WO2007072867A1 - Feedstock supply unit and vapor deposition equipment - Google Patents

Feedstock supply unit and vapor deposition equipment Download PDF

Info

Publication number
WO2007072867A1
WO2007072867A1 PCT/JP2006/325392 JP2006325392W WO2007072867A1 WO 2007072867 A1 WO2007072867 A1 WO 2007072867A1 JP 2006325392 W JP2006325392 W JP 2006325392W WO 2007072867 A1 WO2007072867 A1 WO 2007072867A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
vapor deposition
gas
container
material supply
Prior art date
Application number
PCT/JP2006/325392
Other languages
French (fr)
Japanese (ja)
Inventor
Masaji Inoue
Toshihisa Nozawa
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2006800365146A priority Critical patent/CN101278073B/en
Publication of WO2007072867A1 publication Critical patent/WO2007072867A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the present invention relates to a vapor deposition apparatus and a raw material supply apparatus used for the vapor deposition apparatus.
  • the vapor deposition method is a method of forming a thin film by evaporating, for example, a vapor deposition raw material evaporated or sublimated on a substrate to be processed.
  • EL organic electo-minescence
  • Display devices using organic EL elements are easy to miniaturize, can emit light with low power consumption, and can significantly reduce the applied voltage compared to liquid crystal displays. The use in various display devices is attracting attention.
  • an organic EL element has a structure in which a light emitting layer is formed between an anode and a cathode.
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes.
  • a material such as a polycyclic aromatic hydrocarbon, a heteroaromatic compound, or an organometallic complex compound is used.
  • the above materials can be formed by vapor deposition.
  • a thin film for improving luminous efficiency such as a hole transporting layer or an electron transporting layer can be formed between the anode and the light emitting layer or between the cathode and the light emitting layer as necessary. These layers can also be formed by vapor deposition.
  • the vapor deposition apparatus used for forming the thin film described above for example, a processing container capable of maintaining the inside in a reduced pressure state, and vaporizing or evaporating or sublimating the vapor deposition raw material installed in the processing container. And a vapor deposition source evaporated or evaporated or sublimated from the vapor deposition source is deposited on the substrate to be processed.
  • a vapor deposition apparatus evaporated or evaporated or sublimated from the vapor deposition source is deposited on the substrate to be processed.
  • the amount of vapor deposition material per unit time that evaporates or sublimates from the vapor deposition source is an example.
  • it may be caused by a change in time, a slight change in the amount of vapor deposition raw material held in the vapor deposition source, or the temperature of the vapor deposition source. For this reason, it was difficult to stabilize the deposition rate of the deposited film, and the film deposition rate changed, resulting in variations in film thickness.
  • Patent Document 1 Japanese Patent Publication No. 2003-502494
  • the evaporation of the evaporation material is carried out by installing a baffle plate (perforated plate) in the container of the evaporation source!
  • An invention to stabilize is described.
  • the carrier gas for supplying the evaporated or sublimated raw material is not used, and the flow of the carrier gas is not taken into consideration.
  • the above-described kaffle plate is used, the film formation speed is remarkably reduced when the amount of raw material supplied to the vapor deposition apparatus is small.
  • Patent Document 1 Special Table 2003-502494
  • an object of the present invention is to provide a new and useful vapor deposition apparatus that solves the above problems.
  • a specific problem of the present invention is a raw material supply apparatus used in a vapor deposition apparatus, the raw material supply apparatus in which the stability of the deposition rate of the vapor deposition apparatus is good, and the vapor deposition including the raw material supply apparatus Is to provide a device.
  • the above-described problem is a raw material supply apparatus that supplies a raw material by evaporating or sublimating it to a processing container of a vapor deposition apparatus, and the raw material that holds the raw material therein.
  • the problem is solved by a raw material supply device characterized in that a gas flow control unit for controlling the flow of the carrier gas is provided inside the raw material container.
  • a processing container that holds a substrate to be processed inside, and a raw material supply that feeds the processing container by evaporating the raw material.
  • a vapor deposition apparatus that vaporizes the sublimated raw material.
  • the raw material supply device includes a raw material container for holding the raw material therein, a gas inlet for supplying a carrier gas to the inside of the raw material container, and the raw material evaporated or sublimated together with the carrier gas. And a gas discharge port for supplying the gas to the processing container, and a gas flow control unit for controlling the flow of the carrier gas is provided inside the raw material container. .
  • a raw material supply device used in a vapor deposition apparatus a raw material supply apparatus in which the stability of the film formation rate of the vapor deposition apparatus is good, and a vapor deposition apparatus having the raw material supply apparatus. Is possible.
  • FIG. 1 is a cross-sectional view of a raw material supply apparatus according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of a raw material supply apparatus according to Embodiment 2.
  • FIG. 3 is a cross-sectional view of a raw material supply apparatus according to Embodiment 3.
  • FIG. 4 shows a vapor deposition apparatus according to Example 4.
  • the raw material supply apparatus is an apparatus for evaporating or sublimating the raw material and supplying it to a processing vessel of a vapor deposition apparatus (configuration example will be described later).
  • the vapor deposition apparatus has a processing container for holding the substrate to be processed, and the raw material supply apparatus according to this embodiment supplies the raw material evaporated or sublimated to the processing container.
  • FIG. 1 is a cross-sectional view schematically showing a raw material supply apparatus according to Embodiment 1 of the present invention.
  • a raw material container 103 is formed by combining a cylindrical container 101 and a lid 102, and an internal space is formed inside the raw material container 103.
  • 103A is defined.
  • the internal space 103A holds a raw material 100A that is solid (eg, powder) at normal temperature * normal pressure.
  • a heater 113 is installed outside the raw material container 103, and the raw material 100A is evaporated or sublimated by being heated by the heater 113.
  • the cylindrical container 101 has a substantially cylindrical shape with one end opened, and a flange for attaching the lid 102 is formed on the opened side of the cylindrical shape.
  • the lid 102 is attached to the cylindrical container 101 so as to close the opening of the cylindrical container 101, and a sealing material 112 is inserted between the lid 102 and the cylindrical container 101, so that the internal space Airtightness of 103A is maintained.
  • the lid 102 is provided with a gas flow control unit 102A that extends into the internal space 103A. Details of the gas flow control unit 102A will be described later.
  • the lid 102 is connected to a gas introduction line 110 for introducing a carrier gas into the internal space 103A.
  • the carrier gas introduced from the gas introduction line 110 passes through the gas introduction path 107 formed in the lid portion 102 and the gas introduction path 105 formed in the cylindrical container 101.
  • the gas is introduced into the internal space 103A through a gas inlet 104 formed on the side opposite to the side to which the lid 102 is attached (the first side of the raw material container 103).
  • the carrier gas introduced into the internal space 103A from the gas inlet 104 is evaporated or sublimated with the raw material 100A (hereinafter referred to as gas raw material), and the lid 102 (opposite the first side). It is discharged from the gas discharge port 106 formed on the second side).
  • the carrier gas and the gas raw material discharged from the internal space 103A are discharged to a gas discharge line 111 connected to the lid portion 102 via a gas discharge path 108 formed in the lid portion 102.
  • the gas discharge line 111 is connected to a processing container of a vapor deposition apparatus, which will be described later, and has a structure in which a gaseous raw material is supplied to the processing container through the discharge line 111 together with a carrier gas.
  • the raw material supply apparatus is characterized in that the gas flow control unit 102A for controlling the flow of the carrier gas is formed in the internal space 103.
  • the raw material 100A is held in the raw material container 103 so as to face the gas flow control unit 102A.
  • the carrier gas flows between the gas flow control unit 102A and the raw material 100A.
  • the gas flow control unit 102A controls the flow of the carrier gas supplied to the internal space 103A.
  • the carrier gas flow is turbulent. It can be.
  • the gaseous raw material is discharged at the saturated vapor pressure, so that the gaseous raw material can be stably supplied to the processing container of the vapor deposition apparatus.
  • the gas flow control unit 102A includes the gas introduction port 104 to the gas discharge port 106 (the above-mentioned The first side force is also formed to extend in the direction of the second side). That is, the gas flow control unit 102A is formed to extend along the flow of the carrier gas. For this reason, the flow of the carrier gas can be controlled efficiently.
  • the gas flow rate control unit 102A includes a flat plate-like support part 102a extending from the first side to the second side, and the first side force is also applied to the support part 102a over the second side.
  • a plurality of protrusions 102b are formed.
  • the carrier gas introduced from the introduction port 104 is controlled in flow by the protrusion 102b, and the Reynolds number is increased to form turbulent flow.
  • the gas flow control unit 102A is preferably formed with a sufficient length to control the flow of the carrier gas.
  • a filter 109 is formed in the gas discharge path 108 in order to prevent the powdery raw material 100A from scattering to the processing container side.
  • valves 110A and 111A are installed in the gas introduction line 110 and the gas discharge line 111, respectively.
  • connecting portions 110B and 111B made of, for example, a pipe joint are connected to the gas introduction line 110 and the gas discharge line 111, respectively. Therefore, by removing the pipe joints of the connecting portions 110B and 11IB in the state where the nozzles 110A and 111A are closed, the raw material supply apparatus 100 can be easily removed from the vapor deposition apparatus (processing vessel). Become.
  • the raw material supply apparatus 100 when the raw material supply apparatus 100 is replenished with raw materials or when the raw material supply apparatus 100 is maintained, the raw material supply apparatus 100 can be easily attached and detached from the vapor deposition apparatus. ! RU
  • the structure of the gas flow control unit is not limited to the structure shown in the first embodiment, and can be modified and changed in various ways.
  • FIG. 2 is a cross-sectional view schematically showing a raw material supply apparatus 100A according to Example 2 of the present invention.
  • the same reference numerals are given to the parts described above, and the description will be omitted.
  • parts that are not particularly described are the same as those of the first embodiment.
  • the protrusion 102c is longer (larger) than the protrusion 102b in the case of Example 1, and the tip reaches the raw material 100A.
  • the carrier gas passes through the inside of the raw material 100A, there is a feature that it is easy to reach the saturated vapor pressure.
  • FIG. 3 is a cross-sectional view schematically showing a raw material supply apparatus 100A according to Example 3 of the present invention.
  • the same reference numerals are given to the parts described above, and the description will be omitted.
  • parts that are not particularly described are the same as those of the first embodiment.
  • the cross-sectional shape of the protrusion 102d is different from that of Example 1, whereas in Example 1, the cross-sectional shape was a square.
  • the shape is triangular and the tip is sharp.
  • the shape of the protrusion may be variously changed or changed in accordance with the conditions for controlling the flow of the carrier gas (for example, the flow rate), the difference in the raw material (for example, the difference in vapor pressure).
  • FIG. 4 is a diagram schematically showing an example of the configuration of the vapor deposition apparatus according to Example 4 of the present invention.
  • a vapor deposition apparatus 200 includes a processing container 201 in which an internal space 201A is defined, and a processing container 202 connected to the processing container 201. ing.
  • a holding table 203 for holding the substrate to be processed 204 is installed in the internal space 201A.
  • the holding table 203 has an ESC (electrostatic chuck), and the substrate to be processed is held such that the surface thereof faces the direction in which the raw material is supplied.
  • the holding table 203 is connected to the moving rail 205 so as to be movable, and is configured to be movable in a direction parallel to the substrate 204 to be processed.
  • the gate valve 211 installed in the processing container 201 is opened, and installed in a vacuum transfer chamber (not shown), for example. It is carried in by the transport robot 300.
  • the loaded substrate to be processed is aligned by the alignment device 207 and then held on the holding table 203.
  • the internal space 201A is connected to the processing vessel 201, for example, a turbo component.
  • the air is exhausted by an exhaust means 208 comprising a child pump, and the pressure is reduced.
  • An exhaust line 208A is connected to the exhaust means 208, and the exhaust line 208A is connected to an exhaust means (not shown) such as a dry pump.
  • a raw material supply unit 209 that supplies a gaseous raw material to the internal space 201 A is installed in the opening on the bottom surface of the processing container 201 so as to face the holding table 203.
  • film formation evaporation
  • the gas material supplied from the material supply unit 209 reaches the substrate to be processed.
  • processing container 202 is exposed to the outside of the bottom surface of the processing container 201, and covers the exhaust unit 208, the raw material supply unit 209, and the alignment device so as to cover the bottom surface of the processing container 201. Connected to the side!
  • the raw material supply unit 209 has a plurality of mixing chambers in which a plurality of gaseous raw materials are mixed.
  • the raw material supply unit 209 may have a structure in which raw material mixing chambers 209A, 209B, 209C, and 209D force are arranged in parallel along the moving direction of the substrate 204 to be processed.
  • a raw material supply nozzle 210 is installed in each of the raw material mixing chambers 209A, 209B, 209C, and 209D, and the gaseous raw material mixed in each raw material mixing chamber is supplied from the raw material supply nozzle 210 to the internal space 201.
  • A is supplied to A and deposited on the substrate to be processed 204 to form a film.
  • the raw material mixing chambers 209A, 209B, 209C, and 209D are connected to gas lines 21 2A, 212B, 212C, and 212D respectively, and the gas lines 212A, 21 2B, 212C, And 212D are connected to the raw material supply apparatus 100 described above with reference to FIG.
  • the gas line 212A will be described as an example.
  • the gas line 212A is connected to the mixing chamber 209A and is formed to extend to the outside of the processing vessel 202.
  • the plurality of raw material supply apparatuses 100 are connected to the outside.
  • the gas line 212A is connected to the gas discharge lines 111 of the three raw material supply apparatuses 100 via the nozzles 213A, 213B, and 213C, respectively.
  • three raw material supply devices are connected to the raw material mixing chamber 209A via the gas line 212A, and three kinds of gaseous raw materials are supplied and mixed.
  • Raw material The gas raw material mixed in the mixing chamber 209A is supplied from the gas supply nozzle 210 to the internal space 201A.
  • each of the gas introduction lines 110 of the three raw material supply apparatuses 100 includes valves 214A, 214B, and 214C, and MFCs (mass flow controllers) 217A, 217B, and 217C, respectively.
  • a carrier gas such as Ar is supplied to the carrier gas supply source 218.
  • the details (for example, the internal structure) of the raw material supply apparatus 100 shown in FIG. 1 are not shown.
  • the gas line 212D is connected to the mixing chamber 209D and formed to extend to the outside of the processing vessel 202, and a plurality of the raw material supply devices are provided outside the processing vessel 202. Connected with 100.
  • the gas line 212D is connected to the gas discharge lines 111 of the two raw material supply apparatuses 100 via the nozzles 215A and 215B, respectively. That is, two raw material supply devices are connected to the raw material mixing chamber 209D via the gas line 212D, and two kinds of gas raw materials are supplied and mixed. The gaseous raw material mixed in the raw material mixing chamber 209D is supplied from the gas supply nozzle 210 to the internal space 201A.
  • each of the gas introduction lines 110 of the two raw material supply devices 100 is connected to the carrier gas supply source 218 via valves 216A and 216B, respectively. Illustration of the connection line is omitted.
  • a plurality of raw material supply apparatuses 100 are connected to the gas lines 212B and 212C (not shown), and the raw material mixing chambers 209B and 209B, respectively. Also in 209C, a plurality of gaseous raw materials are mixed and supplied to the internal space 201A.
  • an exhaust cover 206 having a hole portion 206 A through which the gas supply nozzle 210 is exposed may be installed on the bottom surface of the processing container 201.
  • the exhaust cover is installed so as to cover the raw material supply unit 209 together with the exhaust unit 208, and suppresses mixing of gaseous raw materials supplied from a plurality of raw material mixing chambers before reaching the substrate to be processed. Then! [0055]
  • the vapor deposition apparatus 200 according to the present embodiment by using the raw material supply apparatus 100 described in the first embodiment, it is possible to stably deposit a gas raw material to form a film. In addition, the film forming speed is stable.
  • a film having a plurality of raw materials can be formed. Further, by moving the holding table 203 during film formation, it is possible to form a film having a complicated structure by further stacking films containing a plurality of raw materials. Therefore, it is suitable for forming a light emitting element such as an organic EL element.
  • an organic EL element in which a hole transport layer, a light emitting layer, and an electron transport layer are stacked can be formed.
  • an aluminoquinolinol complex (Alq3) can be used for the host material of the light emitting layer, and rubrene can be used for the doping material.
  • the above-described vapor deposition apparatus is not limited to the organic EL element, and it is possible to form vapor deposition films for various other purposes.
  • a raw material supply apparatus used in a vapor deposition apparatus the raw material supply apparatus in which the stability of the deposition rate of the vapor deposition apparatus is good, and the vapor deposition apparatus having the raw material supply apparatus. Is possible.

Abstract

A feedstock supply unit for evaporating or sublimating feedstock and supplying the resulting vapor to a treatment vessel in vapor deposition equipment, which is equipped with a feedstock vessel for holding the feedstock, a gas introduction port for supplying a carrier gas to the inside of the feedstock vessel, and a gas discharge port for discharging the evaporated or sublimated feedstock together with the carrier gas in order to supply them to the treatment vessel, characterized in that the feedstock vessel is provided with a gas flow controller for controlling the flow of the carrier gas in the inside thereof.

Description

明 細 書  Specification
原料供給装置および蒸着装置  Raw material supply device and vapor deposition device
技術分野  Technical field
[0001] 本発明は、蒸着装置および当該蒸着装置に用いる原料供給装置に関する。  The present invention relates to a vapor deposition apparatus and a raw material supply apparatus used for the vapor deposition apparatus.
背景技術  Background art
[0002] 例えば被処理基板の表面に薄膜などを形成する方法の一例としては、蒸着法があ る。蒸着法とは、例えば蒸発あるいは昇華された蒸着原料を、被処理基板上に蒸着 させることで薄膜を形成する方法である。  [0002] As an example of a method for forming a thin film on the surface of a substrate to be processed, there is a vapor deposition method. The vapor deposition method is a method of forming a thin film by evaporating, for example, a vapor deposition raw material evaporated or sublimated on a substrate to be processed.
[0003] 例えば、蒸着法によって形成される薄膜としては、有機エレクト口ミネッサンス(以下 ELと表記する)素子に用いられる薄膜がある。有機 EL素子を用いた表示装置は、小 型化が容易であって、消費電力が小さぐ面発光が可能であり、液晶ディスプレイと 比較して印加電圧を大幅に低減できるため、フラットディスプレイ等の各種表示装置 での利用が注目されて 、る。  [0003] For example, as a thin film formed by a vapor deposition method, there is a thin film used for an organic electo-minescence (hereinafter referred to as EL) element. Display devices using organic EL elements are easy to miniaturize, can emit light with low power consumption, and can significantly reduce the applied voltage compared to liquid crystal displays. The use in various display devices is attracting attention.
[0004] 例えば、有機 EL素子は、陽極と陰極の間に発光層が形成された構造を有している 。当該発光層は、電子と正孔との再結合により発光する層であり、発光層には、例え ば、多環芳香族炭化水素、ヘテロ芳香族化合物、有機金属錯体化合物等の材料を 用いることが可能であり、上記の材料は蒸着法により、形成することが可能である。ま た、必要に応じて陽極と発光層の間、または陰極と発光層の間に、例えば正孔輸送 層、または電子輸送層など発光効率を良好とするための薄膜を形成することも可能 であり、これらの層も蒸着法により、形成することが可能である。  [0004] For example, an organic EL element has a structure in which a light emitting layer is formed between an anode and a cathode. The light-emitting layer is a layer that emits light by recombination of electrons and holes. For the light-emitting layer, for example, a material such as a polycyclic aromatic hydrocarbon, a heteroaromatic compound, or an organometallic complex compound is used. The above materials can be formed by vapor deposition. In addition, a thin film for improving luminous efficiency such as a hole transporting layer or an electron transporting layer can be formed between the anode and the light emitting layer or between the cathode and the light emitting layer as necessary. These layers can also be formed by vapor deposition.
[0005] この場合、上記の薄膜の形成に用いる蒸着装置は、例えば内部を減圧状態に保持 可能な処理容器と、当該処理容器内に設置された、蒸着原料を気化または蒸発ある いは昇華させる蒸着源とを備えた構造を有しており、蒸着源から気化または蒸発ある いは昇華された蒸着原料が被処理基板に蒸着されるように構成されて ヽる。しかし、 蒸着装置により薄膜を形成する場合、蒸着源より蒸発あるいは昇華する蒸着原料の 量を制御することが困難であるという問題が生じていた。  [0005] In this case, the vapor deposition apparatus used for forming the thin film described above, for example, a processing container capable of maintaining the inside in a reduced pressure state, and vaporizing or evaporating or sublimating the vapor deposition raw material installed in the processing container. And a vapor deposition source evaporated or evaporated or sublimated from the vapor deposition source is deposited on the substrate to be processed. However, when a thin film is formed by a vapor deposition apparatus, there has been a problem that it is difficult to control the amount of vapor deposition material evaporated or sublimated from the vapor deposition source.
[0006] これは、蒸着源より蒸発あるいは昇華する、単位時間当たりの蒸着原料の量が、例 えば、時間経過や、蒸着源に保持される蒸着原料の量、または蒸着源の温度の僅か な変化に応じて変化してしまうために生じると考えられる。このため、蒸着膜の成膜速 度を安定させることが困難となり、成膜速度が変化して膜厚にばらつきが生じる場合 かあつた。 [0006] This is because the amount of vapor deposition material per unit time that evaporates or sublimates from the vapor deposition source is an example. For example, it may be caused by a change in time, a slight change in the amount of vapor deposition raw material held in the vapor deposition source, or the temperature of the vapor deposition source. For this reason, it was difficult to stabilize the deposition rate of the deposited film, and the film deposition rate changed, resulting in variations in film thickness.
[0007] また、上記の特許文献 1 (特表 2003— 502494号公報)には、蒸着源の容器内に バッフル板 (多孔板)を設置することで蒸着原料の蒸発ある!、は昇華量を安定させる 発明が記載されている。しかし、上記の構造では、蒸発あるいは昇華した原料を供給 するためのキャリアガスを用いておらず、キャリアガスの流れが考慮されていない。そ のため、上記のノ ッフル板を用いた場合には蒸着装置に供給される原料の量が少な ぐ成膜速度が著しく低下するため、現実的な構造ではない。  [0007] In addition, in the above-mentioned Patent Document 1 (Japanese Patent Publication No. 2003-502494), the evaporation of the evaporation material is carried out by installing a baffle plate (perforated plate) in the container of the evaporation source! An invention to stabilize is described. However, in the above structure, the carrier gas for supplying the evaporated or sublimated raw material is not used, and the flow of the carrier gas is not taken into consideration. For this reason, when the above-described kaffle plate is used, the film formation speed is remarkably reduced when the amount of raw material supplied to the vapor deposition apparatus is small.
特許文献 1:特表 2003 - 502494号公報  Patent Document 1: Special Table 2003-502494
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] そこで、本発明では上記の問題を解決した、新規で有用な蒸着装置を提供すること を目的としている。 Accordingly, an object of the present invention is to provide a new and useful vapor deposition apparatus that solves the above problems.
[0009] 本発明の具体的な課題は、蒸着装置に用いる原料供給装置であって、蒸着装置 の成膜速度の安定性が良好となる原料供給装置、および当該原料供給装置を有す る蒸着装置を提供することである。  [0009] A specific problem of the present invention is a raw material supply apparatus used in a vapor deposition apparatus, the raw material supply apparatus in which the stability of the deposition rate of the vapor deposition apparatus is good, and the vapor deposition including the raw material supply apparatus Is to provide a device.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の第 1の観点では、上記の課題を、蒸着装置の処理容器に、原料を蒸発あ るいは昇華させて供給する原料供給装置であって、内部に前記原料を保持する原 料容器と、前記原料容器の内部にキャリアガスを供給するガス導入口と、前記キヤリ ァガスと共に蒸発ある ヽは昇華した前記原料を、前記処理容器に供給するガス排出 口と、を有し、前記原料容器の内部に前記キャリアガスの流れを制御するガス流制御 部を設けたことを特徴とする原料供給装置により、解決する。 [0010] In a first aspect of the present invention, the above-described problem is a raw material supply apparatus that supplies a raw material by evaporating or sublimating it to a processing container of a vapor deposition apparatus, and the raw material that holds the raw material therein. A gas container, a gas inlet for supplying a carrier gas into the raw material container, and a gas outlet for supplying the raw material evaporated together with the carrier gas to the processing container. The problem is solved by a raw material supply device characterized in that a gas flow control unit for controlling the flow of the carrier gas is provided inside the raw material container.
[0011] また、本発明の第 2の観点では、上記の課題を、被処理基板を内部に保持する処 理容器と、前記処理容器に原料を蒸発ある!ヽは昇華させて供給する原料供給装置と を有し、前記被処理基板に蒸発ある!、は昇華された前記原料を蒸着させる蒸着装置 であって、前記原料供給装置は、内部に前記原料を保持する原料容器と、前記原料 容器の内部にキャリアガスを供給するガス導入口と、前記キャリアガスと共に蒸発ある いは昇華した前記原料を、前記処理容器に供給するガス排出口と、を有し、前記原 料容器の内部に前記キャリアガスの流れを制御するガス流制御部を設けたことを特 徴とする蒸着装置により、解決する。 [0011] Further, according to a second aspect of the present invention, the above-described problems are solved by a processing container that holds a substrate to be processed inside, and a raw material supply that feeds the processing container by evaporating the raw material. A vapor deposition apparatus that vaporizes the sublimated raw material. The raw material supply device includes a raw material container for holding the raw material therein, a gas inlet for supplying a carrier gas to the inside of the raw material container, and the raw material evaporated or sublimated together with the carrier gas. And a gas discharge port for supplying the gas to the processing container, and a gas flow control unit for controlling the flow of the carrier gas is provided inside the raw material container. .
発明の効果  The invention's effect
[0012] 本発明によれば、蒸着装置に用いる原料供給装置であって、蒸着装置の成膜速度 の安定性が良好となる原料供給装置、および当該原料供給装置を有する蒸着装置 を提供することが可能となる。  [0012] According to the present invention, there are provided a raw material supply device used in a vapor deposition apparatus, a raw material supply apparatus in which the stability of the film formation rate of the vapor deposition apparatus is good, and a vapor deposition apparatus having the raw material supply apparatus. Is possible.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]実施例 1による原料供給装置の断面図である。 FIG. 1 is a cross-sectional view of a raw material supply apparatus according to Embodiment 1.
[図 2]実施例 2による原料供給装置の断面図である。  FIG. 2 is a cross-sectional view of a raw material supply apparatus according to Embodiment 2.
[図 3]実施例 3による原料供給装置の断面図である。  FIG. 3 is a cross-sectional view of a raw material supply apparatus according to Embodiment 3.
[図 4]実施例 4による蒸着装置を示す図である。  FIG. 4 shows a vapor deposition apparatus according to Example 4.
符号の説明  Explanation of symbols
[0014] 100 原料供給装置 [0014] 100 raw material supply device
101 円筒容器  101 Cylindrical container
102 蓋部  102 Lid
103 原料容器  103 Raw material container
102A ガス流制御部  102A Gas flow control unit
102a 支持部  102a Support
102b, 102c, 102d 突起部  102b, 102c, 102d Protrusion
103A 内部空間  103A interior space
104 ガス導入口  104 Gas inlet
105 ガス導入路  105 Gas introduction path
106 ガス排出口  106 Gas outlet
107 ガス導入路  107 Gas inlet
108 ガス排出路 109 フイノレタ 108 Gas exhaust passage 109 Huinoleta
110 ガス導人ライン  110 Gas conductor line
11 OA バルブ  11 OA valve
110B 接続部  110B connection
111 ガス 出ライン  111 Gas outlet line
111A バルブ  111A valve
111B 接続部  111B connection
112 シーノレ材  112 Sinore wood
113 ヒータ  113 Heater
200 蒸着装置  200 Vapor deposition equipment
201, 202 処理容器  201, 202 Processing container
203 保持台  203 Holding stand
204 被処理基板  204 Substrate
205 移動レーノレ  205 Moving Lenore
206 排気カバー  206 Exhaust cover
206A 穴部  206A hole
207 ァライメント装置  207 alignment equipment
208 排気手段  208 Exhaust means
208A 排気ライン  208A exhaust line
209 原料混合部  209 Raw material mixing section
209A, 209B, 209C 209D 原料混合室  209A, 209B, 209C 209D Raw material mixing chamber
210 原料供給ノズル  210 Raw material supply nozzle
211 ゲートバルブ  211 Gate valve
212A, 212B, 212C 212D ガスライン  212A, 212B, 212C 212D Gas line
213A, 213B, 213C 214A, 214B, 214C, 215A, 215B, 216A, 216B ルブ  213A, 213B, 213C 214A, 214B, 214C, 215A, 215B, 216A, 216B
217A, 217B, 217C MFC  217A, 217B, 217C MFC
218 キャリアガス供給源 300 搬送ロボット 218 Carrier gas supply source 300 Transfer robot
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 次に、本発明の実施の形態に関して図面に基づき、以下に説明する。 Next, embodiments of the present invention will be described below with reference to the drawings.
実施例 1  Example 1
[0016] まず、実施例 1による原料供給装置について説明する。当該原料供給装置は、原 料を蒸発あるいは昇華させて蒸着装置 (構成例は後述)の処理容器に供給する装置 である。蒸着装置は、被処理基板を保持する処理容器を有しており、本実施例による 原料供給装置は、当該処理容器に蒸発あるいは昇華した原料を供給する。  First, the raw material supply apparatus according to Example 1 will be described. The raw material supply apparatus is an apparatus for evaporating or sublimating the raw material and supplying it to a processing vessel of a vapor deposition apparatus (configuration example will be described later). The vapor deposition apparatus has a processing container for holding the substrate to be processed, and the raw material supply apparatus according to this embodiment supplies the raw material evaporated or sublimated to the processing container.
[0017] 図 1は、本発明の実施例 1による原料供給装置を模式的に示した断面図である。  FIG. 1 is a cross-sectional view schematically showing a raw material supply apparatus according to Embodiment 1 of the present invention.
[0018] 図 1を参照するに、本実施例による原料供給装置 100は、円筒容器 101と蓋部 10 2が組み合わせられることで、原料容器 103が形成され、該原料容器 103の内部に 内部空間 103Aが画成される構造となっている。前記内部空間 103Aには、常温 *常 圧で固体 (例えば粉末状)である、原料 100Aが保持される。前記原料容器 103の外 側にはヒータ 113が設置され、前記原料 100Aは該ヒータ 113により加熱されることで 蒸発あるいは昇華する。  Referring to FIG. 1, in a raw material supply apparatus 100 according to this embodiment, a raw material container 103 is formed by combining a cylindrical container 101 and a lid 102, and an internal space is formed inside the raw material container 103. 103A is defined. The internal space 103A holds a raw material 100A that is solid (eg, powder) at normal temperature * normal pressure. A heater 113 is installed outside the raw material container 103, and the raw material 100A is evaporated or sublimated by being heated by the heater 113.
[0019] 前記円筒容器 101は、一端が開口した略円筒形状を有しており、当該円筒形状の 開口した側には、前記蓋部 102を取り付けるためのフランジが形成されている。前記 蓋部 102は、前記円筒容器 101の開口部を塞ぐように該円筒容器 101に取り付けら れ、該蓋部 102と該円筒容器 101の間には、シール材 112が挿入され、前記内部空 間 103Aの気密性が保持される。  [0019] The cylindrical container 101 has a substantially cylindrical shape with one end opened, and a flange for attaching the lid 102 is formed on the opened side of the cylindrical shape. The lid 102 is attached to the cylindrical container 101 so as to close the opening of the cylindrical container 101, and a sealing material 112 is inserted between the lid 102 and the cylindrical container 101, so that the internal space Airtightness of 103A is maintained.
[0020] また、前記蓋部 102には、前記内部空間 103Aに延伸する、ガス流制御部 102Aが 設置されている力 該ガス流制御部 102Aの詳細については後述する。  [0020] Further, the lid 102 is provided with a gas flow control unit 102A that extends into the internal space 103A. Details of the gas flow control unit 102A will be described later.
[0021] 前記蓋部 102には、キャリアガスを前記内部空間 103Aに導入するための、ガス導 入ライン 110が接続されて 、る。前記ガス導入ライン 110から導入されたキャリアガス は、前記蓋部 102に形成されたガス導入路 107、および前記円筒容器 101に形成さ れたガス導入路 105を介して、前記円筒容器 101の、前記蓋部 102が取り付けられ た側の反対側 (前記原料容器 103の第 1の側)に形成された、ガス導入口 104より、 前記内部空間 103Aに導入される。 [0022] 前記ガス導入口 104より前記内部空間 103Aに導入されたキャリアガスは、蒸発あ るいは昇華された前記原料 100A (以下気体原料)とともに、前記蓋部 102 (前記第 1 の側の反対側の第 2の側)に形成されたガス排出口 106より、排出される。 The lid 102 is connected to a gas introduction line 110 for introducing a carrier gas into the internal space 103A. The carrier gas introduced from the gas introduction line 110 passes through the gas introduction path 107 formed in the lid portion 102 and the gas introduction path 105 formed in the cylindrical container 101. The gas is introduced into the internal space 103A through a gas inlet 104 formed on the side opposite to the side to which the lid 102 is attached (the first side of the raw material container 103). [0022] The carrier gas introduced into the internal space 103A from the gas inlet 104 is evaporated or sublimated with the raw material 100A (hereinafter referred to as gas raw material), and the lid 102 (opposite the first side). It is discharged from the gas discharge port 106 formed on the second side).
[0023] 前記内部空間 103Aより排出されたキャリアガスと気体原料は、前記蓋部 102に形 成されたガス排出路 108を介して、前記蓋部 102に接続されたガス排出ライン 111に 排出される。前記ガス排出ライン 111は、後述する蒸着装置の処理容器に接続され、 該排出ライン 111を介して当該処理容器にキャリアガスと共に気体原料が供給される 構造になっている。  The carrier gas and the gas raw material discharged from the internal space 103A are discharged to a gas discharge line 111 connected to the lid portion 102 via a gas discharge path 108 formed in the lid portion 102. The The gas discharge line 111 is connected to a processing container of a vapor deposition apparatus, which will be described later, and has a structure in which a gaseous raw material is supplied to the processing container through the discharge line 111 together with a carrier gas.
[0024] 本実施例による原料供給装置では、前記内部空間 103に、キャリアガスの流れを制 御する前記ガス流制御部 102Aが形成されて ヽることが特徴である。前記原料 100A は、前記ガス流制御部 102Aと対向するように、前記原料容器 103内に保持されてい る。この場合、キャリアガスは、前記ガス流制御部 102Aと、前記原料 100Aの間を流 れること〖こなる。  [0024] The raw material supply apparatus according to the present embodiment is characterized in that the gas flow control unit 102A for controlling the flow of the carrier gas is formed in the internal space 103. The raw material 100A is held in the raw material container 103 so as to face the gas flow control unit 102A. In this case, the carrier gas flows between the gas flow control unit 102A and the raw material 100A.
[0025] 前記ガス流制御部 102Aは、前記内部空間 103Aに供給されるキャリアガスの流れ を制御し、例えばキャリアガスの流れのレイノルズ数を 1000以上とすることで、キヤリ ァガスの流れを乱流とすることができる。  [0025] The gas flow control unit 102A controls the flow of the carrier gas supplied to the internal space 103A. For example, by setting the Reynolds number of the carrier gas flow to 1000 or more, the carrier gas flow is turbulent. It can be.
[0026] このため、前記原料 100Aの蒸発あるいは昇華が促進され、前記内部空間 103A の前記排出口 106近傍では、前記原料 100Aの蒸発あるいは昇華が飽和した状態、 V、わゆる飽和蒸気圧とすることができる。  [0026] For this reason, evaporation or sublimation of the raw material 100A is promoted, and in the vicinity of the discharge port 106 of the internal space 103A, a state in which the evaporation or sublimation of the raw material 100A is saturated, V, a so-called saturated vapor pressure. be able to.
[0027] 例えば、飽和蒸気圧以下で気体原料を供給しょうとする場合、様々な要因の僅か な変化に応じて蒸発あるいは昇華する量が大きく変動し、このために被処理基板に 成膜される成膜速度が大きく変化してしまう問題が生じる場合がある。例えば、蒸着 が進行して時間が経過した場合、様々な条件変化や、保持される原料の量の変化な どに伴う現象を完全に抑制することは非常に困難であり、これらが成膜速度に与える 影響は無視できな 、程度となる場合がある。  [0027] For example, when trying to supply a gaseous raw material at a saturation vapor pressure or lower, the amount of evaporation or sublimation varies greatly according to slight changes in various factors, and thus a film is formed on a substrate to be processed. There may be a problem that the film formation rate changes greatly. For example, when the deposition progresses and time elapses, it is very difficult to completely suppress phenomena associated with changes in various conditions and changes in the amount of raw material that is retained. The impact on the situation may not be negligible.
[0028] 一方、本実施例による原料供給装置では、飽和蒸気圧で気体原料が排出されるた め、安定に気体原料を蒸着装置の処理容器に供給することが可能となっている。  On the other hand, in the raw material supply apparatus according to the present embodiment, the gaseous raw material is discharged at the saturated vapor pressure, so that the gaseous raw material can be stably supplied to the processing container of the vapor deposition apparatus.
[0029] 前記ガス流制御部 102Aは、前記ガス導入口 104から前記ガス排出口 106 (前記 第 1の側力も第 2の側)の方向に、延伸するように形成されている。すなわち、前記ガ ス流制御部 102Aは、キャリアガスの流れに沿って延伸するように形成されている。こ のため、キャリアガスの流れを効率よく制御することができる。 [0029] The gas flow control unit 102A includes the gas introduction port 104 to the gas discharge port 106 (the above-mentioned The first side force is also formed to extend in the direction of the second side). That is, the gas flow control unit 102A is formed to extend along the flow of the carrier gas. For this reason, the flow of the carrier gas can be controlled efficiently.
[0030] また、前記ガス流量制御部 102Aは、前記第 1の側から第 2の側に延伸する平板状 の支持部 102aと、前記第 1の側力も第 2の側にかけて該支持部 102aに複数形成さ れた突起部 102bより構成されている。前記導入口 104から導入されるキャリアガスは 、前記突起部 102bにより流れが制御され、レイノルズ数が増大されて乱流とされてい る。このため、前記ガス流制御部 102Aは、キャリアガスの流れを制御するために十 分な長さで形成されて ヽることが好ま ヽ。  [0030] Further, the gas flow rate control unit 102A includes a flat plate-like support part 102a extending from the first side to the second side, and the first side force is also applied to the support part 102a over the second side. A plurality of protrusions 102b are formed. The carrier gas introduced from the introduction port 104 is controlled in flow by the protrusion 102b, and the Reynolds number is increased to form turbulent flow. For this reason, the gas flow control unit 102A is preferably formed with a sufficient length to control the flow of the carrier gas.
[0031] また、前記ガス排出路 108には、粉末状の前記原料 100Aが処理容器側に飛散す ることを防止するために、フィルタ 109が形成されていることが好ましい。  [0031] In addition, it is preferable that a filter 109 is formed in the gas discharge path 108 in order to prevent the powdery raw material 100A from scattering to the processing container side.
[0032] また、前記ガス導入ライン 110と、前記ガス排出ライン 111には、それぞれバルブ 1 10A, 111Aが設置されている。さらに、前記ガス導入ライン 110と、前記ガス排出ラ イン 111には、それぞれ、例えば配管継手などよりなる接続部 110B, 111Bが接続さ れている。このため、前記ノ レブ 110A、 111Aを閉じた状態で、前記接続部 110B、 11 IBの配管継手をはずすことで、前記原料供給装置 100を蒸着装置 (処理容器) 力 取り外すことが容易な構造になって 、る。  In addition, valves 110A and 111A are installed in the gas introduction line 110 and the gas discharge line 111, respectively. Further, connecting portions 110B and 111B made of, for example, a pipe joint are connected to the gas introduction line 110 and the gas discharge line 111, respectively. Therefore, by removing the pipe joints of the connecting portions 110B and 11IB in the state where the nozzles 110A and 111A are closed, the raw material supply apparatus 100 can be easily removed from the vapor deposition apparatus (processing vessel). Become.
[0033] すなわち、前記原料供給装置 100に原料を補充する場合や、前記原料供給装置 1 00のメンテナンスを行う場合、蒸着装置より当該原料供給装置 100を容易に装脱着 することが可能に構成されて!、る。  That is, when the raw material supply apparatus 100 is replenished with raw materials or when the raw material supply apparatus 100 is maintained, the raw material supply apparatus 100 can be easily attached and detached from the vapor deposition apparatus. ! RU
実施例 2  Example 2
[0034] また、ガス流制御部の構造は、実施例 1に示した構造に限定されるものではなぐ様 々に変形'変更することが可能である。  In addition, the structure of the gas flow control unit is not limited to the structure shown in the first embodiment, and can be modified and changed in various ways.
[0035] 例えば、図 2は、本発明の実施例 2による原料供給装置 100Aを模式的に示す断 面図である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省 略する。また、特に説明しない部分は、実施例 1の構造と同様とする。 For example, FIG. 2 is a cross-sectional view schematically showing a raw material supply apparatus 100A according to Example 2 of the present invention. However, in the figure, the same reference numerals are given to the parts described above, and the description will be omitted. In addition, parts that are not particularly described are the same as those of the first embodiment.
[0036] 図 2を参照するに、本実施例の場合、突起部 102cが実施例 1の場合の突起部 102 bと比べて長く(大きく)、先端部が前記原料 100Aにまで到達している。本実施例の 場合、キャリアガスが前記原料 100Aの内部を通るため、より飽和蒸気圧に到達しや すい特徴がある。 Referring to FIG. 2, in the case of the present embodiment, the protrusion 102c is longer (larger) than the protrusion 102b in the case of Example 1, and the tip reaches the raw material 100A. . Of this example In this case, since the carrier gas passes through the inside of the raw material 100A, there is a feature that it is easy to reach the saturated vapor pressure.
実施例 3  Example 3
[0037] また、図 3は、本発明の実施例 3による原料供給装置 100Aを模式的に示す断面図 である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略す る。また、特に説明しない部分は、実施例 1の構造と同様とする。  [0037] FIG. 3 is a cross-sectional view schematically showing a raw material supply apparatus 100A according to Example 3 of the present invention. However, in the figure, the same reference numerals are given to the parts described above, and the description will be omitted. In addition, parts that are not particularly described are the same as those of the first embodiment.
[0038] 図 2を参照するに、本実施例の場合、突起部 102dの断面形状が実施例 1の場合と 異なっており、実施例 1の場合は断面形状が四角形であつたのに対して、本実施例 の場合は三角形となっており、先端部が尖っている。このように、突起部の形状は、キ ャリアガスの流れの制御の条件 (例えば流量)や、原料の違!、(例えば蒸気圧の違 、 )に応じて様々に変形 ·変更しても良い。  [0038] Referring to FIG. 2, in the case of this example, the cross-sectional shape of the protrusion 102d is different from that of Example 1, whereas in Example 1, the cross-sectional shape was a square. In the present embodiment, the shape is triangular and the tip is sharp. As described above, the shape of the protrusion may be variously changed or changed in accordance with the conditions for controlling the flow of the carrier gas (for example, the flow rate), the difference in the raw material (for example, the difference in vapor pressure).
実施例 4  Example 4
[0039] 次に、先に説明した原料供給装置 100を用いた蒸着装置の構成の一例を、図 4に 基づき、説明する。図 4は、本発明の実施例 4による蒸着装置の構成の一例を模式 的に示した図である。  Next, an example of the configuration of a vapor deposition apparatus using the raw material supply apparatus 100 described above will be described with reference to FIG. FIG. 4 is a diagram schematically showing an example of the configuration of the vapor deposition apparatus according to Example 4 of the present invention.
[0040] 図 4を参照するに、本実施例による蒸着装置 200は、内部に内部空間 201Aが画 成される、処理容器 201と、該処理容器 201に接続される処理容器 202とを有してい る。前記内部空間 201Aには、被処理基板 204を保持する保持台 203が設置されて いる。前記保持台 203は、 ESC (静電吸着チャック)を有し、前記被処理基板は、そ の表面が、原料が供給される方向に向くようにして保持される。また、前記保持台 20 3は、移動レール 205に対して移動可能に接続され、前記被処理基板 204に対して 平行な方向に移動することが可能に構成されて 、る。  Referring to FIG. 4, a vapor deposition apparatus 200 according to the present embodiment includes a processing container 201 in which an internal space 201A is defined, and a processing container 202 connected to the processing container 201. ing. A holding table 203 for holding the substrate to be processed 204 is installed in the internal space 201A. The holding table 203 has an ESC (electrostatic chuck), and the substrate to be processed is held such that the surface thereof faces the direction in which the raw material is supplied. The holding table 203 is connected to the moving rail 205 so as to be movable, and is configured to be movable in a direction parallel to the substrate 204 to be processed.
[0041] また、前記処理容器 201に、前記被処理基板 204が搬入される場合は、当該処理 容器 201に設置されたゲートバルブ 211が開放されて、例えば真空搬送室(図示せ ず)に設置された搬送ロボット 300により、搬入される。搬入された被処理基板は、ァ ライメント装置 207によってァライメントが行われた後、前記保持台 203に保持される  [0041] When the substrate to be processed 204 is carried into the processing container 201, the gate valve 211 installed in the processing container 201 is opened, and installed in a vacuum transfer chamber (not shown), for example. It is carried in by the transport robot 300. The loaded substrate to be processed is aligned by the alignment device 207 and then held on the holding table 203.
[0042] また、前記内部空間 201Aは、前記処理容器 201に接続された、例えばターボ分 子ポンプよりなる排気手段 208により排気され、減圧状態とされる。前記排気手段 20 8には排気ライン 208 Aが接続され、該排気ライン 208Aは、例えばドライポンプなど の排気手段(図示を省略)に接続されて ヽる。 [0042] Further, the internal space 201A is connected to the processing vessel 201, for example, a turbo component. The air is exhausted by an exhaust means 208 comprising a child pump, and the pressure is reduced. An exhaust line 208A is connected to the exhaust means 208, and the exhaust line 208A is connected to an exhaust means (not shown) such as a dry pump.
[0043] また、前記処理容器 201の底面の開口部には、前記保持台 203と対向するように、 前記内部空間 201Aに気体原料を供給する、原料供給部 209が設置されている。前 記被処理基板 204に成膜 (蒸着)を行う場合には、前記原料供給部 209から供給さ れる気体原料が被処理基板に到達することにより、行われる。  In addition, a raw material supply unit 209 that supplies a gaseous raw material to the internal space 201 A is installed in the opening on the bottom surface of the processing container 201 so as to face the holding table 203. When film formation (evaporation) is performed on the substrate to be processed 204, the gas material supplied from the material supply unit 209 reaches the substrate to be processed.
[0044] また、前記処理容器 202は、前記処理容器 201の底面の外側に露出した、前記排 気手段 208、前記原料供給部 209、および前記ァライメント装置を覆うようにして当該 処理容器 201の底面側に接続されて!ヽる。  In addition, the processing container 202 is exposed to the outside of the bottom surface of the processing container 201, and covers the exhaust unit 208, the raw material supply unit 209, and the alignment device so as to cover the bottom surface of the processing container 201. Connected to the side!
[0045] 前記原料供給部 209は、複数の気体原料が混合される混合室を複数有して!/ヽる。  [0045] The raw material supply unit 209 has a plurality of mixing chambers in which a plurality of gaseous raw materials are mixed.
例えば、前記原料供給部 209は、原料混合室 209A、 209B、 209C、および 209D 力 前記被処理基板 204の移動方向に沿って平行に配列された構造を有して ヽる。 前記原料混合室 209A、 209B、 209C、および 209Dには、それぞれ原料供給ノズ ル 210が設置されており、それぞれの原料混合室で混合された気体原料は、該原料 供給ノズル 210から前記内部空間 201 Aに供給され、前記被処理基板 204に蒸着さ れて成膜が行われる。  For example, the raw material supply unit 209 may have a structure in which raw material mixing chambers 209A, 209B, 209C, and 209D force are arranged in parallel along the moving direction of the substrate 204 to be processed. A raw material supply nozzle 210 is installed in each of the raw material mixing chambers 209A, 209B, 209C, and 209D, and the gaseous raw material mixed in each raw material mixing chamber is supplied from the raw material supply nozzle 210 to the internal space 201. A is supplied to A and deposited on the substrate to be processed 204 to form a film.
[0046] 前記原料混合室 209A、 209B、 209C、および 209D〖こは、それぞれガスライン 21 2A、 212B、 212C、および 212D力 ^接続されており、さらに、該ガスライン 212A、 21 2B、 212C、および 212Dには、図 1で先に説明した原料供給装置 100が接続され ている。  [0046] The raw material mixing chambers 209A, 209B, 209C, and 209D are connected to gas lines 21 2A, 212B, 212C, and 212D respectively, and the gas lines 212A, 21 2B, 212C, And 212D are connected to the raw material supply apparatus 100 described above with reference to FIG.
[0047] 例えば、前記ガスライン 212Aを例にとって説明すると、該ガスライン 212Aは、前記 混合室 209Aに接続され、前記処理容器 202の外側にまで延伸するように形成され て、該処理容器 202の外側で複数の前記原料供給装置 100と接続されて 、る。  For example, the gas line 212A will be described as an example. The gas line 212A is connected to the mixing chamber 209A and is formed to extend to the outside of the processing vessel 202. The plurality of raw material supply apparatuses 100 are connected to the outside.
[0048] この場合、前記ガスライン 212Aは、ノ レブ 213A、 213B、 213Cを介して、 3つの 前記原料供給装置 100の前記ガス排出ライン 111に、それぞれ接続されている。す なわち、前記原料混合室 209Aには、前記ガスライン 212Aを介して、 3つの原料供 給装置が接続され、 3種類の気体原料が供給されて混合されることになる。当該原料 混合室 209Aで混合された気体原料は、前記ガス供給ノズル 210から、前記内部空 間 201 Aに供給される。 [0048] In this case, the gas line 212A is connected to the gas discharge lines 111 of the three raw material supply apparatuses 100 via the nozzles 213A, 213B, and 213C, respectively. In other words, three raw material supply devices are connected to the raw material mixing chamber 209A via the gas line 212A, and three kinds of gaseous raw materials are supplied and mixed. Raw material The gas raw material mixed in the mixing chamber 209A is supplied from the gas supply nozzle 210 to the internal space 201A.
[0049] また、当該 3つの原料供給装置 100の、それぞれの前記ガス導入ライン 110は、そ れぞれバルブ 214A、 214B、および 214Cと、さらに、 MFC (質量流量コントローラ) 217A、 217B、および 217Cを介して、キャリアガス供給源 218に接続され、例えば Arなどのキャリアガスが供給される構造になっている。なお、本図においては、図 1に 示した前記原料供給装置 100の詳細(例えば内部構造など)については図示を省略 している。  [0049] In addition, each of the gas introduction lines 110 of the three raw material supply apparatuses 100 includes valves 214A, 214B, and 214C, and MFCs (mass flow controllers) 217A, 217B, and 217C, respectively. For example, a carrier gas such as Ar is supplied to the carrier gas supply source 218. In the drawing, the details (for example, the internal structure) of the raw material supply apparatus 100 shown in FIG. 1 are not shown.
[0050] 同様に、前記ガスライン 212Dは、前記混合室 209Dに接続され、前記処理容器 2 02の外側にまで延伸するように形成されて、該処理容器 202の外側で複数の前記 原料供給装置 100と接続されている。  [0050] Similarly, the gas line 212D is connected to the mixing chamber 209D and formed to extend to the outside of the processing vessel 202, and a plurality of the raw material supply devices are provided outside the processing vessel 202. Connected with 100.
[0051] この場合、前記ガスライン 212Dは、ノ レブ 215A、 215Bを介して、 2つの前記原 料供給装置 100の前記ガス排出ライン 111に、それぞれ接続されている。すなわち、 前記原料混合室 209Dには、前記ガスライン 212Dを介して、 2つの原料供給装置が 接続され、 2種類の気体原料が供給されて混合されることになる。当該原料混合室 2 09Dで混合された気体原料は、前記ガス供給ノズル 210から、前記内部空間 201A に供給される。  [0051] In this case, the gas line 212D is connected to the gas discharge lines 111 of the two raw material supply apparatuses 100 via the nozzles 215A and 215B, respectively. That is, two raw material supply devices are connected to the raw material mixing chamber 209D via the gas line 212D, and two kinds of gas raw materials are supplied and mixed. The gaseous raw material mixed in the raw material mixing chamber 209D is supplied from the gas supply nozzle 210 to the internal space 201A.
[0052] また、当該 2つの原料供給装置 100の、それぞれの前記ガス導入ライン 110は、そ れぞれバルブ 216A、 216Bを介して、前記キャリアガス供給源 218に接続される力 本図ではこの接続ラインの図示は省略している。  [0052] Further, each of the gas introduction lines 110 of the two raw material supply devices 100 is connected to the carrier gas supply source 218 via valves 216A and 216B, respectively. Illustration of the connection line is omitted.
[0053] また、前記ガスライン 212B、 212Cにも、先に説明したガスライン 212A、 212Dと同 様に、複数の原料供給装置 100が接続され (図示を省略)、それぞれ前記原料混合 室 209B、 209Cにおいても複数の気体原料が混合され、前記内部空間 201Aに供 給される。  [0053] Similarly to the gas lines 212A and 212D described above, a plurality of raw material supply apparatuses 100 are connected to the gas lines 212B and 212C (not shown), and the raw material mixing chambers 209B and 209B, respectively. Also in 209C, a plurality of gaseous raw materials are mixed and supplied to the internal space 201A.
[0054] また、前記処理容器 201の底面には、前記ガス供給ノズル 210が露出する穴部 20 6Aを有する排気カバー 206が設置されてもよい。前記排気カバーは、前記排気手 段 208とともに前記原料供給部 209を覆うように設置され、複数の原料混合室から供 給される気体原料が、被処理基板に到達する前に混合することを抑制して!/ヽる。 [0055] 上記に示すように、本実施例による蒸着装置 200では、実施例 1に記載した原料供 給装置 100を用いることで、安定に気体原料を蒸着して成膜を行うことが可能であり 、成膜速度が安定である特徴を有している。 Further, an exhaust cover 206 having a hole portion 206 A through which the gas supply nozzle 210 is exposed may be installed on the bottom surface of the processing container 201. The exhaust cover is installed so as to cover the raw material supply unit 209 together with the exhaust unit 208, and suppresses mixing of gaseous raw materials supplied from a plurality of raw material mixing chambers before reaching the substrate to be processed. Then! [0055] As described above, in the vapor deposition apparatus 200 according to the present embodiment, by using the raw material supply apparatus 100 described in the first embodiment, it is possible to stably deposit a gas raw material to form a film. In addition, the film forming speed is stable.
[0056] さらに、上記の成膜装置では、複数の原料を有する膜を形成することが可能である 。さらに、成膜の際に、前記保持台 203を移動させることによって、複数の原料を含 む膜を、さらに積層して複雑な構造の成膜を行うことが可能である。このため、例えば 有機 EL素子などの発光素子を形成する場合に好適である。  [0056] Further, in the above-described film forming apparatus, a film having a plurality of raw materials can be formed. Further, by moving the holding table 203 during film formation, it is possible to form a film having a complicated structure by further stacking films containing a plurality of raw materials. Therefore, it is suitable for forming a light emitting element such as an organic EL element.
[0057] 例えば、上記の成膜装置 200を用いて、正孔輸送層と発光層、さらに電子輸送層 が積層された、有機 EL素子を形成することができる。この場合、例えば発光層のホス ト材にはアルミノキノリノール錯体 (Alq3)、ドーピング材にはルブレンを用いることが できる。  [0057] For example, by using the film forming apparatus 200 described above, an organic EL element in which a hole transport layer, a light emitting layer, and an electron transport layer are stacked can be formed. In this case, for example, an aluminoquinolinol complex (Alq3) can be used for the host material of the light emitting layer, and rubrene can be used for the doping material.
[0058] また、上記の蒸着装置では、有機 EL素子に限定されず、他にも様々な用途の蒸着 膜を形成することが可能である。  In addition, the above-described vapor deposition apparatus is not limited to the organic EL element, and it is possible to form vapor deposition films for various other purposes.
[0059] 以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施 例に限定されるものではなく、特許請求の範囲に記載した要旨内にお 、て様々な変 形 ·変更が可能である。 [0059] While the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the specific embodiments described above, and various modifications can be made within the spirit and scope of the claims. · Change is possible.
産業上の利用可能性  Industrial applicability
[0060] 本発明によれば、蒸着装置に用いる原料供給装置であって、蒸着装置の成膜速度 の安定性が良好となる原料供給装置、および当該原料供給装置を有する蒸着装置 を提供することが可能となる。 [0060] According to the present invention, there are provided a raw material supply apparatus used in a vapor deposition apparatus, the raw material supply apparatus in which the stability of the deposition rate of the vapor deposition apparatus is good, and the vapor deposition apparatus having the raw material supply apparatus. Is possible.
[0061] 本国際出願は、 2005年 12月 22曰〖こ出願した曰本国特許出願 2005— 369898 号に基づく優先権を主張するものであり、 2005— 369898号の全内容を本国際出 願に援用する。 [0061] This international application claims priority based on the Japanese patent application 2005-369898 filed on December 22, 2005. The entire contents of 2005-369898 are hereby incorporated by reference. Incorporate.

Claims

請求の範囲 The scope of the claims
[1] 蒸着装置の処理容器に、原料を蒸発あるいは昇華させて供給する原料供給装置 であって、  [1] A raw material supply apparatus for evaporating or sublimating a raw material into a processing container of a vapor deposition apparatus,
内部に前記原料を保持する原料容器と、  A raw material container for holding the raw material therein;
前記原料容器の内部にキャリアガスを供給するガス導入口と、  A gas inlet for supplying a carrier gas into the raw material container;
前記キャリアガスと共に蒸発あるいは昇華した前記原料を、前記処理容器に供給 するガス排出口と、を有し、  A gas outlet for supplying the raw material evaporated or sublimated together with the carrier gas to the processing vessel,
前記原料容器の内部に前記キャリアガスの流れを制御するガス流制御部を設けた ことを特徴とする原料供給装置。  A raw material supply apparatus, wherein a gas flow control unit for controlling the flow of the carrier gas is provided inside the raw material container.
[2] 前記ガス流制御部は、前記原料容器の内部に形成された突起部を含むことを特徴 とする請求項 1記載の原料供給装置。  2. The raw material supply apparatus according to claim 1, wherein the gas flow control unit includes a protrusion formed inside the raw material container.
[3] 前記突起部が複数形成されて!/ヽることを特徴とする請求項 2記載の原料供給装置 [3] The raw material supply apparatus according to claim 2, wherein a plurality of the protrusions are formed!
[4] 前記原料が、前記突起部と対向するように前記原料容器内に保持されるよう構成さ れて!ヽることを特徴とする請求項 2記載の原料供給装置。 4. The raw material supply apparatus according to claim 2, wherein the raw material is configured to be held in the raw material container so as to face the protruding portion.
[5] 前記ガス導入口は前記原料容器の第 1の側に、前記ガス排出口は前記原料容器 の前記第 1の側の反対側の第 2の側に形成されていることを特徴とする請求項 1記載 の原料供給装置。 [5] The gas inlet is formed on the first side of the raw material container, and the gas outlet is formed on the second side opposite to the first side of the raw material container. The raw material supply apparatus according to claim 1.
[6] 前記ガス流制御部は前記第 1の側と前記第 2の側の間に形成されて!、ることを特徴 とする請求項 5記載の原料供給装置。  6. The raw material supply apparatus according to claim 5, wherein the gas flow control unit is formed between the first side and the second side!
[7] 被処理基板を内部に保持する処理容器と、前記処理容器に原料を蒸発あるいは 昇華させて供給する原料供給装置とを有し、前記被処理基板に蒸発あるいは昇華さ れた前記原料を蒸着させる蒸着装置であって、 [7] A processing container that holds the substrate to be processed inside, and a raw material supply device that supplies the processing container by evaporating or sublimating the raw material, and supplying the raw material evaporated or sublimated to the processing substrate. A vapor deposition apparatus for vapor deposition,
前記原料供給装置は、  The raw material supply device
内部に前記原料を保持する原料容器と、  A raw material container for holding the raw material therein;
前記原料容器の内部にキャリアガスを供給するガス導入口と、  A gas inlet for supplying a carrier gas into the raw material container;
前記キャリアガスと共に蒸発あるいは昇華した前記原料を、前記処理容器に供給 するガス排出口と、を有し、 前記原料容器の内部に前記キャリアガスの流れを制御するガス流制御部を設けた ことを特徴とする蒸着装置。 A gas outlet for supplying the raw material evaporated or sublimated together with the carrier gas to the processing vessel, A vapor deposition apparatus, wherein a gas flow control unit for controlling the flow of the carrier gas is provided inside the raw material container.
[8] 前記ガス流制御部は、前記原料容器の内部に形成された突起部を含むことを特徴 とする請求項 7記載の蒸着装置。  8. The vapor deposition apparatus according to claim 7, wherein the gas flow control unit includes a protrusion formed inside the raw material container.
[9] 前記突起部が複数形成されて!/ヽることを特徴とする請求項 8記載の蒸着装置。 [9] The vapor deposition apparatus according to [8], wherein a plurality of the protrusions are formed!
[10] 前記原料が、前記突起部と対向するように前記原料容器内に保持されるよう構成さ れて!ヽることを特徴とする請求項 8記載の蒸着装置。 10. The vapor deposition apparatus according to claim 8, wherein the raw material is configured to be held in the raw material container so as to face the protruding portion.
[11] 前記ガス導入口は前記原料容器の第 1の側に、前記ガス排出口は前記原料容器 の前記第 1の側の反対側の第 2の側に形成されていることを特徴とする請求項 7記載 の蒸着装置。 [11] The gas inlet is formed on the first side of the raw material container, and the gas outlet is formed on the second side opposite to the first side of the raw material container. The vapor deposition apparatus according to claim 7.
[12] 前記ガス流制御部は前記第 1の側と前記第 2の側の間に形成されて!、ることを特徴 とする請求項 11記載の蒸着装置。  12. The vapor deposition apparatus according to claim 11, wherein the gas flow control unit is formed between the first side and the second side!
[13] 前記原料供給装置が複数設置されて!ヽることを特徴とする請求項 7記載の蒸着装 置。 13. The vapor deposition apparatus according to claim 7, wherein a plurality of the raw material supply apparatuses are installed.
[14] 複数の前記原料供給装置から供給される、蒸発あるいは昇華した原料を混合する 混合室を有することを特徴とする請求項 13記載の蒸着装置。  14. The vapor deposition apparatus according to claim 13, further comprising a mixing chamber for mixing evaporated or sublimated raw materials supplied from the plurality of raw material supply apparatuses.
[15] 前記混合室を複数有することを特徴とする請求項 14記載の蒸着装置。 15. The vapor deposition apparatus according to claim 14, comprising a plurality of the mixing chambers.
[16] 前記原料供給装置は前記処理容器の外側に設置され、当該原料供給装置が当該 処理容器から装脱着可能に構成されていることを特徴とする請求項 7記載の蒸着装 置。 16. The vapor deposition apparatus according to claim 7, wherein the raw material supply apparatus is installed outside the processing container, and the raw material supply apparatus is configured to be detachable from the processing container.
PCT/JP2006/325392 2005-12-22 2006-12-20 Feedstock supply unit and vapor deposition equipment WO2007072867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800365146A CN101278073B (en) 2005-12-22 2006-12-20 Feedstock supply unit and vapor deposition equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-369898 2005-12-22
JP2005369898A JP2007169728A (en) 2005-12-22 2005-12-22 Raw material feeder, and vapor deposition apparatus

Publications (1)

Publication Number Publication Date
WO2007072867A1 true WO2007072867A1 (en) 2007-06-28

Family

ID=38188643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325392 WO2007072867A1 (en) 2005-12-22 2006-12-20 Feedstock supply unit and vapor deposition equipment

Country Status (5)

Country Link
JP (1) JP2007169728A (en)
KR (1) KR100981474B1 (en)
CN (1) CN101278073B (en)
TW (1) TW200738895A (en)
WO (1) WO2007072867A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527933B2 (en) * 2007-11-30 2014-06-25 東京エレクトロン株式会社 Film forming apparatus control method, film forming method, film forming apparatus, organic EL electronic device, and storage medium storing control program thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195270A (en) * 1987-01-31 1988-08-12 エヌ・ベー・フィリップス・フルーイランペンファブリケン Apparatus for enriching carrier gas by vapor of hardly volatile substance
JPH06232048A (en) * 1993-01-29 1994-08-19 Matsushita Electric Ind Co Ltd Device for vaporizing and supplying organometallic compound
JP2001059178A (en) * 1999-08-20 2001-03-06 Pioneer Electronic Corp Raw material feeding device in chemical vapor growth method and raw material feeding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195270A (en) * 1987-01-31 1988-08-12 エヌ・ベー・フィリップス・フルーイランペンファブリケン Apparatus for enriching carrier gas by vapor of hardly volatile substance
JPH06232048A (en) * 1993-01-29 1994-08-19 Matsushita Electric Ind Co Ltd Device for vaporizing and supplying organometallic compound
JP2001059178A (en) * 1999-08-20 2001-03-06 Pioneer Electronic Corp Raw material feeding device in chemical vapor growth method and raw material feeding method

Also Published As

Publication number Publication date
JP2007169728A (en) 2007-07-05
CN101278073A (en) 2008-10-01
KR20080045253A (en) 2008-05-22
TW200738895A (en) 2007-10-16
CN101278073B (en) 2011-12-14
KR100981474B1 (en) 2010-09-10

Similar Documents

Publication Publication Date Title
US11377732B2 (en) Reactant vaporizer and related systems and methods
TWI428460B (en) Vapor emission device, evaporation apparatus for organic film and method for evaporating organic film
EP2723912B1 (en) Vapor deposition material source and method for making same
WO2006109562A1 (en) Apparatus for film formation and method for film formation
WO2007029671A1 (en) Film forming apparatus, film forming system, film forming method, and method for manufacturing electronic device or organic electroluminescence element
JP4602054B2 (en) Vapor deposition equipment
WO2008038822A1 (en) Deposition apparatus and method for operating the same
JP2009097044A (en) Film deposition apparatus and film deposition method
WO2007037268A1 (en) Raw material feeder and vapor deposition apparatus
JP2008088489A (en) Vapor deposition apparatus
US8343281B2 (en) Source gas supply unit, and deposition apparatus and method using the same
EP1966409A1 (en) Delivering particulate material to a vaporization zone
US20100259162A1 (en) Film forming device control method, film forming method, film forming device, organic el electronic device, and recording medium storing its control program
US20220195595A1 (en) Precursor capsule, a vessel and a method
JP4551465B2 (en) Vapor deposition source, film forming apparatus, and film forming method
WO2007072867A1 (en) Feedstock supply unit and vapor deposition equipment
KR20080098813A (en) Temperature control unit of canister, device for supplying organic and apparatus for organic vapor deposition by using the same
US20050241585A1 (en) System for vaporizing materials onto a substrate surface
JPH10270164A (en) Manufacture of organic electroluminescent element and its manufacturing device
JP6276007B2 (en) Vapor deposition apparatus, film forming method, and manufacturing method of organic EL apparatus
KR101773038B1 (en) Depositing apparatus having vaporizer and depositing method
JP2020063476A (en) Vapor deposition device
JP2005029885A (en) Thin film deposition method, thin film deposition system and semiconductor device
KR101592250B1 (en) The device for supplying a gas to the deposition apparatus
JP2022135270A (en) Vaporizer and vapor deposition apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036514.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087007720

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06842946

Country of ref document: EP

Kind code of ref document: A1