rotational motion and the lateral motion) is made so that the first actual state quantity of the actual vehicle approaches the first reference value that is the reference value.
  • Direction (translation) can be controlled appropriately. That is, according to the fifteenth aspect of the present invention, the actual vehicle motion is appropriately controlled to a desired motion by appropriately operating the road surface reaction force acting on the front wheels of the vehicle and the road surface reaction force acting on the rear wheels. Is possible.
  • the "monotonic change" in the fifteenth invention means a monotone increase or a monotone decrease. The same applies to the sixteenth to eighteenth inventions described later.
  • the vehicle control apparatus of the present invention detects a driving operation amount indicating a driving operation state of the vehicle by a driver of the vehicle having a plurality of wheels.
  • Control of a vehicle comprising: an amount detection means; an actuator device provided in the vehicle so as to be able to operate a driving force of each wheel of the vehicle; and an actuator device control means for sequentially controlling the operation of the actuator device In the device
  • the first actual state value which is the value of the first state quantity related to the actual rotational movement of the vehicle in the direction of the vehicle or the first state quantity related to the rotational movement of the direction of the vehicle and the translational motion in the lateral direction.
  • State quantity grasping means
  • the first model state quantity which is the value of the first state quantity of the vehicle on the vehicle model preliminarily determined as a model representing the dynamic characteristics of the vehicle, is determined according to at least the detected driving operation quantity.
  • State quantity deviation calculating means for calculating a first state quantity deviation which is a deviation between the detected or estimated first actual state quantity and the determined first model state quantity;
  • Basic required manipulated variable determining means for determining a basic required manipulated variable for operating the actuator device so that the first state variable deviation approaches 0 according to the calculated first state variable deviation;
  • control input for driving the braking force of each of the front and rear wheels of the specific set A driving / braking force operation control input determining means for determining a driving / braking force operation control input
  • Control input determining means For vehicle model operation for determining a vehicle model operation control input for operating a vehicle on the vehicle model so that the first state quantity deviation approaches 0, according to at least the calculated first state quantity deviation.
  • the actuator device control means controls the operation of the actuator device according to at least the determined driving / braking force operation control input, thereby driving the braking force of each of the front wheels and the rear wheels of the specific group. Is a means for operating through the actuator device,
  • the drive'braking force operation control input determining means includes a state quantity relating to a lateral motion of at least one front wheel of an actual vehicle that is the actual vehicle or a model vehicle that is a vehicle on the vehicle model, and The amount of state related to lateral movement at a predetermined position in front of the actual vehicle or model vehicle, the lateral force acting on at least one front wheel of the actual vehicle or model vehicle from the road surface, and the state amount and lateral force
  • One of the parameters having a correlation with at least one of the forces is used as a front wheel gain adjustment parameter.
  • V a state quantity relating to lateral movement of at least one rear wheel of the real vehicle or model vehicle, a state quantity relating to lateral movement of a predetermined position at the rear of the real vehicle or model vehicle, and
  • the lateral force acting on the road surface force on at least one rear wheel of the actual vehicle or the model vehicle and any of the parameters having a correlation with either the state quantity or the lateral force are applied to the rear wheel side.
  • a gain adjustment parameter at least the determined basic required operation amount, the front wheel side gain adjustment parameter, and the rear wheel side gain adjustment parameter are input, and each of the front wheel and the rear wheel of the specific group is input.
  • Drive 'control is a means to output the control input for power operation, and the relationship between the input and output is the input Driving of the specific set of front wheels when only the front wheel side gain adjustment parameter is monotonously changed.
  • the change of the control input for braking force operation and the rear wheel side gain adjustment parameter are monotonously changed.
  • the change in the control input for braking force operation is a monotonic change (16th invention).
  • the same front wheel side gain adjustment parameter and rear wheel side gain adjustment parameter as in the second invention are used, and at least these gain adjustment parameters and the basic required operation amount are This is input to the driving input / braking force control input determining means. Then, the driving / braking force operation control input determining means determines and outputs the driving force / braking force operation control input of each of the specific front wheel and the rear wheel according to the input.
  • the change in the control input for driving and braking force operation of the specific set of front wheels and the rear wheel side gain adjustment parameter is determined so that the change in the driving force for each of the front wheels and rear wheels is monotonously changed.
  • the first state quantity deviation is calculated while taking into account the influence of the lateral force change caused by the operation of the driving / braking force of each of the front and rear wheels of the specific group.
  • the road surface reaction force (drive'braking force and And lateral force) and the road surface reaction force (driving and braking force and lateral force) acting on the rear wheels.
  • the actual vehicle movement In order to bring the first actual state quantity of the actual vehicle closer to the first model state quantity, the actual vehicle movement (one-direction rotational movement, or two-way rotational movement and lateral translation movement)
  • the actual vehicle motion is appropriately controlled to a desired motion by appropriately operating the road surface reaction force acting on the front wheels and the road surface reaction force acting on the rear wheels. Is possible.
  • the control input for driving and braking force operation of the front and rear wheels of each specific group will not be excessive, the robustness against disturbance factors or changes is improved and the vehicle motion is controlled appropriately. it can.
  • the meaning of the “correlation parameter” is the same as in the second aspect of the invention.
  • the relationship between the input and the output of the drive / braking force operation control input determining means is the above when only the front wheel gain adjustment parameter of the input is monotonously changed.
  • the change in the rear wheel drive and braking force control input for the specific group becomes a monotonous change opposite to the change in the front wheel drive and brake force control input for the specific group, and the rear wheel gain
  • the change in the control input for driving the specific group of front wheels' braking force operation ' is monotonous in the opposite direction to the change in the control input for driving the rear wheel of the specific group' braking force operation. It is preferable to be configured so that
  • the external force required to bring the deviation of the first state quantity close to zero (the driving force / braking force component and the lateral force component of the road surface reaction force) is obtained.
  • the driving force / braking force component and the lateral force component of the road surface reaction force is obtained.
  • FIG. 1 is a block diagram showing a schematic configuration of the vehicle.
  • the illustrated vehicle is an automobile with four wheels (two wheels on the front and rear of the vehicle). Since the structure of the automobile itself may be known, detailed illustration and description in this specification will be omitted.
  • a vehicle 1 as shown in Fig. 1 has a rotational driving force (of vehicle 1) on the drive wheels of four wheels W1, W2, W3, and W4.
  • Steering device 3B steerering system
  • suspension device 3C suspension device that elastically supports the vehicle body 1B on the four wheels W1 to W4 Yes.
  • Wheels Wl, W2, W3, and W4 are the left front, right front, left rear, and right rear wheels of vehicle 1, respectively.
  • the driving wheel and the steering wheel are the two front wheels Wl and W2 in the embodiment described in this specification. Therefore, the rear wheels W3 and W4 are driven wheels and non-steering wheels.
  • the drive wheels may be two rear wheels W3 and W4, or both front wheels Wl and W2 and rear wheels W3 and W4 (four wheels W1 to W4).
  • the steered wheels may also include rear wheels W3 and W4 that are connected by only two front wheels Wl and W2.
  • these devices 3A, 3B, 3C have a function of manipulating the movement of the vehicle 1.
  • the driving / braking device 3A mainly has a function of operating movement in the traveling direction of the vehicle 1 (position, speed, acceleration, etc. of the traveling direction of the vehicle 1).
  • the steering device 3B mainly has a function of operating the rotational movement of the vehicle 1 in one direction (the posture of the vehicle 1, the angular velocity, the angular acceleration, etc.).
  • the suspension device 3C is mainly used for movement in the pitch direction and roll direction of the vehicle body 1B of the vehicle 1 (such as the posture of the vehicle body 1B in the pitch direction and roll direction), or movement in the vertical direction of the vehicle body 1B (from the road surface of the vehicle body 1B). It has a function to control the height (position of vehicle body 1B up and down relative to wheels W1 to W4).
  • the “posture” of the vehicle 1 or the vehicle body 1B means a spatial orientation.
  • the drive'braking device 3A is not shown in detail, but in more detail, the power generation source of the vehicle 1
  • a drive system comprising an engine (internal combustion engine) as a (propulsive force generation source of the vehicle 1) and a power transmission system that transmits the output (rotational drive force) of the engine to the drive wheels of the wheels W1 to W4;
  • a brake device braking system that applies a braking force to each of the wheels W1 to W4 is provided.
  • the power transmission system includes a transmission, a differential gear device, and the like.
  • the vehicle 1 described in the embodiment includes an engine as a power generation source.
  • a vehicle including a power engine and an electric motor as power generation sources (a so-called parallel type vehicle, hybrid vehicle).
  • a vehicle equipped with an electric motor as a power generation source (a so-called electric vehicle or series type hybrid vehicle)! / ⁇ .
  • an operation device 5 for operating the vehicle 1 (automobile) by a driver, a steering wheel (a handle), an accelerator pedal, a brake pedal, a shift lever, and the like are provided on the vehicle 1. In the passenger compartment. The illustration of each element of the controller 5 is omitted.
  • the steering wheel of the operation device 5 is related to the operation of the steering device 3B. That is, by rotating the steering wheel, the steering device 3B is operated accordingly, and the steering wheels Wl and W2 among the wheels W1 to W4 are steered.
  • the braking device 3A relates to the operation of the braking device 3A. That is, the opening degree of the throttle valve provided in the engine changes according to the operation amount (depression amount) of the accelerator pedal, and the intake air amount and the fuel injection amount (and thus the engine output) of the engine are adjusted.
  • the brake device operates according to the operation amount (depression amount) of the brake pedal, and the brake pedal The braking torque corresponding to the operation amount is applied to each of the wheels W1 to W4. Also, by operating the shift lever, the operating state of the transmission changes, such as the transmission ratio of the transmission, and adjustment of the drive torque transmitted to the engine power drive wheels is performed.
  • each operating device 5 such as a steering wheel by the driver (the driver of the vehicle 1) is detected by an appropriate sensor (not shown).
  • this detected value of the driving operation state is referred to as driving operation input.
  • This driving operation input includes the steering angle that is the rotation angle of the steering wheel, the accelerator pedal operation amount that is the operation amount of the accelerator pedal, the brake pedal operation amount that is the operation amount of the brake pedal, and the operation position of the shift lever.
  • the detection value of the shift lever position is included.
  • the sensor that outputs the driving operation input corresponds to the driving operation amount detecting means in the present invention.
  • the driving / braking device 3A and the steering device 3B have a factor other than the driving operation input that causes the operation (and hence the movement of the vehicle 1) to be performed only by the driving operation input ( It is assumed that the vehicle 1 can be actively controlled in accordance with the movement state (environmental state, etc.).
  • “actively controllable” means that the operation of the devices 3A and 3B is modified to the basic operation corresponding to the driving operation input (basic target operation determined according to the driving operation input). This means that it is possible to control the operation.
  • the drive 'braking device 3A is configured to drive the left wheels Wl, W3 with respect to at least one of the set of the front wheels Wl, W2 and the set of the rear wheels W3, W4.
  • Driving of braking force and right wheel W2, W4 'Difference or ratio of braking force can be actively controlled via actuators such as hydraulic actuator, electric motor, electromagnetic control valve, etc. provided in this driving' braking device 3A
  • the driving / braking device 3A is a driving force applied to each of the wheels W1 to W4 by the operation of the braking device.
  • Braking force (specifically, the braking force of the vehicle 1)
  • Drive that can be actively controlled via an actuator provided in the brake device (braking force in the moving direction)
  • Brake device (drive that acts on each wheel W1 to W4 by the brake device ⁇ braking force applied to the brake pedal)
  • This is a basic drive / braking device that can be controlled to increase or decrease from the braking force determined according to the amount of operation.
  • the driving and braking device 3A is , W2 and the rear wheels W3, W4, the difference between the driving 'braking force of the left wheels Wl, W3 and the driving force of the right wheels W2, W4' Drive that can actively control the ratio via the actuatorBrake device (drive with left / right power distribution control function for both front wheel Wl and W2 and rear wheel W3 and W4 ⁇ Braking device).
  • the driving / braking device 3A is driven by the operation of the driving system of the driving / braking device 3A in addition to the function of actively controlling the driving-braking force of the wheels W1 to W4 by the operation of the braking device. Therefore, it should have a function that can actively control the difference or ratio of the driving force applied to the front wheels Wl and W2, which are driving wheels, via an actuator provided in the driving system.
  • the driving / braking device 3A having the left-right power distribution control function as described above actively performs the rotational movement and lateral translation movement of the vehicle 1 by the control function. It will also have a function to operate.
  • the driving / braking device 3A drives an actuator for generating braking torque of the braking device, an actuator for driving the engine throttle valve, and a fuel injection valve. It also includes an actuator and an actuator that performs variable speed drive of the transmission.
  • the steering device 3B mechanically steers the front wheels Wl and W2, which are steered wheels, for example, via a steering mechanism such as a rack and pion according to the rotation operation of the steering wheel.
  • a steering device that can steer the front wheels Wl and W2 with an actuator such as an electric motor as needed (the steering angle of the front wheels Wl and W2 is adjusted according to the rotation angle of the steering wheel).
  • This is a steering device that can be controlled to increase or decrease the rudder angular force.
  • the steering device 3B is a steering device that performs steering of the front wheels Wl and W2 using only the driving force of the actuator (so-called steering 'by' steering device). Therefore, the steering device 3B is a steering device that can actively control the steering angles of the front wheels Wl and W2 through the actuator (hereinafter referred to as active steering). Called a tearing device).
  • an active steering device (hereinafter referred to as such active steering) that steers the steered wheel by means of an auxiliary assistor. If the device is an actuator-assisted steering device), the steering angle of the steered wheel mechanically determined by the rotation operation of the steering wheel and the steering angle (steering angle correction amount) by the operation of the actuator Is the steering angle of the steered wheels.
  • the steering device 3B is an active steering device that steers the steered wheels Wl and W2 using only the driving force of the actuator (hereinafter, such an active steering device is referred to as an actuator-driven steering device).
  • an active steering device is referred to as an actuator-driven steering device.
  • the target value of the steering wheel steering angle is determined according to at least the detected steering angle value, and the actuator is controlled so that the actual steering angle of the steering wheel becomes the target value.
  • a known steering device 3B active steering device that can actively control the steering angles of the steered wheels Wl and W2 via the actuator may be used.
  • the steering device 3B in the embodiment of the present specification is an active steering device that can actively control the steering angle of the front wheels Wl and W2 via an actuator, but according to the rotation operation of the steering wheel. It may be one that performs only mechanical steering of the front wheels Wl and W2 (hereinafter referred to as a mechanical steering device). Further, in a vehicle having all the wheels Wl to W4 as steering wheels, the steering device can actively control the steering angles of both the front wheels Wl and W2 and the rear wheels W3 and W4 via an actuator. Also good.
  • the steering device steers the front wheels W 1 and W 2 according to the rotational operation of the steering wheel only by mechanical means such as a rack 'and' pinion, and only the steering angle of the rear wheels W 3 and W 4 is an actuator. It can be actively controlled via
  • the suspension device 3C is a suspension device that operates passively in accordance with the motion of the vehicle 1, for example.
  • the suspension device 3C is interposed between the vehicle body 1B and the wheels W1 to W4, for example. It may be a suspension device that can variably control the damping force or hardness of the damper via an actuator such as an electromagnetic control valve or an electric motor.
  • the suspension device 3C is a suspension stroke (mechanism such as a spring of the suspension device 3C) stroke (up and down displacement between the vehicle body 1B and the wheels W1 to W4) by a hydraulic cylinder or a pneumatic cylinder.
  • a suspension device (so-called electronically controlled suspension) that can directly control the vertical stretching force of the suspension generated between the vehicle body 1B and the wheels W1 to W4.
  • the suspension device 3C is a suspension device (hereinafter referred to as an active suspension device) that can control the damping force and hardness of the damper, the stroke or the expansion / contraction force of the damper as described above, the suspension device 3C The operation can be actively controlled.
  • an active suspension device a suspension device that can control the damping force and hardness of the damper, the stroke or the expansion / contraction force of the damper as described above
  • the actuator device 3 includes a driving / braking device 3A and a steering device 3B. If the suspension device 3C is an active suspension device, the suspension device 3C is also included in the actuator device 3.
  • the operating amount of the actuator provided in each of the actuator devices 3 (control input to the actuator; hereinafter referred to as the operating amount of the actuator) is determined in accordance with the driving operation input and the like.
  • a control device 10 for controlling the operation of each actuator device 3 according to the quantity is provided.
  • the control device 10 is composed of an electronic circuit unit including a microcomputer and the like.
  • the sensor force of the operating device 5 is input with the driving operation input, and the various driving sensors (not shown) are used to drive the vehicle 1 and the vehicle speed.
  • the detected value of the state quantity of vehicle 1 and information on the traveling environment of vehicle 1 are input.
  • the control device 10 sequentially determines the actuator operation amount at a predetermined control processing cycle, and sequentially controls the operation of each of the actuator devices 3.
  • the actuator device according to the present invention (actuator that performs operation control by applying the present invention).
  • the device is equivalent to the driving / braking device 3A, or the driving / braking device 3A and the steering device 3B.
  • the control device 10 corresponds to the actuator device control means in the present invention.
  • control device 10 implements various means in the present invention by its control processing function.
  • FIG. 2 is a functional block diagram showing an outline of the overall control processing function of the control device 10.
  • the actual vehicle 1 is referred to as an actual vehicle 1.
  • the portion excluding the actual vehicle 1 in FIG. 2 (more precisely, the portion excluding the actual vehicle 1 and the sensor included in the estimator 12 described later) is the main control processing function of the control device 10. is there.
  • a real vehicle 1 in FIG. 2 includes the driving and braking device 3A, the steering device 3B, and the suspension device 3C.
  • the control device 10 shown in the figure includes a sensor / estimator 12, a reference manipulated variable determination unit 14, a reference dynamic characteristic model 16, a subtractor 18, a feedback distribution law (FB distribution law) 20, and a feed forward law ( FF rule) 22, an actuator operation target value synthesis unit 24, and an actuator drive control device 26 are provided as main processing function units.
  • a sensor / estimator 12 a reference manipulated variable determination unit 14 a reference dynamic characteristic model 16, a subtractor 18, a feedback distribution law (FB distribution law) 20, and a feed forward law ( FF rule) 22, an actuator operation target value synthesis unit 24, and an actuator drive control device 26 are provided as main processing function units.
  • solid arrows indicate main inputs to the processing function units, and broken arrows indicate auxiliary inputs to the processing function units.
  • the control device 10 executes the processing of these processing function units at a predetermined control processing cycle, and sequentially determines the actuator operation amount for each control processing cycle. Then, the operation of the actuator device 3 of the actual vehicle 1 is sequentially controlled according to the amount of operation of the actuator.
  • the control device 10 first detects or estimates the state quantity of the actual vehicle 1 and the state quantity of the traveling environment of the actual vehicle 1 by the sensor estimator 12.
  • the detection target or estimation target of the sensor estimator 12 includes, for example, the rate Y act which is the angular velocity of the actual vehicle 1 in the same direction, the traveling speed Vact (ground speed) of the actual vehicle 1,
  • Rear wheel side slip angle i8 r_ aC t which is the side slip angle of W3, W4, road surface reaction force (drive • braking force, side force) Force, ground contact load), slip ratio of each wheel W1 to W4 of the actual vehicle 1, and the steering angle S f_act of the front wheels Wl and W2 of the actual vehicle 1.
  • the slip angle ⁇ act transverse to the center of gravity of the vehicle is a vector of the running speed Vact of the actual vehicle 1 (on the horizontal plane) when the actual vehicle 1 is viewed from above. Is the angle that the vehicle 1 makes with respect to the longitudinal direction.
  • the front wheel side slip angle jS Lact is the angle formed by the traveling speed vector of the front wheels Wl and W2 (on the horizontal plane) with respect to the front and rear direction of the front wheels Wl and W2 when the actual vehicle 1 is viewed upward. .
  • the slip angle j8 r_act on the side of the rear wheel is such that the traveling speed vector of the rear wheels W3 and W4 (on the horizontal plane) when the actual vehicle 1 is viewed from above is the front and rear direction of the rear wheels W3 and W4. It is the angle to be made.
  • the rudder angle S f_act is an angle formed by the rotation surface of the front wheels Wl and W2 with respect to the front-rear direction of the actual vehicle 1 when the actual vehicle 1 is viewed in an upward force (on the horizontal plane).
  • front wheel side slip angle ⁇ f_act may be detected or estimated for each front wheel Wl or W2, the side slip angle of one of the front wheels W1 or W2 is typically
  • 8 f_act may be detected or estimated, or the mean value of the sideslip angle of both may be detected or estimated as jS Lact.
  • jS Lact the mean value of the sideslip angle of both
  • the estimated value of the friction coefficient is referred to as the estimated friction coefficient).
  • the estimated friction coefficient estm is, for example, each of the wheels W1 to W4. This is the estimated value of the representative value or average value of the coefficient of friction with the road surface.
  • the estimated friction coefficient / z estm is calculated for each wheel W1 to W4, the front wheel Wl, W2 and the rear wheel W3, W4 are set separately or the left front wheel W1 and the rear wheel W3 are set. And the estimated value of the estimated friction coefficient / z estm for each of the pair of the right front wheel W2 and the rear wheel W4.
  • the sensor / estimator 12 includes various sensors mounted on the actual vehicle 1 in order to detect or estimate the detection target or the estimation target.
  • the sensor include a rate sensor that detects the angular velocity of the actual vehicle 1, an acceleration sensor that detects the longitudinal and lateral accelerations of the actual vehicle 1, a speed sensor that detects the traveling speed (ground speed) of the actual vehicle 1, and the actual vehicle 1
  • a rotational speed sensor for detecting the rotational speed of each wheel W1 to W4, a force sensor for detecting a road surface reaction force acting on each wheel Wl to W4 of the actual vehicle 1 and the like.
  • the sensor / estimator 12 determines, for the detection target or the estimation target, an estimation target that cannot be directly detected by the sensor mounted on the actual vehicle 1 and has a state quantity correlated with the estimation target. This is estimated by an observer based on the detected value, the value of the actuator operation amount determined by the control device 10 or the target value that defines it.
  • the slip angle j8 act across the center of gravity of the vehicle is estimated based on the detection value of the acceleration sensor mounted on the actual vehicle 1.
  • the friction coefficient is estimated by a known method based on the detection value of the acceleration sensor.
  • the sensor / estimator 12 has a function as a real state quantity grasping means in the present invention.
  • the vehicle normal rate and the slip angle across the vehicle center of gravity are used as the type of the first state quantity relating to the motion of the vehicle.
  • the correct rate has a meaning as a state quantity related to the rotational movement of the vehicle in one direction
  • the slip angle transverse to the center of gravity of the vehicle has a meaning as a state quantity related to the translational movement in the lateral direction of the vehicle.
  • the above-mentioned correct rate ⁇ act and the slip angle ⁇ act transverse to the center of gravity of the vehicle are detected or estimated by the sensor estimator 12 as the first actual state quantity in the present invention.
  • actual is often given to the name of the state quantity of the actual vehicle 1 detected or estimated by the sensor / estimator 12.
  • the actual vehicle 1 speed y act, the actual vehicle 1 travel speed Vact, and the actual vehicle 1 vehicle center-of-gravity point slip angle ⁇ act are the actual rate ⁇ act, actual travel speed Vact, The slip angle ⁇ act on the actual vehicle center of gravity.
  • control device 10 determines the reference model operation amount as an input to the reference dynamic characteristic model 16 described later by the reference operation amount determination unit 14.
  • the driving operation input detected by the sensor of the controller 5 is input to the reference operation amount determination unit 14, and the reference model operation amount is determined based on at least the driving operation input.
  • the reference model operation amount determined by the reference operation amount determination unit 14 is the steering angle of the front wheel of the vehicle on the reference dynamic characteristic model 16 (to be described later) (hereinafter referred to as model front wheel steering angle). It is said).
  • the steering angle ⁇ h (current value) of the driving operation inputs is input as a main input amount to the reference operation amount determination unit 14 and detected by the sensor / estimator 12.
  • the estimated actual travel speed Vact (current value) and estimated friction coefficient / z estm (current value) and the vehicle state quantity (previous value) on the normative dynamic characteristic model 16 are the normative manipulated variable determination unit 14 Is input.
  • the reference operation amount determination unit 14 determines the model front wheel steering angle based on these inputs.
  • the model front wheel rudder angle may be basically determined according to the steering angle ⁇ h.
  • a necessary restriction is imposed on the model front wheel steering angle input to the reference dynamic characteristic model 16.
  • Vact, ⁇ est m, and the like are input to the reference manipulated variable determiner 14 in addition to the steering angle ⁇ h.
  • the type of reference model manipulated variable generally depends on the form of the reference dynamic characteristic model 16 and the type of state variable to be determined by the reference dynamic characteristic model 16.
  • the normative operation amount determination unit 14 may be included in the normative dynamic characteristic model 16.
  • the reference operation amount determination unit 14 may be omitted.
  • the control device 10 determines and outputs a reference state quantity that is a state quantity of a movement (hereinafter referred to as a reference movement) as a reference of the actual vehicle 1 by using the reference dynamic characteristic model 16.
  • the normative dynamic model 16 is a pre-determined model that expresses the dynamic characteristics of a vehicle.Based on the required inputs including the normative model manipulated variable, the normative motion state quantity (normative state) The amount is determined sequentially.
  • the normative movement basically means an ideal movement of the actual vehicle 1 that is considered preferable for the driver or close to it.
  • the reference dynamic characteristic model 16 is used for the operation of the reference dynamic characteristic model 16 determined by the reference model operation amount determined by the reference operation amount determination unit 14 and the FB distribution rule 20 described later.
  • Control inputs feedback control inputs
  • Mvir, Fvir, etc. are input, and based on these inputs, the normative motion (and thus the time series of normative state quantities) is determined.
  • the reference state quantity determined and output by the reference dynamic characteristic model 16 is the reference state quantity related to the rotational movement of the vehicle in the horizontal direction and the translational movement of the vehicle in the lateral direction. It is a pair with the normative state quantity.
  • the normative state quantity related to the rotational movement of the vehicle in one direction is, for example, the normative value ⁇ d (hereinafter, sometimes referred to as the normative chord ⁇ d).
  • the normative value j8 d of the vehicle center-of-gravity point side slip angle hereinafter, referred to as the norm vehicle center-of-gravity point side slip angle ⁇ d).
  • the model front wheel steering angle (current value) as the reference model manipulated variable and the feedback control input M vir, Fvir (Previous value) is entered.
  • the traveling speed of the vehicle on the reference dynamic characteristic model 16 is made to coincide with the actual traveling speed Vact.
  • the actual running speed Vact (current value) detected or estimated by the sensor / estimator 12 is also input to the reference dynamic characteristic model 16.
  • the reference dynamic characteristic model 16 determines the vehicle yorate and the vehicle's center-of-gravity slip angle on the reference dynamic characteristic model 16 and uses them to determine the reference state quantity ⁇ d,
  • the feedback control inputs Mvir and Fvir input to the reference dynamic characteristic model 16 are changes in the driving environment (road surface condition, etc.) of the actual vehicle 1 (the change is considered in the reference dynamic characteristic model 16) In addition, it is possible to prevent the movement of the actual vehicle 1 from the reference movement due to the model error of the reference dynamic characteristic model 16 or the detection error or estimation error of the sensor's estimator 12.
  • This is a feedback control input that is input to the reference dynamic characteristic model 16 in order to make the reference movement closer to the movement of the actual vehicle 1.
  • the feedback control inputs Mvir and Fvir are virtual external forces that are virtually applied to the vehicle on the reference dynamic characteristic model 16.
  • Mvir is a virtual moment acting around the center of gravity of the vehicle 1 on the reference dynamic characteristic model 16 and Fvir is a lateral moment acting on the center of gravity. It is a virtual translation force.
  • the reference state quantities ⁇ d and ⁇ d correspond to the first reference value or the first model state quantity in the present invention
  • the reference dynamic characteristic model 16 corresponds to the vehicle model in the present invention.
  • the normative operation amount determining unit 14 and the normative dynamic characteristic model 16 constitute a normative value determining unit or a model state amount determining unit in the present invention.
  • control device 10 detects the actual state quantity detected or estimated by the sensor / estimator 12 (the same kind of real state quantity as the normative state quantity) and the normative state quantity determined by the normative dynamic characteristic model 16.
  • the subtractor 18 calculates the state quantity deviation, which is the difference between the two.
  • the processing of the subtractor 18 constitutes the state quantity deviation calculating means in the present invention.
  • the state quantity deviations ⁇ err and ⁇ err obtained by the subtractor 18 correspond to the first state quantity deviation in the present invention.
  • control device 10 inputs the state quantity deviations ⁇ err and ⁇ err obtained as described above to the FB distribution law 20 and uses the FB distribution law 20 to operate the reference dynamic characteristic model 16.
  • the virtual external forces Mvir and Fvir, which are feedback control inputs, and the actuator operation feedback target value (actuator operation FB target value) which is the feedback control input of the operation of the actuator device 3 of the actual vehicle 1 are determined.
  • the actuator operation FB target value has a feedback control input related to the operation of the braking device of the driving / braking device 3A (more specifically, it acts on each of the wheels W1 to W4 by the operation of the braking device). Drive (feedback control input to manipulate braking force).
  • the actuator operation FB target value includes the feedback control input related to the operation of the steering device 3B in addition to the feedback control input related to the operation of the driving / braking device 3A (more specifically, the front wheel Wl, Feedback control input to operate the lateral force of W2).
  • the actuator operation FB target value is a feedback control input for operating (correcting) the road surface reaction force, which is an external force acting on the actual vehicle 1.
  • the FB distribution rule 20 basically determines the virtual external forces Mvir and Fvir and the actuator operation FB target value so that the input state quantity deviations ⁇ err and ⁇ err are close to zero. However, the FB distribution rule 20 is to determine the virtual external forces Mvir and Fvir by simply bringing the state quantity deviations ⁇ err and ⁇ err close to 0. The virtual external forces Mvir and Fvir are determined so as to prevent the limit target amount from deviating from the predetermined allowable range.
  • the FB distribution law 20 generates a moment in the required direction to bring the state quantity deviations ⁇ err and ⁇ err closer to 0 (more generally, the state
  • the required external force (road reaction force) to bring the quantity deviations ⁇ err and ⁇ err closer to 0 is applied to the actual vehicle 1), or feedback control input related to the operation of the brake device of the drive / brake device 3A, or
  • the feedback control input and the feedback control input related to the operation of the steering device 3B are determined as the actuator operation FB target value.
  • the FB distribution law 20 includes a norm that is the output of the normative dynamic characteristic model 16 that is composed only of the state quantity deviations ⁇ err and ⁇ err. At least one of the state quantity ⁇ d,
  • the virtual external forces Mvir and Fvir correspond to the vehicle model operation control input in the present invention
  • the feedback control input related to the operation of the brake device in the actuator operation FB target value is the drive in the present invention.
  • Corresponds to control input for braking force operation.
  • the FB distribution rule 20 has functions as basic required operation amount determination means, drive / braking force operation control input determination means, and model operation control input determination means in the present invention.
  • the control device 10 in parallel with the control processing of the reference manipulated variable determination unit 14, the reference dynamic characteristic model 16, the subtractor 18 and the FB distribution rule 20 described above (or by time division processing), the control device 10 The operation input is input to the FF rule 22, and the FF rule 22 indicates that the actuator operation FF is the feedforward target value (basic target value) of the operation of the actuator device 3. Determine the standard value.
  • the actuator operation FF target value includes the feed forward target value relating to the driving / braking force of each wheel W1 to W4 of the actual vehicle 1 by the operation of the braking device of the driving / braking device 3A, and the driving force.
  • ⁇ Drive of actual vehicle 1 drive wheel Wl, W 2 by operation of drive system of brake device 3A ⁇ Feed forward target value and drive for braking force ⁇ Feed forward for reduction gear ratio of gearbox of brake device 3A
  • the target value and the feedforward target value related to the steering angle of the steered wheels Wl and W2 of the actual vehicle 1 by the steering device 3B are included.
  • the FF shell IJ22 is supplied with the driving operation input in order to determine the FF target value of these actuator operations, and the actual state quantity (actual traveling speed) detected or estimated by the sensor estimator 12. Vact) is entered.
  • the FF rule 22 determines the actuator operation FF target value based on these inputs.
  • the actuator operation FF target value is an operation target value of the actuator device 3 determined without depending on the state quantity deviations ⁇ err and ⁇ err (first state quantity deviation).
  • the actuator operation FF target value generally includes a feedforward target value related to the operation of the suspension device 3C.
  • the controller 10 uses the actuator operation FF target value (current value) determined by FF rule 22 and the actuator operation FB target value (current value) determined by the FB distribution rule 20 as the actuator operation target. Input to value synthesis unit 24. Then, the control device 10 combines the actuator operation FF target value and the actuator operation FB target value by the actuator operation target value composition unit 24, and the actuator operation target value that defines the operation of the actuator device 3. Determine the target value.
  • the actuator operation target value includes the target value of the driving / braking force of each wheel W1 to W4 of the actual vehicle 1 (total driving by driving / braking device 3A driving system and braking device operation). 'Target value of braking force), target value of slip ratio for each wheel W1 to W4 of actual vehicle 1, target value of steering angle of steering wheel Wl, W2 of actual vehicle 1 by steering device 3B, drive' braking device 3A The target value of the driving 'braking force of each driving wheel Wl, W2 of the actual vehicle 1 and the target value of the reduction ratio of the transmission of the driving device 3A is included.
  • the actuator operation target value synthesis unit 24 is detected or estimated by the sensor's estimator 12 using only the above-described actuator operation FF target value and the actuator operation FB target value. Actual state quantities (front wheel W1, W2 actual side slip angle
  • the actuator operation target value is not limited to the target value of the type described above.
  • the target of the actuator operation amount of each of the actuator devices 3 corresponding to the target value is used.
  • the value may be determined.
  • the actuator operation target value may basically be any value that can define the operation of the actuator device.
  • the target value of the brake pressure may be determined as the actuator operation target value related to the operation of the brake device, or the target value of the actuator operation amount of the brake device corresponding thereto may be determined.
  • control device 10 inputs the actuator operation target value determined by the actuator operation target value synthesizing unit 24 to the actuator drive control device 26, and each of the actuators of the actual vehicle 1 is transmitted by the actuator drive control device 26. Determine the amount of actuator operation for device 3. Then, the actuator of each of the actuator devices 3 of the actual vehicle 1 is controlled by the determined actuator operation amount.
  • the actuator drive control device 26 determines the actuator operation amount so as to satisfy the input actuator operation target value or according to the actuator operation target value. For this determination, the actual state quantity of the actual vehicle 1 detected or estimated by the sensor / estimator 12 is input to the actuator drive control device 26 in addition to the actuator operation target value.
  • a so-called anti-lock brake system is incorporated in the control function related to the brake device of the drive / brake device 3A.
  • control processing function units of the control device 10 may be changed as appropriate.
  • the sensor / estimator 12 process is executed at the end of each control processing cycle.
  • the detected value or the estimated value may be used in the next control processing cycle.
  • FIG. 3 is a diagram showing a vehicle structure on the reference dynamic characteristic model 16 in the present embodiment.
  • This reference dynamic characteristic model 16 expresses the dynamic characteristics of a vehicle by the dynamic characteristics (dynamic characteristics) on the horizontal plane of a vehicle having one front wheel Wf and one rear wheel Wr. Two-wheel model).
  • a vehicle on the reference dynamic characteristic model 16 (a vehicle corresponding to the actual vehicle 1 on the reference dynamic characteristic model 16) is referred to as a model vehicle.
  • the front wheel Wf of the model vehicle corresponds to a wheel obtained by integrating the two front wheels Wl and W2 of the actual vehicle 1 and is a steering wheel of the model vehicle.
  • the rear wheel Wr corresponds to a wheel obtained by integrating the rear wheels W3 and W4 of the actual vehicle 1 and is a non-steered wheel in this embodiment.
  • the angle j8 d (that is, the slip angle ⁇ d transverse to the vehicle center of gravity of the model vehicle) formed by the velocity vector Vd on the horizontal plane of the center of gravity Gd of the model vehicle with respect to the longitudinal direction of the model vehicle, A standard vehicle model's angular velocity ⁇ d around the vertical axis (that is, model vehicle's yo rate ⁇ d) and force S It is a state quantity.
  • the angle ⁇ f_d formed by the intersection of the rotational plane of the front wheel Wf of the model vehicle and the horizontal plane with respect to the front-rear direction of the model vehicle is the reference model operation amount input to the reference dynamic characteristic model 16 as the model front wheel steering angle. is there.
  • the translational force Fvir in the lateral direction (left and right direction of the model vehicle) that additionally acts on the center of gravity Gd of the model vehicle, and the direction of ( The moment Mvir (around the vertical axis) is a feedback control input that is input to the reference dynamic characteristic model 16 as the virtual external force.
  • Vf_d is the traveling speed vector of the front wheel Wf of the model vehicle on the horizontal plane
  • Vr_d is the traveling speed vector of the rear wheel Wr of the model vehicle on the horizontal plane
  • 13 f_d is the side of the front wheel Wf.
  • Slip angle (traveling speed vector Vf_d of front wheel Wf is the front-rear direction of front wheel Wf ( The angle formed with respect to the direction of the line of intersection with the horizontal plane.
  • 8f_d) ⁇ _ d is the rear wheel Wr side slip angle (rear wheel Wr travel speed vector Vr_d is the front-rear direction of the rear wheel Wr (the rotation surface of the rear wheel Wr and (The direction of the line of intersection with the horizontal plane)), the rear wheel side slip angle 13 r_d and!), ⁇ ID is the model vehicle's front wheel Wf travel speed vector Vf_d This is an angle made with respect to the front-rear direction (hereinafter referred to as a slip angle transverse to the vehicle front wheel position).
  • the counterclockwise is viewed from the top of the vehicle.
  • the direction around is the positive direction.
  • the translational force Fvir of the virtual external forces Mvir and Fvir assumes the left direction of the vehicle as the positive direction.
  • the driving force and braking force of the wheels are positive in the direction of the force (road surface reaction force) that accelerates the vehicle forward in the direction of the intersection of the wheel rotation surface and the road surface or the horizontal plane.
  • the driving / braking force in the direction that becomes the driving force with respect to the traveling direction of the vehicle is a positive value
  • the driving / braking force in the direction that becomes the braking force with respect to the traveling direction of the vehicle is the negative value
  • the dynamic characteristics (dynamic characteristics in the continuous system) of this model vehicle are specifically expressed by the following equation 01.
  • the expression excluding the third term (the term including Fvir and Mvir) on the right-hand side of Equation 01 is, for example, a well-known document entitled “Motion and Control of Automobile” (Author: Masato Abe, Publisher: Sankai Co., Ltd.) Do, July 23, 2004, 2nd edition, 2nd edition issued, hereinafter referred to as Non-Patent Document 1) is equivalent to the well-known formulas (3.12) and (3.13).
  • m is the total mass of the model vehicle
  • Kf is the front wheel of the model vehicle Wl3 ⁇ 4 Cornering power per wheel when considered as a connected body of two left and right front wheels
  • Kr is the rear wheel of the model vehicle Cornering power per wheel when Wr is considered as a connected body of two left and right rear wheels
  • Lf is the distance in the front-rear direction between the center of the front wheel Wf of the model vehicle and the center of gravity Gd (the distance in the front-rear direction between the rotation axis of the front wheel Wf and the center of gravity Gd when the rudder angle of the front wheel Wf is 0.
  • Lr is the distance in the front-rear direction between the center of the rear wheel Wr of the model vehicle and the center of gravity Gd (the distance in the front-rear direction between the rotation axis of the rear wheel Wr and the center of gravity Gd. See Fig. 3), I is the model This is the inertia (moment of inertia) around the shaft at the center of gravity Gd of the vehicle.
  • the values of these parameters are pre-set values. In this case, for example, m, I, Lf, and Lr are set to have the same force or almost the same value as those in the actual vehicle 1.
  • Kf and Kr are set in consideration of the tire characteristics (or characteristics required for the tire) of the front wheels Wl and W2 and the rear wheels W3 and W4 of the actual vehicle 1, respectively.
  • steering characteristics such as understeer, oversteer, and neutral steer can be set depending on how Kf and Kr values (more generally, al l, al2, a21, and a22) are set.
  • the values of m, I, Kf, Kr in the actual vehicle 1 may be identified while the actual vehicle 1 is traveling, and the identified values may be used as the values of m, I, Kf, Kr of the model vehicle. .
  • Equation 02c the cornering force of the front wheel Wf of the model vehicle as shown in Fig. 3 (the lateral force of the front wheel Wf) is Ffy_d,
  • the relationship between Ffy_d and j8 f_d and the relationship between Fry_d and j8 r_d are expressed by the following equations 03a and 03b.
  • the latest value (current value) of the actual traveling speed Vact detected or estimated by the sensor 'estimator 12 is used as the traveling speed Vd of the model vehicle. That is, the traveling speed Vd of the model vehicle is always matched with the actual traveling speed Vact.
  • the latest value (previous value) of the virtual external force determined as described later in the FB distribution rule 20 is used.
  • ⁇ f_d the latest value (current value) of the model front wheel steering angle determined as described later by the reference operation amount determination unit 14 is used.
  • yd current value
  • the previous value of J3d, ⁇ (1 is also used.
  • the dynamic characteristics of the model vehicle may be expressed by the following equation (4) more generally.
  • fl (Yd, ⁇ , 311 (1), and £ 2 ((1, ⁇ d, ⁇ f_d) are functions of ⁇ d, ⁇ d, and ⁇ Id, respectively.
  • fl and f2 are functions expressed by linear combination (linear combination) of yd, J3d, and Sf_d.
  • the functions fl and f2 are functions expressed by mathematical expressions. It may be a function whose values are determined by the map also with the value forces of yd, J3d, and ⁇ f_d.
  • the behavior characteristics of the actual vehicle 1 in this embodiment are the open characteristics of the actual vehicle 1 when the present invention is not applied (the behavior characteristics of the actual vehicle 1 when the above-mentioned actuator FB operation target value is constantly maintained at 0). ) And the behavioral characteristics of the reference dynamic characteristics model 16 when the virtual external forces Mvir and Fvir are constantly maintained at 0. For this reason, the standard dynamic characteristics model 16 is generally considered to be more preferable to the driver than the open characteristics of the actual vehicle 1. It is desirable to set a model that shows response behavior. Specifically, it is desirable to set the norm dynamic characteristic model 16 to a model with higher linearity than the actual vehicle 1.
  • the relationship between the slip angle or slip ratio of a model vehicle wheel and the road surface reaction force (lateral force or driving / braking force) acting on the wheel from the road surface is linear or close to it! It is desirable that the normative dynamic characteristic model 16 is set so as to be related.
  • the reference dynamic characteristic model 16 that expresses the dynamic characteristic by the above-described formula 01 is an example of a model that satisfies these requirements.
  • the reference dynamic characteristic model 16 may have characteristics such that the road surface reaction force acting on each wheel Wf, Wr of the model vehicle saturates with respect to the change in the slip angle or slip ratio.
  • the cornering powers Kf and Kr are not set to constant values, but are set according to the front wheel side slip angle i8 f_d and the rear wheel side slip angle i8 r_d, respectively.
  • the absolute value of the front wheel side slip angle j8 f_d increases to some extent, the lateral force Ffy_d of the front wheel Wf generated according to j8 f_d (see Equation 03a) increases ⁇ f_d.
  • the value of Kf is set according to ⁇ fd so as to be saturated.
  • the lateral force Fry_d of the rear wheel Wr generated according to ⁇ r_d increases ⁇ r_d.
  • FIG. 4 is a functional block diagram showing details of the processing function of the reference manipulated variable determiner 14, and FIG. 5 is a graph for explaining the processing of the excessive centrifugal force prevention limiter 14f provided in the reference manipulated variable determiner 14. .
  • the reference operation amount determination unit 14 divides the steering angle ⁇ h (current value) of the input driving operation input by the overall steering ratio is.
  • the unrestricted front wheel rudder angle S unltd is determined.
  • This unrestricted front wheel rudder angle ⁇ Lunltd is the basic requirement for the model front wheel rudder angle ⁇ f_d according to the steering angle ⁇ h It has meaning as a value.
  • the overall steering ratio is is the ratio of the steering angle ⁇ h and the steering angle of the front wheel Wf of the model vehicle.
  • the steering angle ⁇ h of the actual vehicle 1 and the front wheel Wl It is set according to the relationship with the feed forward value of the steering angle of W2.
  • the overall steering ratio is may not be set to a constant value (fixed value), but may be set variably according to the traveling speed Vact of the actual vehicle 1 detected or estimated by the sensor 'estimator 12. In this case, it is desirable to set is so that the overall steering ratio is increases as the running speed Vact of the actual vehicle 1 increases.
  • jS ffl is calculated by the process of the reference dynamic characteristic model 16 and the previous value of the calculated ⁇ ID is input to the reference manipulated variable determination unit 14. It may be. In this case, the arithmetic processing of the
  • the slip angle of the front wheel at unlimited front wheel is the model generated when the model front wheel rudder angle ⁇ f_d of the model vehicle is instantaneously controlled from the previous value to the front wheel rudder angle at unlimited time ⁇ Lunltd (current value). This means the instantaneous predicted value of the side wheel slip angle ⁇ f_d of the vehicle.
  • the reference manipulated variable determiner 14 determines that the front side side slip angle is the front side side slip angle.
  • the limited front wheel side slip angle is determined.
  • the graph of the front wheel side slip angle limiter 14d shown in the figure is a graph illustrating the relationship between the front wheel side slip angle at unlimited time and the limited front wheel side slip angle.
  • the value in the horizontal axis direction is the value of the sliding angle of the front wheel when unlimited, and the value in the vertical axis direction is the value of the sliding angle of the restricted front wheel.
  • This front wheel side slip angle limiter 14d suppresses an excessive increase in the size of the front wheel side slip angle ⁇ f_d of the model vehicle (as a result, the front wheel Wl, This is a limiter for preventing the lateral force of W2 from becoming excessive.
  • the front wheel side slip angle limiter 14d receives the estimated friction coefficient ⁇ estm (current value) input from the sensor's estimator 12 and the actual travel speed Vact (current time) ) And the allowable range of the front wheel side slip angle ⁇ f_d (more specifically, the upper limit value ⁇ f max (> 0) and the lower limit value
  • the allowable range is set so as to be close to At this time, the allowable range [j8 f_min, j8 f_max] is, for example, a relationship in which the relationship between the side slip angle of the front wheels Wl and W2 of the actual vehicle 1 and the lateral force or cornering force is almost linear (proportional relationship) It is set within the range of the value of the side slip angle that is maintained at.
  • the allowable range [ ⁇ f_min, ⁇ f_max] may be set according to one of ⁇ estm and Vact, or either estm or Vact.
  • a fixed allowable range may be set in advance.
  • the front wheel side slip angle limiter 14d indicates that the input front wheel side slip angle at unlimited time is a value within the allowable range [j8 f_min, ⁇ f max] set as described above.
  • the limit front wheel side slip angle value is output as the limited front wheel side slip angle.
  • the front wheel side slip angle limiter 14d is a lower limit of the permissible range [ ⁇ f_min, ⁇ f_max] if the input value of the unrestricted front wheel side slip angle deviates from the allowable range.
  • the value ⁇ f_min or the upper limit value ⁇ f_max is output as the limited front wheel side slip angle.
  • the limited front wheel side slip angle matches the unlimited front wheel side slip angle within the allowable range [ ⁇ f min, ⁇ f max], or the unrestricted front wheel side slip angle. It is determined to be the closest value to.
  • the vehicle front wheel position side slip angle ⁇ ID force obtained by the ⁇ 10 calculation unit 14b is subtracted by the subtractor 14e by the subtractor 14e by subtracting the limited front wheel side slip angle obtained as described above.
  • 1 Limited Front wheel rudder angle S fjtdl is required.
  • the first restricted front wheel rudder angle ⁇ ltdl determined in this way is the unrestricted front wheel rudder so that the front wheel side slip angle 13 f_d of the model vehicle does not deviate from the allowable range [13 f min, ⁇ f max]. It has the meaning of the model front wheel rudder angle S f_d by limiting the angle S unltd.
  • the reference manipulated variable determiner 14 determines the second restricted front wheel steering angle S f_ltd2 by passing the first restricted front wheel steering angle ⁇ fjtdl through the centrifugal force increase prevention limiter 14f.
  • This ⁇ f_ltd2 force is used as the value of the model front wheel steering angle ⁇ f_d that is input to the reference dynamic characteristic model 16.
  • the graph of the centrifugal force excessive limiter 14f shown in the figure is a graph illustrating the relationship between the first restricted front wheel steering angle S fjtdl and the second restricted front wheel steering angle S f_ltd2, and the graph
  • the horizontal axis value for ⁇ is the value of ⁇ fjtdl
  • the vertical axis value is the value of ⁇ f_ltd2.
  • This excessive centrifugal force limiter 14f prevents the centrifugal force generated in the model vehicle from being excessive (as a result, the centrifugal force required for the actual vehicle 1 is not excessive) This is a limiter.
  • the excessive centrifugal force prevention limiter 14f is set according to the estimated friction coefficient / estm (current value) and the actual traveling speed Vact (current value) input to the reference manipulated variable determination unit 14.
  • the allowable range of the model front wheel steering angle ⁇ f_d (specifically, the upper limit value ⁇ f max OO of the allowable range and the lower limit value ⁇ f_min «0)) is set.
  • This allowable range [ ⁇ f_min, ⁇ f max] is that the model vehicle makes a steady circular turn without exceeding the friction limit with the road surface, assuming that the virtual external forces Mvir, Fvir are constantly maintained at 0. This is the allowable range of the model front wheel steering angle ⁇ f_d.
  • Equation 05 Cl ⁇ ⁇ estm'm'g Equation 05
  • G is the heavy acceleration
  • C1 is a positive coefficient of 1 or less.
  • the left side of Equation 05 indicates the centrifugal force that occurs in the model vehicle when the model vehicle is turned in a steady circle while holding the model vehicle's ⁇ -rate ⁇ d and travel speed Vd at ⁇ max and Vact, respectively. Means the force (more specifically, the expected convergence value of the centrifugal force).
  • the value of the calculation result on the right side of Equation 05 is the road surface reaction force determined according to / z estm (specifically, the total frictional force that can act on the model vehicle via the wheel surface Wf and Wr ( This is the value obtained by multiplying the limit value of the magnitude of the translational force horizontal component of the road surface reaction force by the coefficient C1 ( ⁇ limit value), so the maximum yaw rate during steady circle turning ⁇ max is applied to the model vehicle.
  • the value of the coefficient C1 in Expression 05 may be variably set according to at least one of ⁇ estm and Vact. In this case, it is preferable to decrease the value of C1 as estm is smaller or Vact is higher.
  • the value of the model front wheel steering angle ⁇ f_d corresponding to ⁇ max at the time of steady circle turning of the model vehicle is obtained as the limit steering angle S f_max_c (> 0) at steady circle turning.
  • the relationship of the following equation 06 is established between the correct rate y d of the model vehicle and the model front wheel rudder angle S f_d at the time of steady circle turning.
  • Equation 06 can be approximately rewritten as the following Equation 07.
  • Equation 06 the values of yd and Vd in Equation 06 or 07 are set as ⁇ max and Vact, respectively, and by solving for ⁇ f_d, the steady circle turning time limit corresponding to ⁇ max Find the rudder angle ⁇ f_max_c.
  • the allowable range [ ⁇ f_min, ⁇ f_max] of the model front wheel rudder angle ⁇ f_d to prevent the centrifugal force generated in the model vehicle from becoming excessive is basically the allowable range [ ⁇ f_max_c, ⁇ f_ma x_c].
  • the front wheel steering angle ⁇ f_d is subject to unnecessary restrictions in the countersteer state of the actual vehicle 1 (the state in which the front wheels Wl and W2 are steered in the direction opposite to the polarity of the correct rate of the actual vehicle 1). There is a case.
  • ⁇ f_min ⁇ ⁇ f— max— c— fe (— y ⁇ , — y max) Equation 08b fe ( ⁇ d, ⁇ max) and fe (— ⁇ d, — ⁇ max) in Equation 08a, 08b are ⁇ This is a function of d and ⁇ max, and the function value varies according to the values of yd and y max as shown in the graphs of FIGS. 5 (a) and (b). In this example, the value of the function fe (yd, ⁇ max) is less than or equal to a predetermined value ⁇ 1 that is slightly larger than 0 as shown in the graph of FIG.
  • the function fe (— yd, -y max) is a function obtained by inverting the polarities of the variables yd, y max of the function fe (yd, y max), so that the function fe (— yd , -y max) varies with ⁇ d as shown in the graph of Fig. 5 (b). That is, when ⁇ d is a predetermined negative value slightly smaller than 0—y 1 or more (including the case where ⁇ d> 0), the positive constant value fex is obtained.
  • fe (-yd,-y max) when ⁇ d ⁇ — ⁇ 1, decreases monotonously as ⁇ d decreases, and ⁇ d is a predetermined value greater than or equal to- ⁇ max. It reaches 0 before reaching the value ⁇ 2. Furthermore, the value of fe (—yd, ⁇ y max) is maintained at 0 when ⁇ d ⁇ 2 (including the case of ⁇ d ⁇ ⁇ max).
  • ⁇ d the value of ⁇ d required to determine the values of the functions fe (yd, ⁇ max), fe (-yd,-y max) is the normative rate ⁇ determined by the normative dynamic model 16 Use the previous value of d.
  • the centrifugal force increase prevention limiter 14f compulsorily changes the input value.
  • ⁇ f ltdl> ⁇ f_max ⁇ f_max is output as the second restricted front wheel steering angle ⁇ f_ltd_2
  • S fjtdl is S fjnin
  • S fjnin is the second restriction.
  • ⁇ f_ltd2 coincides with the first restricted front wheel steering angle S fjtdl within the allowable range [ ⁇ f_min, ⁇ f max], or is closest to the first restricted front wheel steering angle S fjtdl. It is decided to become.
  • the instantaneous value of the slip angle jS! Ld of the front wheel of the model vehicle on the reference dynamic characteristic model 16 is not excessive, and the model vehicle is Departure Steering angle of driving operation input while avoiding excessive centrifugal force.
  • the second restricted front wheel steering angle ⁇ f_ltd2 is determined for each control processing cycle as the model front wheel steering angle ⁇ f_d to be input to the reference dynamic characteristic model 16.
  • the model front wheel rudder angle S f_d input to the reference dynamic characteristic model 16 is limited as described above so that the centrifugal force generated in the model vehicle does not become excessive.
  • the model front wheel rudder angle ⁇ f_d is limited so that the slip angle j8 d (or the rear wheel slip angle ⁇ r_d) of the model vehicle does not become excessive. Is equivalent to that.
  • the centrifugal force of the vehicle and the slip angle to the side of the center of gravity of the vehicle (or the slip angle to the side of the rear wheel) are delayed with respect to the steering operation.
  • the process of limiting the steering angle S f_d is a process of limiting the model front wheel steering angle ⁇ f_d based on the expected convergence of the vehicle's centrifugal force and the slip angle (or the rear wheel's side slip angle). It can be said that.
  • the limit processing of the front wheel side slip angle limiter 14d limits the model front wheel rudder angle S f_d so that the instantaneous value of the front wheel side slip angle j8 f_d of the model vehicle does not become excessive. It can be said that this is a process.
  • the function fe used to set the allowable range [ ⁇ f min, ⁇ f_m ax] with the centrifugal force increase prevention limiter 14f is shown in FIGS. 5 (a) and 5 (b). Although set as shown, it is not limited to this.
  • the function fe (y d, ⁇ max) may be set as shown by a solid line graph in FIG.
  • the function fe (-y d, -y max) is shown by a broken line graph in FIG.
  • the upper limit ⁇ f_max of the allowable range of the model front wheel rudder angle ⁇ f_d determined by the above formula 08a is ⁇ (When ⁇ d exceeds ⁇ max, The angle ⁇ f—max_c is closer to 0.
  • the lower limit value ⁇ f_min of the allowable range of the model front wheel steering angle S f_d determined by the above-mentioned equation 08b is such that ⁇ d is one ⁇ max on the negative side. If it exceeds the limit, it will be closer to 0 than S f_max as ⁇ d decreases (increases in size).
  • ⁇ f_min ⁇ ⁇ f— max— c'fe (— y ⁇ , — y max)
  • Expression lib fe (yd, ⁇ max), fe (- ⁇ d,- ⁇ max) has the value It is always 1 or more, and changes in accordance with ⁇ (1 in the same form as in FIGS. 5 (a) and 5 (b), and these ⁇ 3 ⁇ 4 ( ⁇ d, ⁇ max), fe (- By multiplying the values of ( ⁇ d, — ⁇ max) by ⁇ f_max_c and ⁇ f_min_c, respectively, the upper limit value ⁇ f_max and the lower limit value ⁇ f_min are set.
  • FIG. 8 is a functional block diagram for explaining the processing function.
  • the front wheel steering angle correction amount ⁇ ⁇ 13 ⁇ 4 processing unit 14g for correcting the first limited front wheel steering angle ⁇ f Jtdl determined by the front wheel side slip angle limiter 14d Determine according to rate Yd (previous value).
  • ⁇ Sf basically increases as ⁇ increases on the positive side, and the value of ⁇ Sf increases monotonously on the positive side, and yd is negative. As the value decreases on the side, the value of ⁇ Sf is determined to monotonously decrease on the negative side.
  • the value of ⁇ Sf has an upper limit value (> 0) and a lower limit value ( ⁇ 0).
  • the upper limit value and the lower limit value are set such that, for example, the absolute values thereof are the same as the constant value fex shown in FIGS. 5 (a) and 5 (b).
  • the front wheel steering angle correction amount ⁇ ⁇ 13 ⁇ 4 determined as described above is input by adding to the first limited front wheel steering angle ⁇ fjtdl calculated by the subtractor 14e (see FIG. 4) by the adder 14h.
  • Determine the first restricted front wheel rudder angle with correction when the direction of Sfjtdl and the direction of yd are opposite to each other, the magnitude of the first limited front wheel steering angle with input correction is smaller than the magnitude of Sf Jtdl. However, if the direction of Sfjtdl is the same as the direction of yd, the size of the first restricted front wheel rudder angle with input correction is larger than the size of Sfjtdl. Become.
  • the first restricted front wheel rudder angle with input correction is passed through the limiter 14f for preventing excessive centrifugal force, thereby allowing the first restricted front wheel rudder angle with input correction to be within the allowable range of the model front wheel rudder angle S f_d [ Determine the second restricted front wheel steering angle with input correction limited to the value within ⁇ f min, ⁇ f max]. That is, when the first restricted front wheel steering angle with input correction is within the allowable range, the first restricted front wheel steering angle with input correction is directly used as the second restricted front wheel steering angle with input correction. It is determined.
  • the value closer to the first restricted front wheel rudder angle with input correction of ⁇ Lmax and ⁇ f_min is input. It is determined as the second restricted front wheel rudder angle with correction.
  • the upper limit value ⁇ f_max (> 0) of the allowable range of the model front wheel steering angle ⁇ f_d in the centrifugal force increase limiter 14f is the same as the direction of ⁇ fjtdl and the direction of ⁇ d in anticipation of correction amount of [delta] f ltd 1, wherein is set to a large value (e.g. ⁇ f_max_c + fex) than during steady circular turning steering angle limit value ⁇ f- ma X _ C.
  • the lower limit value ⁇ f_min «0) of the allowable range of the model front wheel steering angle ⁇ f_d is set so that the absolute value thereof is larger than ⁇ f_max_c.
  • the second restricted front wheel steering angle S f_ltd2 is subtracted from the second restricted front wheel steering angle with input correction determined as described above by the subtractor 14i. decide.
  • the processing of the front wheel side slip angle limiter 14d and the excessive centrifugal force prevention limiter 14f is performed.
  • the first restricted front wheel steering angle ⁇ fjtdl determined in 14e may be input to the reference dynamic characteristic model 16 as the model front wheel steering angle ⁇ f_d.
  • the model front wheel rudder angle ⁇ f_d input to the reference dynamic characteristic model 16 is limited by the reference operation amount determination unit 14 as described above, so that the model vehicle spins or an extreme side slip occurs. Is prevented from occurring.
  • FIG. 9 is a functional block diagram showing processing functions of the FB distribution rule 20. As shown in the figure, the FB distribution rule 20 is roughly divided into its processing functions.
  • the virtual external force determination unit 20a that performs processing to determine the virtual external forces Mvir and Fvir and the actuator operation
  • the actuator operation that performs processing to determine the FB target value FB target And a value determining unit 20b.
  • virtual external force determination unit 20a corresponds to the model operation control input determination means in the present invention.
  • the virtual external force determining unit 20a will be described with reference to FIG. 9.
  • the processing functions of the virtual external force determining unit 20a are roughly divided into a virtual external force temporary value determining unit 201 and a ⁇
  • the external force temporary value determination unit 201 determines the virtual external force temporary values Mvirtmp and Fvirtmp.
  • Mvirtmp of the provisional values Mvirtmp and Fvirtmp is the moment that should be generated around the center of gravity Gd of the model vehicle of the reference dynamic characteristic model 1 6 in order to bring the state quantity deviations ⁇ err and ⁇ err closer to 0.
  • One direction Fvirtmp is the translational force that should be applied to the center of gravity Gd of the model vehicle of the reference dynamic characteristic model 16 in order to bring the state quantity deviations ⁇ err and ⁇ err closer to 0 (the model vehicle (Translational force in the lateral direction).
  • the input state quantity deviations ⁇ err and ⁇ err are defined as a vector ( ⁇ err, ⁇ err) T (subscript ⁇ means transposition).
  • the virtual external force temporary values Mvirtmp and Fvirtmp (hereinafter referred to as virtual external force temporary values Mvirtmp and Fvirtmp) are determined by multiplying the gain matrix KMr.
  • the ⁇ ⁇ limiter 202 which will be described in detail below, indicates that the slip angle ⁇ d transverse to the vehicle center of gravity of the model vehicle or the slip angle ⁇ act transverse to the center of gravity of the actual vehicle 1 satisfies the predetermined allowable range. If you want to generate a strong action to return j8 d or
  • the virtual vehicle external force ⁇ d and the vehicle center-of-gravity point side slip angle ⁇ d on the reference dynamic characteristic model 16 are controlled so as to suppress deviation from the predetermined allowable range.
  • the process to modify the provisional values Mvirtmp and Fvirtmp is executed from the ⁇ j8 limiter 202 ⁇ .
  • the ⁇ ⁇ limiter 202 first executes the processing of the prediction calculation unit 203, and after the predetermined time (after one or more predetermined number of control processing cycles), the model vehicle
  • the current rate ⁇ d and the slip angle i8 d across the center of gravity of the vehicle are predicted, and the predicted values are output as the predicted short rate ⁇ da and the slip angle j8 da across the predicted vehicle center of gravity, respectively.
  • the prediction calculation unit 203 includes the reference yorate yd (current value) determined by the reference dynamic characteristic model 16 and the slip angle
  • the virtual external force temporary values Mvirtmp and Fvirtmp (current values) determined as described above in 201 are input, and the prediction calculation unit 203 holds the model front wheel steering angle ⁇ in the input ⁇ f_ltd2, Assuming that the virtual external force Mvir, Fvir force acting on the model vehicle is held in the input Mvirtmp, Fvirtmp, and the traveling speed Vd of the model vehicle is held in the input Vact, the above-mentioned equation 01 Based on the above, a predicted yaw rate ⁇ da and a predicted vehicle lateral point of gravity j8 da are calculated.
  • the ⁇ j8 limiter 202 passes the ⁇ da and da calculated by the prediction calculation unit 203 as described above through the ⁇ dead zone processing unit 204 and the j8 dead zone processing unit 205, respectively. Deviation amounts ⁇ over and ⁇ over from the predetermined allowable ranges are obtained.
  • the graph of the ⁇ dead zone processing unit 204 shown in the figure is a graph exemplifying the relationship between ⁇ da and ⁇ over, the value in the horizontal axis direction is the value of ⁇ da, and the value in the vertical axis direction is ⁇ over Is the value of Similarly, the graph of the j8 dead zone processing unit 205 shown in the figure is a graph illustrating the relationship between j8 da and
  • the value in the horizontal axis direction for the graph is the value of ⁇ da and the value in the vertical axis direction. The value is the value of ⁇ over.
  • the allowable range in the ⁇ dead band processing unit 204 is an allowable range in which the lower limit value and the upper limit value are ⁇ damin ( ⁇ 0) and y damax (> 0) (the allowable range of the rate ⁇ d).
  • the allowable range in the j8 dead zone processing unit 205 is an allowable range (slip angle ⁇ d transverse to the vehicle center of gravity point) where the lower limit value and the upper limit value are jS dami ⁇ «0) and ⁇ damax (> 0), respectively. Is acceptable).
  • the allowable range [ ⁇ damin, ⁇ damax] relating to the yo rate ⁇ d is, for example, maintaining the running speed V d of the model vehicle at Vact (current value) and the yo rate ⁇ d of the model vehicle. Set so that the centrifugal force generated in the model vehicle does not exceed the limit value of the friction force according to the estimated friction coefficient / z estm (current value) when steady circular turning is performed while maintaining ⁇ damin or ⁇ damax. Is done. That is, to satisfy the following equations 16a and 16b, Value) and ⁇ estm (current value), ⁇ damax, y damin are set c
  • ⁇ damax, y damin is the absolute value; 0 different from y max (eg, smaller than ⁇ max, value You can set it to be!)!
  • the allowable range [ ⁇ damin, ⁇ damax] relating to the vehicle center-of-gravity side slip angle ⁇ d affects, for example, the vehicle center-of-gravity side slip angle of actual vehicle 1 and the center of gravity of actual vehicle 1 It is set within the range of the slip angle to the side of the vehicle center of gravity so that the relationship between the translational force in the lateral direction and the linear relationship (proportional relationship) is maintained. In this case, it is desirable to set j8 damin and ⁇ damax according to at least one of Vact (current value) and / z estm (current value).
  • the deviation amount 13 over from the allowable range [j8 damin, ⁇ damax] of the predicted slip angle 13 da of the vehicle center of gravity is obtained.
  • the ⁇ j8 limiter 202 sets the temporary manipulated variables Mvir_over and Fvir_over, which are the correct amounts of the virtual external force temporary values Mvirtmp and Fvirtmp, so that these deviation amounts ⁇ over and j8 over approach 0. Calculated by the processing unit 206.
  • Mvir.over and Fvir_over are determined by multiplying a vector ( ⁇ over, ⁇ over) ⁇ consisting of y over and j8 over by a predetermined gain matrix Kfov
  • the ⁇ j8 limiter 202 determines the current values of the virtual external forces Mvir and Fvir by subtracting the temporary manipulated variables Mvir_over and Fvir_over from the virtual external force temporary values Mvirtmp and Fvirtmp by the subtractor 207, respectively.
  • the virtual external forces Mvir and Fvir are determined by the following equations 18a and 18b.
  • Mvir Mvirtmp ⁇ Mvir ⁇ over formula 18 a
  • the virtual external forces Mvir and Fvir are determined so as to bring the state quantity deviations ⁇ err and ⁇ err closer to 0 while suppressing the deviation from [ ⁇ damin, ⁇ damax].
  • FIG. 10 is a functional block diagram for explaining the processing.
  • virtual external force temporary value determination unit 201 determination unit 201, prediction calculation unit 203, The processes of the zone processing unit 204, the j8 dead zone processing unit 205, and the processing unit 206 are the same as those in FIG.
  • the temporary operation amounts Fvir_over and Mvir_over obtained by the processing unit 206 are input to the processing units 208 and 209, respectively, and the virtual external force temporary values Mvirtmp and Fvirtmp are corrected by the processing units 208 and 209, respectively. Correction coefficients Kattl ( ⁇ 0) and Katt2 ( ⁇ 0) are determined.
  • correction coefficients Kattl and Katt2 are correction coefficients multiplied by virtual external force provisional values Mvirtmp and Fvirtmp, respectively.
  • the graph related to the processing unit 208 shown in the figure is a graph illustrating the relationship between Mvir_over and Katt 1.
  • the horizontal axis value for the graph is the Mvir_over value
  • the vertical axis value is the Kattl value. It is.
  • the graph related to the processing unit 209 shown in the figure is a graph illustrating the relationship between Fvir_over and Katt2, the value in the horizontal axis direction is the value of Fvir_over, and the value in the vertical axis direction is Katt2. Is the value of
  • the virtual external force Mvir is reduced to a virtual external force temporary value Mvirtmp so as to be reduced (close to 0).
  • the external force Mvir is determined.
  • the virtual external force Fvir is determined so that the magnitude of the virtual external force Mvir is reduced (closer to 0) to the virtual external force temporary value Mvirtmp.
  • Determining the virtual external force Mvir, Fvir in this way is a deviation force from the allowable range of ⁇ da, j8 da and is considered to be caused by the virtual external force Mvir, Fvir, and the allowable range of y da, j8 da Deviations from [y damin, y damax], [ ⁇ damin, j8 damax]
  • the model operation amount determination unit 14 limits the model front wheel steering angle ⁇ f_d to be input to the model dynamic characteristic model 16 as described above.
  • the prediction calculation unit 203 calculates the predicted short rate ⁇ da and the predicted vehicle center-of-gravity point slip angle ⁇ da obtained by using the equation 01 as described above, respectively. These ⁇ da and ⁇ da are input to the ⁇ dead zone processing unit 204 and the ⁇ dead zone processing unit 205 to obtain the deviation amounts ⁇ over and j8 over. However, instead of ⁇ da, j8 da, the current value of normative rate ⁇ d, norm vehicle center of gravity side slip angle ⁇ d, or actual rate ⁇ ac actual vehicle center of gravity side slip angle j8 act You may use the current value of, or the value that has been filtered for these values as the amount to be restricted.
  • the current value of ⁇ d is input to the ⁇ dead zone processing unit 204 instead of ⁇ da, and the transfer function is (1 + T 1 's) Z (l + T2' s) in the form of filtering (Tl, T2 is a time constant, s is a Laplace operator) 3 You may make it input into the dead zone process part 205.
  • Tl time constant
  • T2 time constant
  • s time constant
  • FIG. In this case, for example, if the time constants Tl and ⁇ 2 are set so that T1> T2, the filtering process functions as a so-called phase advance compensation element.
  • the phase of the frequency component of ⁇ d in a certain high frequency range is advanced, and the gain for the frequency component is increased, so that the value of j8 d determined in each control processing cycle itself is within the allowable range [jS Before deviating from damin, j8 damax], the virtual external force Mvir, Fvir can be limited according to j8 over.
  • ⁇ da and ⁇ da as the restriction target amounts may be obtained as follows.
  • the prediction calculation unit 203 obtains values obtained by linearly combining the current values of ⁇ d and ⁇ d using appropriate coefficients cij as ⁇ da and ⁇ da.
  • Equation 19b the values obtained by linearly combining the current values of ⁇ (1, ⁇ d, Mvirtmp, Fvirtmp, and ⁇ f_ltd2 using appropriate coefficients cij are denoted as ⁇ da and ⁇ da. You may ask for it.
  • yda cll- yd + cl2- jSd + clS-djSd / dt
  • frequency coefficients may be given to the coefficients cij of these equations (in other words, a filtering process such as a low-pass filter is applied to the value of the variable multiplied by cij). Or, let's multiply the value of the variable multiplied by the coefficient cij with a limit on the rate of change over time of the variable.
  • ⁇ da and ⁇ da can be used to properly determine ⁇ da and ⁇ da as predicted values of the slew rate of the actual vehicle 1 or model vehicle after a predetermined time and the slip angle across the vehicle center of gravity.
  • the virtual external forces Mvir and Fvir may be determined by the following equation 200.
  • the ⁇ dead zone processing unit 204 and 13 dead zone processing unit 205 of the ⁇ ⁇ limiter 202 are each allowed to have an allowable range of ⁇ da and ⁇ da [ ⁇ damin, ⁇ damax], [ ⁇ damin, ⁇ damax] was set to determine the deviations ⁇ over, ⁇ over, but considering the correlation between ⁇ da and j8 da, for the pair ⁇ da, ⁇ da It is also possible to set an allowable range (allowable range) and determine the deviation amount ⁇ over, ⁇ over!
  • a region A (parallelogram shaped region) surrounded by straight lines 1 to 4 on the coordinate plane with ⁇ da as the horizontal axis and j8 da as the vertical axis is represented by ⁇ da, ⁇ Set as the permissible area ⁇ for da.
  • the straight lines 1 and 3 are straight lines that define the lower and upper limits of ⁇ da, respectively.
  • the lower limit value and the upper limit value are set in the same manner as the lower limit value ⁇ damin and the upper limit value ⁇ damax of the allowable ranges [ ⁇ damin, ⁇ damax] in the ⁇ dead zone processing unit 204, for example.
  • Lines 2 and 4 are lines that respectively define a lower limit value and an upper limit value of j8 da.
  • the lower limit value and the upper limit value are set so as to change linearly according to ⁇ da.
  • 8 da for example, the permissible region A as shown by point P2 in FIG.
  • the point P3 closest to the point P2 at the boundary of the allowable area A (in the allowable area A on the straight line 5) The point P3) that is closest to P2 is determined.
  • the difference between the value of y da at point P2 and the value of ⁇ da at point P3 is determined as the deviation amount ⁇ over, and the difference between the value of j8 da at point P2 and the value of 13 da at point P3 The difference is determined as the deviation 13 over.
  • the point force corresponding to the set of ⁇ da and ⁇ da is, for example, the point P4 shown in FIG.
  • the allowable region of the pair of ⁇ da and ⁇ da does not need to be a parallelogram-shaped region.
  • a boundary portion shown by a broken line in FIG. It may be region A, which is formed so as not to have).
  • both ⁇ da and ⁇ da !, and deviation amounts from [ ⁇ damin, ⁇ damax], [j8 damin,; 8 damax] ⁇ over, ⁇ Over was calculated, and the temporary values Mvir tmp and Fvirtmp were corrected according to J.
  • the temporary values Mvirtmp and Fvirtmp may be corrected according to only one of ⁇ over and j8 over.
  • either one of y over and j8 over may be fixed to 0 to obtain the provisional value manipulated variables Mvir_over and Fvir_over! ,.
  • FIG. 12 is a functional block diagram showing processing of the actuator operation FB target value determination unit 20b.
  • the actuator operation FB target value determining unit 20b first receives the state quantity deviation ⁇ err, in accordance with the input state quantity deviation ⁇ err, ⁇ err in the processing unit 220.
  • Feedback control to the actuator device 3 of the actual vehicle 1 by changing the feedback moment basic requirement value Mlbdmd, which is the basic requirement value of the momentary moment to be generated around the center of gravity G of the actual vehicle 1 to bring j8 err closer to 0 Determined as the basic required value for input.
  • Mlbdmd is determined by the feedback control law from the state quantity deviations ⁇ err and ⁇ err. Specifically, by multiplying a vector ( ⁇ err, ⁇ err) 'consisting of j8 err, y err by a predetermined gain matrix Klbdmd (linearly combining ⁇ err, ⁇ err) as shown in the following equation 23 Mlbdmd is determined.
  • Mlbdmd may be determined according to jS err and ⁇ err and the first-order differential value d j8 err / dt of j8 err. For example, determine M i dmd by multiplying a vector consisting of jS err, ⁇ err, and d j8 err / dt by an appropriate gain matrix (linearly combining j8 err, ⁇ err, d err / dt with appropriate coefficients). Even if you do it.
  • At least one of the elements Klbdmdl and Kl dmd2 of the gain matrix Klbdmd has a phase compensation element whose transfer function is represented by (1 + Tcl ⁇ s) Z (1 + Tc2 ⁇ s). You may stumble to multiply.
  • the value of the time constants Tel and Tc2 is set so that Klbdmdl multiplied by j8 err is multiplied by the above phase compensation element and Tel> Tc2.
  • the term that is obtained by multiplying ⁇ err by Klbdmdl is equivalent to a linear combination of ⁇ err and its differential value that is passed through a noise cut filter.
  • the actuator operation FB target value determination unit 20b passes the Mlbdmd through the dead band processing unit 221 to determine the dead band excess feedback moment request value Ml dmcLa.
  • the graph of the dead zone processing unit 221 in the figure is a graph illustrating the relationship between Mlbdmd and Ml dmcLa. Value.
  • the driving of the actuator device 3 and the brake of the braking device 3A are mainly performed. Operate the device. In this case, if the brake device is operated according to Mf bdmd determined as described above, the brake device may be frequently operated. In the present embodiment, in order to prevent this, the brake device is operated according to the dead zone excess feedback moment required value M 1 dmcLa obtained by passing Mlbdmd through the dead zone processing unit 221.
  • Ml dmd_a Mibdmd—the upper limit value.
  • Ml dmd_a Mibdm d— Set to the lower limit.
  • the excess from the dead zone of Mlbdmd is determined as Ml dmcLa.
  • the basic required operation amount determination means in the present invention is configured by the processing of the processing unit 220 and the dead zone processing unit 221.
  • the dead zone excess feedback motion request value MlbdmcLa corresponds to the basic required operation amount in the present invention.
  • the feedback required moment basic requirement value Mf dmd corresponds to the feedback manipulated variable in the present invention.
  • Mfcdmd_a as the basic required operation amount in the present embodiment is a brake device when Mlbdmd as the required operation amount for bringing the state quantity deviations ye rr and ⁇ err closer to 0 is close to 0 (when Mlbdmd is in the dead zone)
  • the state quantity deviations ⁇ err and ⁇ err function to be close to 0 while suppressing frequent operations.
  • the processing of the dead zone processing unit 221 may be omitted, and Mlbdmd may be used as it is as MlbdmcLa (basic required operation amount in the present invention).
  • MlbdmcLa is generated around the center of gravity of the actual vehicle 1 (and y err and j8 err are set to 0 as a result).
  • Drive / brake device Drive of each wheel W1 to W4 by operation of brake device of 3A 'feedback target value of braking force (brake device feedback control input to bring ⁇ err, ⁇ err close to 0) )
  • the braking force Fxlbdmd_3 is determined so that the relationship between each change and the change with MlbdmcLa is proportional.
  • the ratios of changes in Fxlbdmd_l and Fxl dmd_3 with respect to changes in Mlbdm d_a in this proportional relationship are referred to as front wheel side gain GA1 and rear wheel side gain GA3, respectively.
  • Fxl dmd_l and Fxl dmd_3 are determined to be values obtained by multiplying MlbdmcLa by GA1 and GA3 (values proportional to MlbdmcLa), respectively.
  • MlbdmcLa is a negative moment (a moment in the clockwise direction when viewed from the top of the actual vehicle 1), basically, the right wheel Wl, W3 of the actual vehicle 1 is driven and braked. The force is increased in the braking direction, so that MlbdmcLa is generated around the center of gravity G of the actual vehicle 1.
  • the braking force Fxlbdmd_4 is determined so that the relationship between each change and the change with Ml d md_a is proportional.
  • Fxl dmd_2 and Fxl dmd_4 are determined to be values obtained by multiplying MlbdmcLa by GA2 and GA4 (values proportional to MlbdmcLa), respectively.
  • the distance between the front wheels Wl and W2 of the actual vehicle 1 (that is, the tread of the front wheels Wl and W2) is df
  • the distance between the rear wheels W3 and W4 (that is, the rear wheels W3 and W4 Tread) is dr
  • the actual steering angle (actual front wheel steering angle) of front wheels Wl and W2 is ⁇ f_act.
  • the rear wheels W3 and W4 are non-steering wheels, and therefore the actual steering angle (actual rear wheel steering angle) of the force rear wheels W3 and W4 not shown is ⁇ r_act.
  • Lf is the longitudinal distance between the center of gravity G of the actual vehicle 1 and the axle of the front wheels Wl, W2 and Lr is the longitudinal distance between the center of gravity G of the actual vehicle 1 and the axles of the rear wheels Wl, W2.
  • the actuator operation FB target value distribution processing unit 222 determines the first wheel distribution ratio correction value Kl_str and the first wheel distribution ratio correction value according to the actual front wheel steering angle S f-act
  • the second wheel distribution ratio correction value K2_str is determined by the processing units 222b_l and 222b_2
  • the third wheel distribution ratio correction value K3_str and the fourth wheel distribution ratio correction value K4_str are determined according to the actual rear wheel steering angle ⁇ r_act.
  • the driving force and braking force of the third wheel W3 and the fourth wheel W4 that generate this moment vary from Fxfolll dmd_3 and Fxfolll dmd_4 determined by the equations 24c and 24d, respectively.
  • Kl_str and K2_str related to the front wheels Wl and W2 are determined in the processing units 222b_l and 222b_2, respectively, as follows. That is, first, the values of LI and L2 shown in Fig. 13 and the values of df and Lf, ⁇ f_act and force, which are preliminarily set, are calculated by the geometric calculation of the following equations 25a and 25b.
  • the steering device 3B is a mechanical steering device
  • the steering device 3B may be determined from the overall steering ratio of the mechanical steering device and the steering angle ⁇ h of the driving operation input.
  • the current value of the unrestricted front wheel steering angle ⁇ Lunltd determined by the processing unit 14a of the reference manipulated variable determination unit 14 may be used.
  • Kl_str and K2_str are determined by the following equations 26a and 26b.
  • Expression 26a Expression 26b [This is a function that outputs the larger of max (a, b) (a, bi) , Is a positive constant smaller than dfZ2. This prevented KLstr and K2_str from becoming excessive.
  • the upper limit value of (df / 2) / Lmin (> l) ⁇ Kl_str, K2_str is set, and below this upper limit value, Kl_str, K2_str is set according to the actual front wheel steering ⁇ f_act.
  • the rear wheels W3 and W4 are non-steering wheels, so as described above, K3_str
  • K4_str l.
  • Kl_str and K2_str are set according to the actual front wheel steering angle ⁇ f_act as described above, according to the actual rear wheel steering angle ⁇ r_act It is desirable to set K3_str and K4_str! /.
  • This Kn is a correction factor (smaller than 1, positive value) for correcting Fxfolll dmd_n by multiplying this by the ⁇ -th wheel driving / braking force full required value Fxfolll dmcLn.
  • the n-th wheel distribution gain Kn is determined as follows for each processing unit 222c_n.
  • the first wheel distribution gain K1 and the third wheel distribution gain K3 relating to the first wheel W1 and the third wheel W3 arranged in front and rear on the left side of the actual vehicle 1 are shown in Fig. 14 (a) and (b), respectively. is determined so as to substantially continuously changes in accordance with jS! Lact, j8 r_ ac t as indicated by the solid line. Also, the second wheel distribution gain K2 and the fourth wheel distribution gain K4 related to the second wheel W2 and the fourth wheel W4 arranged at the front and rear on the right side of the actual vehicle 1 are shown in Figs. 14 (a) and (b). As shown by the broken line graph in FIG.
  • K1 is a negative value of positive value of j8 f_act as shown by the solid line graph in Fig. 14 (a).
  • the predetermined lower limit force is determined according to the value of ⁇ Lact so as to increase monotonously up to the predetermined upper limit value. Therefore, K1 is determined to be larger when j8 f_act is positive than when it is negative.
  • K3 monotonously decreases to a predetermined upper limit force to a predetermined lower limit as j8 r_act increases to a negative value.
  • K3 is determined to be larger when j8 r_act is negative than when it is positive.
  • K2 indicates that j8 f_act increases to a negative value force positive value as shown by the broken line graph in Fig. 14 (a). Accordingly, it is determined according to the value of ⁇ f_act so as to monotonously decrease from the predetermined upper limit value to the predetermined lower limit value.
  • the broken line graph force K1 represents the relationship between ⁇ 2 and ⁇ f_act
  • K4 increases monotonously up to a predetermined lower limit force and a predetermined upper limit value as ⁇ r_act increases from a negative value to a positive value. It is determined according to the value of
  • second wheel distribution gain K2 corresponding to front wheel W2 And monotonous change with respect to changes in ⁇ f_act and ⁇ r_act, while keeping the sum of the ratio power K2 and ⁇ 4 to the fourth wheel distribution gain K4 corresponding to the rear wheel W4 directly behind the front wheel W2 It will be.
  • i8f_act and r_act are used as the front wheel side gain adjustment parameter and the rear wheel side gain adjustment parameter of the present invention, respectively, and the n-th wheel distribution gain Kn is changed accordingly as described above. I have to. Then, as described later, the front wheel gains GA1 and GA2 are changed according to iSLact as the front wheel gain adjustment parameter, and the rear wheel gains GA3 and GA4 are used as the rear wheel gain adjustment parameter. It is made to change according to j8r_act.
  • j8f_act has a meaning as a state quantity relating to the lateral movement of the front wheels Wl and W2
  • j8r_a C t has a meaning as a state quantity relating to the lateral movement of the rear wheels W3 and W4.
  • Is V one of the front wheels W1 or W2!
  • Fxl _2 Fxlulli dmd_2-K2_str-K2 & Formula 27b
  • Fxlb_n l, 2, 3, 4
  • Fxl _l and Fxl _3 related to the left wheels Wl and W3 become the driving direction 'braking force (positive driving' braking force) 'and Fxl related to the right wheels W2 and W4.
  • Fxl_4 is the driving force in the braking direction (negative driving force / braking force).
  • the n-th wheel distributed drive 'braking force basic value Fxl ji is proportional to MlbdmcLa.
  • This limiter 222d_n outputs Fxl_n as FxlbdmcLn as it is only when the value of Fxl_n input to it is 0 or negative, and when Fxlb_n is positive, The value of FxlbdmcLn that is output regardless of the value is 0. In other words, FxlbdmcLn is determined by limiting Fxl_n with 0 as the upper limit.
  • FxlbdmcLl and Fxldmd_3 related to the left wheels Wl and W3 as a specific set are equal to Fxl_l and Fxl_3 determined by the equations 27a and 27c, respectively. Therefore, when Mlbdmd_a> 0, Fxfcdmd_1 and Fxl dmd_3 for the left wheels Wl and W3 are proportional to MlbdmcLa, respectively. As a result, the relationship between the change in MlbdmcLa and each change in Fxl d md_l and Fxl dmd_3 is proportional.
  • Fxl dmd_2 and Fxl dmd_4 related to the right wheels W2 and W4 as a specific set are equal to Fxlb_2 and Fxlb_4 determined by the equations 27b and 27d, respectively. Therefore, when MlbdmcLa is 0, Fxfcdmd_ 2. Fxl dmd_4 is proportional to MlbdmcLa. Eventually, the relationship between changes in MlbdmcLa and changes in Fxlbd md_2 and Fxl dmd_4 is proportional.
  • Fxl dmd_2 is determined so that the relationship between the change in MlbdmcLa and the change in Fxlbdmd_2 is proportional, and the front wheel gain GA2 in the proportional relationship changes according to j8 f_act as the front wheel gain adjustment parameter.
  • the lateral force of the three-wheel W3 (which functions to generate a moment in the same direction as the MlbdmcLa around the center of gravity of the actual vehicle 1) is reduced. For this reason, it may be difficult to generate a sufficient positive moment (moment around the shaft) required by MlbdmcLa around the center of gravity G of the actual vehicle 1. So, in the situation where j8 f_act> 0,
  • the wheel distribution gain Kl is determined to be a larger value, and the wheel 3 distribution gain K3 is determined to be a smaller value.
  • the force (which functions to generate a moment in the direction opposite to that of MlbdmcLa around the center of gravity of the actual vehicle 1) becomes larger. For this reason, it may be difficult to sufficiently generate the moment in the negative direction required by MlbdmcLa (the moment around the shaft) around the center of gravity G of the actual vehicle 1. Therefore, in a situation where j8 f_act> 0, j8 r_act> 0, the second wheel distribution gain K2 is determined to be a smaller value, and the fourth wheel distribution gain K4 is determined to be a larger value.
  • the difference between ⁇ f_act and ⁇ r_act may become large in the transitional motion situation of the actual vehicle 1.
  • the sum of the value of K1 and the value of K3, and the sum of the value of K2 and the value of K4 will be significantly different from 1.
  • the values of Kl and K3 are corrected while keeping the ratio of those values constant, and the values of Kl and K3 after the correction are corrected. It is preferable that the sum of 1 is almost 1 or closer to 1 than the sum of Kl and K3 before correction.
  • the values of K2 and K4 are corrected while maintaining the ratio of those values constant, and the sum of the corrected values of K2 and K4 is It is preferable to make it closer to 1 than the sum of K2 and K4 before correction.
  • the sum of K1 and ⁇ 3 and the sum of ⁇ 2 and ⁇ 4 are always maintained at 1, but their sum is not necessarily required to match 1.
  • the values of ⁇ 1 to ⁇ 4 may be corrected so that the value is in the range near 1. Or between K1 and ⁇ 3 K1 to K4 may be modified so that the sum and the sum of K2 and K4 are closer to 1.
  • Kl and K2 are the front wheel side in the present invention.
  • K2 and K4 correspond to the rear wheel side gain operating component in the present invention.
  • the actuator operation FB target value distribution processing unit 222 of the present embodiment determines the FB target n-th wheel brake driving / braking force Fxl dmcLn as described above, and further includes The requested moment value Mfbdmd is input to the processing unit 222e, and the processing unit 222e determines the FB target lateral force Fyl dmdj ⁇ for active steering, which is the feedback target value of the lateral force of the front wheels Wl and W2 due to the operation of the steering device 3B.
  • the graph of the processing unit 222e in the figure is a graph representing the relationship between Ml dmd and FylbdmcLf, and the value of the horizontal axis related to the graph is the value of Ml dmd, and the value of the vertical axis is FylbdmcLf. Value.
  • the processing unit 222e basically determines Fylbdmdj ⁇ so that Fylbdmd. 1 ⁇ increases monotonically as Mlbdmd increases.
  • FylbdmcLf is determined from the value of Mlbdmd input to the processing unit 222e using, for example, a map.
  • FylbdmcLf may be determined by multiplying Mlbdmd by a predetermined gain. Further, FylbdmcLf may be determined according to Mlb dmd within a range between a predetermined upper limit value (> 0) and a lower limit value ( ⁇ 0).
  • the processing of the processing unit 222e may be omitted regardless of whether the steering device 3B is a force mechanical steering device that is an active steering device! /.
  • the moment in one direction to be generated around the center of gravity G of the actual vehicle 1 and the FB target lateral force FylbdmcLf for active steering around the center of gravity G of the actual vehicle 1 FxlbdmcLn (n l, 2, 3, 4) and so that the sum of the generated moments in the direction of the motor is approximately equal to the basic value of feedback moment Mlbdmd.
  • the active steering FB target lateral force Fyl dmdj ⁇ may be determined according to the difference between Mlbdmd and Mlbdmd_a.
  • Ml dmd_a 0, Fyl dmd_f is almost equal to Ml dmd around the center of gravity G of the actual vehicle 1! /, Fyl dmdj ⁇ determined to generate a moment in the first direction It is desirable to do.
  • the map for the first wheel is set as shown in FIGS. 15 (a) to (e), for example.
  • the map for the third wheel may be set as shown in FIGS. 16 (a) to (e), for example.
  • the relationship with Fxl dmd_l is expressed as a value in the horizontal axis direction and a value in the vertical axis direction of the graph.
  • Each value is expressed as a value in the horizontal axis direction and a value in the vertical axis direction of the graph.
  • ⁇ f_act means a negative value with a relatively large absolute value
  • ⁇ f- means a negative value with a relatively small absolute value
  • J8 f + means a positive value having a relatively small absolute value
  • j8 f ++ means a positive value having a relatively large absolute value
  • j8 r_act means a negative value having a relatively large absolute value
  • ⁇ r- means a relatively small absolute value! Means a negative value, and “ ⁇ r + j means a relatively small absolute value.
  • V meaning a positive value
  • “/ 3 r ++ j means a positive value with a relatively large absolute value
  • the processing units 222b_3 and 222b_4 related to the third wheel W3 and the fourth theory W4 the input value and the output value thereof are equal, so the third wheel W3 and the fourth theory W4 With respect to ⁇ 223c-3 force to dimmer 222d-3; 3 ⁇ 4i and J to ⁇ 222c-4 force to dimmer 222d-4 using the map as described above, the processing unit The processing from 222b_3 to the limiter 222d_3 and the processing from the processing unit 222b_4 to the limiter 222d_4 are performed using a map.
  • the detected value of the sliding speed of the front wheels Wl, W2 of the actual vehicle 1 (the rotational axis direction component of the front wheels Wl, W2 of the traveling speed vectors of the front wheels Wl, W2)
  • the estimated value or the detected value or estimated value of the lateral acceleration of the front wheels Wl and W2 (the lateral component of the acceleration vector of the front wheels Wl and W2) may be used as the front wheel gain adjustment parameter.
  • the side slip velocity or lateral acceleration of the front wheels Wl and W2 is an example of a state quantity related to the lateral movement of the front wheels W1 and W2, similarly to
  • the side slip speed and side calorie speed may be detected or estimated values for each of the front wheels Wl and W2, but these average values or one of the front wheels Wl and W2! / It can be a detected or estimated value! /.
  • the detected value or estimated value of the actual side slip angle at a predetermined position of the front portion of the actual vehicle 1 for example, the center position on the axle of the front wheels Wl and W2
  • Detected value or estimated value of the traveling speed the lateral component of the traveling velocity vector at the predetermined position
  • the detected value or estimated value of the lateral acceleration at the predetermined position the lateral component of the acceleration vector at the predetermined position.
  • a constant value may be used as a front wheel side gain adjustment parameter.
  • the side slip angle, side slip speed, and lateral acceleration at the predetermined position are examples of state quantities related to the lateral movement at the predetermined position.
  • the detected value or estimated value of the lateral force of the front wheels Wl and W2 may be used as a front wheel gain adjustment parameter.
  • the lateral force may be a detected value or an estimated value for each of the front wheels Wl and W2, but may be an average value thereof or a detected value or an estimated value for one of the front wheels Wl and W2. .
  • 8 f _act, etc.) related to the lateral movement of the front wheel Wl, W2 of the actual vehicle 1 as described above, the state quantity related to the lateral movement of the front portion of the actual vehicle 1 and the front wheel A parameter having a correlation with any of the lateral forces of W1 and W2 may be used as the front wheel side gain adjustment parameter.
  • an arbitrary parameter that is substantially proportional to the state amount related to the lateral movement or the detected value or estimated value of the lateral force may be used as the front wheel side gain adjustment parameter.
  • one or more meters that define the value of the state quantity or lateral force related to the lateral movement may be used as the front wheel side gain adjustment parameter.
  • j8 f_act is basically defined according to the slip angle j8 act across the center of gravity of the actual vehicle, the actual ⁇ act, the actual traveling speed Vact, and the actual front wheel steering angle ⁇ f_act (see above).
  • ⁇ f_d, j8 d, ⁇ d, Vd, and ⁇ f_d in the equation 02a relating to the model vehicle are replaced by ⁇ f_a ct, ⁇ act, ⁇ act, Vact, and ⁇ f_act, respectively.
  • the relationship between j8 f_act and the first wheel distribution gain K1 and the second wheel distribution gain K2 is expressed as 13 act, ⁇ act, Vact, ⁇ f_act And the relationship between Kl and K2. Then, based on the relation obtained by the transformation, Kl and K2 If you decide to,
  • the side slip speed of the rear wheels W3 and W4 of the actual vehicle 1 (the rotational axis direction component of the rear wheels W3 and W4 of the traveling speed vectors of the rear wheels W3 and W4)
  • the detected value or estimated value, or the detected value or estimated value of the lateral acceleration of the rear wheels W3 and W4 (the lateral component of the acceleration vector of the rear wheels W3 and W4) may be used as the rear wheel gain adjustment parameter.
  • the side slip velocity or lateral acceleration of the rear wheels W3 and W4 is an example of a state quantity related to the lateral movement of the rear wheels W3 and W4, similarly to
  • the side slip angle, side slip speed, and lateral acceleration may be detected or estimated values for each of the rear wheels W3 and W4. , W4 ⁇ KOTSU! /, Or a detected or estimated value.
  • the detected or estimated value of the slip angle of the predetermined position at the rear of the actual vehicle 1 for example, the center position on the axle of the rear wheels W3, W4
  • the detected value or estimated value of the velocity (the lateral component of the traveling velocity vector at the predetermined position), or the detected value or estimated value of the lateral acceleration at the predetermined position (the lateral component of the acceleration vector at the predetermined position) It may be used as a wheel side gain adjustment parameter.
  • the side slip angle, side slip speed, and lateral acceleration at the predetermined position are examples of state quantities related to the lateral movement of the predetermined position.
  • the detected value or estimated value of the lateral force of the rear wheel 3, W4 of the actual vehicle 1 may be used as a rear wheel side gain adjustment meter.
  • the lateral force may be a detected value or an estimated value for each of the rear wheels W3 and W4, but may be an average value of these or a detected value or an estimated value for one of the rear wheels W3 and W4. .
  • the state quantity related to the lateral movement of the rear wheels W3, W4 of the actual vehicle 1 as described above ( _act, etc.), the state quantity related to the lateral movement of the rear part of the actual vehicle 1 and the lateral force of the rear wheels W3 and W4 are parameters that correlate with any of the rear wheel side gain adjustment parameters. It may be used as a data. For example, an arbitrary parameter that is approximately proportional to the state quantity related to the lateral movement or the detected value or estimated value of the lateral force may be used as the rear wheel side gain adjustment parameter. In addition, one or more meters that specify the value of the state quantity or lateral force related to the lateral movement may be used as the rear wheel gain adjustment parameter.
  • j8 r_act is basically defined according to the slip angle j8 act transverse to the center of gravity of the actual vehicle, the actual ⁇ rate ⁇ act, and the actual traveling speed Vact (see Equation 02b above).
  • the state quantity related to the lateral movement of the front wheels Wl and W2 of the actual vehicle 1 the state quantity related to the lateral movement of the front portion of the actual vehicle 1 and the lateral force of the front wheels Wl and W2 of the actual vehicle 1
  • the corresponding state quantities and lateral Use force and parameters as front wheel gain adjustment parameters.
  • ⁇ f_act instead of ⁇ f_act, ⁇ f_d of the model vehicle may be used as a front wheel side gain adjustment parameter to determine the first wheel distribution gain K1 and the second wheel distribution gain K2.
  • the state quantity related to the lateral movement of the rear wheel W3, W4 of the actual vehicle 1 the state quantity related to the lateral movement of the rear part of the actual vehicle 1, the lateral force of the rear wheel W3, W4 of the actual vehicle 1, and these.
  • the state quantity, lateral force, and parameters of the model vehicle on the sex model 16 may be used as the rear wheel gain adjustment parameters.
  • 13 r_act 13 r_d of the model vehicle may be used as a rear wheel gain adjustment parameter to determine the third wheel distribution gain K3 and the fourth wheel distribution gain K4.
  • the state quantity relating to the lateral movement of the front wheel Wl, W2 or the front part of the actual vehicle 1 and the state quantity relating to the lateral movement of the front wheel Wl or the front part of the model vehicle (the actual vehicle 1 Or the combined value of the lateral force of the front wheels W1 and W2 of the actual vehicle 1 and the lateral force of the front wheel Wf of the model vehicle and the gain adjustment parameter for the front wheels. May be used.
  • the state quantity related to the lateral movement of the rear wheel W3, W4 or the rear part of the actual vehicle 1 and the state quantity related to the lateral movement of the rear wheel Wr or the rear part of the model vehicle (the state on the actual vehicle 1 side).
  • the combined value of the lateral force of the rear wheel W3, W4 of the actual vehicle 1 and the lateral force of the rear wheel Wr of the model vehicle is used as the rear wheel gain adjustment parameter. May be.
  • the first wheel distribution gain K1 and the second wheel distribution gain K2 are determined according to the weighted average value of j8 f_act of actual vehicle 1 and
  • the 3rd wheel distribution gain K3 and 4th wheel distribution gain K4 may be determined according to the weighted average value with r_d.
  • the weight related to the weighted average value may have a frequency characteristic (for example, a frequency characteristic that functions as a phase compensation element).
  • the second provisional value of each of the ⁇ -wheel distribution gains ⁇ ( ⁇ 1, 2) for the front wheels Wl, W2 as well as the lateral force of the front wheels W1, W2 of the actual vehicle 1. It is determined according to the amount of state related to the lateral movement of the front wheel W or the front part of the model vehicle, or the lateral force of the front wheel Wf of the model vehicle, and the weights of the first and second provisional values are determined.
  • the first provisional value of K1 for the first wheel W1 is determined according to
  • the trend of the change of the second temporary value for i8 f_d May be the same as the trend of the first provisional change for j8 f_act.
  • a weighted average value of the first provisional value and the second provisional value is determined as the first wheel distribution gain K1. The same applies to the second wheel distribution gain K2.
  • 8 Determine the same as the first provisional value according to r_d.
  • the tendency of the change of the second provisional value for i8 r_d may be the same as the tendency of the change of the first provisional value for iS rjct.
  • the weighted average value of the first provisional value and the second provisional value is determined as the third wheel distribution gain K3.
  • the first temporary value of each of Kl and K2 corresponds to the first temporary value for operating the front wheel side gain in the present invention
  • the second temporary value of each of Kl and K2 corresponds to the second provisional value for operating the front wheel side gain in the present invention
  • the combined value of the first temporary value and the second temporary value of Kl and K2 corresponds to the combined value for front wheel side gain operation in the present invention
  • the first provisional values of K3 and K4 correspond to the first provisional values for operating the rear wheel side gain in the present invention
  • the second provisional values of K3 and K4 are the same in the present invention. This corresponds to the second provisional value for operating the rear wheel side gain.
  • the combined value of the first temporary value and the second temporary value of K3 and K4 corresponds to the combined value for rear wheel side gain operation in the present invention.
  • K3 it is desirable to determine K3 so that the third wheel distribution gain K3 when j8 r_act is a positive value having a large absolute value becomes smaller as estm becomes smaller.
  • K2 it is desirable to determine K2 such that the second wheel distribution gain K2 is smaller when j8 f_act is a positive value having a large absolute value.
  • K4 it is desirable to determine K4 so that the fourth wheel distribution gain K4 is smaller when ⁇ r_act has a larger absolute value and a negative value as estm becomes smaller.
  • the deviation amount ⁇ determined by the ⁇ j8 limiter 202 of the virtual external force determination unit 20a is obtained by simply setting the feedback moment basic required value Ml dmd to the state quantity deviations ⁇ err and ⁇ err close to 0. over and ⁇ over to be close to 0 (H! /, and to prevent ⁇ da and ⁇ da from deviating from their respective allowable ranges [ ⁇ damin, ⁇ damax], [ ⁇ damin, ⁇ damax] Md dmd may be determined.
  • Mlbdmd may be determined by the following equation 28a using an appropriate coefficient Kl dmdl to Ki dmd4.
  • Mlbdmd Kl dmdl ⁇ err + Klbdmd2- ⁇ err
  • Equation 28a Mlbdmd is determined by this equation 28a is the provisional value of Mlbdmd determined by the feedback control law that brings the state quantity deviations ⁇ err and ⁇ err closer to 0 It is equivalent to determining Mlbdmd by correcting (sum of the first and second terms on the right side of Equation 28a) so that the deviations ⁇ over and ⁇ over approach 0.
  • the dead zone excess feedback value moment required value MlbdmcLa which is a value obtained by passing M dmd determined by Equation 23 so that the state quantity deviations ⁇ err and j8 err are close to 0 through the dead zone processing unit 221.
  • MlbdmcLa May be used as MlbdmcLa again with the value Mlbdmd_a modified by the following equation 28b (the equation using MlbdmcLa instead of the sum of the first and second terms on the right side of equation 28a) .
  • the value obtained by passing Mlbdmd through the dead zone processing unit 221 is used as a temporary value of MlbdmcLa, and this temporary value is corrected so that the deviation amount over and ⁇ over approach 0, so that MlbdmcLa is determined.
  • the virtual external force values Mvirtmp and Fvirtmp are determined by operating the virtual external force temporary values Mvirtmp and Fvirtmp so that y over and ⁇ over approach 0 by the ⁇ j8 limiter 202 as described above. I have to. Even with this alone, ⁇ d and j8 d of the model vehicle change so that they do not depart from the allowable ranges [ ⁇ damin, ⁇ damax] and [ ⁇ damin, ⁇ damax].
  • the actuator operation FB target value changes so that ⁇ act and ⁇ act of the actual vehicle 1 approach ⁇ d and ⁇ d, respectively.
  • y act and ⁇ act are also in the allowable range [ ⁇ damin, ⁇ damax], [ ⁇ Deviation from [damin, ⁇ damax] can be suppressed.
  • Ml dmd or Ml dmcLa is determined so that ⁇ over and j8 over are also close to 0 (h!
  • the virtual external forces Mvir, Fvir are The virtual external forces Mvir and Fvir may be determined so that ⁇ err and ⁇ err are close to 0 without necessarily determining that over and ⁇ over are close to 0.
  • the temporary Sogairyoku provisional value determiner 2 01 sought virtual external force temporary values Mvirtmp, while the virtual external force Mvir of each Fvirtmp its may be determined as Fvir.
  • the actuator operation FB target value can be determined so as to suppress the ⁇ act and ⁇ act from deviating from the allowable [ ⁇ damin, ⁇ damax] and [ ⁇ damin, ⁇ damax] forces, respectively.
  • the virtual external forces Mvir and Fvir are determined so that the state quantity deviations ⁇ err and ⁇ err are close to 0.
  • ⁇ d and j8 d of the model vehicle are allowed respectively.
  • Yd and j8 d are determined so that deviation from the ranges [ ⁇ damin, ⁇ damax] and [ ⁇ damin, ⁇ damax] is suppressed.
  • the relationship between the input and output of the actuator operation FB target value distribution processing unit 222 is configured so that the change in Fxl dmd_3 is monotonous.
  • the relationship between the input and output of the actuator operation FB target value distribution processing unit 222 is configured. Further, as described above, by determining the values of K2 and K4 so that the sum of the distribution gains K2 and K4 becomes 1 or approaches 1, the front wheel side gain is reduced.
  • the change force of Fxlbd md_4 of the right rear wheel W4 when only j8 f_act as the in-adjustment parameter changes monotonously The monotonic change in the opposite direction to the change of Fxlbdmd_2 of the right front wheel W2 Actuator action FB target value distribution so that the change of Fxlbdmd—2 on the right front wheel W2 when only ⁇ r_act of the wheel changes monotonously becomes a monotone change opposite to the change of Fxl dmd—4 of the right rear wheel W4 That is, the relationship between the input and output of the processing unit 222 is configured.
  • FIG. 17 is a functional block diagram showing the processing of FF rule 22.
  • the FF target front wheel rudder angle ⁇ f_ff is the steering angle of the driving operation input.
  • the processing unit 230 determines the FF target front wheel steering angle ⁇ 3 ⁇ 4 by the same processing as the processing of the processing unit 14a of the reference manipulated variable determination unit 14. That is, Steari ⁇ ⁇ ⁇ is determined by dividing the angular angle ⁇ h by the predetermined overall steering ratio is or the overall steering ratio is set according to Vact.
  • the value of ⁇ f_ff determined in this way is the same as the value of the unrestricted front wheel steering angle ⁇ Lunltd determined by the processing unit 14a of the reference manipulated variable determination unit 14.
  • ⁇ f_ff3 ⁇ 4 it is not necessary to determine ⁇ f_ff3 ⁇ 4 when the steering device 3B is the above-described actuator assist type steering device or a mechanical steering device. Alternatively, ⁇ fj3 ⁇ 4 should always be set to 0. However, when the steering device 3B is an actuator assist type steering device and has a function of correcting the steering angle of the front wheels Wl and W2 mechanically determined according to the steering angle ⁇ h according to Vact. May determine the correction amount according to Vact and determine it as ⁇ f_ff.
  • the steering device 3B is an actuator-assisted steering device
  • the basic rudder angle (basic value of ⁇ f_act) of the front wheels Wl and W2 depends on the steering angle ⁇ h. Therefore, S f_ff has a meaning as a feedforward target value of the correction amount of the rudder angle of the front wheels Wl and W2 by the actuator.
  • the value in the horizontal axis direction is the value of the brake pedal operation amount
  • the value force FF target n-th wheel brake drive 'braking force in the vertical axis direction is the value of the brake pedal operation amount.
  • the FF target n-th wheel brake drive 'braking force ( ⁇ 0) basically increases monotonically as the brake pedal operation amount increases (absolute value). To be determined.
  • the FF target n-th wheel brake drive / braking force is saturated when the brake pedal operation amount exceeds a predetermined amount so that the magnitude of the brake force does not become excessive (FF against the increase in the brake pedal operation amount).
  • Drive system actuator operation is determined by the FF target value determination unit 232.
  • the drive system actuator operation FF target value determination unit 232 performs the process of driving from the engine to the drive wheels in a known ordinary vehicle according to the accelerator pedal operation amount, Vact and the shift lever position of the transmission. Since it may be the same as the method for determining the force and the reduction gear ratio of the transmission, a detailed description thereof will be omitted.
  • FIG. 18 is a functional block diagram showing processing of the actuator operation target value synthesis unit 24. As shown in FIG.
  • the actuator operation target value composition unit 24 relates to the first wheel W1, the FF target first wheel brake drive / braking force of the actuator operation FF target value, and the FF target first value.
  • Adder 240 calculates the sum of the one-wheel drive train drive and braking force. Then, the sum is input to the optimum target first drive / braking force determining unit 241a_1 as the FF general target first wheel drive and braking force FFtotaLl. Further, the adder 242 obtains the sum of this FFtotaLl and the FB target first wheel brake drive'braking force Fxlbdmd_l among the actuator operation FB target values. Then, the sum is input to the optimum target first drive / braking force determination unit 241a_l as the unrestricted target first wheel drive / braking force Fxdmd_l.
  • the actuator operation target value composition unit 24 relates to the second wheel W2, the FF target second wheel brake drive / braking force of the actuator operation FF target value, and the FF target second wheel drive system.
  • Adder 243 calculates the sum of the driving and braking force. Then, the sum is input to the optimum target second driving / braking force determining unit 241a_2 as the FF general target second wheel driving / braking force FFtotal_2. Further, the adder 244 calculates the sum of this FFtotal_2 and the FB target second wheel brake drive / braking force Fxfbd md_2 among the actuator operation FB target values. Then, the sum is input to the optimum target second drive / braking force determination unit 24 la_2 as an unlimited target second wheel drive / braking force Fxdmd_2.
  • the actuator operation target value composition unit 24 performs the FF target third wheel brake drive of the above-mentioned actuator operation FF target value for the third wheel W3 as it is. Input the target third wheel drive ⁇ braking force FFtotal_3 to the optimum target third drive ⁇ braking force determination unit 241a_3. Further, the adder 245 calculates the sum of this FFtotal_3 and the FB target third wheel brake drive'braking force Fxl dmd_3 among the actuator operation FB target values. Then, the sum is input to the optimum target third drive / braking force determination unit 241a_3 as the unrestricted target third wheel drive / braking force Fxdmd_3.
  • the adder 246 obtains the sum of this FFtotal_4 and the FB target fourth wheel brake drive'braking force Fxl dmd_4 among the actuator operation FB target values. Then, the sum is input to the optimum target fourth drive / braking force determination unit 241a_4 as the unrestricted target fourth wheel drive / braking force Fxdmd_4.
  • Driving the n-th wheel Wn by driving system operation 'Feedforward target value of braking power (FF target n-th wheel driving system driving ⁇ braking force) and driving the n-th wheel Wn by brake device operation ⁇ feeding of braking force It means the sum of the forward target value (FF target n-th wheel brake drive ⁇ braking force).
  • the driving wheels of the actual vehicle 1 are the front wheels Wl and W2, and the rear wheels W3 and W4 are driven wheels. Therefore, for the rear wheels W3 and W4, the FF target n-th wheel brake
  • the actuator motion target value synthesizing unit 24 includes the active steering FB target lateral force FylbdmcLf in the actuator motion FB target value, and the FF target front wheel steering angle ⁇ f_ff in the actuator motion FF target value. Is input to the optimum target active rudder angle determination unit 247, and the optimum target active rudder angle determination unit 247 determines the target front wheel rudder angle ⁇ fcmd which is the target value of the final rudder angle of the front wheels Wl and W2.
  • this ⁇ fcmd is the steering angle of the front wheels Wl and W2 itself (the steering angle based on the longitudinal direction of the actual vehicle 1) by the operation of the actuator when the steering device 3B is the actuator-driven steering device. This means the final target value.
  • the steering device 3B is the above-mentioned actuator assist type steering device, it means the final target value of the correction amount of the steering angle of the front wheels Wl and W2 by the operation of the actuator.
  • FIG. 19 is a flowchart showing the processing of each optimum target n-th driving 'braking force determination unit 241a_n.
  • 8 f_ ac t, there until n 3, 4 and the rear-wheel actual lateral to Beri angle ⁇ 8 when it, and the road surface friction coefficient (the ⁇ wheel Wn The friction coefficient between the road surface and the road surface) is the estimated friction coefficient estm, and based on this precondition, the unrestricted target n-th wheel drive and braking force Fxdmdji N wheel Wn driving n wheel driving n braking force candidate Fxcandji and n wheel slip ratio candidate ScancLn corresponding slip ratio value of wheel n Wn Ask.
  • Non-Patent Document 1 There is a correlation as shown in Therefore, the road surface reaction force and the slip ratio of each wheel when the side slip angle and the road surface friction coefficient are certain values, respectively, are not necessarily independent values. It changes according to the above correlation (hereinafter referred to as wheel characteristic relationship).
  • wheel characteristic relationship the slip ratio is a negative value when the driving'braking force is the driving force / braking force (> 0) in the driving direction, and the driving * braking force is the driving force / braking force ( ⁇ 0) in the braking direction. Sometimes it is a positive value.
  • the map used in this processing is specified or estimated in advance through various experiments or the like, for example, based on the tire characteristics of the wheels W1 to W4 and the characteristics of the suspension device 3C. It may be created based on the specified or estimated wheel characteristic relationship. In addition, the contact load of the n-th wheel Wn may be added to the map as a variable parameter.
  • the actual ground load Fzact_n of the n-th wheel Wn is input to the optimal target n-th driving / braking force determining unit 241a_n, and the actual lateral slip angle ⁇ f_act or ⁇ Fxcan d_n and ScancLn may be determined from r_act, the estimated friction coefficient ⁇ estm, and the actual ground contact load Fzact_n.
  • the actual ground load Fzact_n since the fluctuation of the actual ground load Fzact_n is generally relatively small, the actual ground load Fzact_n may be regarded as a constant value.
  • the upper limit value (> 0) and the lower limit value ( ⁇ 0) of the range should be determined as FxcancLn, which is closer to Fx dmd_n! ,.
  • the relationship between the slip ratio that can be generated in the n-th wheel W n and the driving * braking force is generally the slip ratio.
  • peak value is the extreme value
  • slip ratio is the value on the horizontal axis
  • driving 'braking force is the value on the vertical axis
  • the slip ratio value closer to 0 of the two types of slip ratio values may be determined as the n-th wheel slip ratio candidate Scandji.
  • the driving ratio falls within a range between 0 and the slip ratio value at which the braking force reaches its peak value.
  • the n-th wheel slip ratio candidate Scandji may be determined.
  • the n-th wheel drive when the maximum moment is generated and the braking force Fxmmaxji and the corresponding slip ratio the n-th wheel slip ratio when the maximum moment is generated
  • the nth wheel drive's braking force Fxmmaxji when the maximum moment occurs is the slip angle j8 f_act or j8 r_act where the side slip angle of the nth wheel Wn is the actual side slip angle, and the road surface friction coefficient is the estimated friction coefficient.
  • the road surface reaction force that can be generated by the nth wheel Wn (specifically, the driving force that can be applied to the nth wheel Wn from the road surface according to the wheel characteristic relationship) ⁇ the resultant force of braking force and lateral force)
  • the moment in the direction around the center of gravity G of the actual vehicle 1 due to the road surface reaction force is the maximum when the force is directed to the same polarity (direction) as that of the feedback demand moment basic requirement value Ml d md. This means the driving force of the road surface reaction force.
  • Fxmmaxji and Smmaxji indicate that the drive of the n-th wheel Wn is driven as the absolute value of the slip ratio increases from 0 in the relationship between the braking force and the slip ratio (the relationship according to the wheel characteristic relationship). It is determined within the region where the absolute value of the braking force increases monotonously. Therefore, Smmaxji is determined between the slip ratio value at which the driving'braking force reaches its peak value and zero.
  • the driving / braking force and the slip ratio corresponding to the set may be determined as Fxmmax_n and Smmax_n, respectively!
  • the nth Drive of wheel Wn (n 3 or 4) ⁇ Drive that maximizes the moment in the direction in which the resultant force is generated around the center of gravity G of the actual vehicle 1 from the combination of braking force and lateral force 'Exploring the set of braking force and lateral force.
  • the driving / braking force and the slip ratio corresponding to the set may be determined as Fxmmax_n and Smmaxji, respectively.
  • the actual ground load Fzact_n of the n-th wheel Wn may be included as a variable parameter, as in the case described for the process of S100.
  • the processing of S104 to S112 is executed as described later, and the target n-th wheel drive 'braking force Fxcmdji is determined.
  • the target n-th wheel drive / braking force Fxcmdji is determined so as to satisfy the following conditions (1) to (3).
  • conditions (1) to (3) are conditions with higher priority in the order of conditions (1), (2), and (3). If the target n-th wheel drive / braking force Fcmd_n that satisfies all of the conditions (1) to (3) cannot be determined, the target n-th wheel is set so that the priority is high and the condition is preferentially satisfied.
  • Driving ⁇ Braking force Fxcmdji is determined.
  • Condition (2) Target n-wheel drive ⁇ Braking force When Fxcmdji has the maximum moment, n-th wheel drive 'When the braking force Fxmmax_n has the same polarity, Fxcmd_n magnitude (absolute value) is Fxmmax_n magnitude (absolute value) ) Must not be exceeded. In other words, Fxcmd_n> Fxmmax_n> 0 or Fxcmd_n ⁇ Fxmmax_n ⁇ 0! /,thing.
  • Condition (3) The target n-th wheel drive and braking force Fxcmdji should match the n-th wheel drive and braking force candidate F xcand_n as much as possible (more precisely, the absolute value of the difference between Fxcmdji and Fxcand_n is minimized)
  • the condition (1) is that the target n-th wheel drive 'braking force Fxcmdji is determined by the driver of the actual vehicle 1 in the braking direction of the n-th wheel Wn of the actual vehicle 1 requested by operating the brake pedal. This is a condition to prevent it from becoming smaller than the driving 'braking force (this corresponds to FFtotaLn).
  • condition (2) is a condition for preventing the lateral force generated in the n-th wheel Wn from becoming too small corresponding to the target n-th wheel driving / braking force Fxcmdji.
  • condition (3) is a condition for satisfying as much as possible the control request (target) of the operation of the actuator device 3 determined by the actuator operation FB target value determining unit 20b and the FF rule 22. is there.
  • Fxcandji is the wheel characteristic relationship (the slip angle jS tac where the side slip angle of the n-th wheel Wn is the actual side, and the road surface friction coefficient is the estimated friction coefficient estm.
  • the target n-th wheel drive / braking force Fxcmdji is expressed by the above-mentioned wheel characteristic relationship (the slip angle that the lateral angle of the n-th wheel Wn is actually Mostly, it is
  • Target n-th wheel drive ⁇ Braking force Fxdmdji drive according to control request ⁇ braking force
  • close to force the absolute value of the difference from FxdmcLn is minimized
  • the processing of S104 to S112 is executed as follows. First, the process proceeds to S104, the magnitude relationship force 0 and Fxmmax_n determined in Fxcand_n and S102 determined in S100> Fxmmax- n Fxcand- n or 0 ⁇ Fxmmax- n Fxcand- n a is the force ⁇ not force a half [J cross To do. If this determination result is NO, the process proceeds to S106, and the value of Fxcand_n is substituted for the target n-th wheel drive 'braking force Fxcmd_n.
  • Fxcand_n and Fxmmax_n have different polarities, or when Fxcand_n and Fxmmax_n have the same polarity and the size (absolute value) of Fxcand_n is less than the magnitude (absolute value) of Fxmmax_n
  • Fxcmdji is determined so as to satisfy the conditions (2) and (3) (however, the condition (2) takes precedence).
  • the process proceeds to S110, and the FF general target n-th wheel drive'braking force FFtotaLn and the current target n-th wheel drive'braking force Fxcmd_n (determined in S106 or S108 Value) to determine whether 0>Fxcmd_n> FFtotal_n. If the determination result is YES, the process proceeds to S112, and FFtotaLn is substituted for the target n-th wheel drive 'braking force Fxc md_n.
  • the FF general target n-th wheel drive 'braking force FFt otaLn and the n-th wheel drive determined by S 106 or S 108' braking force candidate Fxcmdji is the driving force in the braking direction 'braking force and the magnitude of Fxcmdji (Absolute value) 1S If the value is smaller than FFtotaLn (absolute value), substitute the value of FFtotaLn into Fxcmdji. S110 judgment If the result is NO, the current Fxcmdji value is maintained.
  • the target n-th wheel driving / braking force Fxcmdji is basically determined so as to satisfy the conditions (1) to (3) as described above by the processing of S104 to S112. If the target n-th wheel drive / braking force Fxcmdji that satisfies all of the conditions (1) to (3) cannot be determined, the target n-th wheel is set so that the priority is high and the condition is preferentially satisfied. Driving / braking force Fxcmdji is determined.
  • the process of S114 is executed.
  • the slip ratio corresponding to Fxcmdji determined in S106 to S112 as described above is determined as the target n-th wheel slip ratio Scmdji.
  • Fxcmdji is one of Fxcand_n, Fxmmax_n, and FFtotaLn by the processing of S104 to S112.
  • Fxcmd_n Fxcand_n
  • the n-th wheel slip ratio candidate Scand_n obtained in S100 is determined as Scmd_n.
  • the n-th wheel slip ratio Smmaxji at the time of the maximum moment generation determined in S102 is determined as Scmd_n.
  • Fxcmd_n FFtotal_n
  • the slip ratio corresponding to FFtotaLn may be obtained based on the map used in the process of S100, and the obtained slip ratio may be determined as Scmdji.
  • the target n-th wheel drive / braking force Fxcmdji is determined, and then the corresponding target n-th wheel slip ratio Scmdji is determined.
  • the target n-th wheel drive 'braking force Fxcmdji corresponding to this may be determined.
  • the same processing as in the steps S104 to S112 is performed. Determine the target n-th wheel slip ratio Scmd_n. Then, after that, F xcmd_n corresponding to this Scmd_n may be determined.
  • Scmd_n is a value between 0 and the slip ratio value at which the braking force becomes the peak value in the relationship between the slip ratio according to the wheel characteristic relationship of the n-th wheel Wn and the driving 'braking force. It is determined within the range.
  • FIG. 20 is a functional block diagram showing processing of the optimum target active rudder angle determination unit 247.
  • optimal target active steering angle determination unit 247 first sets FB target lateral force Fyl dmcLf for active steering determined by the above-mentioned actuator operation FB target value determination unit 20b to actual vehicle 1.
  • FB which is the amount of change in the steering angle of the front wheels Wl, W2 required to be generated in the front wheels Wl, W2 (specifically, the resultant force of the lateral force of the front wheel W1 and the lateral force of the front wheel W2 is changed by Fyf dmdj ⁇ )
  • the active steering angle ⁇ fj is determined by the processing unit 247a based on Fyl dmdj ⁇ .
  • the cornering power Kf_l of the first wheel W1 is obtained by a predetermined function equation or map according to the actual grounding load FzacU of the first wheel W1, and the actual grounding load of the second wheel W2 is determined.
  • the cornering power Kf_2 of the second wheel W2 is obtained using a predetermined function or map.
  • the above function expression or map is preliminarily set based on the tire characteristics of the front wheels Wl and W2 of the actual vehicle 1. Then, using these cornering powers Kf_l and Kf_2, the FB active steering angle ⁇ fj is determined by the following equation 30.
  • the optimum target active steering angle determination unit 247 determines the target front wheel steering angle S fcmd by adding ⁇ fjb determined as described above to the FF target front wheel steering angle S f_ff by the adder 247b.
  • the actuator drive control device 26 operates the actuator device 3 of the actual vehicle 1 so as to satisfy the target value determined by the actuator operation target value synthesis unit 24.
  • the driving system of the first wheel W1 by the operation of the driving system of the driving / braking device 3A 'the driving system so that the braking force (driving in the driving direction / braking force) becomes the target first wheel driving system driving / braking force.
  • the actuator operation amount is determined and the drive system is operated accordingly.
  • the steering device 3B is an actuator-driven steering device
  • the amount of operation of the actuator of the steering device 3B is determined so that the actual front wheel steering angle S f_act matches the target front wheel steering angle S fcmd. Accordingly, the operation of the steering device 3B is controlled accordingly.
  • the steering device 3B is an actuator-assisted steering device
  • the actual front wheel rudder angle S f_act is the difference between the target front wheel rudder angle S f_cmd and the mechanical rudder angle corresponding to the steering angle ⁇ h.
  • the operation of the steering device 3B is controlled to match the sum.
  • the reduction ratio of the transmission of the driving system of the driving / braking device 3A is controlled in accordance with the target transmission reduction ratio.
  • the operations of the steering device 3B and the suspension device 3C are likely to interfere with each other. This In such a case, in order to control the control amount to the target value, it is desirable to integrally control the operations of the driving and braking device 3A, the steering device 3B, and the suspension device 3C by non-interference processing.
  • Actuator operation The FB target value is originally determined to satisfy the feed knock moment basic required value Ml dmd according to the state quantity deviations ⁇ err and ⁇ err. Force feed knock control theory The top is ideal. However, in the first embodiment, due to the processing of the dead zone processing unit 221, the limiter 222d_n, etc., the one direction generated around the center of gravity G of the actual vehicle 1 by the actuator operation FB target value. The moment of is over and under relative to Ml dmd.
  • the actuator operation FB target value force Depending on the non-linearity (limiter, saturation characteristics, etc.) in each processing function unit (actuator operation target value synthesis unit 24, etc.) up to the actuator operation target value, it depends on the actuator operation FB target value.
  • the road surface reaction force generated on each wheel W1 to W4 of the actual vehicle 1 may cause excess or deficiency with respect to the actuator operation FB target value. Therefore, the road surface reaction force generated at each wheel W1 to W4 of the actual vehicle 1 may be excessive or insufficient with respect to the ideal road surface reaction force for bringing the state quantity deviations ⁇ err and ⁇ err close to zero.
  • the ideal road surface reaction force generated on each wheel W1 to W4 of the actual vehicle 1 is obtained.
  • the virtual external force applied to the model vehicle is corrected in accordance with the excess / deficiency with respect to the general road surface reaction force, thereby compensating for the excess / deficiency.
  • the virtual external force determination unit 20a of the FB distribution rule 20 includes a processing unit 215 in addition to the functions in the first embodiment. .
  • the processing unit 215 first, the actuator operation FB target value (current value) determined as described above by the actuator operation FB target value determination unit 20b is input to the processing unit 215a. Then, by this processing unit 215a, the correction amount of the road surface reaction force acting on each wheel W1 to W4 of the actual vehicle 1 due to the actuator operation FB target value (the road surface reaction force generated corresponding to the actuator operation FF target value) The road surface reaction force correction amount is calculated. In this case, the road surface reaction force correction amount is obtained as follows.
  • the driving value of the n-th wheel Wn is estimated as Fxcmdji
  • the lateral force may be obtained using, for example, a map based on the wheel characteristic relationship. More specifically, the lateral force may be obtained using, for example, S200 and S202 described later, Formula 40, and the like.
  • n l, 2.
  • the difference in the road surface reaction force of the n-th wheel Wn which is obtained with different actuator operation FB target values as described above, is obtained, and the difference is determined as the road surface reaction force correction amount of the n-th wheel Wn.
  • the road surface reaction force correction amount for the nth wheel Wn is generated around the center of gravity G of the actual vehicle 1, based on the parameters that define the geometric relationship between the wheels W1 to W4 and the center of gravity of the actual vehicle 1. Find the moment of direction. And Ml is calculated
  • a virtual external force compensation moment Mvir_c is determined by multiplying the actual vehicle moment difference Ml_err by a predetermined gain Cl in the multiplication unit 215d.
  • the gain Cl is a value that is 0 and Clb ⁇ 1 (a positive value less than 1).
  • This virtual external force compensation moment Mvir_c is the difference between the actual vehicle 1 generated by Mlbd md and the model vehicle. This means a momentary moment that should be generated around the center-of-gravity point Gd of the model vehicle so that the state quantity deviation in between approaches 0.
  • the influence of the nonlinearity of the state quantity deviations ⁇ err and ⁇ err up to the actuator operation target value on the behavior of jS err and ⁇ err is reduced, and ⁇ err and err are It tries to converge to 0 while keeping the linearity high.
  • FIGS. a third embodiment of the present invention will be described with reference to FIGS. Note that this embodiment is different from the first embodiment only in part of the processing, and thus the differences will be mainly described and the description of the same portions will be omitted.
  • the same reference numerals as those in the first embodiment are used for the same components or the same functional parts as those in the first embodiment.
  • FB target n-th wheel brake drive meaning braking force correction required value (state value deviation ⁇ err, correction required value to make err approach 0) Brake force Fxl dmd_ n did.
  • This FB target n-th wheel brake moment MlbdmcLn is determined by the road surface reaction force (specifically, the combined force of the braking force and lateral force) applied to each wheel W1 to W4 by the operation of the braking device of the driving 'braking device 3A.
  • Required correction value of moment in the direction around the center of gravity G (in order to bring the state quantity deviations ⁇ err and ⁇ err closer to 0) (Required correction value).
  • the actuator operation target value is determined using this FB target n-th wheel brake moment Ml dmcLn.
  • the processing of the FB distribution rule 20 actuator operation FB target value determination unit 2 Ob and the processing of the actuator operation target value synthesis unit 24 are different from those of the first embodiment.
  • Other configurations and processes are the same as those in the first embodiment.
  • Midmd_a is used as the basic request operation amount to bring the state quantity deviations ⁇ err and ⁇ err close to 0 as described below, as in the first embodiment.
  • the operation amount and the control input for driving'braking force operation are the same type of operation amount.
  • FIG. 22 is a functional block diagram showing processing functions of the actuator operation FB target value determination unit 20b in the present embodiment.
  • the actuator operation FB target value determination unit 20b first executes the same processing as in the first embodiment by the processing units 220 and 221, and the feedback moment basic required value Ml dmd and the dead zone respectively.
  • the excess feedback moment demand value Ml dmcLa is determined.
  • the actuator operation FB target value determination unit 20b executes the processing of the actuator operation FB target value distribution processing unit 222 to determine the actuator operation FB target value.
  • the FB target lateral force for active steering is determined by the Fyl dmdj ⁇ processing unit 222e.
  • the processing of the processing unit 222e is the same as that in the first embodiment. Note that the processing unit 222e may be omitted.
  • the method of determining the ⁇ -th wheel distribution gain ⁇ is the same as in the first embodiment. That is, Kl and ⁇ 2 related to the front wheels Wl and W2 are determined according to the actual front wheel side slip angle iS Lact as the front wheel side gain adjustment parameter, for example, as shown in the graph of FIG. 14 (a). . Further, K3 and K4 related to the rear wheels W3 and W4 are, for example, shown in the graph of FIG. 14 (b) according to the actual rear wheel side slip angle j8 r_act as the rear wheel gain adjustment parameter.
  • the polarity (direction) of Ml_n determined in this way is the same as MlbdmcLa.
  • the n-th wheel distribution gain Kn may be determined in any of the forms described in the first embodiment, in addition to the determination according to 13 f_act or 13 r_act as described above. In this case, as for the front wheel side gain adjustment parameter and the rear wheel side gain adjustment parameter, parameters other than i8 f_act,
  • 8 may be used as in the first embodiment.
  • FB target n-th wheel brake moment MlbdmcLn is determined by passing through corresponding limiter 222g_n.
  • the value of Ml_n, the value in the vertical axis direction is the value of MlbdmcLn.
  • _n is output as Ml dmd_n as it is, and when Ml _n is a positive value, the output MlbdmcLn is set to 0 regardless of the value of Ml _n. In other words, MlbdmcLn is determined by limiting Ml_n with 0 as the upper limit.
  • the relationship between the change in MlbdmcLa and the change in Ml dmd_l and Mlbdm d_3 is proportional.
  • the first wheel distribution gain K1 as the front wheel gain and the third wheel distribution gain K3 as the rear wheel gain are the front wheel gain adjustment parameter ( ⁇ f_act in this embodiment), the rear wheel gain, respectively. It changes according to the wheel side gain adjustment parameter ( ⁇ r_act in this embodiment).
  • MlbdmcLa is 0, the driving / braking device 3A's braking device 3A operates to correct the road surface reaction force of the right wheels W2, W4 of the actual vehicle 1 by the operation of the braking device 3A.
  • MlbdmcLn which generates a moment in one direction around the center of gravity G of the actual vehicle 1, is determined.
  • Ml dmd_2 and Ml dmd_4 of the second wheel W2 and the fourth wheel W4 are proportional to MlbdmcLa (a value obtained by multiplying MlbdmcLa by K2 or K4).
  • the relationship between the change in MlbdmcLa and the change in Mldmd_2 and Mlbdmd_4 is proportional.
  • the second wheel distribution gain K2 as the front wheel gain and the fourth wheel distribution gain K4 as the rear wheel gain are the front wheel gain adjustment parameter ( ⁇ f_act in this embodiment) and the rear wheel gain, respectively.
  • the gain changes according to the gain adjustment parameter ( ⁇ r_act in this embodiment).
  • limiter 222g_n (second wheel W2 and fourth wheel W4) For n 2, 4), Ml dmcLn may be determined by limiting Ml_n with a value slightly larger than 0 as the upper limit of Ml dmcLn!
  • FIG. 23 is a functional block diagram showing the processing function of the actuator operation target value synthesis unit 24, and FIG. 24 is a flowchart showing the processing of the optimum target n-th driving 'braking force determination unit among the processing functions.
  • the actuator operation target value synthesis unit 24 in the present embodiment is configured to determine the target n-th wheel drive / braking force Fxcmdji and the target n-th wheel slip ratio Scmdji.
  • the process of the optimum active rudder angle determination unit 247 is the same as that of the first embodiment.
  • the process of the optimal target n-th driving'braking force determining unit 241b_n is different from the first embodiment.
  • the actuator operation target value synthesis unit 24 as in the first embodiment, the FF target first wheel drive system driving / braking power, FF target among the actuator operation FF target values determined by the FF rule 22 Second wheel drive system drive 'braking force and FF target mission reduction ratio are output as target first wheel drive system drive' braking force, target second wheel drive system drive, braking force, target mission reduction ratio, respectively. To speak.
  • FF target n-th wheel brake drive ⁇ braking force and FF target n-th wheel drive system drive ⁇ braking force is the sum of FF overall target n-th wheel drive ⁇ braking force FFtotaLn (This is the same as in the first embodiment. Similarly, it is obtained by the adder 240) and the FB target n-th wheel brake moment Ml dmd_n of the actuator operation FB target value determined by the actuator operation FB target value determination unit 20b is input.
  • FF target n-th wheel brake drive ⁇ The braking force is input as FF general target n-th wheel drive ⁇ braking force FFtotaLn, and the actuator operation FB target value determining unit 20b determines the actuator operation FB target value.
  • FB target n-th wheel brake moment MlbdmcLn is input.
  • the latest value of ac t (current value) and the latest value of estimated friction coefficient ⁇ estm (current value) are also entered.
  • 8 f_act, n 3 or 4 up to actual rear wheel side slip angle ⁇ 8 and road surface friction coefficient (Friction coefficient between wheel n of wheel n and road surface)
  • the slip ratio Sff_n corresponding to the FF general target nth wheel drive / braking force FFtotaLn is obtained based on the precondition that the estimated friction coefficient is z estm.
  • the force that matches FFtotaLn or the value of the slip ratio that corresponds to the closest driving' braking force is obtained as Sff_n.
  • a slip ratio corresponding to FFtotaLn is obtained based on the map used in the processing of S100 in FIG. 19 in the first embodiment, and the obtained slip is obtained.
  • the slip ratio may be determined as Sff_n, and if there are different types of slip ratio values corresponding to FFtotaLn, the slip ratio closer to 0 is determined as Sff_n.
  • the drive' between the slip ratio value at which the braking force reaches its peak value (extreme value) and 0 Sff_n is determined within the range of. Also, if FFtotaLn deviates from the range of driving / braking force values that can be generated in the n-th wheel Wn based on the above preconditions, the driving closest to FFtotaLn corresponds to the braking force value.
  • the slip ratio value is determined as Sff_n.
  • the lateral force FyflLn of the n-th wheel Wn when the slip ratio of the n-th wheel Wn is Sff_n is obtained.
  • the lateral force Fyff_n may be obtained from the actual side slip angle j8 f_act or j8 r_act value of the wheel Wn, the estimated road friction coefficient estm value, and the Sff_n value.
  • the map may include the actual contact load Fzact_n of the nth wheel Wn as a variable parameter.
  • Mff_n can be obtained by calculating the outer product (vector product) of the position vector and the resultant vector.
  • the position vector of the center of gravity G of the actual vehicle 1 viewed from the n-th wheel Wn (position on the horizontal plane) Mff_n can be obtained by calculating the outer product (vector product) of the vector (this is preliminarily set) and the resultant vector.
  • the routine proceeds to S206, where Mff_n obtained as described above and the FB target brake moment MlbdmcLn are added together to obtain a moment around the center of gravity G of the actual vehicle 1 due to the road surface reaction force of the n-th wheel Wn.
  • a temporary target moment candidate M cand_n that is a temporary target value of moment in one direction is calculated.
  • Mcand_n is the center of gravity of the actual vehicle 1 according to the control request at the nth wheel Wn. This means the moment in the direction of the arrow to be generated around point G.
  • the n-th wheel slip ratio Smmaxji when the maximum moment occurs is determined. This is executed in the same manner as in the case of obtaining the n-th wheel slip ratio Smmax_n when the maximum moment is generated in S102 of Fig. 19 in which the Smmaxji is the driving 'braking force generated in the n-th wheel Wn correspondingly.
  • the moment (maximum moment) generated around the center of gravity G of the actual vehicle 1 due to the resultant force of the lateral force is determined so as to be maximized toward the polarity (direction) of the feedback demand moment basic requirement value Ml dmd. .
  • the relationship between the actual side slip angle of the n-th wheel Wn, the road surface friction coefficient, the slip ratio, the drive'braking force and the lateral force is represented.
  • the target n-th wheel slip ratio Scmd_n is determined by the processing of S212 force and S216.
  • Scmd_n is determined so that the absolute value of the driving corresponding to Scmdji * braking force (driving in the braking direction * braking force) is not smaller than the absolute value of the FF general target n-th wheel drive and braking force FFtotaLn.
  • S212 it is determined whether or not ScancLn>Sff_n> 0. When the determination result is YES, the process proceeds to S214, and the value of ScancLn is substituted for Scmd_n. If the determination result in S212 is NO, the process proceeds to S216, and the value of Sff_n is substituted for Scmd_n.
  • the process proceeds to S218, and the driving / braking force of the n-th wheel Wn corresponding to Scmd_n determined as described above is determined as the target n-th wheel driving / braking force Fxcmdji.
  • Fxcmdji corresponding to the value of Scmd_n is determined on the basis of a map prepared in advance that represents the relationship between the slip ratio and the driving braking force.
  • the target n-th wheel drive / braking force Fxcmdji is calculated based on the wheel characteristic relationship (the It can be generated on the n-th wheel Wn according to the wheel characteristics) assuming that the lean angle is the actual side slip angle / 3 f_act or 13 r_act and the road surface friction coefficient is the estimated friction coefficient ⁇ estm.
  • the driving / braking force component is equal to Fxcmdji U
  • the moment in the one direction generated around the center of gravity G of the actual vehicle 1 should be as close as possible to the above-mentioned Mc and_n (the absolute value of the difference from Mcand_n should be minimized)
  • This condition is used.
  • condition (3) ′ condition (1) is the highest condition
  • condition (2) is the next order condition.
  • the target n-th wheel driving / braking force Fxcmdji is determined so as to satisfy these conditions (1), (2), and (3) 'according to the priority order.
  • Fxcmdji is determined so as to satisfy the condition (3) ′ as much as possible within the range in which the condition (2) can be satisfied. That is, the driving 'braking force corresponding to ScancLn determined in the processing of S210 (the driving' braking force corresponding to Scmdji when the determination result in S212 is YES) is determined as the target n-th wheel driving / braking force Fxcmdji The Fxcmdji satisfies the conditions (2) and (3) 'with the condition (2) as the priority condition. Furthermore, Fxcmdji is determined to satisfy the highest priority condition (1) through the processing of S212 to S216.
  • each optimum target n-th driving / braking force determination unit 241a_n includes the FF total n-th wheel driving / braking force FFtotaLn and the unrestricted n-th wheel drive.
  • each optimal target n-th driving'braking force determining unit 241a_n drives the n-th wheel Wn's driving'braking force and lateral force based on the input estimated friction coefficient estm and the actual road surface reaction force of the n-th wheel Wn. Estimate the relationship with force. Further, using the estimated relationship, the target n-th wheel drive / braking force FxcmcLn and the target n-th wheel slip ratio Scmd_n are determined.
  • Equation 40 ⁇ is the road friction coefficient
  • Fz_n is the ground load of the ⁇ -th wheel Wn
  • Fy0_n is the lateral force when the driving force of the n-th wheel Wn is the braking force Fx_n force ⁇ .
  • Fy0_n generally varies depending on the side slip angle of the n-th wheel Wn.
  • the polarity of Fy0_n is opposite to the polarity of the actual slip angle of the n-th wheel Wn.
  • this equation 40 is used to calculate FxcmcLn and Scmd_n. decide.
  • the actual road surface reaction force value is used to specify FyO_n in Equation 40.
  • FIG. 25 is a flowchart showing the processing.
  • FyO_n the value of FyO_n is determined.
  • sqrt (A) A is a general variable
  • the polarity (sign) of FyO_n is the same as Fyact_n.
  • Equation 40 when the value of FyO_n is the value determined in S300) as a constraint condition (a constraint condition that defines the relationship between Fx_n and Fy_n)
  • the unrestricted n-th wheel drive / braking force Fxdmdji (including the case where it coincides) and the driving / braking force Fx_n are obtained and set as the n-th wheel drive 'braking force candidate Fxcandji.
  • the range of values that the driving 'braking force Fx_n can take under the constraint of Equation 40 is the range between / z' Fzactji and 'Fzact_n.
  • ⁇ 'Fzactji means the maximum frictional force between the n-th wheel Wn and the road surface. Therefore, if the FxdmcLn value is within this range [ ⁇ -Fzact.n, ⁇ 'Fzact_n], FxdmcLn is determined as FxcancLn as it is, and the Fxdmd_n value range [- ⁇ -F zact_n, ⁇ If it deviates from 'Fzact_n], the value close to F xcmd_n of ⁇ ' Fzact_n and 'Fzact_n is determined as FxcancLn.
  • FIG. 26 schematically shows the actual vehicle 1 in a plan view, and an ellipse C1 in the figure indicates an ellipse represented by the formula 40 above.
  • the point on the ellipse C1 that corresponds to the Fx_l, Fy_l pair that produces the maximum moment around the center of gravity G of the actual vehicle 1 is the center of the first wheel W1 and the center of gravity of the actual vehicle 1 on the horizontal plane.
  • the straight line um in contact with the ellipse C1 is the contact point Ps of the ellipse C1.
  • Fxcand_l is a negative (braking direction) driving / braking force
  • Fx_l at the contact Ps is also a negative value.
  • Equation 42 The meanings of df and Lf in Equation 42 are the same as those in FIG.
  • Equation 40 the following Equation 43 is obtained.
  • Fxmmax— 1 ⁇ estm 'Fzact— 1 / sqrt (l + FyO_l / (tan ⁇ ⁇ ⁇ estm' Fzact— l 2 )
  • Equation 44 This equation 44 and the equation 42 are equations for obtaining Fxmmax_l.
  • Fxcand_l is a positive value
  • Fxmmax_l is a value obtained by inverting the sign of the calculation result on the right side of Equation 44.
  • the actual steering angle is 0, so that value is not necessary.
  • the routine proceeds to S316, where the slip ratio corresponding to Fxcmdji is obtained and determined as the target n-th wheel target slip ratio Scmdji.
  • the target n-th wheel slip ratio Scmd_n is determined on the basis of a predetermined map representing the relationship between the driving force of the n-th wheel Wn and the braking force and the slip ratio.
  • the map used here is a map corresponding to a combination of ⁇ estm and the actual slip angle j8 Lact or 13 r_act (some! / Is Fy0_n) of the n-th wheel Wn.
  • the target n-th wheel driving / braking force Fxcmdji is determined so as to satisfy the same conditions as the above conditions (1) to (3). And all of the conditions (1) to (3) If the target n-th wheel drive / braking force Fxcmdji that satisfies the above conditions cannot be determined, the target n-th wheel drive / braking force Fxcmdji is determined so as to satisfy the conditions with higher priority.
  • each optimum target n-th driving / braking force determination unit 241b_n includes the FF total n-th wheel driving / braking force FFtotaLn and the unrestricted n-th wheel drive.
  • each optimal target n-th driving'braking force determining unit 241b_n is based on the input estimated friction coefficient estm and the actual road surface reaction force of the n-th wheel Wn.
  • the target n-th wheel driving / braking force Fxcmdji and the target n-th wheel slip ratio Scmdji are determined using the estimated relationship.
  • FIG. 27 is a flowchart showing the process of each optimum target n-th driving / braking force determining unit 241b_n in the present embodiment.
  • S400 the same processing as in S300 in FIG. 25 is executed, and the value of Fy0_n in Expression 40 is obtained.
  • a lateral force Fyff_n corresponding to the FF general target nth wheel drive / braking force FFtotaLn is obtained. That is, by substituting the values of FFtotal_n, Fzact_n, and ⁇ estm for Fx_n, Fz_n, and ⁇ in Equation 40, respectively, and substituting the values obtained in S400 for FyO_n of Equation 40 (in other words, Determine the value of Fyff_n by the formula shown in the figure.
  • the process proceeds to S408, and the road surface reaction force (the resultant force of the driving / braking force Fx_n and the lateral force Fy_n) of the n-th wheel Wn is the center of gravity G of the actual vehicle 1 with Equation 40 as a constraint.
  • the driving force of the road surface reaction force such that the one-way moment generated around the point is the same as the polarity of the feedback torque moment Ml dmd and the maximum force is applied to the polarity.
  • the process proceeds to S410, and the road surface reaction force (the resultant force of the driving / braking force Fx_n and the lateral force Fy_n) of the n-th wheel Wn is the center of gravity G of the actual vehicle 1 with Equation 40 as a constraint.
  • the Fx_n when the unidirectional moment generated around is equal to or closest to McancLn is determined as the driving force candidate Fxcandji of the nth wheel Wn (the nth wheel drive 'braking force candidate Fxcandji) .
  • Fxcand_n is determined (in other words, the force of FxcancLn is different from that of Fxmmax_n, or the absolute value of Fxcand_n is less than the absolute value of Fxmmax_n).
  • Fxmmax_n is determined as FxcancLn.
  • Fx_n and Fy_n there are two pairs of Fx_n and Fy_n where the resultant force of Fx_n and Fy_n coincides with Mcand_n in the same direction as the momentary moment generated around the center of gravity G of the actual vehicle 1.
  • Fxmmax_n ⁇ 0
  • Fx_n that satisfies Fx_n> Fxmmax_n is determined as Fxcand_n.
  • Fxmmax_n> Fx_n that satisfies Fx_n and Fxmmax_n is determined as Fcand_n.
  • the process proceeds to S412 and it is determined whether or not 0> FFtotal_n> FxcancLn. If the determination result is YES, the process proceeds to S414, and the value of FxcancLn is assigned to Fxcmd_n. If the determination result in S412 is NO, the process proceeds to S416, and the value of FFtotal_n is assigned to Fxcmdji. As a result, the target n-th wheel drive / braking force Fxcmd is determined.
  • condition (3) ′ in the present embodiment is a value within the range of the value of the driving “braking force” that can be generated in the n-th wheel Wn according to the equation (40), and the wheel characteristics.
  • the driving * braking force component is equal to Fxcmdji, etc., and a moment in the direction of the direction around the center of gravity G of the actual vehicle 1 is possible due to the road surface reaction force As long as the force matches or is close to Mcand_n (difference from Mcand_n The absolute value of is to be minimized).
  • the condition (3) ′ and the conditions (1) and (2) the condition (1) is the highest condition, and the condition (2) is the next order condition.
  • the target n-th wheel drive / braking force FxcmcLn is determined so as to satisfy 1), (2), and (3) 'according to the priority order.
  • Fxcmd_n is determined so as to satisfy the condition (3) ′ as much as possible within the range in which the condition (2) can be satisfied. Furthermore, FxcmcLn is determined so as to satisfy the highest priority condition (1) through the processing of S412 to S416.
  • the force using the normative rate yd and the slip angle j8 d transverse to the normative vehicle center point as the normative state quantity may be as follows. For example, only the normative rate ⁇ ⁇ is sequentially obtained as the normative state quantity by the normative dynamic characteristic model. Then, the standard dynamic characteristic model and the actuator device 3 of the actual vehicle 1 may be operated so that the state quantity deviation ⁇ err, which is the difference between the actual current rate ⁇ act and the standard current rate ⁇ d, approaches 0. . In this case, instead of the normative dynamic characteristic model 16 expressed by the equation (1), for example, the normative rate ⁇ d may be sequentially determined by the normative dynamic characteristic model 56 shown in FIG.
  • This reference dynamic characteristic model 56 is used to operate the steering angle ⁇ h, the actual travel speed Vact, and the reference dynamic characteristic model 56.
  • the virtual external force moment (moment in one direction) Mvir as the control input (control input to bring ⁇ err closer to 0) is sequentially input every control processing cycle. Note that 0 h and Vact are the latest values (current value), and Mvir is the previous value.
  • the reference dynamic characteristic model 56 first obtains the settling target rate ⁇ from the input ⁇ h, Vact parameter and the settling target value determination map 56a.
  • the set target target rate ⁇ is the convergence value of the correct rate of the model vehicle (the vehicle on the reference dynamic characteristic model 56 in this embodiment) when ⁇ h and Vact are constantly maintained at their input values. Means.
  • the settling target value determination map 56a should be set according to the estimated friction coefficient estm. Is desirable.
  • the previous value of the normative yo rate yd (the value obtained in the previous control processing cycle from the normative dynamic characteristic model 56) and the settling target gyrate ⁇ are input to the flywheel following law 56b.
  • the flywheel FB moment Ml is determined by this flyhole tracking control law 56b.
  • the rotational motion of the model vehicle in the direction of the arrow is expressed by the rotational motion of a horizontal flywheel (a flywheel whose rotation axis is a vertical axis).
  • the rotational angular velocity of the flywheel is output as a reference yorate ⁇ d.
  • the flywheel following law 56b is a feedback control law (for example, a proportional law, a proportional law, etc.) so that the rotational angular velocity of the flywheel, that is, the reference yorate ⁇ ⁇ converges to the set target yorate ⁇ .
  • the flywheel FB moment M f as a moment input to the flywheel (control input of the dimension of the external force input to the flyhole) is determined by a differential law.
  • the reference dynamic characteristic model 56 determines the flywheel input (moment) by adding the virtual external force moment Mvir to this Mlb in the adder 56c. Then, the rotational angular acceleration of the flywheel is obtained by dividing this input moment by the inertia moment J of the flywheel in the processing unit 56d. Furthermore, the value obtained by integrating the rotational angular acceleration (in the figure, the integration is expressed by the operator “lZs”) is output as the normative rate y d.
  • the value of the moment of inertia J of the flywheel may be set to the same force or almost the same value as the value of the moment of inertia around the center of gravity G of the actual vehicle 1, for example.
  • a value identified while the actual vehicle 1 is traveling may be used.
  • processes other than the normative dynamic characteristic model 56 in the modification 1 may be the same as those in the first embodiment, for example.
  • Mvir is determined, and the Mvir is fed back to the reference dynamic characteristic model 56.
  • ⁇ da for example, the reference dynamic characteristic model 5 from the current value of Vact, ⁇ h and the provisional value Mvirtmp of Mvir according to y err It is sufficient to predict the value of the vehicle above 6 for a predetermined time and use that predicted value as ⁇ da.
  • a current value of ⁇ act or a linear combination value of y act and ⁇ d may be used as ⁇ da.
  • iS err is set to 0, and the processing described in the first embodiment is executed. It should be noted that in this variant 1, the process of the reference manipulated variable determiner 14 is not necessary. Other than this, the processing may be the same as that described in the first embodiment.
  • the base state quantity relating to the translational movement in the lateral direction of the vehicle (actual vehicle 1 and model vehicle) and the base state quantity relating to the rotational motion (as the first state quantity in the present invention)
  • the slip angle ⁇ and the yorate ⁇ across the center of gravity of the vehicle are used, other state quantities may be used.
  • the description of the motion of the vehicle may be converted from a system based on j8 and ⁇ to a system based on a set of other state quantities using an appropriate conversion matrix.
  • the vehicle side slip velocity Vy which is the side slip velocity of the vehicle center of gravity (the lateral component of the running speed Vact) may be used instead of the vehicle center of gravity side slip angle ⁇ .
  • the vehicle running speed Vact changes slowly compared to the vehicle's center-of-gravity point slip angle j8 rate ⁇ , and the running speed Vact can be considered constant, the following formulas 50a, 50b Therefore, ⁇ and d ⁇ / ⁇ (time derivative of ⁇ ) can be converted to Vy and dVy / dt (time fraction of Vy), respectively.
  • vehicle side slip acceleration ay which is the lateral acceleration of the vehicle's center of gravity (the rate of change in time of Vy)
  • yorate ⁇ You can use it as a quantity!
  • Equation 51 the change in the vehicle running speed Vact is slower than the side slip angle ⁇ ⁇ rate y.
  • Vact can be regarded as constant (when it can be regarded as dVact / dt ⁇ O)
  • the following equation 52 is approximately established based on the equations 01 and 51.
  • the vehicle motion description is based on the system based on j8 and ⁇ , the system based on ⁇ ⁇ , and the system based on ay and ⁇ .
  • the “slip angle to the side of the vehicle center of gravity” in each of the above embodiments is set to “the vehicle side slip velocity Vy” or “the vehicle side This should be read as “bending acceleration”. Therefore, an embodiment using a set of Vy and ⁇ or a set of ay and ⁇ as a state quantity can be constructed in the same manner as the first to fifth embodiments.
  • the side slip angle j8 or the side slip speed Vy at the center of gravity of the vehicle instead of the side slip angle j8 or the side slip speed Vy at the center of gravity of the vehicle, the side slip angle of the vehicle at a position other than the center of gravity (for example, the position of the rear wheel) Side slip velocity, side slip acceleration, or lateral acceleration may be used.
  • Side slip velocity, side slip acceleration, or lateral acceleration may be used.
  • the description of the vehicle motion is based on the slip angle j8 transverse to the center of gravity of the vehicle and the system ⁇ ⁇ , and the side slip angle, side slip velocity, lateral It can be converted to a system based on the sliding acceleration or lateral acceleration and ⁇ .
  • the amount subject to the restriction in the FB distribution rule 20 is used, instead of the slip angle / 3 of the vehicle center of gravity of the actual vehicle 1 or model vehicle, The predicted value of side-slip acceleration or lateral acceleration, current value (latest value), or filtering value may be used.
  • the vehicle side slip angle, side slip speed, side slip acceleration, or lateral acceleration predicted value, current value (latest value), or filtering value is restricted at positions other than the center of gravity of the vehicle. It may be used as a target amount.
  • a force using virtual external forces Mvir and Fvir is used as a control input for model operation to bring the state quantity deviations ⁇ err and ⁇ err closer to 0. It is not limited to external force.
  • the model vehicle is caused to generate a compensation amount (required correction amount) of the road surface reaction force corresponding to the virtual external force (and so that the state quantity deviation approaches 0). The angle and the driving / braking force of the wheel of the model vehicle may be operated.
  • the reference dynamic characteristic model is a linear system (a system in which the road reaction force on the reference dynamic characteristic model has no saturation characteristic), the steering angle of the model vehicle and the wheel of the model vehicle By manipulating the driving force and braking force, it is possible to have the same effect as when a virtual external force is applied to the model vehicle.
  • equation 60 may be used instead of equation 01 as an equation representing the dynamic characteristic of the reference dynamic characteristic model.
  • the reference dynamic characteristic model expressed by Equation 60 is a compensation amount of the steering angle of the front wheel of the model vehicle.
  • This model uses feedback control input for operation.
  • al2, a21, a22, bl, and b2 in Formula 60 may be the same as those shown in the proviso of Formula 01 above.
  • the fourth term on the right side of Equation 60 is the moment that the compensation amount Fxllb, Fx21 of the front wheel of the model vehicle is generated around the center of gravity of the model vehicle (this is shown in Fig. 13 above).
  • Model car equipped with four wheels W1 to W4 on the front wheel W1 When Fxllb drive 'braking force is generated on front wheel W1 and Fx21 drive' braking force is generated on front wheel W2 This means the moment generated around.
  • the fifth term is the driving of the rear wheels of the model vehicle 'the braking force compensation amount Fx31, Fx41b is generated around the center of gravity of the model vehicle (this is the four wheels W1 as shown in Fig. 13).
  • the coefficients b5 and b6 in the fourth and fifth terms are coefficients determined in accordance with at least the tread of the front wheel and the tread of the rear wheel, respectively. The coefficient may be corrected according to the steering angle of the front wheel or the rear wheel of the model vehicle.
  • the front wheel rudder angle compensation amount ⁇ fj and the rear wheel rudder angle compensation amount ⁇ rj are expressed by, for example, the following equations 61a and 61b: This should be determined using.
  • the expression 61a is an expression corresponding to the expression 15
  • the expression 61b is an expression corresponding to the expressions 17, 18a, and 18b.
  • ⁇ f_lbtmp and ⁇ r jbtmp mean the provisional value of the compensation amount of the steering angle of the front wheels and the provisional value of the compensation amount of the steering angle of the rear wheels, respectively.
  • JSerr, ⁇ err, ⁇ over, ⁇ over are These are the same as those described in the first embodiment.
  • the slip angle j8f_act and the actual rear wheel side slip angle j8r_act were used. However, instead of these, the slip angle j8 act across the center of gravity of the actual vehicle may be used.
  • the front wheel side slip angle j8f_d and the rear wheel side slip angle j8r_d can be used instead of j8f_act and j8r_act, respectively.
  • the weighted average values of j8 f_act and ⁇ r_act of actual vehicle 1 and 13 f_d and j8r_d of the model vehicle can be used instead of j8f_act and j8 r_act respectively, or 13 act and model vehicle of actual vehicle 1 can be used.
  • ⁇ r_act the weighted average value of 13 d may be used.
  • the weight may have a frequency characteristic (for example, a frequency characteristic that functions as a phase compensation element).
  • the input values and output values (detected values, estimated values, target values, etc.) of the respective processing units in the first to fifth embodiments are appropriately selected from filters (low-pass filters, high-nos filters, position complementary compensation). Element etc.).
  • filters low-pass filters, high-nos filters, position complementary compensation. Element etc.
  • the processing is converted or the processing order is changed so as to be equivalent to the first to fifth embodiments or to be approximately equivalent. You can change it.
  • each limiter may be a limiter as represented by an S-shaped graph, for example, even if the relationship between the input and output is not represented by a line graph.
  • the model may be configured with air resistance, road slope angle, and the like taken into account.
  • each gain used in each of the above embodiments is sequentially changed according to the actual traveling speed Vact, the estimated friction coefficient ⁇ estm, and the like.
  • the vehicle on the reference dynamic characteristic model 16 is operated in accordance with the state quantity deviations ⁇ err and ⁇ err (first state quantity deviation).
  • the state quantity deviations y e rr and j8 err may not be fed back to the reference dynamic characteristic model 16.
  • the reference state quantities are sequentially determined by always setting Mvir and Fvir in the above equation (1) to 0 or by omitting the terms related to Mvir and Fvir in the equation (1). You may ask for it.
  • the actuator device performs feedback control in accordance with state quantity deviations such as ⁇ err and ⁇ err (first state quantity deviation in the present invention). Only the steering device 3B may be used.
  • the conditions (1), (2), (3), or the conditions (1), (2), (3) ' are satisfied according to their priorities.
  • the target n-th wheel drive / braking force Fxcmdji and the target n-th wheel slip ratio Scmdji are determined.
  • Fxcmdji and Scmd_n may be determined so as to satisfy only condition (3) or (3)!
  • Fxcmdji and Scmd_n should be determined so that only one of the conditions (1) and (2) and the condition (3) or (3) 'is satisfied according to their priorities. A little.
  • the four-wheel vehicle 1 has been described as an example.
  • the present invention can also be applied to a vehicle such as a motorcycle.
  • the present invention can control the motion of automobiles and motorcycles, in particular, rotational motion in one direction and translational motion in the lateral direction to a desired motion with high robustness. Useful as a thing.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle in an embodiment of the present invention.
  • FIG. 2 is a functional block diagram showing an outline of the overall control processing function of the control device provided in the vehicle in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a vehicle structure on a reference dynamic characteristic model (vehicle model) in the first embodiment.
  • FIG. 4 is a functional block diagram showing details of processing functions of the normative manipulated variable determiner in the first embodiment.
  • FIG. 5 is a graph for explaining processing of an excessive centrifugal force prevention limiter provided in the reference manipulated variable determining unit in the first embodiment.
  • FIG. 6 is a graph for explaining another example of processing of the excessive centrifugal force prevention limiter in the first embodiment.
  • FIG. 7 is a graph for explaining another example of the processing of the limiter for preventing excessive centrifugal force in the first embodiment.
  • FIG. 8 is a functional block diagram showing another example of the process for determining the second restricted front wheel steering angle ⁇ f_ltd2 by the reference manipulated variable determining unit in the first embodiment.
  • FIG. 9 is a functional block diagram showing processing functions of the FB distribution rule in the first embodiment.
  • FIG. 10 is a functional block diagram showing another example of processing of the virtual external force determination unit in the first embodiment.
  • FIG. 11 is a graph for explaining another example of processing of the ⁇ ⁇ limiter in the first embodiment.
  • ⁇ 12] Actuator operation in the first embodiment ⁇ Lock diagram showing processing of the FB target value determination unit.
  • Actuator operation in the first embodiment A diagram for explaining variables used in the processing of the FB target value determination unit.
  • FIGS. 14 (a) and 14 (b) are graphs showing examples of setting of the distribution gain used in the processing of the actuator operation FB target value determination unit in the first embodiment.
  • FIGS. 15A to 15E are diagrams illustrating maps used in another example of processing by the actuator operation FB target value determination unit in the first embodiment.
  • FIGS. 16 (a) to 16 (e) are diagrams illustrating maps used in another example of the processing of the actuator operation FB target value determination unit in the first embodiment.
  • ⁇ 21 A functional block diagram showing the processing of the virtual external force determination unit of the FB distribution rule in the second embodiment.
  • ⁇ 23 A functional block diagram showing processing of the action target value synthesis unit in the third embodiment.
  • FIG. 26 is a diagram for explaining an example of the process of S304 in FIG. 25.
  • FIG. 27 is a flowchart showing processing of an optimum target n-th wheel drive'braking force determination unit provided in the actuator operation target synthesis unit in the fifth embodiment.
  • ⁇ 28] A functional lock diagram showing the processing of the reference dynamic characteristic model in the variation 1 of the embodiment of the present invention.

Abstract

 実際の車両1の運動の状態量と規範状態量との差である状態量偏差に応じて基本要求操作量Mfbdmd_aを決定し、この基本用要求操作量に応じて車輪の駆動・制動力操作用制御入力Fxfbdmd_nを決定する。このとき、基本要求操作量Mfbdmd_aの変化に対して、特定組の前輪および後輪のそれぞれの駆動・制動力操作用制御入力Fxdmd_nの変化を比例させ、且つ、Mfbdmd_aの変化に対するFxdmd_nの変化の割合(ゲイン)が横すべり角βf_act,βr_actなどのゲイン調整パラメータに応じて変化させる。これにより、車両の前輪に作用する路面反力と後輪に作用する路面反力とを適切に操作して、実際の車両の運動を所望の運動に適切に制御することを可能とする。

Description

明 細 書
車両の制御装置
技術分野
[0001] 本発明は自動車 (エンジン自動車)、ハイブリッド車、自動二輪車など、複数の車輪 を有する車両の制御装置に関する。
背景技術
[0002] 自動車などの車両には、主な機構として、車輪にエンジンなどの推進力発生源から 駆動力を伝達したり、あるいは制動力を付与する駆動'制動系と、車両の操舵輪を操 舵するためのステアリング系(操舵系)、車輪に車体を弾力的に支持させるサスペン シヨン系などのシステムが備えられている。そして、近年、例えば特開 2000— 41386 号公報(以下、特許文献 1という)に見られるように、これらのシステムを、運転者によ るステアリングホイール(ノヽンドル)や、アクセルペダル、ブレーキペダルなどの操作( 人為的操作)に応じて受動的に動作させるだけでなぐ種々の電動式もしくは油圧式 のァクチユエータを備えて、そのァクチユエータの動作を車両の走行状態や環境条 件などに応じて能動的 (積極的)に制御するようにしたものが知られている。
[0003] 特許文献 1には、前輪舵角に応じて後輪舵角のフィードフォワード目標値を決定す ると共に、規範状態量 (規範ョーレートと規範横加速度)と実状態量 (ョーレートの検 出値と横加速度の検出値)との偏差に応じて後輪舵角のフィードバック目標値を決定 し、それらの目標値の和に後輪の舵角を追従させる技術が提案されている。この場 合、規範状態量は、前輪の舵角に応じて設定される。また、フィードフォワード制御部 、フィードバック制御部、規範状態量決定部の伝達関数のパラメータあるいはゲイン は路面の摩擦係数の推定値に応じて調整される。
[0004] し力しながら、前記特許文献 1に見られるような技術では、路面の摩擦特性は考慮 されているものの、車両の前輪に作用する路面反力と後輪に作用する路面反力とが 車両の重心点まわりに作用するモーメントの影響が十分に考慮されて 、な 、。このた め、後輪舵角をフィードバック制御しても、車両の重心点のまわりに前記実状態量を 規範状態量に近づけるために適切なモーメントを発生させることができな 、場合があ る。
[0005] 一方、車両の運動を所望の運動に制御する上では、該車両に作用する外力として の路面反力を適切に制御することが望ましいと考えられる。この場合、例えば各車輪 に路面力 作用させる駆動 '制動力を操作することで、車両の重心点のまわりに発生 するョー方向のモーメントを操作することが可能である。従って、ョー方向の運動に関 する実状態量を規範状態量に近づけるように車両の挙動を制御する場合、各車輪に 路面力 作用させる駆動 '制動力を操作することが考えられる。
[0006] ただし、この場合、車両の前輪に作用する路面反力(特に駆動,制動力成分および 横力成分)と後輪に作用する路面反力 (特に駆動'制動力成分および横力成分)とを 、路面反力の特性を適切に考慮しながら操作することが望まれる。
[0007] 本発明は、かかる背景に鑑みてなされたものであり、車両の前輪に作用する路面反 力と後輪に作用する路面反力とを適切に操作して、実際の車両の運動を所望の運 動に適切に制御することを可能とする車両の制御装置を提供することを目的とする。 さらに、外乱要因あるいはその変化に対するロバスト性を高めて、車両の運動を適切 に制御できる車両の制御装置を提供することを目的とする。
発明の開示
[0008] かかる目的を達成するために、本願の第 1発明の車両の制御装置は、複数の車輪 を有する車両の操縦者による該車両の運転操作状態を示す運転操作量を検出する 運転操作量検出手段と、前記車両の各車輪の駆動'制動力を操作可能に該車両に 設けられたァクチユエータ装置と、前記ァクチユエータ装置の動作を逐次制御するァ クチユエータ装置制御手段とを備えた車両の制御装置において、
実際の車両のョー方向の回転運動に関する第 1状態量の値またはョー方向の回転 運動と横方向の並進運動とに関する第 1状態量の値である第 1実状態量を検出また は推定する実状態量把握手段と、
前記第 1状態量の規範値である第 1規範値を少なくとも前記検出された運転操作 量に応じて決定する規範値決定手段と、
前記検出または推定された第 1実状態量と前記決定された第 1規範値との偏差で ある第 1状態量偏差を算出する状態量偏差算出手段と、 前記第 1状態量偏差を 0に近づけるように前記ァクチユエータ装置を操作するため の基本要求操作量を前記算出された第 1状態量偏差に応じて決定する基本要求操 作量決定手段と、
前記実際の車両の各前輪と該前輪の真後ろの後輪との組のうちの少なくとも 1つの 特定組に対し、その各特定組の前輪および後輪のそれぞれの駆動 '制動力の操作 用の制御入力である駆動'制動力操作用制御入力を、少なくとも前記基本要求操作 量の変化と該駆動,制動力操作用制御入力の変化との関係が比例関係になるように 決定する駆動,制動力操作用制御入力決定手段とを備え、
前記ァクチユエータ装置制御手段は、少なくとも前記決定された駆動 ·制動力操作 用制御入力に応じて前記ァクチユエータ装置の動作を制御することにより前記各特 定組の前輪および後輪のそれぞれの駆動'制動力を該ァクチユエータ装置を介して 操作する手段であり、
前記駆動'制動力操作用制御入力決定手段は、前記実際の車両の少なくとも 1つ の前輪の横方向運動に関する状態量と、該車両の前部の所定位置の横方向運動に 関する状態量と、該車両の少なくとも 1つの前輪に路面力 作用する横力と、これらの 状態量および横力のいずれかに対して相関性を有するパラメータとのうちのいずれ かを前輪側ゲイン調整パラメータとして用い、前記基本要求操作量の変化に対する 前記各特定組の前輪の駆動,制動力操作用制御入力の変化の割合である前輪側ゲ インが、前記前輪側ゲイン調整パラメータに応じて変化するように、少なくとも該前輪 側ゲイン調整パラメータと前記決定された基本要求操作量とに応じて該特定組の前 輪の駆動,制動力操作用制御入力を決定すると共に、前記実際の車両の少なくとも 1 つの後輪の横方向運動に関する状態量と、該車両の後部の所定位置の横方向運動 に関する状態量と、該車両の少なくとも 1つの後輪に路面力 作用する横力と、これら の状態量および横力のいずれかに対して相関性を有するパラメータとのうちのいず れカを後輪側ゲイン調整パラメータとして用い、前記基本要求操作量の変化に対す る前記各特定組の後輪の駆動,制動力操作用制御入力の変化の割合である後輪側 ゲインが、前記後輪側ゲイン調整パラメータに応じて変化するように、少なくとも該後 輪側ゲイン調整パラメータと前記決定された基本要求操作量とに応じて該特定組の 後輪の駆動'制動力操作用制御入力を決定することを特徴とする。
[0009] かかる第 1発明によれば、前記第 1状態量偏差を 0に近づけるように、前記基本要 求操作量が決定される。そして、前記各特定組の前輪および後輪のそれぞれ駆動 · 制動力操作用制御入力が、この基本要求操作量の変化と該駆動'制動力操作用制 御入力の変化との関係が比例関係になるように決定される。換言すれば、第 1状態 量偏差の変化に起因して前記基本要求操作量が任意の変化量だけ変化したときの 、前記各特定組の前輪および後輪のそれぞれ駆動'制動力操作用制御入力の変化 量が、該基本要求操作量の変化量に比例した値になるように該駆動 ·制動力操作用 制御入力が決定される。例えば、各特定組の各車輪 (前輪または後輪)の駆動'制動 力操作用制御入力が、前記決定された基本要求操作量にあるゲインを乗じてなる値
(基本要求操作量に比例する値)に決定される。さらに、第 1発明では、この駆動'制 動力操作用制御入力に応じて前記ァクチユエータ装置の動作を制御することによつ て、各特定組の前輪および後輪のそれぞれの駆動 '制動力が操作される。これにより
、前記第 1状態量偏差が 0に近づくように、各特定組の前輪および後輪のそれぞれの 駆動'制動力が操作される。すなわち、実際の車両のョー方向の回転運動に関する 第 1状態量の値またはョー方向の回転運動と横方向の並進運動とに関する第 1状態 量の値である第 1実状態量が前記第 1規範値に近づくように、各特定組の前輪およ び後輪のそれぞれの駆動 ·制動力が操作される。
[0010] ここで、一般に、車両のョー方向回転運動または横方向並進運動は、各車輪に路 面力も作用する路面反力のうちの、駆動'制動力だけでなぐ横力の影響も受ける。 そして、各車輪の横力は、該車輪の横すベり角や駆動,制動力の変化に応じて変化 する。従って、前記第 1状態量偏差を 0に近づけるための駆動 '制動力操作用制御入 力は、各車輪の横力、あるいは、車両もしくは車輪の横すべりの影響も考慮して決定 することが望ましい。
[0011] そこで、第 1発明では、前記実際の車両の少なくとも 1つの前輪の横方向運動に関 する状態量 (例えば前輪の横すベり角など)と、該車両の前部の所定位置の横方向 運動に関する状態量 (例えば車両の前部の所定の位置の横すベり角など)と、該車 両の少なくとも 1つの前輪に路面力 作用する横力と、これらの状態量および横力の うちの少なくともいずれか 1つに対して相関性を有するパラメータとのうちのいずれか を前輪側ゲイン調整パラメータとして用いる。そして、前記基本要求操作量の変化に 対する前記各特定組の前輪の駆動,制動力操作用制御入力の変化の割合である前 輪側ゲインが、前記前輪側ゲイン調整パラメータに応じて変化するように、少なくとも 該前輪側ゲイン調整パラメータと前記決定された基本要求操作量とに応じて該特定 組の前輪の駆動,制動力操作用制御入力を決定する。
[0012] 同様に、前記実際の車両の少なくとも 1つの後輪の横方向運動に関する状態量と、 該車両の後部の所定位置の横方向運動に関する状態量と、該車両の少なくとも 1つ の後輪に路面力 作用する横力と、これらの状態量および横力のうちの少なくともい ずれ力 1つに対して相関性を有するパラメータとのうちのいずれかを後輪側ゲイン調 整パラメータとして用いる。そして、前記基本要求操作量の変化に対する前記各特定 組の後輪の駆動,制動力操作用制御入力の変化の割合である後輪側ゲインが、前 記後輪側ゲイン調整パラメータに応じて変化するように、少なくとも該後輪側ゲイン調 整パラメータと前記決定された基本要求操作量とに応じて該特定組の後輪の駆動- 制動力操作用制御入力を決定する。
[0013] この結果、第 1発明によれば、前記各特定組の前輪および後輪のそれぞれの駆動 •制動力の操作に伴う横力の変化の影響を考慮しながら、前記第 1状態量偏差を 0に 近づける上で、適切な駆動 '制動力操作用制御入力を決定することが可能となる。よ つて、第 1発明によれば、車両の前輪に作用する路面反力(駆動'制動力および横力 )と後輪に作用する路面反力(駆動'制動力および横力)とを適切に操作して、前記 実際の車両の第 1実状態量をその規範値たる前記第 1規範値に近づけるように、実 際の車両の運動(ョ一方向回転運動、あるいは、ョー方向回転運動および横方向並 進運動)を適切に制御することが可能となる。すなわち、第 1発明によれば、車両の前 輪に作用する路面反力と後輪に作用する路面反力とを適切に操作して、実際の車 両の運動を所望の運動に適切に制御することが可能となる。また、前記基本要求操 作量の変化に対して、各特定組の前輪および後輪のそれぞれの駆動'制動力操作 用制御入力の変化を比例させることにより、前記第 1状態量偏差を 0に近づける上で 適切な駆動 ·制動力操作用制御入力を容易に決定できる。 [0014] なお、第 1発明において、前記前輪側ゲイン調整パラメータに関し、前記「相関性を 有するパラメータ」は、前記実際の車両の少なくとも 1つの前輪の横方向運動に関す る状態量 (前輪の横すベり角など)と、該車両の前部の所定位置の横方向運動に関 する状態量 (車両の前部の所定の位置の横すベり角など)と、該車両の少なくとも 1つ の前輪に路面から作用する横力と、これらの状態量および横力のうちの少なくともい ずれ力 1つの値に応じてその値が定まるパラメータ (例えば 1つの前輪の横方向運動 に関する状態量にほぼ比例する値や、複数の前輪の横方向運動に関する状態量の 合成値など)、あるいは、当該状態量および横力のうちの少なくともいずれか 1つの値 を規定する 1つ以上のパラメータ (例えば当該状態量または横力を複数の変数量 (車 両の速度や操舵輪の操舵角など)の関数として表現し得る場合における当該複数の 変数量)を意味する。このことは、後輪側ゲイン調整パラメータに関する前記「相関性 を有するパラメータ」についても同様である。
[0015] また、前記「特定組」は、前記車両が、例えば 2輪車である場合には、その前輪およ び後輪の組を意味する。また、前記車両が、例えば前輪とその真後ろの後輪との組 を左右一対ずつ備える 4輪車である場合には、その左側の前輪および後輪の組と右 側の前輪および後輪の組とうちのいずれかの組、あるいは、その両者の組を意味す る。このことは、第 1発明に限らず、後述する各発明において同様である。
[0016] また、前記基本要求操作量としては、前記第 1状態量偏差を 0に近づけるために車 両に付加的に作用させるべき外力(モーメントまたは並進力)が挙げられる。また、車 両のョ一方向回転運動に関する第 1状態量としてはョーレートなどが挙げられ、横方 向並進運動に関する第 1状態量としては、車輪もしくは車両の所定位置の横すベり 角、横すベり速度 (横すベり角の時間的変化率)、横すベり加速度 (横すベり速度の 時間的変化率)、横加速度などが挙げられる。これらの基本要求操作量および第 1状 態量に関する事項は、第 1発明に限らず、後述する各発明において同様である。
[0017] また、本発明の車両の制御装置は、上記第 1発明と別の態様として、複数の車輪を 有する車両の操縦者による該車両の運転操作状態を示す運転操作量を検出する運 転操作量検出手段と、前記車両の各車輪の駆動'制動力を操作可能に該車両に設 けられたァクチユエータ装置と、前記ァクチユエータ装置の動作を逐次制御するァク チユエータ装置制御手段とを備えた車両の制御装置において、
実際の車両のョー方向の回転運動に関する第 1状態量の値またはョー方向の回転 運動と横方向の並進運動とに関する第 1状態量の値である第 1実状態量を検出また は推定する実状態量把握手段と、
前記車両の動特性を表すモデルとしてあら力じめ定められた車両モデル上での車 両の前記第 1状態量の値である第 1モデル状態量を少なくとも前記検出された運転 操作量に応じて決定するモデル状態量決定手段と、
前記検出または推定された第 1実状態量と前記決定された第 1モデル状態量との 偏差である第 1状態量偏差を算出する状態量偏差算出手段と、
前記第 1状態量偏差を 0に近づけるように前記ァクチユエータ装置を操作するため の基本要求操作量を前記算出された第 1状態量偏差に応じて決定する基本要求操 作量決定手段と、
前記実際の車両の各前輪と該前輪の真後ろの後輪との組のうちの少なくとも 1つの 特定組に対し、その各特定組の前輪および後輪のそれぞれの駆動 '制動力の操作 用の制御入力である駆動'制動力操作用制御入力を、少なくとも前記基本要求操作 量の変化と該駆動,制動力操作用制御入力の変化との間の関係が比例関係になる ように決定する駆動 ·制動力操作用制御入力決定手段と、
前記第 1状態量偏差を 0に近づけるように前記車両モデル上の車両を操作するた めの車両モデル操作用制御入力を少なくとも前記算出された第 1状態量偏差に応じ て決定する車両モデル操作用制御入力決定手段とを備え、
前記ァクチユエータ装置制御手段は、少なくとも前記決定された駆動 ·制動力操作 用制御入力に応じて前記ァクチユエータ装置の動作を制御することにより前記各特 定組の前輪および後輪のそれぞれの駆動'制動力を該ァクチユエータ装置を介して 操作する手段であり、
前記モデル状態量決定手段は、少なくとも前記検出された運転操作入力と前記決 定された車両モデル操作用制御入力とに応じて前記第 1モデル状態量を決定する 手段であり、
前記駆動'制動力操作用制御入力決定手段は、前記実際の車両である実車両ま たは前記車両モデル上での車両であるモデル車両の少なくとも 1つの前輪の横方向 運動に関する状態量と、該実車両またはモデル車両の前部の所定位置の横方向運 動に関する状態量と、該実車両またはモデル車両の少なくとも 1つの前輪に路面から 作用する横力と、これらの状態量および横力のうちの少なくともいずれ力 1つ対して 相関性を有するパラメータとのうちのいずれかを前輪側ゲイン調整パラメータとして用
V、、前記基本要求操作量の変化に対する前記各特定組の前輪の駆動 ·制動力操作 用制御入力の変化の割合である前輪側ゲインが、前記前輪側ゲイン調整パラメータ に応じて変化するように、少なくとも該前輪側ゲイン調整パラメータと前記決定された 基本要求操作量とに応じて該特定組の前輪の駆動'制動力操作用制御入力を決定 すると共に、前記実車両またはモデル車両の少なくとも 1つの後輪の横方向運動に 関する状態量と、該実車両またはモデル車両の後部の所定位置の横方向運動に関 する状態量と、該実車両またはモデル車両の少なくとも 1つの後輪に路面力 作用 する横力と、これらの状態量および横力のいずれかに対して相関性を有するパラメ一 タとのうちのいずれカゝを後輪側ゲイン調整パラメータとして用い、前記基本要求操作 量の変化に対する前記各特定組の後輪の駆動,制動力操作用制御入力の変化の 割合である後輪側ゲインが、前記後輪側ゲイン調整パラメータに応じて変化するよう に、少なくとも該後輪側ゲイン調整パラメータと前記決定された基本要求操作量と〖こ 応じて該特定組の後輪の駆動 *制動力操作用制御入力を決定することを特徴とする
(第 2発明)。
[0018] かかる第 2発明によれば、前記各特定組の前輪および後輪のそれぞれの駆動 ·制 動力操作用制御入力が前記第 1発明と同様に決定され、この駆動'制動力操作用制 御入力に応じた前記ァクチユエータ装置の動作の制御によって、各特定組の前輪お よび後輪のそれぞれの駆動 '制動力が操作される。これにより、前記第 1発明と同様 に、前記第 1状態量偏差が 0に近づくように、各特定組の前輪および後輪のそれぞれ の駆動 ·制動力が操作される。
[0019] 同時に、第 2発明では、前記車両モデル上での車両 (モデル車両)が前記車両モ デル操作用制御入力によって、前記第 1状態量偏差を 0に近づけるように操作される 。従って、実際の車両 (実車両)のョ一方向の回転運動に関する第 1状態量の値また はョ一方向の回転運動と横方向の並進運動とに関する第 1状態量の値である第 1実 状態量が前記モデル第 1状態量に近づくように、実車両の各特定組の前輪および後 輪のそれぞれの駆動'制動力が操作されることに加えて、該モデル第 1状態量が第 1 実状態量に近づくように、モデル車両が操作される。このため、第 2発明では、実車 両の運動とモデル車両の運動とが大きく乖離することがない。例えば、実車両の車輪 に作用する横力の値や、該実車両もしくはその車輪の横すベり角は、モデル車両の それらの値との差が比較的小さ 、ものとなる。
[0020] そして、第 2発明においても前記第 1発明と同様に、前記第 1状態量偏差を 0に近 づけるための駆動 ·制動力操作用制御入力は、各車輪の横力、あるいは、車両もしく は車輪の横すべりの影響も考慮して決定することが望ましい。
[0021] そこで、第 2発明では、前記実車両またはモデル車両の少なくとも 1つの前輪の横 方向運動に関する状態量 (例えば実車両またはモデル車両の前輪の横すベり角な ど)と、該実車両またはモデル車両の前部の所定位置の横方向運動に関する状態量 (例えば実車両またはモデル車両の前部の所定の位置の横すベり角など)と、該実 車両またはモデル車両の少なくとも 1つの前輪に路面力 作用する横力と、これらの 状態量および横力のうちの少なくともいずれか 1つ対して相関性を有するパラメータと のうちのいずれかを前輪側ゲイン調整パラメータとして用る。そして、前記基本要求 操作量の変化に対する前記各特定組の前輪の駆動,制動力操作用制御入力の変 化の割合である前輪側ゲインが、前記前輪側ゲイン調整パラメータに応じて変化する ように、少なくとも該前輪側ゲイン調整パラメータと前記決定された基本要求操作量と に応じて該特定組の前輪の駆動,制動力操作用制御入力を決定する。
[0022] 同様に、前記実車両またはモデル車両の少なくとも 1つの後輪の横方向運動に関 する状態量と、該実車両またはモデル車両の後部の所定位置の横方向運動に関す る状態量と、該実車両またはモデル車両の少なくとも 1つの後輪に路面力 作用する 横力と、これらの状態量および横力のいずれかに対して相関性を有するパラメータと のうちのいずれかを後輪側ゲイン調整パラメータとして用いる。そして、前記基本要 求操作量の変化に対する前記各特定組の後輪の駆動,制動力操作用制御入力の 変化の割合である後輪側ゲインが、前記後輪側ゲイン調整パラメータに応じて変化 するように、少なくとも該後輪側ゲイン調整パラメータと前記決定された基本要求操作 量とに応じて該特定組の後輪の駆動 *制動力操作用制御入力を決定する。
[0023] この結果、第 2発明によれば、第 1発明と同様に、前記各特定組の前輪および後輪 のそれぞれの駆動'制動力の操作に伴う横力の変化の影響を考慮しながら、前記第 1状態量偏差を 0に近づける上で、適切な駆動,制動力操作用制御入力を決定する ことが可能となる。
[0024] カロえて、第 2発明では、前記したように実車両の運動とモデル車両との運動とが大 きく乖離することがないので、前記第 1状態量偏差が過大になることがない。このため 、前記基本要求操作量や、各特定組の前輪および後輪のそれぞれの駆動,制動力 操作用制御入力が過大になったり、リミッタによって制限されてしまうような事態を回 避できる。その結果、第 1状態量偏差に応じた実車両のァクチユエータ装置の動作 制御の安定性を高めることができる。
[0025] よって、第 2発明によれば、車両の前輪に作用する路面反力(駆動'制動力および 横力)と後輪に作用する路面反力 (駆動'制動力および横力)とを適切に操作して、 前記実際の車両の第 1実状態量を第 1モデル状態量に近づけるように、実際の車両 の運動(ョ一方向回転運動、あるいは、ョー方向回転運動および横方向並進運動)を 適切に制御することが可能となる。すなわち、第 2発明によれば、車両の前輪に作用 する路面反力と後輪に作用する路面反力とを適切に操作して、実際の車両の運動を 所望の運動に適切に制御することが可能となる。また、各特定組の前輪および後輪 の駆動,制動力操作用制御入力が過大にならないように決定できることから、外乱要 因あるいはその変化に対するロバスト性を高めて、車両の運動を適切に制御できる。 また、前記第 1発明と同様に、前記基本要求操作量の変化に対して、各特定組の前 輪および後輪のそれぞれの駆動'制動力操作用制御入力の変化を比例させることに より、前記第 1状態量偏差を 0に近づける上で適切な駆動'制動力操作用制御入力 を容易に決定できる。
[0026] なお、第 2発明において、前記前輪側ゲイン調整パラメータに関し、前記「相関性を 有するパラメータ」は、前記実車両またはモデル車両の少なくとも 1つの前輪の横方 向運動に関する状態量 (前輪の横すベり角など)と、該実車両またはモデル車両の 前部の所定位置の横方向運動に関する状態量 (実車両またはモデル車両の前部の 所定の位置の横すベり角など)と、該実車両またはモデル車両の少なくとも 1つの前 輪に路面力 作用する横力とのうちの少なくともいずれか 1つの値に応じてその値が 定まるパラメータ (例えば 1つの前輪の横方向運動に関する状態量にほぼ比例する 値や、複数の前輪の横方向運動に関する状態量の合成値など)、あるいは、当該状 態量および横力のうちの少なくともいずれか 1つの値を規定する 1つ以上のパラメ一 タ (例えば当該状態量または横力を複数の変数量 (車両の速度や操舵輪の操舵角 など)の関数として表現し得る場合における当該複数の変数量)を意味する。このこと は、第 2発明における後輪側ゲイン調整パラメータに関する前記「相関性を有するパ ラメータ」についても同様である。
この第 2発明にお 、ては、前輪側ゲイン調整パラメータおよび後輪側ゲイン調整パ ラメータとして、前記「相関性を有するパラメータ」を用いる場合に、例えば次のような 例が挙げられる。すなわち、前記前輪側ゲイン調整パラメータとして、前記実車両の 少なくとも 1つの前輪の横方向運動に関する状態量と前記モデル車両の少なくとも 1 つの前輪の横方向運動に関する状態量との合成値と、前記実車両の前部の所定位 置の横方向運動に関する状態量と前記モデル車両の前部の所定位置の横方向運 動に関する状態量との合成値と、前記実車両の少なくとも 1つの前輪に作用する横 力と前記モデル車両の少なくとも 1つの前輪に作用する横力との合成値とのうちのい ずれかの合成値を用いることができる。同様に、前記後輪側ゲイン調整パラメータとし て、前記実車両の少なくとも 1つの後輪の横方向運動に関する状態量と前記モデル 車両の少なくとも 1つの後輪の横方向運動に関する状態量との合成値と、前記実車 両の後部の所定位置の横方向運動に関する状態量と前記モデル車両の後部の所 定位置の横方向運動に関する状態量との合成値と、前記実車両の少なくとも 1つの 後輪に作用する横力と前記モデル車両の少なくとも 1つの後輪に作用する横力との 合成値とのうちのいずれかの合成値を用いることができる(第 3発明)。例えば、実車 両の前輪の横すベり角とモデル車両の前輪の横すベり角との合成値を前記前輪側 ゲイン調整パラメータとして用い、実車両の後輪の横すベり角とモデル車両の後輪の 横すベり角との合成値を前記後輪側ゲイン調整として用いることができる。また、合成 値としては、加重平均値や重み付き平均値が挙げられる。
また、前記第 2発明では、前記駆動'制動力操作用制御入力決定手段は、 前記実車両の少なくとも 1つの前輪の横方向運動に関する状態量と、該実車両の 前部の所定位置の横方向運動に関する状態量と、該実車両の少なくとも 1つの前輪 に路面力 作用する横力と、これらの状態量および横力のうちの少なくともいずれか 1つに対して相関性を有するパラメータとのうちのいずれかに応じて、前記各特定組 の前輪に対応する前記前輪側ゲインの操作用の第 1の仮値を決定する手段と、 前記実車両の少なくとも 1つの後輪の横方向運動に関する状態量と、該実車両の 後部の所定位置の横方向運動に関する状態量と、該実車両の少なくとも 1つの後輪 に路面力 作用する横力と、これらの状態量および横力のうちの少なくともいずれか 1つに対して相関性を有するパラメータとのうちのいずれかに応じて、前記各特定組 の後輪に対応する前記後輪側ゲインの操作用の第 1の仮値を決定する手段と、 前記モデル車両の少なくとも 1つの前輪の横方向運動に関する状態量と、該モデ ル車両の前部の所定位置の横方向運動に関する状態量と、該モデル車両の少なく とも 1つの前輪に路面力 作用する横力と、これらの状態量および横力のうちの少な くともいずれ力 1つに対して相関性を有するパラメータとのうちのいずれかに応じて、 前記各特定組の前輪に対応する前記前輪側ゲインの操作用の第 2の仮値を決定す る手段と、
前記モデル車両の少なくとも 1つの後輪の横方向運動に関する状態量と、該モデ ル車両の後部の所定位置の横方向運動に関する状態量と、該モデル車両の少なく とも 1つの後輪に路面力 作用する横力と、これらの状態量および横力のうちの少な くともいずれ力 1つに対して相関性を有するパラメータとのうちのいずれかに応じて、 前記各特定組の後輪に対応する前記後輪側ゲインの操作用の第 2の仮値を決定す る手段と、
前記各特定組の前輪に対応する前記前輪側ゲインの操作用の第 1の仮値と第 2の 仮値とを合成してなる前輪側ゲイン操作用合成値と、該特定組の後輪に対応する前 記後輪側ゲインの操作用の第 1の仮値と第 2の仮値とを合成してなる後輪側ゲイン操 作用合成値とを決定する手段と、 前記各特定組の前輪に対応して前記決定された前輪側ゲイン操作用合成値に前 記前輪側ゲインを比例させるように、少なくとも該前輪側ゲイン操作用合成値と前記 決定された基本要求操作量とに応じて該特定組の前輪の駆動'制動力操作用制御 入力を決定すると共に、該特定組の後輪に対応して前記決定された後輪側ゲイン操 作用合成値に前記後輪側ゲインを比例させるように、少なくとも該後輪側ゲイン操作 用合成値と前記決定された基本要求操作量とに応じて該特定組の後輪の駆動'制 動力操作用制御入力を決定する手段とを備えるようにしてもよい (第 4発明)。
[0029] この第 4発明によれば、前記前輪側ゲインが、前輪側ゲイン操作用合成値に比例し て変化する。そして、該前輪側ゲイン操作用合成値は、実車両の後輪の横方向運動 に関する状態量等に応じて決定された前輪側ゲインの操作用の第 1の仮値とモデル 車両の後輪の横方向運動に関する状態量等に応じて決定された第 2の仮値とを合 成したものである。さらに、この前輪側ゲイン操作用合成値に前記前輪側ゲインが比 例するように特定組の前輪の駆動,制動力操作用制御入力が決定される。その結果 、前輪側ゲインが、前記前輪側ゲイン調整パラメータに応じて変化するように、特定 組の前輪の駆動 '制動力操作用制御入力を決定できることとなる。特定組の後輪の 駆動 ·制動力操作用制御入力につ 、ても同様である。
[0030] 前記第 1発明では、前記各特定組の前輪に対応する前記前輪側ゲインは、前記前 輪側ゲイン調整パラメータに応じて値が変化する前輪側ゲイン操作用成分に比例す るものであると共に、該特定組の後輪に対応する前記後輪側ゲインは、前記後輪側 ゲイン調整パラメータに応じて値が変化する後輪側ゲイン操作用成分に比例するも のであり、
前記駆動'制動力操作用制御入力決定手段は、前記各特定組の前輪に対応する 前記前輪側ゲイン操作用成分と該特定組の後輪に対応する前記後輪側ゲイン操作 用成分とがそれぞれ前記前輪側ゲイン調整パラメータおよび後輪側ゲイン調整パラ メータに応じて変化し、且つ、該前輪側ゲイン操作用成分と後輪側ゲイン操作用成 分との和を所定値に一致させる力、または該所定値に近づけるように、該前輪側ゲイ ン操作用成分および後輪側ゲイン操作用成分を前記前輪側ゲイン調整パラメータお よび後輪側ゲイン調整パラメータに応じて決定する手段と、少なくとも該前輪側ゲイン 操作用成分と前記決定された基本要求操作量とに応じて各特定組の前輪の駆動 · 制動力操作用制御入力を決定すると共に、少なくとも該後輪側ゲイン操作用成分と 前記決定された基本要求操作量とに応じて各特定組の後輪の駆動'制動力操作用 制御入力を決定する手段とを備えることが好ましい (第 5発明)。また、前記第 2〜第 4 発明にお 、ても、第 5発明と同等の技術を備えることが好ま 、 (第 6発明)。
[0031] これらの第 5発明および第 6発明によれば、各特定組の前輪および後輪に対応す る前輪側ゲイン操作用成分と後輪側ゲイン操作用成分との和をほぼ一定に (前記所 定値またはこれに近い値に)保つことが可能となる。この結果、特定組の前輪および 後輪の駆動 ·制動力操作用制御入力に応じて、該前輪および後輪で発生するトータ ルの路面反力を、前記第 1状態量偏差を安定に 0に近づけ得るように、適切に操作 することが可能となる。
[0032] また、前記第 1発明あるいは第 5発明では、前記基本要求操作量決定手段は、前 記第 1状態量偏差力もフィードバック制御則によりフィードバック操作量を決定する手 段と、該フィードバック操作量に応じて前記基本要求操作量を決定する手段とから成 り、該フィードバック操作量に応じて前記基本要求操作量を決定する手段は、該フィ ードバック操作量力 So近傍の所定の不感帯に存する場合には、該フィードバック操作 量の値を 0として、前記基本要求操作量を決定することが好ましい (第 7発明)。また、 前記第 2〜第 4発明あるいは第 6発明においても、第 7発明と同等の技術を備えること が好ましい (第 8発明)。
[0033] この第 7発明および第 8発明によれば、前記フィードバック操作量が 0近傍の値であ るとき、すなわち、前記第 1状態量偏差が十分に 0に近い場合には、フィードバック操 作量の値を 0として基本要求操作量が決定される。このため、第 1状態量偏差が十分 に 0に近 、場合には、前記特定組の前輪および後輪の駆動 ·制動力操作用制御入 力は実質的に、該第 1状態量偏差に応じて変化しないものとなる。ひいては、該前輪 および後輪の駆動 '制動力が第 1状態量偏差に応じて頻繁に変化するのを防止でき る。
[0034] また、前記第 1発明、第 5発明、第 7発明では、前記駆動,制動力操作用制御入力 決定手段は、前記前輪側ゲイン調整パラメータに対して前記各特定組の前輪に対応 する前記前輪側ゲインが実質的に連続的に変化し、且つ、前記後輪側ゲイン調整パ ラメータに対して各特定組の後輪に対応する前記後輪側ゲインが実質的に連続的 に変化するように各特定組の前輪および後輪のそれぞれの駆動 ·制動力操作用制 御入力を決定することが好ましい (第 9発明)。また、前記第 2〜第 4発明、第 6発明、 第 8発明においても、第 9発明と同等の技術を備えることが好ましい (第 10発明)。
[0035] このようにすることで、前記特定組の前輪および後輪の駆動 ·制動力を前記前輪側 ゲイン調整パラメータや後輪側ゲイン調整パラメータの変化に対して連続的に滑らか に変ィ匕させることができる。
[0036] また、前記第 1発明、第 5発明、第 7発明、第 9発明では、前記前輪側ゲイン調整パ ラメータと前記後輪側ゲイン調整パラメータとは同一種類のパラメータであり、前記駆 動 ·制動力操作用制御入力決定手段は、該前輪側ゲイン調整パラメータと後輪側ゲ イン調整パラメータとが同一の値を採りつつ変化する場合に、前記各特定組の前輪 に対応する前記前輪側ゲインと該特定組の後輪に対応する前記後輪側ゲインとの比 率である前後車輪比率が、該前輪側ゲイン調整パラメータおよび後輪側ゲイン調整 ノ ラメータの値の変化に対して単調に変化する(単調に増加する、または、単調に減 少する)ように前記各特定組の前輪および後輪のそれぞれ駆動 ·制動力操作用制御 入力を決定することが好ましい (第 11発明)。また、前記第 2〜第 4発明、第 6発明、 第 8発明、第 10発明においても、第 11発明と同等の技術を備えることが好ましい (第 12発明)。
[0037] これにより、前記基本要求操作量に対する、前記特定組の前輪および後輪のそれ ぞれの駆動 *制動力の分担割合を適切に設定できる。すなわち、基本要求操作量に よって、車両に作用させることが要求される路面反力を、該前輪側ゲイン調整パラメ ータおよび後輪側ゲイン調整パラメータに応じて、該特定組の前輪および後輪に適 切〖こ分担させることができる。
[0038] なお、前記第 1発明、第 5発明、第 7発明、第 9発明、第 11発明では、前記前輪また は後輪の横方向運動に関する状態量として、該前輪または後輪の横すベり角、横す ベり速度、および横加速度のうちのいずれかを使用することができ、前記車両の前部 または後部の所定の位置の横方向運動に関する状態量として、該所定の位置の横 すべり角、横すベり速度、および横加速度のうちのいずれかを使用することができる( 第 13発明)。このことは、前記第 2〜第 4発明、第 6発明、第 8発明、第 10発明、第 12 発明でも同様である (第 14発明)。
また、本発明の車両の制御装置のさらに別の態様は、複数の車輪を有する車両の 操縦者による該車両の運転操作状態を示す運転操作量を検出する運転操作量検 出手段と、前記車両の各車輪の駆動,制動力を操作可能に該車両に設けられたァク チュエータ装置と、前記ァクチユエータ装置の動作を逐次制御するァクチユエータ装 置制御手段とを備えた車両の制御装置において、
実際の車両のョー方向の回転運動に関する第 1状態量の値またはョー方向の回転 運動と横方向の並進運動とに関する第 1状態量の値である第 1実状態量を検出また は推定する実状態量把握手段と、
前記第 1状態量の規範値である第 1規範値を少なくとも前記検出された運転操作 量に応じて決定する規範値決定手段と、
前記検出または推定された第 1実状態量と前記決定された第 1規範値との偏差で ある第 1状態量偏差を算出する状態量偏差算出手段と、
前記第 1状態量偏差を 0に近づけるように前記ァクチユエータ装置を操作するため の基本要求操作量を前記算出された第 1状態量偏差に応じて決定する基本要求操 作量決定手段と、
前記実際の車両の各前輪と該前輪の真後ろの後輪との組のうちの 1つの特定組に 対し、その特定組の前輪および後輪のそれぞれの駆動 '制動力の操作用の制御入 力である駆動,制動力操作用制御入力を決定する駆動,制動力操作用制御入力決 定手段とを備え、
前記ァクチユエータ装置制御手段は、少なくとも前記決定された駆動 ·制動力操作 用制御入力に応じて前記ァクチユエータ装置の動作を制御することにより前記特定 組の前輪および後輪のそれぞれの駆動 '制動力を該ァクチユエータ装置を介して操 作する手段であり、
前記駆動'制動力操作用制御入力決定手段は、前記実際の車両の少なくとも 1つ の前輪の横方向運動に関する状態量と、該車両の前部の所定位置の横方向運動に 関する状態量と、該車両の少なくとも 1つの前輪に路面力 作用する横力と、これらの 状態量および横力のいずれかに対して相関性を有するパラメータとのうちのいずれ かを前輪側ゲイン調整パラメータとして用いると共に、前記実際の車両の少なくとも 1 つの後輪の横方向運動に関する状態量と、該車両の後部の所定位置の横方向運動 に関する状態量と、該車両の少なくとも 1つの後輪に路面力 作用する横力と、これら の状態量および横力のうちの少なくとも 、ずれか 1つに対して相関性を有するパラメ ータとのうちのいずれ力を後輪側ゲイン調整パラメータとして用いて、少なくとも前記 決定された基本要求操作量と前記前輪側ゲイン調整パラメータと前記後輪側ゲイン 調整パラメータとを入力とし、且つ前記特定組の前輪および後輪のそれぞれの駆動' 制動力操作用制御入力を出力とする手段であり、その入力と出力との関係が、該入 力のうちの前記前輪側ゲイン調整パラメータのみが単調変化したときの前記特定組 の前輪の駆動 '制動力操作用制御入力の変化と、前記後輪側ゲイン調整パラメータ のみが単調変化したときの前記特定組の後輪の駆動 *制動力操作用制御入力の変 化と、前記基本要求操作量のみがその極性を同一極性に保ちつつ単調変化したと きの前記特定組の前輪および後輪のそれぞれの駆動,制動力操作用制御入力の変 ィ匕とが単調変化になるように構成されていることを特徴とする (第 15発明)。
この第 15発明によれば、前記第 1発明と同様の前輪側ゲイン調整パラメータと後輪 側ゲイン調整パラメーターとを用い、少なくともこれらのゲイン調整パラメータと、前記 基本要求操作量とが前記駆動 '制動力操作用制御入力決定手段に入力される。そ して、該駆動,制動力操作用制御入力決定手段は、その入力に応じて前記特定組の 前輪および後輪のそれぞれの駆動 ·制動力操作用制御入力を決定して出力する。こ のとき、前記前輪側ゲイン調整パラメータのみが単調変化したときの前記特定組の前 輪の駆動 ·制動力操作用制御入力の変化と、前記後輪側ゲイン調整パラメータのみ が単調変化したときの前記特定組の後輪の駆動'制動力操作用制御入力の変化と、 前記基本要求操作量のみがその極性を同一極性に保ちつつ単調変化したときの前 記特定組の前輪および後輪のそれぞれの駆動,制動力操作用制御入力の変化とが 単調変化になるように特定組の前輪および後輪のそれぞれの駆動 ·制動力操作用 制御入力が決定される。 [0041] この結果、第 15発明によれば、前記特定組の前輪および後輪のそれぞれの駆動- 制動力の操作に伴う横力の変化の影響を考慮しながら、前記第 1状態量偏差を 0に 近づける上で、適切な駆動 '制動力操作用制御入力を決定することが可能となる。よ つて、第 15発明によれば、車両の前輪に作用する路面反力(駆動'制動力および横 力)と後輪に作用する路面反力 (駆動'制動力および横力)とを適切に操作して、前 記実際の車両の第 1実状態量をその規範値たる前記第 1規範値に近づけるように、 実際の車両の運動(ョ一方向回転運動、あるいは、ョー方向回転運動および横方向 並進運動)を適切に制御することが可能となる。すなわち、第 15発明によれば、車両 の前輪に作用する路面反力と後輪に作用する路面反力とを適切に操作して、実際の 車両の運動を所望の運動に適切に制御することが可能となる。
[0042] なお、第 15発明において、前記前輪側ゲイン調整パラメータおよび後輪側ゲイン 調整パラメータに関し、前記「相関性を有するパラメータ」の意味は、前記第 1発明と 同じである。
[0043] また、第 15発明における「単調変化」は、単調増加または単調減少を意味する。こ のことは、後述の第 16発明〜第 18発明でも同様である。
[0044] また、本発明の車両の制御装置は、前記第 15発明と別の態様として、複数の車輪 を有する車両の操縦者による該車両の運転操作状態を示す運転操作量を検出する 運転操作量検出手段と、前記車両の各車輪の駆動'制動力を操作可能に該車両に 設けられたァクチユエータ装置と、前記ァクチユエータ装置の動作を逐次制御するァ クチユエータ装置制御手段とを備えた車両の制御装置において、
実際の車両のョー方向の回転運動に関する第 1状態量の値またはョー方向の回転 運動と横方向の並進運動とに関する第 1状態量の値である第 1実状態量を検出また は推定する実状態量把握手段と、
前記車両の動特性を表すモデルとしてあら力じめ定められた車両モデル上での車 両の前記第 1状態量の値である第 1モデル状態量を少なくとも前記検出された運転 操作量に応じて決定するモデル状態量決定手段と、
前記検出または推定された第 1実状態量と前記決定された第 1モデル状態量との 偏差である第 1状態量偏差を算出する状態量偏差算出手段と、 前記第 1状態量偏差を 0に近づけるように前記ァクチユエータ装置を操作するため の基本要求操作量を前記算出された第 1状態量偏差に応じて決定する基本要求操 作量決定手段と、
前記実際の車両の各前輪と該前輪の真後ろの後輪との組のうちの 1つの特定組に 対し、その特定組の前輪および後輪のそれぞれの駆動 '制動力の操作用の制御入 力である駆動,制動力操作用制御入力を決定する駆動,制動力操作用制御入力決 定手段と、
前記第 1状態量偏差を 0に近づけるように前記車両モデル上の車両を操作するた めの車両モデル操作用制御入力を少なくとも前記算出された第 1状態量偏差に応じ て決定する車両モデル操作用制御入力決定手段とを備え、
前記ァクチユエータ装置制御手段は、少なくとも前記決定された駆動 ·制動力操作 用制御入力に応じて前記ァクチユエータ装置の動作を制御することにより前記各特 定組の前輪および後輪のそれぞれの駆動'制動力を該ァクチユエータ装置を介して 操作する手段であり、
前記駆動'制動力操作用制御入力決定手段は、前記実際の車両である実車両ま たは前記車両モデル上での車両であるモデル車両の少なくとも 1つの前輪の横方向 運動に関する状態量と、該実車両またはモデル車両の前部の所定位置の横方向運 動に関する状態量と、該実車両またはモデル車両の少なくとも 1つの前輪に路面から 作用する横力と、これらの状態量および横力のうちの少なくともいずれ力 1つ対して 相関性を有するパラメータとのうちのいずれかを前輪側ゲイン調整パラメータとして用
V、ると共に、前記実車両またはモデル車両の少なくとも 1つの後輪の横方向運動に 関する状態量と、該実車両またはモデル車両の後部の所定位置の横方向運動に関 する状態量と、該実車両またはモデル車両の少なくとも 1つの後輪に路面力 作用 する横力と、これらの状態量および横力のいずれかに対して相関性を有するパラメ一 タとのうちのいずれ力を後輪側ゲイン調整パラメータとして用いて、少なくとも前記決 定された基本要求操作量と前記前輪側ゲイン調整パラメータと前記後輪側ゲイン調 整パラメータとを入力とし、且つ前記特定組の前輪および後輪のそれぞれの駆動'制 動力操作用制御入力を出力とする手段であり、その入力と出力との関係が、該入力 のうちの前記前輪側ゲイン調整パラメータのみが単調変化したときの前記特定組の 前輪の駆動 *制動力操作用制御入力の変化と、前記後輪側ゲイン調整パラメータの みが単調変化したときの前記特定組の後輪の駆動,制動力操作用制御入力の変化 と、前記基本要求操作量のみがその極性を同一極性に保ちつつ単調変化したとき の前記特定組の前輪および後輪のそれぞれの駆動,制動力操作用制御入力の変化 とが単調変化になるように構成されていることを特徴とする(第 16発明)。
[0045] この第 16発明によれば、前記第 2発明と同様の前輪側ゲイン調整パラメータと後輪 側ゲイン調整パラメータとを用い、少なくともこれらのゲイン調整パラメータと、前記基 本要求操作量とが前記駆動'制動力操作用制御入力決定手段に入力される。そして 、該駆動,制動力操作用制御入力決定手段は、その入力に応じて前記特定組の前 輪および後輪のそれぞれの駆動 '制動力操作用制御入力を決定して出力する。この とき、前記第 15発明と同様に、前記前輪側ゲイン調整パラメータのみが単調変化し たときの前記特定組の前輪の駆動,制動力操作用制御入力の変化と、前記後輪側 ゲイン調整パラメータのみが単調変化したときの前記特定組の後輪の駆動 ·制動力 操作用制御入力の変化と、前記基本要求操作量のみがその極性を同一極性に保ち つつ単調変化したときの前記特定組の前輪および後輪のそれぞれの駆動 '制動力 操作用制御入力の変化とが単調変化になるように特定組の前輪および後輪のそれ ぞれの駆動,制動力操作用制御入力が決定される。
[0046] この結果、第 16発明によれば、前記特定組の前輪および後輪のそれぞれの駆動 · 制動力の操作に伴う横力の変化の影響を考慮しながら、前記第 1状態量偏差を 0に 近づける上で、適切な駆動 '制動力操作用制御入力を決定することが可能となる。
[0047] 力!]えて、第 16発明では、前記第 2発明と同様に、実車両の運動とモデル車両との 運動とが大きく乖離することがないので、前記第 1状態量偏差が過大になることがな い。このため、前記基本要求操作量や、各特定組の前輪および後輪のそれぞれの 駆動 ·制動力操作用制御入力が過大になったり、リミッタによって制限されてしまうよう な事態を回避できる。その結果、第 1状態量偏差に応じた実車両のァクチユエータ装 置の動作制御の安定性を高めることができる。
[0048] よって、第 16発明によれば、車両の前輪に作用する路面反力(駆動'制動力およ び横力)と後輪に作用する路面反力(駆動'制動力および横力)とを適切に操作して
、前記実際の車両の第 1実状態量を第 1モデル状態量に近づけるように、実際の車 両の運動(ョ一方向回転運動、あるいは、ョー方向回転運動および横方向並進運動
)を適切に制御することが可能となる。すなわち、第 16発明によれば、車両の前輪に 作用する路面反力と後輪に作用する路面反力とを適切に操作して、実際の車両の 運動を所望の運動に適切に制御することが可能となる。また、各特定組の前輪およ び後輪の駆動,制動力操作用制御入力が過大にならないように決定できることから、 外乱要因あるいはその変化に対するロバスト性を高めて、車両の運動を適切に制御 できる。
[0049] なお、第 16発明にお 、て、前記前輪側ゲイン調整パラメータおよび後輪側ゲイン 調整パラメータに関し、前記「相関性を有するパラメータ」の意味は、前記第 2発明と 同じである。
[0050] 前記第 15発明では、前記駆動,制動力操作用制御入力決定手段の入力と出力と の関係は、さらに前記入力のうちの前記前輪側ゲイン調整パラメータのみが単調変 化したときの前記特定組の後輪の駆動,制動力操作用制御入力の変化が、前記特 定組の前輪の駆動,制動力操作用制御入力の変化と逆向きの単調変化となると共に 、前記後輪側ゲイン調整パラメータのみが単調変化したときの前記特定組の前輪の 駆動'制動力操作用制御入力の変化が、前記特定組の後輪の駆動'制動力操作用 制御入力の変化と逆向きの単調変化となるように構成されていることが好ましい (第 1
7発明)。そして、前記第 16発明でも、この第 17発明と同等の技術事項を採用するこ とが好ましい(第 18発明)。
[0051] これらの第 17発明および第 18発明によれば、前記第 1状態量を偏差を 0に近づけ るために要求される外力(路面反力の駆動 ·制動力成分および横力成分)を、前記特 定組の前輪と後輪とで適切に分担することが可能となる。
発明を実施するための最良の形態
[0052] 本発明の車両の制御装置の実施形態を以下に説明する。
[0053] まず、図 1を参照して、本明細書の実施形態における車両の概略構成を説明する。
図 1は、その車両の概略構成を示すブロック図である。なお、本明細書の実施形態で 例示する車両は、 4個の車輪 (車両の前後に 2個ずつの車輪)を備える自動車である 。その自動車の構造自体は、公知のものでよいので、本明細書での詳細な図示およ び説明は省略する。
[0054] 図 1に示す如ぐ車両 1 (自動車)は、公知の通常の自動車と同様に、 4個の車輪 W 1, W2, W3, W4のうちの駆動輪に回転駆動力(車両 1の推進力となる回転力)を付 与し、あるいは各車輪 W1〜W4に制動力(車両 1の制動力となる回転力)を付与する 駆動'制動装置 3A (駆動'制動系)と、 4個の車輪 W1〜W4のうちの操舵輪を操舵す るステアリング装置 3B (ステアリング系)と、 4個の車輪 W1〜W4に車体 1Bを弾力的 に支持するサスペンション装置 3C (サスペンション系)とを備えている。車輪 Wl, W2 , W3, W4は、それぞれ車両 1の左前、右前、左後、右後の車輪である。また、駆動 輪および操舵輪は、本明細書で説明する実施形態では 2つの前輪 Wl, W2である。 従って、後輪 W3, W4は従動輪で、また、非操舵輪である。
[0055] ただし、駆動輪は、 2つの後輪 W3, W4であってもよぐあるいは、前輪 Wl, W2お よび後輪 W3, W4の両者 (4個の車輪 W1〜W4)であってもよい。また、操舵輪は、 2 つの前輪 Wl, W2だけでなぐ後輪 W3, W4も含まれていてもよい。
[0056] これらの装置 3A, 3B, 3Cは、車両 1の運動を操作する機能を持つ。例えば駆動 · 制動装置 3Aは、主に、車両 1の進行方向の運動(車両 1の進行方向の位置、速度、 加速度など)を操作する機能を持つ。ステアリング装置 3Bは、主に、車両 1のョ一方 向の回転運動(車両 1のョ一方向の姿勢、角速度、角加速度など)を操作する機能を 持つ。サスペンション装置 3Cは、主に、車両 1の車体 1Bのピッチ方向およびロール 方向の運動(車体 1Bのピッチ方向およびロール方向の姿勢など)、あるいは車体 1B の上下方向の運動(車体 1Bの路面からの高さ(車輪 W1〜W4に対する車体 1Bの上 下方向の位置)など)を操作する機能を持つ。なお、本明細書では、車両 1あるいは 車体 1Bの「姿勢」は空間的な向きを意味する。
[0057] 補足すると、一般に、車両 1の旋回時などに、車輪 W1〜W4の横すべりが発生する 。そして、この横すベりは、車両 1の操舵輪の舵角、車両 1のョーレート(ョ一方向の角 速度)、各車輪 W1〜W4の駆動 '制動力などの影響を受ける。このため、駆動'制動 装置 3Aやステアリング装置 3Bは、車両 1の横方向(左右方向)の並進運動を操作す る機能も持つ。なお、車輪の「駆動'制動力」は、該車輪に路面力 作用する路面反 力のうち、該車輪の前後方向(詳しくは該車輪の回転面 (車輪の中心点を通って該 車輪の回転軸と直交する面)と路面もしくは水平面との交線の方向)の並進力成分を 意味する。また、路面反力のうち、車輪の幅方向(車輪の回転軸に平行な方向)の並 進力成分を「横力」、路面反力のうち、路面もしくは水平面に垂直な方向の並進力成 分を「接地荷重」という。
[0058] 駆動'制動装置 3Aは、詳細な図示は省略するが、より詳しくは車両 1の動力発生源
(車両 1の推進力発生源)としてのエンジン(内燃機関)と、このエンジンの出力(回転 駆動力)を車輪 W1〜W4のうちの駆動輪に伝達する動力伝達系とからなる駆動系と 、各車輪 W1〜W4に制動力を付与するブレーキ装置 (制動系)とを備えている。動力 伝達系には、変速装置、差動歯車装置などが含まれる。
[0059] なお、実施形態で説明する車両 1は、動力発生源としてエンジンを備えるものであ る力 エンジンと電動モータとを動力発生源として備えた車両 ( 、わゆるパラレル型の ノ、イブリツド車両)や電動モータを動力発生源として備えた車両 ( 、わゆる電気自動 車、あるいはシリーズ型のハイブリッド車両)であってもよ!/ヽ。
[0060] また、車両 1 (自動車)を運転者が操縦するために操作する操作器 5 (人為的操作 器)として、ステアリングホイール(ノヽンドル)、アクセルペダル、ブレーキペダル、シフ トレバーなどが車両 1の車室内に備えられている。なお、操作器 5の各要素の図示は 省略する。
[0061] 操作器 5のうちのステアリングホイールは、前記ステアリング装置 3Bの動作に関連 するものである。すなわち、ステアリングホイールを回転操作することで、これに応じて ステアリング装置 3Bが動作して、車輪 W1〜W4のうちの操舵輪 Wl, W2が操舵され る。
[0062] 操作器 5のうちのアクセルペダル、ブレーキペダルおよびシフトレバーは、前記駆動
'制動装置 3Aの動作に関連するものである。すなわち、アクセルペダルの操作量 (踏 み込み量)に応じてエンジンに備えられたスロットル弁の開度が変化し、エンジンの 吸入空気量および燃料噴射量 (ひいてはエンジンの出力)が調整される。また、ブレ ーキペダルの操作量 (踏み込み量)に応じてブレーキ装置が作動し、ブレーキペダル の操作量に応じた制動トルクが各車輪 W1〜W4に付与される。また、シフトレバーを 操作することで、変速装置の変速比等、該変速装置の動作状態が変化し、エンジン 力 駆動輪に伝達される駆動トルクの調整などが行なわれる。
[0063] なお、運転者 (車両 1の操縦者)によるステアリングホイールなどの各操作器 5の運 転操作状態は、図示を省略する適宜のセンサにより検出される。以降、この運転操作 状態の検出値 (センサの検出出力)を運転操作入力と呼ぶ。この運転操作入力には 、ステアリングホイールの回転角であるステアリング角、アクセルペダルの操作量であ るアクセルペダル操作量、ブレーキペダルの操作量であるブレーキペダル操作量、 およびシフトレバーの操作位置であるシフトレバー位置の検出値が含まれる。この運 転操作入力を出力するセンサが本発明における運転操作量検出手段に相当する。
[0064] 本明細書の実施形態では、前記駆動 ·制動装置 3Aおよびステアリング装置 3Bは、 その動作 (ひいては車両 1の運動)を、前記運転操作入力だけでなぐ該運転操作入 力以外の要因(車両 1の運動状態や環境状態など)〖こも応じて能動的に制御可能な ものとされている。ここで、「能動的に制御可能」というのは、装置 3A, 3Bの動作を、 前記運転操作入力に対応する基本的な動作 (運転操作入力に対応して決定される 基本目標動作)を修正してなる動作に制御可能であることを意味する。
[0065] 具体的には、駆動'制動装置 3Aは、前輪 Wl, W2の組と後輪 W3, W4の組とのう ちの少なくともいずれか一方の組について、左側の車輪 Wl, W3の駆動'制動力と 右側の車輪 W2, W4の駆動 '制動力との差もしくは比率を、該駆動'制動装置 3Aに 備えた油圧ァクチユエータ、電動モータ、電磁制御弁などのァクチユエータを介して 能動的に制御可能な機能 (以下、この制御機能を左右動力配分制御機能という)を 持つ駆動 ·制動装置である。
[0066] さらに具体的には、本明細書の実施形態では、駆動 ·制動装置 3Aは、ブレーキ装 置の動作によって各車輪 W1〜W4に作用させる駆動 *制動力(詳しくは、車両 1の制 動方向の駆動 ·制動力)を該ブレーキ装置に備えたァクチユエータを介して能動的に 制御可能な駆動 ·制動装置 (ブレーキ装置によって各車輪 W1〜W4に作用させる駆 動 ·制動力をブレーキペダルの操作量に応じて決定される基本的な駆動 ·制動力か ら増減制御可能な駆動,制動装置)である。従って、駆動,制動装置 3Aは、前輪 W1 , W2の組と後輪 W3, W4の組との両者の組について、ブレーキ装置による左側の車 輪 Wl, W3の駆動'制動力と右側の車輪 W2, W4の駆動'制動力との差もしくは比 率を、ァクチユエータを介して能動的に制御可能な駆動 ·制動装置 (前輪 Wl, W2の 組と後輪 W3, W4の組との両者の組にっ 、て左右動力配分制御機能を持つ駆動 · 制動装置)である。
[0067] なお、駆動 ·制動装置 3Aは、ブレーキ装置の動作による各車輪 W1〜W4の駆動- 制動力を能動的に制御する機能に加えて、駆動,制動装置 3Aの駆動系の動作によ つて駆動輪である前輪 Wl, W2に作用させる駆動 '制動力の差もしくは比率を、該駆 動系に備えたァクチユエータを介して能動的に制御可能な機能を持つものであって ちょい。
[0068] このように左右動力配分制御機能を持つ駆動 ·制動装置 3Aとしては、公知のもの を使用すればよい。
[0069] 補足すると、上記のように左右動力配分制御機能を持つ駆動 ·制動装置 3Aは、そ の制御機能によって、車両 1のョ一方向の回転運動や、横方向の並進運動を能動的 に操作する機能も持つこととなる。
[0070] なお、駆動 ·制動装置 3Aには、左右動力配分制御機能に係わるァクチューエータ のほか、ブレーキ装置の制動トルク発生用のァクチユエータや、エンジンのスロットル 弁を駆動するァクチユエータ、燃料噴射弁を駆動するァクチユエータ、変速装置の変 速駆動を行なうァクチユエータなども含まれる。
[0071] また、前記ステアリング装置 3Bは、例えば、操舵輪である前輪 Wl, W2をステアリ ングホイールの回転操作に応じてラック ·アンド ·ピ-オンなどの操舵機構を介して機 械的に操舵する機能にカ卩えて、必要に応じて電動モータなどのァクチユエータにより 前輪 Wl, W2を補助的に操舵可能なステアリング装置 (前輪 Wl, W2の舵角をステ ァリングホイールの回転角に応じて機械的に定まる舵角力 増減制御可能なステアリ ング装置)である。あるいは、ステアリング装置 3Bは、前輪 Wl, W2の操舵をァクチュ エータの駆動力だけを使用して行なうステアリング装置 (所謂、ステアリング'バイ'ヮ ィャのステアリング装置)である。従って、ステアリング装置 3Bは前輪 Wl, W2の舵角 をァクチユエータを介して能動的に制御可能なステアリング装置(以下、アクティブス テアリング装置という)である。
[0072] ステアリング装置 3Bが操舵輪をステアリングホイールの回転操作に応じて機械的に 操舵することに加えて、補助的にァクチユエータにより操舵輪を操舵するアクティブス テアリング装置(以下、このようなアクティブステアリング装置をァクチユエータ補助型 のステアリング装置という)である場合には、ステアリングホイールの回転操作により機 械的に決定される操舵輪の舵角と、ァクチユエータの動作による舵角(舵角の補正量 )との合成角度が操舵輪の舵角になる。
[0073] また、ステアリング装置 3Bが操舵輪 Wl, W2の操舵をァクチユエータの駆動力だけ を使用して行なうアクティブステアリング装置(以下、このようなアクティブステアリング 装置をァクチユエータ駆動型のステアリング装置という)である場合には、少なくともス テアリング角の検出値に応じて操舵輪の舵角の目標値が決定され、操舵輪の実際の 舵角がその目標値になるようにァクチユエータが制御される。
[0074] このように操舵輪 Wl, W2の舵角をェクチユエータを介して能動的な制御可能なス テアリング装置 3B (アクティブステアリング装置)としては、公知のものを使用すればよ い。
[0075] なお、本明細書の実施形態におけるステアリング装置 3Bは、前輪 Wl, W2の舵角 をァクチユエータを介して能動的に制御可能なアクティブステアリング装置であるが、 ステアリングホイールの回転操作に応じた前輪 Wl, W2の機械的な操舵だけを行な うもの(以下、機械式ステアリング装置という)であってもよい。また、全ての車輪 Wl〜 W4を操舵輪とする車両では、ステアリング装置は、前輪 Wl, W2および後輪 W3, W4の両者の舵角をァクチユエータを介して能動的に制御可能なものであってもよい 。あるいは、該ステアリング装置は、ステアリングホイールの回転操作に応じた前輪 W 1, W2の操舵をラック 'アンド'ピユオンなどの機械的な手段だけで行なうと共に、後 輪 W3, W4の舵角だけをァクチユエータを介して能動的に制御可能なものであって ちょい。
[0076] 前記サスペンション装置 3Cは、本明細書の実施形態では、例えば車両 1の運動に 応じて受動的に動作するサスペンション装置である。
[0077] ただし、サスペンション装置 3Cは、例えば車体 1Bと車輪 W1〜W4との間に介在す るダンパーの減衰力や硬さ等を電磁制御弁や電動モータなどのァクチユエ一タを介 して可変的に制御可能なサスペンション装置であってもよい。あるいは、サスペンショ ン装置 3Cは、油圧シリンダまたは空圧シリンダによってサスペンション(サスペンショ ン装置 3Cのばね等の機構部分)のストローク(車体 1Bと各車輪 W1〜W4との間の上 下方向の変位量)、または車体 1Bと車輪 W1〜W4との間で発生するサスペンション の上下方向の伸縮力を直接的に制御可能なサスペンション装置 (いわゆる電子制御 サスペンション)であってもよ 、。サスペンション装置 3Cが上記のようにダンバの減衰 力や硬さ、サスペンションのストロークもしくは伸縮力を制御可能なサスペンション装 置(以下、アクティブサスペンション装置という)である場合には、該サスペンション装 置 3Cは、その動作を能動的に制御可能である。
[0078] 以降の説明では、駆動'制動装置 3A、ステアリング装置 3B、およびサスペンション 装置 3Cのうち、前記の如く能動的に動作を制御可能なものを総称的にァクチユエ一 タ装置 3ということがある。本明細書の実施形態では、該ァクチユエータ装置 3には、 駆動.制動装置 3Aおよびステアリング装置 3Bが含まれる。なお、サスペンション装置 3Cがアクティブサスペンション装置である場合には、該サスペンション装置 3Cもァク チユエータ装置 3に含まれる。
[0079] また、車両 1には、前記各ァクチユエータ装置 3に備えるァクチユエータの操作量( ァクチユエータに対する制御入力。以下、ァクチユエータ操作量という)を前記運転操 作入力などに応じて決定し、そのァクチユエータ操作量によって各ァクチユエータ装 置 3の動作を制御する制御装置 10が備えられている。この制御装置 10は、マイクロ コンピュータなどを含む電子回路ユニットから構成され、操作器 5のセンサ力 前記 運転操作入力が入力されると共に、図示しない各種のセンサから、車両 1の走行速 度、ョーレートなどの車両 1の状態量の検出値や車両 1の走行環境の情報などが入 力される。そして、該制御装置 10は、それらの入力を基に、所定の制御処理周期で ァクチユエータ操作量を逐次決定し、各ァクチユエータ装置 3の動作を逐次制御する
[0080] 以上が、本明細書の実施形態における車両 1 (自動車)の全体的な概略構成であ る。この概略構成は、以下に説明するいずれの実施形態においても同じである。 [0081] 補足すると、本明細書の実施形態では、前記駆動'制動装置 3A、ステアリング装置 3B、およびサスペンション装置 3Cのうち、本発明におけるァクチユエータ装置(本発 明を適用して動作制御を行なうァクチユエータ装置)に相当するものは、駆動'制動 装置 3A、あるいは、該駆動 ·制動装置 3Aおよびステアリング装置 3Bである。そして、 制御装置 10は、本発明におけるァクチユエータ装置制御手段に相当する。
[0082] また、制御装置 10は、その制御処理機能によって本発明における種々の手段を実 現している。
[0083]
[第 1実施形態]
次に、第 1実施形態における制御装置 10の制御処理の概略を図 2を参照して説明 する。図 2は制御装置 10の全体的な制御処理機能の概略を示す機能ブロック図で ある。なお、以降の説明では、実際の車両 1を実車 1という。
[0084] 図 2中の実車 1を除く部分 (より正確には、実車 1と、後述のセンサ.推定器 12に含 まれるセンサとを除く部分)が制御装置 10の主な制御処理機能である。図 2中の実車 1は、前記駆動'制動装置 3A、ステアリング装置 3B、およびサスペンション装置 3Cを 備えている。
[0085] 図示の如ぐ制御装置 10は、センサ ·推定器 12、規範操作量決定部 14、規範動特 性モデル 16、減算器 18、フィードバック分配則(FB分配則) 20、フィードフォワード 則 (FF則) 22、ァクチユエータ動作目標値合成部 24、およびァクチユエータ駆動制 御装置 26を主な処理機能部として備えている。なお、図 2中の実線の矢印は、各処 理機能部に対する主たる入力を示し、破線の矢印は、各処理機能部に対する補助 的な入力を示している。
[0086] 制御装置 10は、これらの処理機能部の処理を所定の制御処理周期で実行し、該 制御処理周期毎に逐次、ァクチユエータ操作量を決定する。そして、そのァクチユエ ータ操作量に応じて実車 1のァクチユエータ装置 3の動作を逐次制御する。
[0087] 以下に、制御装置 10の各処理機能部の概要と全体的な処理の概要とを説明する 。なお、以降、制御装置 10の各制御処理周期で決定される変数の値に関し、現在の (最新の)制御処理周期の処理で最終的に得られる値を今回値、前回の制御処理周 期の処理で最終的に得られた値を前回値と 、う。
[0088] 制御装置 10は、各制御処理周期において、まず、センサ.推定器 12により実車 1の 状態量や実車 1の走行環境の状態量を検出または推定する。本実施形態では、セン サ-推定器 12の検出対象または推定対象には、例えば実車 1のョ一方向の角速度 であるョーレート Y act、実車 1の走行速度 Vact (対地速度)、実車 1の重心点の横す ベり角である車両重心点横すベり角 j8 act、実車 1の前輪 Wl , W2の横すベり角であ る前輪横すベり角 j8 f_act、実車 1の後輪 W3, W4の横すベり角である後輪横すベり 角 i8 r_aCt、実車 1の各車輪 W1〜W4に路面力も作用する反力である路面反力(駆動 •制動力、横力、接地荷重)、実車 1の各車輪 W1〜W4のスリップ比、実車 1の前輪 Wl , W2の舵角 S f_actが含まれる。
[0089] これらの検出対象または推定対象のうちの、車両重心点横すベり角 β actは、実車 1を上方から見たときの(水平面上での)該実車 1の走行速度 Vactのベクトルが実車 1 の前後方向に対してなす角度である。また、前輪横すベり角 jS Lactは、実車 1を上方 力 見たときの(水平面上での)前輪 Wl , W2の進行速度ベクトルが前輪 Wl , W2の 前後方向に対してなす角度である。また、後輪横すベり角 j8 r_actは、実車 1を上方か ら見たときの(水平面上での)後輪 W3, W4の進行速度ベクトルが後輪 W3, W4の前 後方向に対してなす角度である。また、舵角 S f_actは、実車 1を上方力 見たときの( 水平面上での)前輪 Wl , W2の回転面が実車 1の前後方向に対してなす角度である
[0090] なお、前輪横すベり角 β f_actは、各前輪 Wl , W2毎に検出または推定してもよいが 、いずれか一方の前輪 W1または W2の横すベり角を代表的に |8 f_actとして検出また は推定したり、あるいは、両者の横すベり角の平均値を jS Lactとして検出または推定 してもよい。後輪横すベり角 j8 r_actについても同様である。
[0091] さらに、センサ'推定器 12の推定対象として、実車 1の車輪 W1〜W4とこれに接す る実際の路面との間の摩擦係数 (以下、該摩擦係数の推定値を推定摩擦係数/ z est mという)が含まれる。なお、推定摩擦係数 estmの頻繁な変動を生じないように、摩 擦係数の推定処理にはローパス特性のフィルタリング処理などを介在させることが好 ましい。なお、推定摩擦係数 estmは、本実施形態では、例えば各車輪 W1〜W4と 路面との間の摩擦係数の代表値もしくは平均値の推定値である。ただし、各車輪 W1 〜W4毎に推定摩擦係数/ z estmを求めたり、前輪 Wl, W2の組と後輪 W3, W4の組 とで各別に、あるいは、左側の前輪 W1および後輪 W3の組と、右側の前輪 W2およ び後輪 W4の組とで各別に、推定摩擦係数/ z estmの推定値を求めるようにしてもよい
[0092] センサ ·推定器 12は、上記の検出対象または推定対象を検出または推定するため に実車 1に搭載された種々のセンサを備えている。該センサとしては、例えば実車 1 の角速度を検出するレートセンサ、実車 1の前後方向および左右方向の加速度を検 出する加速度センサ、実車 1の走行速度 (対地速度)を検出する速度センサ、実車 1 の各車輪 W1〜W4の回転速度を検出する回転速度センサ、実車 1の各車輪 Wl〜 W4に路面力 作用する路面反力を検出する力センサなどが含まれる。
[0093] この場合、センサ ·推定器 12は、その検出対象または推定対象のうち、実車 1に搭 載したセンサによって直接的に検出できない推定対象については、その推定対象と 相関性のある状態量の検出値や、制御装置 10が決定したァクチユエータ操作量の 値もしくはそれを規定する目標値を基に、オブザーバなどにより推定する。例えば車 両重心点横すベり角 j8 actは、実車 1に搭載した加速度センサの検出値などを基に 推定される。また、例えば摩擦係数は、加速度センサの検出値などを基に、公知の 手法により推定される。
[0094] 補足すると、センサ ·推定器 12は、本発明における実状態量把握手段としての機能 を持つ。本実施形態では、車両の運動に関する第 1状態量の種類として、車両のョ 一レートと車両重心点横すベり角とを用いる。この場合、ョーレートは、車両のョ一方 向の回転運動に関する状態量としての意味を持ち、車両重心点横すベり角は、車両 の横方向の並進運動に関する状態量としての意味を持つ。そして、前記ョーレート γ actおよび車両重心点横すベり角 β actが本発明における第 1実状態量としてセンサ' 推定器 12により検出または推定される。
[0095] 以降、センサ ·推定器 12により検出または推定する実車 1の状態量などの名称にし ばしば「実」を付する。例えば、実車 1のョーレート y act、実車 1の走行速度 Vact、実 車 1の車両重心点横すベり角 β actをそれぞれ実ョーレート γ act、実走行速度 Vact、 実車両重心点横すベり角 β actという。
[0096] 次いで、制御装置 10は、規範操作量決定部 14により、後述する規範動特性モデ ル 16に対する入力としての規範モデル操作量を決定する。この場合、規範操作量決 定部 14には、前記操作器 5のセンサで検出される運転操作入力が入力され、少なく とも該運転操作入力に基づ ヽて規範モデル操作量が決定される。
[0097] より詳しくは、本実施形態では、規範操作量決定部 14が決定する規範モデル操作 量は、後述する規範動特性モデル 16上での車両の前輪の舵角(以下、モデル前輪 舵角という)である。このモデル前輪舵角を決定するために、前記運転操作入力のう ちのステアリング角 Θ h (今回値)が規範操作量決定部 14に主たる入力量として入力 されると共に、センサ ·推定器 12によって検出または推定された実走行速度 Vact (今 回値)および推定摩擦係数/ z estm (今回値)と、規範動特性モデル 16上での車両の 状態量 (前回値)とが規範操作量決定部 14に入力される。そして、規範操作量決定 部 14は、これらの入力を基にモデル前輪舵角を決定する。なお、モデル前輪舵角は 、基本的には、ステアリング角 Θ hに応じて決定すればよい。但し、本実施形態では、 規範動特性モデル 16に入力するモデル前輪舵角に所要の制限を掛ける。この制限 を掛けるために、規範操作量決定部 14には、ステアリング角 Θ h以外に、 Vact, μ est mなどが入力される。
[0098] 補足すると、規範モデル操作量の種類は、一般的には、規範動特性モデル 16の 形態や、該規範動特性モデル 16により決定しょうとする状態量の種類に依存する。 また、規範動特性モデル 16に規範操作量決定部 14を含めてもよい。規範動特性モ デル 16が運転操作入力そのものを必要入力とするように構成されている場合には、 規範操作量決定部 14を省略してもよい。
[0099] 次いで、制御装置 10は、規範動特性モデル 16により実車 1の規範とする運動(以 降、規範運動という)の状態量である規範状態量を決定して出力する。規範動特性モ デル 16は、車両の動特性を表す、あらカゝじめ定められたモデルであり、前記規範モ デル操作量を含む所要の入力を基に、規範運動の状態量 (規範状態量)を逐次決 定する。該規範運動は、基本的には、運転者にとって好ましいと考えられる実車 1の 理想的な運動もしくはそれに近!、運動を意味する。 [0100] この場合、規範動特性モデル 16には、規範操作量決定部 14で決定された規範モ デル操作量と、後述する FB分配則 20で決定された、規範動特性モデル 16の操作 用の制御入力(フィードバック制御入力) Mvir, Fvirなどが入力され、それらの入力に 基づ 、て規範運動(ひ 、ては規範状態量の時系列)が決定される。
[0101] より詳しくは、本実施形態では、規範動特性モデル 16によって決定して出力する規 範状態量は、車両のョ一方向の回転運動に関する規範状態量と車両の横方向の並 進運動に関する規範状態量との組である。車両のョ一方向の回転運動に関する規 範状態量は、例えばョーレートの規範値 γ d (以降、規範ョーレート γ dということがあ る)であり、車両の横方向の並進運動に関する規範状態量は、例えば車両重心点横 すべり角の規範値 j8 d (以降、規範車両重心点横すベり角 β dということがある)である 。これらの規範状態量 γ d, β dを制御処理周期毎に逐次決定するために、規範モデ ル操作量としての前記モデル前輪舵角(今回値)と、前記フィードッバック制御入力 M vir, Fvir (前回値)とが入力される。この場合、本実施形態では、規範動特性モデル 1 6上の車両の走行速度を実走行速度 Vactに一致させる。このために、規範動特性モ デル 16には、センサ ·推定器 12によって検出または推定された実走行速度 Vact (今 回値)も入力される。そして、規範動特性モデル 16は、これらの入力を基に、該規範 動特性モデル 16上での車両のョーレートおよび車両重心点横すベり角を決定し、そ れを規範状態量 γ d, |8 dとして出力する。
[0102] なお、規範動特性モデル 16に入力するフィードバック制御入力 Mvir, Fvirは、実車 1の走行環境 (路面状態など)の変化 (規範動特性モデル 16で考慮されて 、な 、変 ィ匕)や、規範動特性モデル 16のモデルィ匕誤差、あるいは、センサ'推定器 12の検出 誤差もしくは推定誤差などに起因して、実車 1の運動と規範運動とがかけ離れる(乖 離する)のを防止する (規範運動を実車 1の運動に近づける)ために規範動特性モデ ル 16に付カ卩的に入力するフィードバック制御入力である。該フィードバック制御入力 Mvir, Fvirは、本実施形態では、規範動特性モデル 16上の車両に仮想的に作用さ せる仮想外力である。この仮想外力 Mvir, Fvirのうちの Mvirは、規範動特性モデル 1 6上の車両 1の重心点まわりに作用させるョー方向の仮想的なモーメントであり、 Fvir は該重心点に作用させる横方向の仮想的な並進力である。 [0103] 補足すると、前記規範状態量 γ d, β dは、本発明における第 1規範値もしくは第 1 モデル状態量に相当し、規範動特性モデル 16が本発明における車両モデルに相当 する。そして、規範操作量決定部 14および規範動特性モデル 16の処理によって、 本発明における規範値決定手段もしくはモデル状態量決定手段が構成される。
[0104] 次いで、制御装置 10は、センサ ·推定器 12によって検出または推定された実状態 量 (規範状態量と同じ種類の実状態量)と、規範動特性モデル 16によって決定した 規範状態量との差である状態量偏差を減算器 18で算出する。
[0105] より詳しくは、減算器 18では、実ョーレート Ί actおよび実車両重心点横すベり角 β actのそれぞれの値 (今回値)と、規範動特性モデル 16によって決定した規範ョーレ ート γ dおよび規範車両重心点横すベり角 β dのそれぞれの値 (今回値)との差 γ err (= γ act— γ d) , err (= act— γ d)を状態量偏差として求める。
[0106] 補足すると、減算器 18の処理により、本発明における状態量偏差算出手段が構成 される。そして、この減算器 18により求められる状態量偏差 γ err, β errが本発明に おける第 1状態量偏差に相当する。
[0107] 次 、で、制御装置 10は、上記の如く求めた状態量偏差 γ err, β errを FB分配則 2 0に入力し、この FB分配則 20によって、規範動特性モデル 16の操作用のフィードバ ック制御入力である前記仮想外力 Mvir, Fvirと、実車 1のァクチユエータ装置 3の操 作用のフィードバック制御入力であるァクチユエータ動作フィードバック目標値 (ァク チユエータ動作 FB目標値)とを決定する。
[0108] なお、本実施形態では、ァクチユエータ動作 FB目標値には、駆動'制動装置 3Aの ブレーキ装置の動作に関するフィードバック制御入力(より詳しくは、該ブレーキ装置 の動作によって各車輪 W1〜W4に作用させる駆動 '制動力を操作するフィードバック 制御入力)が含まれる。あるいは、ァクチユエータ動作 FB目標値には、駆動 ·制動装 置 3Aの動作に関するフィードバック制御入力に加えて、ステアリング装置 3Bの動作 に関するフィードバック制御入力(より詳しくは、ステアリング装置 3Bの動作による前 輪 Wl, W2の横力を操作するフィードバック制御入力)が含まれる。該ァクチユエータ 動作 FB目標値は、換言すれば、実車 1に作用する外力である路面反力を操作する( 修正する)ためのフィードバック制御入力である。 [0109] FB分配則 20は、基本的には、入力される状態量偏差 γ err, β errを 0に近づける ように仮想外力 Mvir, Fvirとァクチユエータ動作 FB目標値とを決定する。但し、 FB分 配則 20は、仮想外力 Mvir, Fvirを決定するときに、状態量偏差 γ err, β errを 0に近 づけるだけでなぐ実車 1もしくは規範動特性モデル 16上の車両の所定の制限対象 量が所定の許容範囲から逸脱するのを抑制するように仮想外力 Mvir, Fvirを決定す る。また、 FB分配則 20は、状態量偏差 γ err, β errを 0に近づけるための所要のョー 方向のモーメントを実車 1の重心点のまわりに発生させるように (より一般的には、状 態量偏差 γ err, β errを 0に近づけるための所要の外力(路面反力)を実車 1に作用 させるように)、駆動 ·制動装置 3Aのブレーキ装置の動作に関するフィードバック制御 入力を、あるいは、該フィードバック制御入力とステアリング装置 3Bの動作に関する フィードバック制御入力とをァクチユエータ動作 FB目標値として決定する。
[0110] 前記仮想外力 Mvir, Fvirとァクチユエータ動作 FB目標値とを決定するために、 FB 分配則 20には、状態量偏差 γ err, β errだけでなぐ規範動特性モデル 16の出力 である規範状態量 γ d, |8 dと、センサ ·推定器 12で検出または推定された実状態量 γ act, β actとのうちの少なくともいずれか一方が入力される。さらに、 FB分配則 20 には、センサ ·推定器 12で検出または推定された実走行速度 Vact、実前輪横すベり 角 i8 f_aCt、実後輪横すベり角 i8 r_actなどの実状態量も入力される。そして、 FB分配 則 20は、これらの入力を基に、仮想外力 Mvir, Fvirとァクチユエータ動作 FB目標値 とを決定する。
[Oil 1] 補足すると、仮想外力 Mvir, Fvirは、本発明における車両モデル操作用制御入力 に相当し、ァクチユエータ動作 FB目標値のうちのブレーキ装置の動作に関するフィ ードバック制御入力は、本発明における駆動 ·制動力操作用制御入力に相当する。 そして、 FB分配則 20は、本発明における基本要求操作量決定手段、駆動'制動力 操作用制御入力決定手段、モデル操作用制御入力決定手段としての機能を持つ。
[0112] 一方、以上説明した規範操作量決定部 14、規範動特性モデル 16、減算器 18およ び FB分配則 20の制御処理と並行して (もしくは時分割処理により)、制御装置 10は 、前記運転操作入力を FF則 22に入力し、該 FF則 22によって、ァクチユエータ装置 3の動作のフィードフォワード目標値 (基本目標値)であるァクチユエータ動作 FF目 標値を決定する。
[0113] 本実施形態では、ァクチユエータ動作 FF目標値には、駆動'制動装置 3Aのブレ ーキ装置の動作による実車 1の各車輪 W1〜W4の駆動 ·制動力に関するフィードフ ォワード目標値と、駆動 ·制動装置 3Aの駆動系の動作による実車 1の駆動輪 Wl, W 2の駆動 ·制動力に関するフィードフォワード目標値と、駆動 ·制動装置 3Aの変速装 置の減速比(変速比)に関するフィードフォワード目標値と、ステアリング装置 3Bによ る実車 1の操舵輪 Wl, W2の舵角に関するフィードフォワード目標値とが含まれる。
[0114] FF貝 IJ22には、これらのァクチユエータ動作 FF目標値を決定するために、前記運転 操作入力が入力されると共に、センサ ·推定器 12で検出または推定された実状態量 (実走行速度 Vactなど)が入力される。そして、 FF則 22は、これらの入力を基に、ァ クチユエータ動作 FF目標値を決定する。該ァクチユエータ動作 FF目標値は、前記 状態量偏差 γ err, β err (第 1状態量偏差)に依存せずに決定される、ァクチユエータ 装置 3の動作目標値である。
[0115] 補足すると、サスペンション装置 3Cがアクティブサスペンション装置である場合には 、ァクチユエータ動作 FF目標値には、一般に、該サスペンション装置 3Cの動作に関 するフィードフォワード目標値も含まれる。
[0116] 次いで、制御装置 10は、 FF則 22で決定したァクチユエータ動作 FF目標値 (今回 値)と前記 FB分配則 20で決定したァクチユエータ動作 FB目標値 (今回値)とをァク チユエータ動作目標値合成部 24に入力する。そして、制御装置 10は、該ァクチユエ ータ動作目標値合成部 24によって、ァクチユエータ動作 FF目標値とァクチユエータ 動作 FB目標値とを合成し、ァクチユエータ装置 3の動作を規定する目標値であるァ クチユエータ動作目標値を決定する。
[0117] 本実施形態では、ァクチユエータ動作目標値には、実車 1の各車輪 W1〜W4の駆 動 ·制動力の目標値 (駆動 ·制動装置 3Aの駆動系およびブレーキ装置の動作による トータルの駆動'制動力の目標値)と、実車 1の各車輪 W1〜W4のスリップ比の目標 値と、ステアリング装置 3Bによる実車 1の操舵輪 Wl, W2の舵角の目標値と、駆動' 制動装置 3Aの駆動系の動作による実車 1の各駆動輪 Wl, W2の駆動'制動力の目 標値と、駆動'制動装置 3Aの変速装置の減速比の目標値とが含まれる。 [0118] ァクチユエータ動作目標値合成部 24には、これらのァクチユエータ動作目標値を 決定するために、前記ァクチユエータ動作 FF目標値およびァクチユエータ動作 FB 目標値だけでなぐセンサ'推定器 12で検出または推定された実状態量 (前輪 W1, W2の実横すベり角 |8 f_act、推定摩擦係数/ z estmなど)も入力される。そして、了クチ ユエータ動作目標値合成部 24は、これらの入力を基に、ァクチユエータ動作目標値 を決定する。
[0119] 補足すると、ァクチユエータ動作目標値は、上記した種類の目標値に限られるもの ではなぐそれらの目標値に代えて、例えば該目標値に対応する各ァクチユエータ装 置 3のァクチユエータ操作量の目標値を決定するようにしてもよい。ァクチユエータ動 作目標値は、基本的にはァクチユエータ装置の動作を規定できるものであればよい。 例えばブレーキ装置の動作に関するァクチユエータ動作目標値として、ブレーキ圧 の目標値を決定したり、それに対応するブレーキ装置のァクチユエータ操作量の目 標値を決定するようにしてもょ 、。
[0120] 次いで、制御装置 10は、ァクチユエータ動作目標値合成部 24により決定したァク チユエータ動作目標値をァクチユエータ駆動制御装置 26に入力し、該ァクチユエ一 タ駆動制御装置 26により実車 1の各ァクチユエータ装置 3のァクチユエータ操作量を 決定する。そして、その決定したァクチユエータ操作量により実車 1の各ァクチユエ一 タ装置 3のァクチユエータを制御する。
[0121] この場合、ァクチユエータ駆動制御装置 26は、入力されたァクチユエータ動作目標 値を満足するように、あるいは、該ァクチユエータ動作目標値通りにァクチユエータ操 作量を決定する。そして、この決定のために、ァクチユエータ駆動制御装置 26には、 ァクチユエータ動作目標値の他、センサ ·推定器 12で検出または推定された実車 1 の実状態量も入力される。なお、ァクチユエータ駆動制御装置 26の制御機能のうち、 駆動 ·制動装置 3Aのブレーキ装置に関する制御機能には、いわゆるアンチロックブ レーキシステムが組み込まれて 、ることが望ま U、。
[0122] 以上が制御装置 10の制御処理周期毎の制御処理の概要である。
[0123] なお、制御装置 10の各制御処理機能部の処理は、それらの順番を適宜変更しても よい。例えばセンサ ·推定器 12の処理を各制御処理周期の最後に実行し、それによ る検出値または推定値を次回の制御処理周期の処理で使用するようにしてもよい。
[0124]
次に、本実施形態における制御装置 10の制御処理機能部のより詳細な処理を説 明する。
[0125] [規範動特性モデルについて]
まず、本実施形態における前記規範動特性モデル 16を図 3を参照して説明する。 図 3は本実施形態における規範動特性モデル 16上の車両の構造を示す図である。 この規範動特性モデル 16は、車両の動特性を、 1つの前輪 Wfと 1つの後輪 Wrとを前 後に備えた車両の水平面上での動特性 (動力学特性)によって表現するモデル (所 謂 2輪モデル)である。以降、規範動特性モデル 16上の車両 (規範動特性モデル 16 上で実車 1に対応する車両)をモデル車両という。該モデル車両の前輪 Wfは、実車 1 の 2つの前輪 Wl, W2を一体ィ匕した車輪に相当し、モデル車両の操舵輪である。後 輪 Wrは、実車 1の後輪 W3, W4を一体ィ匕した車輪に相当し、本実施形態では非操 舵輪である。
[0126] このモデル車両の重心点 Gdの水平面上での速度ベクトル Vdがモデル車両の前後 方向に対してなす角度 j8 d (すなわち、モデル車両の車両重心点横すベり角 β d)と、 モデル車両の鉛直軸まわりの角速度 γ d (すなわち、モデル車両のョーレート γ d)と 力 Sそれぞれ、前記規範車両重心点横すベり角、規範ョーレートとして規範動特性モ デル 16により逐次決定する規範状態量である。また、モデル車両の前輪 Wfの回転 面と水平面との交線がモデル車両の前後方向に対してなす角度 δ f_dが前記モデル 前輪舵角として規範動特性モデル 16に入力される規範モデル操作量である。また、 モデル車両の重心点 Gdに付加的に作用させる横方向(モデル車両の左右方向)の 並進力 Fvirと、該モデル車両の重心点 Gdのまわりに付カ卩的に作用させるョー方向の (鉛直軸まわりの)モーメント Mvirとが、前記仮想外力として規範動特性モデル 16に 入力されるフィードバック制御入力である。
[0127] なお、図 3中、 Vf_dはモデル車両の前輪 Wfの水平面上での進行速度ベクトル、 Vr_ dはモデル車両の後輪 Wrの水平面上での進行速度ベクトル、 13 f_dは前輪 Wfの横す ベり角(前輪 Wfの進行速度ベクトル Vf_dが前輪 Wfの前後方向(前輪 Wfの回転面と 水平面との交線の方向)に対してなす角度。以下、前輪横すベり角 |8f_dという)、 β _ dは後輪 Wrの横すベり角(後輪 Wrの進行速度ベクトル Vr_dが後輪 Wrの前後方向( 後輪 Wrの回転面と水平面との交線の方向)に対してなす角度。以下、後輪横すベり 角 13 r_dと!、う)、 β IDは、モデル車両の前輪 Wfの進行速度ベクトル Vf_dがモデル車 両の前後方向に対してなす角度 (以下、車両前輪位置横すベり角と 、う)である。
[0128] 補足すると、本明細書の実施形態では、車両もしくは車輪の横すベり角、車輪の舵 角、車両のョーレート、ョー方向のモーメントに関しては、車両の上方から見て、反時 計まわり方向を正方向とする。また、仮想外力 Mvir, Fvirのうちの並進力 Fvirは、車 両の左向きを正の向きとする。また、車輪の駆動'制動力は、車輪の回転面と路面も しくは水平面との交線方向で車両を前方向へ加速させる力(路面反力)の向きを正の 向きとする。言い換えれば、車両の進行方向に対して駆動力となる向きの駆動 ·制動 力を正の値、車両の進行方向に対して制動力となる向きの駆動 '制動力を負の値と する。
[0129] このモデル車両の動特性 (連続系での動特性)は、具体的には、次式 01により表さ れる。なお、この式 01の右辺の第 3項(Fvir, Mvirを含む項)を除いた式は、例えば「 自動車の運動と制御」と題する公知の文献 (著者:安部正人、発行者:株式会社山海 堂、平成 16年 7月 23日第 2版第 2刷発行。以降、非特許文献 1という)に記載されて いる公知の式(3.12), (3.13)と同等である。
[0130] [数 1]
'式 01
Figure imgf000040_0001
但し、
2-(Kf+Kr) •Vd2+2-(Lf-Kf-Lr-Kr) a11: a12:
m-Vd m-Vd2
Z "(L " Kf― L ' ht 'CL 'Kf+Lr^Kr)
a21 = a22:
I ト Vd
2-Kf " Lf ' Kf 1
b1= bi— bZ2~
m-Vd m-Vd
[0131] この式 01の但し書きにおいて、 mはモデル車両の総質量、 Kfはモデル車両の前輪 Wl¾2つの左右の前輪の連結体とみなしたときの 1輪あたりのコーナリングパワー、 K rはモデル車両の後輪 Wrを 2つの左右の後輪の連結体とみなしたときの 1輪あたりの コーナリングパワー、 Lfはモデル車両の前輪 Wfの中心と重心点 Gdとの前後方向の 距離 (前輪 Wfの舵角が 0であるときの該前輪 Wfの回転軸と重心点 Gdとの前後方向 の距離。図 3参照)、 Lrはモデル車両の後輪 Wrの中心と重心点 Gdとの前後方向の 距離 (後輪 Wrの回転軸と重心点 Gdとの前後方向の距離。図 3参照)、 Iはモデル車 両の重心点 Gdにおけるョー軸まわりのイナーシャ (慣性モーメント)である。これらの パラメータの値は、あら力じめ設定された値である。この場合、例えば m, I, Lf, Lrは 、実車 1におけるそれらの値と同一力、もしくはほぼ同一に設定される。また、 Kf, Kr は、それぞれ実車 1の前輪 Wl, W2、後輪 W3, W4のタイヤの特性(あるいは該タイ ャに要求される特性)を考慮して設定される。なお、 Kf, Krの値 (より一般的には al l , al2, a21, a22の値)の設定の仕方によって、アンダーステア、オーバーステア、ニュ 一トラルステアなどのステアリング特性を設定できる。また、実車 1における m、 I、 Kf、 Krの値を実車 1の走行中に同定し、その同定した値をモデル車両の m、 I、 Kf、 Krの 値として使用するようにしてもょ 、。
[0132] 補足すると、モデル車両の 13 f0、 j8 d、 β f_d、 β r_d、 γ d、 δ f_dの間の関係は、次式 02a, 02b, 02cにより表される。
[0133]
β f d= β d+Lf- γ d/Vd- δ f d ……式 02a
β r_d= β d-Lr- γ d/Vd ……式 02b
β ΐΟ= β f_d+ δ f_d= β d+Lf- γ d/Vd ……式 02c また、図 3に示す如ぐモデル車両の前輪 Wfのコーナリングフォース( 前輪 Wfの 横力)を Ffy_d、モデル車両の後輪 Wrのコーナリングフォース(=後輪 Wrの横力)を!7 ry_dとおくと、 Ffy_dと j8 f_dとの関係、および Fry_dと j8 r_dとの関係は、次式 03a, 03bに より表される。
[0134]
Fly_d= - 2 -Kf- j8 f_d ……式 03a Fry— d=— 2·Κτ· j8r— d ……式 03b 本実施形態における規範動特性モデル 16の処理では、前記式 01の δ f_d、 Fvir, Mvirを入力として、該式 01の演算処理 (詳しくは、式 01を離散時間系で表現してな る式の演算処理)を制御装置 10の制御処理周期で逐次実行することにより、 βά, γ dが時系列的に逐次算出される。この場合、各制御処理周期において、モデル車両 の走行速度 Vdの値としては、前記センサ'推定器 12により検出もしくは推定された実 走行速度 Vactの最新値 (今回値)が用いられる。つまり、モデル車両の走行速度 Vd は、常に実走行速度 Vactに一致させられる。また、 Fvir, Mvirの値としては、 FB分配 則 20で後述する如く決定された仮想外力の最新値 (前回値)が用いられる。また、 δ f_dの値としては、規範操作量決定部 14で後述する如く決定されたモデル前輪舵角 の最新値 (今回値)が用いられる。なお、新たな i8d, yd (今回値)を算出するために 、 J3d, γ(1の前回値も用いられる。
[0135] 補足すると、モデル車両の動特性は、より一般的には、次式 (4)により表すようにし てもよい。
[0136] [数 2]
fi( d(ied,<5f„d) b11 0 Fvir
Figure imgf000042_0001
f2( d,y8d,<5 d) 0 b22 Mvir '式 04
[0137] ここで fl(Yd, βά, 311(1)、ぉょび£2( (1, β d, δ f_d)は、それぞれ γ d, β d, δ Id の関数である。前記式 01は、関数 fl, f2の値を yd, J3d, Sf_dの線形結合 (一次結 合)によって表した場合の例である。関数 fl, f2は、数式により表現される関数である 必要はなぐその関数値が yd, J3d, δ f_dの値力もマップにより決定されるような関数 であってもよい。
[0138] なお、本実施形態における実車 1の挙動特性は、本発明を適用しない場合の実車 1のオープン特性 (前記ァクチユエータ FB動作目標値を定常的に 0に維持した場合 の実車 1の挙動特性)と、仮想外力 Mvir, Fvirを定常的に 0に維持した場合の規範動 特性モデル 16の挙動特性との中間的な挙動特性を示す。このため、規範動特性モ デル 16は、一般的には、実車 1のオープン特性よりも、より運転者が好ましいと考える 応答挙動を示すモデルに設定しておくことが望ましい。具体的には、規範動特性モ デル 16は、実車 1よりもリニアリティが高いモデルに設定しておくことが望ましい。例え ば、モデル車両の車輪の横すベり角もしくはスリップ比と、該車輪に路面から作用す る路面反力 (横力もしくは駆動 ·制動力)との関係がリニアな関係もしくはそれに近!、 関係になるように規範動特性モデル 16が設定されることが望ましい。前記式 01により 動特性を表した規範動特性モデル 16は、これらの要求を満足するモデルの一例で ある。
[0139] ただし、規範動特性モデル 16は、モデル車両の各車輪 Wf, Wrに作用する路面反 力が横すベり角もしくはスリップ比の変化に対して飽和するような特性を持たせてもよ い。例えば、前記コーナリングパワー Kf, Krの値を一定値とせずに、それぞれ前輪横 すべり角 i8 f_d、後輪横すベり角 i8 r_dに応じて設定する。そして、このとき、前輪横す ベり角 j8 f_dの絶対値がある程度大きくなつたときに、 j8 f_dに応じて発生する前輪 Wf の横力 Ffy_d (前記式 03aを参照)が β f_dの増加に伴 、飽和するように、 Kfの値を β f dに応じて設定する。同様に、後輪横すベり角 j8 r_dの絶対値がある程度大きくなつた ときに、 β r_dに応じて発生する後輪 Wrの横力 Fry_d (前記式 03bを参照)が β r_dの 増加に伴い飽和するように、 Krの値を j8 r_dに応じて設定する。このようにすることに より、モデル車両の各車輪 Wf, Wrに作用する横力 Ffy_d, Fry_dが横すベり角 j8 f_dま たは j8 r_dに対して飽和特性を持つこととなる。
[0140]
[規範操作量決定部について]
次に、前記規範操作量決定部 14の処理の詳細を図 4および図 5を参照して説明す る。図 4は前記規範操作量決定部 14の処理機能の詳細を示す機能ブロック図、図 5 は規範操作量決定部 14に備える遠心力過大化防止リミッタ 14fの処理を説明するた めのグラフである。
[0141] 図 4を参照して、規範操作量決定部 14は、まず、処理部 14aにおいて、入力される 運転操作入力のうちのステアリング角 Θ h (今回値)を、オーバーオールステアリング 比 isにより除算することにより無制限時前輪舵角 S unltdを決定する。この無制限時 前輪舵角 δ Lunltdは、ステアリング角 Θ hに応じたモデル前輪舵角 δ f_dの基本要求 値としての意味を持つ。
[0142] ここで、オーバーオールステアリング比 isは、ステアリング角 Θ hとモデル車両の前輪 Wfの舵角との比率であり、例えば実車 1のステアリング角 Θ hとこれに応じた実車 1の 前輪 Wl, W2の舵角のフィードフォワード値との関係に合わせて設定される。
[0143] なお、オーバーオールステアリング比 isを一定値(固定値)とせずに、センサ'推定 器 12で検出もしくは推定された実車 1の走行速度 Vactに応じて可変的に設定しても よい。この場合には、実車 1の走行速度 Vactが高くなるに伴い、オーバーオールステ ァリング比 isが大きくなるように isを設定することが望ま 、。
[0144] 次!、で、規範動特性モデル 16上のモデル車両の車両前輪位置横すベり角 13 1Όが
jS ffl算出部 14bで求められる。この |8 1Ό算出部 14bには、規範動特性モデル 16で決 定された規範ョーレート y dおよび規範車両重心点横すベり角 β dの前回値が入力さ れ、これらの値から、前記式 02cの演算(式 02cの 2番目の等号の右辺の演算)により jS fflの前回値が求められる。従って、 |8 1Ό算出部 14bで算出される |8 1Όは、前回の制 御処理周期におけるモデル車両の車両前輪位置横すベり角 j8 1Dの値である。。
[0145] なお、 γ d, |8 dの前回値と、規範操作量決定部 14で決定したモデル前輪舵角 δ f_ dの前回値と、実走行速度 Vactの前回値とから、前記式 02aの演算によりモデル車両 の前輪横すベり角 j8 f_dの前回値を求め、この求めた j8 f_dに規範操作量決定部 14で 決定したモデル前輪舵角 δ f_dの前回値をカ卩える(式 02cの 1番目の等号の右辺の演 算を行なう)ことによって、 j8 1Dを求めるようにしてもよい。また、各制御処理周期にお いて、 jS fflの算出を規範動特性モデル 16の処理で実行するようにして、その算出さ れた β IDの前回値を規範操作量決定部 14に入力するようにしてもよい。この場合に は、規範操作量決定部 14における |8 1Ό算出部 14bの演算処理は不要である。
[0146] 次 、で、上記の如く求めた車両前輪位置横すベり角 β IDから無制限時前輪舵角 δ Lunltdを減算器 14cで減じることによって、無制限時前輪横すベり角が求められる。こ の無制限時前輪横すベり角は、モデル車両のモデル前輪舵角 δ f_dを前回値から、 無制限時前輪舵角 δ Lunltd (今回値)に瞬時に制御したとした場合に発生するモデ ル車両の前輪横すベり角 β f_dの瞬時予測値を意味する。
[0147] 次いで、規範操作量決定部 14は、この無制限時前輪横すベり角を前輪横すベり角 リミッタ 14dに通すことにより、制限済み前輪横すベり角を決定する。ここで、図中に 示す前輪横すベり角リミッタ 14dのグラフは、無制限時前輪横すベり角と制限済み前 輪横すベり角との関係を例示するグラフであり、そのグラフに関する横軸方向の値は 無制限時前輪横すベり角の値、縦軸方向の値は制限済み前輪横すベり角の値であ る。
[0148] この前輪横すベり角リミッタ 14dは、モデル車両の前輪横すベり角 β f_dの大きさが 過大になるのを抑制する(ひいては、実車 1に対して要求される前輪 Wl, W2の横力 が過大にならないようにする)ためのリミッタである。
[0149] 本実施形態では、前輪横すベり角リミッタ 14dは、規範操作量決定部 14にセンサ' 推定器 12から入力される推定摩擦係数 μ estm (今回値)と実走行速度 Vact (今回値 )とに応じて、前輪横すベり角 β f_dの許容範囲 (詳しくは該許容範囲の上限値 β f ma x ( >0)および下限値 |8 ί·_πιίη (< 0) )を設定する。この場合、基本的には、推定摩擦 係数/ z estmが小さいほど、あるいは、実走行速度 Vactが高いほど、許容範囲 [ j8 f_mi η, β f max]を狭くする( β f_max, β f_minを 0に近づける)ように該許容範囲が設定さ れる。このとき、該許容範囲 [ j8 f_min, j8 f_max]は、例えば実車 1の前輪 Wl, W2の 横すベり角と横力もしくはコーナリングフォースとの間の関係がほぼリニアな関係(比 例関係)に維持されるような横すベり角の値の範囲内に設定される。
[0150] なお、該許容範囲 [ β f_min, β f_max]は、 μ estmと Vactとのうちの!/ヽずれか一方に 応じて設定してもよぐあるいは、 estmと Vactとによらずにあらかじめ固定的な許容 範囲に設定してもよい。
[0151] そして、前輪横すベり角リミッタ 14dは、入力された無制限時前輪横すベり角が、上 記の如く設定した許容範囲 [ j8 f_min, β f max]内の値であるとき( β f_min≤無制限時 前輪横すベり角≤ jS Lmaxであるとき)には、無制限時前輪横すベり角の値をそのま ま制限済み前輪横すベり角として出力する。また、該前輪横すベり角リミッタ 14dは、 入力された無制限時前輪横すベり角の値が許容範囲を逸脱している場合には、許 容範囲 [ β f_min, β f_max]の下限値 β f_minまたは上限値 β f_maxを制限済み前輪横 すべり角として出力する。具体的には、無制限時前輪横すベり角〉 j8 f_maxである場 合には、 iS fjnaxが制限済み前輪横すベり角として出力され、無制限時前輪横すベり 角く iS Lminである場合には、 j8 f_minが制限済み前輪横すベり角として出力される。 これにより、制限済み前輪横すベり角は、許容範囲 [ β f min, β f max]内で、無制限 時前輪横すベり角に一致するか、もしくは該無制限時前輪横すベり角に最も近い値 となるように決定される。
[0152] 次いで、前記 β 10算出部 14bで求めた車両前輪位置横すベり角 β ID力 上記の如 く求めた制限済み前輪横すベり角を減算器 14eで減算することにより、第 1制限済み 前輪舵角 S fjtdlが求められる。このようにして求められた第 1制限済み前輪舵角 δ ltdlは、モデル車両の前輪横すベり角 13 f_dが許容範囲 [ 13 f min, β f max]から逸脱 しないように無制限時前輪舵角 S unltdに制限を掛けてなるモデル前輪舵角 S f_dと しての意味を持つ。
[0153] 次いで、規範操作量決定部 14は、この第 1制限済み前輪舵角 δ fjtdlを遠心力過 大化防止リミッタ 14fに通すことにより、第 2制限済み前輪舵角 S f_ltd2を決定する。こ の δ f_ltd2力 規範動特性モデル 16に入力するモデル前輪舵角 δ f_dの値として使用 されるものである。ここで、図中に示す遠心力過大化防止リミッタ 14fのグラフは、第 1 制限済み前輪舵角 S fjtdlと第 2制限済み前輪舵角 S f_ltd2との関係を例示するダラ フであり、そのグラフに関する横軸方向の値は δ fjtdlの値、縦軸方向の値は δ f_ltd2 の値である。
[0154] この遠心力過大化防止リミッタ 14fは、モデル車両に発生する遠心力が過大になら な 、ようにする(ひ ヽては実車 1に対して要求される遠心力が過大にならな 、ようにす る)ためのリミッタである。
[0155] 本実施形態では、遠心力過大化防止リミッタ 14fは、規範操作量決定部 14に入力 される推定摩擦係数/ estm (今回値)と実走行速度 Vact (今回値)とに応じて、モデ ル前輪舵角 δ f_dの許容範囲(詳しくは該許容範囲の上限値 δ f max OO)および下 限値 δ f_min « 0) )を設定する。この許容範囲 [ δ f_min, δ f max]は、仮想外力 Mvir , Fvirが定常的に 0に保持されているとした場合に、モデル車両が路面との摩擦限界 を超えずに定常円旋回を行なうことが可能となるモデル前輪舵角 δ f_dの許容範囲で ある。
[0156] 具体的には、まず、規範操作量決定部 14に入力される Vact, μ estmの値 (今回値 )を基に、次式 05を満足するョーレートである定常円旋回時最大ョーレート γ max ( > 0)が求められる。
[0157]
πι· y max' Vact = Cl · μ estm'm'g 式 05 ここで、式 05における mは前記した通り、モデル車両の総質量である。また、 gは重 力加速度、 C1は 1以下の正の係数である。この式 05の左辺は、モデル車両のョーレ ート γ dおよび走行速度 Vdをそれぞれ γ max、 Vactに保持して、該モデル車両の定 常円旋回を行なった場合に該モデル車両に発生する遠心力(より詳しくは該遠心力 の収束予想値)を意味する。また、式 05の右辺の演算結果の値は、 /z estmに応じて 定まる路面反力(詳しくはモデル車両に車輪 Wf, Wrを介して路面カゝら作用し得るト 一タルの摩擦力(路面反力の並進力水平成分の総和)の大きさの限界値に係数 C1 を乗じた値(≤限界値)である。従って、定常円旋回時最大ョーレート γ maxは、モデ ル車両に作用させる仮想外力 Mvir, Fvirを 0に保持すると共にモデル車両のョーレ ート γ dおよび走行速度 Vdをそれぞれ γ max、 Vactに保持して、該モデル車両の定 常円旋回を行なった場合に該モデル車両に発生する遠心力が、推定摩擦係数/ z es tmに対応してモデル車両に作用し得るトータルの摩擦力(路面反力の並進力水平成 分の総和)の限界値を超えな 、ように決定される。
[0158] なお、式 05の係数 C1の値は、 μ estm, Vactのうちの少なくともいずれか一方の値 に応じて可変的に設定するようにしてもよい。この場合、 estmが小さいほど、あるい は Vactが高いほど、 C1の値を小さくすることが好ましい。
[0159] 次 、で、モデル車両の定常円旋回時の、 γ maxに対応するモデル前輪舵角 δ f_d の値が定常円旋回時限界舵角 S f_max_c ( >0)として求められる。ここで、前記式 01 により表される規範動特性モデル 16では、定常円旋回時のモデル車両のョーレート y dとモデル前輪舵角 S f_dとの間には、次式 06の関係が成立する。
[0160] [数 3] d= 6 f d ……式 06
i . · Vd
2 -L2 Kf-Kr 但し、 L=Lf+Lr
[0161] なお、 Vdが十分に小さいとき (Vd2 0とみなせるとき)には、式 06は近似的に次式 07に書き換えることができる。
[0162]
Figure imgf000048_0001
6 f_d ……式 07 そこで、本実施形態では、式 06あるいは式 07における y d, Vdのそれぞれの値を γ max、 Vactとして、 δ f_dについて解くことにより、 γ maxに対応する定常円旋回時限 界舵角 δ f_max_cを求める。
[0163] モデル車両に発生する遠心力が過大にならないようにするためのモデル前輪舵角 δ f_dの許容範囲 [ δ f_min, δ f_max]は、基本的には、許容範囲 [ δ f_max_c, δ f_ma x_c]に設定すればよい。ただし、その場合には、実車 1のカウンタステア状態(実車 1 のョーレートの極性と逆極性の向きに前輪 Wl, W2を操舵する状態)において、モデ ル前輪舵角 δ f_dが不要な制限を受ける場合がある。
[0164] そこで、本実施形態では、モデル車両のョーレート γ dと γ maxとに応じて次式 08a , 08b〖こより S f_max_c、 - δ f_max_cを修正することで、モデル前輪舵角 δ f_dの許容 範囲の上限値 δ f_maxおよび下限値 δ f_minを設定する。
[0165]
0 f_max= 0 f_max_c+fe( y d, γ max) 式 08a
δ f_min=― δ f— max— c— fe (― y ά, — y max) 式 08b 式 08a, 08bにおける fe( γ d, γ max)、 fe (― γ d, — γ max)は、 γ d, γ maxの関数で あり、その関数値が例えば図 5 (a) , (b)のグラフに示すように y d, y maxの値に応じ て変化する関数である。この例では、関数 fe( y d, γ max)の値は、図 5 (a)のグラフに 示す如ぐ y dが 0よりも若干大きい所定の値 γ 1以下の値である場合(γ (1< 0の場合 を含む)には、正の一定値 fexになる。そして、 fe( yd, γ max)の値は、 γ(1>γ1であ る場合には、 γοΐが大きくなるに伴い、単調に減少して、 γ dが γ max以下の所定値で ある γ2(>γ1)に達するまでに 0になる。さらに、 fe(yd, γ max)の値は、 γ(1>γ2で ある場合( y d≥ y maxの場合を含む)には、 0に維持される。
[0166] また、関数 fe (— yd, - y max)は、関数 fe( y d, y max)の変数 y d, y maxの極'性を 反転させた関数であるので、該関数 fe (— yd, - y max)の値は、図 5 (b)のグラフに 示す如く γ dに対して変化する。すなわち、 γ dが 0よりも若干小さい所定の負の値— y 1以上の値である場合( γ d>0の場合を含む)には、正の一定値 fexになる。そして 、 fe (- yd, - y max)の値は、 γ d<— γ 1である場合には、 γ dが小さくなるに伴い、 単調に減少して、 γ dがー γ max以上の所定値である γ 2に達するまでに 0になる。 さらに、 fe (— yd, - y max)の値は、 γ d< γ 2である場合( γ d≤ γ maxの場合を 含む)には、 0に維持される。
[0167] なお、関数 fe( yd, γ max), fe (- y d, - y max)の値を決定するために必要な γ dの 値としては、規範動特性モデル 16で決定した規範ョーレート γ dの前回値を用いれ ばよい。
[0168] また、関数 fe(Yd, γ max)のグラフの折れ点における ydの値 γΐ, γ 2、あるいは、 上記正の一定値 fexは、推定摩擦係数 estmや実走行速度 Vactに応じて可変的に 変更するようにしてもよ ヽ。
[0169] 上記のように δ f_max_cを関数 feの値により補正してモデル前輪舵角 δ f_dの許容範 囲 [ δ f_min, δ f_max]を設定することで、 γ dと逆向きの方向のモデル前輪舵角 δ f_d の限界値 δ f_maxまたは δ f_minの大きさ(絶対値)は、モデル車両に発生させる遠心 力の限界に対応する定常円旋回時限界舵角 Sf_maX_Cよりも大きめに設定される。こ のため、実車 1のカウンタステア状態において、モデル前輪舵角 Sf_dが不要な制限 を受けるのを防止することができる。なお、該許容範囲 [ δ fmin, δ f_max]は、実走 行速度 Vactが高いほど、あるいは、推定摩擦係数/ z estmが小さいほど、狭くなる。
[0170] 上記のようにモデル前輪舵角 δ f_dの許容範囲を設定した後、遠心力過大化防止リ ミッタ 14fは、入力された第 1制限済み前輪舵角 δ fjtdlが許容範囲 [ δ fmin, δ fma x]内の値であるとき( δ f_min≤ δ fjtdl≤ δ f_maxであるとき)には、 δ fjtdlの値をその まま第 2制限済み前輪舵角 δ f_ltd2 ( =規範動特性モデル 16に入力するモデル前輪 舵角 δ f_d)として出力する。また、該遠心力過大化防止リミッタ 14fは、入力された δ f Jtdlの値が許容範囲 [ δ f_min, δ f max]を逸脱して!/、る場合には、その入力値を強 制的に制限してなる値を第 2制限済み前輪舵角 S f_ltd2として出力する。具体的には 、 δ f ltdl > δ f_maxである場合には、 δ f_maxが第 2制限済み前輪舵角 δ f_ltd_2として 出力され、 S fjtdlく S fjninである場合には、 S fjninが第 2制限済み前輪舵角 S fjt d2として出力される。これにより、 δ f_ltd2は、許容範囲 [ δ f_min, δ f max]内で、第 1 制限済み前輪舵角 S fjtdlに一致するか、もしくは、第 1制限済み前輪舵角 S fjtdl に最も近 、値になるように決定される。
[0171] なお、前記式 01で表される規範動特性モデル 16では、モデル車両の定常円旋回 時には、 β dと γ dとの間に次式 09の関係が成立する。
[0172] [数 4]
Figure imgf000050_0001
また、 Vdが十分に小さいとき (Vd2 0とみなせるとき)には、式 09は近似的に次式 1 0に書き換えることができる。
[0174]
j8 d= (Lr/Vd) - y d 式 10 従って、モデル車両の定常円旋回時における γ dあるいは γ maxの値は、式 09また は式 10により 13 dの値に変換できる(但し、 Vd=Vactとする)。このため、上記の如くョ 一レート γ d, γ maxの値に応じてモデル前輪舵角 δ f_dの許容範囲を設定する代わり に、ョーレート Ύ d, γ maxに対応する車両重心点横すベり角 j8 dの値に応じてモデル 前輪舵角 S f_dの許容範囲を設定するようにしてもよい。
[0175] 以上が規範操作量決定部 14の処理の詳細である。
[0176] 以上説明した規範操作量決定部 14の処理によって、規範動特性モデル 16上のモ デル車両の前輪横すベり角 jS !Ldの瞬時値が過大にならず、且つ、モデル車両に発 生する遠心力が過大にならないようにしつつ、運転操作入力のうちのステアリング角
Θ hに応じて、第 2制限済み前輪舵角 δ f_ltd2が規範動特性モデル 16に入力するモ デル前輪舵角 δ f_dとして制御処理周期毎に決定される。
[0177] 補足すると、遠心力過大化防止リミッタ 14fにおいて、規範動特性モデル 16に入力 するモデル前輪舵角 S f_dを上記の如く制限して、モデル車両に発生する遠心力が 過大にならないようにするということは、モデル車両の車両重心点横すベり角 j8 d (も しくは後輪横すベり角 β r_d)が過大にならな 、ようにモデル前輪舵角 δ f_dを制限す ることと同等である。また、一般に、車両の遠心力や車両重心点横すベり角(もしくは 後輪横すベり角)はステアリング操作に対して遅れて発生するので、遠心力過大化防 止リミッタ 14fによるモデル前輪舵角 S f_dの制限処理は、車両の遠心力や車両重心 点横すベり角(もしくは後輪横すベり角)の収束予想値を基に、モデル前輪舵角 δ f_d を制限する処理であると言える。これに対して、前輪横すベり角リミッタ 14dの制限処 理は、モデル車両の前輪横すベり角 j8 f_dの瞬時値が過大にならないようにモデル前 輪舵角 S f_dを制限するための処理であると言える。
[0178] なお、本実施形態では、遠心力過大化防止リミッタ 14fで許容範囲 [ δ f min, δ f_m ax]を設定するために使用する関数 feを前記図 5 (a) , (b)に示した如く設定したが、 これに限定されるものではない。
[0179] 例えば、関数 fe( y d, γ max)を、図 6に実線のグラフで示すように設定してもよい。こ の例では、 fe( y d, γ max)は、その値が γ dの値の増加(負側の値から正側の値への 増カロ)に伴い、単調に減少すると共に、 γ d= γ maxであるときに 0になる。なお、この とき、関数 fe (― y d, - y max)は図 6に破線のグラフで示すものとなる。この場合、前 記式 08aにより決定されるモデル前輪舵角 δ f_dの許容範囲の上限値 δ f_maxは、 γ d が γ maxを超えると、 γ (1の増加に伴い、定常円旋回時限界舵角 δ f— max_cよりも 0に 近づくこととなる。同様に、前記式 08bにより決定されるモデル前輪舵角 S f_dの許容 範囲の下限値 δ f_minは、 γ dが一 γ maxを負側に超えると、 γ dの減少(大きさの増加 )に伴い、 S f_maxよりも 0に近づくこととなる。
[0180] また、前記式 08a, 08bの代わりに、次式 11a, l ibにより、 S f— dの許容範囲の上限 値 δ f_maxおよび下限値 δ f_minを設定するようにすると共に、関数 fe( y d, γ max), fe( - yd, - y max)をそれぞれ、例えば図 7の実線、破線のグラフで示すように設定し てもよい。 δ f— max = δ r— max— c
Figure imgf000052_0001
d, y maxノ 式 11 a
δ f_min=― δ f— max— c'fe (― y ά, — y max) 式 lib この例では、 fe(yd, γ max), fe (- γ d, - γ max)は、その値が常に 1以上であり、ま た、図 5 (a), (b)のものと同様の形態で γ(1に応じて変化する。そして、これらの ί¾(γ d, γ max), fe (― γ d, — γ max)の値をそれぞれ δ f_max_c, δ f_min_cに乗じることによ り、上限値 δ f_maxと下限値 δ f_minとが設定されることとなる。
[0182] また、 δ f_max_cを関数 feの値により補正してモデル前輪舵角 δ f_dの許容範囲 [ δ f min, Sfjnax]を設定する代わりに、例えば以下のような処理により第 2制限済み前輪 舵角 Sf_ltd2を決定するようにしてもよい。図 8はその処理機能を説明するための機能 ブロック図である。
[0183] すなわち、前記前輪横すベり角リミッタ 14dで決定された第 1制限済み前輪舵角 δ f Jtdlを補正するための前輪舵角補正分 Δ δ 1¾処理部 14gにおいてモデル車両のョ 一レート Yd (前回値)に応じて決定する。このとき、 Δ Sfは処理部 14g中のグラフで 示すように、基本的には、 γοΐが正側で増加するに伴い、 Δ Sfの値が正側で単調増 加し、また、 ydが負側で減少するに伴い、 Δ Sfの値が負側で単調減少するように決 定される。なお、処理部 14g中のグラフでは、 Δ Sfの値には上限値(>0)および下 限値(<0)が設けられている。この場合、上限値および下限値は、例えばその絶対 値が前記図 5 (a) , (b)に示した一定値 fexと同じ値になるように設定される。
[0184] 次いで、上記の如く決定した前輪舵角補正分 Δ δ 1¾、前記減算器 14e (図 4参照) で算出された第 1制限済み前輪舵角 δ fjtdlに加算器 14hで加えることにより入力補 正付き第 1制限済み前輪舵角を決定する。この場合、 Sfjtdlの向きと ydの向きとが 互いに逆向きである場合には、入力補正付き第 1制限済み前輪舵角の大きさは、 Sf Jtdlの大きさよりも小さくなる。ただし、 Sfjtdlの向きと ydの向きとが同じである場合 には、入力補正付き第 1制限済み前輪舵角の大きさは、 Sfjtdlの大きさよりも大きく なる。
[0185] 次いで、この入力補正付き第 1制限済み前輪舵角を遠心力過大化防止リミッタ 14f に通すことで、入力補正付き第 1制限済み前輪舵角をモデル前輪舵角 S f_dの許容 範囲 [ δ f min, δ f max]内の値に制限してなる入力補正付き第 2制限済み前輪舵角 を決定する。すなわち、入力補正付き第 1制限済み前輪舵角が許容範囲内の値であ る場合には、該入力補正付き第 1制限済み前輪舵角がそのまま入力補正付き第 2制 限済み前輪舵角として決定される。また、入力補正付き第 1制限済み前輪舵角が許 容範囲から逸脱している場合には、 δ Lmaxおよび δ f_minのうち、入力補正付き第 1 制限済み前輪舵角に近い方の値が入力補正付き第 2制限済み前輪舵角として決定 される。
[0186] この場合、遠心力過大化防止リミッタ 14fにおけるモデル前輪舵角 δ f_dの許容範 囲の上限値 δ f_max( >0)は、 δ fjtdlの向きと γ dの向きとが同じである場合の δ f ltd 1の補正分を見込んで、前記定常円旋回時舵角限界値 δ f— maX_Cよりも大きめの値( 例えば δ f_max_c+fex)に設定される。同様に、モデル前輪舵角 δ f_dの許容範囲の 下限値 δ f_min « 0)は、その絶対値が δ f_max_cよりも大きめの値になるように設定さ れる。
[0187] 次いで、上記の如く決定した入力補正付き第 2制限済み前輪舵角から、前記前輪 舵角補正分 Δ δ ί^減算器 14iで減じることにより、第 2制限済み前輪舵角 S f_ltd2を 決定する。
[0188] 上記のように第 2制限済み前輪舵角 δ f_ltd2を決定するようにしても、モデル車両に 発生する遠心力が過大にならないようにし、且つ、実車 1のカウンタステアリング状態 での不要な制限がかかるのを防止しつつ、規範動特性モデル 16に入力するモデル 前輪舵角 S f— d (= S f— ltd2)を決定できる。
[0189] なお、本実施形態では、規範動特性モデル 16に入力するモデル前輪舵角 δ f_dを 決定するために、前記前輪横すベり角リミッタ 14dおよび遠心力過大化防止リミッタ 1 4fの処理を行なうようにしたが、 V、ずれか一方もしくは両者の処理を省略してもよ!/、。 すなわち、処理部 14aで決定される無制限時前輪舵角 δ f_unltd、あるいは、この δ f_ unltdを遠心力過大化防止リミッタ 14fに入力して得られる値、あるいは、前記減算器 14eで決定される第 1制限済み前輪舵角 δ fjtdlを規範動特性モデル 16に入力する モデル前輪舵角 δ f_dとして決定するようにしてもよい。
[0190] 以上説明した如く規範操作量決定部 14で決定されたモデル前輪舵角 S f—dの今回 値(= S f_ltd2の今回値)が規範動特性モデル 16に入力され、その入力値と後述する 如く FB分配則 20で決定された仮想外力 Fvir, Mvir (前回値)とから、該規範動特性 モデル 16によって(前記式 01に従って)、規範ョーレート y dおよび規範車両重心点 横すベり角 dの今回値が新たに決定されることとなる。なお、この処理は、実際には 、式 01を離散時間系で表した式によって行なわれるので、 y d, j8 dの今回値を決定 するために、 γ οΐ, j8 dの前回値も使用されることとなる。
[0191] この場合、規範動特性モデル 16に入力されるモデル前輪舵角 δ f_dは、前記の如く 規範操作量決定部 14で制限されているので、モデル車両のスピンや極端な横すベ りの発生が防止される。
[0192]
[FB分配則について]
次に、 FB分配則 20の処理の詳細を図 9〜図 16を参照して説明する。
[0193] 図 9は FB分配則 20の処理機能を示す機能ブロック図である。図示の如く FB分配 則 20は、その処理機能を大別すると、仮想外力 Mvir, Fvirを決定する処理を行なう 仮想外力決定部 20aとァクチユエータ動作 FB目標値を決定する処理を行なうァクチ ユエータ動作 FB目標値決定部 20bとから構成される。
[0194] なお、仮想外力決定部 20aは、本発明におけるモデル操作用制御入力決定手段 に相当する。
[0195] まず、仮想外力決定部 20aを図 9を参照して説明すると、この仮想外力決定部 20a の処理機能は、仮想外力仮値決定部 201と γ |8制限器 202とに大別される。
[0196] 仮想外力決定部 20aの処理では、まず、前記減算器 18から入力される状態量偏差 γ err ( = γ act— y d) , β βνν ( = β act— β d)に応じて、仮想外力仮値決定部 201に よって仮想外力の仮値 Mvirtmp, Fvirtmpが決定される。仮値 Mvirtmp, Fvirtmpのう ちの Mvirtmpは、状態量偏差 γ err, β errを 0に近づけるために規範動特性モデル 1 6のモデル車両の重心点 Gdのまわりに付カ卩的に発生させるべきモーメント(ョ一方向 のモーメント)、 Fvirtmpは、状態量偏差 γ err, β errを 0に近づけるために規範動特 性モデル 16のモデル車両の重心点 Gdに付カ卩的に作用させるべき並進力(モデル車 両の横方向の並進力)を意味する。
[0197] 具体的には、次式 15で示す如ぐ入力された状態量偏差 γ err, β errからなるベタ トル ( γ err, β err)T (添え字 Τは転置を意味する)に所定のゲインマトリクス KMrを乗じ ることにより、仮想外力の仮値 Mvirtmp, Fvirtmp (以下、仮想外力仮値 Mvirtmp, Fvi rtmpという)が決定される。
[0198] [数 5]
…式 1 5
Figure imgf000055_0001
但し、
Kfvir" fvir12
Kfvir =
Kfvir21 Kfvir22
[0199] この式 15により、状態量偏差 γ err, β errを 0に近づけるために規範動特性モデル 16にフィードバックする制御入力の仮値としての仮想外力仮値 Mvirtmp, Fvirtmpが 、状態量偏差 Ί err, β err力もフィードバック制御則により決定される。
[0200] なお、以下に詳説する γ β制限器 202が、モデル車両の車両重心点横すベり角 β dもしくは実車 1の実車両重心点横すベり角 β actが所定の許容範囲を超えそうにな つた時、および越えてしまった時にだけ、 j8 dもしくは |8 actを許容範囲に戻す作用を 強く発生するようにしたいならば、 j8 errを時定数の小さい 1次遅れ特性に近い特性で 0に収束させることが望ましい。そのためには、例えばゲインマトリクス KlVirの成分のう ちの KMrl2を 0に設定し、 KlVirllをその絶対値が大きくなるように設定すればよい。
[0201] 次!、で、規範動特性モデル 16上のモデル車両のョーレート γ dおよび車両重心点 横すベり角 β dがそれぞれ所定の許容範囲から逸脱するのを抑制するように仮想外 力仮値 Mvirtmp, Fvirtmpを修正する処理が γ j8制限器 202〖こより実行される。
[0202] 具体的には、 γ β制限器 202は、まず、予測演算部 203の処理を実行し、所定時 間後(1つ以上の所定数の制御処理周期の時間後)のモデル車両のョーレート γ dと 車両重心点横すベり角 i8 dとを予測し、それらの予測値をそれぞれ予測ョーレート γ da、予測車両重心点横すベり角 j8 daとして出力する。 [0203] このとき予測演算部 203には、規範動特性モデル 16で決定された規範ョーレート y d (今回値)および規範車両重心点横すベり角 |8 (1 (今回値)と、センサ ·推定器 12 で検出または推定された実走行速度 Vact (今回値)と、規範操作量決定部 14で決定 された第 2制限済み前輪舵角 S f_ltd2 (今回値)と、仮想外力仮値決定部 201で上記 の如く決定された仮想外力仮値 Mvirtmp, Fvirtmp (今回値)とが入力される。そして 、該予測演算部 203は、モデル前輪舵角 δ が、入力された δ f_ltd2に保持され、且 つ、モデル車両に作用する仮想外力 Mvir, Fvir力 入力された Mvirtmp, Fvirtmpに 保持され、且つ、モデル車両の走行速度 Vdが、入力された Vactに保持されると仮定 して、前記式 01に基づいて、予測ョーレート γ daおよび予測車両重心点横すベり角 j8 daを算出する。
[0204] 次いで、 γ j8制限器 202は、上記の如く予測演算部 203で算出した γ da, daを それぞれ γ不感帯処理部 204、 j8不感帯処理部 205に通すことにより、 γ da, β da のそれぞれの、所定の許容範囲からの逸脱量 γ over, β overを求める。図中に示す γ不感帯処理部 204のグラフは、 γ daと γ overとの関係を例示するグラフであり、該 グラフに関する横軸方向の値は Ί daの値、縦軸方向の値は γ overの値である。同様 に、図中に示す j8不感帯処理部 205のグラフは、 j8 daと |8 overとの関係を例示する グラフであり、該グラフに関する横軸方向の値は β daの値、縦軸方向の値は β over の値である。
[0205] ここで、 γ不感帯処理部 204における許容範囲は、その下限値、上限値をそれぞ れ γ damin (< 0) , y damax ( >0)とする許容範囲(ョーレート γ dの許容範囲)であり 、 j8不感帯処理部 205における許容範囲は、その下限値、上限値をそれぞれ jS dami η « 0) , β damax ( >0)とする許容範囲(車両重心点横すベり角 β dの許容範囲)で ある。
[0206] 本実施形態では、ョーレート γ dに関する許容範囲 [ γ damin, γ damax]は、例えば モデル車両の走行速度 Vdを Vact (今回値)に保持すると共に、モデル車両のョーレ ート γ dを γ daminまたは γ damaxに保持して定常円旋回を行なった場合にモデル車 両に発生する遠心力が推定摩擦係数/ z estm (今回値)に応じた摩擦力の限界値を 超えないように設定される。すなわち、次式 16a, 16bを満足するように、 Vact (今回 値)と μ estm (今回値)とに応じて、 γ damax, y daminが設定される c
[0207]
m .Vact . y damax < μ estm . m. g
m . Vact . y damin >― μ estm . m. g y damax, γ daminは、例えばそれぞれの絶対値が前記式 05により決定される定常 円旋回時最大ョーレート y maxと同じ値になるように設定すればよい( y damax = y m ax、 y damin = y maxとするノ。たたし、 γ damax, y daminを、ての絶对値; 0 y maxと 異なる値 (例えば γ maxよりも小さ 、値)になるように設定してもよ!/、。
[0208] なお、上記のように設定される許容範囲 [ γ damin, γ damax]は、実走行速度 Vact が高いほど、あるいは、推定摩擦係数/ z estmが小さいほど、狭くなる。
[0209] また、車両重心点横すベり角 β dに関する許容範囲 [ β damin, β damax]は、例え ば、実車 1の車両重心点横すベり角と実車 1の重心点に作用する横方向の並進力と の間の関係がほぼリニアな関係 (比例関係)に維持されるような車両重心点横すベり 角の範囲内に設定される。この場合、 Vact (今回値)と/ z estm (今回値)とのうちの少 なくともいずれか一方に応じて j8 damin, β damaxを設定することが望ましい。
[0210] そして、 γ不感帯処理部 204の処理では、具体的には、入力された γ daが所定の §午 範囲 [ y damin, y damax]内の であるとき ( γ damin≤ y da^ y damaxであると き)には、 y over= 0とし、 γ da< y daminで fcoときには、 y over= y da— y daminと し、 γ da> γ damaxであるときには、 γ over= γ da— γ damaxとする。これにより、予視 U ョーレート γ daの許容範囲 [ γ damin, y damax]からの逸脱量 γ overが求められる。
[0211] 同様に、 j8不感帯処理部 205の処理は、入力された β daの値が所定の許容範囲 [ β damin, β damax]内の値であるとき( j8 damin≤ j8 da≤ β damaxであるとき)には、 j8 over= 0とし、 j8 da< β daminであるときには、 j8 over= β da— β daminとし、 j8 da> β damaxであるときには、 β over= β da— β damaxとする。これにより、予測車両重心点 横すベり角 13 daの許容範囲 [ j8 damin, β damax]からの逸脱量 13 overが求められる。
[0212] 次いで、 γ j8制限器 202は、これらの逸脱量 γ over, j8 overを 0に近づけるように、 仮想外力仮値 Mvirtmp, Fvirtmpのネ甫正量である仮値操作量 Mvir_over, Fvir_overを 処理部 206にて算出する。
具体的には、次式 17で示す如く、 y over, j8 overからなるベクトル( γ over, β over) Τに所定のゲインマトリクス Kfovを乗じることにより、 Mvir.over, Fvir_overが決定される
[0214] [数 6]
…式 1 7
Figure imgf000058_0001
但し、
Kfov 1 1 fov12
Kfov =
Kfov21 fov22
[0215] 次いで、 γ j8制限器 202は、この仮値操作量 Mvir_over, Fvir_overをそれぞれ仮想 外力仮値 Mvirtmp, Fvirtmpから減算器 207で減じることにより、仮想外力 Mvir, Fvir の今回値を決定する。すなわち、次式 18a, 18bにより仮想外力 Mvir, Fvirが決定さ れる。
[0216]
Mvir = Mvirtmp― Mvir— over 式 18 a
Fvir = Fvirtmp― Fvir_over 式 18b 以上の如く仮想外力決定部 20aの処理が実行されることにより、予測ョーレート y d aおよび予測車両重心点横すベり角 13 daがそれぞれ許容範囲 [ γ damin, γ damax]、 [ β damin, β damax]から逸脱するのを抑制しつつ、状態量偏差 γ err, β errを 0に近 づけるように仮想外力 Mvir, Fvirが決定されることとなる。
[0217] なお、以上説明した仮想外力決定部 20aの γ β制限器 202は、仮値操作量 Mvir_ over, Fvir_overにより仮想外力仮値 Mvirtmp, Fvirtmpを補正することにより仮想外力 Mvir, Fvirを決定する(より一般的に言えば、 Mvir_overと Mvirtmpとの線形結合、並 びに、 Fvir_overと Fvirtmpとの線形結合によってそれぞれ Mvir, Fvirを決定する)よう にしたが、次のようにして、仮想外力 Mvir, Fvirを決定するようにしてもよい。図 10は その処理を説明するための機能ブロック図である。
[0218] 同図を参照して、この例では、仮想外力仮値決定部 201、予測演算部 203、 γ不 感帯処理部 204、 j8不感帯処理部 205、処理部 206の処理は、図 9のものと同じで ある。一方、本例では、処理部 206で求められた仮値操作量 Fvir_over, Mvir_overは それぞれ処理部 208, 209に入力され、該処理部 208, 209において、仮想外力仮 値 Mvirtmp, Fvirtmpをそれぞれ補正するための補正係数 Kattl (≥0) , Katt2 (≥0) が決定される。これらの補正係数 Kattl , Katt2は、それぞれ仮想外力仮値 Mvirtmp, Fvirtmpに乗じる補正係数である。なお、図中に示す処理部 208に係わるグラフは、 Mvir_overと Katt 1との関係を例示するグラフであり、該グラフに関する横軸方向の値 は Mvir_overの値、縦軸方向の値は Kattlの値である。同様に、図中に示す処理部 2 09に係わるグラフは、 Fvir_overと Katt2との関係を例示するグラフであり、該グラフに 関する横軸方向の値は Fvir_overの値、縦軸方向の値は Katt2の値である。
[0219] 処理部 208の処理では、図中のグラフで示す如ぐ Mvir_overが 0であるときには、 Kattl = lとされ、 Mvir_overの絶対値力Oから増加するに伴い、 Kattlの値が 1から 0 まで単調に減少するように Kattlの値が設定される。そして、 Kattlの値は、 Mvir.over の絶対値が所定値 (Kattlが 0に達する値)を超えると 0に維持される。
[0220] 同様に、処理部 209の処理では、図中のグラフで示す如ぐ Fvir_overが 0であるとき には、 Katt2 = lとされ、 Fvir_overの絶対値力 Oから増加するに伴い、 Katt2の値が 1 力 0まで単調に減少するように Katt2の値が設定される。そして、 Katt2の値は、 Fvir _overの絶対値が所定値 (Katt2が 0に達する値)を超えると 0に維持される。
[0221] 次いで、上記の如く決定された補正係数 Kattl , Katt2は、それぞれ乗算器 210, 2 11〖こて、仮想外力仮値 Mvirtmp、 Fvirtmpに乗算され、これ〖こより、仮想外力 Mvir, F virの今回値が決定される。
[0222] このように、図 10の例では、逸脱量 Mvir_overの絶対値が大きくなるに伴い、仮想外 力 Mvirの大きさを仮想外力仮値 Mvirtmpに対して絞る(0に近づける)ように仮想外 力 Mvirが決定される。同様に、逸脱量 Fvir_overの絶対値が大きくなるに伴い、仮想 外力 Mvirの大きさを仮想外力仮値 Mvirtmpに対して絞る(0に近づける)ように仮想 外力 Fvirが決定される。このように仮想外力 Mvir, Fvirを決定するということは、 γ da , j8 daの許容範囲からの逸脱力 仮想外力 Mvir, Fvirに起因するものであるとみなし て、 y da, j8 daの許容範囲 [ y damin, y damax] , [ β damin, j8 damax]からの逸脱を 抑制しつつ、状態量偏差 γ err, j8 errを 0に近づけるように仮想外力 Mvir, Fvirを決 定することを意味する。この場合は、規範操作量決定部 14において、前記した如ぐ 規範動特性モデル 16に入力するモデル前輪舵角 δ f_dを制限しておくことが望まし い。
[0223] また、以上説明した γ 制限器 202では、予測演算部 203で前記した如く式 01を 用いて求めた予測ョーレート γ daおよび予測車両重心点横すベり角 β daをそれぞれ 制限対象量とし、これらの γ da, β daを γ不感帯処理部 204、 β不感帯処理部 205 に入力して逸脱量 γ over, j8 overを求めた。ただし、 γ da, j8 daの代わりに、規範ョ 一レート γ d、規範車両重心点横すベり角 β dの今回値、あるいは、実ョーレート γ ac 実車両重心点横すベり角 j8 actの今回値、あるいは、これらの値に、フィルタリング 処理を施した値を制限対象量として用いてもょ ヽ。
[0224] 例えば、各制御処理周期で γ daの代わりに γ dの今回値を γ不感帯処理部 204に 入力すると共に、規範動特性モデル 16で逐次算出される β dに、伝達関数が(1 +T 1 ' s) Z ( l +T2 ' s)という形で表されるフィルタリング処理 (Tl, T2はある時定数、 sは ラプラス演算子)を施してなる値を /3 daの代わりに /3不感帯処理部 205に入力するよ うにしてもよい。この場合、例えば T1 >T2となるように時定数 Tl, Τ2を設定すると、 該フィルタリング処理は、いわゆる位相進み補償要素として機能する。このとき、ある 程度高い周波数域における β dの周波数成分の位相を進め、該周波数成分に対す るゲインを高めることによって、各制御処理周期で決定される j8 dの値自体が許容範 囲 [ jS damin, j8 damax]を逸脱する前から、 j8 overに応じて仮想外力 Mvir, Fvirを制 限することができる。
[0225] また、制限対象量としての γ da, β daを以下のように求めるようにしてもよい。すなわ ち、予測演算部 203では、次式 19a, 19bで示すように、適当な係数 cijを用いて γ d 、 β dの今回値を線形結合してなる値を γ da, β daとして求めるようにしてもよ 、。
[0226]
y da=cl l - y d + cl2 - j8 d ……式 19a
j8 da=c21 - y d+c22 - j8 d ……式 19b あるいは、次式 20a, 20bで示すように、適当な係数 cijを用いて γ(1、 β d, Mvirtmp , Fvirtmp、および δ f_ltd2の今回値を線形結合してなる値を γ da, β daとして求める ようにしてもよい。
[0227]
yda=cll- yd + cl2- βά
+ cl3 · Mvirtmp + cl4 · Fvirtmp + cl5 · δ f ltd2 …… 20a
Figure imgf000061_0001
+ c23 · Mvirtmp + c24 · Fvirtmp + c25 · δ f ltd2 …… 20b なお、これらの式 20a, 20bは、前記した予測演算部 203の処理をより一般化して 表現したものである。
[0228] あるいは、次式 21a, 21bで示すように、適当な係数 cijを用いて γ act、 β actの今回 値を線形結合してなる値を γ da, β daとして求めるようにしてもょ 、。
[0229]
γ da=cll · γ act + cl2# β act 式 2la
Figure imgf000061_0002
yact + c22- j8 act ……式 21b 補足すると、式 02bから明らかなように、 c21 =— Lr/Vd、 c22 = l(ここで、 Vdは、 モデル車両の走行速度( =実走行速度 Vact) )とすれば、 β daは後輪の横滑り角に 相当する。
[0230] あるいは、次式 22a, 22bで示すように、適当な係数 cijを用いて、 γ d、 j8 d、 j8 dの 時間微分値 d β d/dt、 γ act, β act, β actの時間微分値 d β act/dt、 Mvirtmp, Fvirt mp、および δ f_ltd2の今回値を線形結合してなる値を γ da, β daとして求めるようにし てもよい。
[0231]
yda=cll- yd+cl2- jSd+clS-djSd/dt
+ cl4- yact + cl5- j8 act + cl6-d j8 act/dt
+ c 17 · Mvirtmp + c 18 · Fvirtmp + c 19 · δ f_ltd2 …… 22a = c21 ' y d+ c22 ' j8 d+ c23 ' d j8 d/dt
+ c24 · γ act + c25 · j8 act + c26 · d j8 act/dt
+ c27 - Mvirtmp + c28 · Fvirtmp + c29 - δ f_ltd2 あるいは、式 20aの右辺の演算結果の値と式 21aの右辺の演算結果の値との加重 平均値、並びに、式 20bの右辺の演算結果の値と式 21bの右辺の演算結果の値との 加重平均値をそれぞれ y da、 j8 daとして求めるようにしてもよい。なお、これは、式 22 a、式 22bにより γ da、 β daを求める場合の一 f列となる。また、式 20a、式 20b、ある!/ヽ は、式 22a、式 22bにおける Mvirtmp, Fvirtmpの項を省略してもよい。
[0232] あるいは、所定時間後までの各制御処理周期における γ d、 |8 dの予測値を前記式 01に基づいて求め、その求めた y d, j8 dのうちのピーク値を y da, j8 daとして決定す るようにしてちょい。
[0233] さら【こ、式 20a,式 20b、ある!/、 ίま、式 21a,式 21b、ある!/、 ίま、式 22a,式 22bの!ヽ ずれを用いて γ da, β daを求める場合であっても、それらの式の係数 cijに、周波数 特性をもたせる(換言すれば cijを掛ける変数の値にローパスフィルタなどのフィルタリ ング処理を施す)ようにしてもよい。あるいは、係数 cijを掛ける変数の値に、該変数の 時間的変化率の制限を掛けるようにしてもょ 、。
[0234] 補足すると、前記式 21a,式 21b、あるいは、式 22a,式 22bにより γ da, β daを決 定するようにした場合、その γ da, β daが、ある所定時間後の実車 1の実ョーレート γ act,実車両重心点横すベり角 j8 actの予測値としての意味を持つように各係数 cijを 設定することが望ましい。
[0235] また、規範動特性モデル 16が前記式 01で表されるように線形なモデルである場合 、 20a, 20b、ある!/ヽ ί¾、 ^21a, 21b、ある!/ヽ ί¾、 ^22a, 22bの!ヽずれを 用いても、実車 1あるいはモデル車両のある所定時間後のョーレートおよび車両重心 点横すベり角の予測値としての Ί da、 β daを適切に求めることができる。
[0236] なお、 γ da, β daの代わりに γ act, β actの今回値、もしくは、 γ act, β actにフィル タリング処理を施してなる値を用いた場合、あるいは、前記式 21a,式 21b、もしくは、 式 22a,式 22bにより γ da, j8 daを決定するようにした場合には、実車 1の実ョーレー ト γ actおよび実車両重心点横すベり角 13 actの今回値もしくはフィルタリング値もしく は予測値力 それぞれ許容範囲 [ γ damin, γ damax] , [ β damin, β damax]力ら逸 脱するのを抑制しつつ、状態量偏差 γ err, β errを 0に近づけるように仮想外力 Mvir , Fvirを決定することとなる。
[0237] 補足すると、仮想外力決定部 20aの処理では、より一般的には、次式 200により仮 想外力 Mvir, Fvirを決定するようにしてもよい。
[0238] [数 7]
Fvir ft1 1 Kfb12 Kf 13 Kf 14 Kfb15 Kfb16
—Mvir— Kft21 Kfc22 fb23 Kfb24 Kfb25 Kfb26
Figure imgf000063_0001
+ •<5 fjtd2
Kfb_ 5 2 -式 200
[0239] また、前記 γ β制限器 202の γ不感帯処理部 204および 13不感帯処理部 205に ぉ 、ては、それぞれ各別に γ da, β daの許容範囲 [ γ damin, γ damax] , [ β damin, β damax]を設定して、逸脱量 γ over, β overを決定するようにしたが、 γ daと j8 daと の間の相関性を考慮し、 Ί da, β daの組に対して許容範囲 (許容領域)を設定して、 逸脱量 γ over, β overを決定するようにしてもよ!、。
[0240] 例えば図 11に示す如ぐ γ daを横軸、 j8 daを縦軸とする座標平面上での直線 1〜 4により囲まれた領域 A (平行四辺形状の領域)を γ da, β daの組の許容領域 Αとし て設定する。この場合、直線 1, 3は、それぞれ γ daの下限値、上限値を規定する直 線である。その下限値、上限値は、例えば前記 γ不感帯処理部 204における許容範 囲 [ γ damin, γ damax]の下限値 γ damin,上限値 γ damaxと同様に設定される。また 、直線 2, 4は、それぞれ j8 daの下限値、上限値を規定する直線である。この例では、 該下限値および上限値がそれぞれ γ daに応じてリニアに変化するように設定される。 そして、逸脱量 T over、 j8 overを例えば次のように決定する。すなわち、 γ da, β da の組が、図 11に点 PIで示す如ぐ許容領域 A内に存するときには、 Y over= j8 over =0とする。一方、 y da, |8 daの組力 例えば図 11に点 P2で示す如ぐ許容領域 A 力も逸脱している場合には、点 P2を通って所定の傾きを有する直線 5上の点のうち、 点 P2に最も近 ヽ許容領域 Aの境界の点 P3 (直線 5上で許容領域 A内に存する点の うち、 P2に最も近い点 P3)を決定する。そして、点 P2における y daの値と点 P3にお ける γ daの値との差が逸脱量 γ overとして決定されると共に、点 P2における j8 daの 値と点 P3における 13 daの値との差が逸脱量 13 overとして決定される。なお、 γ da, β daの組に対応する点力 例えば図 11に示す点 P4であるような場合、すなわち、 y da , β daの組に対応する点 Ρ4を通る所定の傾き(直線 5と同じ傾き)を有する直線 6が、 許容領域 Αと交わらな ヽような場合 (直線 6上に許容範囲 A内の点が存在しな 、場合 )には、該直線 6に最も近い許容領域 Aの境界の点 P5を決定する。そして、点 P4〖こ おける γ daの値と点 Ρ5における γ daの値との差を逸脱量 γ overとして決定し、点 P4 における j8 daの値と点 P5における 13 daの値との差を逸脱量 13 overとして決定すれば よい。
[0241] 補足すると、 γ da, β daの組の許容領域は、平行四辺形状の領域である必要ななく 、例えば、図 11に破線で示す如ぐ境界部を滑らかに形成した (角部を持たないよう に形成した)領域 A,であってもよ 、。
[0242] また、前記 γ β制限器 202では、 γ da, β daの両者につ!、て、 [ γ damin, γ damax 」, [ j8 damin, ;8 damax]からの逸脱量 γ over, β overを求め、それに J心じて仮値 Mvir tmp, Fvirtmpを補正するようにしたが、 γ over, j8 overのいずれか一方だけに応じて 仮値 Mvirtmp, Fvirtmpを補正するようにしてもよい。この場合には、前記処理部 206 の処理において、 y over, j8 overのいずれか一方の値を 0に固定して、仮値操作量 Mvir_over, Fvir_overを求めるようにすればよ!、。
[0243]
次に、ァクチユエータ動作 FB目標値決定部 20bの処理を図 12〜図 14を参照して 説明する。なお、以降の説明では、各車輪 W1〜W4を第 n輪 Wn (n= l, 2, 3, 4)と いうことがある。
[0244] 図 12は、該ァクチユエータ動作 FB目標値決定部 20bの処理を示す機能ブロック図 である。同図を参照して、ァクチユエータ動作 FB目標値決定部 20bは、まず、処理部 220にお 、て、入力された状態量偏差 γ err, β errに応じて、該状態量偏差 γ err, j8 errを 0に近づけるために実車 1の重心点 Gのまわりに発生させるべきョー方向のモ 一メントの基本要求値であるフィードバックョーモーメント基本要求値 Mlbdmdを実車 1のァクチユエータ装置 3に対するフィードバック制御入力の基本要求値として決定 する。
[0245] Mlbdmdは、状態量偏差 γ err, β errからフィードバック制御則により決定される。具 体的には、次式 23の如く、 j8 err, y errからなるベクトル( β err, γ err)'に所定のゲイ ンマトリクス Klbdmdを乗じる( β err, γ errを線形結合する)ことにより、 Mlbdmdが決定 される。
[0246] [数 8]
β
fbdmd = Kfbdmd '式 23
T err
但し、
Kfbdmd≡「Kfbdmd1 Kfbdmd2
[0247] なお、 jS err, γ errと、 j8 errの 1階微分値 d j8 err/dtとに応じて Mlbdmdを決定するよ うにしてもよい。例えば、 jS err, γ err, d j8 err/dtからなるベクトルに適当なゲインマト リクスを乗じる( j8 err, γ err, d err/dtを適当な係数によって線形結合する)ことで M i dmdを決定するようにしてもょ 、。
[0248] また、ゲインマトリクス Klbdmdの要素 Klbdmdlおよび Kl dmd2のうちの少なくともい ずれか一方に、伝達関数が( 1 +Tcl · s) Z ( 1 +Tc2 · s)で表される位相補償要素を 乗じるよう〖こしてもよい。例えば、 j8 errに乗じる Klbdmdlに上記位相補償要素を乗じ るようにして、且つ、 Tel >Tc2となるように時定数 Tel, Tc2の値を設定する。このよう にした場合には、 Klbdmdlを β errに乗じてなる項は、 β errとその微分値とを線形結 合したものをノヽィカットフィルタに通したものと等価になる。
[0249] 次!、で、ァクチユエータ動作 FB目標値決定部 20bは、この Mlbdmdを不感帯処理 部 221に通すことによって、不感帯超過フィードバックョーモーメント要求値 Ml dmcLa を決定する。なお、図中の不感帯処理部 221のグラフは、 Mlbdmdと Ml dmcLaとの関 係を例示するグラフであり、該グラフに関する横軸方向の値は Mlbdmdの値、縦軸方 向の値は MlbdmcLaの値である。 [0250] 本実施形態では、実車 1のァクチユエータ装置 3のフィードバック制御においては、 状態量偏差 0 err, errを 0に近づけるために、主に、ァクチユエータ装置 3のうちの 駆動.制動装置 3Aのブレーキ装置を操作する。この場合、上記の如く決定される Mf bdmdに応じてブレーキ装置を操作すると、該ブレーキ装置が頻繁に操作される恐れ がある。本実施形態では、これを防止するために、 Mlbdmdを不感帯処理部 221に通 して得られる不感帯超過フィードバックョーモーメント要求値 Ml dmcLaに応じてブレ ーキ装置を操作することとした。
[0251] 該不感帯処理部 221の処理は、具体的には次のように実行される。すなわち、該不 感帯処理部 221は、 Mlbdmdの値力 ^近傍に定めた所定の不感帯に存するときには 、 Mlbdmd_a=0とする。換言すれば、 Mlbdmdの値力 ^近傍に定めた所定の不感帯に 存するときには、 Mlbdmdが 0であるとみなして、 Mlbdmd_a= Mlbdmdとする。また、 Mf bdmdが該不感帯の上限値(>0)よりも大きいときには、 Ml dmd_a=Mibdmd—上限 値とし、 Mlbdmdが該不感帯の下限値(< 0)よりも小さいときには、 Ml dmd_a=Mibdm d—下限値とする。換言すれば、 Mlbdmdの不感帯からの超過分を Ml dmcLaとして決 定する。このようにして決定される MlbdmcLaに応じて駆動 ·制動装置 3Aのブレーキ 装置を操作するようにすることで、状態量偏差 γ err, β errに応じたブレーキ装置の 頻繁な操作を抑制しつつ、該状態量偏差 γ err, β errを 0に近づけるようにブレーキ 装置を操作できる。
[0252] 補足すると、処理部 220および不感帯処理部 221の処理により本発明における基 本要求操作量決定手段が構成される。この場合、不感帯超過フィードバックョーモー メント要求値 MlbdmcLaが本発明における基本要求操作量に相当する。また、フィード バックョーモーメント基本要求値 Mf dmdが本発明におけるフィードバック操作量に相 当する。本実施形態における基本要求操作量としての Mfcdmd_aは、状態量偏差 y e rr, β errを 0に近づけるための要求操作量としての Mlbdmdが 0に近い場合(Mlbdmd が前記不感帯に存する場合)におけるブレーキ装置の頻繁な操作を抑制しつつ、該 状態量偏差 γ err, β errを 0に近づけるように機能する。なお、不感帯処理部 221の 処理を省略し、 Mlbdmdをそのまま、 MlbdmcLa (本発明における基本要求操作量)と して用いてもよい。 [0253] 次いで、この不感帯超過フィードバックョーモーメント要求値 Ml dmcLaに応じて、前 記ァクチユエータ動作 FB目標値 (ァクチユエータ装置 3に対するフィードバック制御 入力)を決定する処理がァクチユエータ動作 FB目標値分配処理部 222により実行さ れる。
[0254] 該ァクチユエータ動作 FB目標値分配処理部 222は、その処理を概略的に説明す ると、実車 1の重心点のまわりに MlbdmcLaを発生させるように(ひいては y err, j8 err を 0に近づけるように)、駆動 ·制動装置 3Aのブレーキ装置の動作による各車輪 W1 〜W4の駆動'制動力のフィードバック目標値( γ err, β errを 0に近づけるためのブレ ーキ装置のフィードバック制御入力)である FB目標第 n輪ブレーキ駆動 ·制動力 Fxlb dmd_n (n= l, 2, 3, 4)を決定する。あるいは、 Fxl dmd— n (n= 1, 2, 3, 4)にカロえて 、ステアリング装置 3Bの動作による前輪 Wl, W2の横力のフィードバック目標値であ るアクティブ操舵用 FB目標横カ Fyibdmd_i¾決定する。
[0255] この場合、本実施形態では、不感帯超過フィードバックョーモーメント要求値 Mlbdm d_aが正方向のモーメント(実車 1の上方から見て反時計まわり方向のモーメント)であ る場合には、基本的には、実車 1の左側の車輪 Wl, W3の駆動'制動力を制動方向 に増カロさせ、それによつて、実車 1の重心点 Gのまわりに Ml dmcLaを発生させるよう に FB目標第 n輪ブレーキ駆動 ·制動力 Fxlbdmd_n (n= l, 2, 3, 4)が決定される。さ らに、このとき、実車 1の重心点 Gのまわりに MlbdmcLaを発生させるための左側の車 輪 Wl, W3に関する FB目標第 1輪ブレーキ駆動'制動力 FxlbdmcLlおよび FB目標 第 3輪ブレーキ駆動'制動力 Fxlbdmd_3は、そのそれぞれの変化と、 MlbdmcLaとの変 化との関係が比例関係になるように決定される。以降、この比例関係における Mlbdm d_aの変化に対する Fxlbdmd_l、 Fxl dmd_3のそれぞれの変化の割合を、それぞれ前 輪側ゲイン GA1、後輪側ゲイン GA3という。本実施形態では、 MlbdmcLaが正方向の モーメントである場合に、 Fxl dmd_l、 Fxl dmd_3は、それぞれ MlbdmcLaに GA1、 GA 3を乗じた値 (MlbdmcLaに比例する値)に決定される。
[0256] また、 MlbdmcLaが負方向のモーメント(実車 1の上方から見て時計まわり方向のモ ーメント)である場合には、基本的には、実車 1の右側の車輪 Wl, W3の駆動'制動 力を制動方向に増加させ、それによつて、実車 1の重心点 Gのまわりに MlbdmcLaを発 生させるように FB目標第 n輪ブレーキ駆動 ·制動力 Fxl dmd_n (n= l, 2, 3, 4)が決 定される。さらに、このとき、実車 1の重心点 Gのまわりに Ml dmcLaを発生させるため の右側の車輪 W2, W4に関する FB目標第 2輪ブレーキ駆動 ·制動力 Fxlbdmd_2およ び FB目標第 4輪ブレーキ駆動'制動力 Fxlbdmd_4は、そのそれぞれの変化と、 Ml d md_aとの変化との関係が比例関係になるように決定される。以降、この比例関係にお ける MlbdmcLaの変化に対する Fxl dmd_2、 Fxl dmd_4のそれぞれの変化の割合を、 それぞれ前輪側ゲイン GA2、後輪側ゲイン GA4という。本実施形態では、 Ml dmd.a が負方向のモーメントである場合に、 Fxl dmd_2、 Fxl dmd_4は、それぞれ MlbdmcLa に GA2、 GA4を乗じた値(MlbdmcLaに比例する値)に決定される。
[0257] 補足すると、本実施形態では、 MlbdmcLaが正方向のモーメントである場合における 実車 1の左側の前輪 W1とその真後ろの後輪 W3との組が本発明における特定組に 相当し、 MlbdmcLaが負方向のモーメントである場合における実車 1の右側の前輪 W 2とその真後ろの後輪 W4との組が本発明における特定組に相当する。
[0258] 以降の説明では、図 13に示す如ぐ実車 1の前輪 Wl, W2の間隔 (すなわち前輪 Wl, W2のトレッド)を df、後輪 W3, W4の間隔(すなわち後輪 W3, W4のトレッド)を dr、前輪 Wl, W2の実舵角(実前輪舵角)を δ f_actとする。また、実車 1を上方から見 たときに、第 n輪 Wnの前後方向と直交する方向(水平面上で直交する方向)での該 第 n輪 Wnと実車 1の重心点 Gとの距離を Ln (n= l, 2, 3, 4)とする。また、本実施形 態では、後輪 W3, W4は非操舵輪であるので図示は省略する力 後輪 W3, W4の 実舵角(実後輪舵角)を δ r_actとする。本実施形態では、 δ r_act = 0であり、 L3 = L4 = drZ2である。
[0259] なお、図 13中の Lfは、実車 1の重心点 Gと前輪 Wl, W2の車軸との前後方向距離 、 Lrは実車 1の重心点 Gと後輪 Wl, W2の車軸との前後方向距離である。これらの Lf , Lrの値は、前記図 3で示したモデル車両に関する Lf, Lrの値と同じである。
[0260] ァクチユエータ動作 FB目標値分配処理部 222の処理を以下に具体的に説明する 。まず、実車 1の直進走行状態( S f_act = 0であるときの走行状態)を想定し、この直 進走行状態で、実車 1の重心点 Gまわりに、 MlbdmcLaに等しいョー方向のモーメント を発生させるために必要な第 n輪 Wn(n= l, 2, 3, 4)の駆動'制動力である第 n輪 駆動'制動力フル要求値 Fxfolll dmcLnをそれぞれ処理部 222a_n (n= l, 2, 3, 4)に より決定する。
[0261] 具体的には、 Fxiulli dmd_n (n= l, 2, 3, 4)は、各処理部 222a_n〖こおいて、次式 2
4a〜24dの乗算演算により決定される。
[0262]
Fxlulli dmdJ = - (2/df) · Ml dmd— a ……式 24a
Fxlulli dmd_2 = (2/df) · Mlbdmd— a ……式 24b
Fxfolll dmd— 3 = - (2/dr) · Mlbdmd— a ……式 24c
Fxlulli dmd_4= (2/dr) -Mlbdmd.a ……式 24d 次いで、ァクチユエータ動作 FB目標値分配処理部 222は、実前輪舵角 S f— actに 応じて、第 1輪分配比率補正値 Kl_strおよび第 2輪分配比率補正値 K2_strをそれぞ れ処理部 222b_l, 222b_2において決定すると共に、実後輪舵角 δ r_actに応じて、 第 3輪分配比率補正値 K3_strおよび第 4輪分配比率補正値 K4_strをそれぞれ処理 部 222b_3, 222b_4において決定する。これらの第 n輪分配比率補正値 Kn_str(n= 1 , 2, 3, 4)は、それぞれ Fxfolll dmcLnに乗じる補正係数である。
[0263] ここで、実前輪舵角 δ f_actが 0から変化すると、実車 1の重心点 Gのまわりに Ml dm d_aに等しいョー方向のモーメントを発生する第 1輪 W1および第 2輪 W2の駆動'制 動力は、それぞれ前記式 24a, 24bにより決定される Fxfolll dmd_l、 Fxfolll dmd_2か ら変化する。同様に、後輪 W3, W4が操舵輪である場合には、実後輪舵角 δ r_actが 0から変化すると、実車 1の重心点 Gのまわりに Ml dmcLaに等し!/、ョ一方向のモーメ ントを発生する第 3輪 W3および第 4輪 W4の駆動'制動力は、それぞれ前記式 24c, 24dにより決定される Fxfolll dmd_3、 Fxfolll dmd_4から変化する。第 n輪分配比率補 正値 Kn_strは、基本的には、このような舵角の影響を考慮して Fxfolll dmd_n (n= l, 2, 3, 4)を補正し、 Ml dmcLaに等しいか、もしくはこれに近いョー方向のモーメントを 実車 1の重心点 Gのまわりに発生する第 n輪 Wnの駆動 '制動力を決定するための補 正係数である。
[0264] ただし、本実施形態では、後輪 W3, W4は非操舵輪であるので、常に δ r_act = 0 である。このため、 K3_strおよび K4_strは実際には、常に「1」に設定される。従って、 処理部 222b_3, 222b_4は省略してもよい。
[0265] 一方、前輪 Wl, W2に関する Kl_str, K2_strは、それぞれ処理部 222b_l, 222b_2 において次のように決定される。すなわち、まず、図 13に示した LI, L2の値力 あら 力じめ設定された df, Lfの値と、 δ f_actの値と力 、次式 25a, 25bの幾何学演算によ り算出される。なお、この演算における S f_actの値としては、センサ'推定器 12で検 出または推定された値 (今回値)を用いればよいが、実車 1の前輪 Wl, W2の舵角の 目標値 (各制御処理周期で最終的に決定される目標値)の前回値を使用してもよ!ヽ 。また、ステアリング装置 3Bが、機械式ステアリング装置である場合には、該機械式ス テアリング装置のオーバーオールステアリング比と前記運転操作入力のうちのステア リング角 Θ hとから決定してもよい。あるいは、前記規範操作量決定部 14の処理部 14 aで決定した無制限時前輪舵角 δ Lunltdの今回値を使用してもよい。
[0266]
L丄 = (df/ 2) 'cos δ f— act— Lf'sin δ f— act 式 25a
L2= (df/2) - cos δ f_act+Lf-sin δ f act ……式 25b ここで、前輪 Wl, W2のそれぞれの駆動'制動力に LI, L2をそれぞれ乗じたもの 力 実車 1の重心点 Gのまわりに発生するョ一方向のモーメントである。従って、基本 的には、 Kl_str= (df/2) /Ll, K2_str= (dfZ2)ZL2として、これらをそれぞれ Fxf ulllbdmd_l、 Fxfolll dmd_2に乗じることで、重心点 Gのまわりに Ml dmd_aに等しいョー 方向のモーメントを発生させる前輪 Wl, W2の駆動'制動力を決定できる。
[0267] ただし、このようにすると、 L1または L2が小さいときに、 Kl_strまたは K2_strが過大 になって、状態量偏差 Ί err, β errに応じた実車 1の全体のフィードバックループゲイ ンが過大になり、制御系の発振などが生じやすい。
[0268] そこで、本実施形態では、次式 26a, 26bにより、 Kl_str, K2_strを決定する。
[0269]
Kl_str= (df/2) /max (LI, Lmin) ……式 26a
K2_str= (df/2) /max (L2, Lmin) ……式 26b ここで、式 26a、式 26b【こお!ヽて、 max (a, b) (a, biま一般変数) ίま、変数 a, bのうち の大きい方の値を出力する関数、 Lminは、 dfZ2よりも小さい正の定数である。これに より、 KLstr, K2_strが過大になるのを防止した。換言すれば、本実施形態では、 (df /2) /Lmin ( > l) ^Kl_str, K2_strの上限値とし、この上限値以下で、実前輪舵 δ f_ actに応じて Kl_str, K2_strが設定される。
[0270] なお、本実施形態では、後輪 W3, W4は非操舵輪であるので、前記した通り K3_str
=K4_str= lである。ただし、後輪 W3, W4が操舵輪である場合には、実前輪舵角 δ f_actに応じて上記の如く Kl_str, K2_strを設定した場合と同様に、実後輪舵角 δ r_ac tに応じて K3_str, K4_strを設定することが望まし!/、。
[0271] 次いで、ァクチユエータ動作 FB目標値分配処理部 222は、処理部 222 n (n= 1, 2, 3, 4)において、第 n輪分配ゲイン Knを実前輪横すベり角 iS Lact (今回値)もしく は実後輪横すベり角 i8 r_act (今回値)に応じて決定する。この Knは、これを第 η輪駆 動 ·制動力フル要求値 Fxfolll dmcLnに乗じることで、 Fxfolll dmd_nを補正する補正係 数( 1よりも小さ!、正の値)である。
[0272] この場合、第 n輪分配ゲイン Knは、各処理部 222c_nにお ヽて次のように決定される
[0273] 実車 1の左側で前後に配置される第 1輪 W1および第 3輪 W3に関する第 1輪分配 ゲイン K1と第 3輪分配ゲイン K3とは、それぞれ図 14 (a) , (b)の実線のグラフで示す 如く jS !Lact, j8 r_actに応じて実質的に連続的に変化するように決定される。また、実 車 1の右側で前後に配置される第 2輪 W2および第 4輪 W4に関する第 2輪分配ゲイ ン K2と第 4輪分配ゲイン K4とは、それぞれ図 14 (a) , (b)の破線のグラフで示す如く j8 f_act, j8 r_actに応じて実質的に連続的に変化するように決定される。なお、 Knは、 いずれも 1よりも小さい正の値である。また、「実質的に連続」というのは、アナログ量 を離散系で表したときに必然的に生じる値の飛び (量子化)は、アナログ量の連続性 を損なうものではな ヽと 、うことを意味する。
[0274] この場合、さらに詳細には、第 1輪分配ゲイン K1および第 3輪分配ゲイン K3に関し 、K1は、図 14 (a)の実線のグラフで示す如ぐ j8 f_actが負の値力 正の値に増加す るに伴い、所定の下限値力 所定の上限値まで単調に増加していくように β Lactの 値に応じて決定される。従って、 K1は、 j8 f_actが正の値であるときに、負の値である ときよりも値が大きくなるように決定される。
[0275] 一方、 K3は、図 14 (b)の実線のグラフで示す如ぐ j8 r_actが負の値力も正の値に 増加するに伴い、所定の上限値力 所定の下限値まで単調に減少していくように β r
_actの値に応じて決定される。従って、 K3は、 j8 r_actが負の値であるときに、正の値 であるときよりも値が大きくなるように決定される。
[0276] なお、図 14 (a) , (b)の実線のグラフは、 j8 f_act, j8 r_actが互いに一致もしくはほぼ 一致するとき、それらの j8 Lact, j8 r_actに対応する Kl, K3の値の和がほぼ 1になる ように設定されている。
[0277] また、第 2輪分配ゲイン K2および第 4輪分配ゲイン K4に関し、 K2は、図 14 (a)の 破線のグラフで示す如ぐ j8 f_actが負の値力 正の値に増加するに伴い、所定の上 限値カゝら所定の下限値まで単調に減少して ヽくように β f_actの値に応じて決定される 。この場合、 K2と β f_actとの関係を表す破線のグラフ力 K1と |8 f_actとの関係を表 す実線のグラフを、縦軸 ( β f_act = 0の線)を中心にして左右を反転させてなるグラフ と同じである。従って、 j8 f_actの各値における K2の値は、 j8 f_actの正負を反転させた 値における K1の値に等しくなるように決定される。
[0278] また、 K4は、図 14 (b)の破線のグラフで示す如ぐ β r_actが負の値から正の値に 増加するに伴 、、所定の下限値力 所定の上限値まで単調に増加して 、くように |8 r _actの値に応じて決定される。この場合、 K4と |8 r_actとの関係を表す破線のグラフが 、 K3と β r_actとの関係を表す実線のグラフを、縦軸 ( β r_act = 0の線)を中心にして 左右を反転させてなるグラフと同じである。従って、 j8 r_actの各値における K4の値は 、 β r_actの正負を反転させた値における Κ3の値に等しくなるように決定される。
[0279] 以上のように第 n輪分配ゲイン Kn (n= l, 2, 3, 4)を決定することで、実車 1の定常 走行時など、 β Lactと β r_actとがほぼ同じ値となる状況では、前輪 W1に対応する第 1輪分配ゲイン K1と該前輪 W1の真後ろの後輪 W3に対応する第 3輪分配ゲイン K2 との比率が、 K1と K3との和をほぼ一定に保ちつつ、 13 f_actおよび 13 r_actの変化に 対して単調に変化することとなる。同様に、前輪 W2に対応する第 2輪分配ゲイン K2 と該前輪 W2の真後ろの後輪 W4に対応する第 4輪分配ゲイン K4との比率力 K2と Κ4との和をほぼ一定に保ちつつ、 β f_actおよび β r_actの変化に対して単調に変化 することとなる。
[0280] 第 n輪分配ゲイン Kn (η=1, 2, 3, 4)を β fact, β r_actに応じて上記の如く決定す る理由については後述する。
[0281] 補足すると、本実施形態では、 i8f_act, r_actをそれぞれ本発明の前輪側ゲイン 調整パラメータ、後輪側ゲイン調整パラメータとして用い、それに応じて上記の如く第 n輪分配ゲイン Knを変化させるようにしている。そして、これによつて、後述する如ぐ 前記前輪側ゲイン GA1, GA2を前輪側ゲイン調整パラメータとしての iSLactに応じ て変化させ、また、後輪側ゲイン GA3, GA4を後輪側ゲイン調整パラメータとしての j8r_actに応じて変化させるようにしている。この場合、 j8f_actは、前輪 Wl, W2の横 方向運動に関する状態量としての意味を持ち、 j8r_aCtは、後輪 W3, W4の横方向運 動に関する状態量としての意味を持つ。なお、前輪 Wl, W2に関する第 n輪分配ゲ イン Kn(n=l, 2)をそれぞれ決定するために、各前輪 Wl, W2毎に検出または推定 された j8 f_actを使用してもよ!/、が、 V、ずれか一方の前輪 W1または W2につ!/、て検出 または推定された j8f_act、あるいは、各前輪 Wl, W2毎に検出または推定された |8f_ actの平均値 _を実前輪横すベり角の代表値とし、この代表値に応じて分配ゲイン K1 , K2の両者を決定するようにしてもよい。このことは、後輪 W3, W4に関する分配ゲ イン K3, K4を決定する場合についても同様である。
[0282] 上記の如く Kn_str、 Kn(n=l, 2, 3, 4)を決定した後、ァクチユエータ動作 FB目標 値分配処理部 222は、各第 η輪駆動'制動力フル要求値 Fxfolll dmd_n(n=l, 2, 3 , 4)に、処理部 222b_n、 222c_n〖こてそれぞれ、 Kn_str、 Knを乗じることで、第 n輪分 配駆動 ·制動力基本値 Fxl jiを決定する。すなわち、第 n輪分配駆動,制動力基本 値 Fxl — n(n=l, 2, 3, 4)を次式 27a〜27dにより決定する。
[0283]
Fxl _l=Fxiulli dmd_l ·Κ1— str'Kl ……式 27a
Fxl _2 = Fxlulli dmd_2 - K2_str - K2 ……式 27b
Fxl _3 = Fxlulli dmd_3 - K3_str - K3 ……式 27c Fxl _4 = Fxlulli dmd_4 · K4_str · K4 ……式 27d なお、このように Fxlb_n(n=l, 2, 3, 4)を決定したとき、 MlbdmcLa >0であるときに は、左側の車輪 Wl, W3に係わる Fxl _l, Fxl _3が制動方向の駆動 '制動力(負の 駆動 '制動力)となり、右側の車輪 W2, W4に係わる Fxl _2, Fxl _4が駆動方向の駆 動'制動力(正の駆動 ·制動力)となる。また、 MlbdmcLaく 0であるときには、左側の車 輪 Wl, W3に係わる Fxl _l, Fxl _3が駆動方向の駆動 '制動力(正の駆動 '制動力) となり、右側の車輪 W2, W4に係わる Fxl _2, Fxl _4が制動方向の駆動 '制動力(負 の駆動 ·制動力)となる。さらに、第 n輪分配駆動'制動力基本値 Fxl jiはいずれも、 MlbdmcLaに比例するものとなる。
[0284] 次 、で、ァクチユエータ動作 FB目標値分配処理部 222は、上記の如く決定した第 n輪分配駆動'制動力基本値 Fxl _n(n=l, 2, 3, 4)を、それぞれ第 n輪 Wnに対応 するリミッタ 222d_nに通すことにより、駆動 ·制動装置 3Aのブレーキ装置の動作によ る第 n輪 Wnの駆動 ·制動力のフィードバック目標値である FB目標第 n輪ブレーキ駆 動 ·制動力 Fxl dmcLnをそれぞれ決定する。
[0285] ここで、図 12中の各リミッタ 222d_n(n=l, 2, 3, 4)のグラフは、 Fxl _nと FxlbdmcLn との関係を表すグラフであり、該グラフに関する横軸方向の値が Fxl jiの値、縦軸方 向の値が FxlbdmcLnの値である。
[0286] このリミッタ 222d_nは、それに入力される Fxl _nの値が 0または負の値であるときに のみ、 Fxl _nをそのまま FxlbdmcLnとして出力し、 Fxlb_nが正の値であるときには、そ の Fxlb_nの値によらずに出力する FxlbdmcLnの値を 0とする。換言すれば、 0を上限 値として Fxl _nに制限を掛けることにより FxlbdmcLnを決定する。
[0287] 上記のように FB目標第 n輪ブレーキ駆動 ·制動力 Fxl dmdjiをそれぞれ決定するこ とにより、前記したように、 Mlbdmd_a>0である場合には、実車 1の左側の車輪 W1, W3の駆動.制動力を制動方向に増加させ(Fxlbdmd_l<0、 Fxlbdmd_3く 0とする)、 それによつて、実車 1の重心点 Gのまわりに MlbdmcLaを発生させるように FB目標第 n 輪ブレーキ駆動'制動力 FxlbdmcLn (n=l, 2, 3, 4)が決定される。なお、この場合 には、右側の車輪 W2, W4に関しては、本実施形態では Fxl dmd_2=Fxi dmd_4= 0とされる。
[0288] そして、この場合における特定組としての左側の車輪 Wl, W3に関する FxlbdmcLl 、 Fxl dmd_3はそれぞれ、前記式 27a, 27cにより決定される Fxl _l、 Fxl _3に等しい 。従って、 Mlbdmd_a>0である場合における左側の車輪 Wl, W3に関する Fxfcdmd_ 1、 Fxl dmd_3はそれぞれ MlbdmcLaに比例する。ひいては、 MlbdmcLaの変化と Fxl d md_l、 Fxl dmd_3のそれぞれの変化との関係が比例関係になる。さらに、この場合、 前記式 24aと式 27aとから明らかなように、前輪 W1に関する前輪側ゲイン GA1は、 G Al = - (2/df) ' str'Klであるから、 K1に比例する。そして、この K1は、前記し たように前輪側ゲイン調整パラメータとしての実前輪横すベり角 β f_actに応じて変化 するように決定されるので、前輪側ゲイン GA1も、 j8 f_actに応じて変化することとなる 。従って、 FxlbdmcLlは、 MlbdmcLaの変化と FxlbdmcLlの変化との関係が比例関係に なり、且つ、その比例関係における前輪側ゲイン GA1が前輪側ゲイン調整パラメータ としての j8 f_actに応じて変化するように決定されていることとなる。同様に、前記式 24 cと式 27cとから明らかなように、後輪 W3に関する後輪側ゲイン GA3は、 GA3=— ( 2/dr) ·Κ3_δΐι··Κ3であるから、 Κ3に比例する。そして、この Κ3は、前記したように 後輪側ゲイン調整パラメータとしての実後輪横すベり角 β r_actに応じて変化するよう に決定されるので、後輪側ゲイン GA3も、 j8 r_actに応じて変化することとなる。従って 、 Fxl dmd_3は、 MlbdmcLaの変化と Fxl dmd_3の変化との関係が比例関係になり、且 つ、その比例関係における後輪側ゲイン GA3が後輪側ゲイン調整パラメータとして の β r_actに応じて変化するように決定されて 、ることとなる。
[0289] また、 MlbdmcLaく 0である場合には、実車 1の右側の車輪 W2, W4の駆動'制動力 を制動方向に増加させ (Fxl dmd_2< 0、 Fxl dmd_4< 0とする)、それによつて、実車 1の重心点 Gのまわりに MlbdmcLaを発生させるように FB目標第 n輪ブレーキ駆動 ·制 動力 Fxl dmd_n (n= l, 2, 3, 4)が決定される。なお、この場合には、左側の車輪 W 1, W3に関しては、本実施形態では、 FxlbdmcLl =Fxl dmd_3 = 0とされる。
[0290] そして、この場合における特定組としての右側の車輪 W2, W4に関する Fxl dmd_2 、 Fxl dmd_4はそれぞれ、前記式 27b, 27dにより決定される Fxlb_2、 Fxlb_4〖こ等しい 。従って、 MlbdmcLaく 0である場合における右側の車輪 W2, W4に関する Fxfcdmd_ 2、 Fxl dmd_4はそれぞれ MlbdmcLaに比例する。ひいては、 MlbdmcLaの変化と Fxlbd md_2、 Fxl dmd_4のそれぞれの変化との関係が比例関係になる。さらに、この場合、 前記式 24bと式 27bとから明らかなように、前輪 W2に関する前輪側ゲイン GA2は、 G A2= (2/df) ·Κ2_δΐι··Κ2であるから、 Κ2に比例する。そして、この Κ2は、前記した ように前輪側ゲイン調整パラメータとしての実前輪横すベり角 β f_actに応じて変化す るように決定されるので、前輪側ゲイン GA2も、 j8 f_actに応じて変化することとなる。 従って、 Fxl dmd_2は、 MlbdmcLaの変化と Fxlbdmd_2の変化との関係が比例関係に なり、且つ、その比例関係における前輪側ゲイン GA2が前輪側ゲイン調整パラメータ としての j8 f_actに応じて変化するように決定されていることとなる。同様に、前記式 24 dと式 27dとから明らかなように、後輪 W4に関する後輪側ゲイン GA4は、 GA4= (2 Zdr) *K4_str'K4であるから、 K4に比例する。そして、この Κ4は、前記したように後 輪側ゲイン調整パラメータとしての実後輪横すベり角 β r_actに応じて変化するよう〖こ 決定されるので、後輪側ゲイン GA4も、 j8 r_actに応じて変化することとなる。従って、 Fxlbdmd_4は、 MlbdmcLaの変化と Fxlbdmd_4の変化との関係が比例関係になり、且つ 、その比例関係における後輪側ゲイン GA4が後輪側ゲイン調整パラメータとしての β r_actに応じて変化するように決定されて 、ることとなる。
[0291] また、 、ずれの場合でも、前記第 n輪分配ゲイン Kn (η= 1, 2, 3, 4)、 f_actまた は j8 r_actに応じて実質的に連続的に変化するように決定されるので、前輪側ゲイン GA1, GA2は、 j8 f_act (前輪側ゲイン調整パラメータ)の変化に対して実質的に連続 的に変化し、後輪側ゲイン GA3, GA4は、 j8 r_act (後輪側ゲイン調整パラメータ)の 変化に対して実質的に連続的に変化する。ひいては、 Fxl dmdjiが不連続的に変化 するような事態が防止される。
[0292] また、 Ml dmd_a>0となる場合での実車 1の定常走行時など、 13 f_actと 13 r_actとが ほぼ同じ値となる状況では、左側の前輪 W1および後輪 W3に対応する第 1輪分配ゲ イン K1と第 3輪分配ゲイン K2との比率、ひいては、前輪側ゲイン GA1と後輪側ゲイ ン GA3との比率である前後車輪比率が、 13 f_actおよび 13 r_actの値の変化に対して 単調に変化することとなる。同様に、 MlbdmcLaく 0となる場合での実車 1の定常走行 時など、 β Lactと 13 r_actとがほぼ同じ値となる状況では、右側の前輪 W2および後輪 W4に対応する第 2輪分配ゲイン K2と第 4輪分配ゲイン K4との比率、ひいては、前 輪側ゲイン GA2と後輪側ゲイン GA4との比率である前後車輪比率力 β f_actおよび ι8 r_actの値の変化に対して単調に変化することとなる。
[0293] ここで、第 n輪分配ゲイン Kn (η= 1, 2, 3, 4)を j8 f_act, β r_actに応じて前記したよ うな傾向で決定した理由を以下に説明する。
[0294] まず、 Ml dmd_a>0である場合には、前記したように実車 1の左側の車輪である第 1 輪 W1および第 3輪 W3の駆動 ·制動力を制動方向に増加させるように FB目標第 n輪 ブレーキ駆動 ·制動力 Fxl dmcLnが決定されることとなる。
[0295] そして、この場合に、 β f_act< 0, β r_act< 0となる状況を想定する。このような状況 で、仮に K1の値を大きめに設定する(ひいては Fxl dmcLlが制動方向に大きくなるよ うにする)と共に、 K3の値を小さめに設定する(ひ 、ては Fxlbdmd_3が制動方向に大 きくなるのを抑制する)と、第 1輪 W1の横力(これは Ml dmcLaと同方向のモーメントを 実車 1の重心点まわりに発生させるように機能する)が小さくなり、また、第 3輪 W3の 横力(これは Ml dmcLaと逆方向のモーメントを実車 1の重心点まわりに発生させるよう に機能する)が大きめになる。このため、実車 1の重心点 Gのまわりに、 MlbdmcLaによ り要求される正方向のモーメント (ョー軸まわりのモーメント)を十分に発生することが 困難となる恐れがある。そこで、 j8 f_actく 0, j8 r_actく 0となる状況では、第 1輪分配 ゲイン K1を小さめの値に決定すると共に、第 3輪分配ゲイン K3を大きめの値に決定 するようにした。
[0296] さらに、 MlbdmcLa >0である場合に、 j8 f_act >0, j8 r_act>0となる状況を想定する 。このような状況で、仮に K1の値を小さめに設定する(ひいては FxlbdmcLlが制動方 向に大きくなるのを抑制する)と共に、 K3の値を大きめに設定する(ひ ヽては Fxl dm d_3が制動方向に大きくなるようにする)と、第 1輪 W1の横力(これは Mfcdmd_aと逆方 向のモーメントを実車 1の重心点まわりに発生させるように機能する)が大きめになり、 また、第 3輪 W3の横力(これは MlbdmcLaと同方向のモーメントを実車 1の重心点まわ りに発生させるように機能する)が小さくなる。このため、実車 1の重心点 Gのまわりに 、 MlbdmcLaにより要求される正方向のモーメント(ョー軸まわりのモーメント)を十分に 発生することが困難となる恐れがある。そこで、 j8 f_act>0, |8 r_act >0となる状況で は、第 1輪分配ゲイン Klを大きめの値に決定すると共に、第 3輪分配ゲイン K3を小 さめの値に決定するようにした。
[0297] また、 Ml dmd_a< 0である場合には、前記したように実車 1の右側の車輪である第 2 輪 W2および第 4輪 W4の駆動 ·制動力を制動方向に増加させるように FB目標第 n輪 ブレーキ駆動 ·制動力 Fxl dmcLnが決定されることとなる。
[0298] そして、この場合に、 β f_act< 0, β r_act< 0となる状況を想定する。このような状況 で、仮に K2の値を小さめに設定する(ひ 、ては Fxl dmd_2が制動方向に大きくなるの を抑制する)と共に、 K4の値を大きめに設定する(ひいては Fxl dmd_4が制動方向に 大きくなるようにする)と、第 2輪 W2の横力(これは Ml dmcLaと逆向きのモーメントを実 車 1の重心点まわりに発生させるように機能する)が大きめになり、また、第 4輪 W4の 横力(これは MlbdmcLaと同じ向きのモーメントを実車 1の重心点まわりに発生させるよ うに機能する)が小さくなる。このため、実車 1の重心点 Gのまわりに、 MlbdmcLaにより 要求される負方向のモーメント(ョー軸まわりのモーメント)を十分に発生することが困 難となる恐れがある。そこで、 iS Lactく 0, j8 r_actく 0となる状況では、第 2輪分配ゲイ ン K2を大きめの値に決定すると共に、第 4輪分配ゲイン K4を小さめの値に決定する よつにした。
[0299] さらに、 Ml dmd_a< 0である場合に、 j8 f_act>0, j8 r_act>0となる状況を想定する 。このような状況で、仮に K2の値を大きめに設定する(ひいては Fxl dmd_2が制動方 向に大きくなるようにする)と共に、 K4の値を小さめに設定する(ひいては Fxlbdmd_4 が制動方向に大きくなるのを抑制する)と、第 2輪 W2の横力(これは Mi dmd_aと同じ 向きのモーメントを実車 1の重心点まわりに発生させるように機能する)が小さくなり、 また、第 4輪 W4の横力(これは MlbdmcLaと逆向きのモーメントを実車 1の重心点まわ りに発生させるように機能する)が大きめになる。このため、実車 1の重心点 Gのまわり に、 MlbdmcLaにより要求される負方向のモーメント(ョー軸まわりのモーメント)を十分 に発生することが困難となる恐れがある。そこで、 j8 f_act>0, j8 r_act>0となる状況 では、第 2輪分配ゲイン K2を小さめの値に決定すると共に、第 4輪分配ゲイン K4を 大きめの値に決定するようにした。
[0300] 以上のように、第 n輪分配ゲイン Kn (n= l, 2, 3, 4)を前記したように決定すること で、 MlbdmcLaのョ一方向モーメントを実車 1の重心点 Gのまわりに発生させる上で有 効となる横力が小さくなり過ぎないようにしつつ、 MlbdmcLaのョ一方向モーメントを実 車 1の重心点 Gのまわりに発生させる上で妨げとなる横力が過大にならないようにす ることがでさる。
[0301] また、前記のように第 n分配ゲイン Kn (n= 1, 2, 3, 4)を決定することで、実車 1の 定常円旋回時や定常直進時のように、 β f_actと /3 r_actとが一致またはほぼ一致する 状況では、 K1の値と K3の値との和、および K2の値と K4の値との和は、それぞれほ ぼ 1になる。このことは、 FB目標第 n輪ブレーキ駆動'制動力 Fxl dmcLnに従って忠 実に駆動'制動装置 3Aのブレーキ装置が動作すれば、 MlbdmcLa力 実車 1の重心 点 Gのまわりに実際に発生するモーメント(ョ一方向のモーメント)までの伝達関数の ゲインがほぼ 1になる(実際に発生するョ一方向のモーメントが MlbdmcLaにほぼ等しく なる)ことを意味する。
[0302] 補足すると、実車 1の過渡的な運動状況などにおいて、 β f_actと β r_actとの差が大 きくなることがある。そして、この場合には、 K1の値と K3の値との和、および K2の値 と K4の値との和は、それぞれ 1から大きくずれることとなる。これを解消するために、 K 1, K3の値を前記した如く決定した後、それらの値の比を一定に保ちながら Kl, K3 の値を修正して、その修正後の Kl, K3の値の和がほぼ 1になるか、あるいは、修正 前の Kl, K3の値の和よりも 1に近づくようにすることが好ましい。同様に、 K2, K4の 値を前記した如く決定した後、それらの値の比を一定に維持しつつ、 K2, K4の値を 修正して、その修正後の K2, K4の値の和がほぼ 1になる力 あるいは、修正前の K2 , K4の値の和よりも 1に近づくようにすることが好ましい。具体的には、例えば第 n分 配ゲイン Kn (n= l, 2, 3, 4)を前記図 14 (a) , (b)のグラフに従って決定した後、 K1 ' =K1Z (Kl +K3)、 K3, =K3/ (Kl +K3) , K2' =Κ2/ (Κ2+Κ4)、 Κ4, =Κ 4/ (Κ2+Κ4)によって、 Κ1,, Κ2' , Κ3' , Κ4,を求める。そして、 Κ , Κ2' , Κ3, , Κ4,をそれぞれ改めて、 Κ1, Κ2, Κ3, Κ4の値として決定するようにすればよい。
[0303] なお、この例では、 K1と Κ3との和、並びに、 Κ2と Κ4との和が常に、 1に維持される こととなるが、必ずしも、 1に一致させる必要はなぐそれらの和力 1の近傍の範囲内 の値になるように、 Κ1〜Κ4の値を修正するようにしてもよい。あるいは、 K1と Κ3との 和、並びに、 K2と K4との和がより 1に近づくように K1〜K4を修正するようにしてもよ い。
[0304] 上記の例のように、 K1と Κ3との和、並びに、 Κ2と Κ4との和が 1になるように、ある いは、 1に近づくように Κ1〜Κ4を決定した場合には (ただし、 K1と Κ3との比率、並 びに、 Κ2と Κ4との比率は、前記図 14 (a) , (b)のグラフに従って定まる比率にする) 、 Kl, K2は、本発明における前輪側ゲイン操作用成分に相当するものとなり、 K2, K4は、本発明における後輪側ゲイン操作用成分に相当するものとなる。
[0305] また、本実施形態のァクチユエータ動作 FB目標値分配処理部 222は、前記したよ うに FB目標第 n輪ブレーキ駆動 ·制動力 Fxl dmcLnを決定することに加えて、前記フ イードバックョーモーメント要求値 Mfbdmdを処理部 222eに入力し、該処理部 222e により、ステアリング装置 3Bの動作による前輪 Wl, W2の横力のフィードバック目標 値であるアクティブ操舵用 FB目標横力 Fyl dmdj^決定する。ここで、図中の処理部 222eのグラフは、 Ml dmdと FylbdmcLfとの関係を表すグラフであり、該グラフに関す る横軸方向の値が Ml dmdの値、縦軸方向の値が FylbdmcLfの値である。このグラフ に見られるように、処理部 222eでは、基本的には、 Mlbdmdの増加に伴い、 Fylbdmd. 1 ^単調に増加していくように Fylbdmdj ^決定される。この場合、 FylbdmcLfは、処理 部 222eに入力される Mlbdmdの値から、例えばマップを用いて決定される。
[0306] なお、 FylbdmcLfは、 Mlbdmdに所定のゲインを乗じることにより決定するようにしても よい。また、 FylbdmcLfは、所定の上限値(>0)と下限値(< 0)との間の範囲内で Mlb dmdに応じて決定するようにしてもょ 、。
[0307] 補足すると、処理部 222eの処理は、ステアリング装置 3Bがアクティブステアリング 装置である力機械式ステアリング装置であるかによらずに省略してもよ!/、。処理部 22 2eの処理によって、アクティブ操舵用 FB目標横力 Fyl dmdj^決定し、これに応じて ステアリング装置 3Bの動作を操作する場合には、 FB目標第 n輪ブレーキ駆動'制動 力 FxlbdmcLn (n= l, 2, 3, 4)によって実車 1の重心点 Gのまわりに発生させようとす るョ一方向のモーメントと、アクティブ操舵用 FB目標横カ FylbdmcLfによって実車 1の 重心点 Gのまわりに発生するョ一方向のモーメントとの和が前記フィードバックョーモ 一メント基本要求値 Mlbdmdにほぼ等しくなるように、 FxlbdmcLn (n= l, 2, 3, 4)およ び FylbdmcLf^決定することがより好ましい。例えば、 Mlbdmdと Mlbdmd_aとの差に応 じてアクティブ操舵用 FB目標横カ Fyl dmdj^決定するようにしてもょ ヽ。この場合に は、 Ml dmd_a=0であるときに、 Fyl dmd_fによって、実車 1の重心点 Gのまわりに Ml dmdにほぼ等し!/、ョ一方向のモーメントを発生させるように Fyl dmdj^決定すること が望ましい。
[0308] 以上が本実施形態におけるァクチユエータ動作 FB目標値決定部 20bの処理の詳 細である。この処理によって、前記した如ぐ Mlbdmdを 0に近づけるように(ひいては 状態量偏差 Ί err, β errを 0に近づけるように)、 FB目標第 n輪ブレーキ駆動 ·制動力 Fxlbdmd_n (n= l, 2, 3, 4)が、あるいは、 Fxl dmd_n (n= 1, 2, 3, 4)とアクティブ操 舵用 FB目標横カ FylbdmcLfとがァクチユエータ動作 FB目標値として決定される。
[0309] 補足すると、前記 FB目標第 n輪ブレーキ駆動 ·制動力 Fxl dmd_n (n= l, 2, 3, 4) 力 本発明における駆動 *制動力操作用制御入力に相当する。そして、ァクチユエ一 タ動作 FB目標値分配処理部 222の処理により、前記 FB目標第 n輪ブレーキ駆動 · 制動力 Fxlbdmd_n (n= l, 2, 3, 4)を決定する処理力 本発明における駆動 '制動力 操作用制御入力決定手段に相当する。
[0310] なお、前記リミッタ 222d_n (n= l, 2, 3, 4)は、それに入力される Fxlb_nを 0よりも若 干大きい所定の正の上限値以下に制限してなる値を Fxl dmcLnとして出力するように してもよい。例えば、 Fxl _nが該上限値以下の値であるときには、 Fxlb_nをそのまま Fx I dmcLnとして出力し、 Fxlb_nが上限値よりも大きい正の値であるときには、該上限値 を FxlbdmcLnとして出力する。このようにした場合には、正の値の FxlbdmcLnは、ブレ ーキ装置による第 n輪 Wnの制動方向の駆動 '制動力の大きさを減少させるように機 能するフィードバック制御入力となる。
[0311] また、各車輪 Wn (n= 1, 2, 3, 4)に対して、処理部 222a_nからリミッタ 222d_nまで の処理(Ml dmd_aと、 δ f_actもしくは δ r_actと、 j8 f_actもしくは j8 r_actとを基に Fxl dm d_nを決定する処理)、あるいは、処理部 222b_nからリミッタ 222d_nまでの処理 (Fxfoll IbdmcLnと、 δ f_actもしくは δ r_actと、 j8 f_actもしくは j8 r_actとを基に FxlbdmcLnを決定 する処理)、あるいは、処理部 222c_nからリミッタ 222d_nまでの処理(処理部 222b_n の出力と、 j8 f_actもしくは j8 r_actとを基に FxlbdmcLnを決定する処理)、あるいは、処 理部 222a_nからリミッタ 222d_nまでの処理のうちの 2以上の部分を合わせた処理(例 えば処理部 222b_n力 処理部 222c_nまでの処理)を、それらの処理に必要な入力 値力もマップや関数式を使用して出力を決定するように変更してもよ!/、。
[0312] 例えば、処理部 222c_nからリミッタ 222d_nまでの処理をマップを使用して行なう場 合には、第 1輪用のマップを、例えば図 15 (a)〜(e)に示す如く設定しておき、第 3輪 用のマップを、例えば図 16 (a)〜(e)に示す如く設定しておけばよい。この場合、図 1 5 (a)〜(e)のそれぞれのグラフは、 /3 f_actの代表的な複数種類の値のそれぞれに対 応して、処理部 222b_lの出力( = Fxfolllbdmd_l 'Kl_str)と Fxl dmd_lとの関係を、そ れぞれの値をグラフの横軸方向の値、縦軸方向の値として表している。また、図 16 (a )〜(e)のそれぞれのグラフは、 /3 r_actの代表的な複数種類の値のそれぞれに対応 して、処理部 222b_3の出力( = Fxfolllbdmd_3 'K3_str)と Fxl dmd_3との関係を、それ ぞれの値をグラフの横軸方向の値、縦軸方向の値として表している。また、図 15にお
V、て、 β f_actの値に関し、「 β f—」は、絶対値が比較的大き 、負の値を意味し、「 β f- 」は、絶対値が比較的小さい負の値を意味し、「j8 f+」は、絶対値が比較的小さい正 の値を意味し、「j8 f++」は、絶対値が比較的大きい正の値を意味する。同様に、図 16 において、 j8 r_actの値に関し、「j8 r—」は、絶対値が比較的大きい負の値を意味し、
「 β r -」は、絶対値が比較的小さ!、負の値を意味し、「 β r+jは、絶対値が比較的小さ
V、正の値を意味し、「 /3 r++jは、絶対値が比較的大き 、正の値を意味する。
[0313] なお、第 2輪用のマップは、図示を省略する力 処理部 222b_2の出力( = Fxfolllbd md_2 -K2_str)と Fxl dmd_2との関係が、 13 f_actの各値にお!、て、その値の符号を反転 させた値に対応する第 1輪用のマップと同じになる(例えば β f_act= β f-であるときの 処理部 222b_2の出力( = Fxfolllbdmd_2 'K2_str)と Fxl dmd_2との関係が、 13 f_act = β f+であるときの処理部 222b_lの出力と FxlbdmcLlとの関係(図 15 (c)のグラフで示 す関係)と同じになる)ように設定しておけばよい。同様に、第 4輪用のマップは、図示 を省略するが、処理部 222b_4の出力( = Fxfollibdmd_4'K4_str)と Fxl dmd_4との関係 力 jS actの各値において、その値の符号を反転させた値に対応する第 3輪用のマ ップと同じになる(例えば 13 r_act= β r-であるときの処理部 222b_4の出力( = Fxfolll dmd_4'K4_str)と Fxl dmd_4との関係が、 j8 r_act= j8 r+であるときの処理部 222b_3の 出力と Fxl dmd_3との関係(図 16 (c)のグラフで示す関係)と同じになる)ように設定し ておけばよい。
[0314] なお、この例では、処理部 222b_n (n= l, 2, 3, 4)の出力が 0以下の値であるとき は、前記図 12に示したものと同様に Fxl dmcLnが決定される。一方、処理部 222b_n ( n= l, 2, 3, 4)の出力が正の値であるときは、前記の如くリミッタ 222d_nにおける上 限値を正の値に設定した場合と同様に、 FxlbdmcLnが比較的小さ 、値の範囲内で正 の値になる。
[0315] 補足すると、第 3輪 W3と第 4論 W4とに関する前記処理部 222b_3, 222b_4では、い ずれも、その入力値と出力値が等しくなるので、第 3輪 W3と第 4論 W4とに関して、処 § 223c— 3力らジミッタ 222d— 3までの; ¾i 、お Jび § 222c— 4力らジミッタ 222d— 4 までの処理を上記の如くマップを使用して行なうということは、処理部 222b_3からリミ ッタ 222d_3までの処理と、処理部 222b_4からリミッタ 222d_4までの処理をマップを使 用して行なうことと同じである。
[0316] また、前輪 Wl, W2に関する第 n輪分配ゲイン Kn (n= l, 2)を決定する(ひいては 、前輪側ゲイン GA1, GA2を操作する)ための前輪側ゲイン調整パラメータとして、 j8 f— act以外にも次のようなものを使用してもよい。
[0317] 例えば、 j8 f_actの代わりに、実車 1の前輪 Wl, W2の横すベり速度(前輪 Wl, W2 の進行速度ベクトルのうちの、前輪 Wl, W2の回転軸方向成分)の検出値もしくは推 定値や、前輪 Wl, W2の横加速度 (前輪 Wl, W2の加速度ベクトルの横方向成分) の検出値もしくは推定値を前輪側ゲイン調整パラメータとして使用してもよい。なお、 前輪 Wl, W2の横すベり速度あるいは横加速度は、 |8 f_actと同様に、該前輪 W1, W2の横方向運動に関する状態量の例である。また、これらの横すベり速度や横カロ 速度は、前輪 Wl, W2毎の検出値もしくは推定値でもよいが、これらの平均値やい ずれか一方の前輪 Wl, W2につ!/、ての検出値もしくは推定値であってもよ!/、。
[0318] あるいは、実車 1の前部の所定位置 (例えば、前輪 Wl, W2の車軸上の中央位置) の実横すベり角の検出値もしくは推定値、または、該所定位置の横すベり速度 (該所 定位置の進行速度ベクトルの横方向成分)の検出値もしくは推定値、または、該所定 位置の横加速度 (該所定位置の加速度ベクトルの横方向成分)の検出値もしくは推 定値を前輪側ゲイン調整パラメータとして使用してもよい。なお、該所定位置の横す ベり角、横すベり速度、横加速度は、該所定位置の横方向運動に関する状態量の例 である。
[0319] あるいは、前輪 Wl, W2の横力の検出値もしくは推定値を前輪側ゲイン調整パラメ ータとして使用してもよい。なお、該横カは、前輪 Wl, W2毎の検出値もしくは推定 値でもよいが、これらの平均値やいずれか一方の前輪 Wl, W2についての検出値も しくは推定値であってもよ 、。
[0320] 上記した 、ずれの前輪側ゲイン調整パラメータを使用する場合にあっても、該前輪 側ゲイン調整パラメータと第 n輪分配ゲイン Kn (η= 1, 2)との関係は、 β f_actと Kl, K2との関係と同様に設定すればよい。
[0321] あるいは、上記したような実車 1の前輪 Wl , W2の横方向運動に関する状態量(|8 f _actなど)と、実車 1の前部の所定位置の横方向運動に関する状態量と、前輪 W1, W2の横力とのうちのいずれ力と相関性を有するパラメータを前輪側ゲイン調整パラメ ータとして使用してもよい。例えば、当該横方向運動に関する状態量または横力の検 出値もしくは推定値にほぼ比例するような任意のパラメータを前輪側ゲイン調整パラ メータとして使用してもよい。また、当該横方向運動に関する状態量または横力の値 を規定するような 1つ以上のノ メータを前輪側ゲイン調整パラメータとして使用して もよい。例えば j8 f_actは、基本的には、実車両重心点横すベり角 j8 actと、実ョーレー ト γ actと、実走行速度 Vactと、実前輪舵角 δ f_actとに応じて規定され (前記式 02aを 参照)、 j8 f_actは、 jS act, γ act, Vact, δ f_actの関数として表現できる。従って、これ らの jS act, y act, Vact, δ f_actを前輪側ゲイン調整パラメータとして用い、この前輪 側ゲイン調整パラメータに応じてマップもしくは関数式により前輪 Wl, W2に関する 第 n輪分配ゲイン Kn (n= l, 2)を決定するようにしてもよい。より具体的には、例えば 、前記モデル車両に係わる前記式 02aの β f_d、 j8 d、 γ d、 Vd、 δ f_dをそれぞれ β f_a ct、 β act, γ act, Vact, δ f_actに置き換えた式を基に、前記した j8 f_actと第 1輪分配 ゲイン K1および第 2輪分配ゲイン K2との関係(前記図 14 (a)のグラフで示す関係) を、 13 act, γ act, Vact, δ f_actと、 Klおよび K2との関係に変換しておく。そして、そ の変換してなる関係に基づいて、 jS act, γ act, Vact, δ f_actに応じて Klおよび K2 を決定するようにすればょ 、。
[0322] 上記と同様に、後輪 W3, W4に関する第 n輪分配ゲイン Kn (n= 3, 4)を決定する( ひ ヽては後輪側ゲイン GA3, GA4を操作する)ための前輪側ゲイン調整パラメータと して、 j8 r_act以外にも次のようなものを使用してもよい。
[0323] 例えば、 j8 r_actの代わりに、実車 1の後輪 W3, W4の横すベり速度(後輪 W3, W4 の進行速度ベクトルのうちの、後輪 W3, W4の回転軸方向成分)の検出値もしくは推 定値や、後輪 W3, W4の横加速度 (後輪 W3, W4の加速度ベクトルの横方向成分) の検出値もしくは推定値を後輪側ゲイン調整パラメータとして使用してもよい。なお、 後輪 W3, W4の横すベり速度あるいは横加速度は、 |8 r_actと同様に、該後輪 W3, W4の横方向運動に関する状態量の例である。また、これらの横すベり角、横すベり 速度や横加速度は、後輪 W3, W4毎の検出値もしくは推定値でもよいが、これらの 平均値や!、ずれか一方の後輪 W3, W4〖こつ!/、ての検出値もしくは推定値であっても よい。
[0324] あるいは、実車 1の後部の所定位置(例えば、後輪 W3, W4の車軸上の中央位置) の横すベり角の検出値もしくは推定値、または、該所定位置の横すベり速度 (該所定 位置の進行速度ベクトルの横方向成分)の検出値もしくは推定値、または、該所定位 置の横加速度 (該所定位置の加速度ベクトルの横方向成分)の検出値もしくは推定 値を後輪側ゲイン調整パラメータとして使用してもよい。なお、該所定位置の横すベ り角、横すベり速度、横加速度は、該所定位置の横方向運動に関する状態量の例で ある。
[0325] あるいは、実車 1の後輪 3, W4の横力の検出値もしくは推定値を後輪側ゲイン調整 ノ メータとして使用してもよい。なお、該横カは、後輪 W3, W4毎の検出値もしくは 推定値でもよいが、これらの平均値やいずれか一方の後輪 W3, W4についての検出 値もしくは推定値であってもよ 、。
[0326] 上記したいずれの後輪側ゲイン調整パラメータを使用する場合にあっても、該後輪 側ゲイン調整パラメータと第 n輪分配ゲイン Kn (n= 3, 4)との関係は、 |8 r_actと Κ3, K4との関係と同様に設定すればよい。
[0327] あるいは、上記したような実車 1の後輪 W3, W4の横方向運動に関する状態量( _actなど)と、実車 1の後部の所定位置の横方向運動に関する状態量と、後輪 W3, W4の横力とのうちのいずれカゝと相関性を有するパラメータを後輪側ゲイン調整パラメ ータとして使用してもよい。例えば、当該横方向運動に関する状態量または横力の検 出値もしくは推定値にほぼ比例するような任意のパラメータを後輪側ゲイン調整パラ メータとして使用してもよい。また、当該横方向運動に関する状態量または横力の値 を規定するような 1つ以上のノ メータを後輪側ゲイン調整パラメータとして使用して もよい。例えば j8 r_actは、基本的には、実車両重心点横すベり角 j8 actと、実ョーレ ート γ actと、実走行速度 Vactとに応じて規定され (前記式 02bを参照)、 |8 r_actは、 β act, γ act, Vactの関数として表現できる。従って、これらの β act, γ act, Vactを 後輪側ゲイン調整パラメータとして用い、この後輪側ゲイン調整パラメータに応じてマ ップもしくは関数式により後輪 W3, W4に関する第 n輪分配ゲイン Kn (n= 3, 4)を決 定するようにしてもよい。より具体的には、例えば、前記モデル車両に係わる前記式 0 2bの j8 r_d、 j8 d、 γ d、 Vdをそれぞれ j8 r_act、 j8 act、 γ act、 Vactに置き換えた式を 基に、前記した β r_actと第 3輪分配ゲイン Κ3および第 4輪分配ゲイン Κ4との関係( 前記図 14 (b)のグラフで示す関係)を、 β act, γ act, Vactと、 K3および K4との関係 に変換しておく。そして、その変換してなる関係に基づいて、 jS act, γ act, Vactに応 じて K3および K4を決定するようにすればよ!、。
さらに、上記した如ぐ実車 1の前輪 Wl, W2の横方向運動に関する状態量と、実 車 1の前部の所定位置の横方向運動に関する状態量と、実車 1の前輪 Wl, W2の横 力と、これらの状態量および横力のいずれかと相関性を有するパラメータを前輪側ゲ イン調整パラメータとして使用する代わりに、これらに対応する、規範動特性モデル 1 6上のモデル車両における状態量や横力、パラメータを前輪側ゲイン調整パラメータ として使用してもょ 、。例えば、 β f_actの代わりにモデル車両の β f_dを前輪側ゲイン 調整パラメータとして使用して、第 1輪分配ゲイン K1および第 2輪分配ゲイン K2を決 定するようにしてもよい。同様に、実車 1の後輪 W3, W4の横方向運動に関する状態 量と、実車 1の後部の所定位置の横方向運動に関する状態量と、実車 1の後輪 W3, W4の横力と、これらの状態量および横力のいずれかと相関性を有するパラメータを 後輪側ゲイン調整パラメータとして使用する代わりに、これらに対応する、規範動特 性モデル 16上のモデル車両における状態量や横力、パラメータを後輪側ゲイン調 整パラメータとして使用してもよ 、。例えば、 13 r_actの代わりにモデル車両の 13 r_dを 後輪側ゲイン調整パラメータとして使用して、第 3輪分配ゲイン K3および第 4輪分配 ゲイン K4を決定するようにしてもょ 、。
[0329] あるいは、実車 1の前輪 Wl, W2もしくは前部の所定位置の横方向運動に関する 状態量と、モデル車両の前輪 Wl¾しくは前部の所定位置の横方向運動に関する状 態量 (実車 1側の状態量と同じ種類の状態量)との合成値、または、実車 1の前輪 W1 , W2の横力とモデル車両の前輪 Wfの横力との合成値を前輪側ゲイン調整パラメ一 タと使用してもよい。同様に、実車 1の後輪 W3, W4もしくは後部の所定位置の横方 向運動に関する状態量と、モデル車両の後輪 Wrもしくは後部の所定位置の横方向 運動に関する状態量 (実車 1側の状態量と同じ種類の状態量)との合成値、または、 実車 1の後輪 W3, W4の横力とモデル車両の後輪 Wrの横力との合成値を後輪側ゲ イン調整パラメータと使用してもよい。例えば、実車 1の j8 f_actとモデル車両の |8 f_dと の重み付き平均値に応じて第 1輪分配ゲイン K1および第 2輪分配ゲイン K2を決定 すると共に、実車 1の 13 r_actとモデル車両の 13 r_dとの重み付き平均値に応じて第 3 輪分配ゲイン K3および第 4輪分配ゲイン K4を決定するようにしてもょ ヽ。この場合、 該重み付き平均値に係わる重みに周波数特性 (例えば位相補償要素として機能す る周波数特性)を持たせるようにしてもょ ヽ。
[0330] あるいは、前輪 Wl, W2に関する第 n輪分配ゲイン Kn (n= l, 2)のそれぞれの第 1の仮値を、実車 1の前輪 Wl, W2もしくは前部の所定位置の横方向運動に関する 状態量、または実車 1の前輪 Wl, W2の横力に応じて決定すると共に、前輪 Wl, W 2に関する第 η輪分配ゲイン Κη (η= 1, 2)のそれぞれの第 2の仮値を、モデル車両 の前輪 W しくは前部の所定位置の横方向運動に関する状態量、またはモデル車 両の前輪 Wfの横力に応じて決定し、それらの第 1仮値および第 2仮値の加重平均値 もしくは重み付き平均値などの合成値を第 n輪分配ゲイン Kn(n= 1, 2)として決定 するようにしてもよい。例えば、第 1輪 W1に関する K1の第 1仮値を |8 f_actに応じて、 前記図 14 (a)に示したグラフに示した如く決定すると共に、 K1の第 2仮値を β f_dに 応じて第 1仮値と同様に決定する。この場合、 i8 f_dに対する第 2仮値の変化の傾向 は、 j8 f_actに対する第 1仮値の変化の傾向と同じでよい。そして、これらの第 1仮値と 第 2仮値との加重平均値を第 1輪分配ゲイン K1として決定する。第 2輪分配ゲイン K 2についても同様である。
[0331] 同様に、後輪 W3, W4に関する第 n輪分配ゲイン Kn (n= 3, 4)のそれぞれの第 1 の仮値を、実車 1の後輪 W3, W4もしくは後部の所定位置の横方向運動に関する状 態量、または実車 1の後輪 W3, W4の横力に応じて決定すると共に、後輪 W3, W4 に関する第 η輪分配ゲイン Κη (η= 3, 4)のそれぞれの第 2の仮値を、モデル車両の 後輪 Wrもしくは後部の所定位置の横方向運動に関する状態量、またはモデル車両 の後輪 Wrの横力に応じて決定し、それらの第 1仮値および第 2仮値の加重平均値も しくは重み付き平均値などの合成値を第 n輪分配ゲイン Kn (η= 3, 4)として決定す るようにしてもよい。例えば、第 3輪 W3に関する Κ3の第 1仮値を |8 r_actに応じて、前 記図 14 (b)に示したグラフに示した如く決定すると共に、 K3の第 2仮値を |8 r_dに応 じて第 1仮値と同様に決定する。この場合、 i8 r_dに対する第 2仮値の変化の傾向は、 iS rjctに対する第 1仮値の変化の傾向と同じでよい。そして、これらの第 1仮値と第 2仮値との加重平均値を第 3輪分配ゲイン K3として決定する。第 4輪分配ゲイン K4 についても同様である。
[0332] このようにした場合には、 Kl, K2のそれぞれの第 1仮値力 本発明における前輪 側ゲインの操作用の第 1の仮値に相当し、 Kl, K2のそれぞれの第 2仮値が、本発明 における前輪側ゲインの操作用の第 2の仮値に相当する。そして、 Kl, K2のそれぞ れの第 1仮値と第 2仮値との合成値が、本発明における前輪側ゲイン操作用合成値 に相当する。また、 K3, K4のそれぞれの第 1仮値が、本発明における後輪側ゲイン の操作用の第 1の仮値に相当し、 K3, K4のそれぞれの第 2仮値が、本発明におけ る後輪側ゲインの操作用の第 2の仮値に相当する。そして、 K3, K4のそれぞれの第 1仮値と第 2仮値との合成値が、本発明における後輪側ゲイン操作用合成値に相当 する。
[0333] さらに、第 n輪分配ゲイン Kn (n= l, 2, 3, 4)の値を、 β f_act、 β r_actなどの前輪 側ゲイン調整パラメータまたは後輪側ゲイン調整パラメータに応じて変化させるだけ でなぐ推定摩擦係数/ estmにも応じて変化させるように決定することがより望ましい 。例えば、本実施形態に関して前記したように 13 f_act、 β r_actに応じて第 η輪分配ゲ イン Κηを決定する場合において、 estmが小さくなるほど、 f_actが絶対値の大き い負の値であるときの第 1輪分配ゲイン K1をより小さくするように K1を決定することが 望ましい。また、 estmが小さくなるほど、 j8 r_actが絶対値の大きい正の値であるとき の第 3輪分配ゲイン K3をより小さくするように K3を決定することが望ま 、。同様に、 μ estmが小さくなるほど、 j8 f_actが絶対値の大きい正の値であるときの第 2輪分配ゲ イン K2をより小さくするように K2を決定することが望ましい。また、 estmが小さくなる ほど、 β r_actが絶対値の大き 、負の値であるときの第 4輪分配ゲイン K4をより小さく するように K4を決定することが望ましい。これは、 estmが小さくなるほど、第 n輪 Wn (n= l, 2, 3, 4)の制動方向の駆動 '制動力を増カロさせたときの該第 n輪 Wnの横力 の低下が著しくなる力 である。
[0334] また、第 n輪分配ゲイン Kn (η= 1 , 2, 3, 4)の値( f act, β r_actなどの前輪側ゲ イン調整パラメータまたは後輪側ゲイン調整パラメータに応じて設定した値)を、第 n 輪の実接地荷重 (第 n輪に作用する路面反力のうちの鉛直方向または路面に垂直な 方向の並進力の検出値もしくは推定値)にも応じて調整するようにしてよい。この場合 、第 n輪分配ゲイン Knの値を、第 n輪 Wnの実接地荷重が小さくなるほど、小さくする ように決定することが望まし 、。
[0335] あるいは、各第 n輪 Wnの実接地荷重を Fzact_n (n= l, 2, 3, 4)、それらの総和を ∑Fzact ( = Fzact— 1 + Fzact— 2 + Fzact— 3 + Fzact— 4)とおいたとき、前輪 Wl, W2に関 する第 n輪分配ゲイン Kl, K2の値を、各前輪 Wl, W2の実接地荷重の和( = Fzact_ 1 + Fzact_2)に応じて調整したり、その和の∑Fzactに対する割合(= (Fzact.l + Fzac t_2)Z∑Fzact)に応じて調整するようにしてもよい。同様に、後輪 W3, W4に関する 第 n輪分配ゲイン K3, K4を、各後輪 W3, W4の実接地荷重の和( = Fzact_3 + Fzact _4)に応じて調整したり、その和の∑Fzactに対する割合(= (Fzact_3 + Fzact_4) /∑ Fzact)に応じて調整するようにしてもよい。もしくは、各第 n輪分配ゲイン Kn (n= l, 2 , 3, 4)の値を、それぞれ第 η輪 Wnの実接地荷重の∑Fzactに対する割合( = Fzact_ n/∑ Fzact)に応じて調整するようにしてもよ!、。
[0336] また、本実施形態では、駆動 ·制動装置 3Aのブレーキ装置に対するフィードバック 制御入力として (ァクチユエータ動作 FB目標値として)、 FB目標第 n輪ブレーキ駆動 •制動力 Fxl dmd_n (n= l, 2, 3, 4)を決定するようにした力 Fxl dmd_nの代わりに、 ブレーキ装置による各車輪 Wn (n= l, 2, 3, 4)の目標スリップ比を決定したり、ある いは、該目標スリップ比と Fxl dmcLnとの両者を決定するようにしてもよい。
[0337] また、フィードバックョーモーメント基本要求値 Ml dmdを、状態量偏差 γ err, β err を 0に近づけるだけでなぐ前記仮想外力決定部 20aの γ j8制限器 202で求められ る逸脱量 γ over, β overを 0に近づけるように(ひ!/、ては前記 γ da, β daがそれぞれ の許容範囲 [ γ damin, γ damax]、 [ β damin, β damax]から逸脱するのを抑制するよ うに)、 Ml dmdを決定するようにしてもよい。例えば適当な係数 Kl dmdl〜Ki dmd4を 用いて、次式 28aにより、 Mlbdmdを決定してもよい。
[0338]
Mlbdmd = Kl dmdl · γ err+Klbdmd2 - β err
-Klbdmd3 - y over-Klbdmd4- β over ……式 28a なお、この式 28aにより Mlbdmdを決定するということは、状態量偏差 γ err, β errを 0に近づけるフィードバック制御則により決定した Mlbdmdの仮値 (式 28aの右辺の第 1項および第 2項の和)を、逸脱量 γ over, β overを 0に近づけるように修正すること によって、 Mlbdmdを決定することと同等である。
[0339] あるいは、前記式 23により状態量偏差 γ err, j8 errを 0に近づけるように決定した M i dmdを不感帯処理部 221に通してなる値である前記不感帯超過フィードバックョー モーメント要求値 MlbdmcLaを、次式 28b (上記式 28aの右辺の第 1項および第 2項の 和の値の代わりに MlbdmcLaを使用した式)により修正してなる値 Mlbdmd_a,を改めて MlbdmcLaとして用いるようにしてもよい。換言すれば、 Mlbdmdを不感帯処理部 221 に通してなる値を MlbdmcLaの仮値とし、この仮値を逸脱量 over, β overを 0に近づ けるように修正することによって、 MlbdmcLaを決定するようにしてもよ!、。
[0340]
Mlbdmd— a, = Ml dmd.a - Klbdmd3 - γ over— Klbdmd4' β over ……式 28b 補足すると、本実施形態では、前記した如ぐ Ύ j8制限器 202によって、 y over, β overを 0に近づけるように仮想外力仮値 Mvirtmp, Fvirtmpを操作して仮想外力 Mvir , Fvirを決定するようにしている。これだけでも、モデル車両の γ d, j8 dがそれぞれ許 容範囲 [ γ damin, γ damax]、 [ β damin, β damax]を逸脱しな 、ように変ィ匕する。そし て、これに伴い、実車 1の γ act, β actをそれぞれ γ d, β dに近づけるようにァクチュ エータ動作 FB目標値が変化する。このため、 y err, errだけを 0に近づけるように ァクチユエータ動作 FB目標値を決定した場合であっても、結果的に、 y act, β actも 許容範囲 [ γ damin, γ damax]、 [ β damin, β damax]から逸脱するのを抑制できる。 ただし、上記のように、 y err, j8 errに加えて、 γ over, j8 overをも 0に近づけるように Ml dmdまたは Ml dmcLaを決定する(ひ!/、てはァクチユエータ動作 FB目標値を決定 する)ようにすることで、 γ act, β actがそれぞれ許容範囲 [ γ damin, γ damax]、 [ j8 d amin, β damax]から逸脱するのをより一層効果的に抑制できる。
[0341] また、上記の如く γ err, j8 errに加えて、 γ over, j8 overをも 0に近づけるように Mlbd mdまたは MlbdmcLaを決定するようにした場合には、仮想外力 Mvir, Fvirは、必ずし も over, β overを 0に近づけるように決定する必要はなぐ単に γ err, β errを 0に近 づけるように仮想外力 Mvir, Fvirを決定するようにしてもよい。この場合には、前記仮 想外力仮値決定部201で求められる仮想外力仮値 Mvirtmp, Fvirtmpをそれぞれそ のまま仮想外力 Mvir, Fvirとして決定すればよい。そして、 Mlbdmdまたは MlbdmcLa を決定する処理、および仮想外力 Mvir, Fvirを決定する処理以外は、本実施形態と 同じでょ 、。このようにしても、 γ act, β actがそれぞれ許容範囲 [ γ damin, γ damax] 、 [ β damin, β damax]力 逸脱するのを抑制するようにァクチユエータ動作 FB目標 値を決定できる。また、この場合であっても、状態量偏差 γ err, β errを 0に近づける ように、仮想外力 Mvir, Fvirが決定されるので、結果的に、モデル車両の γ d, j8 dが それぞれ許容範囲 [ γ damin, γ damax]、 [ β damin, β damax]から逸脱するのが抑 制されるように、 y d, j8 dが決定されることとなる。
[0342] ところで、ァクチユエータ動作 FB目標値分配処理部 222は、別の言!、方をすれば 、少なくとも前輪側ゲイン調整パラメータとしての i8 f_actと、後輪側ゲイン調整パラメ一 タとしての j8 r_actと、基本要求操作量としての MlbdmcLaとを入力とし、且つ、駆動'制 動力操作用制御入力としての FB目標第 n輪ブレーキ駆動'制動力 Fxl dmdji (n= 1 , 2, 3, 4)を出力するものであると言える。この場合、本実施形態では、 Mdbdmd_a> 0である場合における特定組としての左側の前輪 W1および後輪 W3に関し、前輪側 ゲイン調整パラメータとしての j8 f_actのみが単調変化したときの左側の前輪 W1の駆 動 ·制動力操作用制御入力としての Fxl dnuUの変化と、後輪側ゲイン調整パラメ一 タとしての β r_actのみが単調変化したときの左側の後輪 W3の駆動'制動力操作用 制御入力としての Fxl dmd_3の変化と、前記基本要求操作量としての MlbdmcLaのみ がその極性を同一極性 (正極性)に保ちつつ単調変化したときの左側の前輪 W1お よび後輪 W3のそれぞれの Fxl dmcLl, Fxl dmd_3の変化とが単調変化になるように ァクチユエータ動作 FB目標値分配処理部 222の入力と出力との関係が構成されて いることとなる。さらに、前記したように、分配ゲイン Kl, K3の和が 1になる力、もしく は 1に近づくように Kl, K3の値を決定することによって、前輪側ゲイン調整パラメ一 タとしての j8 f_actのみが単調変化したときの左側の後輪 W3の Fxlbdmd_3の変化が、 左側の前輪 W1の FxlbdmcLlの変化と逆向きの単調変化となると共に、後輪側ゲイン 調整パラメータとしての j8 r_actのみが単調変化したときの左側の前輪 W1の Fxl dmcL 1の変化力 左側の後輪 W3の Fxl dmd_3の変化と逆向きの単調変化となるように構 成ァクチユエータ動作 FB目標値分配処理部 222の入力と出力との関係が構成され て 、ることとなる。
また、 Mdbdmd_a< 0である場合における特定組としての右側の前輪 W2および後 輪 W4に関し、前輪側ゲイン調整パラメータとしての j8 f_actのみが単調変化したときの 右側の前輪 W2の駆動,制動力操作用制御入力としての Fxlbdmd_2の変化と、後輪 側ゲイン調整パラメータとしての j8 r_actのみが単調変化したときの右側の後輪 W4の 駆動 ·制動力操作用制御入力としての Fxl dmd_4の変化と、前記基本要求操作量と しての MlbdmcLaのみがその極性を同一極性 (負極性)に保ちつつ単調変化したとき の右側の前輪 W1および後輪 W3のそれぞれの Fxlbdmd_2, Fxlbdmd_4の変化とが単 調変化になるようにァクチユエータ動作 FB目標値分配処理部 222の入力と出力との 関係が構成されていることとなる。さらに、前記したように、分配ゲイン K2, K4の和が 1になるか、もしくは 1に近づくように K2, K4の値を決定することによって、前輪側ゲ イン調整パラメータとしての j8 f_actのみが単調変化したときの右側の後輪 W4の Fxlbd md_4の変化力 右側の前輪 W2の Fxlbdmd_2の変化と逆向きの単調変化となると共に 、後輪側ゲイン調整パラメータとしての β r_actのみが単調変化したときの右側の前輪 W2の Fxlbdmd— 2の変化が、右側の後輪 W4の Fxl dmd— 4の変化と逆向きの単調変化 となるようにァクチユエータ動作 FB目標値分配処理部 222の入力と出力との関係が 構成されていることとなる。
[0344] このようなァクチユエータ動作 FB目標値分配処理部 222の入力と出力との関係は 、前輪側ゲイン調整パラメータおよび後輪側ゲイン調整パラメータとして、前述した )8 f_act、 β r_act以外のものを使用した場合でも同様に構成すればよい。
[0345]
[FF則について]
次に、前記 FF則 22の処理を図 17を参照してより詳細に説明する。図 17は、 FF則 22の処理を示す機能ブロック図である。
[0346] 前記したように、本実施形態では、 FF則 22が決定するフィードフォワード目標値( 運転操作入力に応じたァクチユエータ装置 3の基本目標値)には、駆動 ·制動装置 3 Aのブレーキ装置による実車 1の各車輪 W1〜W4の駆動'制動力のフィードフォヮ一 ド目標値 (以降、 FF目標第 n輪ブレーキ駆動,制動力 (n= l, 2, 3, 4)という)と、駆 動 ·制動装置 3Aの駆動系による実車 1の駆動輪 Wl , W2の駆動 ·制動力のフィード フォワード目標値 (以降、 FF目標第 n輪駆動系駆動 ·制動力 (n= 1 , 2)という)と、駆 動 ·制動装置 3Aの変速装置の減速比 (変速比)のフィードフォワード目標値 (以降、 FF目標ミッション減速比という)と、ステアリング装置 3Bによる実車 1の操舵輪 Wl, W 2の舵角のフィードフォワード目標値 (以降、 FF目標前輪舵角 δ f_ffという)とが含まれ る。
[0347] 図 17に示す如ぐ FF目標前輪舵角 δ f_ffは、運転操作入力のうちのステアリング角
Θ hに応じて(あるいは Θ hと Vactとに応じて)処理部 230により決定される。図 17では 、ステアリング装置 3Bが前記ァクチユエータ駆動型のステアリング装置である場合を 想定している。この場合には、処理部 230は、前記規範操作量決定部 14の処理部 1 4aの処理と同じ処理によって FF目標前輪舵角 δ ¾決定する。すなわち、ステアリ ング角 Θ hを、所定のオーバーオールステアリング比 is、あるいは、 Vactに応じて設定 したオーバーオールステアリング比 isで除算することにより δ ϊ^決定する。このよう にして決定される δ f_ffの値は、前記規範操作量決定部 14の処理部 14aにより決定さ れる無制限時前輪舵角 δ Lunltdの値と同じである。
[0348] なお、ステアリング装置 3Bが前記ァクチユエータ補助型のステアリング装置である 場合、あるいは、機械式ステアリング装置である場合には、 δ f_ff¾決定する必要はな い。あるいは、 δ fj¾常に 0に設定しておけばよい。但し、ステアリング装置 3Bがァク チユエータ補助型のステアリング装置であって、ステアリング角 Θ hに応じて機械的に 定まる前輪 Wl, W2の舵角を Vactに応じて補正する機能をもつような場合には、そ の補正分を Vactに応じて決定し、それを δ f_ffとして決定するようにしてもよい。
[0349] 補足すると、ステアリング装置 3Bがァクチユエータ補助型のステアリング装置である 場合には、前輪 Wl, W2の基本的な舵角( δ f_actの基本値)は、ステアリング角 Θ h に応じて機械的に定まるので、 S f_ffはァクチユエータによる前輪 Wl, W2の舵角の 補正量のフィードフォワード目標値としての意味を持つものとなる。
[0350] また、 FF目標第 η輪ブレーキ駆動 ·制動力 (η= 1, 2, 3, 4)は、運転操作入力のう ちのブレーキペダル操作量に応じて、それぞれ処理部 231a_n (n= l, 2, 3, 4)によ り決定される。図中の各処理部 231a_nに示したグラフは、それぞれ、ブレーキペダル 操作量と FF目標第 n輪ブレーキ駆動 ·制動力(n= l, 2, 3, 4)との関係を例示する グラフであり、該グラフにおける横軸方向の値がブレーキペダル操作量の値、縦軸方 向の値力FF目標第 n輪ブレーキ駆動'制動力である。図示のグラフに示されるように 、 FF目標第 n輪ブレーキ駆動'制動力(< 0)は、基本的には、ブレーキペダル操作 量の増加に伴い、その大きさ(絶対値)が単調増加するように決定される。なお、図示 の例では、 FF目標第 n輪ブレーキ駆動 ·制動力は、その大きさが過大にならないよう に、ブレーキペダル操作量が所定量を超えると飽和する(ブレーキペダル操作量の 増加に対する FF目標第 n輪ブレーキ駆動 '制動力の絶対値の増加率が 0に近づぐ もしくは 0になる)ようになって!/、る。
[0351] FF目標第 n輪駆動系駆動 ·制動力 (n= l, 2)と FF目標ミッション減速比とは、運転 操作入力のうちのアクセルペダル操作量およびシフトレバー位置と Vactとに応じて、 駆動系ァクチユエータ動作 FF目標値決定部 232により決定される。この駆動系ァク チユエータ動作 FF目標値決定部 232の処理は、公知の通常の自動車において、ァ クセルペダル操作量と Vactと変速装置のシフトレバー位置とに応じて、エンジンから 駆動輪に伝達する駆動力と変速装置の減速比とを決定する手法と同じでよいので、 本明細書での詳細な説明は省略する。
[0352] 以上が本実施形態における FF則 22の具体的な処理の内容である。
[0353]
[ァクチユエータ動作目標値合成部につ ヽて]
次に、前記ァクチユエータ動作目標値合成部 24の処理を詳細に説明する。図 18 は、このァクチユエータ動作目標値合成部 24の処理を示す機能ブロック図である。
[0354] 同図を参照して、ァクチユエータ動作目標値合成部 24は、第 1輪 W1に関して、前 記ァクチユエータ動作 FF目標値のうちの FF目標第 1輪ブレーキ駆動 ·制動力と、 FF 目標第 1輪駆動系駆動'制動力との和を加算器 240で求める。そして、その和を FF 総合目標第 1輪駆動,制動力 FFtotaLlとして最適目標第 1駆動,制動力決定部 241a _1に入力する。さらに、この FFtotaLlと、前記ァクチユエータ動作 FB目標値のうちの F B目標第 1輪ブレーキ駆動'制動力 Fxlbdmd_lとの和を加算器 242で求める。そして、 その和を無制限目標第 1輪駆動 ·制動力 Fxdmd_lとして最適目標第 1駆動 ·制動力決 定部 241a_lに入力する。
[0355] また、ァクチユエータ動作目標値合成部 24は、第 2輪 W2に関して、前記ァクチユエ ータ動作 FF目標値のうちの FF目標第 2輪ブレーキ駆動 ·制動力と、 FF目標第 2輪 駆動系駆動'制動力との和を加算器 243で求める。そして、その和を FF総合目標第 2輪駆動 ·制動力 FFtotal_2として最適目標第 2駆動 ·制動力決定部 241a_2に入力す る。さらに、この FFtotal_2と、前記ァクチユエータ動作 FB目標値のうちの FB目標第 2 輪ブレーキ駆動.制動力 Fxfbdmd_2との和を加算器 244で求める。そして、その和を 無制限目標第 2輪駆動 ·制動力 Fxdmd_2として最適目標第 2駆動 ·制動力決定部 24 la_2に入力する。
[0356] また、ァクチユエータ動作目標値合成部 24は、第 3輪 W3に関して、前記ァクチユエ ータ動作 FF目標値のうちの FF目標第 3輪ブレーキ駆動 ·制動力をそのまま FF総合 目標第 3輪駆動 ·制動力 FFtotal_3として最適目標第 3駆動 ·制動力決定部 241a_3に 入力する。さらに、この FFtotal_3と、前記ァクチユエータ動作 FB目標値のうちの FB目 標第 3輪ブレーキ駆動'制動力 Fxl dmd_3との和を加算器 245で求める。そして、そ の和を無制限目標第 3輪駆動 ·制動力 Fxdmd_3として最適目標第 3駆動 ·制動力決 定部 241a_3に入力する。
[0357] また、ァクチユエータ動作目標値合成部 24は、第 4輪 W4に関して、前記ァクチユエ ータ動作 FF目標値のうちの FF目標第 4輪ブレーキ駆動 ·制動力をそのまま FF総合 目標第 4輪駆動 ·制動力 FFtotal_4として最適目標第 4駆動 ·制動力決定部 241a_4に 入力する。さらに、この FFtotal_4と、前記ァクチユエータ動作 FB目標値のうちの FB目 標第 4輪ブレーキ駆動'制動力 Fxl dmd_4との和を加算器 246で求める。そして、そ の和を無制限目標第 4輪駆動 ·制動力 Fxdmd_4として最適目標第 4駆動 ·制動力決 定部 241a_4に入力する。
[0358] ここで、前記 FF総合目標第 n輪駆動'制動力 FFt0tal_n (n= l, 2, 3, 4)は、それを 一般ィ匕して言えば、駆動'制動装置 3Aの駆動系の動作による第 n輪 Wnの駆動'制 動力のフィードフォワード目標値 (FF目標第 n輪駆動系駆動 ·制動力)とブレーキ装 置の動作による第 n輪 Wnの駆動 ·制動力のフィードフォワード目標値 (FF目標第 n輪 ブレーキ駆動 ·制動力)との総和を意味する。この場合、本明細書の実施形態では、 実車 1の駆動輪を前輪 Wl, W2とし、後輪 W3, W4は従動輪としているので、後輪 W 3, W4に関しては、 FF目標第 n輪ブレーキ駆動 ·制動力(n= 3, 4)がそのまま、 FF 総合目標第 n輪駆動 ·制動力 FFtotaLnとして決定される。
[0359] また、前記無制限目標第 n輪駆動,制動力 Fxdmd_n (n= l, 2, 3, 4)は、前記 FF総 合目標第 n輪駆動 ·制動力 FFtotaLnと、前記 FB第 n輪ブレーキ駆動 ·制動力との和 であるから、駆動 ·制動装置 3Aのフィードフォワード制御動作 (少なくとも運転操作入 力に応じたフィードフォワード制御動作)とフィードバック制御動作 (少なくとも状態量 偏差 Ί err, β errに応じたフィードバック制御動作)とにより要求される第 n輪のトータ ルの駆動 ·制動力を意味する。
[0360] そして、ァクチユエータ動作目標値合成部 24は、最適目標第 n駆動'制動力決定 部 241a_n (n= l, 2, 3, 4)により、それぞれ第 n輪 Wnの駆動 '制動力の最終的な目 標値である目標第 n輪駆動 ·制動力 Fxcmdjiを決定すると共に、第 n輪のスリップ比の 最終的な目標値である目標第 n輪スリップ比を決定する。
[0361] この場合、最適目標第 n駆動'制動力決定部 241a_n (n= l, 2, 3, 4)には、 FFtota l_nおよび FxdmcLnにカ卩えて、第 n輪 Wnの実横すベり角(詳しくは、 n= l, 2であるとき は、実前輪横すベり角 i8 f_aCt、 n= 3, 4であるときは実後輪横すベり角 r_act)の最 新値 (今回値)と推定摩擦係数/ z estmの最新値 (今回値)とが入力される。なお、図 示は省略するが、前輪 Wl, W2に係わる最適目標第 n駆動 ·制動力決定部 241a_n ( n= l, 2)には、実前輪舵角 S f_actの最新値 (今回値)も入力される。そして、最適目 標第 n駆動 ·制動力決定部 241a_n (n= l, 2, 3, 4)は、それぞれに与えられる入力 を基に、目標第 n輪駆動 ·制動力 Fxcmdjiと目標第 n輪スリップ比とを後述するように 決定する。
[0362] また、ァクチユエータ動作目標値合成部 24は、前記ァクチユエータ動作 FB目標値 のうちのアクティブ操舵用 FB目標横カ FylbdmcLfと、前記ァクチユエータ動作 FF目標 値のうちの FF目標前輪舵角 δ f_ffとを最適目標アクティブ舵角決定部 247に入力し、 該最適目標アクティブ舵角決定部 247により前輪 Wl, W2の最終的な舵角の目標 値である目標前輪舵角 δ fcmdを決定する。なお、この δ fcmdは、ステアリング装置 3 Bが前記ァクチユエータ駆動型のステアリング装置である場合には、ァクチユエータの 動作による前輪 Wl, W2の舵角そのもの(実車 1の前後方向を基準とした舵角)の最 終的な目標値を意味する。一方、ステアリング装置 3Bが前記ァクチユエータ補助型 のステアリング装置である場合には、ァクチユエータの動作による前輪 Wl, W2の舵 角の補正量の最終的な目標値を意味する。
[0363] なお、ァクチユエータ動作目標値合成部 24は、前記ァクチユエータ動作 FF目標値 のうちの FF目標第 n輪駆動系駆動 ·制動力 (n= l, 2)をそのまま、駆動'制動装置 3 Aの駆動系の動作による第 n輪 Wnの駆動 ·制動力の最終的な目標値である目標第 n 輪駆動系駆動'制動力として出力する。さらに、ァクチユエータ動作目標値合成部 24 は、前記ァクチユエータ動作 FF目標値のうちの FF目標ミッション減速比をそのまま、 駆動 ·制動装置 3Aの変速装置の減速比 (変速比)の最終的な目標値である目標ミツ シヨン減速比として出力する。 [0364] 前記最適目標第 n駆動'制動力決定部 241a_n (n= l, 2, 3, 4)の処理を以下に詳 説する。図 19は、各最適目標第 n駆動 '制動力決定部 241a_nの処理を示すフローチ ヤートである。
[0365] 同図を参照して、まず、 S100において、第 n輪 Wn (n= l, 2, 3, 4)の横すベり角 が実横すベり角(詳しくは、 n= l, 2であるときは実前輪横すベり角 |8 f_act、 n= 3, 4 であるときは実後輪横すベり角 ι8 まであって、路面摩擦係数 (第 η輪 Wnと路面と の間の摩擦係数)が推定摩擦係数 estmであることを前提条件とする。そして、この 前提条件の基で、無制限目標第 n輪駆動 ·制動力 Fxdmdjiに最も近 、 (一致する場 合を含む)第 n輪 Wnの駆動 ·制動力の値である第 n輪駆動 ·制動力候補 Fxcandjiと、 それに対応する第 n輪 Wnのスリップ比の値である第 n輪スリップ比候補 ScancLnとを 求める。
[0366] ここで、一般に、各車輪の横すベり角と路面反力(駆動'制動力、横力、および接地 荷重)とスリップ比と路面摩擦係数との間には、該車輪のタイヤの特性ゃサスペンショ ン装置の特性に応じた一定の相関関係がある。例えば、各車輪の横すベり角と路面 反力(駆動'制動力、横力、および接地荷重)とスリップ比と路面摩擦係数との間には 、前記非特許文献 1の式(2. 57) , (2. 58) , (2. 72) , (2. 73)により表されるような 相関関係がある。また、例えば接地荷重および路面摩擦係数を一定とした場合、各 車輪の横すベり角と駆動,制動力と横力とスリップ比との間には、前記非特許文献 1 の図 2. 36に示されるような相関関係がある。従って、横すベり角および路面摩擦係 数がそれぞれある値であるときの各車輪の路面反力とスリップ比とは、それぞれが独 立的な値を採り得るわけではなぐそれぞれの値は、上記の相関関係(以下、車輪特 性関係という)に従って変化する。なお、スリップ比は、駆動'制動力が駆動方向の駆 動 ·制動力(>0)であるときは負の値であり、駆動 *制動力が制動方向の駆動 ·制動 力(< 0)であるときは正の値である。
[0367] そこで、本実施形態における S100の処理では、第 n輪 Wnの横すベり角と路面摩 擦係数と駆動 '制動力とスリップ比との関係を表す、あらかじめ作成されたマップに基 づ ヽて、第 n輪 Wnの実横すベり角 β f_actまたは β r_act (最新値)と推定路面摩擦係 数; z estm (最新値)とから、無制限目標第 n輪駆動 ·制動力 Fxdmdjiに最も近いか、ま たは一致する駆動 ·制動力(Fxdmdjiとの差の絶対値が最小となる駆動 *制動力)と、 この駆動 '制動力に対応するスリップ比とを求める。そして、このようにして求めた駆動 •制動力とスリップ比とをそれぞれ第 n輪駆動 ·制動力候補 Fxcandju第 n輪スリップ 比候補 ScancLnとして決定する。
[0368] なお、この処理で使用するマップは、例えば前記車輪特性関係を種々の実験など を通じて、あるいは、車輪 W1〜W4のタイヤ特性やサスペンション装置 3Cの特性に 基づいて、あらかじめ特定もしくは推定しておき、その特定もしくは推定した車輪特性 関係に基づいて作成すればよい。また、そのマップには、第 n輪 Wnの接地荷重を変 数パラメータとして加えてもよい。この場合には、第 n輪 Wnの実接地荷重 Fzact_nを最 適目標第 n駆動 ·制動力決定部 241a_nに入カするようにして、第 n輪 Wnの実横すベ り角 β f_actまたは β r_actと、推定摩擦係数 μ estmと、実接地荷重 Fzact_nとから Fxcan d_n、 ScancLnを決定するようにすればよい。ただし、実接地荷重 Fzact_nの変動は一般 に比較的小さ 、ので、該実接地荷重 Fzact_nを一定値とみなしてもよ 、。
[0369] 補足すると、第 n輪 Wnの実横すベり角 β f_actまたは β r_actと推定路面摩擦係数 μ estmとの組に対応して、あるいは、これらと実接地荷重 Fzact_nとの組に対応して、第 n輪 Wnで発生可能 (路面から作用可能な)な駆動 '制動力(前記車輪特性関係に従 つて発生可能な駆動.制動力)の値の範囲内に FxdmcLnが存在する場合には、その F xdmd_nをそのまま FxcancLnとして決定すればよい。そして、 FxdmcLnが当該範囲を逸 脱している場合には、当該範囲のうちの上限値(> 0)および下限値(< 0)のうち、 Fx dmd_nに近 、方を FxcancLnとして決定すればよ!、。
[0370] また、第 n輪 Wnの実横すベり角 /3 f_a または /3 r_actと推定路面摩擦係数 μ estmと の組に対応して、あるいは、これらと実接地荷重 Fzact_nとの組に対応して、第 n輪 W nで発生可能なスリップ比と駆動 *制動力との関係 (前記車輪特性関係に従って発生 可能なスリップ比と駆動 '制動力との関係)は、一般に、該スリップ比の変化に対して、 駆動 ·制動力がピーク値 (極値)を持つような関係となる (スリップ比を横軸の値、駆動 '制動力の大きさを縦軸の値としたときのグラフが上に凸のグラフとなる)。このため、 そのピーク値よりも絶対値が小さい駆動'制動力の値に対応するスリップ比の値は 2 種類存在する場合がある。このように FxcancLn対応するスリップ比の値が 2種類存在 する場合には、その 2種類のスリップ比の値のうち、 0により近い方のスリップ比の値を 第 n輪スリップ比候補 Scandjiとして決定すればよい。換言すれば、第 n輪 Wnのスリツ プ比と駆動,制動力との関係 (前記車輪特性関係に従う関係)において、駆動 '制動 力がピーク値となるスリップ比の値と 0と間の範囲内で、第 n輪スリップ比候補 Scandji を決定すればよい。
[0371] 補足すると、駆動 '制動力がピーク値となるスリップ比の値と 0との間の範囲内では、 スリップ比の絶対値が 0から増加するに伴い、駆動 '制動力の絶対値は単調に増加 する。
[0372] 次いで、 S102に進んで、 S100と同じ前提条件の基で、最大モーメント発生時第 n 輪駆動 ·制動力 Fxmmaxjiと、これに対応するスリップ比である最大モーメント発生時 第 n輪スリップ比 Smmaxjiとを決定する。ここで、最大モーメント発生時第 n輪駆動'制 動力 Fxmmaxjiは、第 n輪 Wnの横すベり角が実横すベり角 j8 f_actまたは j8 r_actであ つて、路面摩擦係数が推定摩擦係数/ z estmであるときに、第 n輪 Wnで発生可能な 路面反力(詳しくは前記車輪特性関係に従って第 n輪 Wnに路面から作用可能な駆 動 ·制動力と横力との合力)のうち、該路面反力によって実車 1の重心点 Gのまわりに 発生するョ一方向のモーメントが、前記フィードバックョーモーメント基本要求値 Ml d mdの極性と同じ極性(向き)に向力つて最大となるような路面反力の駆動 *制動力成 分の値を意味する。なお、この場合、 Fxmmaxji, Smmaxjiは、第 n輪 Wnの駆動'制 動力とスリップ比との関係(前記車輪特性関係に従う関係)において、スリップ比の絶 対値が 0から増加するに伴い駆動 '制動力の絶対値が単調に増加する領域内で決 定される。従って、 Smmaxjiは、駆動'制動力がピーク値となるスリップ比の値と 0との 間で決定される。
[0373] S102では、前輪 Wl, W2に関しては (n= 1または 2であるとき)、例えば実前輪横 すべり角 f actと、推定摩擦係数; z estmと、実前輪舵角 δ f_actとから、あら力じめ作 成されたマップ (前輪横すベり角と路面摩擦係数と前輪舵角と最大モーメント発生時 駆動 ·制動力と最大モーメント発生時スリップ比との関係 (前記車輪特性関係に従う 関係)を表すマップ)に基づいて、最大モーメント発生時第 n輪駆動 ·制動力 Fxmmax_ nとこれに対応する最大モーメント発生時第 n輪スリップ比 Smmaxjiとが決定される。あ るいは、前輪横すベり角と路面摩擦係数とスリップ比と駆動,制動力と横力との関係を 表すマップと、実前輪舵角 S f_actとに基づき、 |8 f_actと/ z estmとの組に対応して発生 可能な第 n輪 Wn (n= 1または 2)の駆動 '制動力と横力との組のなかから、それらの 合力が実車 1の重心点 Gのまわりに発生するョ一方向のモーメントが最大となる駆動
•制動力と横力との組を探索的に決定する。そして、その組に対応する駆動 ·制動力 とスリップ比とをそれぞれ Fxmmax_n, Smmax_nとして決定するようにしてもよ!、。
[0374] また、後輪 W3, W4に関しては (n= 3または 4であるとき)、例えば、実後輪すベり 角 i8 r_actと推定摩擦係数 estmとから、あらかじめ作成されたマップ (後輪横すベり 角と路面摩擦係数と最大モーメント発生時駆動 ·制動力と最大モーメント発生時スリツ プ比との関係 (前記車輪特性関係に従う関係)を表すマップ)に基づいて、最大モー メント発生時第 n輪駆動 ·制動力 Fxmmax nとこれに対応する最大モーメント発生時第 n輪スリップ比 Smmaxjiとが決定される。あるいは、後輪横すベり角と路面摩擦係数と スリップ比と駆動 '制動力と横力との関係を表すマップに基づき、 β r_actと μ estmとの 組に対応して発生可能な第 n輪 Wn (n = 3または 4)の駆動 ·制動力と横力との組のな かから、それらの合力が実車 1の重心点 Gのまわりに発生するョ一方向のモーメント が最大となる駆動 '制動力と横力との組を探索的に決定する。そして、その組に対応 する駆動 ·制動力とスリップ比とをそれぞれ Fxmmax_n, Smmaxjiとして決定するように してちよい。
[0375] なお、 S102の処理では、前記 S100の処理に関して説明した場合と同様に、第 n 輪 Wnの実接地荷重 Fzact_nを変数パラメータとして含めてもよい。
[0376] 次いで、 S104〜S112の処理が後述するように実行され、目標第 n輪駆動'制動力 Fxcmdjiが決定される。この場合、目標第 n輪駆動 ·制動力 Fxcmdjiは、次の条件(1) 〜(3)を満足するように決定される。ただし、条件(1)〜(3)は、条件(1)、(2)、 (3) の順に、優先順位が高い条件とされる。そして、条件(1)〜(3)の全てを満たす目標 第 n輪駆動 ·制動力 Fcmd_nを決定できな 、場合には、優先順位の高 、条件を優先 的に満足するように目標第 n輪駆動 ·制動力 Fxcmdjiが決定される。
[0377]
条件( 1): FF総合目標第 n輪駆動 ·制動力 FFtotaLnと目標第 n輪駆動 ·制動力 Fxcmd _nとが制動方向の駆動 ·制動力であるときには、目標第 n輪駆動 ·制動力 Fxcmdjiの 大きさ(絶対値)が FF総合目標第 n輪駆動 ·制動力 FFtotaLnの大きさ (絶対値)よりも zj、さくならないこと。換言すれば、 0>Fxcmd_n> FFtotaLnとならないこと。
条件 (2):目標第 n輪駆動 ·制動力 Fxcmdjiが最大モーメント発生時第 n輪駆動 '制動 力 Fxmmax_nと同極性になるときには、 Fxcmd_nの大きさ(絶対値)が Fxmmax_nの大き さ(絶対値)を超えないこと。換言すれば、 Fxcmd_n>Fxmmax_n>0、または、 Fxcmd_ n< Fxmmax_n< 0とならな!/、こと。
条件 (3):目標第 n輪駆動,制動力 Fxcmdjiは、可能な限り第 n輪駆動,制動力候補 F xcand_nに一致すること(より正確には、 Fxcmdjiと Fxcand_nとの差の絶対値を最小に すること) ここで、条件(1)は、目標第 n輪駆動'制動力 Fxcmdjiが、実車 1の運転者がブレー キペダルの操作によって要求している実車 1の第 n輪 Wnの制動方向の駆動 '制動力 (これは FFtotaLnに相当する)よりも小さくならないようにするための条件である。補足 すると、本明細書の実施形態では、後輪 W3, W4は従動輪であるので、後輪 W3, W 4に関する FF総合目標第 n輪駆動 ·制動力 FFtotaLn (n= 3, 4)および目標第 n輪駆 動 ·制動力 Fxcmdji (n= 3, 4)は、常に 0以下の値である。従って、後輪 W3, W4に 関しては、条件(1)は、「目標第 n輪駆動 ·制動力 Fxcmdjiの大きさ(絶対値)が FF総 合目標第 n輪駆動 ·制動力 FFtotaLnの大きさ(絶対値)よりも小さくならな!/、こと。」と!、 う条件と同じである。
[0378] また、条件(2)は、目標第 n輪駆動 ·制動力 Fxcmdjiに対応して第 n輪 Wnで発生す る横力が小さくなり過ぎな 、ようにするための条件である。
[0379] また、条件(3)は、前記ァクチユエータ動作 FB目標値決定部 20bと FF則 22とで決 定された、ァクチユエータ装置 3の動作の制御要求(目標)をできるだけ満足するため の条件である。なお、 Fxcandjiは、前記したように、前記車輪特性関係(第 n輪 Wnの 横すベり角が実横すベり角 jS tacほたは であって、路面摩擦係数が推定摩擦 係数 estmであることを前提条件としたときの車輪特性関係)に従って第 n輪 Wnで 発生可能な駆動 ·制動力の値の範囲内で前記無制限目標第 n輪駆動 ·制動力 Fxdm d_nに最も近い(一致する場合を含む)駆動 '制動力の値である。従って、条件(3)は 別の言い方をすれば、目標第 n輪駆動 ·制動力 Fxcmdjiは、前記車輪特性関係 (第 n 輪 Wnの横すベり角が実横すベり角 |8 f_acほたは |8 r_actであって、路面摩擦係数が 推定摩擦係数/ z estmであることを前提条件としたときの車輪特性関係)に従って第 n 輪 Wnで発生可能な駆動 '制動力の値の範囲内の値となり、且つ、可能な限り無制限 目標第 n輪駆動 ·制動力 Fxdmdji (制御要求に従う駆動 ·制動力)に一致する力もしく は近いこと (FxdmcLnとの差の絶対値が最小になること)、という条件と同等である。
[0380] 前記 S104〜S112の処理は、具体的には、次のように実行される。まず、 S104に 進んで、 S100で決定した Fxcand_nと S102で決定した Fxmmax_nとの大小関係力 0 >Fxmmax— n Fxcand— nまたは 0< Fxmmax— n Fxcand— nである力 Λ否力 半 [J断する。こ の判断結果が NOである場合には、 S 106に進んで、目標第 n輪駆動'制動力 Fxcmd_ nに Fxcand_nの値を代入する。すなわち、 Fxcand_nと Fxmmax_nとが互いに異なる極性 である場合、あるいは、 Fxcand_nと Fxmmax_nとが同極性であって、且つ Fxcand_nの大 きさ(絶対値)が Fxmmax_nの大きさ(絶対値)以下である場合には、 Fxcand_nの値が そのまま Fxcmdjiに代入される。なお、 Fxcand_n=0であるとき(このとき、 Fxdmdjiも 0 である)にも、 Fxcand_nの値が Fxcmdjiに代入される(Fxcmd_n=0とする)。
[0381] 一方、 S104の判断結果が YESである場合には、 S108に進んで、目標第 n輪駆動 •制動力 Fxcmdjiに Fxmmax_nの値(S 102で決定した値)を代入する。
[0382] ここまでの処理により、前記条件(2)、(3)を満足するように (ただし、条件(2)が優 先されるように)、 Fxcmdjiが決定される。
[0383] S106または S108の処理の後、 S110に進んで、前記 FF総合目標第 n輪駆動'制 動力 FFtotaLnと今現在の目標第 n輪駆動'制動力 Fxcmd_n (S106または S108で決 定された値)との大小関係力 0>Fxcmd_n>FFtotal_nであるか否かを判断する。こ の判断結果が、 YESである場合には、 S112に進んで、目標第 n輪駆動'制動力 Fxc md_nに改めて FFtotaLnを代入する。すなわち、 FF総合目標第 n輪駆動'制動力 FFt otaLnと S 106または S 108で決定された第 n輪駆動 '制動力候補 Fxcmdjiとが制動方 向の駆動'制動力で、且つ、 Fxcmdjiの大きさ(絶対値) 1S FFtotaLnの大きさ(絶対 値)よりも小さい場合には、 FFtotaLnの値を Fxcmdjiに代入する。なお、 S110の判断 結果が NOであるときには、その時の Fxcmdjiの値がそのまま維持される。
[0384] 以上の S104〜S112の処理によって、前記した通り、基本的には、前記条件(1) 〜(3)を満足するように目標第 n輪駆動 ·制動力 Fxcmdjiが決定される。そして、条件 ( 1)〜(3)の全てを満たす目標第 n輪駆動 ·制動力 Fxcmdjiを決定できな 、場合には 、優先順位の高 、条件を優先的に満足するように目標第 n輪駆動 ·制動力 Fxcmdji が決定される。
[0385] S110の判断結果が YESであるとき、あるいは、 S112の処理の後、 S114にの処理 が実行される。この S114では、上記の如く S106〜S112の処理で決定した Fxcmdji に対応するスリップ比を目標第 n輪スリップ比 Scmdjiとして決定する。この場合、前記 S104〜S112の処理によって、 Fxcmdjiは、 Fxcand_n、 Fxmmax_n、 FFtotaLnのいず れかの値である。そして、 Fxcmd_n=Fxcand_nであるときには、 S100で求められた第 n輪スリップ比候補 Scand_nが Scmd_nとして決定される。また、 Fxcmdji =Fxmmax_nで あるときには、 S102で決定された最大モーメント発生時第 n輪スリップ比 Smmaxjiが S cmd_nとして決定される。また、 Fxcmd_n=FFtotal_nであるときには、例えば前記 S10 0の処理で使用するマップに基づいて、 FFtotaLnに対応するスリップ比を求め、その 求めたスリップ比を Scmdjiとして決定すればよい。この場合、 FFtotaLnに対応するス リップ比の値が 2種類存在する場合には、 0に近 、方のスリップ比の値 (第 n輪 Wnの 駆動.制動力がピーク値となるスリップ比の値と 0との間の範囲内の値)を Scmd_nとし て決定すればよい。また、 FFtotaLnが該マップにおいて、第 n輪 Wnで発生可能な駆 動 ·制動力の値の範囲を逸脱して 、る場合には、その範囲内で FFtotaLnに最も近 ヽ 駆動 ·制動力の値に対応するスリップ比を Scmdjiとして決定すればょ 、。
[0386] 以上が最適目標第 n駆動'制動力決定部 241a_n (n= l, 2, 3, 4)の処理の詳細で ある。
[0387] なお、本実施形態では、目標第 n輪駆動 ·制動力 Fxcmdjiを決定してから、これに 対応する目標第 n輪スリップ比 Scmdjiを決定したが、これと逆に、目標第 n輪スリップ 比 Scmdjiを決定してから、これに対応する目標第 n輪駆動'制動力 Fxcmdjiを決定す るようにしてもよい。この場合には、前記条件(1)〜(3)に対応する目標第 n輪スリツ プ比 Scmd_nに関する条件に基づいて、前記 S104〜S112と同様の処理〖こよって、 目標第 n輪スリップ比 Scmd_nを決定する。そして、その後に、この Scmd_nに対応する F xcmd_nを決定するようにすればよい。なお、この場合、 Scmd_nは、第 n輪 Wnの前記 車輪特性関係に従うスリップ比と駆動 '制動力との関係において、駆動 '制動力がピ ーク値となるスリップ比の値と 0との間の範囲内で決定される。
[0388] 次に、前記最適目標アクティブ舵角決定部 247の処理を説明する。図 20は、この 最適目標アクティブ舵角決定部 247の処理を示す機能ブロック図である。
[0389] 同図を参照して、最適目標アクティブ舵角決定部 247は、まず、前記ァクチユエ一 タ動作 FB目標値決定部 20bで決定されたアクティブ操舵用 FB目標横カ Fyl dmcLf を実車 1に前輪 Wl , W2に発生させる(詳しくは前輪 W1の横力と前輪 W2の横力と の合力を Fyf dmdj^け変化させる)ために要求される前輪 Wl, W2の舵角の変化量 である FBアクティブ舵角 δ fjを、 Fyl dmdj^基に処理部 247aで決定する。この場 合、処理部 247aでは、例えば第 1輪 W1の実接地荷重 FzacUに応じて所定の関数 式あるいはマップにより第 1輪 W1のコーナリングパワー Kf_lを求めると共に、第 2輪 W 2の実接地荷重 Fzact_2に応じて所定の関数式あるいはマップにより第 2輪 W2のコー ナリングパワー Kf_2を求める。上記関数式あるいはマップは、実車 1の前輪 Wl, W2 のタイヤ特性に基づいてあら力じめ設定される。そして、このコーナリングパワー Kf_l , Kf_2を用いて、次式 30により、 FBアクティブ舵角 δ fjを決定する。
[0390]
6 f ft)= (l/ (Kf 1 + Kf_2) ) - Fylbdmd— f ……式 30 このようにして求められる FBアクティブ舵角 δ fj は、前輪 Wl, W2の横力の合力 を、 Fylbdmd け変化させるのに要求される前輪横すベり角の修正量に相当する。
[0391] なお、通常、実接地荷重 Fzact_l, Fzact_2の変化は小さいので、式 30で FylbdmcLf に乗じる係数(1Z (Kf_l + Kf_2) )を一定値としてもよ!ヽ。
[0392] 次 、で、最適目標アクティブ舵角決定部 247は、上記の如く決定した δ fjbを加算 器 247bで FF目標前輪舵角 S f_ffに加えることにより、目標前輪舵角 S fcmdを決定す る。
[0393] なお、前記状態量偏差 γ err, β errに応じたアクティブ操舵用 FB目標横カ Fyl dm d_fの決定を行なわず、あるいは、常に Fyi dmd_f=0とする場合には、 δ f_ff¾そのまま 目標前輪舵角 S f_cmdとして決定すればよい。
[0394] 以上が、前記ァクチユエータ動作目標値合成部 24の処理の詳細である。
[0395]
[ァクチユエータ駆動制御装置につ 、て]
前記ァクチユエータ駆動制御装置 26は、前記ァクチユエータ動作目標値合成部 2 4で決定された目標値を満足するように実車 1のァクチユエータ装置 3を動作させる。 例えば、駆動 ·制動装置 3Aの駆動系の動作による第 1輪 W1の駆動 '制動力(駆動 方向の駆動 ·制動力)が前記目標第 1輪駆動系駆動 ·制動力になるように該駆動系 のァクチユエータ操作量を決定し、それに応じて該駆動系を動作させる。さらに、第 1 輪 W1の実路面反力のうちの駆動 *制動力(駆動系の動作による第 1輪 W1の駆動 · 制動力とブレーキ装置の動作による第 1輪 W1の駆動 '制動力(制動方向の駆動-制 動力)との和)が、前記目標第 1輪駆動 ·制動力 Fxcmd_lになるように、ブレーキ装置 のァクチユエータ操作量を決定し、それに応じて該ブレーキ装置を動作させる。そし て、この場合、第 1輪 W1の実スリップ比と前記目標第 1輪スリップ比 Scmd_lとの差が 0 に近づくように駆動系またはブレーキ装置の動作が調整される。他の車輪 W2〜W4 についても同様である。
[0396] また、ステアリング装置 3Bがァクチユエータ駆動型のステアリング装置である場合に は、実前輪舵角 S f_actが前記目標前輪舵角 S fcmdに一致するようにステアリング装 置 3Bのァクチユエータ操作量が決定され、それに応じてステアリング装置 3Bの動作 が制御される。なお、ステアリング装置 3Bがァクチユエータ補助型のステアリング装 置である場合には、実前輪舵角 S f_actが、前記目標前輪舵角 S f_cmdとステアリング 角 Θ hに応じた機械的な舵角分との和に一致するようにステアリング装置 3Bの動作 が制御される。
[0397] また、駆動 ·制動装置 3Aの駆動系の変速装置の減速比は、前記目標ミッション減 速比に従って制御される。
[0398] なお、各車輪 W1〜W4の駆動 ·制動力や横力などの制御量は、駆動'制動装置 3
A、ステアリング装置 3B、サスペンション装置 3Cの動作が互いに干渉しやすい。この ような場合には、該制御量を目標値に制御するために、駆動'制動装置 3A、ステアリ ング装置 3B、サスペンション装置 3Cの動作を非干渉ィヒ処理によって統合的に制御 することが望ましい。
[0399]
[第 2実施形態]
次に、本発明の第 2実施形態を図 21を参照して説明する。なお、本実施形態は、 前記第 1実施形態と一部の処理のみが相違するので、その相違する部分を中心に 説明し、同一部分については説明を省略する。また、本実施形態の説明では、第 1 実施形態と同一の構成部分もしくは同一の機能部分については第 1実施形態と同じ 参照符号を使用する。
[0400] ァクチユエータ動作 FB目標値は、本来、状態量偏差 γ err, β errに応じたフィード ノ ックョーモーメント基本要求値 Ml dmdを満足するように決定されること力 フィード ノ ック制御理論上は、理想的である。し力るに、前記第 1実施形態では、不感帯処理 部 221、リミッタ 222d_nなどの処理に起因して、ァクチユエータ動作 FB目標値によつ て実車 1の重心点 Gのまわりに発生するョ一方向のモーメントには、 Ml dmdに対して 過不足を生じる。さらに、ァクチユエータ動作 FB目標値力 ァクチユエータ動作目標 値までの各処理機能部 (ァクチユエータ動作目標値合成部 24など)における非線形 性 (リミッタや飽和特性など)の影響によって、ァクチユエータ動作 FB目標値に応じて 実車 1の各車輪 W1〜W4で発生する路面反力がァクチユエータ動作 FB目標値に対 して過不足を生じる場合がある。従って、実車 1の各車輪 W1〜W4で発生する路面 反力は、状態量偏差 γ err, β errを 0に近づけるための理想的な路面反力に対して 過不足を生じる場合がある。
[0401] 一方、実車 1の運動の状態量とモデル車両の運動の状態量との差に対する影響に 関しては、その差を実車 1のァクチユエータ装置 3にフィードバックして付カ卩的な路面 反力(当該差を 0に近づけるための路面反力)を実車 1に作用させることと、この付カロ 的な路面反力を(一 1)倍してなる外力をモデル車両に作用させることとは等価である
[0402] そこで、本実施形態では、実車 1の各車輪 W1〜W4で発生する路面反力の、理想 的な路面反力に対する過不足分に応じて、モデル車両に作用させる仮想外力を修 正し、それによつて、該過不足分を補償する。
[0403] 以下、図 21を参照して説明すると、本実施形態では、 FB分配則 20の仮想外力決 定部 20aは、前記第 1実施形態における機能に加えて、処理部 215を備えている。
[0404] 処理部 215では、まず、ァクチユエータ動作 FB目標値決定部 20bで前述の通り決 定されたァクチユエータ動作 FB目標値 (今回値)を処理部 215aに入力する。そして 、この処理部 215aによって、該ァクチユエータ動作 FB目標値に起因して実車 1の各 車輪 Wl〜W4に作用する路面反力の補正量 (ァクチユエータ動作 FF目標値に対応 して発生する路面反力からの補正量)である路面反力補正量を算出する。この場合、 路面反力補正量は、次にように求められる。
[0405] すなわち、ァクチユエータ動作 FB目標値 (今回値)とァクチユエータ動作 FF目標値
(今回値)とを基にァクチユエータ動作目標値合成部 24で決定される目標第 n輪駆動 •制動力 Fxcmd_n (n= l, 2, 3, 4)および目標スリップ比 Sxcmd— n (n= l, 2, 3, 4)に 応じて、第 n輪 Wnに作用する路面反力(駆動 ·制動力および横力)を推定する。この とき、第 n輪 Wnの駆動 '制動力の推定値は、 Fxcmdjiとし、横力は例えば前記車輪特 性関係に基づくマップなどを使用して求めればよい。より具体的には、例えば後述す る S200および S202、式 40などを使用して横力を求めればよい。また、ァクチユエ一 タ動作 FB目標値を 0としてァクチユエータ動作目標値合成部 24と同じ処理を実行す ることにより、ァクチユエータ動作 FB目標値を 0とした場合の各第 n輪 Wn (n= l, 2, 3, 4)の目標駆動'制動力および目標スリップ比を求め、それに応じて第 n輪 Wnに作 用する路面反力(駆動 ·制動力および横力)を推定する。そして、上記のようにァクチ ユエータ動作 FB目標値を異なるものとして求めた第 n輪 Wnの路面反力の差を求め 、その差を第 n輪 Wnの路面反力補正量として決定する。
[0406] 次いで、上記の如く求めた路面反力補正量を処理部 215bに入力する。そして、こ の処理部 215bによって、各車輪 W1〜W4の路面反力補正量 (路面反力補正量のう ちの駆動 *制動力成分および横力成分の合力)に起因して、実車 1の重心点 Gのま わりに発生するトータルのモーメント Ml (ョ一方向のモーメント)を算出する。具体的 には、各第 n輪 Wn (n= l, 2, 3, 4)の路面反力補正量と、実前輪舵角 δ f_act等 (各 車輪 W1〜W4と実車 1の重心点との幾何学的関係を規定するパラメータ)とを基に、 第 n輪 Wnの路面反力補正量が実車 1の重心点 Gのまわりに発生するョ一方向のモ 一メントを求める。そして、それを全ての車輪 W1〜W4について合成することにより、 Mlが求められる。
[0407] 次!、で、このモーメント Ml力 ァクチユエータ動作 FB目標値決定部 20bの処理部 220で決定されたフィードバックョーモーメント基本要求値 Ml dmd (今回値)を減算 器 215cで減じることにより、実車ョーモーメント偏差 Ml _err ( = Mlb— Mlbdmd)を求め る。なお、この実車ョーモーメント偏差 Ml _err力 ァクチユエータ動作 FB目標値に起 因して実車 1で発生するョ一方向のモーメントの、 Mlbdmdからの過不足分を意味す る。
[0408] 次いで、この実車ョーモーメント偏差 Ml _errに、乗算部 215dにて所定のゲイン Cl を乗じることにより仮想外力補償モーメント Mvir_cを決定する。ゲイン Cl は、 0く Clb ≤1となる値(1以下の正の値)である。この仮想外力補償モーメント Mvir_cは、ァクチ ユエータ動作 FB目標値に起因して実車 1で発生するョ一方向のモーメントの、 Mlbd mdからの過不足分に起因して発生する実車 1とモデル車両との間の状態量偏差を 0 に近づけるようにモデル車両の重心点 Gdのまわりに発生させるべきョー方向のモー メントを意味する。
[0409] 次 1ヽで、前記 γ β制限器 202で前述した如く決定される仮想外力(前記減算器 20 7の出力)を第 2仮値 Mvir 、=Mvirtmp— Mvir— over) , Fvir 、 = Fvirtmp— Fvir— over) とし、この第 2仮値 Mvir' , Fvir'と仮想外力補償モーメント Mvir_cとを加算器 215eで 加え合わせる。これにより、仮想外力 Mvir, Fvir (今回値)を決定する。具体的には、 第 2仮値 Mvir,と Mvir_cとの和を Mvirとして決定し、第 2仮値 Fvir'をそのまま Fvirとし て決定する。
[0410] 以上説明した以外の構成および処理は、前記第 1実施形態と同じである。
[0411] 本実施形態によれば、状態量偏差 γ err, β errカもァクチユエータ動作目標値まで の非線形性が、 jS err, γ errの挙動に与える影響が低減され、 γ err, errは、線形 性を高く保ちながら 0に収束しょうとする。換言すれば、状態量偏差 γ err, β errを 0 に収束させるためのフィードバックゲインの総和力 前記式 23におけるゲインマトリク ス Kl dmdと式 15におけるゲインマトリクス KMrとの差(Klbdmd— KlVir)に近いものとな る。
[0412] 換言すれば、仮想外力の上記第 2仮値 Mvir' , Fvir'をそのまま仮想外力 Mvir, Fvi rとして規範動特性モデル 16に入力したとした場合に前記モデル車両に作用する外 力(ョ一方向のモーメント)と前記ァクチユエータ動作 FB目標値に起因して実車 1に 作用する外力(ョ一方向のモーメント Ml )との差と、状態量偏差 γ err, β errとの間の 関係に比べて、第 2仮値 Mvir' , Fvir,を仮想外力補償モーメント Mvir_cで修正してな る仮想外力 Mvir, Fvirを規範動特性モデル 16に入力した場合に前記モデル車両に 作用する外力(ョ一方向のモーメント)と前記ァクチユエータ動作 FB目標値に起因し て実車 1に作用する外力(ョ一方向のモーメント Mlb)との差と、状態量偏差 γ err, β e rrとの間の関係がより線形性の高い関係になる。
[0413]
[第 3実施形態]
次に、本発明の第 3実施形態を図 22〜図 24を参照して説明する。なお、本実施形 態は、前記第 1実施形態と一部の処理のみが相違するので、その相違する部分を中 心に説明し、同一部分については説明を省略する。また、本実施形態の説明では、 第 1実施形態と同一の構成部分もしくは同一の機能部分については第 1実施形態と 同じ参照符号を使用する。
[0414] 前記第 1実施形態では、駆動'制動装置 3Aに対するァクチユエータ動作 FB目標 値として、駆動'制動装置 3Aのブレーキ装置の動作によって第 n輪 Wn (n= l, 2, 3 , 4)に作用させる駆動 '制動力の補正要求値 (状態量偏差 γ err, errを 0に近づけ るための補正要求値)を意味する前記 FB目標第 n輪ブレーキ駆動 ·制動力 Fxl dmd_ nを求めるようにした。本実施形態では、これに代えて、駆動'制動装置 3Aに対する ァクチユエータ動作 FB目標値として、 FB目標第 n輪ブレーキモーメント Ml dmc (n = 1, 2, 3, 4)を決定する。この FB目標第 n輪ブレーキモーメント MlbdmcLnは、駆動' 制動装置 3Aのブレーキ装置の動作によって各車輪 W1〜W4に作用させる路面反 力(詳しくは駆動 '制動力および横力の合力)が実車 1の重心点 Gのまわりに発生す るョ一方向のモーメントの補正要求値 (状態量偏差 Ύ err, β errを 0に近づけるため の補正要求値)を意味する。そして、本実施形態では、この FB目標第 n輪ブレーキモ 一メント Ml dmcLnを使用して、ァクチユエータ動作目標値を決定する。
[0415] 従って、本実施形態では、 FB分配則 20のァクチユエータ動作 FB目標値決定部 2 Obの処理と、ァクチユエータ動作目標値合成部 24の処理とが前記第 1実施形態と相 違する。そして、これ以外の構成および処理は、第 1実施形態と同じである。なお、本 実施形態では、前記 FB目標第 n輪ブレーキモーメント Mfcdmd_n (n= l, 2, 3, 4)が 、本発明における駆動,制動力操作用制御入力に相当する。この場合、本実施形態 では、以下に説明する如く状態量偏差 γ err, β errを 0に近づけるための基本要求 操作量として、前記第 1実施形態と同様に Mi dmd_aを用いるので、該基本要求操作 量と、駆動'制動力操作用制御入力とは同一の種類の操作量である。
[0416] 以下に本実施形態におけるァクチユエータ動作 FB目標値決定部 20bの処理と、ァ クチユエータ動作目標値合成部 24の処理とを説明する。
[0417] 図 22は本実施形態におけるァクチユエータ動作 FB目標値決定部 20bの処理機能 を示す機能ブロック図である。同図を参照して、ァクチユエータ動作 FB目標値決定 部 20bは、まず、処理部 220, 221により第 1実施形態と同じ処理を実行し、それぞれ 前記フィードバックョーモーメント基本要求値 Ml dmdと、不感帯超過フィードバックョ 一モーメント要求値 Ml dmcLaとを決定する。なお、処理部 221を省略して、 Ml dmd.a = Mlbdmdとしてもよい。
[0418] 次 、で、ァクチユエータ動作 FB目標値決定部 20bは、ァクチユエータ動作 FB目標 値分配処理部 222の処理を実行してァクチユエータ動作 FB目標値を決定する。この 場合、本実施形態では、各 FB目標第 n輪ブレーキモーメント Mi dmd_n (n= l, 2, 3 , 4)は、処理部 222f_n, 222g_nを介して決定される。また、アクティブ操舵用 FB目標 横力 Fyl dmdj^処理部 222eにより決定される。処理部 222eの処理は、前記第 1実 施形態と同じである。なお、処理部 222eは省略してもよい。
[0419] 各 FB目標第 n輪ブレーキモーメント Ml dmd_n (n= l, 2, 3, 4)は、次のように決定 される。すなわち、基本的には、 Ml dmcLaが正であるときには、そのモーメントを実車 1の左側の車輪 Wl, W3の路面反力の操作 (補正)によって発生させ、 MlbdmcLaが 負であるときには、そのモーメントを実車 1の右側の車輪 W2, W4の路面反力の操作 (補正)によって発生させるように、 FB目標第 n輪ブレーキモーメント MlbdmcLn (n= 1 , 2, 3, 4)が決定される。
[0420] 具体的には、まず、各車輪 W1〜W4に対応する処理部 222f_n (n= 1, 2, 3, 4)に よって、それぞれ第 n輪分配ゲイン Knを決定する。この第 η輪分配ゲイン Κηの決定 の仕方は、前記第 1実施形態と同じである。すなわち、前輪 Wl, W2に係わる Kl, Κ 2は、それぞれ前輪側ゲイン調整パラメータとしての実前輪横すベり角 iS Lactに応じ て、例えば前記図 14 (a)のグラフで示す如く決定される。また、後輪 W3, W4に係わ る K3, K4は、それぞれ後輪側ゲイン調整パラメータとしての実後輪横すベり角 j8 r_ac tに応じて、例えば前記図 14 (b)のグラフで示す如く決定される。そして、各処理部 2 22f_n (n= l, 2, 3, 4)は、この第 n輪分配ゲイン Knを MlbdmcLaに乗じることにより、 第 n輪分配モーメント基本値 Mlb_nを決定する。なお、このように決定される Ml _nの極 性(向き)は、 MlbdmcLaと同じである。また、第 n輪分配ゲイン Knは、 13 f_actまたは 13 r _actに応じて上記の如く決定する以外に、前記第 1実施形態で説明したいずれの形 態で決定するようにしてもよい。そして、この場合、前輪側ゲイン調整パラメータおよ び後輪側ゲイン調整パラメータは、前記第 1実施形態と同様に、 i8 f_act, |8 以外 のパラメータを使用してもょ 、。
[0421] 次 、でァクチユエータ動作 FB目標値分配処理部 222は、上記の如く決定した第 n 輪分配モーメント基本値 Mi _n (n= l, 2, 3, 4)を、それぞれ第 n輪 Wnに対応するリ ミッタ 222g_nに通すことにより、 FB目標第 n輪ブレーキモーメント MlbdmcLnをそれぞ れ決定する。
[0422] ここで、図 22中の各リミッタ 222g_n (n= l, 2, 3, 4)のグラフは、 Ml _nと MlbdmcLnと の関係を表すグラフであり、該グラフに関する横軸方向の値が Ml _nの値、縦軸方向 の値が MlbdmcLnの値である。
[0423] このリミッタ 222g_nのうち、第 1輪 W1および第 3輪 W3に係わるリミッタ 222g_l, 222 g_3は、それに入力される Ml _n (n= l, 3)の値が 0または正の値であるときにのみ、 M l _nをそのまま MlbdmcLnとして出力し、 Ml _nが負の値であるときには、その Mlb_nの値 によらずに出力する MlbdmcLnの値を 0とする。換言すれば、 0を下限値として、 Mlb_n に制限を掛けることにより MlbdmcLnを決定する。 [0424] 一方、第 2輪 Wlおよび第 4輪 W3に係わるリミッタ 222g_2, 222g_4は、それに入力 される Ml _n (n= 2, 4)の値力 0または負の値であるときにのみ、 Ml _nをそのまま Ml dmd_nとして出力し、 Ml _nが正の値であるときには、その Ml _nの値によらずに出力す る MlbdmcLnの値を 0とする。換言すれば、 0を上限値として、 Ml _nに制限を掛けること により MlbdmcLnを決定する。
[0425] このように FB目標第 n輪ブレーキモーメント MlbdmcLn (n= l, 2, 3, 4)を決定する ことにより、 Ml dmd_a>0である場合には、実車 1の左側の車輪 Wl, W3の路面反力 の補正によって MlbdmcLaにほぼ等しいョー方向のモーメントを実車 1の重心点 Gのま わりに発生させるベく MlbdmcLnが決定される。この場合、第 1輪 W1および第 3輪 W3 のそれぞれの Ml dmd_l、 Ml dmd_3は、 Ml dmd_aに比例するもの(Ml dmd_aに K1 または K3を乗じてなる値)となる。ひいては、 MlbdmcLaの変化と、 Ml dmd_l、 Mlbdm d_3の変化との関係が比例関係になる。そして、その比例関係における前輪側ゲイン としての第 1輪分配ゲイン K1と後輪側ゲインとしての第 3輪分配ゲイン K3とがそれぞ れ前輪側ゲイン調整パラメータ (本実施形態では β f_act)、後輪側ゲイン調整パラメ ータ (本実施形態では β r_act)に応じて変化することとなる。
[0426] また、 MlbdmcLaく 0である場合には、駆動 ·制動装置 3Aのブレーキ装置 3Aの動作 による実車 1の右側の車輪 W2, W4の路面反力の補正によって MlbdmcLaにほぼ等し V、ョ一方向のモーメントを実車 1の重心点 Gのまわりに発生させるベく MlbdmcLnが決 定される。この場合、第 2輪 W2および第 4輪 W4のそれぞれの Ml dmd_2、 Ml dmd_4 は、 MlbdmcLaに比例するもの(MlbdmcLaに K2または K4を乗じてなる値)となる。ひ いては、 MlbdmcLaの変化と、 Ml dmd_2、 Mlbdmd_4の変化との関係が比例関係にな る。そして、その比例関係における前輪側ゲインとしての第 2輪分配ゲイン K2と後輪 側ゲインとしての第4輪分配ゲイン K4とがそれぞれ前輪側ゲイン調整パラメータ (本 実施形態では β f_act)、後輪側ゲイン調整パラメータ (本実施形態では β r_act)に応 じて変ィ匕することとなる。
[0427] なお、第 1輪 W1および第 3輪 W3に係わるリミッタ 222g_n (n= l, 3)は、 0よりも若 干小さい値を MlbdmcLnの下限値として Ml _nに制限を掛けることにより MlbdmcLnを決 定するようにしてもよい。同様に、第 2輪 W2および第 4輪 W4に係わるリミッタ 222g_n ( n= 2, 4)は、 0よりも若干大きい値を Ml dmcLnの上限値として Ml _nに制限を掛ける ことにより Ml dmcLnを決定するようにしてもよ!、。
[0428] 以上が本実施形態におけるァクチユエータ動作 FB目標値決定部 20bの処理の詳 細である。
[0429] 次に、本実施形態におけるァクチユエータ動作目標値合成部 24の処理を図 23お よび図 24を参照して説明する。図 23はァクチユエータ動作目標値合成部 24の処理 機能を示す機能ブロック図、図 24はその処理機能のうちの最適目標第 n駆動 '制動 力決定部の処理を示すフローチャートである。
[0430] 図 23を参照して、本実施形態におけるァクチユエータ動作目標値合成部 24は、目 標第 n輪駆動 ·制動力 Fxcmdjiおよび目標第 n輪スリップ比 Scmdjiを決定する最適目 標第 n駆動 ·制動力決定部 241b_n (n= l, 2, 3, 4)と、目標前輪舵角 δ fcmdを決定 する最適アクティブ舵角決定部 247とを備えて 、る。
[0431] 最適アクティブ舵角決定部 247の処理は、第 1実施形態と同じである。一方、最適 目標第 n駆動'制動力決定部 241b_nの処理は、第 1実施形態と相違している。また、 ァクチユエータ動作目標値合成部 24は、前記第 1実施形態と同様に、前記 FF則 22 で決定されたァクチユエータ動作 FF目標値のうちの FF目標第 1輪駆動系駆動 ·制 動力、 FF目標第 2輪駆動系駆動 '制動力、および FF目標ミッション減速比をそれぞ れ目標第 1輪駆動系駆動'制動力、目標第 2輪駆動系駆動,制動力、目標ミッション 減速比として出力するようにして ヽる。
[0432] 本実施形態では、前輪 Wl, W2に係わる最適目標第 n駆動 ·制動力決定部 241b_ n (n= l, 2)には、それぞれ、前記 FF則 22で決定されたァクチユエータ動作 FF目標 値のうちの FF目標第 n輪ブレーキ駆動 ·制動力と FF目標第 n輪駆動系駆動 ·制動力 との和である FF総合目標第 n輪駆動 ·制動力 FFtotaLn (これは第 1実施形態と同様 に加算器 240で求められる)と、前記ァクチユエータ動作 FB目標値決定部 20bで決 定されたァクチユエータ動作 FB目標値のうちの FB目標第 n輪ブレーキモーメント Ml dmd_nとが入力される。なお、前輪 Wl, W2に係わる最適目標第 n駆動'制動力決定 部 241b_n (n= l, 2)には、第 1実施形態の場合と同様に、実前輪横すベり角 f_act の最新値 (今回値)および推定摩擦係数/ z estmの最新値 (今回値)も入力される。さ らに、図示は省略するが、実前輪舵角 S f_actの最新値 (今回値)も最適目標第 n駆動 •制動力決定部 241b_n (n= l, 2)に入力される。
[0433] また、後輪 W3, W4に係わる最適目標第 n駆動 '制動力決定部 241b_n (n= 3, 4) には、それぞれ、前記 FF則 22で決定されたァクチユエータ動作 FF目標値のうちの F F目標第 n輪ブレーキ駆動 ·制動力が FF総合目標第 n輪駆動 ·制動力 FFtotaLnとし て入力されると共に、前記ァクチユエータ動作 FB目標値決定部 20bで決定されたァ クチユエータ動作 FB目標値のうちの FB目標第 n輪ブレーキモーメント MlbdmcLnとが 入力される。なお、後輪 W3, W4に係わる最適目標第 n駆動 '制動力決定部 241b_n (n= 3, 4)には、第 1実施形態の場合と同様に、実後輪横すベり角 i8 r_actの最新値 (今回値)および推定摩擦係数 μ estmの最新値 (今回値)も入力される。
[0434] そして、最適目標第 n駆動'制動力決定部 241b_n (n= l, 2, 3, 4)は、それぞれ、 与えられた入力を基に、目標第 n輪駆動 ·制動力 Fxcmdjiと目標第 n輪スリップ比 Scm d_nとを決定して出力する。
[0435] 以下に、図 24を参照して、各最適目標第 n駆動'制動力決定部 241b_n (n= l, 2, 3, 4)の処理を説明する。
[0436] まず、 S200において、第 n輪 Wn(n= l, 2, 3, 4)の横すベり角が実横すベり角( 詳しくは、 n= lまたは 2であるときは実前輪横すベり角 |8 f_act、 n= 3または 4であると きは実後輪横すベり角 ι8 まであって、路面摩擦係数 (第 n輪 Wnと路面との間の 摩擦係数)が推定摩擦係数/ z estmであることを前提条件とする。そして、この前提条 件の基で、前記 FF総合目標第 n輪駆動 ·制動力 FFtotaLnに対応するスリップ比 Sff_n を求める。より詳しくは、該前提条件の基で、第 n輪 Wnで発生可能な駆動'制動力の うち、 FFtotaLnに一致する力、もしくは最も近い駆動 '制動力に対応するスリップ比の 値を Sff_nとして求める。この場合、例えば前記第 1実施形態における図 19の S100の 処理で使用するマップに基づいて、 FFtotaLnに対応するスリップ比を求め、その求め たスリップ比を Sff_nとして決定すればよい。なお、 FFtotaLnに対応するスリップ比の値 力^種類存在するような場合には、 0に近い方のスリップ比が Sff_nとして決定される。 換言すれば、第 n輪 Wnのスリップ比と駆動 '制動力との関係 (前記車輪特性関係に 従う関係)において、駆動 '制動力がピーク値 (極値)となるスリップ比の値と 0との間 の範囲内において、 Sff_nが決定される。また、 FFtotaLnが上記前提条件の基で、第 n 輪 Wnで発生可能な駆動 ·制動力の値の範囲を逸脱して 、る場合には、 FFtotaLnに 最も近い駆動 '制動力の値に対応するスリップ比の値が Sff_nとして決定される。
[0437] 次いで、 S202〖こ進んで、第 n輪 Wnのスリップ比が Sff_nであるときの第 n輪 Wnの横 力 FyflLnを求める。この場合、例えば第 n輪 Wnの横すベり角と路面摩擦係数とスリツ プ比と横力との関係 (前記車輪特性関係に従う関係)を表す、あらかじめ作成された マップに基づいて、第 n輪 Wnの実横すベり角 j8 f_actまたは j8 r_actの値と、推定路面 摩擦係数 estmの値と、 Sff_nの値とから横力 Fyff_nを求めるようにすればよい。なお、 そのマップには、第 n輪 Wnの実接地荷重 Fzact_nを変数パラメータとして含めてもよ い。
[0438] 次いで、 S204に進んで、スリップ比力 ff_nであるときの第 n輪 Wnの駆動 '制動力で ある FFtotaLnと、該第 n輪 Wnの横力である Fyff_nとの合力ベクトル力 実車 1の重心 点 Gのまわりに発生するョ一方向のモーメント Mff_nを求める。具体的には、第 n輪 Wn が前輪 Wl, W2であるとき (n= lまたは 2であるとき)には、実前輪舵角 δ f_actを基に 、第 n輪 Wnから見た実車 1の重心点 Gの位置ベクトル(水平面上での位置ベクトル) を求める。そして、その位置ベクトルと上記合力ベクトルとの外積 (ベクトル積)を演算 することによって、 Mff_nを求めればよい。また、第 n輪 Wnが後輪 W3, W4であるとき( n= 3または 4であるとき)には、第 n輪 Wnから見た実車 1の重心点 Gの位置ベクトル( 水平面上での位置ベクトル。これはあら力じめ設定される)と上記合力ベクトルとの外 積(ベクトル積)を演算することによって、 Mff_nを求めればよい。なお、 Mff_nは、 FFtot al_nと FyflLnと実前輪舵角 S f_actとから(n= lまたは 2である場合)、あるいは、 FFtotal _nと Fyffjiとから(n= 3または 4である場合)、あらかじめ作成したマップに基づ!/、て求 めるようにしてもよい。このようにして求められる Mff_nは、第 n輪のフィードフォワード 要求モーメント(MlbdmcLn =0である場合の要求モーメント)に相当するものである。
[0439] 次いで、 S206に進んで、上記の如く求めた Mff_nと前記 FB目標ブレーキモーメント MlbdmcLnとを加え合わせることにより、第 n輪 Wnの路面反力による実車 1の重心点 G まわりのモーメント (ョ一方向のモーメント)の仮目標値である仮目標モーメント候補 M cand_nが算出される。この Mcand_nは、第 n輪 Wnで制御要求に従って実車 1の重心 点 Gのまわりに発生すべきョー方向のモーメントを意味する。
[0440] 次いで、 S208に進んで、第 n輪 Wn(n= l, 2, 3, 4)の横すベり角が実横すベり角
(詳しくは、 n= lまたは 2であるときは実前輪横すベり角 |8 f_act、 n= 3または 4である ときは実後輪横すベり角 ι8 まであって、路面摩擦係数 (第 n輪 Wnと路面との間の 摩擦係数)が推定摩擦係数/ z estmであることを前提条件として、最大モーメント発生 時第 n輪スリップ比 Smmaxjiを決定する。この処理は、前記第 1実施形態における図 1 9の S102で最大モーメント発生時第 n輪スリップ比 Smmax_nを求める場合と同様に実 行される。但し、 Smmaxjiは、それに対応して第 n輪 Wnで発生する駆動'制動力と横 力との合力によって実車 1の重心点 Gのまわりに発生するモーメント (最大モーメント) が前記フィードバックョーモーメント基本要求値 Ml dmdの極性(向き)に向かって最 大となるように決定される。
[0441] 次いで、 S210に進んで、上記の如く求めた Smmaxjiの値と 0との間で、ョー方向の モーメントが S206で求めた Mcand_nに一致し、または Mcand_nに最も近くなるときのス リップ比 ScancLnを求める。このように Scand_nを決定することは、前記条件(2)、 (3)を 満たすような (より詳しくは、条件 (2)を満たす範囲内で、条件 (3)を満たすような)、 駆動 ·制動力に対応するスリップ比を決定することと等価である。
[0442] この S210の処理では、例えば第 n輪 Wnの実横すベり角と路面摩擦係数とスリップ 比と駆動'制動力と横力との関係 (前記車輪特性関係に従う関係)を表す、あらかじ め作成されたマップと、実前輪舵角 S f_actとに基づいて (n= lまたは 2である場合)、 あるいは、該マップに基づいて (n= 3または 4である場合)、前記前提条件の基で、 探索的に、 ScancLnを求めればよい。
[0443] 次いで、 S212力ら S216の処理によって、目標第 n輪スリップ比 Scmd_nが決定され る。この場合、 ScancLnおよび Sff_nが共に正の値であるとき(すなわち、 ScancLn, Sff_n にそれぞれ対応する第 n輪 Wnの駆動 *制動力が共に制動方向の駆動 *制動力であ るとき)には、 Scmdjiに対応する駆動 *制動力(制動方向の駆動 *制動力)の絶対値が 、前記 FF総合目標第 n輪駆動 ·制動力 FFtotaLnの絶対値よりも小さくならな 、ように S cmd_nが決定される。
[0444] 具体的には、 S212において、 ScancLn >Sff_n>0であるか否かが判断され、この判 断結果が YESであるときには、 S214に進んで、 Scmd_nに ScancLnの値が代入される 。また、 S212の判断結果が NOであるときには、 S216に進んで、 Scmd_nに Sff_nの値 が代入される。
[0445] 次!、で、 S218に進んで、上記の如く決定した Scmd_nに対応する第 n輪 Wnの駆動 · 制動力が目標第 n輪駆動 ·制動力 Fxcmdjiとして決定される。この場合、例えばスリツ プ比と駆動 '制動力との関係を表す、あら力じめ作成されたマップに基づいて、 Scmd_ nの値に対応する Fxcmdjiが決定される。
[0446] 以上が、本実施形態における最適目標第 n駆動'制動力決定部 242b_nの処理で ある。
[0447] 補足すると、本実施形態では、前記第 1実施形態における条件(3)の代わりに、目 標第 n輪駆動 ·制動力 Fxcmdjiは、前記車輪特性関係 (第 n輪 Wnの横すベり角が実 横すベり角 /3 f_actまたは 13 r_actであって、路面摩擦係数が推定摩擦係数 μ estmで あることを前提条件としたときの車輪特性関係)に従って第 n輪 Wnで発生可能な駆 動 ·制動力の値の範囲内の値となり、且つ、該車輪特性関係に従って第 n輪 Wnで発 生可能な路面反力のうち、その駆動 ·制動力成分が Fxcmdjiに等 U、路面反力によ つて実車 1の重心点 Gのまわりに発生するョ一方向のモーメントが可能な限り前記 Mc and_nに一致する力もしくは近いこと (Mcand_nとの差の絶対値が最小になること)、とい う条件が用いられている。そして、この条件 (以下、条件(3) 'という)と、前記条件(1) 、(2)とのうち、前記条件(1)を最上位の条件、条件 (2)を次順位の条件とし、これら の条件(1)、 (2)、 (3) 'をその優先順位に従って満足するように目標第 n輪駆動 ·制 動力 Fxcmdjiが決定されている。この場合、前記 S210までの処理によって、結果的 に、条件 (2)を満たし得る範囲内で、条件 (3) 'をできるだけ満たすように、 Fxcmdjiが 決定されることとなる。すなわち、 S210の処理で決定される ScancLnに対応する駆動' 制動力(S212の判断結果が YESである場合における Scmdjiに対応する駆動 '制動 力)を目標第 n輪駆動 ·制動力 Fxcmdjiとして決定したとき、その Fxcmdjiは条件(2) を優先条件として、条件(2)、 (3) 'を満足するものとなる。さらに、 S212〜S216の処 理を経ることで、最優先の条件(1)を満たすように Fxcmdjiが決定されることとなる。
[0448] [第 4実施形態]
次に、本発明の第 4実施形態を図 25および図 26を参照して説明する。なお、本実 施形態は、前記第 1実施形態と一部の処理のみが相違するので、その相違する部分 を中心に説明し、同一部分については説明を省略する。また、本実施形態の説明で は、第 1実施形態と同一の構成部分もしくは同一の機能部分については第 1実施形 態と同じ参照符号を使用する。
[0449] 本実施形態が、第 1実施形態と相違する点は、前記図 18に示したァクチユエータ 動作目標値合成部 24の最適目標第 n駆動 ·制動力決定部 241a_n (n= l, 2, 3, 4) の処理だけである。この場合、本実施形態では、図示は省略するが、各最適目標第 n駆動 ·制動力決定部 241a_nには、前記 FF総合第 n輪駆動 ·制動力 FFtotaLnおよ び無制限時第 n輪駆'制動力 FxdmcLnにカ卩えて、推定摩擦係数/ z estmと、第 n輪 Wn の実路面反力(実駆動 ·制動力 Fxac u実横力 Fyact_n、実接地荷重 Fzactji)とが入 力される。そして、各最適目標第 n駆動'制動力決定部 241a_nは、入力された推定 摩擦係数 estmと、第 n輪 Wnの実路面反力とを基に、第 n輪 Wnの駆動'制動力と 横力との関係を推定する。さらに、その推定した関係を利用して、目標第 n輪駆動'制 動力 FxcmcLnと目標第 n輪スリップ比 Scmd_nとを決定する。
[0450] ここで、前記非特許文献 1の式(2. 42)に見られるように、各第 n輪 Wn (n= l, 2, 3 , 4)の実横すベり角がある値であるときに、該第 n輪 Wnに路面力 作用する横力 Fy_ nと駆動 ·制動力 Fx_nとの関係は、一般に、以下に示す楕円の式によって近似できる
[0451] [数 9]
Figure imgf000119_0001
なお、式 40において、 μは路面摩擦係数、 Fz_nは第 η輪 Wnの接地荷重、 Fy0_nは 第 n輪 Wnの駆動'制動力 Fx_n力^であるときの横力である。 Fy0_nは一般には、第 n 輪 Wnの横すベり角に応じて変化する。 Fy0_nの極性は、第 n輪 Wnの実すベり角の極 '性と逆になる。 [0453] 本実施形態では、この式 40が、第 n輪 Wnの駆動.制動力と横力との関係を規定す る式であるとして、この式 40を利用して、 FxcmcLnと Scmd_nとを決定する。この場合、 式 40の FyO_nを特定するために、実路面反力の値を使用する。
[0454] 以下に図 25を参照して、本実施形態での最適目標第 n駆動 ·制動力決定部 241a_ n (n= l, 2, 3, 4)の処理を説明する。図 25は、その処理を示すフローチャートであ る。
[0455] まず、 S300〖こおいて、第 n輪 Wnの実路面反力 Fxact_n, Fyact.n, Fzact_n (検出値 もしくは推定値の最新値)と推定摩擦係数 μ estm (最新値)とを基に、前記式 40の Fy 0_nの値(駆動.制動力が 0であるときの横力の値)を求める。すなわち、式 40の Fx_n、 Fy_n、 Fz_n、 μにそれぞれ Fxact_n、 Fyact_n、 Fzact_n、 μ estmの値を代入する。そし て、 FyO_nについて解くことにより(換言すれば、図中に示す式によって)、 FyO_nの値 を決定する。なお、図中の sqrt (A)は (Aは一般変数)、 Aの平方根を求める関数であ る。また、 FyO_nの極性 (符号)は、 Fyact_nと同じである。
[0456] 次!、で、 S302に進んで、前記式 40 (FyO_nの値が S300で決定した値である場合 の式 40)を制約条件 (Fx_nと Fy_nとの関係を規定する制約条件)として、前記無制限 時第 n輪駆動 ·制動力 Fxdmdjiに最も近 ヽ (一致する場合を含む)駆動 ·制動力 Fx_n を求め、これを第 n輪駆動 '制動力候補 Fxcandjiとする。この場合、式 40の制約条件 の基で、駆動'制動力 Fx_nが採り得る値の範囲は、 / z 'Fzactjiと 'Fzact_nとの間 の範囲である。なお、 μ 'Fzactjiは、第 n輪 Wnと路面との間の最大摩擦力を意味す る。従って、 FxdmcLnの値力 この範囲 [ μ -Fzact.n, μ 'Fzact_n]内の値である場 合には、 FxdmcLnがそのまま FxcancLnとして決定され、 Fxdmd_nの値力 範囲 [― μ -F zact_n, μ 'Fzact_n]を逸脱している場合には、― μ 'Fzact_nと 'Fzact_nとのうちの F xcmd_nに近 、方の値が、 FxcancLnとして決定される。
[0457] 次!、で、 S304に進んで、前記式 40 (FyO_nの値が S300で決定した値である場合 の式 40)を制約条件として、第 n輪の路面反力(駆動,制動力 Fx_nと横力 Fy_nとの合 力)が実車 1の重心点 Gのまわりに発生するョ一方向のモーメントが最大となるような 駆動 ·制動力 Fx_nの値を求め、これを最大モーメント発生時第 n輪駆動 ·制動力 Fxm max_nとする。より詳しくは、前記式 40の関係に従う Fx_nと Fy_nとの組のうち、それらの 合力が実車 1の重心点 Gのまわりに発生するョ一方向のモーメントが最大となる Fx_n , Fy_nの組を求め、その組の Fx_nの値を Fxmmax_nとして決定する。ここでの最大モー メントは、前記フィードバックョーモーメント基本要求値 Ml dmdと同じ極性に向かって 最大となるモーメントである。なお、 FxcancLnに対応する横力の極性は、 S300で求め た Fy0_nの極性( = Fyact_nの極性)と同じである。
[0458] この場合、前輪 Wl, W2に係わる Fxmmax_n (n= 1または 2である場合の Fxmmax_n )は、推定摩擦係数/ z estm (最新値)と第 n輪 Wnの実接地荷重 Fzactjiと実前輪舵角 S f_actとから算出される。また、後輪 W3, W4に係わる Fxmmax_n (n= 3または 4であ る場合の Fxmmaxji)は、推定摩擦係数 estm (最新値)と第 n輪 Wnの実接地荷重 Fz act_nとカゝら算出される。
[0459] ここで、代表的に、第 1輪 W1に係わる Fxmmax_lの算出の仕方を図 26を参照して 説明する。同図 26は、実車 1を平面視で模式的に示しており、図中の楕円 C1は、前 記式 40により表される楕円を示している。実車 1の重心点 Gのまわりに発生するモー メントが最大となるような Fx_l, Fy_lの組に対応する楕円 C1上の点は、水平面上で第 1輪 W1の中心点と実車 1の重心点 Gとを結ぶ直線 uOと平行な直線のうち、楕円 C1 に接する直線 umと楕円 C1との接点 Psである。なお、この例では、 Fxcand_lが負の( 制動方向の)駆動 ·制動力であるとし、接点 Psにおける Fx_lも負の値であるとしている
[0460] ここで、第 1輪 W1の前後方向に対して直線 um (または uO)がなす角度を図示の如 く Θとおくと、接点 Psにおける、 Fy_lの Fx_lに対する変化率 d Fy_l/ d Fx_lは、次式 41で示す如く tan Θに等しい。さらに、 tan Θは、実前輪舵角 δ から、次式 42の幾 何学的演算により求められる。
[0461]
d Fy_l/ d Fx— 1 =tan Θ ……式 41 tan θ = (— Lf'sin δ f— act
+ (df/2) · cos δ f— act) / (Lf · cos δ f— act
+ (df/2) - sin δ f act)……式 42 なお、式 42の df、 Lfの意味は、前記図 13と同じである。
[0462] 一方、前記式 40によってから、次式 43が得られる。
[0463]
d Fy_l/ d Fx— 1 = (Fy0_l/ ( μ estm ' Fzact— I))2 · (Fx_l/Fy_l) ……式 43 前記式 41、 43と前記式 40と力ゝら、接点 Psにおける Fx_lの値、すなわち、 Fxmmax.l は、次式 44〖こより与えられることとなる。
[0464]
Fxmmax— 1 = μ estm ' Fzact— 1/ sqrt(l + FyO_l / (tan θ · μ estm ' Fzact— l 2)
……式 44 この式 44と前記式 42とが、 Fxmmax_lを求めるための式である。なお、 Fxcand_lが 正の値であるときには、 Fxmmax_lは、式 44の右辺の演算結果の符合を反転させた 値となる。
[0465] 他の車輪 W2〜W4についても、上記と同様に Fxmmax_n (n= l , 2, 3)を算出する ことができる。なお、後輪 W3, W4については、実舵角は 0であるので、その値は、必 要ない。
[0466] 図 25のフローチャートの説明に戻って、 S306力 S314まで、前記第 1実施形態に おける図 19の S 104〜S 112までの処理と同じ処理が実行され、これにより、目標第 n 輪駆動 ·制動力 Fxcmdjiが決定される。
[0467] 次いで、 S316に進んで、 Fxcmdjiに対応するスリップ比を求め、それを目標第 n輪 目標スリップ比 Scmdjiとして決定する。この場合、例えば、第 n輪 Wnの駆動'制動力 とスリップ比との関係を表す、あら力じめ定められたマップに基づいて、目標第 n輪ス リップ比 Scmd_nが決定される。なお、ここで使用するマップは、 μ estmと、第 n輪 Wnの 実横すベり角 j8 Lactまたは 13 r_act (ある!/、は Fy0_n)との組に対応するマップである。
[0468] 以上の S300〜S316の処理によって、前記条件(1)〜(3)と同等の条件を満足す るように目標第 n輪駆動 ·制動力 Fxcmdjiが決定される。そして、条件(1)〜(3)の全 てを満たす目標第 n輪駆動 ·制動力 Fxcmdjiを決定できな 、場合には、優先順位の 高 、条件を優先的に満足するように目標第 n輪駆動 ·制動力 Fxcmdjiが決定される。
[0469]
[第 5実施形態]
次に、本発明の第 5実施形態を図 27を参照して説明する。なお、本実施形態は、 前記第 3実施形態と一部の処理のみが相違するので、その相違する部分を中心に 説明し、同一部分については説明を省略する。また、本実施形態の説明では、第 3 実施形態と同一の構成部分もしくは同一の機能部分については第 3実施形態と同じ 参照符号を使用する。
[0470] 本実施形態が、第 3実施形態と相違する点は、前記図 23に示したァクチユエータ 動作目標値合成部 24の最適目標第 n駆動,制動力決定部 241b_n (n= l, 2, 3, 4) の処理だけである。この場合、本実施形態では、図示は省略するが、各最適目標第 n駆動 ·制動力決定部 241b_nには、前記 FF総合第 n輪駆動 ·制動力 FFtotaLnおよ び無制限時第 n輪駆'制動力 FxdmcLnにカ卩えて、推定摩擦係数/ z estmと、第 n輪 Wn の実路面反力(実駆動 ·制動力 Fxac u実横力 Fyact_n、実接地荷重 Fzactji)とが入 力される。そして、各最適目標第 n駆動'制動力決定部 241b_nは、入力された推定 摩擦係数 estmと、第 n輪 Wnの実路面反力とを基に、前記式 40により表される第 n 輪 Wnの駆動《制動力と横力との関係を推定する。さらに、その推定した関係を利用 して、目標第 n輪駆動 ·制動力 Fxcmdjiと目標第 n輪スリップ比 Scmdjiとを決定する。
[0471] 図 27は本実施形態における各最適目標第 n駆動 ·制動力決定部 241b_nの処理を 示すフローチャートである。以下、説明すると、まず、 S400において、前記図 25の S 300と同じ処理が実行され、式 40の Fy0_nの値が求められる。
[0472] 次 、で、 S402に進んで、前記 FF総合目標第 n輪駆動 ·制動力 FFtotaLnに対応す る横力 Fyff_nを求める。すなわち、前記式 40の Fx_n、 Fz_n、 μにそれぞれ FFtotal_n、 Fzact_n、 μ estmの値を代入すると共に、式 40の FyO_nに S400で求めた値を代入し て、 Fy_nについて解くことにより(換言すれば図中に示す式によって)、 Fyff_nの値を 決定する。
[0473] 次いで、 S404に進んで、第 n輪 Wnの駆動 ·制動力力 FFtotaLnで、且つ横力が Fyff _nであったときに、これらの合力が実車 1の重心点 Gのまわりに発生するョ一方向の モーメントを求め、これを第 n輪 FFモーメント Mff_nとする。この処理は、前記図 24の S 204の処理と同様に行なわれる。このようにして求められる Mff_nは、第 n輪のフィード フォワード要求モーメント(Ml dmd_n=0である場合の要求モーメント)に相当するも のである。
[0474] 次!、で、 S406に進んで、上記の如く求めた Mff_nと前記 FB目標ブレーキモーメント MlbdmcLnとを加え合わせることにより、第 n輪 Wnの路面反力による実車 1の重心点 G まわりのモーメント (ョ一方向のモーメント)の仮目標値である仮目標モーメント候補 M cand_nが算出される。
[0475] 次 、で、 S408に進んで、前記式 40を制約条件として、第 n輪 Wnの路面反力(駆 動 ·制動力 Fx_nと横力 Fy_nとの合力)が実車 1の重心点 Gのまわりに発生するョ一方 向のモーメントが前記フィードバックョーモーメント基本要求値 Ml dmdの極性と同じ 極性に向力つて最大となるような路面反力の駆動 ·制動力 Fx_nを求め、これを最大モ 一メント発生時第 n輪駆動 ·制動力 Fxmmax_nとする。この処理は、前記図 25の S304 の処理と同じである。
[0476] 次 、で、 S410に進んで、前記式 40を制約条件として、第 n輪 Wnの路面反力(駆 動 ·制動力 Fx_nと横力 Fy_nとの合力)が実車 1の重心点 Gのまわりに発生するョ一方 向モーメントが McancLnに一致または最も近くなるときの Fx_nを求め、これを第 n輪 Wn の駆動 '制動力の候補 Fxcandji (第 n輪駆動 '制動力候補 Fxcandji)とする。ただし、 0 > Fxmmax— n > Fxcand— nまたは 0< Fxmmax— n< Fxcand— nとならな!/、よつに (換言す れば、 FxcancLnの符号が Fxmmax_nの符号と異なる力、または、 Fxcand_nの絶対値が Fxmmax_nの絶対値以下になるように)、 Fxcand_nが決定される。
[0477] この場合、 McancLnの絶対値が Fxmmax_nに対応する最大モーメントの絶対値以上 である場合には、 Fxmmax_nが FxcancLnとして決定される。
[0478] また、 McancLnの絶対値力 Fxmmax_nに対応する最大モーメントの絶対値よりも小 さい場合には、式 40の関係を満たす Fx_n, Fy_nの組のなかから、それらの合力が実 車 1の重心点 Gのまわりに発生するョ一方向のモーメントが McancLnに一致するような Fx_n, Fy_nの組が探索的に求められる。そして、その求められた Fx_nが、 FxcancLnとし て決定される。なお、この処理では、前輪 Wl, W2に関しては、式 40だけでなく、実 前輪舵角 S f_actの値も使用される。
[0479] この場合、 Fx_n, Fy_nの合力が実車 1の重心点 Gのまわりに発生するョ一方向のモ 一メントが Mcand_nに一致するような Fx_n, Fy_nの組は、 2組存在するものの、 Fxmmax _n< 0であるときには、 Fx_n>Fxmmax_nとなる方の Fx_nが Fxcand_nとして決定され、 F xmmax_n>0であるときには、 Fx_nく Fxmmax_nとなる Fx_nが Fcand_nとして決定される
[0480] 力力る S410の処理により、式 40が満たされる範囲内において、 0 > Fxmmax_n > Fx cand_nまたは 0く Fxmmax_n< Fxcand_nとならな!/、ようにしつつ、実車 1の重心点まわ りに発生するョ一方向のモーメントが McancLnに一致する力 もしくは最も近くなるよう に FxcancLnが決定される。
[0481] 次いで、 S412に進んで、 0>FFtotal_n> FxcancLnであるか否かを判断する。そし て、この判断結果が YESであるときには、 S414に進んで、 FxcancLnの値を Fxcmd_n に代入する。また、 S412の判断結果が NOであるときには、 S416に進んで、 FFtotal _nの値を Fxcmdjiに代入する。これにより、目標第 n輪駆動 ·制動力 Fxcmdが決定され る。
[0482] 次!、で、 S418に進んで、 Fxcmdjiに対応するスリップ比を目標第 n輪スリップ比 Scm d_nとして決定する。この処理は、図 25の S316の処理と同じである。
[0483] 以上が、本実施形態における最適目標第 n駆動'制動力決定部 241b_nの処理の 詳細である。
[0484] 補足すると、本実施形態では、前記第 1実施形態における条件(3)の代わりに、前 記第 3実施形態に関して説明した条件 (3) 'と同様の条件が用いられている。ただし 、この場合、前記第 3実施形態における車輪特性関係が、前記式 (40)の楕円関数 に相当する。従って、本実施形態における条件(3) 'は、より詳しくは、前記式 (40)に 従って第 n輪 Wnで発生可能な駆動 '制動力の値の範囲内の値となり、且つ、該車輪 特性関係に従って第 n輪 Wnで発生可能な路面反力のうち、その駆動 *制動力成分 が Fxcmdjiに等 、路面反力によって実車 1の重心点 Gのまわりに発生するョ一方向 のモーメントが可能な限り前記 Mcand_nに一致する力もしくは近 、こと (Mcand_nとの差 の絶対値が最小になること)、という条件である。そして、この条件 (3) 'と、前記条件( 1)、 (2)とのうち、前記条件(1)を最上位の条件、条件 (2)を次順位の条件とし、これ らの条件(1)、 (2)、 (3) 'をその優先順位に従って満足するように目標第 n輪駆動 · 制動力 FxcmcLnが決定されている。この場合、前記 S410までの処理によって、結果 的に、条件 (2)を満たし得る範囲内で、条件 (3) 'をできるだけ満たすように、 Fxcmd_ nが決定されることとなる。さらに、 S412〜S416の処理を経ることで、最優先の条件( 1)を満たすように FxcmcLnが決定されることとなる。
[0485]
次に、前記第 1〜第 5実施形態の変形態様をいくつか説明する。
[変形態様 1 ]
前記第 1〜第 5実施形態では、規範状態量として規範ョーレート y dと規範車両重 心点横すベり角 j8 dとを用いた力 次のようにしてもよい。例えば規範動特性モデル により規範ョーレート γ οΐだけを規範状態量として逐次求める。そして、実ョーレート Ύ actとその規範ョーレート γ dとの差である状態量偏差 γ errを 0に近づけるように、規 範動特性モデルと実車 1のァクチユエータ装置 3とを操作するようにしてもよい。この 場合、前記式(1)により表した規範動特性モデル 16の代わりに、例えば、図 28に示 す規範動特性モデル 56によって、規範ョーレート γ dを逐次決定するようにしてもよ い。
[0486] 以下、図 28の規範動特性モデル 56をより詳細に説明すると、この規範動特性モデ ル 56には、ステアリング角 Θ hと、実走行速度 Vactと、規範動特性モデル 56の操作 用の制御入力( γ errを 0に近づけるための制御入力)としての仮想外力モーメント(ョ 一方向のモーメント) Mvirとが制御処理周期毎に逐次入力される。なお、 0 hと Vact は最新値 (今回値)であり、 Mvirは前回値である。
[0487] そして、規範動特性モデル 56は、まず、入力された Θ h, Vactカゝら整定目標値決定 用マップ 56aにより、整定目標ョーレート γ∞を求める。該整定目標ョーレート γ∞は 、 Θ hと Vactとがそれらの入力値に定常的に維持されたとした場合のモデル車両 (本 実施形態での規範動特性モデル 56上の車両)のョーレートの収束値を意味する。な お、整定目標値決定用マップ 56aは、推定摩擦係数 estmに応じて設定しておくこ とが望ましい。
[0488] 次 、で、規範ョーレート y dの前回値 (規範動特性モデル 56から前回の制御処理 周期で求めた値)と、上記整定目標ョーレート γ∞とが、フライホイール追従則 56bに 入力される。そして、このフライホール追従制御則 56bにより、フライホイール用 FBモ 一メント Ml を決定する。ここで、本実施形態では、モデル車両のそのョー方向の回 転運動を水平なフライホイール(回転軸が鉛直方向の軸であるフライホイール)の回 転運動により表現する。そして、そのフライホイールの回転角速度を規範ョーレート γ dとして出力する。
[0489] そこで、フライホイール追従則 56bは、そのフライホイールの回転角速度、すなわち 、規範ョーレート γ οΐを前記整定目標ョーレート γ∞に収束させるように、フィードバッ ク制御則 (例えば比例則、比例 ·微分則など)により、フライホイールに入力するモー メント(フライホールに入力する外力の次元の制御入力)としての前記フライホイール 用 FBモーメント Mf を決定する。
[0490] 次いで、規範動特性モデル 56は、加算器 56cにおいて、この Mlbに、仮想外力モ 一メント Mvirをカ卩ぇ合わせることにより、フライホイールの入力(モーメント)を決定する 。そして、この入力モーメントを、処理部 56dにおいて、フライホイールの慣性モーメン ト Jにより除算することにより、フライホイールの回転角加速度を求める。さらにその回 転角加速度を積分してなる値(図では、その積分を演算子「lZs」により表している) を規範ョーレート y dとして出力する。
[0491] なお、フライホイールの慣性モーメント Jの値は、例えば実車 1の重心点 Gのまわりの 慣性モーメントの値と同一力、もしくはほぼ同一の値に設定しておけばよい。あるいは 、実車 1の走行中に同定した値を使用してもよい。
[0492] 以上が、規範動特性モデル 56の処理の詳細である。
[0493] 補足すると、この変形態様 1における規範動特性モデル 56以外の処理については 、例えば前記第 1実施形態と同様でよい。だだし、前記第 1実施形態の仮想外力決 定部 20aの処理では、例えば、 j8 err、 j8 da、 j8 overを 0として、 Mvirを決定し、その M virを規範動特性モデル 56にフィードバックする。この場合、 γ daに関しては、例えば Vact, Θ hの今回値と、 y errに応じた Mvirの仮値 Mvirtmpとから規範動特性モデル 5 6上の車両のョーレートの所定時間後の値を予測し、その予測値を γ daとして使用す ればよい。あるいは、例えば γ actの今回値、もしくは、 y actと γ dとの線形結合値を γ daとして使用するようにしてもよい。また、ァクチユエータ動作 FB目標値決定部 20 bの処理では、 iS errを 0として、前記第 1実施形態で説明した処理を実行する。なお、 この変形態様 1では、規範操作量決定部 14の処理は不要である。これ以外は、前記 第 1実施形態で説明した処理と同じでよい。
[0494]
[変形態様 2]
前記第 1〜第 5実施形態では、車両 (実車 1およびモデル車両)の横方向の並進運 動に関する基底の状態量、回転運動に関する基底の状態量として (本発明における 第 1状態量として)、車両重心点横すベり角 β、ョーレート γを使用したが、これら以 外の状態量を使用してもよい。すなわち、適当な変換マトリクスによって、車両の運動 の記述を j8と γとを基底とする系から、それ以外の状態量の組を基底とする系に変 換してちよい。
[0495] 例えば、車両の重心点の横すベり速度(走行速度 Vactの横方向成分)である車両 横すベり速度 Vyを車両重心点横すベり角 βの代わりに用いてもよい。補足すると、 車両重心点横すベり角 j8ゃョーレート γに比べて、車両の走行速度 Vactの変化が 緩慢であり、該走行速度 Vactが一定であるとみなせる場合には、次式 50a, 50bによ つて、 βならびに d β /άί ( βの時間微分値)を、それぞれ、 Vy、 dVy/dt (Vyの時間微 分値)に変換することができる。
[0496]
Vy=Vact - β ……式 50a
dVy/dt = Vact - ά β /dt ……式 50b また、例えば車両の重心点の横すベり加速度 (Vyの時間的変化率)である車両横 すべり加速度 a yとョーレート γとを基底の状態量として使用してもよ!、。
[0497] 補足すると、車両横すベり加速度 a yは、車両横すベり速度 Vy= Vact ' βの時間微 分値である。すなわち、次式 51が成り立つ。 [0498]
ay=d(Vact- j8 )/dt = dVact/dt- β +Vact-dj8/dt ……式 51 さらに、横すベり角 βゃョーレート yに比べて車両の走行速度 Vactの変化が緩慢 であり、 Vactが一定とみなせる場合 (dVact/dt^Oとみなせる場合)には、前記式 01と 式 51とに基づいて、近似的に次式 52が成立する。
[0499]
y = Vact · d j8 /dt = al 1 · Vact - β +al2-Vact- y ……式 52 従って、次式 53で示す変換式によって、 j8と γとを基底とする系は、 ayと γとを基 底とする系に変換される。
[0500] [数 10] 式 53
Figure imgf000129_0001
[0501] 上記のように、適当なマトリスクによって、車両の運動の記述を j8と γとを基底とする 系から、 Νγ≥ γとを基底とする系や、 ayと γとを基底とする系などに変換することが できる。そして、このように車両の運動の基底を変換した場合には、前記第 1〜第 5実 施形態で説明した、状態量 (ョーレートおよび車両重心点横すベり角)に係わる行列 の各要素値は、該実施形態と異なるものになるものの、それ以外に関しては、前記各 実施形態における「車両重心点横すベり角」を「車両横すベり速度 Vy」、あるいは、「 車両横すベり加速度」に読み替えればよいこととなる。従って、 Vyと γとの組、あるい は、 ayと γとの組を状態量として使用した実施形態を前記第 1〜第 5実施形態と同 様に構築できる。
[0502] なお、車両横すベり加速度 ayの代わりに、これに車両の求心加速度(= Vact' γ ) を加えた横加速度 ay, (= ay+Vact' γ)を用いてもよい。
[0503] さらに、車両の重心点での横すベり角 j8や横すベり速度 Vyの代わりに、重心点以 外の位置 (例えば後輪の位置)における車両の横すベり角や横すベり速度、横すベ り加速度、あるいは横加速度を用いてもよい。この場合も、適当なマトリクスによって、 車両の運動の記述を、車両重心点横すベり角 j8とョーレート γとを基底とする系から 、車両の重心点以外の位置における車両の横すベり角や横すベり速度、横すベり加 速度、あるいは横加速度と、ョーレート γとを基底とする系に変換することができる。
[0504] また、前記 FB分配則 20における制限対象量にあっても、実車 1あるいはモデル車 両の車両重心点横すベり角 /3の代わりに、その重心点の横すベり速度や横すベり加 速度、あるいは横加速度の予測値や今回値 (最新値)、あるいはフィルタリング値を使 用するようにしてもよい。さらに、車両の重心点以外の位置における車両の横すベり 角や横すベり速度、横すベり加速度、あるいは横加速度の予測値や今回値 (最新値 )、あるいは、フィルタリング値を制限対象量として使用するようにしてもよい。
[0505]
[変形態様 3]
前記第 1〜第 5実施形態では、状態量偏差 γ err, β errを 0に近づけるためのモデ ル操作用の制御入力として、仮想外力 Mvir, Fvirを使用した力 車両モデル操作用 制御入力は仮想外力に限られるものではない。例えば、実車 1が全ての車輪 Wl〜 W4を操舵可能とするステアリング装置を備えているか否かによらずに、モデル車両 の全ての車輪を操舵輪とする。そして、仮想外力に相当する路面反力の補償量 (補 正要求量)をモデル車両に発生させるように(ひ 、ては状態量偏差を 0に近づけるよ うに)、モデル車両の操舵輪の舵角とモデル車両の車輪の駆動 ·制動力とを操作する ようにしてもよい。この場合、規範動特性モデルが線形系(規範動特性モデル上の路 面反力に飽和特性を持たな 、系)である場合には、モデル車両の操舵輪の舵角とモ デル車両の車輪の駆動'制動力とを操作することで、モデル車両に仮想外力を付与 する場合と同等の効果を持たせることができる。
[0506] 例えば、規範動特性モデルの動特性を表す式として前記式 01の代わりに、次式 6 0を用いてもよい。
[0507] [数 11] — — — a1 1 —
r d— a22 r d + b1
( fi fjtd2+ 5 f_ft)
— a21 _b2_
+ 0
6 rjb + b5-
Fx2ft— Fxlfb
0
+ t>6 ' -式 60
Fx4fb― Fx3fb
[0508] この式 60により表される規範動特性モデルは、モデル車両の前輪の舵角の補償量
S fj と、後輪の舵角の補償量 (補正要求量) S rj と、第 1〜第 4輪の駆動'制動力 の補償量(補正要求量) Fxll , Fx21 , Fx31b, Fx41 とをモデル操作用のフィードバッ ク制御入力とするモデルである。なお、式 60における all, al2, a21, a22, bl, b2は、 前記式 01の但し書きで示したものと同じでよい。また、 b3, b4は、例えば b3 = 2'KrZ (m.Vd)、 b4= 2'Lr'KrZlとすればよい。また、式 60の右辺の第 4項は、モデル車 両の前輪の駆動'制動力の補償量 Fxllb, Fx21 がモデル車両の重心点のまわりに発 生するモーメント(これは、前記図 13のように 4個の車輪 W1〜W4を備えたモデル車 両の前輪 W1に Fxllbの駆動'制動力を発生させ、前輪 W2に Fx21 の駆動'制動力を 発生させた場合に、該モデル車両の重心点のまわりに発生するモーメントを意味す る)である。また、第 5項は、モデル車両の後輪の駆動 '制動力の補償量 Fx31 , Fx41b がモデル車両の重心点のまわりに発生するモーメント(これは、前記図 13のように 4 個の車輪 W1〜W4を備えたモデル車両の後輪 W3に Fx31 の駆動'制動力を発生さ せ、後輪 W4に Fx41 の駆動 '制動力を発生させた場合に、該モデル車両の重心点の まわりに発生するモーメントを意味する)である。従って、これらの第 4項および第 5項 の係数 b5, b6は、それぞれ、少なくともモデル車両の前輪のトレッド、後輪のトレッドに 応じて定まる係数である。該係数は、モデル車両の前輪の舵角あるいは後輪の舵角 に応じて補正してもよい。
[0509] このような式 60により表される規範動特性モデルを使用した場合、前輪の舵角の補 償量 δ fj および後輪の舵角の補償量 δ rj は、例えば次式 61a, 61bを用いて決定 するようにすればよい。式 61aは前記式 15に対応する式であり、式 61bは前記式 17 、 18a, 18bに対応する式である。
[0510] [数 12] "(5f_fbtmp Kmd trtmpl ι Kmd!strtmp12 β
'式 61 ;
β rjbtm j Kmdlstrtmp21 Kmdlstrtmp22 7 err fib |5ifbtinp Kmdlstrovl 1 Kmdlstrov12 β over
\8 rj一 δ r_fbtmpj Kmdistrov21 Kmdlstrov22 overj
'式 61b
[0511] δ f_lbtmp、 δ r jbtmpは、それぞれ前輪の舵角の補償量の仮値、後輪の舵角の補 償量の仮値を意味し、 jSerr, γ err, β over, γ overは、前記第 1実施形態で説明し たものと同じである。
[0512] また、モデル車両の第 1〜第 4輪の駆動 '制動力の補償量 (補正要求量) Fxll , Fx 2ft), Fx31b, Fx41、あるいは、前輪の駆動.制動力の補償量の差(Fx2fc— Fxllb)およ び後輪の駆動 '制動力の補償量の差 (Fx21 — Fxll )は、例えば 0とすればよい。
[0513]
[その他の変形態様]
前記第 1〜第 3実施形態では、ァクチユエータ動作目標値合成部 24の各最適目標 第 n駆動'制動力決定部 241a_nまたは 241b_n(n=l, 2, 3, 4)の処理で、実前輪横 すべり角 j8f_act、実後輪横すベり角 j8r_actを使用した。ただし、これらの代わりに、実 車両重心点横すベり角 j8 actを使用してもよい。あるいは、 j8f_act、 j8r_actのそれぞ れの代わりに、それぞれモデル車両の前輪横すベり角 j8f_d、後輪横すベり角 j8r_dを 使用したり、 j8f_act、 j8r_actの代わりに、モデル車両の車両重心点横すベり角 j8dを 使用してもよ 、。あるいは、実車 1の j8 f_act、 β r_actのそれぞれとモデル車両の 13 f_d 、 j8r_dのそれぞれとの重み付き平均値を、それぞれ j8f_act、 j8 r_actの代わりに使用 したり、実車 1の 13 actとモデル車両の 13 dとの重み付き平均値を 13 fact, β r_actの代 わりに使用してもよい。この場合、その重みに周波数特性 (例えば位相補償要素とし て機能する周波数特性)を持たせるようにしてもょ ヽ。
[0514] また、前記第 1〜第 5実施形態における各処理部の入力値や出力値 (検出値、推 定値、目標値など)は、適宜、フィルタ(ローパスフィルタ、ハイノ スフィルタ、位相補 償要素など)に通すようにしてもよい。 [0515] また、制御装置 10の各処理機能部では、第 1〜第 5実施形態と等価になるように、 あるいは、近似的に等価になるように、処理を変換したり、処理の順番を変更してもよ い。
[0516] また、各リミッタは、その入力と出力との関係が折れ線状のグラフで表されるもので なくても、例えば S字状のグラフで表されるようなリミッタを用いてもよい。
[0517] また、規範動特性モデルの精度を高めるために、該モデルを空気抵抗や、路面の 傾斜角などを加味して構成してもよ ヽ。
[0518] また、前記各実施形態で使用する各ゲインは、実走行速度 Vact、推定摩擦係数 μ estm等に応じて、逐次変更することが望ましい。
[0519] また、前記第 1〜第 5実施形態では、状態量偏差 γ err, β err (第 1状態量偏差)に 応じて規範動特性モデル 16上の車両を操作するようにした。ただし、状態量偏差 y e rr, j8 errを規範動特性モデル 16にフィードバックしないようにしてもよい。この場合に は、規範動特性モデル 16では、前記式(1)の Mvir, Fvirを常に 0にして、あるいは、 式(1)の Mvir, Fvirに関する項を省略した式によって、規範状態量を逐次求めるよう にすればよい。
[0520] また、ステアリング装置 3Bがアクティブステアリング装置にである場合には、 γ err, β errなどの状態量偏差 (本発明における第 1状態量偏差)に応じたフィードバック制 御を行なうァクチユエータ装置として、ステアリング装置 3Bだけを使用してもよい。
[0521] また、前記第 1〜第 5実施形態では、条件(1)、(2)、(3)、あるいは、条件(1)、 (2) 、(3) 'をそれらの優先順位に従って満足するように目標第 n輪駆動 ·制動力 Fxcmdji および目標第 n輪スリップ比 Scmdjiを決定するようにした。ただし、例えば条件(3)ま たは(3),だけを満足するように Fxcmdjiおよび Scmd_nを決定するようにしてもよ!、。 あるいは、条件(1)、(2)のいずれかと、条件(3)または(3) 'との 2つの条件だけをそ れらの優先順位に従って満足するように Fxcmdjiおよび Scmd_nを決定するようにして ちょい。
[0522] また、前記条件(1)あるいは(2)を満たすための各車輪 W1〜W4の駆動 *制動力 あるいはスリップ比を制限する範囲に関しては、「〇〇以下」(〇〇は、ある境界値を 意味する) t 、うように規定する代わりに、「〇〇に C1を乗じてなる値以下」と 、うよう に当該範囲を規定するようにしてもよい。ここで、 C1は補正係数を意味し、 1に近い 値に設定される。
[0523] また前記第 1〜第 5実施形態では、 4輪の車両 1を例に採って説明したが、自動二 輪車などの車両においても本発明を適用することができる。
産業上の利用可能性
[0524] 以上説明したことから明らかなように、本発明は、自動車や自動二輪車の運動、特 にョ一方向の回転運動や横方向の並進運動を高いロバスト性で所望の運動に制御 し得るものとして有用である。
図面の簡単な説明
[0525] [図 1]本発明の実施形態における車両の概略構成を示すブロック図。
[図 2]本発明の第 1実施形態における車両に備えた制御装置の全体的な制御処理 機能の概略を示す機能ブロック図。
[図 3]第 1実施形態における規範動特性モデル (車両モデル)上の車両の構造を示 す図。
[図 4]第 1実施形態における規範操作量決定部の処理機能の詳細を示す機能ブロッ ク図。
[図 5]第 1実施形態における規範操作量決定部に備える遠心力過大化防止リミッタの 処理を説明するためのグラフ。
[図 6]第 1実施形態における遠心力過大化防止リミッタの処理の他の例を説明するた めのグラフ。
[図 7]第 1実施形態における遠心力過大化防止リミッタの処理の他の例を説明するた めのグラフ。
[図 8]第 1実施形態における規範操量決定部で第 2制限済み前輪舵角 δ f_ltd2を決 定するための処理の他の例を示す機能ブロック図。
[図 9]第 1実施形態における FB分配則の処理機能を示す機能ブロック図。
[図 10]第 1実施形態における仮想外力決定部の処理の他の例を示す機能ブロック図
[図 11]第 1実施形態における γ β制限器の処理の他の例を説明するためのグラフ。 圆 12]第 1実施形態におけるァクチユエータ動作 FB目標値決定部の処理を示す機 會 ロック図。
圆 13]第 1実施形態におけるァクチユエータ動作 FB目標値決定部の処理で使用す る変数を説明するための図。
圆 14]図 14 (a) , (b)は、第 1実施形態におけるァクチユエータ動作 FB目標値決定 部の処理で使用する分配ゲインの設定例を示すグラフ。
[図 15]図 15 (a)〜 (e)は、第 1実施形態におけるァクチユエータ動作 FB目標値決定 部の処理の他の例で使用するマップを例示する図。
[図 16]図 16 (a)〜 (e)は、第 1実施形態におけるァクチユエータ動作 FB目標値決定 部の処理の他の例で使用するマップを例示する図。
圆 17]第 1実施形態における FF則の処理を示す機能ブロック図。
圆 18]第 1実施形態におけるァクチユエータ動作目標合成部の処理を示す機能プロ ック図。
圆 19]第 1実施形態におけるァクチユエータ動作目標合成部に備えた最適目標第 n 輪駆動'制動力決定部の処理を示すフローチャート。
圆 20]第 1実施形態におけるァクチユエータ動作目標合成部に備えた最適目標ァク ティブ舵角決定部の処理を示す機能ブロック図。
圆 21]第 2実施形態における FB分配則の仮想外力決定部の処理を示す機能ブロッ ク図。
圆 22]第 3実施形態におけるァクチユエータ動作 FB目標値決定部の処理を示す機 會 ロック図。
圆 23]第 3実施形態におけるァクチユエータ動作目標値合成部の処理を示す機能ブ ロック図。
圆 24]第 3実施形態におけるァクチユエータ動作目標合成部に備えた最適目標第 n 輪駆動'制動力決定部の処理を示すフローチャート。
圆 25]第 4実施形態におけるァクチユエータ動作目標合成部に備えた最適目標第 n 輪駆動'制動力決定部の処理を示すフローチャート。
[図 26]図 25の S304の処理の一例を説明するための図。 [図 27]第 5実施形態におけるァクチユエータ動作目標合成部に備えた最適目標第 n 輪駆動'制動力決定部の処理を示すフローチャート。
圆 28]本発明の実施形態の変形態様 1における規範動特性モデルの処理を示す機 會 ロック図。

Claims

請求の範囲
複数の車輪を有する車両の操縦者による該車両の運転操作状態を示す運転操作 量を検出する運転操作量検出手段と、前記車両の各車輪の駆動'制動力を操作可 能に該車両に設けられたァクチユエータ装置と、前記ァクチユエータ装置の動作を逐 次制御するァクチユエータ装置制御手段とを備えた車両の制御装置において、 実際の車両のョー方向の回転運動に関する第 1状態量の値またはョー方向の回転 運動と横方向の並進運動とに関する第 1状態量の値である第 1実状態量を検出また は推定する実状態量把握手段と、
前記第 1状態量の規範値である第 1規範値を少なくとも前記検出された運転操作 量に応じて決定する規範値決定手段と、
前記検出または推定された第 1実状態量と前記決定された第 1規範値との偏差で ある第 1状態量偏差を算出する状態量偏差算出手段と、
前記第 1状態量偏差を 0に近づけるように前記ァクチユエータ装置を操作するため の基本要求操作量を前記算出された第 1状態量偏差に応じて決定する基本要求操 作量決定手段と、
前記実際の車両の各前輪と該前輪の真後ろの後輪との組のうちの少なくとも 1つの 特定組に対し、その各特定組の前輪および後輪のそれぞれの駆動 '制動力の操作 用の制御入力である駆動'制動力操作用制御入力を、少なくとも前記基本要求操作 量の変化と該駆動,制動力操作用制御入力の変化との関係が比例関係になるように 決定する駆動,制動力操作用制御入力決定手段とを備え、
前記ァクチユエータ装置制御手段は、少なくとも前記決定された駆動 ·制動力操作 用制御入力に応じて前記ァクチユエータ装置の動作を制御することにより前記各特 定組の前輪および後輪のそれぞれの駆動'制動力を該ァクチユエータ装置を介して 操作する手段であり、
前記駆動'制動力操作用制御入力決定手段は、前記実際の車両の少なくとも 1つ の前輪の横方向運動に関する状態量と、該車両の前部の所定位置の横方向運動に 関する状態量と、該車両の少なくとも 1つの前輪に路面力 作用する横力と、これらの 状態量および横力のいずれかに対して相関性を有するパラメータとのうちのいずれ かを前輪側ゲイン調整パラメータとして用い、前記基本要求操作量の変化に対する 前記各特定組の前輪の駆動,制動力操作用制御入力の変化の割合である前輪側ゲ インが、前記前輪側ゲイン調整パラメータに応じて変化するように、少なくとも該前輪 側ゲイン調整パラメータと前記決定された基本要求操作量とに応じて該特定組の前 輪の駆動,制動力操作用制御入力を決定すると共に、前記実際の車両の少なくとも 1 つの後輪の横方向運動に関する状態量と、該車両の後部の所定位置の横方向運動 に関する状態量と、該車両の少なくとも 1つの後輪に路面力 作用する横力と、これら の状態量および横力のうちの少なくとも 、ずれか 1つに対して相関性を有するパラメ ータとのうちのいずれ力を後輪側ゲイン調整パラメータとして用い、前記基本要求操 作量の変化に対する前記各特定組の後輪の駆動,制動力操作用制御入力の変化 の割合である後輪側ゲインが、前記後輪側ゲイン調整パラメータに応じて変化するよ うに、少なくとも該後輪側ゲイン調整パラメータと前記決定された基本要求操作量と に応じて該特定組の後輪の駆動 *制動力操作用制御入力を決定することを特徴とす る車両の制御装置。
[2] 複数の車輪を有する車両の操縦者による該車両の運転操作状態を示す運転操作 量を検出する運転操作量検出手段と、前記車両の各車輪の駆動'制動力を操作可 能に該車両に設けられたァクチユエータ装置と、前記ァクチユエータ装置の動作を逐 次制御するァクチユエータ装置制御手段とを備えた車両の制御装置において、 実際の車両のョー方向の回転運動に関する第 1状態量の値またはョー方向の回転 運動と横方向の並進運動とに関する第 1状態量の値である第 1実状態量を検出また は推定する実状態量把握手段と、
前記車両の動特性を表すモデルとしてあら力じめ定められた車両モデル上での車 両の前記第 1状態量の値である第 1モデル状態量を少なくとも前記検出された運転 操作量に応じて決定するモデル状態量決定手段と、
前記検出または推定された第 1実状態量と前記決定された第 1モデル状態量との 偏差である第 1状態量偏差を算出する状態量偏差算出手段と、
前記第 1状態量偏差を 0に近づけるように前記ァクチユエータ装置を操作するため の基本要求操作量を前記算出された第 1状態量偏差に応じて決定する基本要求操 作量決定手段と、
前記実際の車両の各前輪と該前輪の真後ろの後輪との組のうちの少なくとも 1つの 特定組に対し、その各特定組の前輪および後輪のそれぞれの駆動 '制動力の操作 用の制御入力である駆動'制動力操作用制御入力を、少なくとも前記基本要求操作 量の変化と該駆動,制動力操作用制御入力の変化との間の関係が比例関係になる ように決定する駆動 ·制動力操作用制御入力決定手段と、
前記第 1状態量偏差を 0に近づけるように前記車両モデル上の車両を操作するた めの車両モデル操作用制御入力を少なくとも前記算出された第 1状態量偏差に応じ て決定する車両モデル操作用制御入力決定手段とを備え、
前記ァクチユエータ装置制御手段は、少なくとも前記決定された駆動 ·制動力操作 用制御入力に応じて前記ァクチユエータ装置の動作を制御することにより前記各特 定組の前輪および後輪のそれぞれの駆動'制動力を該ァクチユエータ装置を介して 操作する手段であり、
前記モデル状態量決定手段は、少なくとも前記検出された運転操作入力と前記決 定された車両モデル操作用制御入力とに応じて前記第 1モデル状態量を決定する 手段であり、
前記駆動'制動力操作用制御入力決定手段は、前記実際の車両である実車両ま たは前記車両モデル上での車両であるモデル車両の少なくとも 1つの前輪の横方向 運動に関する状態量と、該実車両またはモデル車両の前部の所定位置の横方向運 動に関する状態量と、該実車両またはモデル車両の少なくとも 1つの前輪に路面から 作用する横力と、これらの状態量および横力のうちの少なくともいずれ力 1つ対して 相関性を有するパラメータとのうちのいずれかを前輪側ゲイン調整パラメータとして用
V、、前記基本要求操作量の変化に対する前記各特定組の前輪の駆動 ·制動力操作 用制御入力の変化の割合である前輪側ゲインが、前記前輪側ゲイン調整パラメータ に応じて変化するように、少なくとも該前輪側ゲイン調整パラメータと前記決定された 基本要求操作量とに応じて該特定組の前輪の駆動'制動力操作用制御入力を決定 すると共に、前記実車両またはモデル車両の少なくとも 1つの後輪の横方向運動に 関する状態量と、該実車両またはモデル車両の後部の所定位置の横方向運動に関 する状態量と、該実車両またはモデル車両の少なくとも 1つの後輪に路面力 作用 する横力と、これらの状態量および横力のいずれかに対して相関性を有するパラメ一 タとのうちのいずれカゝを後輪側ゲイン調整パラメータとして用い、前記基本要求操作 量の変化に対する前記各特定組の後輪の駆動,制動力操作用制御入力の変化の 割合である後輪側ゲインが、前記後輪側ゲイン調整パラメータに応じて変化するよう に、少なくとも該後輪側ゲイン調整パラメータと前記決定された基本要求操作量と〖こ 応じて該特定組の後輪の駆動 *制動力操作用制御入力を決定することを特徴とする 車両の制御装置。
[3] 前記前輪側ゲイン調整パラメータは、前記実車両の少なくとも 1つの前輪の横方向 運動に関する状態量と前記モデル車両の少なくとも 1つの前輪の横方向運動に関す る状態量との合成値と、前記実車両の前部の所定位置の横方向運動に関する状態 量と前記モデル車両の前部の所定位置の横方向運動に関する状態量との合成値と 、前記実車両の少なくとも 1つの前輪に作用する横力と前記モデル車両の少なくとも 1つの前輪に作用する横力との合成値とのうちのいずれかの合成値であり、 前記後輪側ゲイン調整パラメータは、前記実車両の少なくとも 1つの後輪の横方向 運動に関する状態量と前記モデル車両の少なくとも 1つの後輪の横方向運動に関す る状態量との合成値と、前記実車両の後部の所定位置の横方向運動に関する状態 量と前記モデル車両の後部の所定位置の横方向運動に関する状態量との合成値と 、前記実車両の少なくとも 1つの後輪に作用する横力と前記モデル車両の少なくとも 1つの後輪に作用する横力との合成値とのうちのいずれかの合成値であることを特徴 とする請求項 2記載の車両の制御装置。
[4] 前記駆動,制動力操作用制御入力決定手段は、
前記実車両の少なくとも 1つの前輪の横方向運動に関する状態量と、該実車両の 前部の所定位置の横方向運動に関する状態量と、該実車両の少なくとも 1つの前輪 に路面力 作用する横力と、これらの状態量および横力のうちの少なくともいずれか 1つに対して相関性を有するパラメータとのうちのいずれかに応じて、前記各特定組 の前輪に対応する前記前輪側ゲインの操作用の第 1の仮値を決定する手段と、 前記実車両の少なくとも 1つの後輪の横方向運動に関する状態量と、該実車両の 後部の所定位置の横方向運動に関する状態量と、該実車両の少なくとも 1つの後輪 に路面力 作用する横力と、これらの状態量および横力のうちの少なくともいずれか
1つに対して相関性を有するパラメータとのうちのいずれかに応じて、前記各特定組 の後輪に対応する前記後輪側ゲインの操作用の第 1の仮値を決定する手段と、 前記モデル車両の少なくとも 1つの前輪の横方向運動に関する状態量と、該モデ ル車両の前部の所定位置の横方向運動に関する状態量と、該モデル車両の少なく とも 1つの前輪に路面力 作用する横力と、これらの状態量および横力のうちの少な くともいずれ力 1つに対して相関性を有するパラメータとのうちのいずれかに応じて、 前記各特定組の前輪に対応する前記前輪側ゲインの操作用の第 2の仮値を決定す る手段と、
前記モデル車両の少なくとも 1つの後輪の横方向運動に関する状態量と、該モデ ル車両の後部の所定位置の横方向運動に関する状態量と、該モデル車両の少なく とも 1つの後輪に路面力 作用する横力と、これらの状態量および横力のうちの少な くともいずれ力 1つに対して相関性を有するパラメータとのうちのいずれかに応じて、 前記各特定組の後輪に対応する前記後輪側ゲインの操作用の第 2の仮値を決定す る手段と、
前記各特定組の前輪に対応する前記前輪側ゲインの操作用の第 1の仮値と第 2の 仮値とを合成してなる前輪側ゲイン操作用合成値と、該特定組の後輪に対応する前 記後輪側ゲインの操作用の第 1の仮値と第 2の仮値とを合成してなる後輪側ゲイン操 作用合成値とを決定する手段と、
前記各特定組の前輪に対応して前記決定された前輪側ゲイン操作用合成値に前 記前輪側ゲインを比例させるように、少なくとも該前輪側ゲイン操作用合成値と前記 決定された基本要求操作量とに応じて該特定組の前輪の駆動'制動力操作用制御 入力を決定すると共に、該特定組の後輪に対応して前記決定された後輪側ゲイン操 作用合成値に前記後輪側ゲインを比例させるように、少なくとも該後輪側ゲイン操作 用合成値と前記決定された基本要求操作量とに応じて該特定組の後輪の駆動'制 動力操作用制御入力を決定する手段とを備えることを特徴とする請求項 2記載の車 両の制御装置。
[5] 前記各特定組の前輪に対応する前記前輪側ゲインは、前記前輪側ゲイン調整パラ メータに応じて値が変化する前輪側ゲイン操作用成分に比例するものであると共に、 該特定組の後輪に対応する前記後輪側ゲインは、前記後輪側ゲイン調整パラメータ に応じて値が変化する後輪側ゲイン操作用成分に比例するものであり、
前記駆動'制動力操作用制御入力決定手段は、前記各特定組の前輪に対応する 前記前輪側ゲイン操作用成分と該特定組の後輪に対応する前記後輪側ゲイン操作 用成分とがそれぞれ前記前輪側ゲイン調整パラメータおよび後輪側ゲイン調整パラ メータに応じて変化し、且つ、該前輪側ゲイン操作用成分と後輪側ゲイン操作用成 分との和を所定値に一致させる力、または該所定値に近づけるように、該前輪側ゲイ ン操作用成分および後輪側ゲイン操作用成分を前記前輪側ゲイン調整パラメータお よび後輪側ゲイン調整パラメータに応じて決定する手段と、少なくとも該前輪側ゲイン 操作用成分と前記決定された基本要求操作量とに応じて各特定組の前輪の駆動 · 制動力操作用制御入力を決定すると共に、少なくとも該後輪側ゲイン操作用成分と 前記決定された基本要求操作量とに応じて各特定組の後輪の駆動'制動力操作用 制御入力を決定する手段とを備えることを特徴とする請求項 1記載の車両の制御装 置。
[6] 前記各特定組の前輪に対応する前記前輪側ゲインは、前記前輪側ゲイン調整パラ メータに応じて値が変化する前輪側ゲイン操作用成分に比例するものであると共に、 該特定組の後輪に対応する前記後輪側ゲインは、前記後輪側ゲイン調整パラメータ に応じて値が変化する後輪側ゲイン操作用成分に比例するものであり、
前記駆動'制動力操作用制御入力決定手段は、前記各特定組の前輪に対応する 前記前輪側ゲイン操作用成分と該特定組の後輪に対応する前記後輪側ゲイン操作 用成分とがそれぞれ前記前輪側ゲイン調整パラメータおよび後輪側ゲイン調整パラ メータに応じて変化し、且つ、該前輪側ゲイン操作用成分と後輪側ゲイン操作用成 分との和を所定値に一致させる力、または該所定値に近づけるように、該前輪側ゲイ ン操作用成分および後輪側ゲイン操作用成分を前記前輪側ゲイン調整パラメータお よび後輪側ゲイン調整パラメータに応じて決定する手段と、少なくとも該前輪側ゲイン 操作用成分と前記決定された基本要求操作量とに応じて各特定組の前輪の駆動 · 制動力操作用制御入力を決定すると共に、少なくとも該後輪側ゲイン操作用成分と 前記決定された基本要求操作量とに応じて各特定組の後輪の駆動'制動力操作用 制御入力を決定する手段とを備えることを特徴とする請求項 2記載の車両の制御装 置。
[7] 前記基本要求操作量決定手段は、前記第 1状態量偏差からフィードバック制御則 によりフィードバック操作量を決定する手段と、該フィードバック操作量に応じて前記 基本要求操作量を決定する手段とから成り、該フィードバック操作量に応じて前記基 本要求操作量を決定する手段は、該フィードバック操作量が 0近傍の所定の不感帯 に存する場合には、該フィードバック操作量の値を 0として、前記基本要求操作量を 決定することを特徴とする請求項 1記載の車両の制御装置。
[8] 前記基本要求操作量決定手段は、前記第 1状態量偏差からフィードバック制御則 によりフィードバック操作量を決定する手段と、該フィードバック操作量に応じて前記 基本要求操作量を決定する手段とから成り、該フィードバック操作量に応じて前記基 本要求操作量を決定する手段は、該フィードバック操作量が 0近傍の所定の不感帯 域に存する場合には、該フィードバック操作量の値を 0として、前記基本要求操作量 を決定することを特徴とする請求項 2記載の車両の制御装置。
[9] 前記駆動'制動力操作用制御入力決定手段は、前記前輪側ゲイン調整パラメータ に対して前記各特定組の前輪に対応する前記前輪側ゲインが実質的に連続的に変 化し、且つ、前記後輪側ゲイン調整パラメータに対して各特定組の後輪に対応する 前記後輪側ゲインが実質的に連続的に変化するように各特定組の前輪および後輪 のそれぞれの駆動 ·制動力操作用制御入力を決定することを特徴とする請求項 1記 載の車両の制御装置。
[10] 前記駆動'制動力操作用制御入力決定手段は、前記前輪側ゲイン調整パラメータ に対して前記各特定組の前輪に対応する前記前輪側ゲインが実質的に連続的に変 化し、且つ、前記後輪側ゲイン調整パラメータに対して各特定組の後輪に対応する 前記後輪側ゲインが実質的に連続的に変化するように各特定組の前輪および後輪 のそれぞれの駆動 ·制動力操作用制御入力を決定することを特徴とする請求項 2記 載の車両の制御装置。
[11] 前記前輪側ゲイン調整パラメータと前記後輪側ゲイン調整パラメータとは同一種類 のパラメータであり、前記駆動'制動力操作用制御入力決定手段は、該前輪側ゲイ ン調整パラメータと後輪側ゲイン調整パラメータとが同一の値を採りつつ変化する場 合に、前記各特定組の前輪に対応する前記前輪側ゲインと該特定組の後輪に対応 する前記後輪側ゲインとの比率である前後車輪比率が、該前輪側ゲイン調整パラメ ータおよび後輪側ゲイン調整パラメータの値の変化に対して単調に変化するように 前記各特定組の前輪および後輪のそれぞれ駆動,制動力操作用制御入力を決定す ることを特徴とすることを特徴とする請求項 1記載の車両の制御装置。
[12] 前記後輪側ゲイン調整パラメータと前記後輪側ゲイン調整パラメータとは同一種類 のパラメータであり、前記駆動'制動力操作用制御入力決定手段は、該前輪側ゲイ ン調整パラメータと後輪側ゲイン調整パラメータとが同一の値を採りつつ変化する場 合に、前記各特定組の前輪に対応する前記前輪側ゲインと該特定組の後輪に対応 する前記後輪側ゲインとの比率である前後車輪比率が、該前輪側ゲイン調整パラメ ータおよび後輪側ゲイン調整パラメータの値の変化に対して単調に変化するように 前記各特定組の前輪および後輪のそれぞれ駆動,制動力操作用制御入力を決定す ることを特徴とすることを特徴とする請求項 2記載の車両の制御装置。
[13] 前記前輪または後輪の横方向運動に関する状態量は、該前輪または後輪の横す ベり角、横すベり速度、および横加速度のうちのいずれかであり、前記車両の前部ま たは後部の所定の位置の横方向運動に関する状態量は、該所定の位置の横すベり 角、横すベり速度、および横加速度のうちのいずれかであることを特徴とする請求項 1記載の車両の制御装置。
[14] 前記前輪または後輪の横方向運動に関する状態量は、該前輪または後輪の横す ベり角、横すベり速度、および横加速度のうちのいずれかであり、前記車両の前部ま たは後部の所定の位置の横方向運動に関する状態量は、該所定の位置の横すベり 角、横すベり速度、および横加速度のうちのいずれかであることを特徴とする請求項 2記載の車両の制御装置。
[15] 複数の車輪を有する車両の操縦者による該車両の運転操作状態を示す運転操作 量を検出する運転操作量検出手段と、前記車両の各車輪の駆動'制動力を操作可 能に該車両に設けられたァクチユエータ装置と、前記ァクチユエータ装置の動作を逐 次制御するァクチユエータ装置制御手段とを備えた車両の制御装置において、 実際の車両のョー方向の回転運動に関する第 1状態量の値またはョー方向の回転 運動と横方向の並進運動とに関する第 1状態量の値である第 1実状態量を検出また は推定する実状態量把握手段と、
前記第 1状態量の規範値である第 1規範値を少なくとも前記検出された運転操作 量に応じて決定する規範値決定手段と、
前記検出または推定された第 1実状態量と前記決定された第 1規範値との偏差で ある第 1状態量偏差を算出する状態量偏差算出手段と、
前記第 1状態量偏差を 0に近づけるように前記ァクチユエータ装置を操作するため の基本要求操作量を前記算出された第 1状態量偏差に応じて決定する基本要求操 作量決定手段と、
前記実際の車両の各前輪と該前輪の真後ろの後輪との組のうちの 1つの特定組に 対し、その特定組の前輪および後輪のそれぞれの駆動 '制動力の操作用の制御入 力である駆動,制動力操作用制御入力を決定する駆動,制動力操作用制御入力決 定手段とを備え、
前記ァクチユエータ装置制御手段は、少なくとも前記決定された駆動 ·制動力操作 用制御入力に応じて前記ァクチユエータ装置の動作を制御することにより前記特定 組の前輪および後輪のそれぞれの駆動 '制動力を該ァクチユエータ装置を介して操 作する手段であり、
前記駆動'制動力操作用制御入力決定手段は、前記実際の車両の少なくとも 1つ の前輪の横方向運動に関する状態量と、該車両の前部の所定位置の横方向運動に 関する状態量と、該車両の少なくとも 1つの前輪に路面力 作用する横力と、これらの 状態量および横力のいずれかに対して相関性を有するパラメータとのうちのいずれ かを前輪側ゲイン調整パラメータとして用いると共に、前記実際の車両の少なくとも 1 つの後輪の横方向運動に関する状態量と、該車両の後部の所定位置の横方向運動 に関する状態量と、該車両の少なくとも 1つの後輪に路面力 作用する横力と、これら の状態量および横力のうちの少なくとも 、ずれか 1つに対して相関性を有するパラメ ータとのうちのいずれ力を後輪側ゲイン調整パラメータとして用いて、少なくとも前記 決定された基本要求操作量と前記前輪側ゲイン調整パラメータと前記後輪側ゲイン 調整パラメータとを入力とし、且つ前記特定組の前輪および後輪のそれぞれの駆動' 制動力操作用制御入力を出力とする手段であり、その入力と出力との関係が、該入 力のうちの前記前輪側ゲイン調整パラメータのみが単調変化したときの前記特定組 の前輪の駆動 '制動力操作用制御入力の変化と、前記後輪側ゲイン調整パラメータ のみが単調変化したときの前記特定組の後輪の駆動 *制動力操作用制御入力の変 化と、前記基本要求操作量のみがその極性を同一極性に保ちつつ単調変化したと きの前記特定組の前輪および後輪のそれぞれの駆動,制動力操作用制御入力の変 化とが単調変化になるように構成されていることを特徴とする車両の制御装置。
複数の車輪を有する車両の操縦者による該車両の運転操作状態を示す運転操作 量を検出する運転操作量検出手段と、前記車両の各車輪の駆動'制動力を操作可 能に該車両に設けられたァクチユエータ装置と、前記ァクチユエータ装置の動作を逐 次制御するァクチユエータ装置制御手段とを備えた車両の制御装置において、 実際の車両のョー方向の回転運動に関する第 1状態量の値またはョー方向の回転 運動と横方向の並進運動とに関する第 1状態量の値である第 1実状態量を検出また は推定する実状態量把握手段と、
前記車両の動特性を表すモデルとしてあら力じめ定められた車両モデル上での車 両の前記第 1状態量の値である第 1モデル状態量を少なくとも前記検出された運転 操作量に応じて決定するモデル状態量決定手段と、
前記検出または推定された第 1実状態量と前記決定された第 1モデル状態量との 偏差である第 1状態量偏差を算出する状態量偏差算出手段と、
前記第 1状態量偏差を 0に近づけるように前記ァクチユエータ装置を操作するため の基本要求操作量を前記算出された第 1状態量偏差に応じて決定する基本要求操 作量決定手段と、
前記実際の車両の各前輪と該前輪の真後ろの後輪との組のうちの 1つの特定組に 対し、その特定組の前輪および後輪のそれぞれの駆動 '制動力の操作用の制御入 力である駆動,制動力操作用制御入力を決定する駆動,制動力操作用制御入力決 定手段と、
前記第 1状態量偏差を 0に近づけるように前記車両モデル上の車両を操作するた めの車両モデル操作用制御入力を少なくとも前記算出された第 1状態量偏差に応じ て決定する車両モデル操作用制御入力決定手段とを備え、
前記ァクチユエータ装置制御手段は、少なくとも前記決定された駆動 ·制動力操作 用制御入力に応じて前記ァクチユエータ装置の動作を制御することにより前記各特 定組の前輪および後輪のそれぞれの駆動'制動力を該ァクチユエータ装置を介して 操作する手段であり、
前記駆動'制動力操作用制御入力決定手段は、前記実際の車両である実車両ま たは前記車両モデル上での車両であるモデル車両の少なくとも 1つの前輪の横方向 運動に関する状態量と、該実車両またはモデル車両の前部の所定位置の横方向運 動に関する状態量と、該実車両またはモデル車両の少なくとも 1つの前輪に路面から 作用する横力と、これらの状態量および横力のうちの少なくともいずれ力 1つ対して 相関性を有するパラメータとのうちのいずれかを前輪側ゲイン調整パラメータとして用
V、ると共に、前記実車両またはモデル車両の少なくとも 1つの後輪の横方向運動に 関する状態量と、該実車両またはモデル車両の後部の所定位置の横方向運動に関 する状態量と、該実車両またはモデル車両の少なくとも 1つの後輪に路面力 作用 する横力と、これらの状態量および横力のいずれかに対して相関性を有するパラメ一 タとのうちのいずれ力を後輪側ゲイン調整パラメータとして用いて、少なくとも前記決 定された基本要求操作量と前記前輪側ゲイン調整パラメータと前記後輪側ゲイン調 整パラメータとを入力とし、且つ前記特定組の前輪および後輪のそれぞれの駆動'制 動力操作用制御入力を出力とする手段であり、その入力と出力との関係が、該入力 のうちの前記前輪側ゲイン調整パラメータのみが単調変化したときの前記特定組の 前輪の駆動 *制動力操作用制御入力の変化と、前記後輪側ゲイン調整パラメータの みが単調変化したときの前記特定組の後輪の駆動,制動力操作用制御入力の変化 と、前記基本要求操作量のみがその極性を同一極性に保ちつつ単調変化したとき の前記特定組の前輪および後輪のそれぞれの駆動,制動力操作用制御入力の変化 とが単調変化になるように構成されていることを特徴とする車両の制御装置。
[17] 前記駆動'制動力操作用制御入力決定手段の入力と出力との関係は、さらに前記 入力のうちの前記前輪側ゲイン調整パラメータのみが単調変化したときの前記特定 組の後輪の駆動,制動力操作用制御入力の変化が、前記特定組の前輪の駆動,制 動力操作用制御入力の変化と逆向きの単調変化となると共に、前記後輪側ゲイン調 整パラメータのみが単調変化したときの前記特定組の前輪の駆動 '制動力操作用制 御入力の変化が、前記特定組の後輪の駆動'制動力操作用制御入力の変化と逆向 きの単調変化となるように構成されていることを特徴とする請求項 15記載の車両の制 御装置。
[18] 前記駆動'制動力操作用制御入力決定手段の入力と出力との関係は、さらに前記 入力のうちの前記前輪側ゲイン調整パラメータのみが単調変化したときの前記特定 組の後輪の駆動,制動力操作用制御入力の変化が、前記特定組の前輪の駆動,制 動力操作用制御入力の変化と逆向きの単調変化となると共に、前記後輪側ゲイン調 整パラメータのみが単調変化したときの前記特定組の前輪の駆動 '制動力操作用制 御入力の変化が、前記特定組の後輪の駆動'制動力操作用制御入力の変化と逆向 きの単調変化となるように構成されていることを特徴とする請求項 16記載の車両の制 御装置。
PCT/JP2006/325534 2005-12-27 2006-12-21 車両の制御装置 WO2007074715A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06835095A EP1958839B1 (en) 2005-12-27 2006-12-21 Vehicle control device
JP2007533811A JP4226059B2 (ja) 2005-12-27 2006-12-21 車両の制御装置
DE602006012727T DE602006012727D1 (de) 2005-12-27 2006-12-21 Fahrzeugsteuervorrichtung
CA2633315A CA2633315C (en) 2005-12-27 2006-12-21 Vehicle control device
KR1020107014885A KR101051053B1 (ko) 2005-12-27 2006-12-21 차량 제어 장치
CN2006800482489A CN101341057B (zh) 2005-12-27 2006-12-21 车辆控制装置
US12/097,130 US8027775B2 (en) 2005-12-27 2006-12-21 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005376541 2005-12-27
JP2005-376541 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007074715A1 true WO2007074715A1 (ja) 2007-07-05

Family

ID=38217936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325534 WO2007074715A1 (ja) 2005-12-27 2006-12-21 車両の制御装置

Country Status (8)

Country Link
US (1) US8027775B2 (ja)
EP (2) EP2135787B1 (ja)
JP (2) JP4226059B2 (ja)
KR (2) KR101008321B1 (ja)
CN (1) CN101341057B (ja)
CA (1) CA2633315C (ja)
DE (1) DE602006012727D1 (ja)
WO (1) WO2007074715A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154397B2 (ja) * 2008-12-25 2013-02-27 富士重工業株式会社 車両運動制御装置
JP5143103B2 (ja) 2009-09-30 2013-02-13 日立オートモティブシステムズ株式会社 車両の運動制御装置
DE102010004113B4 (de) * 2010-01-07 2014-11-20 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ermittlung eines maximalen Reibungsbeiwerts μmax zwischen einem Reifen und einem Untergrund
CN103415435B (zh) 2010-01-25 2016-04-20 博格华纳扭矩输出系统公司 用于控制车辆的偏航力矩的方法
DE112011100789T5 (de) 2010-03-04 2013-01-10 Honda Motor Co., Ltd. Drehsteuerungsvorrichtung für ein Fahrzeug
JP5265808B2 (ja) * 2010-03-04 2013-08-14 本田技研工業株式会社 車両の旋回制御装置
JP4918149B2 (ja) * 2010-03-05 2012-04-18 本田技研工業株式会社 車両の運動制御装置
JP5542014B2 (ja) * 2010-09-10 2014-07-09 富士重工業株式会社 車両挙動制御装置
GB2486177A (en) * 2010-12-02 2012-06-13 Land Rover Uk Ltd Traction control method that allows for processing time delays
US8505942B2 (en) * 2011-01-31 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Adjustable spring assembly
JP5626480B2 (ja) * 2011-10-26 2014-11-19 日産自動車株式会社 操舵制御装置
JP5919889B2 (ja) 2012-03-01 2016-05-18 株式会社ジェイテクト 車両姿勢制御装置
AU2013341156B2 (en) 2012-11-07 2016-02-25 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US9205717B2 (en) 2012-11-07 2015-12-08 Polaris Industries Inc. Vehicle having suspension with continuous damping control
JP5644836B2 (ja) * 2012-11-12 2014-12-24 トヨタ自動車株式会社 操舵装置
JP2014148182A (ja) * 2013-01-31 2014-08-21 Hitachi Automotive Systems Ltd 車両の走行制御装置
CN105026236A (zh) * 2013-03-04 2015-11-04 丰田自动车株式会社 车辆的行驶运动控制装置
JP6416574B2 (ja) * 2014-09-29 2018-10-31 日立オートモティブシステムズ株式会社 車両の制御方法、車両制御システム、車両制御装置、および制御プログラム
BR112017008825A2 (pt) 2014-10-31 2018-03-27 Polaris Inc método e sistema de direção assistida para um veículo, métodos para controlar um sistema de direção assistida de um veículo e para controlar um veículo, método de substituição de borboleta para um veículo recreativo, e, veículo.
JP6292161B2 (ja) * 2015-04-20 2018-03-14 トヨタ自動車株式会社 制動力制御装置
EP3294582A1 (en) 2015-05-15 2018-03-21 Polaris Industries Inc. Utility vehicle
US9371073B1 (en) * 2015-06-19 2016-06-21 GM Global Technology Operations LLC Real-time determination of tire normal forces
US10029729B2 (en) * 2016-03-15 2018-07-24 GM Global Technology Operations LLC Systems and methods for corner based reference command adjustment for chassis and active safety systems
JP6202479B1 (ja) * 2016-04-22 2017-09-27 マツダ株式会社 車両用挙動制御装置
US11110913B2 (en) 2016-11-18 2021-09-07 Polaris Industries Inc. Vehicle having adjustable suspension
US10406884B2 (en) 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
US10207559B2 (en) 2017-06-15 2019-02-19 GM Global Technology Operations LLC Systems and methods for the real-time determination of tire normal forces
WO2019140026A1 (en) 2018-01-10 2019-07-18 Polaris Industries Inc. Vehicle
JP7108916B2 (ja) * 2018-03-13 2022-07-29 パナソニックIpマネジメント株式会社 車両制御装置
US10946736B2 (en) 2018-06-05 2021-03-16 Polaris Industries Inc. All-terrain vehicle
US10987987B2 (en) 2018-11-21 2021-04-27 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11119482B2 (en) * 2019-02-07 2021-09-14 GM Global Technology Operations LLC System and method for control of an autonomous vehicle
JP7109406B2 (ja) * 2019-07-01 2022-07-29 本田技研工業株式会社 車両制御装置
TWI712525B (zh) * 2019-07-04 2020-12-11 品睿綠能科技股份有限公司 電動機車之可變式連動煞車系統
US11260803B2 (en) 2019-07-26 2022-03-01 Polaris Industries Inc. Audio system for a utility vehicle
CN111391822B (zh) * 2020-03-27 2022-06-24 吉林大学 一种极限工况下汽车横纵向稳定性协同控制方法
CA3182725A1 (en) 2020-07-17 2022-01-20 Polaris Industries Inc. Adjustable suspensions and vehicle operation for off-road recreational vehicles
US20210081271A1 (en) * 2020-09-25 2021-03-18 Intel Corporation Dynamic tracing control
US20220206498A1 (en) * 2020-12-30 2022-06-30 Jingsheng Yu Lateral control in path-tracking of autonomous vehicle
DE102021201141A1 (de) * 2021-02-08 2022-08-11 Continental Automotive Gmbh Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789427A (ja) * 1993-09-21 1995-04-04 Nissan Motor Co Ltd 制動力制御装置
JPH1173596A (ja) * 1997-08-28 1999-03-16 Mitsubishi Motors Corp 車線逸脱防止装置
US6453226B1 (en) 2001-01-25 2002-09-17 Delphi Technologies, Inc. Integrated control of active tire steer and brakes
JP2003170822A (ja) * 2001-12-07 2003-06-17 Honda Motor Co Ltd ヨーモーメントフィードバック制御方法
JP2003291840A (ja) * 2002-03-29 2003-10-15 Toyoda Mach Works Ltd 車両制御装置
JP2005041386A (ja) * 2003-07-24 2005-02-17 Aisin Seiki Co Ltd 車両の操舵制御装置
WO2006013922A1 (ja) * 2004-08-06 2006-02-09 Honda Motor Co., Ltd. 車両の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4123235C2 (de) * 1991-07-13 1997-04-03 Daimler Benz Ag Verfahren zur Verhinderung von Instabilitäten des Fahrverhaltens eines Fahrzeuges
JP2861670B2 (ja) * 1992-09-10 1999-02-24 日産自動車株式会社 車両挙動制御装置
JPH06227283A (ja) * 1993-02-09 1994-08-16 Nissan Motor Co Ltd 車両の自動走行制御装置
JP3409439B2 (ja) * 1994-06-17 2003-05-26 日産自動車株式会社 左右輪と前後輪の駆動力配分総合制御装置
US5671143A (en) * 1994-11-25 1997-09-23 Itt Automotive Europe Gmbh Driving stability controller with coefficient of friction dependent limitation of the reference yaw rate
JP3577372B2 (ja) 1995-09-11 2004-10-13 富士重工業株式会社 制動力制御装置
US6547343B1 (en) 1997-09-08 2003-04-15 General Motors Corporation Brake system control
EP0995656A4 (en) 1998-05-07 2002-10-24 Unisia Jecs Corp DEVICE FOR CONTROLLING THE MOVEMENTS OF A VEHICLE VEHICLE
US6111384A (en) 1998-05-26 2000-08-29 Eastman Kodak Company Method for controlling motor speed
JP4223205B2 (ja) * 2001-08-27 2009-02-12 本田技研工業株式会社 ハイブリッド車両の駆動力分配装置
US6804594B1 (en) * 2003-03-28 2004-10-12 Delphi Technologies, Inc. Active steering for handling/stability enhancement
US6885931B2 (en) * 2003-04-24 2005-04-26 Visteon Global Technologies, Inc. Control algorithm for a yaw stability management system
US7137673B2 (en) * 2003-06-27 2006-11-21 Visteon Global Technologies, Inc. Vehicle yaw stability system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789427A (ja) * 1993-09-21 1995-04-04 Nissan Motor Co Ltd 制動力制御装置
JPH1173596A (ja) * 1997-08-28 1999-03-16 Mitsubishi Motors Corp 車線逸脱防止装置
US6453226B1 (en) 2001-01-25 2002-09-17 Delphi Technologies, Inc. Integrated control of active tire steer and brakes
JP2003170822A (ja) * 2001-12-07 2003-06-17 Honda Motor Co Ltd ヨーモーメントフィードバック制御方法
JP2003291840A (ja) * 2002-03-29 2003-10-15 Toyoda Mach Works Ltd 車両制御装置
JP2005041386A (ja) * 2003-07-24 2005-02-17 Aisin Seiki Co Ltd 車両の操舵制御装置
WO2006013922A1 (ja) * 2004-08-06 2006-02-09 Honda Motor Co., Ltd. 車両の制御装置

Also Published As

Publication number Publication date
JP2008290720A (ja) 2008-12-04
CA2633315C (en) 2011-09-13
CN101341057A (zh) 2009-01-07
JPWO2007074715A1 (ja) 2009-06-04
EP1958839A1 (en) 2008-08-20
US20090171526A1 (en) 2009-07-02
JP4226059B2 (ja) 2009-02-18
KR101008321B1 (ko) 2011-01-13
KR20100093586A (ko) 2010-08-25
CA2633315A1 (en) 2007-07-05
EP2135787B1 (en) 2011-08-31
KR20080066080A (ko) 2008-07-15
JP4672761B2 (ja) 2011-04-20
EP2135787A1 (en) 2009-12-23
EP1958839A4 (en) 2008-11-19
EP1958839B1 (en) 2010-03-03
KR101051053B1 (ko) 2011-07-22
DE602006012727D1 (de) 2010-04-15
CN101341057B (zh) 2011-07-13
US8027775B2 (en) 2011-09-27

Similar Documents

Publication Publication Date Title
WO2007074715A1 (ja) 車両の制御装置
JP4226060B2 (ja) 車両の制御装置
JP4143113B2 (ja) 車両の制御装置
JP4143112B2 (ja) 車両の制御装置
JP4226058B2 (ja) 車両の制御装置
WO2007074717A1 (ja) 車両の制御装置
JP4370605B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680048248.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007533811

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087013590

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12097130

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2633315

Country of ref document: CA

Ref document number: 2006835095

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020107014885

Country of ref document: KR