WO2007073204A1 - Procédé et installation pour la régénération de glycol - Google Patents

Procédé et installation pour la régénération de glycol Download PDF

Info

Publication number
WO2007073204A1
WO2007073204A1 PCT/NO2006/000490 NO2006000490W WO2007073204A1 WO 2007073204 A1 WO2007073204 A1 WO 2007073204A1 NO 2006000490 W NO2006000490 W NO 2006000490W WO 2007073204 A1 WO2007073204 A1 WO 2007073204A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycol
mixture
water
vacuum boiler
salts
Prior art date
Application number
PCT/NO2006/000490
Other languages
English (en)
Inventor
Baard Kaasa
Nichlas Marheim
Arne Olav Fredheim
Original Assignee
Statoilhydro Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Statoilhydro Asa filed Critical Statoilhydro Asa
Publication of WO2007073204A1 publication Critical patent/WO2007073204A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation

Definitions

  • the present invention relates to a process for the regeneration of glycol and a plant for carrying out the process.
  • Gas from a reservoir normally contains some CO 2 which in contact with water will form carbonic acid.
  • the amount of CO 2 varies from reservoir to reservoir.
  • a base is added to the mixture, preferably sodium hydroxide or sodium bicarbonate, in order to increase the pH of the system. Base addition usually takes place in the hydrate inhibitor before it is injected into the reservoir stream prior to transport.
  • pH stabilisation hi addition to oil, condensate and gas, the reservoir stream may contain formation water which can contain NaCl and other ions, typically alkali and earth alkali metals and iron as well as bromide and sulphate.
  • glycol compounds such as monoethylene glycol, diethylene glycol and Methylene glycol or alcohols such as methanol and ethanol.
  • the glycol compounds are characterised by a boiling point that is higher than the boiling point of water. Therefore, in ordinary distillation, the water will boil off and the glycol-rich phase will contain all the dissolved salts.
  • US2005/0072663 describes a known process for regenerating a glycol solution containing water, hydrocarbons and dissolved salts. Water and hydrocarbons are distilled off under reduced pressure. The glycol solution is then further concentrated, which results in a concentration of salts such that they precipitate and can be separated off. The document says nothing about what ions are present or what salts are precipitated out. The concentrated glycol solution obtained will be saturated with salts and this could lead to deposits in the equipment used to transport the glycol solution, especially if temperature and pressure conditions change underway.
  • US6023003 and US6444095 disclose a process and a system for recovering glycol from a glycol and brine mixture.
  • the process comprises three cyclic repetitions of the following steps: Flash distillation of water, removal of water vapour and removal of solid salt particles from the glycol phase.
  • Flash distillation of water removal of water vapour and removal of solid salt particles from the glycol phase.
  • a reduced water content and a reduced total salt content are obtained once the mixture has undergone such a process three times, but the concentrated glycol solution obtained will be saturated with salt.
  • the documents refer only to the presence of sodium chloride.
  • Another known method for regenerating glycol consists of passing the salt-containing glycol and water mixture into a vacuum boiler and evaporating water and glycol. This vapour is condensed and distilled until a salt-free glycol solution having suitably low water content is obtained. A certain water content will often be acceptable.
  • the regenerated glycol solution may comprise between 0 and 20% water, preferably about 10% water.
  • the concentration of the dissolved salts in the liquid phase in the vacuum boiler increases until a saturated solution is obtained and solid salt particles are formed.
  • a sub-stream is led out of the boiler and the solid salt particles are removed therefrom before it is passed back to the vacuum boiler.
  • the salts which are formed during this process from a pH stabilised system will essentially be sodium carbonate.
  • NaCl and carbon salts of alkali and earth alkali metals will also be precipitated.
  • these salts have a tendency to form very small crystals. This means that they can be exceptionally difficult to remove from the liquid phase by known separation methods, hi existing plants, this has made it necessary to close the plant in order to remove the formed salts in thick slush or paste form and flush the plant clean. For reasons of costs, such regeneration plants are often not made of an acid-resistant material and all processes must therefore take place in the neutral to basic pH range.
  • the object of the present invention is to solve these problems of the prior art, and the invention is based on the following observation.
  • the pH increases from about 6-9 to about 11-12. This change cannot be due to the accumulation of salts alone, as the precipitation of carbonates and bicarbonates will lower the pH.
  • the cause is, however, that CO 2 evaporates together with water and glycol. This is surprising as the equilibrium between CO 2 , HCO 3 " and CO 3 2" at these high pH values suggests a very low concentration and low partial pressure of CO 2 .
  • chloride salts By adjusting and controlling the pH of the mixture preferably using hydrochloric acid, it will be possible to avoid high concentrations of carbonate ions and bicarbonate ions in that HCO 3 " is converted into CO 2 and the salts will precipitate as chloride salts instead of carbonate or bicarbonate salts.
  • the properties of chloride salts are well known and entail a number of advantages.
  • the present invention provides a process for the regeneration of glycol from a mixture comprising glycol, water and salts, the salts comprising carbonate and/or bicarbonate ions, comprising: - heating the mixture; evaporating water and glycol under reduced pressure: condensing water and glycol vapour: distilling water from the condensed vapour in order to form a salt-free glycol stream with reduced water content; - removing a sub-stream from the heated mixture; removing precipitated salts from the sub-stream, characterised in that it comprises removing CO 2 from the mixture by evaporation together with glycol and water.
  • the invention further provides a plant for the regeneration of glycol from a mixture comprising glycol, water and salts, comprising: -a feed pipeline for feeding the mixture to the plant;
  • a vacuum boiler with a return circuit comprising a pipeline from the vacuum boiler to a compression device/pressure-increasing device, a pipeline leading to a pressure- reducing device and a pipeline leading into the vacuum boiler;
  • glycol is meant, within the scope of this invention, different glycol compounds such as monoethylene glycol, diethylene glycol and trietheylene glycol and the like and mixtures thereof.
  • the device and the method used for separation of precipitated and crystallised salts may be any known method such as sedimentation, filtration, centrifugation and the like.
  • a mixture comprising glycol, water and dissolved salts is passed into the plant through pipeline 1.
  • the salt comprises carbonate and/or bicarbonate ions and formation water salts.
  • This mixture may further comprise, for example, residual hydrocarbons or additives.
  • One of the main components of the plant is a vacuum boiler 10, also termed a flash separator, in which an evaporation of water and glycol takes place at reduced pressure.
  • Pressure and temperature in the vacuum boiler 10 may vary depending on factors including the glycol type, the glycol concentration and the heat source that is used.
  • the pressure is in the range of 10-lOOkPa and the temperature is in the range of 100-140 0 C.
  • a return circuit comprising a pipeline 22 connected to the lower part, preferably the bottom, of the vacuum boiler 10.
  • a bottom stream consisting of glycol, water and a concentrated salt content is passed to a compression device 11, consisting, for example, of a pump.
  • the compression device ensures that the pressure in the circuit, also after heating, is sufficient to avoid boiling in the pipelines. It also provides an adequate circulation rate to prevent the salt particles from sedimenting whilst held in a slurry/suspension.
  • the pressurised stream is passed through pipeline 23 and 24 to a heat exchanger 14 which supplies heat to the system. It is also possible to supply heat by means of, for example, a heating coil in the liquid phase or by heating the vacuum boiler itself.
  • the pressurised heated stream is passed through pipeline 25 and 20 to a pressure-reducing means 15, preferably a valve, before 5 it is passed through pipeline 21 back to the vacuum boiler 10.
  • the feed stream 1 can, as shown, be fed to the circuit before it is depressurised, but it may also be fed directly to the vacuum boiler 10 or before the heat exchanger in stream 24.
  • a small side stream of the pressurised bottom stream is taken out through pipeline 4 o and passed into a separation device 12 for the separation of solid salt particles.
  • the device 12 comprises a sedimentation tank in which solid salt crystals are sedimented out.
  • the device may also consist of other known devices for separating solid particles from a liquid phase, for example, s filtration devices, centrifugation devices and the like.
  • the solid particles exit the device via pipeline 5, in the preferred embodiment together with a small portion of liquid, sufficient to ensure the mixture is transportable.
  • the substantially particle-free liquid phase is passed through a pipeline 26 back to the vacuum boiler 10.
  • the admission of return stream 21, particle-free liquid stream 26 and optionally a direct feed stream can 0 be carried out at any level in the boiler 10.
  • Return stream 21 should preferably also not be introduced into the liquid phase in the boiler 10 because evaporation of water and glycol may then give increased foaming. 5
  • the vapour phase in the vacuum boiler 10 consists essentially of glycol and water vapour, but also of CO 2 and volatile hydrocarbon components. It is passed through pipeline 2 to a condenser 13 where the vapour is condensed. The condensate is passed via pipeline 27 to a distillation installation 16 where water is distilled off and removed o via pipeline 28 whilst regenerated glycol with a reduced water content is passed out via pipeline 29.
  • the method according to the invention comprises the addition of acid.
  • this is shown by pipeline 3 which introduces 5 acid into the stream 20 before it is depressurised in device 15.
  • the acid addition may also take place elsewhere, for example, in stream 24 or 25.
  • the acid should preferably not be added in the feed stream 1 because the pH in this stream may then be too low, which could cause corrosion.
  • the circuit is provided with a pH meter (not shown) which measures the pH value and a control unit which, on the basis of the measurement, controls the acid addition so that the pH of the mixture is maintained at a desired level.
  • the pH should be as low as possible, but to prevent corrosion it cannot be less than 7 and often not less than 10. Lowering the pH in the vacuum boiler from 12 to 10 will result in the equilibrium shifting from carbonate to bicarbonate and the partial pressure of CO 2 increasing by more than two powers often, that is to say that it becomes at least 100 times as great.
  • the solid salts formed will essentially consist of NaCl.
  • NaCl will represent more than 80% by weight, more preferably more than 90% by weight and most preferably about 99% by weight of the solid salts. It is therefore not possible to completely avoid the formation of solid carbonate salts such as CaCO 3 , but the proportion thereof will be small in relation to the amount of the sodium salt of the added acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

L'invention concerne un procédé et une installation pour la régénération de glycol à partir d'un mélange comprenant du glycol, de l'eau et des sels, les sels comprenant des ions carbonates et/ou bicarbonates. Le mélange est distillé par distillation flash pour obtenir une solution de glycol et d'eau sans sel. Cette solution est condensée et distillée pour obtenir du glycol ayant une teneur en eau réduite. Les sels sont concentrés dans le ballon de flash et enlevés d'un soutirage prélevé dans un circuit de recyclage vers le ballon de flash. Le procédé est en outre caractérisé en ce qu'il comprend les étapes consistant à ajouter un acide avant l'évaporation et à enlever le CO2 du mélange lors de l'évaporation.
PCT/NO2006/000490 2005-12-21 2006-12-19 Procédé et installation pour la régénération de glycol WO2007073204A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20056113A NO20056113L (no) 2005-12-21 2005-12-21 Fremgangsmate og anlegg for regenerering av glykol
NO20056113 2005-12-21

Publications (1)

Publication Number Publication Date
WO2007073204A1 true WO2007073204A1 (fr) 2007-06-28

Family

ID=38188855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2006/000490 WO2007073204A1 (fr) 2005-12-21 2006-12-19 Procédé et installation pour la régénération de glycol

Country Status (2)

Country Link
NO (1) NO20056113L (fr)
WO (1) WO2007073204A1 (fr)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080038A1 (fr) 2009-01-08 2010-07-15 Aker Process Systems As Procédé de régénération et de récupération de monoéthylène glycol utilisant un écoulement glissant pour obtenir le vide
GB2467169A (en) * 2009-01-26 2010-07-28 Statoilhydro Asa Process for the regeneration of liquid hydrate inhibitors
WO2012171554A1 (fr) * 2011-06-14 2012-12-20 Statoil Petroleum As Procédé et appareil pour éliminer les cations polyvalents du monoéthylène de glycol
WO2013000896A1 (fr) * 2011-06-27 2013-01-03 Shell Internationale Research Maatschappij B.V. Procédé et appareil de mise en circulation d'un flux de glycol contenant une concentration de cations divalents, et procédé de production d'un flux de gaz naturel en produit
WO2013041143A1 (fr) * 2011-09-22 2013-03-28 Statoil Petroleum As Régénération d'inhibiteur cinétique d'hydrate
WO2013011462A3 (fr) * 2011-07-20 2013-04-11 Aker Process Systems As Procédé de récupération d'un inhibiteur hydrate
WO2013074183A1 (fr) * 2011-11-14 2013-05-23 Cameron International Corporation Schéma de procédé pour améliorer l'élimination de sels métalliques divalents à partir de mono éthylène glycol (meg)
WO2013168077A1 (fr) * 2012-05-11 2013-11-14 Aker Process Systems As Élimination de sel d'acide carboxylique pendant la récupération d'un inhibiteur d'hydrate
EP2860168A1 (fr) * 2013-10-10 2015-04-15 Cameron Solutions, Inc. Système et procédé pour l'élimination de carboxylates organiques provenant de flux d'eau mono éthylène glycol (MEG) par acidification et vaporisation sous vide
CN104645651A (zh) * 2013-11-22 2015-05-27 普罗舎纳特公司 处理用于天然气开采的溶剂如单乙二醇的灵活方法
WO2015119639A1 (fr) * 2014-02-10 2015-08-13 Cameron Solutions, Inc. Élimination d'ions divalents à partir de flux d'alimentation en monoéthylène glycol (meg)
EP2310101A4 (fr) * 2008-06-15 2015-08-19 Prime Services Trustee Ltd Procédé permettant la séparation de solides à partir de liquides précieux ou dangereux par évaporation
WO2015195361A1 (fr) * 2014-06-17 2015-12-23 Cameron Solutions, Inc. Système d'élimination et de transport de sel destiné à être utilisé dans un procédé de récupération de monoéthylèneglycol (meg)
WO2015195362A1 (fr) * 2014-06-17 2015-12-23 Cameron Solutions, Inc. Système d'élimination et de transport de sel destiné à être utilisé dans un procédé de récupération de monoéthylèneglycol (meg)
US9522834B2 (en) 2012-02-20 2016-12-20 Ccr Technologies, Ltd. Process for removing salts from a processing liquid
US20170015613A1 (en) * 2015-07-16 2017-01-19 Cameron International Corporation Short contact, elevated temperature meg reclamation
WO2017052377A1 (fr) * 2015-09-25 2017-03-30 Statoil Petroleum As Procédé d'élimination de chlorure de sodium
CN106659963A (zh) * 2014-07-22 2017-05-10 Ccr科技有限公司 从含有碱土金属盐的物流中回收工艺液体的方法
WO2018005483A1 (fr) * 2016-06-27 2018-01-04 Cameron Solutions, Inc. Système et procédé pour éliminer des solides et des contaminants liquides d'un flux de traitement par mélange du flux avec un milieu de chauffage, et leurs applications
WO2018115442A1 (fr) 2016-12-23 2018-06-28 Nov Process & Flow Technologies As Système de récupération d'un inhibiteur d'hydrate
US10328360B2 (en) 2016-06-27 2019-06-25 Cameron Solutions, Inc. System and method to partially vaporize a process stream by mixing the stream with a heating medium
US10335708B2 (en) 2016-06-27 2019-07-02 Cameron Solutions, Inc. System and method to generate steam by mixing a feed water stream with a heating medium
US10370264B2 (en) 2016-06-27 2019-08-06 Cameron Solutions, Inc. System and method to desalinate a feed water stream by mixing the feed water stream with a heating medium
KR20190125638A (ko) * 2018-04-30 2019-11-07 삼성중공업 주식회사 Meg 재생장치
KR20190125637A (ko) * 2018-04-30 2019-11-07 삼성중공업 주식회사 Meg 재생장치
US10471366B2 (en) 2016-06-27 2019-11-12 Cameron Solutions, Inc. System and method to reboil a process stream in a distillation system by mixing the stream with a heating medium
US10478745B2 (en) 2016-06-27 2019-11-19 Cameron Solutions, Inc. System and method to vaporize a process stream by mixing the stream with a heating medium
WO2020104004A1 (fr) 2018-11-19 2020-05-28 Nov Process & Flow Technologies As Système de récupération d'inhibiteur d'hydrates
US10807017B2 (en) * 2018-12-20 2020-10-20 Schlumberger Technology Corporation Heating flash-on-oil vapor section
US10954179B1 (en) * 2019-08-28 2021-03-23 Cameron International Corporation Method and apparatus for filtering heat transfer fluid from a monoethylene glycol stream
WO2021113236A1 (fr) * 2019-12-02 2021-06-10 Schlumberger Technology Corporation Réduction de la consommation d'énergie lors de la récupération de meg
WO2021115852A1 (fr) * 2019-12-13 2021-06-17 IFP Energies Nouvelles Procede de regeneration d'une solution aqueuse de meg contenant des sels avec traitement de la purge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334460A (en) * 1998-01-13 1999-08-25 Reading & Bates Constr Recovery of glycol from mixtures of glycol and brine
NO307503B1 (no) * 1997-03-05 2000-04-17 Kvaerner Process Systems As FremgangsmÕte ved og anordning for behandling og bearbeiding av et fluid
US20030127226A1 (en) * 1999-05-07 2003-07-10 Heins William F. Water treatment method for heavy oil production
US20050072663A1 (en) * 2002-10-28 2005-04-07 Geraldine Laborie Method of regenerating an aqueous glycol solution containing salts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO307503B1 (no) * 1997-03-05 2000-04-17 Kvaerner Process Systems As FremgangsmÕte ved og anordning for behandling og bearbeiding av et fluid
GB2334460A (en) * 1998-01-13 1999-08-25 Reading & Bates Constr Recovery of glycol from mixtures of glycol and brine
US20030127226A1 (en) * 1999-05-07 2003-07-10 Heins William F. Water treatment method for heavy oil production
US20050072663A1 (en) * 2002-10-28 2005-04-07 Geraldine Laborie Method of regenerating an aqueous glycol solution containing salts

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2310101A4 (fr) * 2008-06-15 2015-08-19 Prime Services Trustee Ltd Procédé permettant la séparation de solides à partir de liquides précieux ou dangereux par évaporation
NO332854B1 (no) * 2009-01-08 2013-01-21 Aker Process Systems As Fremgangsmåte for re-konsentrasjon og gjenvinning av monoetylenglykol
WO2010080038A1 (fr) 2009-01-08 2010-07-15 Aker Process Systems As Procédé de régénération et de récupération de monoéthylène glycol utilisant un écoulement glissant pour obtenir le vide
GB2467169A (en) * 2009-01-26 2010-07-28 Statoilhydro Asa Process for the regeneration of liquid hydrate inhibitors
AU2010207564B2 (en) * 2009-01-26 2015-04-23 Statoil Petroleum As Process for hydrate inhibitor regeneration
US9090813B2 (en) 2009-01-26 2015-07-28 Statoil Petroleum As Process for hydrate inhibitor regeneration
GB2467169B (en) * 2009-01-26 2014-08-06 Statoil Petroleum As Process and apparatus for the production of lean liquid hydrate inhibitor composition
RU2564034C2 (ru) * 2011-06-14 2015-09-27 Статойл Петролеум Ас Способ и устройство для отделения многозарядных катионов от моноэтиленгликоля
AU2011370741B2 (en) * 2011-06-14 2017-04-20 Statoil Petroleum As Method and apparatus for the removal of polyvalent cations from mono ethylene glycol
CN103702962A (zh) * 2011-06-14 2014-04-02 挪威国家石油公司 用于从单乙二醇中去除多价阳离子的方法和装置
US10124330B2 (en) 2011-06-14 2018-11-13 Equinor Energy As Method and apparatus for the removal of polyvalent cations from mono ethylene glycol
CN103702962B (zh) * 2011-06-14 2016-09-07 挪威国家石油公司 用于从单乙二醇中去除多价阳离子的方法和装置
WO2012171554A1 (fr) * 2011-06-14 2012-12-20 Statoil Petroleum As Procédé et appareil pour éliminer les cations polyvalents du monoéthylène de glycol
GB2541151A (en) * 2011-06-27 2017-02-15 Shell Int Research Method and apparatus for circulating a glycol stream containing a concentration or divalent cations, and method of producing a natural gas product stream
WO2013000896A1 (fr) * 2011-06-27 2013-01-03 Shell Internationale Research Maatschappij B.V. Procédé et appareil de mise en circulation d'un flux de glycol contenant une concentration de cations divalents, et procédé de production d'un flux de gaz naturel en produit
US9006500B2 (en) 2011-07-20 2015-04-14 Aker Process Systems As Hydrate inhibitor recovery process
AP3895A (en) * 2011-07-20 2016-11-13 Aker Process Systems As Hydrate inhibitor recovery process
WO2013011462A3 (fr) * 2011-07-20 2013-04-11 Aker Process Systems As Procédé de récupération d'un inhibiteur hydrate
CN103946348A (zh) * 2011-09-22 2014-07-23 挪威国家石油公司 动力学水合物抑制剂的再生
WO2013041143A1 (fr) * 2011-09-22 2013-03-28 Statoil Petroleum As Régénération d'inhibiteur cinétique d'hydrate
CN103946348B (zh) * 2011-09-22 2015-12-16 挪威国家石油公司 动力学水合物抑制剂的再生
RU2580319C2 (ru) * 2011-09-22 2016-04-10 Статойл Петролеум Ас Регенерация кинетического ингибитора гидратообразования
AU2011377433B2 (en) * 2011-09-22 2017-03-02 Statoil Petroleum As Regeneration of kinetic hydrate inhibitor
US20140346033A1 (en) * 2011-09-22 2014-11-27 Statoil Petroleum As Regeneration of kinetic hydrate inhibitor
WO2013074183A1 (fr) * 2011-11-14 2013-05-23 Cameron International Corporation Schéma de procédé pour améliorer l'élimination de sels métalliques divalents à partir de mono éthylène glycol (meg)
US11203560B2 (en) 2011-11-14 2021-12-21 Cameron International Corporation Process scheme to improve divalent metal salts removal from mono ethylene glycol (MEG)
US9790153B2 (en) 2011-11-14 2017-10-17 Cameron International Corporation Process scheme to improve divalent metal salts removal from mono ethylene glycol (MEG)
US9522834B2 (en) 2012-02-20 2016-12-20 Ccr Technologies, Ltd. Process for removing salts from a processing liquid
AU2013257611B2 (en) * 2012-05-11 2017-08-24 Fjords Processing As Carboxylic acid salt removal during hydrate inhibitor recovery
US9284244B2 (en) 2012-05-11 2016-03-15 Fjords Processing As Carboxylic acid salt removal during hydrate inhibitor recovery
WO2013168077A1 (fr) * 2012-05-11 2013-11-14 Aker Process Systems As Élimination de sel d'acide carboxylique pendant la récupération d'un inhibiteur d'hydrate
US10005708B2 (en) 2013-10-10 2018-06-26 Cameron Solutions, Inc. System and process for removal of organic carboxylates from mono ethylene glycol (MEG) water streams by acidification and vaporization under vacuum
US10308578B2 (en) 2013-10-10 2019-06-04 Cameron Solutions, Inc. System and process for removal of organic carboxylates from mono ethylene glycol (MEG) water streams by acidification and vaporation under vacuum
EP2860168A1 (fr) * 2013-10-10 2015-04-15 Cameron Solutions, Inc. Système et procédé pour l'élimination de carboxylates organiques provenant de flux d'eau mono éthylène glycol (MEG) par acidification et vaporisation sous vide
US10934237B2 (en) 2013-10-10 2021-03-02 Cameron Solutions, Inc. System and process for removal of organic carboxylates from mono ethylene glycol (MEG) water streams by acidification and vaporization under vacuum
US11807595B2 (en) 2013-10-10 2023-11-07 Cameron Solutions, Inc. System and process for removal of organic carboxylates from mono ethylene glycol (MEG) water streams by acidification and vaporization under vacuum
CN104645651A (zh) * 2013-11-22 2015-05-27 普罗舎纳特公司 处理用于天然气开采的溶剂如单乙二醇的灵活方法
US9725388B2 (en) 2014-02-10 2017-08-08 Cameron Solutions, Inc. Divalent ion removal from monoethylene glycol (MEG) feed streams
WO2015119639A1 (fr) * 2014-02-10 2015-08-13 Cameron Solutions, Inc. Élimination d'ions divalents à partir de flux d'alimentation en monoéthylène glycol (meg)
US9469585B2 (en) 2014-02-10 2016-10-18 Cameron Solutions, Inc. Divalent ion removal from monoethylene glycol (MEG) feed streams
US9133086B2 (en) 2014-02-10 2015-09-15 Cameron Solutions, Inc. Divalent ion removal from monoethylene glycol (MEG) feed streams
US9630122B2 (en) 2014-06-17 2017-04-25 Cameron Solutions, Inc. Salt removal and transport system and method for use in a mono ethylene glycol reclamation process
US9272972B2 (en) 2014-06-17 2016-03-01 Cameron Solutions, Inc. Salt removal and transport system and method for use in a mono ethylene glycol reclamation process
WO2015195361A1 (fr) * 2014-06-17 2015-12-23 Cameron Solutions, Inc. Système d'élimination et de transport de sel destiné à être utilisé dans un procédé de récupération de monoéthylèneglycol (meg)
US9914685B2 (en) 2014-06-17 2018-03-13 Cameron Solutions, Inc. System for removing salt from a rich mono ethylene glycol stream
US11058968B2 (en) 2014-06-17 2021-07-13 Cameron Solutions, Inc. Salt removal and transport system and method for use in a mono ethylene glycol reclamation process
WO2015195362A1 (fr) * 2014-06-17 2015-12-23 Cameron Solutions, Inc. Système d'élimination et de transport de sel destiné à être utilisé dans un procédé de récupération de monoéthylèneglycol (meg)
AU2015277641B2 (en) * 2014-06-17 2018-11-08 Cameron Solutions, Inc. Salt removal and transport system for use in a monoethyleneglycol (MEG) reclamation process
US9522865B2 (en) 2014-06-17 2016-12-20 Cameron Solutions, Inc. System for removing salt from a rich mono ethylene glycol stream
US10252182B2 (en) 2014-06-17 2019-04-09 Cameron Solutions, Inc. Salt removal and transport system and method for use in a mono ethylene glycol reclamation process
CN106659963A (zh) * 2014-07-22 2017-05-10 Ccr科技有限公司 从含有碱土金属盐的物流中回收工艺液体的方法
CN106659963B (zh) * 2014-07-22 2020-01-14 Ccr科技有限公司 从含有碱土金属盐的物流中回收工艺液体的方法
CN107848923A (zh) * 2015-07-16 2018-03-27 卡梅伦国际有限公司 短时接触的高温meg回收
EP3322684A4 (fr) * 2015-07-16 2019-02-27 Cameron International Corporation Récupération de meg à température élevée et après un court temps de contact
US20170015613A1 (en) * 2015-07-16 2017-01-19 Cameron International Corporation Short contact, elevated temperature meg reclamation
US11524927B2 (en) 2015-07-16 2022-12-13 Cameron International Corporation Short contact, elevated temperature MEG reclamation
WO2017011195A1 (fr) * 2015-07-16 2017-01-19 Cameron International Corporation Récupération de meg à température élevée et après un court temps de contact
WO2017052377A1 (fr) * 2015-09-25 2017-03-30 Statoil Petroleum As Procédé d'élimination de chlorure de sodium
CN109475784A (zh) * 2016-06-27 2019-03-15 卡梅伦解决方案公司 通过将工艺料流与加热介质混合以从工艺料流移除固体和液体污染物的系统和方法及其应用
US10370264B2 (en) 2016-06-27 2019-08-06 Cameron Solutions, Inc. System and method to desalinate a feed water stream by mixing the feed water stream with a heating medium
US10471366B2 (en) 2016-06-27 2019-11-12 Cameron Solutions, Inc. System and method to reboil a process stream in a distillation system by mixing the stream with a heating medium
US10478745B2 (en) 2016-06-27 2019-11-19 Cameron Solutions, Inc. System and method to vaporize a process stream by mixing the stream with a heating medium
WO2018005483A1 (fr) * 2016-06-27 2018-01-04 Cameron Solutions, Inc. Système et procédé pour éliminer des solides et des contaminants liquides d'un flux de traitement par mélange du flux avec un milieu de chauffage, et leurs applications
US11731061B2 (en) 2016-06-27 2023-08-22 Cameron Solutions, Inc. System and method to partially vaporize a process stream by mixing the stream with a heating medium
US10328360B2 (en) 2016-06-27 2019-06-25 Cameron Solutions, Inc. System and method to partially vaporize a process stream by mixing the stream with a heating medium
US11083974B2 (en) 2016-06-27 2021-08-10 Cameron Solutions, Inc. System and method to reboil a process stream in a distillation system by mixing the stream with a heating medium
US10335708B2 (en) 2016-06-27 2019-07-02 Cameron Solutions, Inc. System and method to generate steam by mixing a feed water stream with a heating medium
US10864456B2 (en) 2016-06-27 2020-12-15 Cameron Solutions, Inc. System and method to partially vaporize a process stream by mixing the stream with a heating medium
US10918966B2 (en) 2016-06-27 2021-02-16 Schlumberger Technology Corporation System and method to vaporize a process stream by mixing the stream with a heating medium
WO2018115442A1 (fr) 2016-12-23 2018-06-28 Nov Process & Flow Technologies As Système de récupération d'un inhibiteur d'hydrate
KR102097609B1 (ko) * 2018-04-30 2020-04-06 삼성중공업 주식회사 Meg 재생장치
KR20190125637A (ko) * 2018-04-30 2019-11-07 삼성중공업 주식회사 Meg 재생장치
KR102073130B1 (ko) * 2018-04-30 2020-02-04 삼성중공업 주식회사 Meg 재생장치
KR20190125638A (ko) * 2018-04-30 2019-11-07 삼성중공업 주식회사 Meg 재생장치
WO2020104461A1 (fr) 2018-11-19 2020-05-28 Nov Process & Flow Technologies As Système de récupération d'inhibiteur d'hydrates
WO2020104004A1 (fr) 2018-11-19 2020-05-28 Nov Process & Flow Technologies As Système de récupération d'inhibiteur d'hydrates
US10807017B2 (en) * 2018-12-20 2020-10-20 Schlumberger Technology Corporation Heating flash-on-oil vapor section
US10954179B1 (en) * 2019-08-28 2021-03-23 Cameron International Corporation Method and apparatus for filtering heat transfer fluid from a monoethylene glycol stream
WO2021113236A1 (fr) * 2019-12-02 2021-06-10 Schlumberger Technology Corporation Réduction de la consommation d'énergie lors de la récupération de meg
CN114746387A (zh) * 2019-12-02 2022-07-12 斯伦贝谢技术有限公司 减少meg再生中的能量消耗
WO2021115852A1 (fr) * 2019-12-13 2021-06-17 IFP Energies Nouvelles Procede de regeneration d'une solution aqueuse de meg contenant des sels avec traitement de la purge
FR3104452A1 (fr) * 2019-12-13 2021-06-18 IFP Energies Nouvelles Procede de regeneration d’une solution aqueuse de meg contenant des sels avec traitement de la purge

Also Published As

Publication number Publication date
NO20056113L (no) 2007-06-22

Similar Documents

Publication Publication Date Title
WO2007073204A1 (fr) Procédé et installation pour la régénération de glycol
US6444095B1 (en) System for recovering glycol from glycol/brine streams
US7232505B2 (en) Method of regenerating an aqueous glycol solution containing salts
RU2508308C2 (ru) Способ регенерации ингибитора образования гидратов
EP2608871B1 (fr) Processus de récupération de liquides de traitement
KR100287595B1 (ko) 기화 동안 스케일 형성을 최소화시키면서 염을 회수하는 방법
DK2300371T3 (en) METHOD OF PREPARING SODIUM CHLORIDE
WO2010080038A1 (fr) Procédé de régénération et de récupération de monoéthylène glycol utilisant un écoulement glissant pour obtenir le vide
US9284244B2 (en) Carboxylic acid salt removal during hydrate inhibitor recovery
US9089790B2 (en) Hydrocarbon and divalent cation removal from rich mono ethylene glycol (MEG) feed streams by regenerable filters
WO2012068590A1 (fr) Procédés pour réduire la formation de tartre sur les surfaces de transfert thermique et en éliminer les dépôts
Glade et al. The release of CO2 in MSF and ME distillers and its use for the recarbonation of the distillate: a comparison
KR101977426B1 (ko) 2가 양이온의 농도를 갖는 글리콜 스트림을 순환시키는 방법 및 장치, 및 천연 가스 생성물 스트림의 제조 방법
CN113056318B (zh) 水合物抑制剂回收系统
US10280102B1 (en) Methods to properly condition feed water for steam generators in oil-fields and the like
US20230023829A1 (en) Method for regenerating an aqueous solution of meg containing salts with purge treatment
RU2124929C1 (ru) Способ переработки природного газа
Tendencies Unitech
JP2022143099A (ja) 海水淡水化装置
Condilis et al. Closed loop glycol systems—experience from BP’s Shah Deniz gas export project and advances in technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06835731

Country of ref document: EP

Kind code of ref document: A1