WO2007073687A1 - A g protein-coupled receptor antagonist and its use for preventing and treating alzheimer’s disease - Google Patents

A g protein-coupled receptor antagonist and its use for preventing and treating alzheimer’s disease Download PDF

Info

Publication number
WO2007073687A1
WO2007073687A1 PCT/CN2006/003595 CN2006003595W WO2007073687A1 WO 2007073687 A1 WO2007073687 A1 WO 2007073687A1 CN 2006003595 W CN2006003595 W CN 2006003595W WO 2007073687 A1 WO2007073687 A1 WO 2007073687A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor
secretase
endocytosis
disease
degree
Prior art date
Application number
PCT/CN2006/003595
Other languages
English (en)
French (fr)
Inventor
Gang Pei
Yanxiang Ni
Xiaohui Zhao
Original Assignee
Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences filed Critical Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences
Priority to US12/159,183 priority Critical patent/US8026073B2/en
Priority to EP06840640A priority patent/EP1967527A4/en
Priority to CN200680049242.3A priority patent/CN101346396B/zh
Priority to JP2008547831A priority patent/JP2009521238A/ja
Publication of WO2007073687A1 publication Critical patent/WO2007073687A1/zh
Priority to US13/214,907 priority patent/US20120004254A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5035Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on sub-cellular localization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/726G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • G01N2800/2821Alzheimer

Definitions

  • G protein-coupled receptor antagonist for preventing and treating Alzheimer's disease and application thereof
  • the present invention relates to the prevention or treatment of Alzheimer's disease or related neurological diseases, in particular to a method for screening for a medicament for preventing or treating Alzheimer's disease and /3-adrenergic receptor or opioid receptor The use of antagonists in the treatment of Alzheimer's disease. Background technique
  • Alzheimer's disease is characterized by progressive dementia and personality changes and is the most common neurodegenerative disorder associated with aging. Alzheimer's disease affects 5-11% of people over the age of 65 and 30% of those over the age of 85. Alzheimer's disease is caused by abnormal accumulation of amyloid plaques near degenerating neurons and active astrocytes.
  • Amyloid plaques are mainly composed of amyloid. It is a neuropathological marker of Alzheimer's disease and its formation is considered to be the main cause of Alzheimer's disease. In addition, recent studies have revealed that diffuse oligomerization of A/S can also be neurotoxic and associated with Alzheimer's disease (Nature 416, 535-9, 2002).
  • the ⁇ precursor protein ( ⁇ ) is sequentially formed by sequential cleavage with ⁇ -secretase. As shown in Figure 1, ⁇ -secretase cleaves the ⁇ precursor protein to produce a soluble ⁇ - ⁇ fragment and a C99 fragment, which is subsequently cleaved by ⁇ -secretase to produce a C60 fragment.
  • AjS has at least two forms, namely 40 amino acid forms of ⁇ 4 ⁇ and 42 amino acid forms of ⁇ 42 .
  • the 42 amino acid form of A ⁇ 42 is more likely to form amyloid plaques and is thought to be more relevant to the etiology of Alzheimer's disease.
  • ⁇ -secretase plays a key role in Alzheimer's disease by determining the ratio of the two major ⁇ /3 forms ( ⁇ /3 4() and ⁇ & 2 ).
  • the ⁇ -secretase complex includes at least four essential components: Presenilin-1 (PS1), nicastrin (NCSTN), APH-1, and PEN-2.
  • PS1 Presenilin-1
  • NCSTN nicastrin
  • APH-1 APH-1
  • PEN-2 a commonly recognized catalytic component
  • Alzheimer's disease Although the association between premature protein-1 mutations and familial Alzheimer's disease provides clues to the genetic etiology of Alzheimer's disease, familial Alzheimer's disease accounts for only a deficiency of all Alzheimer's cases. 10%. In contrast, most Alzheimer's disease is sporadic, indicating that factors other than mutations in presenilin-1 are more important in the pathogenesis of Alzheimer's disease. Therefore, it is important to study how various factors or environmental effects contribute to the pathogenesis of Alzheimer's disease.
  • a ⁇ produced by in vitro cell culture can be reduced by activating intracellular signaling pathways or membrane receptors such as muscarinic acetylcholine receptors.
  • membrane receptors such as muscarinic acetylcholine receptors.
  • ⁇ /3 levels and amyloid plaque formation are affected by somatostatin or environmental factors.
  • the shear of APP can also be regulated by neurotransmitters and synaptic activity.
  • activation of a neurotransmitter receptor associated with phosphatidylinositol hydrolysis or activation of protein kinase C can increase APP metabolism and reduce ⁇ production (Ulus and Wurtman, J. Pharm. Exp. Ther, 281, 149 (1997)).
  • U.S. Patent Nos. 6,187,756 and 6,043,224 disclose the use of ⁇ -adrenergic receptor antagonists to modulate cAMP levels to alleviate neuropathic lesions caused by abnormal expression of sputum.
  • a ⁇ -adrenergic receptor antagonist is used to inhibit APP synthesis by modulating cAMP levels.
  • regulation of APP metabolism can also be used to alleviate neuropathy associated with APP-associated amyloid plaque formation.
  • U.S. Patent No. 5,385,915 the disclosure of which is incorporated herein by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire disclosure Regulation of APP cleavage leads to regulation of the production of A ⁇ accumulated in amyloid plaques.
  • U.S. Patent No. 5,242,932 discloses the use of compounds such as chlomquine and primaquine to modulate and influence intracellular transport and cleavage of proteins (including APP) in mammalian cells.
  • Technical Solution 1 comprises the steps of: (a) activating a receptor and determining its initial degree of endocytosis, said receptor being a G protein-coupled receptor that binds to presenilin-1; (b) in the presence of a candidate agent , activating the receptor as described in (a), again determining the degree of endocytosis of the receptor; (c) determining the difference in the degree of endocytosis in (a) and (b); (d) selecting another if the difference is less than the threshold Repeat steps (a) through (c) for the candidate reagent.
  • Technical Solution 2 includes the following steps: (a) measuring the initial degree of binding of the receptor to presenilin-1 or ⁇ -secretase, which is a G protein-coupled receptor that binds to presenilin-1; The degree of binding of the receptor to presenilin-1 or ⁇ -secretase is again measured in the presence of a candidate agent as described in (a); (c) determining the difference in the degree of binding in (a) and (b); (d) Repeat steps (a) through (c) if another difference is selected if the difference is less than a certain threshold.
  • At least one of the receptors is selected from the group consisting of a beta adrenergic receptor and a delta-opioid receptor.
  • the ⁇ adrenergic receptor may be a ⁇ 2 adrenergic receptor ( ⁇ 2 ⁇ ).
  • the receptor is expressed in a cell that has been transfected with a gene encoding the receptor On.
  • the activity of ⁇ -secretase in the number of endocytic vesicles, presenilin-1 in endocytic vesicles, late endocytic vesicles and lysosomes is detected or
  • the initial degree of endocytosis and the degree of re-endocytosis were determined by the formation of amyloid/3 ( ⁇ ).
  • the initial degree of binding and the degree of recombination are determined by detecting fluorescence resonance energy transfer.
  • a receptor antagonist for endocytosis of a G protein-coupled receptor which inhibits binding to presenilin-1 during endocytosis is provided for the preparation or treatment of Alzheimer's disease or related Neuropathic drugs.
  • an agent for interfering with the binding of a G protein coupled receptor to presenilin-1 or ⁇ -secretase for the preparation of a medicament for treating or preventing Alzheimer's disease or related neuropathy in a third aspect of the invention, there is provided an agent for interfering with the binding of a G protein coupled receptor to presenilin-1 or ⁇ -secretase for the preparation of a medicament for treating or preventing Alzheimer's disease or related neuropathy .
  • an antagonist of 5-adrenergic receptor or opioid receptor is provided for the preparation of a medicament for the treatment or prevention of Alzheimer's disease or related neuropathy.
  • a ⁇ 2 adrenergic receptor (P2AR) antagonist is provided for the preparation of a medicament for the treatment or prevention of Alzheimer's disease or related neuropathy.
  • the antagonist is provided as at least one of ICI 118, 551, propranolol (butoxamine or naltrindole) for the preparation of a treatment or Prevention of Alzheimer's disease or related neuropathy drugs.
  • the antagonist is provided as ICI 118, 551 or butoxamine for the preparation of a medicament for the treatment or prevention of "Hertzheimer's disease or related neuropathy.
  • Figure 1 shows the process by which ⁇ -secretase and ⁇ -secretase act sequentially on APP to produce ⁇ .
  • is first cleaved by ⁇ -secretase to produce soluble APPs- ⁇ and C99.
  • C99 is then cleaved by ⁇ -secretase to produce ⁇ and C60.
  • Figure 2 shows the four major components of ⁇ -secretase: Presenilin, nicastrin (NCSTN), APH-1 and PEN-2.
  • Figure 3 shows the endocytic process after endonuclear activation and the transfer of endocytic vesicles to late endosomes and lysosomes (LEL).
  • Fig. 4 is a flow chart showing a method of screening for a receptor antagonist for treating or preventing Alzheimer's disease according to the present invention.
  • FIG. 5 shows stimulation of G protein coupled receptor (GPCR) to increase the production of A ⁇ in cell lines and primary cultured hippocampal cells.
  • GPCR G protein coupled receptor
  • Figure 6 shows that stimulation & adrenergic receptors enhance ⁇ -secretase activity.
  • (a) Expression substrate method The effects of Iso treatment at different times on C99 cleavage and C60 production in HE 293 cells were examined.
  • Figure 7 shows the enhancement of ⁇ -secretase activity caused by ⁇ -opioid receptor activation, and an enhanced time course.
  • SH-SY5Y neuroblastoma cells (a) and hippocampal slices (b) showed that the cell membrane fraction separated after treatment with DADLE or NALT for 30 minutes detected ⁇ -secretase activity by a fluorescent substrate method.
  • (c) shows the time course of ⁇ 2-adrenergic receptor activation enhancing ⁇ -secretase activity.
  • C6 glial cells were treated with Iso for the indicated times. The cell membrane fraction was assayed for gamma-secretase activity using a fluorogenic substrate method.
  • Figure 8 shows the correlation between receptor endocytosis and enhanced ⁇ -secretase activity.
  • a-e The ⁇ -secretase activity was measured by a fluorogenic substrate method.
  • ⁇ 2 adrenergic receptors L339, 340A mutant (&ARLL) and ⁇ 3 adrenergic receptors were not endocytosed (f) or enhanced ⁇ -secretase activity (g) after Iso treatment.
  • CTX ligament L toxin
  • Fsk forskolin
  • db-cAMP dybutyl cyclic adenosine monophosphate
  • PTX pertussis toxin
  • Dyn K44A dynamin II K44A
  • Con A concanavalin A
  • Sue sucrose solution
  • K+ dpi potassium removal Solution
  • NS RNAi non-specific RNA interference
  • /3 ⁇ 4ARm /3 ⁇ 4AR
  • Iso isoproterenol.
  • Figure 9 shows that the enhancement of ⁇ -secretase activity caused by ⁇ -opioid receptor activation cannot be eliminated by pertussis toxin (PTX).
  • PTX pertussis toxin
  • Figure 10 shows that the HEK293 cells were treated with transferrin as indicated in the intercondylar cells, and the membrane fraction was assayed for gamma-secretase activity using a fluorescent substrate method.
  • Figure 11 shows the increase in ⁇ -secretase activity and ⁇ in endocytic bodies.
  • c Immune separation of endocytic bodies and lysosomal assays showed that Iso treatment increased A
  • Figure 12 shows an increase in ⁇ -secretase activity in endocytic bodies and lysosomes after DALDE activation of ⁇ -opioid receptors.
  • Figure 13 shows that enrichment of ⁇ -secretase requires endocytic transport.
  • Figure 14 shows ⁇ -secretase activity, ⁇ production and amyloid plaque formation are enhanced in vivo, and ⁇ 2 adrenergic receptor selective antagonist ICI 118,551 effectively inhibits amyloid plaque formation.
  • ⁇ -secretase activity (a) and secretory ⁇ 4 ⁇ and ⁇ / 3 ⁇ 4 2 levels in hippocampus after acute treatment with norepinephrine (NE) or clenbuterol (Cle) in rats ) is enhanced (*P ⁇ 0.01).
  • NE norepinephrine
  • Cle clenbuterol
  • c ⁇ -g Amyloid plaques in the brain of APPswe/PSlAE9 transgenic mice were enhanced after chronic treatment with Iso(c), clenbuterol(d) or ICI 118,551(f).
  • Panels c, d and f are representative amyloid plaques of female (left) and male (right) mice.
  • Figure e is a statistical analysis of mouse amyloid plaques of panels c and d.
  • Figure g is a statistical analysis of mouse amyloid plaques of Figure f.
  • Figure 15 shows the experimental results of the animal model.
  • (a) The results of the visible platform experiment. No effect of genotype or substance on the experiment was found ( ⁇ S.MS-P - OO S ⁇
  • Figure 16 shows the experimental results of receptor subtype selective antagonists in animal models.
  • Betaxolol is a selective antagonist of the beta-adrenergic receptor that is able to cross the blood-brain barrier.
  • ICI 118,551 is a selective antagonist of the ⁇ 2 adrenergic receptor capable of passing the blood-brain barrier.
  • FIG 17 shows the experimental results of receptor subtype selective antagonists in animal models.
  • Metoprolol is a selective antagonist of the beta-adrenergic receptor that is able to cross the blood-brain barrier.
  • Figure 18 shows the results of non-transgenic mice.
  • Antagonists of the beta adrenergic receptor have no effect on non-transgenic mice, indicating that transgenes are required.
  • (c) There was no drug effect in the test ( ⁇ 0.817).
  • Figure 19 shows the results of an animal experiment with the ⁇ -opioid receptor selective antagonist naltrindole.
  • Naltrindole is a selective antagonist of ⁇ -opioid receptors that pass the blood-brain barrier.
  • (b) In the invisible platform experiment, Naltrindole treatment significantly ameliorated cognitive impairment ( 4.945, corpse ⁇ 0.030).
  • Figure 22 shows the percentage of time the mouse stayed in the platform quadrant during the 24 hours after the last invisible platform experiment.
  • Figure 23 shows the interaction of cell surface DOR and PS1.
  • Figure 23 A HEK293 cells co-transfected with donor GFP-DOR and acceptor HA-PS l (Cy3 fluorescein), before and after fluorescent bleaching with a 561 imi laser (red line) and after ( Mixed emission spectrum of blue line) (excitation wavelength 488 nm). The emission spectrum shows two regions in the same cell that have been fluorescently bleached (left) and not bleached (right). The emission of donor GFP is only increased in the area where the fluorescence is bleached.
  • Figure 23B Unmixed GFP-DOR and PSl-Cy3 images before and after acceptor fluorescent bleaching in HEK293 cells.
  • Fluorescent bleached areas are shown with white wireframes.
  • the pseudo-color magnified at the bottom shows the intensity of GFP emission from the cell surface before and after fluorescent bleaching.
  • Cell surface donor GHP-DOR emission is enhanced after fluorescent bleaching of the receptor PS1-Cy3.
  • the ruler is 10 /mi.
  • Figure 23C shows the average energy transfer efficiency of GFP-DOR and PS1-Cy3 on the cell surface. The number is the number of cells in the experiment. The data was obtained from three independent experiments. detailed description
  • the present invention relates to a method for screening for a medicament for preventing or treating Alzheimer's disease or other related neuropathy.
  • the invention also relates to the use of an adrenergic receptor or an antagonist of an opioid receptor for the treatment of Alzheimer's disease, in particular an antagonist of the beta-adrenergic receptor and the delta-opioid receptor.
  • an antagonist of ⁇ -adrenergic receptors in the treatment of Alzheimer's disease and a new use of an antagonist of ⁇ -opioid receptors in the treatment of Alzheimer's disease.
  • the invention also relates to methods for screening for agents that may be used to treat Alzheimer's disease or other related neuropathy. As mentioned earlier, familial Alzheimer's disease accounts for only 10% of all Alzheimer's disease.
  • factors other than genetic factors may play an important role in the etiology of Alzheimer's disease.
  • Environmental factors such as stress, may act by activating receptors, including beta-adrenergic receptors and delta-opioid receptors in G-protein coupled receptors.
  • the central nervous system expresses several G-protein-coupled receptors, especially the ⁇ 2-adrenergic receptors, which are expressed in the hippocampus and cortex, the areas mainly involved in the pathogenesis of Alzheimer's disease. In the central nervous system, these receptors act on the signaling of adrenaline, dopamine, and opioid peptides, causing regulation of a variety of neurological functions, such as stimuli, learning, memory, and pain.
  • G protein guanine-binding protein
  • cAMP guanine-binding protein
  • clathrin-mediated endocytosis occurs in activated receptors, which not only play a key role in signal transduction but also in receptor desensitization.
  • G-protein coupled receptors after endocytosis are circulated through early endocytic vesicles, late endocytic vesicles, and lysosomes (LEL).
  • the transport of different endocytic vesicles is mediated by Rab GTPase, which itself can also serve as a marker for various vesicles.
  • the present invention is based on the inventor's innovative discovery that activation of ⁇ -adrenergic receptors (especially ⁇ 2-adrenergic receptors) or ⁇ -opioid receptors leads to the production of ⁇ -secretase in late endocytic bodies and lysosomes.
  • the accumulation has increased.
  • ⁇ -secretase is the optimal reaction condition for acid ⁇ . Therefore, the accumulation of ⁇ -secretase in the late acidic endocytic bodies and lysosomes increases, resulting in an increase in activity and an increase in the production of A ⁇ .
  • Figure 3 shows the pathway from activation of ⁇ -adrenergic receptors or ⁇ -opioid receptors to increased production of A ⁇ .
  • activation of ⁇ -adrenergic receptors and ⁇ -opioid receptors is accompanied by clathrin-mediated endocytosis, including the formation of clathrin-coated pits (CCP) and CCP detachment.
  • CCP clathrin-coated pits
  • the inventors of the present invention found that the active component of ⁇ -secretase, Presenilin-1 (PS1) constitutively binds to these receptors. As a result of this endocytosis, presenilin-1 or gamma-secretase is brought into endocytic vesicles.
  • endocytic vesicles are then transformed into late endocytic bodies and lysosomes (LEL) by Rab5 and Rab7-mediated vesicle trafficking, whereby gamma-secretase activity is enhanced here. Increased ⁇ -secretase activity leads to an increase in ⁇ production.
  • LEL late endocytic bodies and lysosomes
  • an "antagonist” includes a compound that prevents, reduces or inhibits receptor activation. Such compounds can compete with receptor activators for the same receptor binding site, or bind to different sites on the receptor and reduce the effects of the receptor activator.
  • the present invention specifically relates to methods of screening for agents that treat or prevent Alzheimer's disease or related neuropathy.
  • the screening method may be based on the ability of the candidate agent to inhibit endocytosis of a receptor that binds to presenilin-1 or gamma-secretase, or based on its ability to attenuate or eliminate binding of the receptor to presenilin-1 or gamma-secretase.
  • the method of the invention comprises measuring the presence or absence of a candidate agent in combination with presenilin-1 or gamma-secretase
  • the extent of endocytosis of the receptor, or the extent to which the receptor binds to presenilin-1 or gamma-secretase (step 41).
  • These receptors include G-protein coupled receptors introduced by endogenous or vector transfection.
  • the difference in the degree of endocytosis or binding in the presence or absence of the candidate agent is determined (step 42).
  • the degree of endocytosis can be measured by endocytosis vesicles, endocytosed presenilin-1 or ⁇ -secretase, increase in presenilin-1 or ⁇ -secretase in LEL, and ⁇ -secretase activity in LEL. Enhancement or increase in ⁇ production is achieved.
  • the extent to which the receptor binds to the presenilin-1 or gamma-secretase can be determined by any suitable method, such as fluorescence resonance energy transfer (FRET), which will be described in detail below.
  • FRET fluorescence resonance energy transfer
  • the candidate agent may be used to treat or prevent Alzheimer's disease or related neuropathy (as shown in step 43). ). If the difference is not significant, the previous step can be repeated with another candidate reagent (as shown in step 44). Note that the method illustrated in Figure 4 is shown sequentially, with one candidate reagent being tested each time, and those skilled in the art would be willing to test multiple reagents simultaneously, such as by using a multiwell plate or other high throughput method.
  • the degree of re-endocytosis of the G-protein coupled receptor and presenilin 1 in the cell is statistically lower than the initial endocytosis (preferably significantly lower)
  • the degree of re-endocytosis of G-protein coupled receptor and presenilin 1 is 60% or less of the initial endocytosis, indicating significant difference.
  • the degree of initial endocytosis refers to the degree of endocytosis that is activated by the use of the candidate agent and is determined by the degree of endocytosis.
  • the degree of endocytosis is the degree of endocytosis that is activated by the use of the candidate agent in the same test system.
  • the present invention specifically relates to the treatment or treatment of Alzheimer by administering to the human body an effective amount of an antagonist that binds to a ⁇ -adrenergic receptor (especially a ⁇ 2-adrenergic receptor) and/or a delta-opioid receptor.
  • an effective dose of the antagonist is sufficient to reduce receptor endocytosis that results in the transport of gamma-secretase to late endocytic bodies and lysosomes.
  • the present invention also relates to the use of an antagonist that binds to ⁇ -adrenergic receptors (especially ⁇ 2-adrenergic receptors) and ⁇ -opioid receptors for the production of a medicament for the treatment or prevention of Alzheimer's disease and other neuropathic diseases.
  • ⁇ -adrenergic receptors especially ⁇ 2-adrenergic receptors
  • ⁇ -opioid receptors for the production of a medicament for the treatment or prevention of Alzheimer's disease and other neuropathic diseases.
  • the effective dose of an antagonist that binds to a beta-adrenergic receptor and/or a delta-opioid receptor will depend on the mode of administration of the drug to the patient, the frequency of administration, and the components of the drug, as well as the patient's weight, sex, age and body. situation. Typically, effective doses can range from 1 ⁇ g/kg body weight to 10 mg/kg body weight per day. Although individual differences exist, one skilled in the art will be able to determine the optimal effective dose for each component. Administration to a patient can be by any suitable route of administration of a similar agent, including oral, injection, transdermal Ite, and the like.
  • the compounds or components of the invention may be used to treat Alzheimer's or other related neuropathies in a mammal (human or other mammal).
  • These compounds or components include pharmaceutically acceptable carriers and/or excipients such as physiological saline, buffer, dextrose, glycerol, ethanol, starch, and the like.
  • these compounds or components can be prepared in dosage forms commonly used in similar pharmaceuticals, including injections, tablets, capsules, patches, and the like. The preparation of these dosage forms is known in the art.
  • ⁇ 293 cells have a functional G protein-coupled receptor signaling pathway and are capable of normally secreting ⁇ /3.
  • the ⁇ 293 cells used in this experiment were transfected with ⁇ 2-adrenergic receptors and sputum mutants (APPswe;).
  • the mutant APPswe is a "Swedish” mutation in familial Alzheimer's disease, a mutation at the 670th and 671th codons.
  • C99 ⁇ -secretase substrate
  • ⁇ 2-adrenergic receptor Experiments in which HEK293 cells were co-transfected with ⁇ -secretase substrate (C99) and ⁇ 2-adrenergic receptor further confirmed that ⁇ -secretase is involved in the increase in ⁇ /3 production by ⁇ 2-adrenergic receptors.
  • C99 is a product of /3-secretase-mediated sputum shear (see Figure 1).
  • C99 is a direct substrate for gamma-secretase and a direct precursor for ⁇ .
  • Figure 5b shows that stimulation of ⁇ 2-adrenergic receptors with Iso in co-transfected HEK293 cells resulted in an increase in A ⁇ production and was comparable to the previously described cells co-transfected with APPswe and ⁇ 2-adrenergic receptors. Again, this increase can be eliminated by Pro, which has no effect in itself. Therefore, the increase in secreted A/3 production is due to an increase in the activity of ⁇ -secretase.
  • ⁇ -adrenergic receptors especially ⁇ 2-adrenergic receptors
  • ⁇ -opioid receptors potentiates the production and secretion of A ⁇ , due to the ⁇ -secretase to C99 (or similar substrate) Caused by shear enhancement.
  • Activation of ⁇ 2-adrenergic receptors increases ⁇ -secretase activity
  • the increase in the production of A ⁇ caused by activation of the ⁇ -adrenergic receptor or the ⁇ -opioid receptor described above may be caused by an increase in the expression level or activity of the ⁇ -secretase.
  • the inventors examined the effect of ⁇ 2-adrenergic receptor activation on the expression level and activity of ⁇ -secretase. As shown in Figure 6a, HEK293 transfected with C99 in Iso treatment In the cell, the production of C60 is increased. C60 is produced by C99 mediated by ⁇ -secretase. However, the same treatment did not result in any change in the expression level of PS1.
  • PS1 is the active site subunit of ⁇ -secretase, present as a heterodimer of amino and carbon-based fragments (ie, PS1-NTF and PS1-CTF). This result suggests that after activation of the ⁇ 2-adrenergic receptor, the activity of ⁇ -secretase is increased and the expression of ⁇ -secretase is not changed.
  • a fluorogenic substrate was used to directly measure the enzyme activity of ⁇ -secretase.
  • This fluorogenic substrate is based on a ⁇ -secretase-specific substrate sequence to which a fluorescent reporter molecule is attached.
  • the endogenous ⁇ -adrenergic receptor of C6 glioblastoma was stimulated for 30 minutes and the activity of ⁇ -secretase was enhanced (Fig. 6b). This effect was verified in hippocampal slices (Fig. 6c).
  • the increase in ⁇ -secretase activity caused by Iso after the absence of presenilin in mouse embryonic fibroblasts was confirmed, and the specificity of this method for ⁇ -secretase activity was verified (Fig. 6d). Taken together, these results show that activation of the ⁇ 2-adrenergic receptor stimulates ⁇ -secretase activity, resulting in increased production of ⁇ /3.
  • Activation of the receptor to enhance ⁇ -secretase activity is not limited to the ⁇ -adrenergic receptor. Similar results were obtained with endogenous ⁇ -opioid receptors that stimulated SH-SY5Y neuroblastoma (Fig. 7a) or cultured primary hippocampal cells (Fig. 7b). Further, detection of the activity of ⁇ -secretase showed that the activity of ⁇ -secretase reached a maximum at about 30 minutes of stimulation of the ⁇ 2-adrenergic receptor, and returned to the background level at about 60 minutes (Fig. ⁇ ).
  • Example 3 Enhanced ⁇ -secretase activity independent of cAMP signal
  • G protein-coupled receptors including ⁇ 2-adrenergic receptors
  • ⁇ 2-adrenergic receptors once activated, induce activation of Gs protein-dependent adenylate cyclase, resulting in elevated intracellular cAMP levels.
  • a mutant of the ⁇ 2-adrenergic receptor that does not activate the Gs protein 03 ⁇ 4AR T68F, Y132G, Y219A, or ⁇ , was used in subsequent experiments. 2 ⁇ ⁇ ). This mutant can not be eliminated ⁇ - enhanced secretion activity (FIG.
  • the cAMP signaling pathway is not involved in enhancing ⁇ -secretase activity and may also be true for ⁇ -opioid receptors.
  • the delta-opioid receptor is known to activate the pertussis toxin ( ⁇ ) sensitive Gi/o protein and to reduce cAMP levels by inhibiting adenylate cyclase.
  • Pretreatment with SH-SY5Y neuroblastoma with pertussis toxin did not alter ⁇ -secretase activity induced by DADLE stimulation (Fig. 9). This result shows that ⁇ -secretase activity caused by activation of the ⁇ -opioid receptor is not regulated by cAMP.
  • GPCR including beta-adrenergic receptors and opioid receptors
  • Figure 8c shows that the effect of Iso on gamma-secretase activity can be abolished by pretreatment with endocytic inhibitors such as concanavalin (Con A), high osmolality (Sue) and potassium-free solution (K + dpi).
  • Figure 8d shows that Iso-induced enhancement of ⁇ -secretase activity can be abolished by Dynham's dominant negative mutant Dyn K44A, which is capable of inhibiting clathrin or caveolin-mediated endocytosis. Since ⁇ 2-adrenergic receptors are mainly endocytosed by clathrin-mediated mechanisms, small interfering RNAs against clathrin heavy chains can be used to remove intracellular clathrin expression.
  • Figure 8e shows that Iso-induced enhancement of ⁇ -secretase activity can be abolished by RA interference (RNAi).
  • endocytic vesicles are transported to their destination through various specific endocytic pathways. These endocytic pathways involve Rab guanosine triphosphatase (Rab GTPase) regulated intracellular vesicle transport. It is now known that endocytic transport from the cell membrane to the early endocytosis and continued to endocytosis and lysosomes can be labeled with Rab5 and lysosomal-labeled Rab7, the dominant negative mutant Rab5, respectively. S34N and Rab7 T22N inhibition.
  • Rab GTPase Rab guanosine triphosphatase
  • the Flag antibody was used to immunoprecipitate vesicles of late endocytic bodies and lysosomes from cells transfected with Flag-Rab7, followed by early endocytosis
  • the marker EEAl early endosome antigen 1
  • the late endocytotoxin and lysosome-labeled LAMP-1 lysosome-associated membrane protein-1 confirmed the components.
  • Figure 11c late endocytic bodies and lysosomes were found in the ⁇ 2-adrenergic receptor after 1 hour of stimulation.
  • Figure 12 shows that ⁇ -secretase activity in late endocytic bodies and lysosomes is also enhanced after ⁇ -opioid receptor activation.
  • the experiment in Figure 12 was performed by stimulating SH-SY5Y neuroblastoma with 1 ⁇ DADLE for 30 minutes, then separating the subcellular fractions, and then using the components for alkaline phosphatase (AP) and fluorogenic substrate. analysis. The results showed that DADLE treatment only enhanced the ⁇ -secretase activity of the alkaline phosphatase cell fraction (*P ⁇ 0.01).
  • Dyn K44A and Rab5 S34N effectively prevented the localization of PS1 in late endocytic bodies and lysosomes after ⁇ 2-adrenergic receptor stimulation (Fig. 13a), suggesting that PS1 may be small from the cell membrane to late endocytosis. Body and lysosomal transport.
  • 0-adaptin which is capable of labeling clathrin-coated sags and vesicles, was found to stimulate ⁇ -opioid receptors in HEK293 cells 3 minutes later; PS1 and 0-adaptin and endocytic receptors form colocalization (Fig. 13b).
  • PS1 and activated ⁇ 2-adrenergic receptors or ⁇ -opioid receptors form co-endocytosis after agonist stimulation.
  • This result is not surprising because PS1 is capable of constitutively binding membrane proteins, such as ⁇ and Notch, and ⁇ 2-adrenergic receptors are capable of mediating endocytosis of other transmembrane proteins by forming heterodimers.
  • the binding of PS1 to the ⁇ 2-adrenergic receptor or the ⁇ -opioid receptor was examined by immunoprecipitation.
  • An agent capable of eliminating or attenuating the binding of presenilin 1 to the receptor can be screened by any suitable method, such as fluorescence resonance energy transfer (FRET).
  • Fluorescence resonance energy transfer is the process by which energy transfers from a close-range (O nm) donor fluorescein to a receptor luciferin. Therefore, this technique can be used to detect proteins that are physically bound together.
  • energy transfer non-radioactive energy transfer reduces the fluorescence emission of the donor. Therefore, energy transfer is detected by comparing the intensity of the fluorescence emission of the donor before and after the same sample is destroyed by the receptor fluorescein (e.g., the method of fluorescent bleaching). If energy transfer occurs, the fluorescent emission of the donor is enhanced after the fluorescent bleaching receptor.
  • GFP-labeled ⁇ -opioid receptor GFP-DOR
  • presenilin 1-Cy3 changes in energy transfer efficiency between green fluorescent protein (GFP)-labeled ⁇ -opioid receptor (GFP-DOR) and presenilin 1-Cy3 were detected before and after fluorescent bleaching in co-transfected HEK293 cells.
  • the cells were co-transfected with GFP-tagged ⁇ -opioid receptor (GFP-DOR) and HA-labeled presenilin 1 (HA-PS1).
  • the expression of HA-PS1 was detected by the first antibody of HA and the second antibody (Jackson ImmunoResearch) linked to Cy3 fluorescein, and the expression of GFP-DOR was detected by GFP fluorescein.
  • Figures 23A-23C show one of the results of such an experiment. Images were acquired using a Leica confocal microscope, including a mixed emission spectrum of the donor GFP-DOR and the receptor PS1-Cy3 fluorescein (488 nm laser excitation). It was first tested whether the intensity of donor (GFP-DOR) emission in HEK293 cells co-expressing two proteins was enhanced after fluorescent bleaching of the receptor (PSl-Cy3).
  • Figure 23A shows images of fluorescent bleached and non-fluorescent bleached areas of cells before and after fluorescent bleaching. Selected areas were bleached with a 561 nm laser within the Cy3 absorption spectrum.
  • the corresponding intensity of the GFP-DOR emitted light is greatly enhanced in the fluorescently bleached region compared to the non-bleached region of the same cell. This result shows that energy transfer occurs between GFP and Cy3, and this energy transfer can be eliminated or reduced by fluorescent bleaching of Cy3.
  • Figure 23B shows representative images of GFP-DOR and PSl-Cy3 in transfected HEK293 cells before and after 561 nm laser fluorescence bleaching of the receptor.
  • the GFP-DOR image shows that the fluorescent emission of the receptor (pseudo-color intensity image) is enhanced after fluorescent bleaching, and this enhancement occurs only in the intracellular fluorescent bleaching region.
  • the average relative energy transfer efficiency of GFP-DOR and PS1-Cy3 near the cell surface was about 22.8 ⁇ 3.9%, showing the interaction between the two.
  • cells expressing GFP-DOR were incubated with a GFP primary antibody and a secondary antibody to which Cy3 was ligated. The energy transfer efficiency of this positive control was 27.9 ⁇ 5.3%.
  • Cells expressing GFP-DOR were incubated with a primary antibody against the non-specific protein actin and a secondary antibody ligated with Cy3 as a negative control. The energy transfer efficiency of this negative control was 7.8 ⁇ 4.7%.
  • Example 8 Enhancement of ⁇ -secretase activity in animals, A/3 production and formation of amyloid plaques
  • ⁇ 2-adrenergic receptors The effects of ⁇ 2-adrenergic receptors on these Alzheimer's disease-related molecules were further investigated in animals.
  • In vivo experiments in rats showed acute injection of the adrenergic receptor endogenous ligand norepinephrine (NE) or the ⁇ 2-adrenergic receptor selective agonist d e nbuteml (Cle), the rat hippocampal ⁇ Both secretase activity (Fig. 14a) and ⁇ levels (Fig. 14b) were significantly elevated. Based on these results, long-term administration of these receptor agonists to animal models can be expected to treat pathological changes that may exacerbate Alzheimer's disease.
  • NE adrenergic receptor endogenous ligand norepinephrine
  • d e nbuteml the rat hippocampal ⁇ Both secretase activity (Fig.
  • APPswe/PSlAE9 mice and non-transgenic (NTg) littermates were grouped by sex and age.
  • the test compound is administered orally, starting from the age of 4 months and lasting for 1 or 2 months.
  • the effects of various compounds on APPswe/PSlAE9 mice and non-transgenic mice were evaluated using the Morris water maze experiment.
  • the Morris water maze experiment was developed by neuroscientist ichard G. Morris in 1984 and is now a commonly used method for studying the role of hippocampus in spatial memory formation.
  • the labyrinth in the experiment was a circular pool (1.2 m in diameter) filled with 24-25 "C water, and milk powder was added to make the water opaque.
  • a fixed space indication was placed around the pool, including the curtains with the bold pattern and the obvious The shelf of the object.
  • the mouse was carefully faced to the pool wall to the water. The mouse first received a certain amount of visible platform training (ie, two consecutive days, eight times a day), learning to swim to a pole marked elevation
  • the circular platform (10 cm in diameter) is visible.
  • the visible platform training is divided into two groups per day (ie, four trainings per group) for statistical data analysis. It can be seen that during the platform training, the platform position of each training (Northeast, Southeast) , Southwest or Northwest) and the starting position (East, South, West or North) are pseudo-random decisions.
  • the invisible platform training was also carried out for a certain number of days (i.e., 6 consecutive days, four times a day), during which the mice were allowed to find a platform placed 1.5 cm below the surface of the water. If the mouse cannot find the platform within 60 seconds, it will be directed to the platform.
  • the position of the platform remained unchanged, and the mice entered the pool in a direction randomly selected from four directions (east, south, west, or north). After each training session, the mice were left on the platform for 30 seconds before being transferred from the platform to the cage.
  • APPswe/PSlAE9 transgenic mice and non-transgenic mice were administered propranolol and nadolol to evaluate ⁇ -adrenergic receptor antagonists.
  • the effect on amyloid plaque formation APP S we/PSlAE9 transgenic mice and non-transgenic mice were grouped by sex and age matching. The compound is administered orally, from 4 months of age to 6 months. Propranolol easily crosses the blood-brain barrier and, therefore, antagonizes the ⁇ -adrenergic receptors of the central nervous system.
  • nadolol is also an antagonist of the ⁇ -adrenergic receptor, but does not pass the blood-brain barrier.
  • the mice were then subjected to spatial learning and memory testing using the Morris water maze test.
  • mice were then subjected to six days of invisible platform training and a set of training sessions were performed each day.
  • propranolol is able to antagonize the ⁇ -adrenergic receptors of the central nervous system. Since propranolol is a non-selective ⁇ -adrenergic receptor antagonist, it is further possible to study which subtype in vivo can cause the above effects by using a subtype-selective ⁇ -adrenoreceptor antagonist.
  • the subtype-selective ⁇ -adrenergic receptor antagonists used include Betaxolol (betaxolol) and ICI 118, 511. Betaxolol is a beta ⁇ -adrenergic receptor capable of passing the blood-brain barrier.
  • ICI 118,511 is a ⁇ 2-adrenergic receptor capable of passing the blood-brain barrier.
  • FIGs 17a-17d show animal experiment results similar to Figure 16.
  • Metoprolol is a beta-adrenergic receptor antagonist that is able to cross the blood-brain barrier.
  • Butoxamine is a beta2-adrenergic receptor antagonist that is able to cross the blood-brain barrier.
  • the ⁇ -adrenergic receptor antagonist mainly targets the ⁇ -adrenergic receptor of the central nervous system to achieve a decrease in ⁇ -secretase activity and ⁇ production. Further, most of the required relief of spatial memory deficits can be achieved by inhibiting the ⁇ 2-adrenergic receptors, while inhibiting the ⁇ -adrenergic receptors from acting. Therefore, according to the object of the present invention, a ⁇ -adrenergic receptor antagonist for controlling or treating Alzheimer's disease should be more likely to act on the ⁇ 2-adrenergic receptor.
  • Figures 19a-19c show animal experiments similar to Figure 15, but using ⁇ -opioid receptor antagonists ⁇
  • Naltrindoleo Naltrindole is a ⁇ -opioid receptor antagonist that passes through the blood-brain barrier.
  • mice 4 months old APPswe/PSlAE9 double transgenic mice were given normal saline (Sal), 2 mg/kg cl e nbuterol (/3 ⁇ 4-adrenergic receptor agonist) or 1 mg/kg ICI 118. , 551 (/3 ⁇ 4-adrenergic receptor antagonist) 30 days later, spatial learning and memory were examined using the Morris water maze test (described above).
  • the labyrinth in the experiment was a circular pool (1.2 m in diameter) filled with water at 24-25 °C, and milk powder was added to make the water opaque. Place a fixed space indication around the pool, including a curtain with a bold pattern and a shelf with visible objects.
  • the mice were carefully faced to the pool wall to the water.
  • the mice were first trained on a number of visible platforms (i.e., two consecutive days, eight times a day) and learned to swim on a raised circular platform (10 cm in diameter) marked with a pole. It can be seen that the platform training is divided into two groups per day (ie, four trainings per group) for statistical data analysis. It can be seen that during the platform training, the platform position (Northeast, Southeast, Southwest or Northwest) and the starting position (East, South, West or North) are pseudo-randomly determined.
  • Invisible platform training was continued for 6 days (4 trainings per day) and the mice were looking for a platform 1.5 cm below the surface of the water. If the platform cannot be found within 60 seconds, the mouse is led to the platform.
  • the position of the platform remains unchanged, and the mouse enters the pool from one of the four directions (east, south, west, or north) in a pseudo-randomly selected direction.
  • the mice were left on the platform for 30 seconds before being transferred from the platform to the cage.
  • Figure 21 shows the escape time of the control panel, clenbuterol treatment, and ICI 118,551 treated double transgenic and non-transgenic mice in an invisible platform experiment of the Morris water maze experiment.
  • Figure 22 shows the percentage of time the mouse stayed in the platform quadrant during the 24 hours after the last invisible platform experiment.
  • RNAi plasmid of the human clathrin heavy chain was designed as follows: 5'-GCTGGGAAAACTCTTCAGATT-3 '.
  • the control (NS) RNAi plasmid was 5 '-GGCCGCAAAGACCTTGTCCTTA-3. Animal and drug treatment
  • mice purchased from The Jackson Laboratory
  • cannula front-back, -0.6 mm; left-right, -1.2 mm; dorsal-ventral, -1.8 mm
  • mice were perfused with normal saline after anesthesia.
  • the brain was isolated and the hemisphere was fixed with 4% polycarboxylic acid for 5 hours at 4 °C.
  • the half brain was sliced into 10 micrometers. Sections were incubated with A/3 antibody 6E10 and incubated with TRITC-linked secondary antibodies. Sliced After observation with a laser confocal microscope (Leica TCS SP2). The area of amyloid plaques was counted using Image-Pro Plus 5.1 software (Media Cybernetic). Hippocampus culture and acute section preparation
  • Primary hippocampal culture was prepared from newborn SD rats and electroporated with Amaxa Nucleofector system.
  • B27/neurobasal medium (Invitrogen) was used for agonist treatment experiments two weeks later. Acute hippocampal slices were prepared using 8 week old SD rats. Enzyme-linked immunosorbent assay (ELISA) amyloid beta
  • the cells were treated with Iso or DADLE for 1 hour and continued for 6 hours.
  • Medium for enzyme-linked immunosorbent assay kit
  • ⁇ 293 cells or rat hippocampal slices were lysed in RIPA buffer.
  • Flag-tagged receptors and endogenous ⁇ -opioid receptors were immunoprecipitated with agarose beads or ⁇ -opioid receptor antibodies (Santa Cruz Biotech) linked to the Flag antibody.
  • the immunoprecipitated complex was separated by SDS-PAGE and detected by immunoblotting.
  • the experimental procedure is as described in Journal of Biological Chemistry 276, 481-7 (2001). After lysis of HEK293 cells, the cells were divided into aliquots containing 50 ⁇ g of total protein and centrifuged at 13, 000 X g for 15 minutes. The cell membrane fraction was resuspended and incubated with 50 ⁇ l of the reaction buffer containing the protease inhibitors 1, 10-phenoline (plienanthroline), aprotinin and leupeptin, and incubation at 37 °C. hour. After the completion of the reaction, the C60 produced in the membrane fraction was detected by immunoblotting. Fluorescent substrate method
  • HEK293 cells co-transfected with HA-C99 and DOR were starved for 2 hours with medium containing no methionine and serum (Invitrogen), and 500) tiCi [ 35 S] methionine (GE Healthcare) Pulsed for 1 hour with or without DADLE stimulation. The cells were then followed for 3 hours in medium containing excess methionine. C99 in the cell lysate was immunoprecipitated with HA antibody and analyzed by autoradiography. Immune separation of late endocytic bodies and lysosomes
  • HEK293 cells transfected with HA-labeled receptors and/or GFP-Rab7 or GFP-Rab7 T22N were first incubated with HA antibody for 30 minutes, then treated with an agonist and fixed.
  • cells were treated with agonists and fixed.
  • the sections were first treated with Iso or DADLE and then fixed and sectioned.
  • HEK293 cells were co-transfected with GFP-DOR and HA-PS1.
  • HA-PS1 expression was detected with a primary antibody to HA and a second antibody to Cy3 fluorescein
  • GFP-DOR expression was detected by GFP fluorescence.
  • the fluorescence spectrum of the cells of GFP-DOR or PSl-Cy3 was acquired in ⁇ mode using a 488 nm laser.
  • acceptor fluorescent bleaching was performed using Leica software. The selected cell surface region was fluorescently bleached with 561 nm laser for Cy3 fluorescein.
  • the Cy3 signal in HEK293 cells co-transfected with GFP-PS1 and HA-PS1 decreased by an average of 84 ⁇ 5.3% (n 50) after fluorescent bleaching.
  • the energy transfer is expressed as an increase in the GFP-DORCi consensus signal after PSl-Cy3 (receptor) fluorescent bleaching.
  • the relative energy efficiency is calculated as (l-[Cy3 I pre-bleaching/Cy3/after bleaching]) X 100%. Energy transfer analysis was performed on the cell surface without fluorescent bleaching as a control. data analysis

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

预防和治疗阿尔兹海默症的 G蛋白偶联受体拮抗剂及其应用 技术领域
本发明涉及预防或治疗阿尔兹海默症 (Alzheimer's disease) 或相关的神经疾病, 尤 其是涉及筛选预防或治疗阿尔兹海默症的药物的方法及 /3-肾上腺素受体或阿片受体的 拮抗剂在治疗阿尔兹海默症中的应用。 背景技术
阿尔兹海默症的特点为渐进性的痴呆和性格变化, 是最常见的与衰老相关的神经退行 性病变。 阿尔兹海默症影响 5-11%的 65岁以上年齢人群, 30%的 85岁以上年龄人群。 阿尔 兹海默症是由退化的神经元和活性的星型胶质细胞附近的淀粉样蛋白斑异常积累引起的。
淀粉样蛋白斑主要由淀粉样蛋白 组成。它是阿尔兹海默症的神经病理学标志, 其 形成被认为是阿尔兹海默症的主要病因。 此外, 最近的研究揭示了可弥散的寡聚化的 A/S也 可以是具有神经毒性而且和阿尔兹海默症相关 (Nature 416, 535-9, 2002)。
Αβ ^ Αβ前体蛋白 (ΑΡΡ)依次通过 和 γ-分泌酶的顺序剪切形成的。 如图 1所示, β-分 泌酶剪切 Αβ前体蛋白后产生可溶的 ΑΡ -β片断和 C99片断, 后者随后被 γ-分泌酶剪切后产 生 和 C60片断。
AjS至少有两种形式, 即 40个氨基酸形式的 Αβ4ο和 42个氨基酸形式的 Αβ42。 42个氨 基酸形式的 Αβ42更容易形成淀粉样蛋白斑, 被认为和阿尔兹海默症的病因更相关。 γ-分泌酶 因为决定两种主要 Α/3形式 (Α/34()和 Α&2)的比例而在阿尔兹海默症中起着关键作用。
如图 2 所示, γ-分泌酶复合物包括至少四种必需组分: 早老蛋白 -1(PS1), nicastrin (NCSTN), APH-1,和 PEN-2。 其中一般认定的催化组分早老蛋白 -1的突变是引起大多数家族 型阿尔兹海默症的原因,由此推断 γ-分泌酶在阿尔兹海默症的病理发生中起重要作用 (至少在 家族型阿尔兹海默症的病理发生中)。
尽管早老蛋白 -1 的突变和家族型阿尔兹海默症之间的关联为阿尔兹海默症的遗传病因 提供了线索, 家族型阿尔兹海默症仅仅占所有阿尔兹海默症病例的不足 10%。 相比之下, 大 多数阿尔兹海默症是散发型的,说明早老蛋白 -1的突变以外的因素在阿尔兹海默症的病理发 生中更重要。 因此, 研究各种因素或环境作用如何对阿尔兹海默症的病理发生起作用是非常 重要的。
以前的研究已经显示了体外细胞培养产生的 Αβ能够通过激活胞内信号通路或膜受体 如毒蕈碱型乙酰胆碱受体被降低。 最近的证据也显示了 Α/3水平和淀粉样蛋白斑的形成受生 长抑素 (somatostatin)或环境因素影响。
APP 的剪切也能够被神经递质和突触活性调控。 例如, 激活与磷脂酰肌醇水解或激活 蛋白激酶 C相关的神经递质受体能够提高 APP的代谢并降低 Αβ产生(Ulus and Wurtman, J. Pharm. Exp. Ther, 281,149 (1997))。 另一方面, 激活与 cAMP的产生相关的神经递质受体能
—1 - 确 认 本 够抑制星型胶质细胞瘤细胞和原代星型胶质细胞中的组成型的和蛋白激酶 C/磷脂酰肌醇激 活的分泌型 APP的产生 (Lee et al., J. Neurochem., 68,1830 (1997))。 cAMP对分泌型 APP的产 生的作用可能是星型胶质细胞特异的, 因为 cAMP和蛋白激酶 A激活分泌型 APP的产生是 在嗜铬细胞瘤 PC-12细胞和人胚胎肾细胞中报导的 (Xu et al., PNAS USA, 93, 4081 (1996); Marambaud et al., J. Neurochem., 67, 2616 (1996))0 任何情况下, 以上结果提示了阿尔兹海默 症中由于神经元退化和神经元突触丢失而引起的神经递质水平或第二信使信号转递的改变 能够破坏 APP的剪切并且导致产生淀粉样的或具有神经毒性的 APP片断的积累。
进一步, 调控 β-肾上腺素受体, 弓 I起 cAMP升高的同时能够增加星型胶质细胞中' APP 的合成。 基于此发现, 美国专利 6, 187, 756和 6, 043, 224报道了利用 β-肾上腺素受体拮抗剂 调控 cAMP水平来缓解 ΑΡΡ异常表达导致的神经性病变的方法。 此方法中, β-肾上腺素受 体拮抗剂被用来通过调控 cAMP水平抑制 APP合成。
除了抑制 APP合成, 调控 APP代谢也可以被用来缓解 APP相关的淀粉样蛋白斑形成 弓 1起的神经性病变。 例如, 美国专利 5,385,915报道了利用调控蛋白质磷酸化的试剂 (即影响 激酶或磷酸酶的试剂)改变 APP剪切的方法和组合方式。对 APP剪切的调控进而导致对淀粉 样蛋白斑中积累的 Αβ的产生的调控。类似的, 在美国专利 5,242,932报道了利用 chlomquine 和 primaquine等化合物调控和影响哺乳动物细胞内蛋白质 (包括 APP)细胞内转运和剪切的方 法。
虽然上述报道看来对调控 APP的产生和代谢以及对淀粉样蛋白斑形成是有效的, 但 是还是有必要发展更多的治疗和预防阿尔兹海默症的方法和试剂。 发明内容
本发明的目的是提供用于筛选治疗或预防阿尔兹海默症或相关神经性病变试剂的方 法, 进而提供一种试剂在治疗阿尔兹海默症中的应用。
在本发明的第一方面, 提供制备、 筛选治疗或预防阿尔兹海默症或相关神经性病变 试剂的方法, 并提供两种技术方案。 技术方案 1包括以下步骤: (a)激活受体并确定其初 始内吞程度, 所述受体为与早老蛋白 -1结合的 G蛋白偶联受体; (b)在一种候选试剂存 在下, 如 (a)所述激活受体, 再次确定受体的内吞程度; (c)确定 (a)和 (b)中的内吞程度的 差异; (d)如果差异小于阈值则选择另一候选试剂重复步骤 (a)至 (c)。 技术方案 2包括以 下步骤: (a)测量受体与早老蛋白 -1或 γ-分泌酶的初始结合程度, 所述受体为与早老蛋白 -1结合的 G蛋白偶联受体; (b)在一种候选试剂存在下, 如 (a)所述再次测量受体与早老 蛋白 -1或 γ-分泌酶的结合程度; (c)确定 (a)和 (b)中的结合程度的差异; (d)如果差异小于 一定阈值则选择另一候选试剂重复步骤 (a)至 (c)。
在本发明的一个优选例中, 所述受体中至少一种选自 β肾上腺素受体和 δ-阿片受体。 在本发明的另一个优选例中, 所述 β肾上腺素受体可以为 β2肾上腺素受体 (β2ΑΓΙ)。 在本发明的另一个优选例中, 所述受体被表达于已经转染了编码此受体基因的细胞 上。
在本发明的另一个优选例中,通过检测内吞小泡的数量、 内吞小泡中的早老蛋白 -1、晚 内吞小泡和溶酶体 (LEL)中 γ-分泌酶的活性或淀粉样蛋白 /3(Αβ)的形成而确定所述的初始内 吞程度和再次内吞程度。
在本发明的另一个优选例中, 通过检测荧光共振能量转移而确定所述的初始结合程度 和再次结合程度。
在本发明的第二方面, 提供在内吞过程中抑制与早老蛋白 -1结合的 G蛋白偶联受体 的内吞的受体拮抗剂, 用于制备治疗或预防阿尔兹海默症或相关神经性病变药物。
在本发明的第三方面, 提供一种干扰 G蛋白偶联受体与早老蛋白 -1或 γ-分泌酶的结 合的试剂, 用于制备治疗或预防阿尔兹海默症或相关神经性病变药物。
在本发明的一个优选例中, 提供 5-肾上腺素受体或阿片受体的拮抗剂, 用于制备治疗 或预防阿尔兹海默症或相关神经性病变药物。
在本发明的另一个优选例中,提供 β2肾上腺素受体 (P2AR)拮抗剂,用于制备治疗或预 防阿尔兹海默症或相关神经性病变药物。
在本发明的另一个优选例中, 提供的拮抗剂为 ICI 118,551、 普萘洛尔 (propranolol 布 他沙明 (butoxamine)或纳曲吲哚 (naltrindole)中的至少一种, 用于制备治疗或预防阿尔兹海默 症或相关神经性病变药物。
在本发明的另一个优选例中, 提供的拮抗剂为 ICI 118,551或 butoxamine, 用于制备治 疗或预防 "尔兹海默症或相关神经性病变药物。
本发明的其它方面由于本文的公开内容, 对本领域的技术人员而言是显而易见的。 附图说明
图 1显示了 β-分泌酶和 γ-分泌酶顺序作用于 APP而产生 Αβ的过程。 ΑΡΡ首先被 β-分泌 酶剪切产生可溶的 APPs-β和 C99。 C99然后被 γ-分泌酶剪切产生 Αβ和 C60。
图 2显示了 γ-分泌酶的四个主要组分: 早老蛋白 (Presenilin), nicastrin(NCSTN), APH-1 禾口 PEN-2。
图 3 显示了受体激活后内吞过程和内吞小泡向晚内吞小体和溶酶体 (late endosomes and lysosomes, LEL)转运的过禾呈。
图 4显示了本发明涉及的一种筛选治疗或预防阿尔兹海默症的受体拮抗剂的方法的流 程图。
图 5显示了刺激 G蛋白偶联受体 (G protein coupled receptor, GPCR)增加细胞系和原代培 养海马细胞中 Αβ的产生。 (a-d)用 ELISA方法测定细胞培养基中分泌型的 Αβ(Αβ4ο和 Αβ42) 的水平。 图中显示的是由至少三个独立实验得出的平均数土均数的标准误差与基本值之比 (*P<0.01) o (a)显示了 Iso对共表达了 β2肾上腺素受体和 APPswe的 HEK293细胞的分泌 Αβ 水平的作用。 (b,c) Iso(b)或 DADLE(c)对共表达了 C99和 β2肾上腺素受体(b)或 δ-阿片受体(c) 的 HEK293细胞的分泌 Αβ水平的作用。 (d) Iso或 DADLE对表达了 C99的原代培养海马细 胞的分泌 Αβ水平的作用。 (e)脉冲跟踪实验分析刺激 δ-阿片受体对 C99剪切的作用。 Pro, propranolol; DADLE, [D-Ala2, D-Leu5] -enkephalin; NALT, naltrindole.
图 6显示了刺激&肾上腺素受体增强 γ-分泌酶活性。 (a)表达底物方法检测不同时间的 Iso处理对 HE 293细胞中的 C99剪切和 C60产生作用。 (b-d)荧光底物方法检测 Iso对 C6 胶质细胞 (b), 大鼠海马切片 (c)和&肾上腺素受体转染的野生型小鼠和早老蛋白 -1 -2双缺失 小鼠的胚胎成纤维细胞 (d)中的 γ-分泌酶活性的作用。
图 7显示了 δ-阿片受体激活导致的 γ-分泌酶活性增强, 和增强的时程。. SH-SY5Y神经 母细胞瘤细胞 (a)和海马切片 (b)显示用 DADLE或 NALT处理 30分钟后分离的细胞膜组分通 过荧光底物方法检测 γ-分泌酶活性。 (c)显示了 β2肾上腺素受体激活增强 γ-分泌酶活性的时程。 C6胶质细胞用 Iso按所示时间处理。 细胞膜组分用荧光底物方法检测 γ-分泌酶活性。
图 8显示了受体内吞和 γ-分泌酶活性增强的相关性。 (a-e)用荧光底物方法检测 γ-分泌酶 活性。 (a)表达了 β2肾上腺素受体和 β2肾上腺素受体 T68F,Y132G,Y219A突变体的 HEK293 细胞在 Iso处理后的 γ-分泌酶活性。 (b)C6胶质细胞用霍乱毒素, forskolin或 dybutyl cAMP 处理后的 γ-分泌酶活性。 (c)把 C6胶质细胞用刀豆蛋白 Α, 蔗糖溶液或去钾溶液预处理后, 因 Iso处理而增强的 γ-分泌酶活性消失。 (d)表达 Dyn K44A消除了 C6胶质细胞中增强的 γ- 分泌酶活性。 (e)用 clathrin Ai抑制 HEK293细胞中的 clathrin表达消除了增强的 γ-分泌酶 活性。 胞质组分用 clathrin和 actin的抗体检测蛋白表达。 (f,g) β2肾上腺素受体 L339,340A 突变体 (&ARLL)和 β3肾上腺素受体在 Iso处理后不能内吞 (f)或增强 γ-分泌酶活性 (g)。 CTX, 霍舌 L毒素; Fsk, forskolin; db-cAMP, dybutyl cyclic adenosine monophosphate; PTX, 百日咳毒素; Dyn K44A, dynamin II K44A; Con A,刀豆蛋白 A; Sue,蔗糖溶液; K+ dpi,去钾溶液; NS RNAi, 非特异性 RNA干扰; /¾ARm, /¾AR; Iso, 异丙肾上腺素 (isoproterenol)。
图 9显示了 δ-阿片受体激活导致的 γ-分泌酶活性增强不能够被百日咳毒素 (PTX)消除。 SH-SY5Y神经母细胞瘤细胞用 200 ng/ml百日咳毒素预处理 12小时后再用 1 μΜ DADLE刺 激 1小时。 细胞膜组分用荧光底物方法检测。
图 10显示了 HEK293细胞用 transferrin如所标记的吋间处理后, 细胞膜组分用荧光底 物方法检测 γ-分泌酶活性。
图 11显示了内吞小体内的 γ-分泌酶活性和 Αβ增加。 (a,b)共转染了 β2肾上腺素受体和 图中所标记的质粒的 ΗΕΚ293细胞用 Iso处理后, 用于荧光底物方法 (a), 或 A/3特异的免疫 沉淀和 western blot实验 (b)。胞质组分用 GFP抗体检测。(c)免疫分离晚内吞小体和溶酶体实 验显示了 Iso处理增加了共转染 β2肾上腺素受体, C99和 Flag-Rab7的 HEK293细胞中的 A|3 产生。(d)免疫荧光实验分析 PS1 (红)和 GFP-Rab7(绿)在 Iso处理后 30分钟的共定位。箭头所 指为包含 PS1和 GFP-Rab7的准确结构。
图 12显示了 DALDE激活 δ-阿片受体后晚内吞小体和溶酶体内的 γ-分泌酶活性增加。 图 13显示了富集 γ-分泌酶需要内吞转运。 (a,b)免疫荧光实验分析 PS1在转染的 HEK293 细胞中的定位。 (a)对转染了 β2肾上腺素受体和所标记的质粒 Dyn K44A或 Rab5 S34 的 HE 293细胞中 PS1-NTF (红)和 Flag-Rab7(绿)的共定位的分析。 (b)检测 DADLE处理 3分 钟后的 PS1-NTF(红), HA-DOR(绿)和 β-adaptin (蓝)的共定位。 箭头所指为包含 PS1-NTF, HA-DOR和 β-adaptin的准确结构。 (c)Flag-p2肾上腺素受体和 Flag-δ-阿片受体能够和内源的 γ-分泌酶的组分相互作用。 (d)转染了 B2PB2 brandykinin受体的 HEK293细胞在用 bradykinin 处理后用荧光底物方法分析 γ-分泌酶活性。 Con,对照; Dyn K44A, dynamin Π Κ44Α突变体; IB, immuno-blot免疫印记法. BK, bradykinin.
图 14显示了 γ-分泌酶活性, Αβ产生和淀粉样蛋白斑形成在活体实验中被增强, 而 β2 肾上腺素受体选择性拮抗剂 ICI 118,551有效的抑制了淀粉样蛋白斑的形成。 (a,b)大鼠用去甲 肾上腺素 (norepinephrine, NE)或 clenbuterol(Cle)急性处理后, 海马的 γ-分泌酶活性 (a)和分泌 型 Αβ4ο和 Α/¾2水平 (b)被增强 (*P<0.01)。 (c〜- g) APPswe/PSlAE9转基因小鼠的大脑内淀粉 样蛋白斑在用 Iso(c),clenbuterol(d)或 ICI 118,551(f)慢性处理后被增强。图 c, d和 f为雌性 (左) 和雄性 (右)小鼠的代表性的淀粉样蛋白斑。图 e为图 c和 d的小鼠淀粉样蛋白斑的统计分析。 图 g为图 f的小鼠淀粉样蛋白斑的统计分析。
图 15显示了动物模型的实验结果。 (a)可见平台实验的结果。 没有发现基因型或物对本 实验的作用 (^^ S.MS- P - O.O S^ (b)不可见平台实验的结果。发现对照组小鼠和野生型组小 鼠表现出明显的差别 ( = 28.754, P < 0.001)。 而且, propranolol处理组小鼠与对照组小鼠相 比表现出认知障碍被部分缓解 ( = 4.571,尸 = 0.034)。 nadolol (纳多洛尔)处理组小鼠与对照组 小鼠相比没有差异 (F= 1.192, P = 0.277)。 (c)测验实验中小鼠处于平台象限中的时间百分比。 发现对照组小鼠和野生型小鼠表现出明显的差异 ( = 0.002)。 propranolol处理部分缓解认知 障碍 (尸 = 0.048)。 nadolol处理无效果 (P = 0.969)。
图 16显示了受体亚型选择性拮抗剂在动物模型中的实验结果。 Betaxolol为能够通过血 脑屏障的 βΐ肾上腺素受体选择性的拮抗剂。 ICI 118,551为能够通过血脑屏障的 β 2肾上腺素 受体选择性的拮抗剂。 (a)在可见平台实验中, 没有发现药物作用 ( = 0.0310, = 0.969)。 (b) 在不可见平台实验中, ICI 118,551 处理明显的缓解了认知障碍 ( = 24.164, P < 0.001)。
Betaxolol处理则表现了部分缓解作用,但是效果不显著 ( = 3.698, P = 0.057)。(c)在测验实验 中, ICI 118,551的作用非常显著 (P = 0.005)。 Betaxolol处理则无效果 (P = 0.552)。
图 17显示了受体亚型选择性拮抗剂在动物模型中的实验结果。 Metoprolol为能够通过 血脑屏障的 βΐ肾上腺素受体选择性的拮抗剂。 (a)在可见平台实验中, 没有发现药物作用 (F = 2.017, P = 0.139)。 (b)在不可见平台实验中, Butoxamine处理明显的缓解了认知障碍 ( = 15.581,尸 < 0.001)。 Metoprolol则无效果 (F= 0.104,尸 = 0.748)。 (c)在测验实验中, Butoxamine 的作用显著 (P = 0.020)。 Metoprolol处理则无效果 (尸 = 0.768)。 图 18显示了非转基因小鼠的结果。 β肾上腺素受体的拮抗剂对非转基因小鼠无作用, 表明转基因是必需的。 (a)可见平台实验中无药物作用 (F = 2.327, Ρ = 0.077)。 (b)不可见平台 实验中无药物作用 (E = 0.264, P = 0.851)。 (c)测验实验中无药物作用 (Ρ = 0.817)。
图 19显示了 δ-阿片受体选择性的拮抗剂 naltrindole的动物实验结果。 Naltrindole为能 够通过血脑屏障的 δ-阿片受体选择性的拮抗剂。 (a)在可见平台实验中, 没有发现药物作用 = 0.754, P = 0.391)。 (b)在不可见平台实验中, Naltrindole处理明显的缓解了认知障碍 ( = 4.945,尸< 0.030)。(c)在测验实验中, Naltrindole的作用显著 (尸= 0.006)。 Metoprolol处理则无 效果 (P = 0.768)。
图 20显示了对照组 (control)、 clenbuterol处理和 ICI 118,551处理的双转基因小鼠和非 转基因小鼠在 Morris水迷宫实验的可见平台实验中的逃逸时间。各组小鼠之间没有发现明显 的药物或转基因作用 (F = 2.714, P = 0.052)。
图 21显示了对照组 (control)、 clenbuterol处理和 ICI 118,551处理的双转基因小鼠和非 转基因小鼠 (NTg)在 Morris水迷宫实验的不可见平台实验的逃逸时间。 非转基因小鼠和对照 组小鼠之间存在明显的转基因作用 ( = 7.625, P = 0.010)。 ICI 118,551处理组的小鼠比对照 组小鼠表现出了更快的学习曲线 (E = 16.075 , P < 0.001)。 然而 clenbuterol处理没有作用 ( = 1.713 , 尸= 0.198)。
图 22显示了最后一次不可见平台实验 24小时后的测验实验中小鼠在平台象限停留时 间百分比。相比之下,非转基因小鼠 (尸 = 0.026)和 ICI 118,551(P = 0.041)处理组小鼠在平台象 限中停留了更长的时间。
图 23显示了细胞表面 DOR和 PS1的相互作用。图 23 A:共转染了供体 (donor) GFP-DOR 和受体 (acceptor) HA-PS l(Cy3荧光素)的 HEK293细胞中,用 561 imi激光进行荧光漂白前 (红 线)和后 (蓝线)的混合发射谱 (激发波长 488 nm)。发射谱显示的是同一个细胞中的经过荧光漂 白 (左)和没有漂白 (右)的两个区域。 只有在经过荧光漂白的区域里供体 GFP的发射光才会增 力口。 图 23B : HEK293细胞中受体荧光漂白前后非混合的 GFP-DOR和 PSl-Cy3图像。 荧光 漂白区域用白色线框显示。 底部放大的伪彩显示了细胞表面在荧光漂白前后 GFP发射光的 强度。 细胞表面的供体 GHP-DOR发射光在受体 PSl-Cy3荧光漂白后增强。 标尺为 10 /mi。 图 23C显示了细胞表面 GFP-DOR和 PSl-Cy3平均能量转移效率。 数字为实验中的细胞数。 数据为三次独立试验所得。 具体实施方式
本发明涉及用于筛选预防或治疗阿尔兹海默症或其他相关神经性病变的药物的方法。 本发明还涉及肾上腺素受体或阿片受体的拮抗剂在治疗阿尔兹海默症中的应用, 特别 是 β-肾上腺素受体和 δ-阿片受体的拮抗剂。 具体为, 关于 β-肾上腺素受体的拮抗剂在阿尔兹 海默症治疗中的新用途, 和 δ-阿片受体的拮抗剂在阿尔兹海默症治疗中的新用途。 本发明也 涉及用于筛选可能被用来治疗阿尔兹海默症或其他相关神经性病变的试剂的方法。 如前所述, 家族型阿尔兹海默症仅占所有阿尔兹海默症的 10%。 所以, 遗传因素以外 的因素可能在阿尔兹海默症的病因中起重要作用。环境因素, 如应激, 可能通过激活受体施 加作用, 包括 G蛋白偶联受体中的 β-肾上腺素受体和 δ-阿片受体。 中枢神经系统表达几种 G 蛋白偶联受体, 尤其是 β2-肾上腺素受体, 表达在海马和皮层, 即阿尔兹海默症病理发生过 程中主要涉及的区域。在中枢神经系统中, 这些受体作用于肾上腺素、 多巴胺和阿片肽的信 号转导, 引起多种神经功能的调控, 如剌激响应、 学习、 记忆和痛觉。
一旦被激活,这些受体偶联鸟嘌呤结合蛋白 (G蛋白)异源三聚体并且通过调控细胞内第 二信使水平 (如 cAMP)诱导下游信号。此外, 激活的受体也会发生 clathrin介导的内吞, 这种 内吞不仅在受体脱敏中也在信号转导中起关键作用。内吞后的 G蛋白偶联受体通过早内吞小 泡、 晚内吞小泡和溶酶体 (LEL)循环。不同内吞小泡的转运受 Rab GTPase介导, 其本身也可 以作为各种小泡的标记。
本发明基于发明者的创新发现, 即激活 β-肾上腺素受体 (尤其是 β2-肾上腺素受体)或 δ- 阿片受体导致 γ-分泌酶在晚期内吞小体和溶酶体中的积累增加。 γ-分泌酶作为一种天冬氨酸 蛋白酶, 酸性 ρΗ的反应环境是其最佳条件。 因此 γ-分泌酶在酸性的晚期内吞小体和溶酶体 中的积累增加, 导致其活性增强, 并且使得 Αβ的产生也增加。
图 3显示了从激活 β-肾上腺素受体或 δ-阿片受体至增加 Αβ产生的途径。如图 3所示,激 活 β-肾上腺素受体和 δ-阿片受体伴随着 clathrin介导的内吞, 包括形成 clathrin包被的凹陷 (clathrin-coated pits, CCP)以及 CCP的脱离。本发明的发明人发现 γ-分泌酶的活性组分, 早老 蛋白- 1(PS1)组成型的结合这些受体。此内吞的结果为, 早老蛋白 -1或 γ-分泌酶被带入内吞小 泡。接着,通过 Rab5和 Rab7介导的小泡运输,这些内吞小泡被转化为晚内吞小体和溶酶体 (LEL), 于是 γ-分泌酶活性在这里被增强。 增强的 γ-分泌酶活性之后引起 Αβ产生的增加。
这些发现提示了用拮抗剂抑制 β-肾上腺素受体和 δ-阿片受体能够防止 γ-分泌酶的活性 增加。 相应的, 这些受体的拮抗剂可以用来降低 Αβ产生, 因此可以用来预防或治疗阿尔兹 海默症或相关神经性病变。本发明中, "拮抗剂"包括防止、 降低或抑制受体激活的化合物。 这类化合物可以和受体激活剂竞争相同的受体结合位点,或结合受体上的不同位点并降低受 体激活剂的作用。
此外, 这些发现提示可以通过检测相关受体的内吞来筛选潜在的可用于预防或治疗阿 尔兹海默症或相关的神经性病变的拮抗剂。测定这些受体的内吞可以通过检测早老蛋白 -1或 γ-分泌酶的内吞, 晚内吞小体和溶酶体内早老蛋白 -1 或 γ-分泌酶的积累, γ-分泌酶的活性增 强, 或 Αβ产生增加来实现。
相应的, 本发明具体的涉及关于筛选治疗或预防阿尔兹海默症或相关的神经性病变的 试剂的方法。 筛选方法可能是基于候选试剂抑制与早老蛋白 -1或 γ-分泌酶结合的受体的内吞 的能力, 或者基于其减弱或消除受体与早老蛋白 -1或 γ-分泌酶结合的能力。 如图 4所示, 本 发明的方法 (方法 40)包括测量候选试剂存在或不存在的情况下与早老蛋白 -1或 γ-分泌酶结合 的受体的内吞的程度, 或者检测受体与早老蛋白 -1或 γ-分泌酶结合的程度 (步骤 41)。 这些受 体包括内源或载体转染导入的 G蛋白偶联受体。
然后,确定存在或不存在候选试剂情况下的内吞或结合程度的差异 (步骤 42)。如上所述, 内吞程度可以用计量内吞小泡、 内吞的早老蛋白 -1或 γ-分泌酶、 LEL中早老蛋白 -1或 γ-分泌 酶的增加、 LEL中 γ-分泌酶活性的增强或 Αβ产量的增加来实现。受体与早老蛋白 -1或 γ-分泌 酶结合的程度可用任意适当的方法测定, 例如下面将详细描述的荧光共振能量转移实验 (fluorescence resonance energy transfer, FRET)。
如果内吞或结合的差异 (经步骤 42测定)是显著的或者超过了某个阈值, 则候选试剂可 能被用来治疗或预防阿尔兹海默症或相关的神经性病变(如步骤 43所示)。如果差异不显著, 则可以用另一候选试剂重复前一步骤(如步骤 44所示)。注意图 4所示的方法是顺序显示的, 每次试验一个候选试剂, 本领域技术人员会愿意同时试验多种试剂, 例如通过使用多孔板或 其它高通量方法。本领域技术人员可以通过所熟知的统计学方法获得该阈值, 即如果细胞中 G蛋白偶联受体与早老蛋白 1的再次内吞程度在统计学上低于初始内吞程度 (优选显著低于, 比如 G蛋白偶联受体与早老蛋白 1的再次内吞程度是初始内吞程度的 60%或更低), 就表明 差异显著。所述初始内吞程度指使用候选试剂前激活受体并确定的内吞程度, 再次内吞程度 是指于同一试验体系中使用候选试剂后激活受体并确定的内吞程度。
本发明具体的涉及通过给人体服用有效量的结合 β-肾上腺素受体 (尤其是 β2-肾上腺素 受体)和 /或 δ-阿片受体的拮抗剂用以治疗或坊治阿尔兹海默症或其他相关神经性病变的方 法。 有效剂量的拮抗剂足以减少导致 γ-分泌酶向晚期内吞小体和溶酶体转运的受体内吞。 本 发明还涉及将结合 β-肾上腺素受体 (尤其是 β2-肾上腺素受体)和 δ-阿片受体的拮抗剂应用于生 产治疗或防治阿尔兹海默症和其他神经性病变的药物。
结合 β-肾上腺素受体和 /或 δ-阿片受体的拮抗剂的有效剂量将依赖于向病人输送药物的 服药方式, 服药频率, 和药剂组分, 以及病人的体重, 性别, 年龄和身体状况。 典型的, 有 效剂量的范围可以为从每天 1 μ /Kg体重至 10 mg/Kg体重。 虽然存在个体差异, 本领域技 术人员有能力确定每种成分的最佳有效剂量。向病人给药可以通过任何合适的类似药剂的给 药途径, 包括口服, 注射, 透皮 Ite剂等。
本发明涉及的化合物或组分可以用于治疗哺乳动物 (人或其他哺乳动物)的阿尔兹海默 症或其他相关神经性病变。这些化合物或组分包括药剂学上可以接受的载体和 /或赋形剂,例 如生理盐水, 缓冲液, 葡萄糖, 甘油、 乙醇, 淀粉等。 此外, 这些化合物或组分可以制备成 类似药剂常用的剂量剂型, 包括针剂, 片剂, 胶囊, 贴剂等。 这些剂量剂型的制备方法为已 知技术。
尽管有不同降低 Αβ产生的方法已被报导, 包括调控 ΑΡΡ的产生 (如美国专利 6,187,756 和 6,043,224)和抑制 ΑΡΡ的剪切 (如美国专利 5,242,932), 但本发明的内容是基于一种不同的 机制, 即抑制导致 γ-分泌酶向晚期内吞小体和溶酶体转运的受体内吞。 以下的实验和实施例 清楚地阐述了将 β-肾上腺素受体 (尤其是 β2-肾上腺素受体)和 /或 δ-阿片受体的拮抗剂或抑制 剂用于治疗或防治阿尔兹海默症的基本原理。 实施例 1 激活 β2-肾上腺素受体增加 Αβ产生
首先在 ΗΕΚ293细胞中检验激活 β2-肾上腺素受体对 Αβ产生的作用。 ΗΕΚ293细胞具有 有功能的 G蛋白偶联受体的信号通路, 并且能正常分泌 Α/3。 本实验中使用的 ΗΕΚ293细胞 转染了 β2-肾上腺素受体和 ΑΡΡ的突变体 (APPswe;)。 突变体 APPswe是家族型阿尔兹海默症 的" Swedish"突变,即在第 670和 671个密码子的突变。如图 5a所示,用激动剂 isoproterenol (Iso)激活 β2-肾上腺素受体, 增加了两种 Α/3亚型 (A/34Q和 的分泌水平。 另一方面, 加入 了 β2-肾上腺素受体的拮抗剂 propranolol (Pro)则消除了 Iso对 Αβ分泌水平的增加作用,而其 本身并无作用。 产生的增加需要 γ-分泌酶, 因为用 γ-分泌酶的特异性抑制剂 L685,458预 处理消除了 A/3产生的增加。
将 HEK293细胞共转染了 γ-分泌酶的底物 (C99)和 β2-肾上腺素受体的实验进一步证实了 γ-分泌酶参与了 β2-肾上腺素受体引起的 Α/3产生的增加。 C99是 /3-分泌酶介导的 ΑΡΡ剪切的 产物 (见图 1)。C99是 γ-分泌酶的直接底物和 Αβ的直接前体。图 5b显示了在共转染的 HEK293 细胞中用 Iso刺激 β2-肾上腺素受体导致了 Αβ产生的增加, 并且和此前描述的共转染了 APPswe和 β2-肾上腺素受体的细胞相当。 同样的, 这个增加也能被 Pro消除, 而其本身并无 作用。 因此, 分泌的 A/3产生增加是由于 γ-分泌酶的活性增加导致的。
除了 β2-肾上腺素受体, 激活 δ-阿片受体也能够导致分泌的 Α/3水平的增加。 如图 5c所 示, DADLE (D-Ala2-D-Leu5-enkephalin, δ-阿片受体的激动齐 !j)处理转染了 C99的 HEK293细 胞导致 Αβ产生的增加。 使用 δ-阿片受体的拮抗剂 NALT (naltrindole)则消除了 DADLE的作 用。尽管以上实验使用的是经过转染受体的细胞, 但在内源受体上也得到了同样的结果。 图 5d显示了在转染了 C99的原代海马细胞中, 激活内源的 β-肾上腺素受体或 δ-阿片受体同样 引起 的分泌增加。
以上实验清楚地证明了激活 β-肾上腺素受体或 δ-阿片受体会引起 Αβ的分泌增加。 脉冲 追踪实验显示了分泌的 Α/3是由转染的 C99剪切产生的。 如图 5e所示, C99的代谢速度在 DADLE刺激的共转染了 δ-阿片受体和 C99的 ΗΕΚ293细胞中比对照细胞更快。 此结果提示 了受体的激活促进了 C99的剪切。 因此, 激活 β-肾上腺素受体 (尤其是 β2-肾上腺素受体)和 / 或 δ-阿片受体加强了 Αβ的产生和分泌, 是由于 γ-分泌酶对 C99(或类似底物)的剪切增强导致 的。 实施例 2激活 β2-肾上腺素受体增加 γ-分泌酶的活性
以上所述的激活 β-肾上腺素受体或 δ-阿片受体引起的 Αβ的产生增加可能是因 γ-分泌酶 的表达水平或活性增加而导致的。 为了回答这个问题, 发明人检验了 β2-肾上腺素受体激活 对 γ-分泌酶的表达水平和活性的作用。如图 6a所示,在 Iso处理的转染了 C99的 HEK293细 胞中, C60的产生增加了。 C60是 C99被 γ-分泌酶介导的剪切产生的。 但是, 相同的处理没 有对 PS1的表达水平产生任何改变。 PS1是 γ-分泌酶的活性位点亚基, 以氨基和碳基末段片 段的异源二聚体形式存在 (即 PS1-NTF和 PS1-CTF)。此结果提示了激活 β2-肾上腺素受体后, γ-分泌酶的活性增加而 γ-分泌酶的表达没有改变。
为直接测量 γ-分泌酶的酶活性,使用了荧光底物。此荧光底物基于连接了荧光报告分子 的 γ-分泌酶特异的底物序列。 C6胶质细胞瘤的内源 β-肾上腺素受体被刺激 30分钟后 γ-分泌 酶的活性增强 (图 6b)。 此效果在海马切片中被验证 (图 6c)。 小鼠胚胎纤维组织母细胞缺失了 presenilin后 Iso引起的 γ-分泌酶活性增强被消除, 验证了此方法对 γ-分泌酶活性的特异性 (图 6d)。综上所述, 这些结果显示了激活 β2-肾上腺素受体刺激了 γ-分泌酶活性, 导致 Α/3的产生 增加。
激活受体而增强 γ-分泌酶活性并不仅限于 β-肾上腺素受体。 刺激 SH-SY5Y神经母细胞 瘤 (图 7a)或培养的原代海马细胞 (图 7b)的内源 δ-阿片受体也能够获得类似结果。 进一步, 检 测 γ-分泌酶的活性显示了 γ-分泌酶的活性在刺激 β2-肾上腺素受体 30分钟左右达到最大值, 约 60分钟时恢复到本底水平 (图 Ί )。 实施例 3增强的 γ-分泌酶活性不依赖于 cAMP信号
如上所述, G蛋白偶联受体 (包括 β2-肾上腺素受体)一旦被激活, 会诱导 Gs蛋白依赖的 腺苷酸环化酶的激活, 导致细胞内 cAMP水平升高。 为了描述 β2-肾上腺素受体激活导致 γ- 分泌酶活性增强的分子机制,在后续实验中使用了一个无法激活 Gs蛋白的 β2-肾上腺素受体 的突变体 0¾AR T68F, Y132G, Y219A, 或 β2ΑΚ ΤΥΥ)。 这个突变体无法消除 γ-分泌酶活性的 增强 (图 8a) 0 这个结果排除了 Gs蛋白信号通路参与 β2-肾上腺素受体对于 γ-分泌酶的作用。 进一步, 用诸如霍乱毒素 (cholera toxin, CTX), forskolin, 和 dybutyl-cAMP等能够模拟 Gs 蛋白激活和 cAMP水平升高的试剂处理细胞, 无法导致 γ-分泌酶活性的增强 (图 8b)。 因此, 激活 β-肾上腺素受体而增强的 γ-分泌酶活性并没有 cAMP信号通路的参与。
事实上 cAMP信号通路并没有参与增强 γ-分泌酶的活性可能对于 δ-阿片受体也成立。 已知 δ-阿片受体激活百日咳毒素 (ΡΤΧ)敏感的 Gi/o 蛋白并且通过抑制腺苷酸环化酶降低 cAMP水平。用百日咳毒素对 SH-SY5Y神经母细胞瘤预处理不能改变 DADLE刺激引起的 γ- 分泌酶活性增强 (图 9)。 此结果显示了激活 δ-阿片受体引起的 γ-分泌酶活性不由 cAMP调控。 因此, β2-肾上腺素受体或 δ-阿片受体对 γ-分泌酶的调控不依赖于 G蛋白信号通路或经典的 cAMP通路。 实施例 4受体内吞与 γ-分泌酶的活性增强相关
如果 G蛋白信号通路或 cAMP通路不参与增强 γ-分泌酶的活性, 那么其机制是什么? 如前针对图 3的讨论, GPCR (包括 β-肾上腺素受体和阿片受体)激活通常伴随着受体内吞,及 其引起特异性的信号通路。 受体内吞及其相关的信号转导是否参与了 γ-分泌酶活性的提高可 以用不同的内吞通路抑制剂来检测。
图 8c显示了 Iso对 γ-分泌酶活性的作用可以被内吞抑制剂如刀豆蛋白 (Con A), 高渗透 压溶液 (Sue)和无钾溶液 (K+ dpi)的预处理消除。 图 8d显示了 Iso引起的 γ-分泌酶活性增强可 以被 dynamin的显性负突变体 Dyn K44A (能够抑制 clathrin或 caveolin介导的内吞)消除。 因 为 β2-肾上腺素受体主要通过 clathrin介导的机制内吞, 所以针对 clathrin重链的小干扰 RNA(small interfering RNA)可以被用来去除细胞内的 clathrin表达。 图 8e显示了 Iso引起的 γ-分泌酶活性增强可以被 R A干扰 (RNA interference, RNAi)消除。 这些结果显示了 β2-肾上 腺素受体引起的 γ-分泌酶活性增强是通过激动剂诱导的 clathrin介导的内吞作用调控的。
为了进一步确证激动剂引起的 β2-肾上腺素受体内吞对于 γ-分泌酶活性增强是必需的, 在实验中使用了另一个 β2-肾上腺素受体的突变体 0¾AR L339/340A, β2ΑΚ LL)和另一个内在 的肾上腺素受体 β3-肾上腺素受体,这两个受体都不具有激动剂引起的内吞现象。在 ΗΕΚ293 细胞内激活这些受体确实提高 cAMP水平, 但是既不能引起受体内吞 (图 8f)也不能增强 γ-分 泌酶活性 (图 8g)。这些结果清楚的提示了激动剂引起的 clathrin介导的 β2-肾上腺素受体内吞 参与了调控 γ-分泌酶活性增强的机制。
上述实验说明 clathrin介导的内吞是激活受体而引起的 γ-分泌酶活性增强的必要条件。 但是, clathrin介导的内吞其本身是否足以引起 γ-分泌酶活性增强仍不清楚。为了回答这个问 题, 用 transferrin处理 ΗΕΚ293细胞, 导致 transferrin受体的 clathrin介导的持续内吞。 如图 10所示, tmnsferrin处理虽然能引起持续内吞, 但不能增强 γ-分泌酶的活性。 这些结果提示 了 clathrin介导的内吞对于 β2-肾上腺素受体引起的 γ-分泌酶的活性增强是必需的但不是充分 的。 实施例 5 γ-分泌酶的活性和 Αβ产生增强和内吞途径联系
如图 3所示, 一旦进入细胞内, 内吞小泡就被通过各种特异性的内吞途径转运至其目 的地。 这些内吞途径涉及 Rab鸟苷三磷酸酶 (Rab GTPase)调控的胞内囊泡转运。 现已知从细 胞膜向早内吞小体和继续向晚内吞小体和溶酶体的内吞运输能够分别被早内吞小体标记 Rab5和溶酶体标记 Rab7的显性负突变体 Rab5 S34N和 Rab7 T22N抑制。如图 1 la和 b所示, 在 HEK293细胞中表达 Rab5 S34N或 Rab7 T22N能够消除激活 β2-肾上腺素受体引起的 γ-分 泌酶的活性 (图 11a)和 Α/3产生 (图 l ib)的增强。这些结果说明 γ-分泌酶的活性和 AiS产生的增 强必需有内吞小泡向晚内吞小体和溶酶体的转运, 因此晚内吞小体和溶酶体的参与对 β2-肾 上腺素受体引起的 γ-分泌酶活性和 Αβ产生起着关键作用中。
为了进一步显示晚内吞小体和溶酶体的作用, 利用 Flag抗体从转染了 Flag-Rab7的细 胞中免疫分离晚内吞小体和溶酶体的小泡, 随后用早内吞小体的标记 EEAl(early endosome antigen 1)和晚内吞小体和溶酶体的标记 LAMP-l(lysosome-associated membrane protein-1)确 证了组分。 如图 11c所示, 在 β2-肾上腺素受体经 1小时刺激后发现晚内吞小体和溶酶体中 的 Αβ含量明显增加, 而 Flag-Rab7或 LAMP-1无显著变化, 显示了晚内吞小体和溶酶体中 的 A/3产生因 /¾-肾上腺素受体激活而增加, 且无需增加晚内吞小体和溶酶体的数量。
同样, 晚内吞小体和溶酶体参与增强 γ-分泌酶活性也不仅限于 /3-肾上腺素受体。 图 12 显示了晚内吞小体和溶酶体中的 γ-分泌酶活性也在 δ-阿片受体激活后增强了。图 12的实验是 用 1 μΜ DADLE对 SH-SY5Y神经母细胞瘤剌激 30分钟后进行亚细胞组分分离, 再将各组 分用于碱性磷酸酶 (alkaline phosphatase, AP)和荧光底物分析。结果显示 DADLE处理只增强 了含有碱性磷酸酶细胞组分的 γ-分泌酶活性 (*P < 0.01)。
综上所述, 以上图 11和图 12所示结果提示了晚内吞小体和溶酶体在 β2-肾上腺素受体 或 δ-阿片受体激活对 Αβ产生的作用中起非常重要的角色。 这个发现和以前的关于内吞囊泡 为 γ-分泌酶活性提供适宜环境的报导相一致。
为了进一步确证晚内吞小体和溶酶体中的 γ-分泌酶和 Α|8产生增加相关, 应用免疫荧光 显微术检测刺激 β2-肾上腺素受体是否增加了 γ-分泌酶在晚内吞小体和溶酶体中的定位。在细 胞实验中, 晚内吞小体和溶酶体用表达的 GFP-Rab7标记。 图 l id展示在转染的 HEK293细 胞中, 激活 β2-肾上腺素受体 30分钟后, 发生了 PSl(y-分泌酶活性位点亚基)和 GFP-Rab7的 共定位。在海马切片的实验中, 晚内吞小体和溶酶体用 LAMP-1的抗体标记。 图 l ie展示了 Iso处理后 PS1或 nicatrin (另一 γ-分泌酶组分)和 LAMP-1的共定位增强。 综上所述, 以上结 果提示了刺激 β2-肾上腺素受体增强了 γ-分泌酶在晚内吞小体和溶酶体中定位,此作用导致了 γ-分泌酶活性和 Α/3产生的增加。 实施例 6 组成型 PSl/γ-分泌酶和 β2-肾上腺素受体的相互作用
Dyn K44A和 Rab5 S34N有效的防止了 β2-肾上腺素受体刺激后 PS1在晚内吞小体和溶 酶体中定位增强 (图 13a), 此结果提示 PS1可能是被从细胞膜向晚内吞小体和溶酶体转运。 利用 0-adaptin其能够标记 clathrin包被的凹陷和小泡)发现刺激 HEK293细胞中的 δ-阿片受体 3分钟后; PS1和 0-adaptin以及内吞的受体形成共定位 (图 13b)。 这些发现提示了 PS1和激活 的 β2-肾上腺素受体或 δ-阿片受体在激动剂刺激后形成共内吞。而此结果并不意外, 因为 PS1 能够组成型的结合膜蛋白, 例如 ΑΡΡ .和 Notch, 而且 β2-肾上腺素受体能够通过形成异源二 聚体介导其他跨膜蛋白的内吞。 为了证明确实如此, 应用免疫共沉淀方法检测了 PS1和 β2- 肾上腺素受体或 δ-阿片受体的结合。
如图 13c 所示, 四个 γ-分泌酶的必须组分 PS1, nicastrin, APH-la(anterior pharynx defective- la)和 PEN-2(presenilin enhancer-2)在含有 CHAPSO的缓冲液中被 β2-肾上腺素受体 或 δ-阿片受体共沉淀 (图 13c), 在此缓冲液中 γ-分泌酶保持为蛋白复合物。 用 Trinton X-100 替换 CHAPSO能够解聚 γ-分泌酶蛋白复合物, 并且破坏了受体与 nicastrin, APH-la和: PEN-2 的共沉淀, 而不影响经 PS1-NTF或 PS1-CTF抗体检测到的受体与 PS1的共沉淀 (图 13c)。 这 些结果提示了 β2-肾上腺素受体或 δ-阿片受体通过直接结合 PS1与 γ-分泌酶相互作用。 但是, 并非所有 G蛋白偶联受体 (GPCR)都有这种结合, 因为另一 GPCR成员, Β2 bradykinin受体 (B2R), 无法结合 PSl/γ-分泌酶 (图 13c)或引起 γ-分泌酶的活性增强 (图 13d)。 综上所述, 这些 结果提示 β2-肾上腺素受体或 δ-阿片受体与 PS1 的相互作用是特异性的, 并且提供了它们调 控受体激活引起的 γ-分泌酶活性增强的机制基础。 此外, 这些结果也提示能够减弱或消除受 体与早老蛋白 1结合的试剂是潜在的治疗或预防阿尔兹海默症或其他相关的神经性病变的药 物。 实施例 7筛选能够减弱或消除受体与早老蛋白 1结合的试剂
通过任何合适的方法, 如荧光共振能量转移 (fluorescence resonance energy transfer, FRET), 可以筛选能够消除或减弱早老蛋白 1与受体结合的试剂。 荧光共振能量转移是能量 从近距离结合 ( O nm)的供体荧光素向受体荧光素转移的过程。 因此, 这项技术可被用来检 测物理上结合在一起的蛋白质。 在能量转移中, 非放射性的能量转移减弱了供体的荧光发 射。 因此通过比较供体在同一样品被破坏受体荧光素 (如荧光漂白的方法)前后的荧光发射的 强度来检测能量转移。 如果发生能量转移, 则供体的荧光发射在荧光漂白受体后增强。
例如在共转染的 HEK293 细胞中检测有绿色荧光蛋白(GFP)标记的 δ-阿片受体 (GFP-DOR)和早老蛋白 1-Cy3 之间的能量转移效率在荧光漂白前后的变化。 细胞共转染了 GFP标记的 δ-阿片受体 (GFP-DOR)和有 HA标记的早老蛋白 1(HA-PS1)。HA-PS1的表达可以 通过 HA的第一抗体和连接 Cy3荧光素的第二抗体 (Jackson ImmunoResearch公司)检测, GFP-DOR的表达通过 GFP荧光素检测。
图 23A-23C显示了此类实验的结果之一。 用 Leica共聚焦显微镜获取图像, 包括供体 GFP-DOR和受体 PSl-Cy3荧光素的混合发射谱 (488nm激光激发)。 首先检测在共表达两个 蛋白质的 HEK293 细胞中供体 (GFP-DOR)发射光的强度在受体 (PSl-Cy3)荧光漂白后是否增 强。图 23A显示了细胞在荧光漂白前后的荧光漂白和非荧光漂白区域的图像。选定的区域用 Cy3吸收谱内的 561 nm激光漂白。 GFP-DOR发射光相应的强度在荧光漂白的区域与相同细 胞的非漂白区域相比有较大增强。 此结果显示了 GFP和 Cy3之间发生了能量转移, 且此能 量转移能够通过荧光漂白 Cy3被消除或降低。
图 23B显示了转染的 HEK293细胞中 GFP-DOR和 PSl-Cy3在受体经 561 nm激光荧光 漂白前后代表性的图像。 GFP-DOR的图像显示了受体的荧光发射 (伪彩强度图像)在荧光漂白 后增强, 且此增强只在细胞内荧光漂白的区域发生。
如图 23C所示, 细胞表面附近的 GFP-DOR和 PSl-Cy3的平均相对能量转移效率大约 为 22.8±3.9%, 显示了两者的相互作用。 在阳性对照中, 表达了 GFP-DOR的细胞用 GFP第 一抗体以及连接了 Cy3的第二抗体孵育。 此阳性对照的能量转移效率为 27.9±5.3%。 将表达 了 GFP-DOR的细胞用针对非特异性蛋白 actin的第一抗体以及连接了 Cy3的第二抗体孵育 作为阴性对照。此阴性对照的能量转移效率为 7.8±4.7%。这些结果都显示了 δ-阿片受体和早 老蛋白 1之间的相互作用。 实施例 8动物体内 γ-分泌酶活性的增强, A/3产生和淀粉样蛋白斑的形成 进一步在动物体内对 β2-肾上腺素受体与这些阿尔兹海默症相关分子的作用进行研究。 大鼠体内实验显示急性注射了肾上腺素受体内源配体去甲肾上腺素 (norepinephrine, NE)或 β2-肾上腺素受体选择性的激动剂 denbuteml(Cle)后, 大鼠海马的 γ-分泌酶活性 (图 14a)和 Αβ 水平 (图 14b)都显著升高了。 基于这些结果, 可以预料对动物模型长期给予这些受体激动剂 处理可能加剧阿尔兹海默症的病理变化。 在阿尔兹海默症的小鼠模型 (APPswe/PSlAE9双转 基因小鼠)中的实验证实了这一点。 这种小鼠在给予 Iso或 Cle慢性处理 30天后显示出了增 多的大脑淀粉样蛋白斑 (图 14c-14e)。这个发现说明激活 β2-肾上腺素受体能够增进 γ-分泌酶活 性, 产生和淀粉样蛋白斑形成。所以,这些受体的拮抗剂应可以被用来降低 Α/5产生或淀 粉样蛋白斑形成。图 14f和 14g中的结果验证了这一点,因为 β2-肾上腺素受体特异性的拮抗 剂 ICI 118,551显著的降低了淀粉样蛋白斑的数量。 实施例 9动物模型体内实验
为了衡量 (3-肾上腺素受体的拮抗剂的体内有效性, 对阿尔兹海默症的转基因模型小鼠 (APPswe/PSlAE9双转基因小鼠)给予了这些化合物。在大约 6个月龄时, 这种小鼠已产生进 行性的空间记忆缺陷, 并且伴随着大脑内 A/3水平升高和淀粉样蛋白斑增多。
在以下实验中, APPswe/PSlAE9小鼠和非转基因 (NTg)的同窝小鼠被按照性别和年龄匹 配的方式分组。 实验化合物通过口服给药, 从 4个月的年龄开始并持续 1个或 2个月。 利用 Morris水迷宫的实验评价各种化合物对 APPswe/PSlAE9小鼠和非转基因小鼠的作用。
Morris水迷宫实验由神经科学家 ichard G. Morris于 1984研制, 现今为常用的研究海 马在空间记忆形成中作用的方法。实验中的迷宫为一注入了 24-25 "C水的圆形水池 (直径 1.2 米), 并加入奶粉使水不透明。 水池周围放置固定的空间指示, 包括印有醒目图案的帘布和 置有明显物体的架子。 实验期间, 小鼠被小心的面对池壁至于水中。 小鼠首先接受一定数量 的可见平台训练 (即连续两天, 每天八次), 学习游至一有杆标记的升高的圆形平台 (直径 10 厘米)上。 可见平台训练被分为每天两组 (即每组四次训练)以进行统计学数据分析。可见平台 训练期间, 每次训练的平台位置 (东北, 东南, 西南或西北)和起始位置 (东、 南、 西或北)为 伪随机决定。
不可见平台训练也进行一定天数 (即连续 6天, 每天四次), 其间小鼠被允许寻找置于水 面以下 1.5厘米处的平台。小鼠如无法在 60秒内找到平台则被指引到平台。不可见平台实验 期间, 平台的位置保持不变, 小鼠则按照从四个方向 (东、 南、 西或北)中伪随机选择的一个 方向进入水池。 每一次训练结束后, 小鼠在平台上停留 30秒后再被从平台上转移到笼内。
最后一次不可见平台训练的二十四小时后, 进行一次测验实验。 这时平台被移走, 小 鼠则允许游泳 60秒钟试图寻找平台。所有实验被固定于水池正上方的的摄像机检测并记录, 记录用计算机跟踪系统进行分析。
' 动物觀试验 i PCT/CN 2006 / 0 0 3. 5, , 在这一组实验中, APPswe/PSlAE9转基因小鼠和非转基因小鼠被给予 propranolol和 nadolol以评价 β-肾上腺素受体的拮抗剂对淀粉样蛋白斑形成的作用。 APPSwe/PSlAE9转基 因小鼠和非转基因小鼠被按照性别和年龄匹配的方式分组。 化合物通过口服给药, 从 4个月 年齢开始持续直至 6个月。 Propranolol能够容易的通过血脑屏障, 因此, 它能够拮抗中枢神 经系统的 β-肾上腺素受体。 另一方面, nadolol也是一种 β-肾上腺素受体的拮抗剂, 但是不能 通过血脑屏障。 小鼠然后用 Morris水迷宫实验进行空间学习和记忆检测。
在 Morris水迷宫任务中, 小鼠首先进行两天的可见平台训练, 每天进行两组训练。 在 每组训练中, 记录小鼠找到并且爬上平台所耗费的时间 (逃逸时间)。 此训练中没有显示基因 型或药物作用 (E = 2.145, P = 0.096,图 15a)。
接着, 小鼠进行了六天不可见平台训练, 每天进行一组训练。 对照组小鼠相比非转基 因组小鼠表现出明显的障碍 (E = 28.754,尸< 0.001, 图 15b)。 propanolol处理与对照组相比能 够部分缓解小鼠的障碍 ( = 4.571, P = 0.034), 但是 nadolol处理则表现为无效 (E = 1.192, P = 0.277)。
最后, 小鼠在最后一次不可见平台训练后 24小时进行一次测验实验。 在此实验中, 小 鼠被允许自由游泳 1分钟以寻找平台。对小鼠耗费在平台象限的时间比例进行分析(图 15c)。 同样, 转基因小鼠和非转基因小鼠表现出显著的基因型作用 (P = 0.002)。 Propranolol处理部 分地缓解了转基因小鼠的空间记忆障碍 = 0.048), 而 nadolol则表现为无效 (P = 0.969)。 Propranolol在平台实验中显示的效果并非是由游泳速度差异造成的(图 15d)。
以上研究清楚地显示了 propranolol 能够拮抗中枢神经系统的 β-肾上腺素受体。 因为 propranolol是一种非选择性的 β-肾上腺素受体拮抗剂, 所以进一步利用亚型选择性的 β-肾上 腺素受体拮抗剂研究体内哪一种亚型能够引起上述效果。使用的亚型选择性的 β-肾上腺素受 体拮抗剂包括 Betaxolol (倍他洛尔)和 ICI 118,511 . Betaxolol是一种能够通过血脑屏障的 β ΐ- 肾上腺素受体。 ICI 118,511是一种能够通过血脑屏障的 β2-肾上腺素受体。
在可见平台训练中, 没有显示出药物作用 (图 16a, F= 0.0310, Ρ = 0.969)。然而, 在不可 见平台训练中 (;图 16b), ICI 118,551处理显著的缓解了认知障碍 ( = 24.164, P < 0.001)。 Betaxolol表现出一定效果。 伹是, 这个效果 ( = 3.698, P = 0.057)和 ICI 118,551相比不显著。 在测验实验中(图 16c),ICI 118,551的作用很显著 (Ρ = 0.005)。同样, Betaxolol的效果 (P = 0.552) 和 ICI 118,551相比则表现不显著。 Propranolol在实验中显示的效果并非是由游泳速度差异 造成的(图 16d)。
另一比较亚型选择 ¾^的 肾上腺素受体拮抗剂的实验证实了 β2-肾上腺素受体拮抗剂的 效果更强。 图 17a-17d显示了与图 16相似的动物实验结果。 Metoprolol (美托洛尔)是一种能 够通过血脑屏障的 β ΐ-肾上腺素受体拮抗剂。 Butoxamine是一种能够通过血脑屏障的 β2-肾上 腺素受体拮抗剂。 如图 17a所示, 在可见平台训练中, 没有显示出药物作用 (E = 2.017, Ρ = 0.139)。 但是, 在图 17b显示的不可见平台训练中, Butoxamine处理显著的缓解了认知障碍 (F = 15.581, P < 0.001)。 相反, Metoprolol处理则表现为无效 ( = 0.104, P = 0.748)。 图 17c 显示了在测验实验中 butoxamine的作用很显著 (尸 = 0.020), 而 metoprolol则无效 (P = 0.768)。 同样, 实验中显示的效果并非是由游泳速度差异造成的(图 17d)。
综上所述,以上结果提示 β-肾上腺素受体拮抗剂主要靶向中枢神经系统的 β-肾上腺素受 体以实现降低 γ-分泌酶活性和 Αβ产生。进一步,大部分所需要的缓解空间记忆缺陷的作用可 以通过抑制 β2-肾上腺素受体实现, 而抑制 βΐ-肾上腺素受体没有作用。 因此, 根据本发明的 目的,用来防治或治疗阿尔兹海默症的 β-肾上腺素受体拮抗剂应更倾向于作用于 β2-肾上腺素 受体。
进一步实验中,这些 β-肾上腺素受体拮抗剂对非转基因小鼠表现为无效。如图 18所示, 可见平台训练 (图 18a, = 2.327, = 0.077), 不可见平台训练 (图 18b, E = 0.264, Ρ = 0.851)以 及测验实验 (图 18c, Ρ = 0.817)都没有表现出药物作用。 这些结果提示了尽管这些 β-肾上腺素 受体拮抗剂在缓解记忆缺陷中有效, 但是对于没有记忆缺陷的正常个体则没有明显效果。
图 19a-19c显示了与图 15 相似的动物实验结果, 但这里使用的是 δ-阿片受体拮抗剂 ϊ
Naltrindoleo Naltrindole是一种能够通过血脑屏障的 δ-阿片受体拮抗剂。如图 19a所示, 在可 见平台训练中, 没有显示出药物作用 (E = 0.754, P = 0.391)。 在图 19b显示的不可见平台训练 中, Naltrindole处理显著的缓解了认知障碍 ( = 4.945, P < 0.030)。 图 19c显示了 Naltrindole 在测验实验中的显著作用 (P = 0.006)。 动物模型试验 2
在进一步的动物实验中, 4月龄的 APPswe/PSlAE9双转基因小鼠口服生理盐水 (Sal), 2 mg/kg clenbuterol(/¾-肾上腺素受体激动剂)或 1 mg/kg ICI 118,551(/¾-肾上腺素受体拮抗剂 )30 天后用 Morris水迷宫实验 (如上所述)检测空间学习和记忆。
实验中的迷宫为一注入了 24-25 °C水的圆形水池 (直径 1.2米 ),并加入奶粉使水不透明。 水池周围放置固定的空间指示,包括印有醒目图案的帘布和置有明显物体的架子。实验期间, 小鼠被小心的面对池壁至于水中。 小鼠首先接受一定数量的可见平台训练 (即连续两天, 每 天八次), 学习游至一有杆标记的升高的圆形平台 (直径 10厘米)上。 可见平台训练被分为每 天两组 (即每组四次训练)以进行统计学数据分析。 可见平台训练期间, 每次训练的平台位置 (东北, 东南, 西南或西北)和起始位置 (东、 南、 西或北)为伪随机决定。
图 20显示了对照组、 clenbuterol (克伦特罗)处理和 ICI 118,551处理的双转基因小鼠和 非转基因小鼠在 Morris水迷宫实验的可见平台实验的逃逸时间。各组小鼠之间没有发现明显 的药物或转基因作用 ( = 2.714, P = 0.052)。
不可见平台训练连续进行 6天 (每天 4次训练), 小鼠寻找水面以下 1.5 cm处的一平台。 如果在 60秒内无法找到平台, 小鼠则被引领到平台处。 在不可见平台训练中, 平台的位置 保持不变, 小鼠则从四个方向 (东、 南、 西或北)中伪随机选择的一个方向进入水池。 在每次 不可见平台训练后, 小鼠在平台上停留 30秒后再被从平台上转移到笼内。 图 21显示了对照组、 clenbuterol处理和 ICI 118,551处理的双转基因小鼠和非转基因小 鼠在 Morris水迷宫实验的不可见平台实验的逃逸时间。非转基因小鼠和对照组小鼠之间存在 明显的转基因作用 (F = 7.625, = 0.010)。 ICI 118,551处理组的小鼠比对照组小鼠表现出了 更快的学习曲线 ( = 16.075, Ρ < 0.001)。然而 clenbuterol处理没有作用 ( = 1.713,尸 = 0.198)。 这些结果提示 ICI 118,551可以有效的缓解转基因小鼠的空间记忆障碍。
最后一次不可见平台训练的二十四小时后, 进行一次测验实验。 这时平台被移走, 小 鼠则允许游泳 60秒钟试图寻找平台。所有实验被固定于水池正上方的的摄像机检测并记录, 记录用计算机跟踪系统进行分析。
图 22显示了最后一次不可见平台实验 24小时后的测验实验中小鼠在平台象限停留时 间百分比。相比之下,非转基因小鼠 (P = 0.026)和 ICI 118,551(P = 0.041)处理组小鼠在平台象 限中停留了更长的时间。 实验方法和试剂
下面对上述的实验和实施例中一些特殊的步骤进行描述。 对本技术领域的一般技术人 员来说熟知的一般性生物化学和分子生物学技术, 在此不再赘述。
质粒和试剂
所有试剂除非特别标明都是购自于 Sigma。人全长 APP克隆入 pcDNA3载体,通过 PCR 突变为 APPswe。 带有 APP信号肽的 C99克隆入 pcDNA3载体。 DNA序列的准确性通过测 序确定。人 clathrin重链的 RNAi质粒按以下序列设计 5'-GCTGGGAAAACTCTTCAGATT-3 '。 对照 (NS) RNAi质粒为 5 '-GGCCGCAAAGACCTTGTCCTTA-3,。 动物和药物处理
所有动物实验都严格遵照美国国立卫生研究院有关实验动物的护理与使用的规定。 急 性处理实验中, Sprague-Dawly (SD)大鼠 (购自上海实验动物中心)被侧脑室注射 2微克去甲肾 上腺素。 坐标为前-后(anterior- posterior), 二 0.9 mm; 左-右(left- right), -1.5 mm; 背-腹 (dorsal-ventral), -3.8 mm 。 大鼠腹腔急性注射 0.5 mg/kg clenbuterol。 30天慢性处理实验中, 5 个月龄的 APPswe/PSlAE9双转基因小鼠 (购自 The Jackson Laboratory)安装插管 (前 -后, -0.6 mm;左 -右, -1.2 mm;背 -腹, -1.8 mm)后每天注射生理盐水 (n = 4, 2个雌性和 2个雄 性)或 3 nM Iso(n = 6, 4个雌性和 2个雄性)。 APPswe/PSlAE9双转基因小鼠每天给予口服生 理盐水 (n = 6, 3个雌 '性和 3个雄性), 2 mg/kg clenbuterol(n = 7, 4个雌性和 3个雄性),和 1 mg/kg ICI 118,55 l(n = 6, 3个雌性和 3个雄性)。 免疫组织化学和计数淀粉样蛋白斑
小鼠麻醉后通过心脏生理盐水灌流。分离大脑,半脑用 4%多聚甲酸在 4°C固定 5小时。 半脑冠状切片成 10微米。切片经 A/3抗体 6E10孵育,再用 TRITC连接的二抗孵育。切片然 后用激光共聚焦显微镜 (Leica公司 TCS SP2)观察。淀粉样蛋白斑的面积用 Image-Pro Plus 5.1 软件 (Media Cybernetic公司)统计。 海马培养和急性切片制备
原代海马培养从新生 SD 大鼠制备, 用 Amaxa Nucleofector 系统电转, 培养于
B27/neurobasal培养基 (Invitrogen公司)两周后用于激动剂处理实验。 急性海马切片用 8周龄 的 SD大鼠制备。 酶联免疫吸附检测 (ELISA)淀粉样蛋白 β
细胞用 Iso或 DADLE处理 1小时后继续培养 6小时。培养基用于酶联免疫吸附试剂盒
(Biosource公司)检测 A/34()和 A&2。 大鼠海马匀浆后于 100,000 x g离心 1小时。 上清用于酶 ' 联免疫吸附试剂盒 (Wako公司;)检测 A&o和 Αβ42。 免疫沉淀
ΗΕΚ293细胞或大鼠海马切片于 RIPA缓冲液中裂解。 Flag标记的受体和内源 δ-阿片受 体用 Flag抗体连接的琼脂糖珠或 δ-阿片受体抗体 (Santa Cruz生物技术公司)免疫沉淀。 免疫 沉淀复合物用 SDS-PAGE分离后用免疫印记法检测。 表达底物方法
实验步骤如 Journal of Biological Chemistry 276, 481-7 (2001)所述。 HEK293细胞裂解后, 分成含总蛋白 50微克蛋白的等份于 13, 000 X g离心 15分钟。 细胞膜组分重悬后于 50微升 含有蛋白酶抑制剂 1, 10-菲咯啉 (plienanthroline), 抑肽酶 (aprotinin)和亮肽素 (leupeptin)的反 应缓冲液中与 37 °C孵育反应 2小时。 反应完成后以免疫印记法检测膜组分中产生的 C60。 荧光底物方法
实验方法如 Journal of Biological Chemistry 278, 24277-84 (2003)所述。 细胞或海马组织 裂解或匀桨。 含有 50微克蛋白的等份于 13, 000 X g离心 15分钟。 细胞膜组分重悬后于 50 微升含有 12微摩尔荧光底物 (Calbiochem公司)的反应缓冲液中 37 ^孵育反应 2小时。 之后, 用分光光度计测量激发波长为 355mn和发射波长为 440nm的荧光强度。 脉冲跟踪实验
共转染了 HA-C99和 DOR的 HEK293细胞用不含有甲硫氨酸和血清的培养基 (Invitrogen 公司)饥饿 2小时后, 用 500)tiCi [35S] 甲硫氨酸 (GE Healthcare公司)在有或无 DADLE刺激的 情况下脉冲标记 1小时。 随后细胞在含有过量甲硫氨酸的培养基中跟踪 3小时。细胞裂解液 中的 C99用 HA抗体免疫沉淀, 再用放射自显影分析。 免疫分离晚内吞小体和溶酶体
本实验方法依照 Journal of Biological Chemistry 278, 11386-92 (2003)所述小泡分离方法 改进。 共转染了 /¾AR, C99和 Flag-Rab7的 HEK293细胞匀浆后于 500 g离心 10分钟。 获 得的上清与 M2 抗体连接的琼脂糖珠于 4 °C孵育 S小时。 分离的晚内吞小体和溶酶体用 LAMP-1和 EEA1抗体 (BD Biosciences公司)以 western blot方法检测。 免疫荧光显微镜术
转染了 HA标记的受体和 /或 GFP-Rab7或 GFP-Rab7 T22N的 HEK293细胞中, 首先用 HA抗体孵育 30分钟, 然后用激动剂处理并固定。 转染了 Flag-Rab7和 HA-Dyn K44A或 GFP-Rab5 S34N的细胞实验中, 细胞用激动剂处理并固定。 急性海马切片实验中, 切片首先 用 Iso或 DADLE处理然后固定并切片。后续染色用第一抗体 (包括 PS1-NTF, Flag, LAMP-1 或 /3-adaptin抗体或 FITC连接的 HA抗体)和第二抗体 (Cy3连接的抗兔和 FITC连接的抗鼠抗 体, 均购自: Tackson ImmunoResearch公司)。 用激光共聚焦显微镜 (Leica TCS SP2)获取图像。 早老蛋白- 1N端(PS1-NTF)抗体购自 Calbiochem公司。 荧光共振能量转移实验测量受体与早老蛋白 1之间的相互作用
用于荧光共振能量转移实验的图像由 Leica TCS SP2共聚焦显微镜获取并用相应软件分 析。 HEK293细胞共转染了 GFP-DOR和 HA-PS1。 HA-PS1表达用 HA的第一抗体和连接了 Cy3荧光素的第二抗体检测, GFP-DOR表达用 GFP荧光检测。细胞的 GFP-DOR或 PSl-Cy3 的荧光谱用 488 nm激光在 λ模式获取。为了测量能量转移效率,用 Leica软件实现受体荧光 漂白。选定的细胞表面区域用 561 nm激光荧光漂白 Cy3荧光素。共转染了 GFP-PS1和 HA-PS1 的 HEK293细胞中 Cy3信号在荧光漂白后平均下降 84 ± 5.3%(n = 50)。 能量转移表示为 GFP-DORCi共体)信号在 PSl-Cy3(受体)荧光漂白后的增加。 相对能量效率按计算为 (l-[Cy3 I 漂白前 /Cy3 /漂白后]) X 100%。细胞表面没有荧光漂白的区域进行能量转移分析以作为对照。 数据分析
细胞实验的数据用 t-test比较平均值。 小鼠数据用方差分析和 t-test分析显著性差异。 以上结合有限数量的具体实施例阐述了本发明。应理解, 这些实施例仅用于说明本 发明而不用于限制本发明的范围。 此外, 在阅读了本发明的上述讲授内容之后, 本领域 技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所附权利要求 书所限定的范围。 .

Claims

权 利 要 求
1. 一种制备治疗或预防阿尔兹海默症或相关神经性病变的试剂的方法,其特征在于 包括以下步骤:
(a) 激活受体并确定其初始内吞程度, 所述受体为与早老蛋白 -1结合的 G蛋白偶联 受体;
(b) 在一种候选试剂存在下, 如 (a)所述激活受体, 再次确定受体的内吞程度;
(c) 确定 (a)和 (b)中的内吞程度的差异;
(d) 如果差异小于阈值则选择另一候选试剂重复步骤 (a)至 (c);
(e) 合成和 /或纯化所述候选试剂作为用于治疗或预防阿尔兹海.默症或相关神经性病 变的药物。
2. 一种筛选治疗或预防阿尔兹海默症或相关神经性病变的试剂的方法,其特征在于 包括以下步骤:
(a) 激活受体并确定其初始内吞程度, 所述受体为与早老蛋白 -1结合的 G蛋白偶联 受体;
(b) 在一种候选试剂存在下, 如 (a)所述激活受体, 再次确定受体的内吞程度;
(c) 确定 (a)和 (b)中的内吞程度的差异;
(d) 如果差异小于阈值则选择另一候选试剂重复步骤 (a)至 (c)。
3. 一种制备治疗或预防阿尔兹海默症或相关神经性病变的试剂的方法, 其特征在 于包括以下步骤:
(a) 测量受体与早老蛋白 -1或 γ-分泌酶的初始结合程度,所述受体为与早老蛋白 -1结 合的 G蛋白偶联受体;
(b) 在一种候选试剂存在下,如 (a)所述再次测量受体与早老蛋白 -1或 γ-分泌酶的结合 程度;
(c) 确定 (a)和 (b)中的结合程度的差异;
(d) 如果差异小于一定阈值则选择另一候选试剂重复步骤 (a)至 (c
(e) 合成和 /或纯化所述候选试剂作为用于治疗或预防阿尔兹海默症或相关神经性病 变的药物。 -
4. 一种筛选治疗或预防阿尔兹海默症或相关神经性病变的试剂的方法,其特征在于 包括以下步骤:
(a) 测量受体与早老蛋白 -1或 γ-分泌酶的初始结合程度,所述受体为与早老蛋白 -1结 合的 G蛋白偶联受体;
(b) 在一种候选试剂存在下,如 (a)所述再次测量受体与早老蛋白 -1或 γ-分泌酶的结合 程度; .
(c) 确定 (a)和 (b)中的结合程度的差异;
(d) 如果差异小于一定阈值则选择另一候选试剂重复步骤 (a)至 (c)。
5. 如权利要求 1至 4所述的任一种方法, 其特征在于, 所述受体中至少一种选自 β 肾上腺素受体和 δ-阿片受体。
6. 如权利要求 5所述的方法,其特征在于,所述 β肾上腺素受体为 β2肾上腺素受体。
7. 如权利要求 1至 6所述的任一种的方法,其特征在于,所述受体被表达于已经转 染了编码此受体基因的细胞上。
8. 如权利要求 1、 2、 5、 6或 7所述的任一种的方法, 其特征在于通过检测内吞小 泡的数量、 内吞小泡中的早老蛋白 -1、 晚内吞小泡和溶酶体中 γ-分泌酶的活性或淀粉样 蛋白 /3的形成而确定所述的初始内吞程度和再次内吞程度。
9. 如权利要求 3至 7所述的任一种的方法,其特征在于通过检测荧光共振能量转移 而确定所述的初始结合程度和再次结合程度。
10. 受体拮抗剂在制备治疗或预防阿尔兹海默症或相关神经性病变药物中的应用, 其特征在于, 在内吞过程中,所述受体拮抗剂抑制与早老蛋白 -1结合的 G蛋白偶联受体 的内吞。
11. 一种试剂在制备治疗或预防阿尔兹海默症或相关神经性病变药物中的应用, 其 特征在于, 所述试剂干扰 G蛋白偶联受体与早老蛋白 -1或 γ-分泌酶的结合。
12. 如权利要求 10或 11所述的应用,其特征在于,其中所述受体中至少一种选自 β 肾上腺素受体和 δ-阿片受体。
13. 如权利要求 12所述的应用, 其特征在于, 其中所述 β肾上腺素受体为 β2肾上腺 素受体。
14. 如权利要求 10、 12或 13所述的任一种的应用, 其特征在于, 所述拮抗剂中至 少一种选自 ICI 118,551、 普萘洛尔、 布他沙明或纳曲吲哚。
15. 如权利要求 10、 12或 13所述的任一种的应用, 其特征在于, 所述拮抗剂为 ICI 118,551或布他沙明。
PCT/CN2006/003595 2005-12-26 2006-12-26 A g protein-coupled receptor antagonist and its use for preventing and treating alzheimer’s disease WO2007073687A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/159,183 US8026073B2 (en) 2005-12-26 2006-12-26 Screening G protein-coupled receptor antagonists for methods of treating Alzheimer's disease
EP06840640A EP1967527A4 (en) 2005-12-26 2006-12-26 G PROTEIN-COUPLED RECEPTOR ANTAGONIST AND USE THEREOF IN THE PREVENTION AND TREATMENT OF ALZHEIMER'S DISEASE
CN200680049242.3A CN101346396B (zh) 2005-12-26 2006-12-26 预防和治疗阿尔兹海默症的g蛋白偶联受体拮抗剂及其应用
JP2008547831A JP2009521238A (ja) 2005-12-26 2006-12-26 アルツハイマー病を予防および治療するためのgタンパク質共役レセプターアンタゴニスト及びその使用
US13/214,907 US20120004254A1 (en) 2005-12-26 2011-08-22 G protein-coupled receptor antagonist and its use for preventing and treating alzheimer's disease

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200510112005 2005-12-26
CN200510112005.4 2005-12-26
CN200610162480.7 2006-11-17
CNA2006101624807A CN1991364A (zh) 2005-12-26 2006-11-17 预防和治疗阿尔兹海默症的g蛋白偶联受体拮抗剂

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/214,907 Division US20120004254A1 (en) 2005-12-26 2011-08-22 G protein-coupled receptor antagonist and its use for preventing and treating alzheimer's disease

Publications (1)

Publication Number Publication Date
WO2007073687A1 true WO2007073687A1 (en) 2007-07-05

Family

ID=38213769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003595 WO2007073687A1 (en) 2005-12-26 2006-12-26 A g protein-coupled receptor antagonist and its use for preventing and treating alzheimer’s disease

Country Status (5)

Country Link
US (2) US8026073B2 (zh)
EP (1) EP1967527A4 (zh)
JP (1) JP2009521238A (zh)
CN (1) CN1991364A (zh)
WO (1) WO2007073687A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129334B2 (en) * 2006-03-31 2012-03-06 The Regents Of The University Of California Methods and compositions for treating neurodegenerative disorders and Alzheimer'S disease and improving normal memory
WO2007123680A2 (en) 2006-03-31 2007-11-01 The Regents Of The University Of California Methods and compositions for treating neurodegenerative disorders and alzheimer's disease and improving normal memory
US8647887B2 (en) * 2009-01-29 2014-02-11 Commonwealth Scientific And Industrial Research Organisation Measuring G protein coupled receptor activation
CN104220630B (zh) 2012-02-23 2017-03-08 特来德斯通技术公司 耐腐蚀且导电的金属表面
AU2013204332B2 (en) * 2012-04-16 2015-07-16 Commonwealth Scientific And Industrial Research Organisation Methods and systems for detecting an analyte or classifying a sample
KR101743960B1 (ko) 2015-07-06 2017-06-08 서울대학교산학협력단 G단백질 결합형 수용체19 작용제를 유효성분으로 함유하는 알츠하이머 질환 또는 치매를 예방, 치료 또는 지연하기 위한 약학적 조성물
CN111773386A (zh) * 2019-04-03 2020-10-16 中国科学院深圳先进技术研究院 阿尔兹海默症治疗靶点
GB201916561D0 (en) * 2019-11-14 2020-01-01 Vib Vzw Gamma-secretase inhibitor screening assay
JP2023507408A (ja) * 2019-12-18 2023-02-22 キュラセン セラピューティクス インコーポレイテッド 神経系疾患および障害を改善するための方法
CN113332432A (zh) * 2020-03-03 2021-09-03 复旦大学 防治老年性痴呆的新途径

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242932A (en) 1991-12-17 1993-09-07 The Rockefeller University Treatment of amyloidosis associated with alzheimer disease
US5385915A (en) 1990-05-16 1995-01-31 The Rockefeller University Treatment of amyloidosis associated with Alzheimer disease using modulators of protein phosphorylation
US6043224A (en) 1996-09-05 2000-03-28 The Massachusetts Institute Of Technology Compositions and methods for treatment of neurological disorders and neurodegenerative diseases
CN1281334A (zh) * 1997-10-15 2001-01-24 泊灵格曼海姆药品公司及史密斯克莱恩贝克曼公司 治疗阿尔茨海默氏病的方法
WO2003088924A2 (en) * 2002-03-19 2003-10-30 Duke University Phosphoinositide 3-kinase mediated inhibition of gpcrs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385915A (en) 1990-05-16 1995-01-31 The Rockefeller University Treatment of amyloidosis associated with Alzheimer disease using modulators of protein phosphorylation
US5242932A (en) 1991-12-17 1993-09-07 The Rockefeller University Treatment of amyloidosis associated with alzheimer disease
US6043224A (en) 1996-09-05 2000-03-28 The Massachusetts Institute Of Technology Compositions and methods for treatment of neurological disorders and neurodegenerative diseases
US6187756B1 (en) 1996-09-05 2001-02-13 The Massachusetts Institute Of Technology Composition and methods for treatment of neurological disorders and neurodegenerative diseases
CN1281334A (zh) * 1997-10-15 2001-01-24 泊灵格曼海姆药品公司及史密斯克莱恩贝克曼公司 治疗阿尔茨海默氏病的方法
WO2003088924A2 (en) * 2002-03-19 2003-10-30 Duke University Phosphoinositide 3-kinase mediated inhibition of gpcrs

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHEN Z. ET AL.: "Development research on G Protein-Coupled Receptor desensitization and internalization", DEVELOPMENT OF PHYSIOLOGICAL SCIENCES, vol. 32, no. 1, 2001, pages 55 - 58, XP008082993 *
D. J. SELKOE, ANNU. REV. NEUROSCI., vol. 17, 1994, pages 489
GAO H. ET AL.: "Identification of beta-Arrestin2 as a G Protein-Coupled Receptor-Stimulated Regulator of NF-kappa B Pathways", MOLECULAR CELL, vol. 14, May 2004 (2004-05-01), pages 303 - 317, XP003014896 *
LEE ET AL., J. NEUROCHEM., vol. 68, 1997, pages 1830
LI X. ET AL.: "The second cathedra, Molecule mechanism of neurodegenerative disease", CHIN. J. NEUROSCI., vol. 17, no. 4, November 2001 (2001-11-01), pages 379 - 384, XP008083187 *
MARAMBAUD ET AL., J. NEUROCHEM., vol. 67, 1996, pages 2616
ULUS; WURTMAN, J. PHARM. EXP. THER., vol. 281, 1997, pages 149
WALSH, D.M. ET AL.: "Naturally Secreted Oligomers of Amyloid Beta Protein Potently Inhibit Hippocampal Long-Term Potentiation in vivo", NATURE, vol. 416, 2002, pages 535 - 9
XU ET AL., PNAS USA, vol. 93, 1996, pages 4081

Also Published As

Publication number Publication date
US20080312332A1 (en) 2008-12-18
EP1967527A1 (en) 2008-09-10
US8026073B2 (en) 2011-09-27
JP2009521238A (ja) 2009-06-04
EP1967527A4 (en) 2010-03-10
US20120004254A1 (en) 2012-01-05
CN1991364A (zh) 2007-07-04

Similar Documents

Publication Publication Date Title
WO2007073687A1 (en) A g protein-coupled receptor antagonist and its use for preventing and treating alzheimer’s disease
Nakamura et al. Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1, 4, 5‐trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain
Sarret et al. Immunohistochemical distribution of NTS2 neurotensin receptors in the rat central nervous system
Teng et al. A GPCR/secretase complex regulates β-and γ-secretase specificity for Aβ production and contributes to AD pathogenesis
US8945858B2 (en) Methods and compositions for treating neurodegenerative disorders and alzheimer&#39;s disease and improving normal memory
US20120214186A1 (en) METHODS AND COMPOSITIONS FOR DETECTING AND QUANTIFYING sAPPbeta
Miyatake et al. Inhibition of EGF‐induced ERK/MAP kinase‐mediated astrocyte proliferation by μ opioids: integration of G protein and β‐arrestin 2‐dependent pathways
WO2009042727A1 (en) Immediate early gene arc interacts with endocytic machinery and regulates the trafficking and function of presenilin
US20150323549A1 (en) Methods for Identifying Compounds That Modulate Ion Channel Activity of a Kir Channel
CN101346396B (zh) 预防和治疗阿尔兹海默症的g蛋白偶联受体拮抗剂及其应用
CN101454671A (zh) 用于治疗神经变性疾病和阿尔茨海默病以及改善正常记忆的方法和组合物
Lee et al. The Piezo channel is central to the mechano-sensitive channel complex in the mammalian inner ear
WO2023238955A1 (ja) TypeI味覚受容体(T1Rs)を介した膜電位依存性イオンチャネルの制御方法
Chase Alpha Synuclein: a Therapeutic Target and Biomarker for Parkinson’s Disease
Tsai et al. Autoantibody of NRIP, a novel AChR‐interacting protein, plays a detrimental role in myasthenia gravis
Gibert Influence of Amyloid Aggregates on the Trafficking and Signaling of GPCRs
WO2004108141A2 (en) Bach-o-protein coupled receptor releated methods
Royal Combinatorial diversity of two-pore-domain k+ channels and its involvement in migraine
Laçin Development of Cell-Based Neurotransmitter Fluorescent Reporters (CNiFERs) for in vivo Detection of Somatostatin
McCartney Functional role of the GABA (A) receptor epsilon subunit
Wickert Effects of an F238L point mutation on intracellular trafficking and signaling of the cannabinoid type 1 receptor
Putula Molecular Determinants of Orexin Receptor–Ligand Interaction
Niehaus Identification and characterization of CRIP1b: A novel CB1 cannabinoid receptor interacting protein
Perez Trpm5 is a novel transient receptor potential channel expressed in taste receptor cells
Clark RGS protein modulation of neuronal Galpha (q)-mediated signaling

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049242.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008547831

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006840640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12159183

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006840640

Country of ref document: EP