WO2007072645A1 - 細胞の大きさおよび/または細胞周期を調節する方法 - Google Patents

細胞の大きさおよび/または細胞周期を調節する方法 Download PDF

Info

Publication number
WO2007072645A1
WO2007072645A1 PCT/JP2006/323249 JP2006323249W WO2007072645A1 WO 2007072645 A1 WO2007072645 A1 WO 2007072645A1 JP 2006323249 W JP2006323249 W JP 2006323249W WO 2007072645 A1 WO2007072645 A1 WO 2007072645A1
Authority
WO
WIPO (PCT)
Prior art keywords
rb1cc1
cell
cells
protein
expression
Prior art date
Application number
PCT/JP2006/323249
Other languages
English (en)
French (fr)
Inventor
Tokuhiro Chano
Original Assignee
Okabe, Hidetoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okabe, Hidetoshi filed Critical Okabe, Hidetoshi
Priority to JP2007551016A priority Critical patent/JPWO2007072645A1/ja
Publication of WO2007072645A1 publication Critical patent/WO2007072645A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4738Cell cycle regulated proteins, e.g. cyclin, CDC, INK-CCR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Definitions

  • the present invention relates to a method for regulating cell, tissue size and Z or cell cycle, characterized by controlling the expression level of RBl-inducible coiled-coil 1 (hereinafter referred to as RBICCI).
  • RBICCI RBl-inducible coiled-coil 1
  • RB1 and Cl Human Gene Nomenclature Committee-approved gene symbol
  • RB1 and Cl Human Gene Nomenclature Committee-approved gene symbol
  • Non-Patent Documents 4 and 5 Both RB1CC1 and RB1 are selectively expressed in embryonic musculoskeletal cells and are involved in their maturation (Non-patent Documents 6 and 7).
  • RB1CC1 is a novel muscle mediated mediator (Non-patent Document 3).
  • the expression of myosin heavy chain was induced by synchronous expression of RB1CC 1 and RB1 in mouse myoblast-derived C2C12 cells and embryogenesis.
  • RNAi RNAi
  • RB1CC1 is It has been shown to play an important role in growth inhibition and induction.
  • Tuberous sclerosis molecular complex The mammalian ravamycin target molecule (TSC-mTOR) pathway is involved in cell size regulation and is the most well-studied molecular pathway (Non-Patent Document 8) .
  • TSC-mTOR mammalian ravamycin target molecule
  • S6K S6 kinase
  • TSC1 and TSC2 encode Hamartin and tuberin, which are only regulated by cell size, and mutations in these genes cause tuberous sclerosis and hamartoma syndrome. The molecule is considered a tumor suppressor. Both TSC1 and TSC2 genes have coiled-coil regions and form heterodimers. In addition to regulating cell size, the TSC1 and TSC2 genes are thought to function in the regulation of cell cycle progression, cell survival, and apoptotic processes. Many (Non-Patent Document 8). The researchers believe that RB1CC1 plays an important role not only in vitro but also in in vivo nerves and muscle cells, with respect to TSC-mTOR pathway and cell cycle arrest and cell and tissue hypertrophy via RB1 pathway. Show evidence of
  • Non-Patent Document 1 Chano et al., 2002, Oncogene 21: 1295-1298.
  • Non-Patent Document 2 Kontani et al., 2003, Int. J. Mol. Med. 12: 767-769.
  • Non-Patent Document 3 Watanabe et al. 2005, Virchows Arch. 447: 643-648.
  • Non-Patent Document 4 Chano et al., 2002, Nat. Genet. 31: 285-288.
  • Non-Patent Document 5 Teramoto et al., 2003, Cancer Therapy 1: 103-107.
  • Non-Patent Document 6 Chano et al., 2002, Am. J. Pathol. 161: 359-364.
  • Non-Patent Document 7 Bamba et al., 2004, Int. J. Mol. Med. 14: 583-587.
  • Non-Patent Document 8 Inoki et al "2005, Nat. Genet. 37: 19-24.
  • Non-Patent Document 9 Kobayashi et al., 1999, Cancer Res. 59: 1206-1211.
  • Non-patent literature 10 Kobayashi et al "2001, Proc. Natl. Acad. Sci. USA 98: 8762-8767.
  • Non-patent literature 11 Potter et al” 2001, Cell 105: 357-368.
  • Non-Patent Document 12 Tapon et al "2001, Cell 105: 345-355.
  • Non-Patent Document 13 Gao et al, 2002, Nat. Cell Biol. 4: 699-704.
  • Non-Patent Document 14 Inoki et al "2002, Nat. Cell Biol. 4: 648-657.
  • Non-Patent Document 15 Manning et al "2002, Mol. Cell 10: 151-162.
  • Non-Patent Document 16 Evangelopoulos et al., 2005, Oncogene, 24: 3309-3318.
  • Non-patent literature 17 Kobayashi et al., 2001, Proc. Natl. Acad. Sci. USA 98: 8762-8767.
  • Non-patent literature 18 Akagi et al., 2000, Proc. Natl. Acad. Sci. USA 97:
  • Non-patent document 19 Sarbassov, DD et al "2005, Science 307: 1098-1101.
  • Non-Patent Document 20 Rosner et al., 2003, Oncogene, 22: 4786-4798.
  • RB1CC1 retinoblastoma tumor suppressor
  • the present invention also has the following constitutional power.
  • the regulation of cell and tissue size is by inhibiting or promoting the interaction between RB1CC1 and TSC.
  • a screening method for a compound that promotes or suppresses the expression of RB1 CC1 protein comprising using cells, tissues, and test compounds expressing RB1CC1.
  • a method for screening a compound that promotes or suppresses the expression of a gene encoding RB1 CC1 protein comprising using cells, tissues, and test compounds expressing RB1CC1.
  • a pharmaceutical composition comprising Z or a compound that promotes or suppresses expression of a gene encoding the RB1CC1 protein obtained by the method described in 9 above.
  • the pharmaceutical agent according to 11 above which is a preventive or therapeutic agent for nerve, muscle, bone disease and Z or cancer 13.
  • a compound that promotes or suppresses the function of regulating the cell cycle or cell or tissue size by RB1CC1 obtained by the method described in item 7 above, or the expression of RB1CC1 protein obtained by the method described in item 8 above is promoted or inhibited.
  • a diagnostic agent for neurological, muscular, bone disease and Z or cancer comprising a compound that promotes or suppresses the expression of a gene encoding Z or the gene encoding RB1CC1 protein obtained by the method described in 9 above.
  • the pharmaceutical or diagnostic agent according to any one of 11 to 14 above, wherein the cell or tissue is a cultured cell, or a cell or tissue in an invertebrate or vertebrate animal.
  • the vertebrate is a human, a -bird, a rodent, a rabbit, a dog, a pig, a pig, a hedge, or a primate.
  • RB1CC1 promotes or suppresses cell cycle or cell / tissue size regulation function, RB1CC1 polypeptide or protein expression enhancer or suppressor expression, RB1CC1 protein-encoding gene expression or Drugs containing inhibitory compounds are neurological, muscular diseases (e.g., muscular dystrophy, congenital myopathy, inflammatory myopathy, myopathy associated with endocrine disorders, thyroid toxic myopathy, thyroid toxic periodic limb paralysis Hypothyroidism, steroid myopathy, periodic limb paralysis, glycogenosis, myasthenia gravis, myasthenia syndrome, mitochondrial disease, myoglobinuria, distal myopathy, myotonic dystrophy and Myogenic diseases such as Danone disease, spinal muscular atrophy, bulbospinal muscular atrophy and amyotrophic lateral sclerosis, and Neurogenic diseases such as Hemer's disease, Parkinson's disease, spinocerebellar degeneration etc.), cancer (eg, spleen cancer, lung cancer, kidney cancer, liver cancer, non
  • FIG. 1 Results of in situ hybridization of RB1CC1 on human embryonic spinal nerve and skeletal muscle (Fig. 1A), and results of immunohistochemical staining with anti-RB1CC1 antiserum (Fig. 1B-D) Indicates.
  • A Arrows indicate mature and enlarged nerves.
  • RB1CC1 mRNA was more abundantly expressed in more mature and expanded nerves than in proliferating or migratory nerves.
  • B The expression level of RB1CC1 in proliferating neuroblasts was low.
  • C RB1CC1 content increased in expanded neurons.
  • RBICCI was detected in larger and fused muscle cells than in small myoblasts in human embryonic muscle differentiation.
  • FIG. 3 The effects of RB1CC1 knockdown on the size, number and cell cycle of C2C12 myocytes and neuroblast-derived Neuro2a neurons were analyzed.
  • C2C12 cells under growth and differentiation conditions were cultured simultaneously and analyzed by both flow cytometry and Western plot. Growth or differentiation was induced in media containing 10% FBS or 2% horse serum, respectively. Induction of serum in N euro2a cells was performed by serum removal.
  • ⁇ 4 Shows the results of analyzing the effects of exogenous RB1CC1 on cells cultured under starvation conditions.
  • (A) The results of analyzing the effects of exogenous RB1CC1 on S6K activity and TSC1 levels by Western blotting are shown.
  • Thr389-S6K (lane 1) activated in cells overexpressing RBICCI decreased in a concentration-dependent manner by the introduction of TSC1-2 expression vector (lanes 1–4). In contrast, in cells overexpressing TSC1-2, introduction of RB1CC1 did not activate S6K (lanes 6-9). The middle lane (lane 5) shows the state of control HEK293.
  • B As a result of immunoprecipitation and Western plot analysis, it was found that RB1CC1 and TSC were bound.
  • C In HEK293MSR cells, endogenous TSC 1 and RB 1CC1 partially colocalized immunocytochemically. (Example 5)
  • FIG. 6 shows the results of analyzing whether TSC1 degradation by RB1CC1 is via the ubiquitin-proteasome pathway.
  • A RBICCI force
  • TSC1 ubiquitination was promoted by overexpression of RB1CC1 and suppressed by RNAi of RB1CC1.
  • TSC1, ubiquitin, and wild-type or mutant RBlCCl (wt, dLZ, dCC) to investigate whether RB1CC1 is acting on TSC1 ubiquitin , DN and FCC) expression vectors were introduced exogenously into HEK293 cells and analyzed by immunoprecipitation and immunoplot. Wild-type RBlCCl (wt) promoted TSCl ubiquitin whereas mutant RB1CC1 (dLZ, dCC, dN and FCC) did not.
  • TSC1 degradation of TSC1 was inhibited by RB1CC1-specific RNAi.
  • dCC scrambled RNAi and mutant RB1CC1
  • TSC 1 was degraded at the same rate as the control.
  • D Shows the results of flow cytometry analysis of the role of TSC1 in the regulation of cell size and cell cycle by RBICCI using TSC1 null and rescue cells. It was proved that TSC1 is essential for cell size reduction by RB1CC1 knockdown. Regarding the cell cycle, RB1CC1 knockdown caused a decrease in the number of cells in G1 phase and abnormal progression of cell cycle to S phase in any cell line. I was helped. (Example 6)
  • FIG. 7 shows the results of knocking down RB1CC1 in vivo, mouse hind limbs, and gastrocnemius muscle.
  • A Mouse muscle fibers into which lentivirus RBlCCl-RNAi was introduced were labeled with GFP, but these were immunohistochemically colored with DAB to dark brown (arrow).
  • B In serial sections, RB1CC1 was abundant in GFP-positive fibers (arrow).
  • C Shows muscle fibers treated with scrambled RNAi, RB1CC1 RNAi-1- and RNAi-2 in a representative section of mouse gastrocnemius muscle that was immunostained with anti-GFP antibody and then PAS-stained.
  • RB1CC1 is also involved in the regulation of cell size in conjunction with cell cycle arrest in nerves, muscles, bones and the like.
  • the present inventors observed the expression state of RB1CC1 in postmitotic embryonic spinal nerves and muscle cells by in situ hybridizat ion and immunohistochemical preparation. As a result, it was found that there was a positive correlation between the cell size and the expression state of RB1CC1 in these tissues. Based on these findings, the present inventors searched for the functional involvement of RB1CC1 in the tuberous sclerosis molecular complex, the mammalian ravamycin target molecule (hereinafter TSC-mTOR) pathway.
  • TSC-mTOR mammalian ravamycin target molecule
  • the present invention provides two important findings.
  • RB1CC1 enhances RB1 function and suppresses cell cycle progression.
  • RB1CC1 is abundantly expressed in mature nerves and muscle cells after mitosis, and this positively affects the mTOR pathway and maintains the size of cells and tissues.
  • RB1CC1 plays an important role in maintaining cell size without advancing the cell cycle and contributes to a harmonized mechanism for tissue construction. I was strong.
  • RB1CC1 suppresses cell cycle progression by controlling RB1 upregulation, which increases cell size through activation of mTOR-S6K.
  • the biphasic effect of RB1 CC1 on cell size and cell cycle was more prominent in C2C12 myoblasts and Neuro 0 2a neuroblasts, especially in proliferative cells than in proliferative states.
  • suppression of RB1CC1 expression also caused muscle fiber atrophy in vivo.
  • RB1CC1 functions independently with respect to cell cycle and cell size, and TSC1 was an essential factor for the control of cell size by RB1CC1.
  • RB1CC1 also positively regulates the mTOR pathway through degradation of TSC1 via the ubiquitin-proteasome pathway, and wild-type RB1CC1 promotes TSC1 ubiquitination by binding to TSC1. I found out.
  • one embodiment of the present invention is a method of regulating cell, tissue size and Z or cell cycle by decreasing or increasing the expression level of RB1CC1 protein.
  • the regulation of cell size by RB1CC1 is due to the interaction between RB1CC1 and TSC, This is thought to be due to the accelerated decomposition of chitin. Therefore, with regard to the method of regulating cell, tissue size and Z or cell cycle of the present invention, it is preferable that the regulation of cell or tissue size is by inhibiting or promoting the interaction between RB1CC1 and TSC1. More preferably, it is due to the inhibition or promotion of ubiquitin degradation by TSC.
  • the regulation of the cell cycle by RB1CC1 was due to the induction and enhancement of RB1 expression by RB1CC1. Therefore, in the above method, the cell cycle regulation is preferably suppression or promotion of RB1 function induced by RB1CC1.
  • Reducing the expression level of RB1CC1 protein in the method of the present invention comprises exposing a cell expressing RB1CC1 to a molecule that interferes with transcription or translation of DNA or RNA polynucleotide encoding RB1CC1, This is possible by interfering with transcription or translation of a DNA or RNA polynucleotide encoding RB1CC1 in the cell.
  • RNAi substances such as interfering ribonucleic acid (siRNA (small interferring RNA) and shRNA (short hairpin RNA)) are molecules that interfere with transcription or translation of DNA or RNA polynucleotides encoding RB1CC1. Etc.) or transcription transcripts thereof, for example, DNA encoding shRN A, and the like, and RNAi substances are preferred.
  • An effective amount of a DNA or RNA polynucleotide molecule encoding RB1CC1 and a molecule that interferes with this transcription or translation may be used to modulate the expression of the target gene in a desired manner, for example, a desired increase in target cell gene expression. And administered to the host organism to obtain a reduction.
  • the RNAi substance means a substance that regulates the expression of a target gene by an RNA interference mechanism.
  • the RNAi agent used in one embodiment of the present invention is a small ribonucleic acid molecule (also referred to herein as an interfering ribonucleic acid), ie an oligonucleotide present in a double stranded structure, eg, two different oligoribonucleotides that hybridize to each other. Or a single ribooligonucleotide that takes the form of a small, hairpin to produce a double-stranded structure.
  • oligoribonucleotide is meant a ribonucleic acid that is no more than about 100 nucleotides in length, typically no more than about 75 nucleotides in length, and in certain embodiments, less than about 70 nucleotides in length.
  • RNA material force The duplex structure of two different ribonucleic acids that hybridize to each other, for example siRNA, the length of the duplex structure is typically about 15-30 bp, usually about 15-29 bp. , If the length is about 20-29bp, for example 21 bp and 22 bp are particularly important in certain embodiments.
  • RNA material is a single ribonucleic acid double-stranded structure present in the form of a hairpin, i.e., shRNA
  • the length of the hybridized portion of the hairpin is typically the same as that provided above for siRNA-type material. Is force or 4-8 nucleotides long.
  • the weight of the RNAi agent in this embodiment typically ranges from about 5,000 daltons to about 35,000 daltons, and in many embodiments is at least about 10,000 daltons and less than about 27,500 daltons, often less than about 25,000 daltons.
  • the RNAi agent may encode an interfering ribonucleic acid, such as shRNA as described above.
  • the RNAi substance may be a transcription cage of interfering ribonucleic acid.
  • the transcription variant is typically DNA or RNA encoding an interfering ribonucleic acid.
  • the DNA may be present in a vector (a variety of different vectors are known in the art, such as a plasmid vector, a viral vector, etc.).
  • the RNAi substance can use a typical nucleic acid administration protocol as a protocol, and can be administered to a mammalian host other than an embryo using a protocol known per se.
  • Nucleic acids may be introduced into tissues or host cells by any number of routes including viral infection, microinjection, or vesicle fusion.
  • Nucleic acids may be introduced into cells using expression vectors. Such vectors generally have convenient restriction sites present near the promoter sequence to provide for the insertion of nucleic acid sequences.
  • a transcription cassette containing a transcription initiation region, a target gene or fragment thereof, and a transcription termination region may be prepared.
  • the transcription cassette may be introduced into a variety of vectors, such as plasmids; retroviruses such as lentiviruses; adenoviruses, etc.
  • the vector is transiently or stably in the cell, usually at least about 1 day. More usually, it can be maintained for a period of at least about a few days to a few weeks or longer depending on the situation.
  • the RNAi substance can be directly ingested or injected into a host organism containing the target gene.
  • Substances may be introduced directly into cells (ie, intracellularly) or orally or may be introduced extracellularly into cavities, interstitial cavities, or the body's systemic circulation.
  • Oral delivery methods include mixing RNA directly with the food of the organism.
  • Physical methods of introducing nucleic acids include direct injection into cells or extracellular injection of RNA solutions into organisms. Be turned.
  • the substance may be introduced in an amount capable of transporting at least one copy per cell. Higher doses of the substance (eg, at least 5, 10, 100, 500, or 1000 copies per cell) can result in more effective inhibition, and lower doses are also useful for certain embodiments There is a possibility.
  • the increase in the expression level of the RB1CC1 protein in the method of the present invention enhances the expression by transfecting a cell with an expression vector of a gene encoding the RB1CC1 protein and an expression virus vector, and promotes the expression of the RB1CC1 protein. It is also possible by a compound and a compound that promotes the expression of a gene encoding the Z or RB1CC1 protein.
  • Another aspect of the present invention is to use the cell, tissue size and Z or fineness of RB1CC1 characterized by using "a cell or tissue expressing RB1CC1 protein" and "test compound”.
  • This is a screening method for a compound that promotes or suppresses the cell cycle regulatory function, a compound that promotes or suppresses the expression of the protein of RB1CC1, or a compound that promotes or suppresses the expression of the gene encoding the RB1CC1 protein.
  • the expression level of RB1CC1 protein (specifically, the amount of mRNA encoding RB1CC1 protein, the amount of protein), the activity in the mTOR pathway Measure the amount of the denatured protein (specifically, mTOR, S6K and 4EBP1), the degree of TSC ubiquitination, and the expression level of the RB1 protein and compare them. If there is a change in the expression level of the RB1CC1 protein, it can be seen that the test compound is a compound that promotes or suppresses the expression of the RB1CC1 protein or the expression of the gene encoding the RB1CC1 protein.
  • test compound is a compound that promotes or inhibits the regulation of cell size by RB1CC1. . Furthermore, if there is a change in the function and expression level of the RB1 protein, it indicates that the test compound is a compound that promotes or suppresses cell cycle regulation by RB1CC1.
  • test compound examples include peptides, proteins, non-peptide compounds, and synthetic compounds.
  • the cells having the ability to produce RB1CC1 include a host (transformant) transformed with a vector containing DNA encoding RB1CC1 protein, or HEK293 cells that endogenously express RB1CC1, Examples include C2C12 cells and Neuro2a cells.
  • the amount of RB1CC1 protein, the amount of protein activated in the mTOR pathway, and the degree of ubiquitination of TSC can be measured by known methods.
  • the protein amount of RB1CC1 can be measured by using an antibody that recognizes RB1CC1 and RB1CC1 present in a cell extract or the like according to a method such as Western analysis, ELISA method or the like.
  • the expression level of the gene encoding the RB1CC1 protein in the screening method can be determined by known methods such as Northern blotting, reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR analysis system (ABI). It can be measured according to a method such as TaqMan polymerase chain reaction) or a similar method.
  • RT-PCR reverse transcription-polymerase chain reaction
  • ABSI real-time PCR analysis system
  • reporter genes include: acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), b-galactosidase (LacZ), b-glucurodase (GUS), chloramphee-cholaseyltransferase (CAT), Includes green fluorescent protein (GFP), horseradish oxidase (HRP), luciferase (Luc), noparin synthase (NOS), otatobin synthase (OCS), and their derivatives, including ampicillin, bleomycin, chloramphene -Numerous selectable markers that confer resistance to cole, gentamicin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and t
  • the expression level of the RB1CC1 protein or the gene encoding the RB1CC1 protein in the case of (ii) is compared to the case of (i) above.
  • a test compound that promotes about 20% or more, preferably 30% or more, more preferably about 50% or more can be selected as a compound that promotes the expression of the protein gene of the present invention.
  • the method of the present invention can act on nerve and Z or muscle cells, and these undifferentiated and separated cells can be used together.
  • vertebrates that may be cultured cells, non-vertebrate, or vertebrate cells include, but are not limited to, avian, rodent, usagi, inu, ushi, horse , Pigs, hidges, primates and humans.
  • RB1CC1 plays an important role in the proliferation, growth, differentiation, and death of nerves, muscles, bone cells, etc., and provides a new view on coordinated tissue construction and the molecular mechanisms of living organisms. . RB1CC1 deficiency results in dysregulation of these mechanisms, leading to various pathological conditions such as cancer and neuromuscular disease.
  • one embodiment of the present invention is a compound that promotes or suppresses a cell cycle or cell or tissue size regulating function by RB1CC1 obtained by the method of the present invention, a compound that promotes or suppresses the expression of RB1CC1 protein And a drug comprising a compound that promotes or suppresses the expression of a gene encoding Z or RB1CC1 protein.
  • the medicinal agent is, for example, neuromuscular disease (eg, muscular dystrophy, congenital myopathy, inflammatory myopathy, myopathy associated with endocrine disorders, thyroid toxic myopathy, thyroid toxic periodic palsy, hypothyroidism Sex myopathy, steroid myopathy, periodic limb paralysis, glycogenosis, myasthenia gravis, myasthenia syndrome, mitochondrial disease, myoglobinuria, distal myopathy, myotonic dystrophy, and Danone disease Myogenic diseases, spinal muscular atrophy, bulbospinal muscular atrophy and amyotrophic lateral sclerosis, and neurogenic diseases such as Alzheimer's disease, Parkinson's disease, spinocerebellar degeneration), cancer (Example: Spleen cancer, lung cancer, kidney cancer, liver cancer, non-small cell lung cancer, ovarian cancer, prostate cancer, stomach cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, rectal cancer, etc.) use Door can be.
  • neuromuscular disease eg, muscular dyst
  • the compound obtained by using the screening method of the present invention or a salt thereof is used as the above-mentioned therapeutic agent / prophylactic agent, it can be formulated according to conventional means. For example, tablets, capsules, elixirs, microcapsules, sterile solutions, suspensions and the like can be used. Since the preparation thus obtained is safe and has low toxicity, for example, human Or it can be given orally or parenterally to warm-blooded animals (eg mice, rats, rabbits, sheep, pigs, rabbits, horses, birds, cats, dogs, monkeys, chimpanzees, etc.) it can. The dosage of the compound or a salt thereof can be appropriately adjusted depending on the action, target disease, administration subject, administration route and the like.
  • warm-blooded animals eg mice, rats, rabbits, sheep, pigs, rabbits, horses, birds, cats, dogs, monkeys, chimpanzees, etc.
  • a compound that promotes or suppresses a cell cycle or cell or tissue size regulating function by RB1CC1 obtained by the method of the present invention, or promotes or suppresses expression of RB1CC1 protein.
  • a neuromuscular disease comprising a compound and a compound that promotes or suppresses the expression of a gene encoding Z or RB1CC1 protein (for example, associated with muscular dystrophy, congenital myopathy, inflammatory myopathy, endocrine disorders) Myopathy, Thyroid Toxic Myopathy, Thyroid Toxic Periodic Paralysis, Hypothyroidism Myopathy, Steroid Myopathy, Periodic Limb Paralysis, Glycogenosis, Myasthenia Gravis, Myasthenia Syndrome, Mitochondrial Disease, Myogenic diseases such as myoglobinuria, distal myopathy, myotonic dystrophy and Danone disease, spinal muscular atrophy, bulbar spinal cord Muscular atrophy and amyotrophic lateral sclerosis and neurogenic diseases such as Alzheimer's disease, Parkinson's disease, spinocerebellar degeneration, etc., and Z or cancer (e.g., spleen cancer, lung cancer, kidney cancer) Liver cancer, non-small cell lung cancer, ovarian
  • the rabbit antiserum against RB1CC1 was obtained by using a GST fusion protein containing amino acids 1 to 253 in the N-terminus of RB1CC1 as an epitope.
  • Other anti-RB1CC1 antisera were obtained from Guan J ⁇ . (Cornell University, NY14853).
  • All antibodies were obtained from CellSignaling except for the following: anti-TSC2 antibody (C-20), anti-S6K antibody (C-18) and anti-Myc antibody (9E10) (SantaCruz Biotechnology); anti-HA antibody (12CA5) (Roche); anti-Flag antibody (M2) and anti-Tubulina antibody (DM 1A) (Sigma); anti-RB1 antibody (G3-245, BDPharmingen) and anti-GFP antibody (Clontech). Cycloheximide and latatamycin (lactacystine) were from Calbiochem.
  • HEK293, 293T, C2C12 and Neuro2a cells were cultured at 37 ° C in the presence of 5% CO in Dul becco's modified Eagle'smedium (DMEM) containing 10% urchin fetal serum (FBS).
  • DMEM Dul becco's modified Eagle'smedium
  • FBS urchin fetal serum
  • TSC1-/-cell was a renal cell carcinoma strain derived from TSClknockout mouse (Non-patent Document 17).
  • Cells stably expressing TSC1 were prepared by introducing human TSC1 cDNA (GenBank accession No. NM-000368) into TSC1-/-cells using a retroviral vector.
  • TSC1 rescue cells were selected in the presence of blasticidin.
  • C2C12 cells, Neuro2a cells, TSC1 null cells, and rescue cells additional modification of the RB1CC1 gene was performed using a lentiviral gene transfer system (Invitrogen).
  • RB1CC1 The external and internal deletion mutants of RB1CC1 (GenBank accession no. NM_014781) were prepared by combining PCR-based operation using primers at appropriate positions as shown below and quenching with restriction enzymes. The nucleotides of all constructs were confirmed by DNA sequencing.
  • RB1CC1 variants dLZ, dCC, dN and FCC are the 1st to 1363th (dLZ), 1st to 823th (dCC), 1st to 555th (dN) and 864th to 1594th (FCC) respectively. Contains amino acids. Transfusion was performed using Lipofectamine 2000 (Invitrogen) or FuGENE6 (Roche) according to the manufacturer's protocol.
  • RNAi plasmid vector for RB1CC1 was prepared according to the method described in the literature (Non-patent Document 3).
  • the scrambled RNAi sequence for RB1CC1 expression control is 5′-CA ACTACCAAGAGCTTGCCTA-3 ′ (SEQ ID NO: 1).
  • the target site sequence of RB1C CI-RNAi targeting RB1CC1 is RNAi-1: 5'- TGGGCTGGTGCTTTAGTCAAA-3 '(SEQ ID NO: 2), RNAi-2: 5'-CGGGATAAAGATTTGATAGAG-3' (SEQ ID NO: 3), RNAi- 3: 5 '-GGGAGATTTGGTACTCATCATC-3' (SEQ ID NO: 4) [5'-GGGAGA TTTGGTTCTC ATC ATC-3 '(SEQ ID NO: 5) for mice] (except for RNAi-3) As a target).
  • Lentiviral RNAi vector has the same sequence as Non-Patent Document 3. Prepared. GFP was used as a selection marker.
  • Virus-introduced RNAi was prepared according to the manufacturer's protocol (Invitrogen). Human TSClcDNA was cloned into a pCX-bsr vector, a retroviral vector was prepared by a combination of pCX-bsr and pCL-Ampho, and gene transfer was performed (Non-patent Document 18).
  • the cell lysate used for the Western plot method was lysed according to the method described in the literature (Non-patent Document 19).
  • Cells used for immunoprecipitation were ⁇ buffer (150 mM NaCl, 5 mM EDTA, 20 mM Tris-HC1 containing 1% NP-40 and ImM Na VO, and protease in
  • the lysed material is centrifuged at 15,000xg for 10 minutes, and the supernatant is immunized with beads immunized with anti-HA (Roche), anti-Myc or anti-Flag (Sigma) antibodies at 4 ° C. Incubated with rotation for hours.
  • the beads were washed 5 times with ⁇ buffer and boiled in SDS sample buffer to dissolve the protein molecule complex that had been co-immunoprecipitated.
  • the protein molecule complex was electrophoretically separated by SDS-PAGE, transferred to a polyvinylidene difluoride (PVDF) membrane, and the protein molecule complex was analyzed using each of the antibodies described above.
  • PVDF polyvinylidene difluoride
  • a lentivirus containing RBlCCl-RNAi was introduced into the left and right hindlimb gastrocnemius muscle of C57BL6 mice.
  • Lentivirus lxl0 4 TU (Titer Units; converted to Hela cells) containing scrambled RNAi and RBlCCl-RNAi was introduced to the left and right of the legs, and the muscles were evaluated histologically after 4 weeks.
  • Non-Patent Documents 3, 6 and 7 To evaluate RB1CC1 in developing nerves and muscle cells in embryos, we used human fetal miscarriage tissues from 4 to 8 weeks of gestation and mouse embryo tissues from embryonic day 11-18. And immunohistochemical specimens were prepared (Non-Patent Documents 3, 6 and 7).
  • RB1CC1 knockdown in mouse skeletal muscle was evaluated by immunostaining with GFP, labeling RNAi-introduced muscle fibers, and comparing the mean cross-sectional area (CSA) of knockdown and control muscle fibers.
  • NIHImage 1.63 software was used to evaluate the size of CSA in muscle fibers expressing GFP. The average number of nuclei per cross-section muscle fiber was also compared. To accurately calculate the number of nuclei in each muscle fiber, the muscle basement membrane was immunostained with GFP, followed by periodate Z-Schiff (PAS) staining and visualized.
  • PAS periodate Z-Schiff
  • the expression of RB1CC1 in the spinal nerve was analyzed by in situ hybridization and immunohistological staining.
  • Fig. 1A shows the results of in situ hybridization analysis of the abundance of RB1CC1 mRNA in spinal nerves using RBlCCl-antisense probe.
  • arrows indicate mature and enlarged nerves.
  • RB1CC1 mRNA was more abundantly expressed in more mature and expanded nerves than in proliferating or migratory nerves.
  • RB1CC1 is also important for musculoskeletal differentiation. These results suggest that RB1CC1 is involved in cell hypertrophy associated with neuromuscular tissue division.
  • RB1CC1 was knocked down using three types of RNAi (RNA-1, 2, and 3), each of which has an independent target site for RB1CC1.
  • the RB1CC1 sequence targeted by each RNAi is RNAi-1: 5'-TGGGCTGGTGCTTTAGTC AAA-3 '(SEQ ID NO: 2), RNAi-2: 5 and CGGGATAAAG ATTTGATAGAG-3' (SEQ ID NO: 3), RNAi-3: 5 ' -GGGAGATTTGGTACTCATCATC-3 '(SEQ ID NO: 4).
  • RNAi-1 5'-TGGGCTGGTGCTTTAGTC AAA-3 '(SEQ ID NO: 2)
  • RNAi-2 5 and CGGGATAAAG ATTTGATAGAG-3'
  • RNAi-3 5 ' -GGGAGATTTGGTACTCATCATC-3 '(SEQ ID NO: 4).
  • the activity of the protein was analyzed by quantifying the activated mTOR, S6K and 4EBP1, that is, phosphorylated forms of each by Western blotting.
  • 1 ⁇ 10 ° HEK293 cells were transfected with 4 mg of each RNAi plasmid vector, cultured at 37 ° C. in the presence of 5% CO for 48 hours, and the cells were lysed. Then show below
  • the activity of mTOR pathway molecules was evaluated by Western blotting using antibodies specific for each active phosphorylated protein. As a result, as shown in FIG. The amount of molecules has decreased. Furthermore, RB1 expression was reduced by RB1CC1 knockdown. O Transfection of empty vector or scrambled vector into HEK293 cells had no effect o
  • RNAi plasmid vector was transfected into 6 lxlO HEK 293 cells using Lipofectamine 2000 and brought to 37 ° C in the presence of 5% CO.
  • the cells were cultured for 48 hours and analyzed by flow cytometry. The result is shown in Figure 2B Thus, the cell size decreased by RNAi knockdown of RB1CC1. Furthermore, as shown in Fig. 2B below, the number of cells in the G0-G1 phase was reduced by knocking down RB1CC1.
  • RNAi- ⁇ plasmid vector was transfected with 0, 1, 4 and 7 mg of RNAi- ⁇ plasmid vector using Lipofectamine 2000, and in the presence of 5% CO at 37 ° C for 48 hours.
  • RNAi lentiviral vectors were transfected into 6 lxlO C2C12 myoblasts, and RNAi-introduced cells were recovered 7-10 days later and analyzed by flow cytometry and Western plotting. Proliferation or differentiation was induced for C2C12 myoblasts in medium containing 10% FBS or 2% horse serum, respectively. Neuro2a neuroblasts were induced by serum removal.
  • HEK293 cells cultured under the above-mentioned starvation conditions normally have the ability to suppress S6K activity.
  • An increase in RB1CC1 expression was paralleled with a decrease in TSC1 (hamartin) expression and an increase in RB1 expression.
  • RB1CC1 is a powerful force that does not significantly affect the cell cycle.
  • the cell size reduced under low glucose conditions is RB1CC1 expression.
  • TSC 1-2 was gradually introduced into HEK293 cells overexpressing RB1CC1, and changes in S6K activity were analyzed.
  • 2 mg of RB1CC1 expression vector was transfected into 6 lxlO HEK293 cells, and S6K was activated by enhanced expression of RB1CC1.
  • the HEK293 cells 6 lxlO were transfected with 0, 1, 3 and 5 mg of TSC1-2 expression vector, and phosphate-type S6K (Thr389-S6K) was detected by the Western blot method. As a result, as shown in FIG.
  • the active type S6K (Thr389-S6K), which had been increased by the increased expression of RB1CC1, decreased depending on the TSC1-2 concentration.
  • lxlO 6 HEK293 cells were transfected with 2 mg of TSC1-2 expression vector, and TSC was overexpressed, then HEK293 cells (lxlO 6 ) were treated with 0, 1, 3 and 5 mg. Transfect the RB1CC1 expression vector and incubate for 48 hours at 37 ° C in the presence of 5% CO.
  • RB1CC1 and TSC interacted was analyzed by immunoprecipitation and Western blotting.
  • lxlO 6 HEK293T cells were treated with 2 mg of Flag-RB1CC1 expression vector (+) or control vector (-) and 2 mg of Myc-TSC1 and HA-TSC2 expression vectors using FuGene. Cultivate for 48 hours at 37 ° C in the presence of 5% CO
  • RB1C C1 was found to interact with TSC1 and 2 as shown in Fig. 5B. Although data are not shown, binding between RB1CC1 and TSC1 was also confirmed by yeast two-hybrid assembly.
  • TSC1 ubiquitin and RB1CC1 expression vectors were introduced exogenously into HEK293 cells and analyzed by immunoprecipitation and immunoplotting.
  • lxlO 6 HEK293 cells were transfected with 0 or lmg of Myc-T SC1, HA-ubiquitin and Z or Hag-RBICCI expression vector, and cultured for 48 hours at 37 ° C in the presence of 5% CO for analysis Using.
  • Cell lysate is anti-HA (
  • (Ubiquitin) antibody was immunoprecipitated, and the precipitated protein molecules were resolubilized with SDS buffer, and immunoplotted with anti-Myc (TSC1) antibody for evaluation. As shown in FIG. 6A, overexpression of RB1CC1 promoted TSC1 ubiquitin. The promotion was suppressed by RNAi knockdown of RB1CC 1. Similar results were obtained when immunoprecipitated with anti-Myc (TSC1) antibody and immunoplotted with anti-HA (ubiquitin) antibody.
  • mutant RB1CC 1 acts on ubiquitination of TSC 1, TSC1, ubiquitin and wild type
  • mutant RB1CC1 wt, dLZ, dCC, dN and FC
  • the expression vector of C was introduced exogenously into HEK293 cells and analyzed by immunoprecipitation and immunoplot.
  • lxlO 6 HEK293 cells were transfected with 0 or lmg of TSC1, ubiquitin, wild-type or mutant RBlCCl (dLZ, dCC, dN and FCC) expression vectors at 37 ° C in the presence of 5% CO 48 Used for analysis after time culture.
  • TSC1 protein mass was evaluated by Western plotting. Furthermore, the decrease in the amount of TSC1 protein was similarly evaluated with or without the addition of lactacystin, a proteasome inhibitor.
  • RNAi 6 mg wild-type RB1CC1, mutant RB1CC1 (dCC), RB1CC1 specific RNA in 1 xlO 6 HEK293 cells in the presence or absence of proteasome inhibitor lactacystin (10 mM) Scrambled RNAi was each transfected using Lipofectamine 2000 and exposed to lOmg / ml cycloheximide. Thereafter, the protein amount of endogenous TSC 1 was evaluated by Western blotting after 0, 2, 5 and 8 hours.
  • TSC1 In order for RB1CC1 to regulate cell size, it was examined whether TSC1 is essential. Knock down RB1CC1 in TSC1 null mouse renal cell carcinoma cells and TSC 1 rescue cells I went. RNAi was introduced using a lentiviral vector. Cells that showed GFP fluorescence upon introduction of RNAi were analyzed by flow cytometry. As a result, as shown in the left of FIG. 6D, it was revealed that TSC1 is essential for the regulation of cell size by RB1CC1.
  • RB1CC1 knockdown resulted in a decrease in the number of cells in G1 phase and abnormal progression of cell cycle to S phase in any cell line. There was no significant difference.
  • RB1CC1 maintains cell or tissue size was analyzed in vivo.
  • a lentivirus containing RBlCCl-RNAi was introduced into the left and right hindlimb gastrocnemius muscles of C57BL6 mice.
  • Lentivirus lxl0 4 TU (Titer Units; converted to Hela cells) containing scrambled RNAi and RBlCCl-RNAi was introduced to the left and right of the legs, and the muscles were evaluated histologically after 4 weeks.
  • Mouse muscle fibers treated with lentivirus RB 1 CC 1-RNAi produced GFP-expressing force Serial sections were immunostained with anti-GFP antibody (Fig. 7A) and anti-RB1CC1 antibody (Fig. 7B) and knocked. The effect of down was confirmed. As a result, as shown in FIGS. 7A and B, the amount of RB1CC1 decreased due to the knockdown of RB1CC1.
  • RB1CC1 obtained by the method of the present invention promotes the expression of a cell cycle or a cell or tissue size regulating function, a compound of RB1CC1 polypeptide or protein.
  • a medicament comprising a compound that suppresses or suppresses the expression of a gene encoding the RB1CC1 protein can be used as a prophylactic / therapeutic agent or diagnostic agent for nerves, muscle diseases, cancer, and the like.
  • these compounds and medicines can also be used for the maintenance and improvement of nerve function and meat quality of various animals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 本発明において、RB1CC1はmTORおよびRB1経路のクロストークに必要であり、特に神経、筋細胞において細胞周期の進行を伴わない大型サイズの細胞表現型に貢献していることを見出した。この知見に基づき、RB1CC1の発現量を制御することを特徴とする、細胞、組織の大きさおよび/または細胞周期を調節する方法、RB1CC1の細胞、組織の大きさおよび/または細胞周期の調節機能を促進または抑制する化合物、RB1CC1の発現量を促進または抑制する化合物のスクリーニング方法を提供する。これらの方法および化合物は、各種動物由来の神経、筋、骨、等組織の構築維持、改善にも適用できる。

Description

明 細 書
細胞の大きさおよび Zまたは細胞周期を調節する方法
技術分野
[0001] 本発明は、 RBl-inducible coiled-coil 1 (以下、 RBICCI)の発現量を制御することを 特徴とする、細胞、組織の大きさおよび Zまたは細胞周期を調節する方法に関する。 また、さらに、 RB1CC1の細胞、組織の大きさおよび Zまたは細胞周期の調節機能を 促進または抑制する化合物、 RB1CC1の発現量を促進または抑制する化合物、 RB1 CC 1蛋白質をコードする遺伝子の発現を促進または抑制する化合物のスクリーニン グ方法などに関する。
[0002] 本出願は、参照によりここに援用されるところの日本出願特願 2005— 368311号 優先権を請求する。
背景技術
[0003] 本発明者らは、網膜芽腫の腫瘍抑制因子 (RB1)の機能調節に関与している新規 の因子、 RB1し Cl (Human Gene Nomenclature Committee-approved gene symbol)を 同定した。 RBICCIをヒト白血病細胞に導入すると、 RB1の発現が促進され、細胞周 期の進行が遅くなる(非特許文献 1および 2)。 RB1CC1および RB1はともに同調して 発現しており(非特許文献 1)、いくつかの細胞株において RB1CC1を特異的にノック ダウンすると RB1の発現が抑制される(非特許文献 3)。このように、 RB1CC1は RB1経 路を介して細胞増殖活性を調節することが可能である。さらに、 10-20%の原発性乳癌 は、古典的な腫瘍抑制因子の特徴を有する RB1CC1の機能不全に関与している(非 特許文献 4および 5)。 RB1CC1および RB1は共に胎生筋骨格細胞において選択的 に発現し、その成熟に関与して 、る (非特許文献 6および 7)。
[0004] 本発明者らはまた、 RB1CC1は新規の筋分ィ匕仲介因子であることを明らかにした( 非特許文献 3)。マウス筋芽由来 C2C12細胞の分ィ匕および胚発生において、 RB1CC 1および RB1の同調発現によりミオシン重鎖の発現が誘導された。 RNA干渉(RNAi: R NA interference)により RBICCIをノックダウンすると、 RB1の減少が生じ、 C2C12細胞 は分化しない(非特許文献 3)。これらの実験結果から、 RB1CC1は横紋筋原細胞の 増殖抑制および分ィ匕誘導にぉ 、て重要な役割を果たして 、ることが示された。
[0005] 結節性硬化症分子複合体 哺乳動物ラバマイシン標的分子 (TSC-mTOR)経路は 、細胞の大きさ調節に関与しており、最もよく研究されている分子経路である(非特許 文献 8)。様々の動物種において、 TSC機能が変異および低下すると、 mTOR、 S6キ ナーゼ (S6K)が活性化され、翻訳が亢進制御され細胞の大きさが肥大化する(非特 許文献 9〜15)。
[0006] TSC1および TSC2は細胞の大きさの調節だけでなぐハマルチン(Hamartin)および チュベリン (tuberin)を各々コードしており、これらの遺伝子の変異は結節性硬化症、 過誤腫症候群を生じ、各分子は腫瘍抑制因子と考えられている。 TSC1および TSC2 遺伝子はともにコイルドコイル領域を持ち、ヘテロダイマーを形成する。また TSC1お よび TSC2遺伝子は細胞の大きさの調節に加えて、細胞周期の進行、細胞生存およ びアポトーシス過程の調節において機能していると考えられている力 その詳細は不 明な点も多い (非特許文献 8)。本研究者らは、 RB1CC1がインビトロだけでなくインビ ボの神経、筋細胞においても TSC-mTOR経路、及び RB1経路を介して細胞周期の 休止および細胞、組織の肥大に関して重要な役割を果たして ヽることの証拠を示す
[0007] 非特許文献 1 : Chano et al., 2002, Oncogene 21: 1295-1298.
非特許文献 2 : Kontani et al., 2003, Int. J. Mol. Med. 12: 767-769.
非特許文献 3 :Watanabe et al. 2005, Virchows Arch. 447: 643-648.
非特許文献 4 : Chano et al., 2002, Nat. Genet. 31: 285-288.
非特許文献 5 : Teramoto et al., 2003, Cancer Therapy 1: 103-107.
非特許文献 6 : Chano et al., 2002, Am. J. Pathol. 161:359-364.
非特許文献 7 : Bamba et al., 2004, Int. J. Mol. Med. 14: 583-587.
非特許文献 8 : Inoki et al" 2005, Nat. Genet. 37: 19-24.
非特許文献 9 : Kobayashi et al., 1999, Cancer Res. 59: 1206-1211.
非特許文献 10 : Kobayashi et al" 2001, Proc. Natl. Acad. Sci. USA 98: 8762-8767. 非特許文献 11 : Potter et al" 2001, Cell 105: 357-368.
非特許文献 12 : Tapon et al" 2001, Cell 105: 345—355. 非特許文献 13 : Gao et al, 2002, Nat. Cell Biol. 4: 699-704.
非特許文献 14 : Inoki et al" 2002, Nat. Cell Biol. 4: 648-657.
非特許文献 15 : Manning et al" 2002, Mol. Cell 10: 151-162.
非特許文献 16 : Evangelopoulos et al., 2005, Oncogene, 24: 3309-3318.
非特許文献 17 : Kobayashi et al., 2001, Proc.Natl. Acad. Sci. USA 98:8762-8767. 非特許文献 18 :Akagi et al., 2000, Proc. Natl. Acad. Sci. USA 97: 7290-7295. 非特許文献 19 : Sarbassov, D. D. et al" 2005, Science 307: 1098-1101.
非特許文献 20 : Rosner et al., 2003, Oncogene, 22: 4786-4798.
発明の開示
発明が解決しょうとする課題
[0008] 細胞増殖、細胞成長、細胞分化および細胞死は組織の体系化に必須であり、協調 的に調節される必要がある。当該過程の各要素については研究されている力 これ らの要素の協調的な関連性はあまり知られて 、な 、。これらの要素の協調的な関連 性を解析することは、細胞増殖、細胞成長、細胞分ィ匕および細胞死における協調し た分子機構の解明に役立つとともに、当該分子機構の異常調節によって生じる各種 疾患の治療に結びつくと考えられる。
課題を解決するための手段
[0009] 本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、網膜芽腫の 腫瘍抑制因子 (RB1)の発現調節に寄与している新規の因子 RB1CC1が mTORおよ び RB1両経路のクロストークに必要であり、特に神経及び筋細胞において細胞周期 の進行を伴わない大型の細胞表現型に寄与していることを見出した。神経、筋細胞 において豊富な RB1CC1の発現は、 TSC1の分解作用を介して mTOR経路の活性ィ匕 に寄与し、大型の細胞形質の維持に貢献していた。また、 RB1CC1は RB1機能の亢 進制御を介して細胞周期の進行を抑制して 、ることもわ力つた。本発明者らはこれら の知見に基づいて、さらに検討を重ねた結果、本発明を完成するに至った。
[0010] すなわち本発明は以下の構成力もなる。
1. RB1CC1の発現量を減少または増加させることにより細胞、組織の大きさおよび Zまたは細胞周期を調節する方法。 2.細胞、組織の大きさの調節が RB1CC1と TSCとの相互作用の抑制または促進によ るものである前項 1に記載の方法。
3.細胞、組織の大きさの調節が RB1CC1による TSCのュビキチンィ匕分解の抑制また は促進による前項 2に記載の方法。
4. RB1CC1による細胞周期の調節が RB1CC1により誘導される RB1機能の抑制また は促進によるものである前項 1に記載の方法。
5. RB1CC1をコードする DNA又は RNAポリヌクレオチドの転写又は翻訳に干渉する 分子に RB1CC1を発現している細胞を曝露させ、該細胞における RB1CC1をコードす る DNA又は RNAポリヌクレオチドの転写又は翻訳に干渉することにより、 RB1CC1蛋 白質の発現量を減少もしくは促進させることによる前項 1に記載の方法。
6. RB1CC1をコードする DNA又は RNAポリヌクレオチドの転写又は翻訳に干渉する 分子が、 RNAi物質である前項 5に記載の方法。
7. RB1CC1を発現している細胞、組織と試験化合物を用いることを特徴とする、 RB1 CC1による細胞、組織の大きさおよび Zまたは細胞周期の調節機能を促進もしくは 抑制する化合物のスクリーニング方法。
8. RB1CC1を発現している細胞、組織と試験化合物を用いることを特徴とする、 RB1 CC1蛋白質の発現を促進または抑制する化合物のスクリーニング方法。
9. RB1CC1を発現している細胞、組織と試験化合物を用いることを特徴とする、 RB1 CC 1蛋白質をコードする遺伝子の発現を促進または抑制する化合物のスクリーニン グ方法。
10.細胞、組織が神経および Zまたは筋肉、骨細胞及び組織である前項 1〜8のい ずれ力 1項に記載の方法。
11.前項 7に記載の方法により得られる RB1CC1による細胞周期または細胞、組織の 大きさの調節機能を促進もしくは抑制する化合物、前項 8に記載の方法により得られ る RB1CC1蛋白質の発現を促進または抑制する化合物、および Zまたは前項 9に記 載の方法により得られる RB1CC1蛋白質をコードする遺伝子の発現を促進または抑 制する化合物を含有してなる医薬。
12.神経、筋、骨疾患および Zまたは癌の予防'治療剤である前項 11に記載の医薬 13.前項 7に記載の方法により得られる RB1CC1による細胞周期または細胞、組織の 大きさの調節機能を促進もしくは抑制する化合物、前項 8に記載の方法により得られ る RB1CC1蛋白質の発現を促進または抑制する化合物、および Zまたは前項 9に記 載の方法により得られる RB1CC1蛋白質をコードする遺伝子の発現を促進または抑 制する化合物を含有してなる神経、筋、骨疾患および Zまたは癌の診断剤。
14.細胞、組織が神経および Zまたは筋肉、骨由来である前項 13に記載の診断剤
15.細胞、組織が培養細胞、または非脊椎もしくは脊椎動物内の細胞、組織である 前項 11〜14のいずれか 1項に記載の医薬または診断剤。
16.脊椎動物が、ヒト、 -ヮトリ、げっ歯類、ゥサギ、ィヌ、ゥシ、ブタ、ヒッジまたは霊長 類である請求項 15に記載の医薬または診断剤。
17.神経、筋および Zまたは骨の組織構築の維持および Zまたは改善に用いるた めの前項 11〜16のいずれか 1項に記載の医薬または診断剤。
発明の効果
RB1CC1による細胞周期または細胞、組織の大きさの調節機能を促進もしくは抑制 する化合物、 RB1CC1のポリペプチドまたは蛋白質の発現を促進または抑制するィ匕 合物、 RB1CC1蛋白質をコードする遺伝子の発現を促進または抑制する化合物を含 んでなる医薬は、神経、筋疾患 (例として、筋ジストロフィー、先天性ミオパチ一、炎症 性筋疾患、内分泌障害に伴うミオパチ一、甲状腺中毒性ミオパチ一、甲状腺中毒性 周期性四肢麻痺、甲状腺機能低下性ミオパチ一、ステロイドミオパチ一、周期性四 肢麻痺、糖原病、重症筋無力症、筋無力症候群、ミトコンドリア病、ミオグロビン尿症 、遠位型ミオパチ一、筋強直性ジストロフィーおよびダノン病などの筋原性疾患、脊 髄性筋萎縮症、球脊髄性筋萎縮症および筋萎縮性側索硬化症、及び、ァルツハイ マー病、パーキンソン病、脊髄小脳変性症などの神経原性疾患等)、癌 (例、脾臓癌 、肺癌、腎臓癌、肝臓癌、非小細胞肺癌、卵巣癌、前立腺癌、胃癌、膀胱癌、乳癌、 子宮頸部癌、結腸癌、直腸癌等)などの予防'治療剤、診断剤に使用することができ る。 図面の簡単な説明
[図 1]ヒト胎生脊髄神経、骨格筋にぉ 、て RB1CC1の in situ hybridization法を行なつ た結果(図 1A)、および抗 RB1CC1抗血清で免疫組織染色を行なった結果(図 1B— D)を示す。(A)矢印は成熟および肥大した神経を示す。 RB1CC1の mRNAは増殖性 または移動性神経よりも、より成熟および拡大した神経に豊富に発現していた。 (B) 増殖性神経芽細胞における RB1CC1の発現量は低力つた。 (C)拡大した神経細胞に おいて RB1CC1の含有量は増加した。 (D) RBICCIは、ヒトの胎生筋肉分化において 、小さい筋芽細胞よりも大きいおよび融合した筋細胞で検出された。(実施例 1) [図 2]RB1CC1特異的ノックダウンによる mTOR-S6K活性、 RB1発現、および細胞の大 きさ、細胞周期への影響を解析した結果を示す。(A) RBICCI- RNAiにより、活性型 mTOR、 S6Kおよび 4EBP1、すなわち、それぞれのリン酸化型 Ser2448、 Thr389および Thr37/46が減少した。 RB1CC1のノックダウンにより RB1の発現も減少した。(B) FSC- Hのヒストグラムでは RNAiにより左方へシフトする所見がみられ、細胞サイズの縮小が 示唆された。 FL2-Aヒストグラムによる核内 DNA量の評価、細胞周期の評価では RB1 CCl-RNAi処理によって、 G1期分画のヒト胎児腎由来 HEK293細胞数の減少を示し た。(C) mTOR経路各リン酸ィ匕型活性ィ匕蛋白質の量は段階的に減少し、 RB1CC1の ノックダウン効果は濃度依存的であることがわ力つた。(実施例 2)
[図 3]RB1CC1のノックダウンによる C2C12筋細胞、神経芽由来 Neuro2a神経細胞の 大きさ、数および細胞周期への影響を解析した。増殖、分化各条件下の C2C12細胞 を同時に培養し、フローサイトメトリーおよびウェスタンプロットの両方により解析した。 増殖または分ィ匕は、各々 10%FBSまたは 2%ゥマ血清を含む培地において誘導した。 N euro2a細胞における分ィ匕誘導は血清除去により行った。(A)フローサイトメトリーによ る解析の結果を示す。 RB1CC1のノックダウンによる細胞の大きさの減少は、分ィ匕誘 導した C2C 12筋細胞にお 、て顕著であつたが、指数関数的に増殖して 、る C2C 12細 胞では顕著ではな力つた。また、細胞周期への影響も、分化状態の C2C12筋細胞で は G1期分画細胞数の著明な減少が見られたが、増殖状態の細胞ではその影響は顕 著でな力つた。(B)ウェスタンプロットによる解析の結果を示す。 RNAi処理した、増殖 および分ィ匕細胞にぉ 、て活性ィ匕型 S6 (Ser240/244)および RBIの発現量が減少した 。上記、 RB1CC1ノックダウンの影響は Neuro2a神経細胞におけるフローサイトメトリー およびウェスタンブロットにおいても同様の結果であった。(実施例 3)
圆 4]飢餓条件で培養した細胞に対する外来性 RB1CC1による影響を解析した結果 を示す。 (A)ウェスタンブロット法により、外来性 RB1CC1による S6K活性、 TSC1量へ の影響を解析した結果を示す。完全アミノ酸 (aminoacid ++)とともに 25mMグルコース (glucose ++)、 2.5 mMグノレコース(+)を含むまたはグノレコースを含まない(-)培地、 あるいはメチォニンおよびシスティンを除去した培地(aminoacid +)に外来性 RB1CC 1を添カ卩した。 2.5mMグルコースまたはグルコースなし、または一部のアミノ酸飢餓条 件下ではリン酸ィ匕型 S6K(Thr389)の量が減少したが、外来性 RB1CC1の発現量依存 的に回復した。また、 RB1CC1発現量の上昇は TSC1/ハマルチン発現の減少および RB1発現の増カロと相関していた。(B)フローサイトメトリーにより外来性 RB1CC1による 細胞の大きさおよび細胞周期を解析した結果を示す。外来性 RB1CC1発現により細 胞周期は有意な影響を受けな力つたが、細胞の大きさは回復した。(実施例 4) [図 5]RB1CC1および TSC間の相互作用を解析した結果を示す。(A) RBICCIを過 剰発現した細胞において活性化した Thr389-S6K (レーン 1)は、 TSC1-2発現べクタ 一の導入により濃度依存的に減少した (レーン 1—4)。これに対し、 TSC1-2を過剰発 現した細胞において、 RB1CC1の導入は S6Kを活性化しなかった(レーン 6-9)。中央 のレーン(レーン 5)はコントロール HEK293の状態を示す。(B)免疫沈降およびウェス タンプロット法による解析の結果、 RB1CC1および TSCは結合することがわかった。(C ) HEK293MSR細胞において、内在性 TSC 1および RB 1CC1は免疫細胞化学的にその 一部が共局在化していた。(実施例 5)
[図 6]RB1CC1による TSC1分解がュビキチン—プロテアソーム経路を介しているか否 力〖こつ 、て解析した結果を示す。 (A) RBICCI力 TSC 1のュビキチン化に作用してい るか否かを調べるため、 TSC1、ュビキチンおよび RB1CC1の発現ベクターを HEK293 細胞に外来的に導入し、免疫沈降および免疫プロット法により解析した結果を示す。 TSC1のュビキチン化は RB1CC1の過剰発現により促進され、 RB1CC1の RNAiにより 抑制された。(B)変異型 RB1CC1が TSC1のュビキチンィ匕に作用している力否かを調 ベるため、 TSC1、ュビキチンおよび、野生型もしくは変異型 RBlCCl (wt、 dLZ、 dCC 、 dNおよび FCC)の発現ベクターを HEK293細胞に外来的に導入し、免疫沈降およ び免疫プロット法により解析した。野生型 RBlCCl(wt)は TSClのュビキチンィ匕を促進 するのに対し、変異型 RB1CC1 (dLZ、 dCC、 dNおよび FCC)はこれを促進しなかった 。 (C) RBICCIが TSC1の安定性に影響を与える力否かを解析するため、コントロール および過剰の RB1CC1の存在下で、細胞をシクロへキシミドに暴露させ、蛋白合成を 停止させた後に、 TSC1蛋白質量の減少をウェスタンプロット法により評価した。更に プロテアソーム阻害剤であるラクタシスチンを添加もしくは非添加した状態で、同様に TSC1の蛋白質量の減少を評価した。シグナルの測定値は 0時間の値を 100とし、これ に対して各時間でのシグナル値を測定しグラフにプロットした。 RB1CC1が豊富な場 合に TSC1はより急速に分解された。過剰発現させた RB1CC1の存在下またはコント口 ール条件下、どちらの場合もラクタシスチンにより TSC1の分解が阻害された。また、 R B1CC1特異的 RNAiにより TSC1の分解は阻害された。スクランブル RNAiおよび変異 型 RB1CC1 (dCC)をトランスフエクシヨンした場合は、コントロールと同様の速度で TSC 1が分解された。(D) RBICCIによる細胞の大きさおよび細胞周期の調節における TS C1の役割を、 TSC1ヌルおよびレスキュー細胞を用いてフローサイトメトリーにより解析 した結果を示す。 RB1CC1ノックダウンによる細胞サイズの縮小には TSC1が必須であ ることがわ力つた。細胞周期に関しては、いずれの細胞株においても RB1CC1ノックダ ゥンにより、 G1期細胞数の減少および S期への異常な細胞周期の進行が生じたが、 T SC1の有無による著明な差は見られな力つた。(実施例 6)
[図 7]インビボ、マウス後肢、腓腹筋において RB1CC1をノックダウンさせた結果を示 す。 (A)レンチウィルス RBlCCl-RNAiの導入されたマウス筋線維は GFPで標識され るが、これらを免疫組織ィ匕学的に DABで茶褐色に発色させた (矢印)。(B)連続切片 にお 、て RB1CC1は GFP陽性線維では豊富でな力つた (矢印)。(C)抗 GFP抗体で免 疫染色し、その後 PAS染色を加えたマウス腓腹筋の代表的な切片における、スクラン ブル RNAi、 RB1CC1 RNAi- 1-および RNAi-2で処理した筋線維を示す。(D)筋原線 維 CSAは RB1CC1ノックダウンにより減少した。 (E)筋線維切片当たりの筋核数は RN Aiによって有意に影響を受けなかった。データは、 RNAi処理した 3マウス由来の 100 線維以上の means士 s.e.で示した。統計学的に有意な差異(p〈0.01;Student's- 1 test) は *で示した。スケールバーは 100mmを示す。(実施例 7)
発明を実施するための最良の形態
[0013] RB1CC1の発現は、神経、筋、骨等の細胞周期停止に連動して、細胞の大きさの調 節にも関与していることが示唆される。このことを確かめるため、本発明者らは、有糸 分裂後胎生脊髄神経および筋細胞における RB1CC1の発現状態を in situ hybridizat ion,及び、免疫組織ィ匕学的プレパレーシヨンにより観察した。その結果、これらの組 織において、細胞の大きさと RB1CC1の発現状態の間に正の相関関係があることが わかった。これらの知見に基づき、本発明者らは結節性硬化症分子複合体 哺乳動 物ラバマイシン標的分子(以下、 TSC-mTOR)経路に対する RB1CC1の機能的関与 についてを探索した。
[0014] 本発明では 2つの重要な知見を提供する。 RB1CC1は RB1機能を増強し、細胞周 期の進行を抑制する。また、生涯を通じて RB1CC1が有糸分裂後、成熟神経、筋細 胞に豊富に発現しており、このことで mTOR経路に正に影響し、細胞、組織の大きさ を維持している。これらの知見から、 RB1CC1は細胞周期を進行させることのない細 胞の大きさの維持にぉ 、て重要な役割を果たしており、組織構築のための調和の取 れた機構に寄与して 、ることがわ力つた。
[0015] RB1CC1は mTOR-S6Kの活性化を介して細胞の大きさを拡大させる力 RB1の亢進 制御により細胞周期の進行を抑制した。細胞の大きさおよび細胞周期に対する RB1 CC1の二相効果は、 C2C12筋芽細胞、 Neur02a神経芽細胞において、増殖状態より も特に分ィ匕状態の細胞において顕著であった。また、 RB1CC1の発現抑制は、インビ ボにおいても筋線維の萎縮をもたらした。さらに、 RB1CC1は細胞周期および細胞サ ィズについて独立に機能しており、 RB1CC1による細胞の大きさの制御には TSC1が 必須因子であった。また、 RB1CC1は、ュビキチン—プロテアソーム経路を介する TS C1の分解を介して mTOR経路を正に制御しており、野生型 RB1CC1は、 TSC1と結合 することにより、 TSC1のュビキチネーシヨンを促進していることがわかった。
[0016] したがって、本発明の一態様は、 RB1CC1蛋白質の発現量を減少または増カロさせ ることによる、細胞、組織の大きさおよび Zまたは細胞周期を調節する方法である。
[0017] RB1CC1による細胞の大きさの調節は、 RB1CC1と TSCが相互作用し、 TSC1のュビ キチンィ匕分解が促進されることによると考えられる。したがって、本発明の細胞、組織 の大きさおよび Zまたは細胞周期を調節する方法に関し、細胞、組織の大きさの調 節は RB1CC1と TSC1との相互作用の抑制または促進によることが好ましぐ RB1CC1 による TSCのュビキチンィ匕分解の抑制または促進によることがさらに好ましい。
[0018] また、 RB1CC1による細胞周期の調節は RB1CC1により RB1の発現が誘導、機能増 強されることによるものであった。したがって、前記方法において、細胞周期の調節は RB1CC1により誘導される RB1機能の抑制または促進であることが好ま 、。
[0019] 本発明の方法における RB1CC1蛋白質の発現量を減少させることは、 RB1CC1をコ ードする DNA又は RNAポリヌクレオチドの転写又は翻訳に干渉する分子に RB1CC1 を発現している細胞を曝露させ、該細胞における RB1CC1をコードする DNA又は RNA ポリヌクレオチドの転写又は翻訳に干渉することにより可能である。
[0020] RB1CC1をコードする DNA又は RNAポリヌクレオチドの転写又は翻訳に干渉する分 子として、アンチセンスヌクレオチド、 RNAi物質、例えば、干渉リボ核酸(siRNA(small i nterferring RNA)や shRNA(short hairpin RNA)等)またはその転写铸型、例えば shRN Aをコードする DNAなどが好適に挙げられ、 RNAi物質が好ましい。 RB1CC1をコード する DNA又は RNAポリヌクレオチド分子、及びこの転写又は翻訳に干渉する分子の 有効量は、所望の様式で標的遺伝子の発現を調節するために、例えば標的細胞遺 伝子発現の所望の増加、及び、減少を得るために、宿主生物に投与される。
[0021] RNAi物質とは、 RNA干渉機構によって標的遺伝子の発現を調節する物質を意味 する。本発明の一つの態様において用いられる RNAi物質は、小さいリボ核酸分子( 本明細書において干渉リボ核酸とも呼ぶ)、すなわち二本鎖構造で存在するオリゴヌ クレオチド、例えば互いにハイブリダィズする二つの異なるオリゴリボヌクレオチド、ま たは二本鎖構造を生成するために小さ 、ヘアピン形態をとる単一のリボオリゴヌタレ ォチドである。オリゴリボヌクレオチドとは、長さが約 100ヌクレオチドを超えず、典型的 には長さが約 75ヌクレオチドを超えず、特定の態様において長さが約 70ヌクレオチド 未満であるリボ核酸を意味する。 RNA物質力 互いにハイブリダィズする二つの異な るリボ核酸の二本鎖構造、例えば siRNAである場合、二本鎖構造の長さは典型的に は約 15〜30bp、通常約 15〜29bpの範囲であり、長さが約 20〜29bpの場合、例えば 21 bp、 22bpは特定の態様において特に重要である。 RNA物質がヘアピン形態で存在 する単一のリボ核酸の二本鎖構造、すなわち shRNAである場合、ヘアピンのハイブリ ダイズ部分の長さは典型的に siRNA型の物質に関して先に提供した長さと同じである 力 または 4〜8ヌクレオチド長い。この態様の RNAi物質の重量は典型的に、約 5,000 ダルトンから約 35,000ダルトンの範囲であり、多くの態様において少なくとも約 10,000 ダルトンであり、かつ約 27,500ダルトン未満、しばしば約 25,000ダルトン未満である。
[0022] RNAi物質が干渉リボ核酸、例えば上記の siRNAまたは shRNAである代わりに、 RNAi 物質は上記のような干渉リボ核酸、例えば shRNAをコードしてもよい。言い換えれば、 RNAi物質は、干渉リボ核酸の転写铸型であってもよい。これらの態様において、転写 铸型は典型的に干渉リボ核酸をコードする DNAまたは RNAである。 DNAは、ベクター (多様な異なるベクターが当技術分野で既知であり、例えばプラスミドベクター、ウイ ルスベクター等)に存在してもよい。
[0023] RNAi物質は、プロトコールとして典型的な核酸投与プロトコールを用いることができ 、 自体公知のプロトコールを用いて胚以外の哺乳類宿主に投与することができる。核 酸は、ウィルス感染、マイクロインジェクション、または小胞の融合を含む任意の数の 経路によって組織または宿主細胞に導入してもよい。発現ベクターを用いて核酸を 細胞に導入してもよい。そのようなベクターは一般的に、核酸配列の挿入を提供する ために、プロモーター配列の近傍に存在する都合のよい制限部位を有する。転写開 始領域、標的遺伝子またはその断片、および転写終了領域を含む転写カセットを調 製してもよい。転写カセットは、多様なベクター、例えばプラスミド;レトロウイルス、例 えばレンチウィルス;アデノウイルス等に導入してもよぐこの場合、ベクターは細胞に おいて一過性または安定に、通常少なくとも約 1日、より通常は少なくとも約数日から 数週間の期間、状況によってはそれ以上に維持することができる。
[0024] 例えば、 RNAi物質は、標的遺伝子を含む宿主生物に直接摂取させるか、または注 射することができる。物質は細胞 (すなわち、細胞内)に直接導入してもよぐまたは腔 、間質腔、生物の体循環へ細胞外に導入してもよぐ経口等で導入してもよい。経口 導入方法には、 RNAを生物の食物と直接混合することが含まれる。核酸を導入する 物理的方法には、細胞への直接注入、または RNA溶液の生物への細胞外注入が含 まれる。物質は、細胞あたり少なくとも 1コピーを輸送することができる量で導入しても よい。物質のより高用量(例えば、細胞あたり少なくとも 5、 10、 100、 500、または 1000コ ピー)は、より有効な阻害を生じる可能性があり、より低用量もまた特定の態様にとつ て有用となる可能性がある。
[0025] 本発明の方法における RB1CC1蛋白質の発現量の増加は、 RB1CC1蛋白質をコー ドする遺伝子の発現ベクター及び発現ウィルスベクターを細胞にトランスフエクシヨン することによる発現亢進、 RB1CC1蛋白質の発現を促進する化合物、および Zまたは RB1CC1蛋白質をコードする遺伝子の発現を促進する化合物によっても可能である。
[0026] 本発明の別の一態様は、「RB1CC1蛋白質を発現している細胞、組織」と「試験化合 物」を用いることを特徴とする、 RB1CC1による細胞、組織の大きさおよび Zまたは細 胞周期の調節機能を促進もしくは抑制する化合物、 RB1CC1の蛋白質の発現を促進 または抑制する化合物、あるいは RB1CC1蛋白質をコードする遺伝子の発現を促進 または抑制する化合物のスクリーニング方法である。より具体的には、例えば、(i) RB 1 CC 1蛋白質を産生する能力を有する細胞を培養した場合と、 (ii) RB 1 CC 1蛋白質を 産生する能力を有する細胞と試験化合物の混合物を培養した場合との比較を行うこ とを特徴とする促進剤または阻害剤のスクリーニング方法を提供する。
[0027] 前記スクリーニング方法において、例えば、(i)と (ii)の場合における、 RB1CC1蛋白 質の発現量(具体的には RB1CC1蛋白質をコードする mRNA量、蛋白量)、 mTOR経 路における活性ィ匕された蛋白質 (具体的には mTOR、 S6Kおよび 4EBP1)の量、 TSC のュビキチネーシヨンの程度、 RB1蛋白質の発現量を測定して、比較する。 RB1CC1 蛋白質の発現量において変化があった場合は、試験化合物は RB1CC1蛋白質の発 現、または RB1CC1蛋白質をコードする遺伝子の発現を促進または抑制する化合物 であることがわかる。また、 mTOR経路における活性ィ匕された蛋白質量、 TSCのュビキ チネーシヨンの程度における変化があった場合は、試験化合物は RB1CC1による細 胞の大きさの調節を促進または抑制する化合物であることがわかる。さらに、 RB1蛋 白質の機能、及び、発現量に変化あった場合は、試験化合物は RB1CC1による細胞 周期の調節を促進または抑制する化合物であることがわ力る。
[0028] 前記試験化合物として、例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化 合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが挙げられ、こ れら化合物は新規ィ匕合物であってもよ 、し、公知の化合物であってもよ 、。
[0029] RB1CC1を産生する能力を有する細胞としては、 RB1CC1蛋白質をコードする DNA を含有するベクターで形質転換された宿主 (形質転換体)あるいは、 RB1CC1を内生 的に発現している HEK293細胞、 C2C12細胞、 Neuro2a細胞等が挙げられる。
[0030] 前記スクリーニング方法における、 RB1CC1の蛋白質量、 mTOR経路における活性 化された蛋白質量、 TSCのュビキチネーシヨンの程度の測定は、公知の方法で測定 することができる。例えば、 RB1CC1の蛋白質量は、 RB1CC1を認識する抗体を用い て、細胞抽出液中などに存在する RB1CC1を、ウェスタン解析、 ELISA法などの方法 またはそれに準じる方法に従い測定することができる。
[0031] また、前記スクリーニング方法における、 RB1CC1蛋白質をコードする遺伝子の発現 量は、公知の方法、例えば、ノーザンブロッテイングや Reverse transcription-polymer ase chain reaction (RT-PCR)、リアルタイム PCR解析システム(ABI社製、 TaqMan pol ymerase chain reaction)などの方法あるいはそれに準じる方法にしたがって測定する ことができる。
[0032] RNA物質による RB1CC1遺伝子発現阻害の場合、遺伝子発現は、その RB1CC1蛋 白質が容易にアツセィされるレポーターまたは薬物耐性遺伝子を用いることによって 簡便にアツセィされる。そのようなレポーター遺伝子には、ァセトヒドロキシ酸シンター ゼ(AHAS)、アルカリホスファターゼ (AP)、 b-ガラクトシダーゼ(LacZ)、 b-グルクロ- ダーゼ(GUS)、クロラムフエ-コールァセチルトランスフェラーゼ(CAT)、緑色蛍光タ ンパク質(GFP)、西洋ヮサビペルォキシダーゼ(HRP)、ルシフェラーゼ(Luc)、ノパリ ンシンターゼ(NOS)、オタトビンシンターゼ(OCS)、およびその誘導体が含まれ、アン ピシリン、ブレオマイシン、クロラムフエ-コール、ゲンタマイシン、ヒグロマイシン、カナ マイシン、リンコマイシン、メソトレキセート、ホスフィノスリシン、ピューロマイシン、およ びテトラサイクリンに対して抵抗性を付与する多数の選択マーカーが利用可能である
[0033] 前記スクリーニング方法において、例えば、上記 (ii)の場合における RB1CC1蛋白 質または RB1CC1蛋白質をコードする遺伝子の発現量を、上記 (i)の場合に比べて、 約 20%以上、好ましくは 30%以上、より好ましくは約 50%以上促進する試験化合物を 本発明のタンパク質遺伝子の発現を促進する化合物として選択することができる。
[0034] 本発明の方法は、神経および Zまたは筋肉細胞に作用することができ、未分化お よび分ィ匕したこれらの細胞をともに用いることができる。これらの細胞は培養細胞であ つても、非脊椎、脊椎動物内の細胞であってもよぐ具体的な脊椎動物の例として二 ヮトリ、げっ歯類、ゥサギ、ィヌ、ゥシ、ゥマ、ブタ、ヒッジ、霊長類、ヒトなどが挙げられ る。
[0035] RB1CC1は神経、筋、骨細胞等の増殖、成長、分化、および死において重要な役 割を果たしており、協調された組織構築、生体の分子機構に新規な見解を提供する ものである。 RB1CC1の欠損はこれらの機構の異常調節をもたらし、癌や神経筋疾患 などの様々な病的状態となる。
[0036] したがって、本発明の一態様は、本発明の方法により得られる RB1CC1による細胞 周期または細胞、組織の大きさの調節機能を促進もしくは抑制する化合物、 RB1CC1 蛋白質の発現を促進または抑制する化合物、および Zまたは RB1CC1蛋白質をコー ドする遺伝子の発現を促進または抑制する化合物を含有してなる医薬である。該医 薬は、例えば、神経筋疾患 (例、筋ジストロフィー、先天性ミオパチ一、炎症性筋疾患 、内分泌障害に伴うミオパチ一、甲状腺中毒性ミオパチ一、甲状腺中毒性周期性四 肢麻痺、甲状腺機能低下性ミオパチ一、ステロイドミオパチ一、周期性四肢麻痺、糖 原病、重症筋無力症、筋無力症候群、ミトコンドリア病、ミオグロビン尿症、遠位型ミオ パチ一、筋強直性ジストロフィーおよびダノン病などの筋原性疾患、脊髄性筋萎縮症 、球脊髄性筋萎縮症および筋萎縮性側索硬化症硬化症、及び、アルツハイマー病、 パーキンソン病、脊髄小脳変性症などの神経原性疾患等)、癌 (例、脾臓癌、肺癌、 腎臓癌、肝臓癌、非小細胞肺癌、卵巣癌、前立腺癌、胃癌、膀胱癌、乳癌、子宮頸 部癌、結腸癌、直腸癌等)の予防'治療剤として使用することができる。
[0037] 本発明のスクリーニング方法を用いて得られる化合物またはその塩を上述の治療' 予防剤として使用する場合、常套手段に従って製剤化することができる。例えば、錠 剤、カプセル剤、エリキシル剤、マイクロカプセル剤、無菌性溶液、懸濁液剤などとす ることができる。このようにして得られる製剤は安全で低毒性であるので、例えば、ヒト または温血動物(例えば、マウス、ラット、ゥサギ、ヒッジ、ブタ、ゥシ、ゥマ、トリ、ネコ、 ィヌ、サル、チンパンジーなど)に対して経口的にまたは非経口的に投与することが できる。該化合物またはその塩の投与量は、その作用、対象疾患、投与対象、投与 ルートなどにより適宜調整することができる。
[0038] また、本発明のさらなる一態様は、本発明の方法により得られる RB1CC1による細胞 周期または細胞、組織の大きさの調節機能を促進もしくは抑制する化合物、 RB1CC1 蛋白質の発現を促進または抑制する化合物、および Zまたは RB1CC1蛋白質をコー ドする遺伝子の発現を促進または抑制する化合物を含有してなる神経筋疾患 (例と して、筋ジストロフィー、先天性ミオパチ一、炎症性筋疾患、内分泌障害に伴うミオパ チー、甲状腺中毒性ミオパチ一、甲状腺中毒性周期性四肢麻痺、甲状腺機能低下 性ミオパチ一、ステロイドミオパチ一、周期性四肢麻痺、糖原病、重症筋無力症、筋 無力症候群、ミトコンドリア病、ミオグロビン尿症、遠位型ミオパチ一、筋強直性ジスト ロフィ一およびダノン病などの筋原性疾患、脊髄性筋萎縮症、球脊髄性筋萎縮症お よび筋萎縮性側索硬化症硬化症、及び、アルツハイマー病、パーキンソン病、脊髄 小脳変性症などの神経原性疾患等)および Zまたは癌 (例、脾臓癌、肺癌、腎臓癌、 肝臓癌、非小細胞肺癌、卵巣癌、前立腺癌、胃癌、膀胱癌、乳癌、子宮頸部癌、結 腸癌、直腸癌等)の診断剤である。
実施例
[0039] (抗体および試薬)
RB1CC1に対するラビット抗血清は、 RB1CC1の N末端内の第 1〜253番目のアミノ酸 を含む GST融合蛋白質をェピトープとして得た。また、他の抗 RB1CC1抗血清は Guan J丄.(コーネル大学、 NY14853)より得た。次を除く全ての抗体は CellSignaling社より 得た:抗 TSC2抗体(C-20)、抗 S6K抗体(C-18)および抗 Myc抗体(9E10) (SantaCruz Biotechnology社製);抗 HA抗体(12CA5) (Roche社製);抗 Flag抗体(M2)および抗 T ubulina抗体(DM 1A) (Sigma社製);抗 RB1抗体(G3- 245、 BDPharmingen社製)および 抗 GFP抗体(Clontech社製)。シクロへキシミド(cycloheximide)およびラタタマイシン( ラクタシスチン)は Calbiochem社製のものを用いた。
[0040] (細胞培養) HEK293, 293Tおよび C2C12、 Neuro2a細胞は 10%のゥシ胎仔血清(FBS)を含む Dul becco's modified Eagle'smedium (DMEM)中で 5%の CO存在下、 37°Cにて培養した。
2
C2C12細胞の筋分ィ匕にはゥマ血清 (2%)を導入した (非特許文献 3)。 Neur02a細胞の 神経分ィ匕には血清除去による分ィ匕誘導をおこなった (非特許文献 16)。各細胞を 25 mM HEPESおよび 10%透析 FBS (Invitrogen社製)を含有する貧栄養培地で培養し、 mTOR-S6K活性を評価した。 TSC1-/-細胞は TSClknockoutマウス由来の腎細胞癌 株を用いた (非特許文献 17)。 TSC1を安定発現している細胞は、 TSC1-/-細胞にヒト TSC1 cDNA(GenBank accession No. NM— 000368)をレトロウイルスベクターを用いて 導入、作製した。クローン化した TSC1レスキュー細胞はブラスチシジン(blasticidin) の存在下で選択した。 C2C12細胞、 Neuro2a細胞、 TSC1ヌル細胞およびレスキュー 細胞について、 RB1CC1遺伝子の付カ卩的修飾はレンチウィルス遺伝子導入系(Invitr ogen社製)を用いて行なった。
[0041] (プラスミド DNAおよび遺伝子導入)
RB1CC1 (GenBank accession no. NM_014781)の外部および内部欠失変異型は、 以下に示した適当な位置のプライマーを用いた PCRに基づく操作と制限酵素での消 化を組み合わせて作製した。全てのコンストラクトのヌクレオチドは DNAシークェンシ ングにより確認した。 RB1CC1変異型の dLZ、 dCC、 dNおよび FCCはそれぞれ第 1〜1 363番目(dLZ)、第 1〜823番目(dCC)、第 1〜555番目(dN)および第 864〜1594番目 (FCC)のアミノ酸を含む。トランスフエクシヨンは Lipofectamine2000 (Invitrogen社製) または FuGENE6 (Roche社製)を用いて製造元のプロトコールにしたがって行った。
[0042] RB1CC1についての RNAiのプラスミドベクターは文献(非特許文献 3)の方法にした がって調製した。 RB1CC1発現コントロールのためのスクランブル RNAi配列は 5'-CA ACTACCAAGAGCTTGCCTA-3' (配列番号 1)である。 RB1CC1を標的とする RB1C CI- RNAiの標的部位配列は RNAi- 1:5'- TGGGCTGGTGCTTTAGTCAAA- 3' (配列 番号 2)、 RNAi- 2: 5 '-CGGGATAAAGATTTGATAGAG-3 ' (配列番号 3)、 RNAi- 3:5 '-GGGAGATTTGGTACTCATCATC- 3' (配列番号 4) [マウスの場合、 5'- GGGAGA TTTGGTTCTC ATC ATC-3 ' (配列番号 5) ]である(RNAi-3以外はヒト、マウス共通の 部位を標的として 、る)。レンチウィルス RNAiベクターも非特許文献 3に同様の配列 にて調製した。選択マーカーは GFPを用いた。ウィルス導入 RNAiは製造元のプロトコ ールにしたがって調製した(Invitrogen社製)。ヒト TSClcDNAを pCX- bsrベクターにク ローニングし、 pCX-bsrおよび pCL-Amphoの組み合わせによりレトロウイルスベクター を調製し、遺伝子導入を行った (非特許文献 18)。
[0043] (ウェスタンプロット法および免疫沈降法)
ウェスタンプロット法に用いる細胞溶解液は文献 (非特許文献 19)の方法に従って 溶解した。免疫沈降に用いる細胞は ΙχΤΝΕバッファー(150mM NaCl、 5mM EDTA、 1 % NP- 40および ImM Na VOを含有する 20mM Tris- HC1、ならびにプロテアーゼイン
3 4
ヒビターの混合物)中で溶解した。溶解した材料を 15,000xgにて 10分間遠心した後、 上清を抗 HA (Roche社製)、抗 Mycまたは抗 Flag (Sigma社製)抗体で免疫化したビー ズとともに、 4°Cにて 3時間回転させながらインキュベートした。ビーズを 5回 ΙχΤΝΕバッ ファーで洗浄し、 SDSサンプルバッファ一中で煮沸し、共免疫沈降してきた蛋白分子 複合体を溶解した。蛋白分子複合体を SDS-PAGEで泳動分離し、ポリビニリデンジフ ルォライド (PVDF)膜にトランスファーし、前記の各抗体で蛋白分子複合体の解析を 行った。
[0044] (細胞の大きさおよび細胞周期解析)
細胞の大きさおよび細胞周期を解析するために、 FSCの分布および DNA量を Becto n Dickinson FACS Cal¾urを用いて GFP陽性の遺伝子導入細胞についてフローサイ トメトリーにより解析した。フローサイトメトリーは文献 (非特許文献 20)の如く CELLQU ESTソフトウェア(BectonDickinson社)を用いて解析した。
[0045] (インビボにおける RB1CC1のレンチウィルスノックダウン)
RBlCCl-RNAiを含むレンチウィルスを C57BL6マウスの左右の後肢腓腹筋に導入 した。スクランブル RNAiおよび RBlCCl-RNAiを含むレンチウィルス lxl04TU(Titer U nits; Hela細胞換算)を脚の左右にそれぞれ導入し、 4週間後に筋肉を組織学的に評 価し 7こ。
[0046] (組織学および免疫組織化学)
胎芽内で発達中の神経、筋細胞における RB1CC1を評価するために、妊娠 4〜8週 間のヒト胎児流産組織、及び、胎生 11-18日のマウス胎芽組織を用い、組織学的およ び免疫組織化学標本を作製した (非特許文献 3、 6および 7)。
[0047] in situ hybridization法は文献 6, 7に記載の方法により行なった。また、免疫組織染 色は文献 3, 6, 7に記載の方法により行なった。
[0048] マウス骨格筋における RB1CC1ノックダウンの効果は、 GFPで免疫染色し、 RNAi導 入筋線維を標識した後にノックダウンおよびコントロール筋繊維の平均断面積 (CSA) を比較することにより評価した。 GFPを発現している筋線維における CSAの大きさは、 NIHImage 1.63ソフトウェアを用 ヽて画像解析を行!、評価した。断面筋繊維当たりの平 均核数もまた比較した。各筋繊維における核数を正確に算出するため、筋肉基底膜 を GFPで免疫染色した後、過ヨウ素酸 Zシッフ(PAS)染色を行!、可視化した。
[0049] [実施例 1]
脊髄神経における RB1CC1の発現を in situ hybridization法および免疫組織学的染 色法により解析した。
[0050] In situ hybridization法
脊髄神経における RB1CC1 mRNAの存在量を RBlCCl-antisense probeを用いた in situ hybridization法により解析した結果を図 1 Aに示す。図 1 Aにおいて矢印は成熟 および肥大した神経を示す。 RB1CC1の mRNAは増殖性または移動性神経よりも、よ り成熟および拡大した神経に豊富に発現していた。
[0051] 免疫糸且織学的染色法
抗 RB1CC1抗血清により胎芽内の発達中脊髄神経及び骨格筋の免疫組織染色を 行なった。図 1Bに示すように、増殖性神経芽細胞における RB1CC1の発現量は低か つたが、図 1Cに示す如ぐ拡大、より成熟した神経細胞において RB1CC1の含有量 は増加した。ここでデータは示していないが成獣脊髄神経標本においても、同様の 結果が得られた。これらの結果から、成獣および胎生脊髄神経における RB1CC1の 発現量は、非増殖性の成熟した大型の神経、筋細胞においてより顕著であり、成熟 により誘導される細胞の肥大に付随して上昇することがわ力つた。また、骨格筋では 図 1Dに示すように RB1CC1発現量は、筋管形成の後に肥大する骨格筋細胞におい て著明に増加していた。
[0052] これらの結果、更に RB1CC1は筋骨格の分ィ匕に重要であるという前記した知見から 、 RB1CC1は神経筋組織の分ィ匕に関連する細胞の肥大に関与していることが示唆さ れた。
[0053] [実施例 2]
RB1CC1特異的ノックダウンによる mTOR— S6K活性、 RB1発現、および細胞の大き さ、細胞周期への影響を解析した。
[0054] HEK293細胞における、 mTOR経路蛋白質活性への RB1CC1特異的ノックダウンのよ る影響
各々、 RB1CC1に対する標的部位の独立した 3タイプの RNAi (RNA- 1、 2および 3)を 用いて RB1CC1の knockdownを行った。各 RNAiが標的とする RB1CC1配列は RNAi- 1: 5 ' -TGGGCTGGTGCTTTAGTC AAA-3 ' (配列番号 2) , RNAi- 2: 5し CGGGATAAAG ATTTGATAGAG- 3' (配列番号 3) , RNAi- 3:5'- GGGAGATTTGGTACTCATCATC- 3' (配列番号 4)である。これらにより RB1CC1を特異的にノックダウンし、 mTOR経路 における蛋白質の活性への影響を解析した。蛋白質の活性は、活性型 mTOR、 S6K および 4EBP1、すなわち、それぞれのリン酸化型をウェスタン.ブロット法により定量し て解析した。 1x10°個の HEK293細胞に 4mgの各 RNAiプラスミドベクターをトランスフエ クシヨンし、 5%CO存在下 37°Cにて 48時間培養後細胞を溶解した。その後、以下に示
2
す活性型の各リン酸化蛋白に特異的な抗体を用いてウェスタンブロッテイングを行う ことにより mTOR経路分子の活性度評価を行った。その結果、図 2Aに示すように RB1 CC1のノックダウンにより、活性型 mTOR、 S6Kおよび 4EBP1、すなわち、それぞれのリ ン酸化型 Ser2448 (mTOR)、 Thr389 (S6K)および Thr37/46 (4EBP1)の各分子の量が 減少した。さらに、 RB1CC1のノックダウンにより、 RB1の発現が減少した。空ベクター またはスクランブル 'ベクターを HEK293細胞にトランスフエクシヨンしても影響はなか つた o
[0055] HEK293細胞における、細胞の大きさへの RB1CC1特異的ノックダウンによる影響
2タイプの RNAi (RNA-lおよび RNA-2)により RBCC1を各々独立してノックダウンし、 細胞の大きさへの影響を解析した。 4mgの各 RNAiプラスミドベクターを lxlO6個の HEK 293細胞に Lipofectamine2000を用いてトランスフエクシヨンし、 5% CO存在下 37°Cに
2
て 48時間培養した後、フローサイトメトリーにより解析した。その結果、図 2B上に示す ように RNAiによる RB1CC1のノックダウンにより細胞の大きさが減少した。さらに、図 2 B下に示すように RB1CC1のノックダウンにより G0-G1期の細胞数が減少した。
[0056] RB1CC1ノックダウン効果の濃度依存性
mTOR経路における蛋白質のリン酸ィ匕に対する RNAiの影響が濃度依存的であるか 否かを調べた。 lxlO6個の HEK293細胞に 0、 1、 4および 7mgの RNAi-Ιプラスミドベクタ 一を Lipofectamine2000を用いてトランスフエクシヨンし、 5% CO存在下 37°Cにて 48時
2
間培養後細胞を溶解した。その後、前記方法により mTOR経路における蛋白質 (mT OR、 S6Kおよび 4EBP-1)のリン酸ィ匕型蛋白質を定量した。その結果、図 2Cに示すよ うに各リン酸ィ匕型蛋白質量は段階的に減少し、 RB1CC1のノックダウン効果は濃度依 存的であった。
[0057] これらの結果から、 RB1CC1は、 mTORおよび RB1経路を各々介して細胞の大きさ および細胞周期を調節していることが示された。
[0058] [実施例 3]
RB1CC1のノックダウンによる C2C12筋芽細胞、 Neuro2a神経芽細胞の大きさ、数お よび細胞周期への影響を調べた。 lxlO6個の C2C12筋芽細胞に RNAiレンチウィルス ベクターをトランスフエクシヨンし、 7-10日後 RNAi導入細胞を回収、フローサイトメトリ 一およびウェスタンプロット法により解析した。増殖または分ィ匕は、 C2C12筋芽細胞に ついては、各々 10%FBSまたは 2%のゥマ血清を含む培地において誘導した。 Neuro2a 神経芽細胞の分ィ匕誘導は血清除去によりこれを行った。
[0059] C2C12筋芽細胞、 Neuro2a神経芽細胞における、細胞の大きさへの RB1CC1特異的 ノックダウン〖こよる影響
フローサイトメトリーによる解析の結果、図 3A左に示すように RB1CC1のノックダウン による細胞の大きさの減少は、分ィ匕誘導した C2C12筋細胞においてより顕著であつ たが、指数関数的に増殖する細胞では顕著ではな力つた。また、図 3A右に示すよう に、 RB1CC1のノックダウンにより、分ィ匕した細胞集団において最も豊富である G1分 画の著明な減少がみられた。 Neuro2a神経芽細胞にぉ ヽても同様の結果であった。
[0060] C2C12筋芽細胞における、 mTOR経路の蛋白質活性への RB1CC1特異的ノックダウ ンによる影響 また、ウェスタンブロットにより実施例 2と同様の方法で S6Kの下流ターゲットである S 6蛋白質のリン酸化型、および RB1蛋白質の発現量を解析した。その結果、図 3Bに 示すように、 RB1CC1のノックダウンによりリン酸化型 S6蛋白質および RB1蛋白質の発 現量が減少していた。細胞の大きさの減少はリン酸ィ匕型 S6蛋白質の減少によるもの であると考えられる。また、 RB1CC1のノックダウンによる RB1蛋白質量の減少は、 G1 期の分ィ匕細胞数の減少に平行している。このことから、 RB1の発現の減少により細胞 周期が正常に抑制されないことがわ力つた。
[0061] [実施例 4]
mTOR経路を介する細胞の大きさの調節に対する RB1CC1の寄与を解析した。 Met および Cysを除去した培地における飢餓状態、低濃度 (2.5mM)グルコースを含むま たは全くグルコースを含まな 、培地で培養した HEK293細胞にお!、て、外来性 RB1C C1の過剰発現による影響を、 25mMグルコースを含む完全培地で培養した場合と比 較した。 lxlO6個の HEK293細胞に RB1CC1をコードするプラスミド DNA(0、 0.5、 1、 3ま たは 5mg)を Lipofectamine2000を用いて飢餓条件下でトランスフエクシヨンした。その 後 5% CO存在下 37°Cにて 24時間培養し、解析に用いた。
2
[0062] 飢餓条件下で培養した細胞における、 RB1CC1の S6K活性への影響
ウェスタンブロットによりリン酸ィ匕型 S6Kの蛋白質量を定量し、外来性 RB1CC1の過 剰発現による S6Kの活性への影響を調べた。その結果、図 4Aに示すように、上記飢 餓条件下で培養した HEK293細胞では通常 S6Kの活性が抑制される力 外来性 RB1 CC1の発現量依存的に S6K活性が亢進されることがわ力つた。また、 RB1CC1発現量 の上昇は TSC1 (ハマルチン)発現の減少および RB1発現の増加と平行していた。
[0063] 飢餓条件下で培養した細胞における、 RB1CC1の細胞の大きさおよび細胞周期への 影響
フローサイトメトリーにより細胞の大きさおよび細胞周期を解析した結果、図 4Bに示 すように RB1CC1により細胞周期は有意な影響を受けな力つた力 低濃度グルコース 条件下で縮小した細胞サイズは RB1CC1発現亢進によりその大きさを回復した。
[0064] これらの結果は、 RB1CC1は細胞の大きさおよび細胞周期を各々 TSC- mTORおよ び RB1経路を介して調節して 、る、 t 、う知見を支持して 、た。 [0065] [実施例 5]
RBICCIおよび TSC- mTOR経路間の分子カスケードを評価するため、 RB1CC1およ び TSC間の相互作用を解析した。
[0066] RB1CC1を過剰発現させた細胞における、 TSC1-2の導入による S6K活性への影響
RB1CC1を過剰発現させた HEK293細胞に TSC 1-2を段階的に導入し、 S6K活性の 変化を解析した。 lxlO6個の HEK293細胞に 2mgの RB1CC1発現ベクターをトランスフ ェクシヨンし、 RB1CC1の発現亢進により S6Kを活性化した。この HEK293細胞(lxlO6 個)に 0、 1、 3および 5mgの TSC1-2発現ベクターをトランスフエクシヨンし、ウェスタンブ ロット法によりリン酸ィ匕型 S6K (Thr389-S6K)を検出した。その結果、図 5A (左から 1〜 4番目のレーン)に示すように、 RB1CC1の発現亢進により増加していた活性ィ匕型 S6K (Thr389-S6K)が TSC1-2濃度依存的に減少した。これに対し、 lxlO6個の HEK293細 胞に 2mgの TSC1-2発現ベクターをトランスフエクシヨンし、 TSCを過剰発現させた後、 この HEK293細胞(lxlO6個)に 0、 1、 3および 5mgの RB1CC1発現ベクターをトランスフ ェクシヨンし、 5% CO存在下 37°Cにて 48時間培養後、ウェスタンブロット法によりリン酸
2
化型 S6K(Thr389-S6K)を検出した。その結果、図 5A (左から 6〜9番目のレーン)に 示すように、 TSCを過剰発現させた細胞において、 RB1CC1の導入によって S6Kは活 性化されなかった。これらの結果から、 RB1CC1は TSCの上流で機能していることが 示された。
[0067] RB1CC1および TSC間の相互作用
RB1CC1と TSCが相互作用しているか否かを免疫沈降およびウェスタンブロット法に より解析した。 lxlO6個の HEK293T細胞に、 2mgの Flag- RB1CC1発現ベクター(+)ま たはコントロールベクター(-)、並びに 2mgの Myc- TSC1および HA- TSC2発現べクタ 一を、 FuGeneを用いてコトランスフエクシヨンし、 5% CO存在下 37°Cにて 48時間培養
2
した細胞を解析に用いた。等分量の溶解液、抗 Flag抗体または抗 Myc抗体による免 疫沈降物をウェスタンプロット法により解析した。その結果、図 5Bに示すように RB1C C1は TSC1および 2と相互作用していることがわかった。尚、データは示してないが、 酵母 2ハイブリッドアツセィによっても RB1CC1および TSC1間の結合が確認された。
[0068] 内在性 TSC1および RB1CC1の局在 内在性の TSC1および RB1CC1の局在を解析した。 HEK293MSR細胞において、抗 TSC1抗体および抗 RB1CC1抗体を免疫細胞化学的に反応させた。 lxlO4個の HEK2 93MSR細胞を 1%中性緩衝ホルマリンにて固定後、各抗体をそれぞれ Alexa- Fluor555 (赤)、 488 (緑)を用いて標識し、標識各抗体を 4°Cで一晩反応させた。 1%中性緩衝ホ ルマリンによる後固定、グリセロール包埋の後、共焦点レーザー走査顕微鏡 (LSM51 0 META: Carl Zeiss社製)で解析した。その結果、図 5Cに示すように内在性の TSC1 および RB1CC1の一部は免疫細胞化学的に共局在化していた。
[0069] これらの結果から、 RB1CC1は TSC1と相互作用し、 TSC1の直接の上流で機能して いることがわかった。
[0070] [実施例 6]
過剰な RB1CC1発現状態は TSC1蛋白質量と負に相関しており(実施例 4)、また RB 1CC1は TSC1と相互作用している(実施例 5)という知見から、 RB1CC1はュビキチン —プロテアソーム経路を介して TSC1を分解しているという可能性が示唆された。よつ て、この可能性について検討した。
[0071] TSC1のュビキチン化に対する RB1CC1の影響
RB1CC1が TSC1のュビキチン化に作用しているか否かを調べるため、 TSC1、ュビ キチンおよび RB1CC1の発現ベクターを HEK293細胞に外来的に導入し、免疫沈降 および免疫プロット法により解析した。 lxlO6個の HEK293細胞に 0または lmgの Myc-T SC1、 HA-ュビキチンおよび Zまたは Hag-RBICCIの発現ベクターをトランスフエクシ ヨンし、 5% CO存在下 37°Cにて 48時間培養後解析に用いた。細胞溶解液を抗 HA(
2
ュビキチン)抗体で免疫沈降し、沈降蛋白分子を SDSbufferにて再可溶ィ匕後、抗 Myc (TSC1)抗体で免疫プロットを行い、評価した。図 6Aに示すように、 RB1CC1の過剰 発現により TSC1のュビキチンィ匕が促進された。また、当該促進は RNAiによる RB1CC 1のノックダウンによって抑制された。抗 Myc (TSC1)抗体により免疫沈降し、坑 HA (ュ ビキチン)抗体で免疫プロットした場合も同様の結果を示した。
[0072] TSC 1のュビキチン化に対する各種変異型 RB 1CC1の影響
各種の変異型 RB 1 CC 1が TSC 1のュビキチン化に作用しているか否かを調べるため 、 TSC1、ュビキチンおよび野生型、変異型の RB1CC1 (wt、 dLZ、 dCC、 dNおよび FC C)の発現ベクターを HEK293細胞に外来的に導入し、免疫沈降および免疫プロット 法により解析した。 lxlO6個の HEK293細胞に 0または lmgの TSC1、ュビキチン、野生 型または変異型 RBlCCl (dLZ、 dCC、 dNおよび FCC)の発現ベクターをトランスフエク シヨンし、 5% CO存在下 37°Cにて 48時間培養後解析に用いた。細胞溶解液を抗 Myc
2
(TSC1)抗体で免疫沈降し、抗 HA (ュビキチン)抗体で免疫プロットした。その結果、 図 6Bに示すように、野生型 RB1CC1 (wt)は TSC1のュビキチン化を促進するのに対し 、変異型 RB1CC1 (dLZ、 dCC、 dNおよび FCC)は促進しなかった。
[0073] TSC1の安定性に対する RB1CC1の影響
RB1CC1が TSC1の安定性に影響を与えるか否かを解析するため、コントロールおよ び過剰の RB1CC1の存在下で、細胞をシクロへキシミドに暴露させ、蛋白合成を停止 させた後に、 TSC1蛋白質量の減少をウェスタンプロット法により評価した。更にプロテ ァソーム阻害剤であるラクタシスチンを添加もしくは非添加した状態で、同様に TSC1 の蛋白質量の減少を評価した。
[0074] プロテアソーム阻害剤であるラクタシスチン(10mM)の存在下または非存在下で、 1 xlO6個の HEK293細胞に 6mgの野生型 RB1CC1、変異型 RB1CC1 (dCC)、 RB1CC1特 異的 RNAほたはスクランブル RNAiを、 Lipofectamine2000を用いて各々トランスフエク シヨンし、 lOmg/mlのシクロへキシミドに暴露させた。その後、 0、 2、 5および 8時間後に ウェスタンブロット法により内在性 TSC 1の蛋白量を評価した。
[0075] その結果、図 6Cに示すように、 RB1CC1が豊富な場合に TSC1はより急速に分解さ れた。過剰発現させた RB1CC1の存在下またはコントロール条件下、どちらの場合も ラクタシスチン (プロテアソーム阻害剤)により TSC1の分解は阻害された。また、 RB1C C1特異的 RNAiによっても TSC1の分解は阻害された。スクランブル RNAiおよび変異 型 RB1CC1 (dCC)をトランスフエクシヨンした場合は、コントロールと同様の速度で TSC 1が分解された。これらの結果から、 RB1CC1はュビキチン—プロテアソーム経路を介 して、 TSC1の速 、代謝回転を誘導して!/、ることが示された。
[0076] RB1CC1による細胞の大きさの調節における TSC1の役割
RB1CC1が細胞の大きさを調節するためには、 TSC1が必須か否かを調べた。 TSC1 ヌルマウス腎細胞癌細胞および TSC 1 レスキュー細胞において、 RB1CC1をノックダ ゥンした。レンチウィルスベクターにより RNAiを導入した。 RNAi導入に伴い GFP蛍光 を示した細胞について、フローサイトメトリーにより解析した。その結果、図 6D左に示 すように、 RB1CC1による細胞の大きさの調節には TSC1が必須であることが明らかと なった。
[0077] RB1CC1による細胞周期の調節における TSC1の役割
TSC- mTOR経路が RB1CC1の介在する細胞周期の調節に関与しているか否かを 調べた。前記と同じ条件で TSC1ヌルマウス腎細胞癌細胞および TSC1-レスキュー細 胞において、 RB1CC1をノックダウンし、 RB1CC1のノックダウンが細胞周期に与える 影響をフローサイトメトリーにより解析した。その結果、図 6D右に示すように、いずれ の細胞株においても RB1CC1のノックダウンにより、 G1期細胞数の減少および S期へ の異常な細胞周期の進行が生じた力 TSC1の有無による著明な差は見られなかつ た。
[0078] 前記解析の結果、 RB1CC1による細胞の大きさの調節は TSC1の状態に依存するが 、細胞周期の調節は TSC1の状態とは独立していることがわ力つた。この結果から、 R B1CC1は細胞周期および細胞の大きさに対しては各々独立して作用しており、 TSC1 は RB1CC1による細胞の大きさの調節に必須であることがわ力つた。
[0079] [実施例 7]
RB1CC1のインビボにおける筋肉細胞および組織への影響
RB1CC1が細胞または組織の大きさを維持している力否かをインビボで解析した。
[0080] RBlCCl-RNAiを含むレンチウィルスを C57BL6マウスの左右の後肢腓腹筋に導入 した。スクランブル RNAiおよび RBlCCl-RNAiを含むレンチウィルス lxl04TU(Titer U nits; Hela細胞換算)を脚の左右にそれぞれ導入し、 4週間後に筋肉を組織学的に評 価した。レンチウィルス RB 1 CC 1-RNAiにより処理したマウス筋線維は GFPを発現する 力 連続切片を作成し、これを抗 GFP抗体(図 7A)および抗 RB1CC1抗体(図 7B)で それぞれ免疫染色し、ノックダウンの効果を確認した。その結果、図 7Aおよび Bに示 すように、 RB1CC1のノックダウンにより RB1CC1の量が減少した。
[0081] さらに、スクランブル RNAi、 RB1CC1 RNAi- 1、 RNAi- 2を導入した筋原線維(GFPに より標識されており、抗 GFP抗体による免疫組織学染色にて DABによる茶褐色で標 識される)の大きさを組織学的に測定した。ここで、腓腹筋断面積 (CSA)の大きさは N IHImage softwareにより評価した。その結果、図 7Cおよび Dに示すように、 GFPを発 現している RNAi導入マウス腓腹筋断面積 (CSA)は減少し、筋肉線維の萎縮が生じ た。この結果から、筋原繊維 CSAは RB1CC1ノックダウンにより減少したことがわかつ た。また、図 7E〖こ示すよう〖こ、スクランブル RNAiと RBlCClRNAiの場合において、 GF P陽性の筋線維横断面当りの筋核数に有意な違いはな力つた。
[0082] これらの結果から、 RB1CC1はインビボでも筋肉細胞および組織の大きさを調節し ていることがわかった。
産業上の利用可能性
[0083] 上記に述べたように、本発明の方法により得られる RB1CC1による細胞周期または 細胞、組織の大きさの調節機能を促進もしくは抑制する化合物、 RB1CC1のポリぺプ チドまたは蛋白質の発現を促進または抑制する化合物、 RB1CC1蛋白質をコードす る遺伝子の発現を促進または抑制する化合物を含んでなる医薬は、神経、筋疾患、 癌などの予防'治療剤、診断剤として用いることができる。更には、これら化合物、医 薬は、各種動物の神経機能、肉質の維持、改善等にも使用しうる。

Claims

請求の範囲
[I] RB1CC1の発現量を減少または増加させることにより細胞、組織の大きさおよび/ま たは細胞周期を調節する方法。
[2] 細胞、組織の大きさの調節が RB1CC1と TSCとの相互作用の抑制または促進による ものである請求の範囲第 1項に記載の方法。
[3] 細胞、組織の大きさの調節が RB1CC1による TSCのュビキチンィ匕分解の抑制または 促進による請求の範囲第 2項に記載の方法。
[4] RB1CC1による細胞周期の調節が RB1CC1により誘導される RB1機能の抑制または 促進によるものである請求の範囲第 1項に記載の方法。
[5] RB1CC1をコードする DNA又は RNAポリヌクレオチドの転写又は翻訳に干渉する分 子に RB1CC1を発現している細胞を曝露させ、該細胞における RB1CC1をコードする
DNA又は RNAポリヌクレオチドの転写又は翻訳に干渉することにより、 RB1CC1蛋白 質の発現量を減少もしくは促進させることによる請求の範囲第 1項に記載の方法。
[6] RB1CC1をコードする DNA又は RNAポリヌクレオチドの転写又は翻訳に干渉する分 子力 RNAi物質である請求の範囲第 5項に記載の方法。
[7] RB1CC1を発現している細胞、組織と試験化合物を用いることを特徴とする、 RB1C
C1による細胞、組織の大きさおよび Zまたは細胞周期の調節機能を促進もしくは抑 制する化合物のスクリーニング方法。
[8] RB1CC1を発現している細胞、組織と試験化合物を用いることを特徴とする、 RB1C
C1蛋白質の発現を促進または抑制する化合物のスクリーニング方法。
[9] RB1CC1を発現している細胞、組織と試験化合物を用いることを特徴とする、 RB1C
C 1蛋白質をコードする遺伝子の発現を促進または抑制する化合物のスクリーニング 方法。
[10] 細胞、組織が神経および Zまたは筋肉、骨細胞及び組織である請求の範囲第 1〜 8項の 、ずれか 1項に記載の方法。
[II] 請求の範囲第 7項に記載の方法により得られる RB1CC1による細胞周期または細胞 、組織の大きさの調節機能を促進もしくは抑制する化合物、請求の範囲第 8項に記 載の方法により得られる RB1CC1蛋白質の発現を促進または抑制する化合物、およ び Zまたは請求の範囲第 9項に記載の方法により得られる RB1CC1蛋白質をコード する遺伝子の発現を促進または抑制する化合物を含有してなる医薬。
[12] 神経、筋、骨疾患および Zまたは癌の予防'治療剤である請求の範囲第 11項に記 載の医薬。
[13] 請求の範囲第 7項に記載の方法により得られる RB1CC1による細胞周期または細胞 、組織の大きさの調節機能を促進もしくは抑制する化合物、請求の範囲第 8項に記 載の方法により得られる RB1CC1蛋白質の発現を促進または抑制する化合物、およ び Zまたは請求の範囲第 9項に記載の方法により得られる RB1CC1蛋白質をコード する遺伝子の発現を促進または抑制する化合物を含有してなる神経、筋、骨疾患お よび Zまたは癌の診断剤。
[14] 細胞、組織が神経および Zまたは筋肉、骨由来である請求の範囲第 13項に記載 の診断剤。
[15] 細胞、組織が培養細胞、または非脊椎もしくは脊椎動物内の細胞、組織である請 求の範囲第 11〜14項のいずれか 1項に記載の医薬または診断剤。
[16] 脊椎動物が、ヒト、ニヮトリ、げっ歯類、ゥサギ、ィヌ、ゥシ、ブタ、ヒッジまたは霊長類 である請求の範囲第 15項に記載の医薬または診断剤。
[17] 神経、筋および Zまたは骨の組織構築の維持および Zまたは改善に用いるための 請求の範囲第 11〜16項のいずれか 1項に記載の医薬または診断剤。
PCT/JP2006/323249 2005-12-21 2006-11-21 細胞の大きさおよび/または細胞周期を調節する方法 WO2007072645A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007551016A JPWO2007072645A1 (ja) 2005-12-21 2006-11-21 細胞の大きさおよび/または細胞周期を調節する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005368311 2005-12-21
JP2005-368311 2005-12-21

Publications (1)

Publication Number Publication Date
WO2007072645A1 true WO2007072645A1 (ja) 2007-06-28

Family

ID=38188428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323249 WO2007072645A1 (ja) 2005-12-21 2006-11-21 細胞の大きさおよび/または細胞周期を調節する方法

Country Status (2)

Country Link
JP (1) JPWO2007072645A1 (ja)
WO (1) WO2007072645A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192527A (ja) * 2008-01-15 2009-08-27 Norihiro Chano 癌マーカー及び癌細胞の検査方法
JP2017009329A (ja) * 2015-06-17 2017-01-12 花王株式会社 運動機能の判定用マーカー

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004329151A (ja) * 2003-05-09 2004-11-25 Norihiro Chano 細胞・組織の機能評価方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004329151A (ja) * 2003-05-09 2004-11-25 Norihiro Chano 細胞・組織の機能評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KONTANI K. ET AL.: "RB1CC1 suppresses cell cycle progression through RB1 expression in human neoplastic cells", INT. J. MOL. MED., vol. 12, no. 5, 2003, pages 767 - 769, XP003014275 *
SANO N. ET AL.: "RB1CC1: RB1, mTOR Ryo Keiro eno Koken to Saibo Zoshoku Size no Chosei soshite sono Seiriteki Igi", THE MOLECULAR BIOLOGYY SOCIETY OF JAPAN NENKAI KOEN YOSHISHU, 25 November 2005 (2005-11-25), pages 44, W1B-9, XP003014276 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192527A (ja) * 2008-01-15 2009-08-27 Norihiro Chano 癌マーカー及び癌細胞の検査方法
JP2017009329A (ja) * 2015-06-17 2017-01-12 花王株式会社 運動機能の判定用マーカー

Also Published As

Publication number Publication date
JPWO2007072645A1 (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
Greenberg et al. Single amino acid change underlies distinct roles of H2A. Z subtypes in human syndrome
Kaur et al. let-7 MicroRNA-mediated regulation of Shh signaling and the gene regulatory network is essential for retina regeneration
Toffolo et al. Phosphorylation of neuronal Lysine‐Specific Demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2
Kumar P et al. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex
Xu et al. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis
US8933043B2 (en) Methods for regulation of p53 translation and function
WO2013059606A1 (en) Compounds and methods for the treatment of muscular disease, and related screening methods
Huang et al. Natural antisense transcript TPM1-AS regulates the alternative splicing of tropomyosin I through an interaction with RNA-binding motif protein 4
Sidor et al. Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability
JPWO2010008069A1 (ja) 細胞増殖阻害剤
JP2010531662A (ja) P53のモジュレータ及び癌の標的であるtrim24(tif−1a)
Espinoza-Lewis et al. Poly (C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts
JP2008511321A (ja) 幹細胞/前駆細胞の多分化能の維持方法
Park et al. Constitutive RelA activation mediated by Nkx3. 2 controls chondrocyte viability
CA2487427A1 (en) Methods and compositions for treating neoplasia relating to hnrnp a1 and a2 nucleic acid molecules
WO2022054801A1 (ja) siRNAおよびその用途
WO2007072645A1 (ja) 細胞の大きさおよび/または細胞周期を調節する方法
JP2015515485A (ja) Rnaリガーゼ複合体メンバーとしてのアーキアーゼ
Clemente-Olivo et al. Early adipogenesis is repressed through the newly identified FHL2-NFAT5 signaling complex
AU2020268878A1 (en) Compositions and methods for the treatment of leukodystrophy and whole animal and cellular models for identifying efficacious agents for treatment of the same
EP1878793B1 (en) Novel protein and preventive/remedy for neurodegenerative disease such as polyglutamine disease using the same
de la Peña Avalos et al. The protein phosphatase EYA4 promotes homologous recombination (HR) through dephosphorylation of tyrosine 315 on RAD51
WO2023171587A1 (ja) 変異FUSの発現を選択的に抑制する修飾siRNA
US8852939B2 (en) Use of Vgll3 activity modulator for the modulation of adipogenesis
Al Fuhaid Expression of EZH1-Polycomb Repressive Complex 2 and MALAT1 lncRNA and their Combined Role in Epigenetic Adaptive Response

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551016

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833095

Country of ref document: EP

Kind code of ref document: A1