WO2007069692A1 - 細胞内ミトコンドリアの分極モニタリング - Google Patents

細胞内ミトコンドリアの分極モニタリング Download PDF

Info

Publication number
WO2007069692A1
WO2007069692A1 PCT/JP2006/324960 JP2006324960W WO2007069692A1 WO 2007069692 A1 WO2007069692 A1 WO 2007069692A1 JP 2006324960 W JP2006324960 W JP 2006324960W WO 2007069692 A1 WO2007069692 A1 WO 2007069692A1
Authority
WO
WIPO (PCT)
Prior art keywords
change
surface plasmon
polarization state
plasmon resonance
cells
Prior art date
Application number
PCT/JP2006/324960
Other languages
English (en)
French (fr)
Inventor
Toshihiro Ona
Atsushi Kosaihira
Original Assignee
Kyushu University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University, National University Corporation filed Critical Kyushu University, National University Corporation
Priority to JP2007550225A priority Critical patent/JP5486768B2/ja
Priority to US12/086,394 priority patent/US20110003321A1/en
Priority to EP06834714A priority patent/EP1961824A4/en
Priority to CN2006800520438A priority patent/CN101336297B/zh
Publication of WO2007069692A1 publication Critical patent/WO2007069692A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5035Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on sub-cellular localization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a method for measuring the mitochondrial polarization state in an unlabeled and real-time manner using a surface plasmon resonance (SPR) sensor.
  • This method is useful for monitoring biological phenomena involving mitochondrial polarization and drug development. For example, it can be used for screening cancer drugs, fat burning substances, drugs for diabetes, monitoring cell activity including aging, and quantifying the effects of drugs.
  • Mitochondria is one of the organelles existing in all eukaryotic organisms including animals and plants, and plays an important role in energy metabolism that is indispensable for maintaining the life of living organisms. Therefore, mitochondrial activity is closely related to the state of cells in cell division, cell death and aging processes, and in various lesions such as cancer, diabetes, and obesity. The change of the polarization state of is mentioned. As an example, it is known that the degree of mitochondrial polarization decreases in aging cells, and conversely, the degree of polarization is high in cells with high cell division activity (Biological Signals and Receptors 2001; 10: 176-18 8). ing.
  • a fluorescent dye that responds to an electric potential when introduced into the cell, it aggregates in the mitochondria with a high electric potential, the fluorescence wavelength changes, and the fluorescence intensity changes according to the change in the electric potential.
  • a common method is to detect the change with a fluorescence microscope, flow cytometry, or spectrophotometer.
  • a surface plasmon resonance (SPR) device is a device that can measure a change in resonance angle using a surface plasmon resonance phenomenon. This change in resonance angle depends on the change in dielectric constant in the vicinity of the gold film surface of the sensor unit.
  • an object is fixed on a gold film and a ligand for the target is provided.
  • Each biomolecule has a specific dielectric constant, but when a bond between a target immobilized on a gold film and a ligand occurs, a complex is formed and the dielectric constant changes. Therefore, by following the dielectric constant of the metal film surface, it is possible to obtain information on the presence / absence of binding between biomolecules, the amount of binding, and the binding speed.
  • biomolecules such as proteins, but also living cells can be measured.
  • Japanese Patent Application Laid-Open No. 2002-85089 discloses a method for evaluating the physiological activity of external stimuli on living cells using a surface plasmon resonance apparatus.
  • This method is characterized in that the cellular activity of an external stimulus is evaluated using as an index the secondary signal that appears following the primary signal, not just the signal (primary signal) during the period when the cell is stimulated. ing. More specifically, when a ligand binds to a living cell fixed in the SPR device, the baseline increases in proportion to the amount of the ligand, and the power to stabilize (primary signal).
  • the ligand is physiologically active on the cell.
  • the initial signal is followed by a baseline rise or a periodic fluctuation of the baseline (secondary signal) that is clearly different from the simple binding signal. Since such secondary signals appear only when a ligand that has been confirmed to be bioactive is added, it reflects any biological reaction caused by the binding of the ligand to living cells. Therefore, according to this method, it is said that it is possible to accurately evaluate the physiological activity of external stimuli on cells. In this method, it is preferable to measure the signal that appears after the external stimulus is removed as the secondary signal.
  • Examples include (1) the reaction between CTLL-2 cells (floating cells) and IL-2, (2) the reaction between Papilla cells (mesenchymal cells) and bFGF, (3) mast cells (mast cells)
  • CTLL-2 cells floating cells
  • IL-2 IL-2
  • Papilla cells meenchymal cells
  • bFGF bFGF
  • mast cells mast cells
  • Japanese Patent Laid-Open No. 2002-85089 discloses that a specific phenomenon apparently caused by examination in an existing reaction system is reflected in a secondary signal in a surface plasmon resonance apparatus. It is.
  • Japanese Patent Application Laid-Open No. 2005-17081 discloses a method for screening an anticancer agent using an SPR device.
  • a target reagent is allowed to act on cancer cells to measure surface plasmon resonance, and the surface plasmon resonance change rate in a time zone in which the change rate of surface plasmon resonance with time is stable is obtained and obtained.
  • the degree of anticancer action of the target reagent is evaluated.
  • the slope of the curve obtained from the surface plasmon resonance response for 5 minutes between 2700 and 3000 seconds after the start of measurement (reagent administration is at 600 seconds after the start of measurement) is shown for taercetin having antiproliferative activity.
  • the survival rate for the reagent was determined by trypan blue staining 48 hours after the administration of the reagent, and the correlation was found between the two, so by measuring the rate of change of the surface plasmon resonance response in a predetermined short time, We conclude that we can quantitatively evaluate cell viability, or anticancer activity.
  • the present inventors have intensively studied methods for monitoring the response of living cells to various external stimuli. Then, by using a surface plasmon resonance angle device, it was found that a change in the polarization state of mitochondria can be detected, and the present invention has been completed.
  • the present invention provides the following inventions:
  • a method for detecting changes in the mitochondrial polarization state in a living cell, using a surface plasmon resonance device to detect changes in the surface plasmon resonance angle resulting from changes in the mitochondrial polarization state of the living cell comprising the steps of:
  • a method for detecting a change in the mitochondrial polarization state in a living cell comprising: providing a substance to the living cell; and
  • a change in the mitochondrial polarization state can be detected as a change in the surface plasmon resonance angle. Furthermore, it has been clarified that the rate of change of the mitochondrial polarization state can be controlled by controlling the rate of pH change during measurement.
  • FIG. 1 is a schematic diagram of an apparatus used in Examples.
  • FIG. 2 is a graph showing the measurement results of changes in the mitochondrial polarization state by the lipid metabolizing active substance Fenofibrate using an SPR sensor.
  • FIG. 3 is a graph showing the measurement results of changes in the mitochondrial polarization state by the lipid metabolizing active substance Fenofibrate using fluorescence microscopy.
  • FIG. 4 is a graph showing the correlation between the SPR signal time change rate (35 to 45 minutes after reagent administration) and the fluorescence intensity time change rate (35 to 45 minutes after reagent administration) in Example 2. .
  • FIG. 5 is a graph showing the measurement results of mitochondrial depolarization change when an apoptosis inducer was administered using an SPR sensor.
  • FIG. 6 is a graph showing the measurement results of changes in mitochondrial depolarization when an apoptosis-inducing substance is administered, as observed by a fluorescence microscope.
  • FIG. 7 is a graph showing the correlation between the SPR signal time change rate (35-40 minutes after reagent administration) and the fluorescence intensity time change rate (35-40 minutes after reagent administration).
  • FIG. 8 is a graph showing changes in mitochondrial depolarization caused by administration of an apoptosis inducer (Quercetin) during inhibition of mitochondrial depolarization (fluorescence microscope observation).
  • FIG. 9 is a graph showing changes in mitochondrial depolarization caused by administration of an apoptosis inducer (trans-resveratrol) during inhibition of mitochondrial depolarization (observation with a fluorescence microscope).
  • FIG. 10 is a graph showing the results of changes in mitochondrial depolarization caused by administration of an apoptosis inducer (Quercetin) during inhibition of mitochondrial depolarization (SPR sensor).
  • FIG. 11 shows the results of changes in mitochondrial depolarization caused by administration of an apoptosis-inducing substance (trans-resveratol) during inhibition of mitochondrial depolarization (SPR sensor).
  • FIG. 12 is a graph showing cell viability 48 hours after administration of an apoptosis-inducing substance (quercetin, trans-resveratrol) alone or in combination (cell number measurement).
  • an apoptosis-inducing substance quercetin, trans-resveratrol
  • FIG. 13 is a graph showing changes in SPR resonance angle with time when an apoptosis inducer (quercetin, trans-resveratrol) alone or in combination is administered (SPR sensor).
  • an apoptosis inducer quercetin, trans-resveratrol
  • FIG. 14 is a graph showing the correlation between the rate of change of SPR resonance angle and cell survival rate when an apoptosis inducer (quercetin, trans-resveratrol) alone or in combination is administered.
  • FIG. 15 is a graph showing cell viability 48 hours after siRNA administration (cell number measurement).
  • FIG. 16 is a graph showing the SPR resonance angle change with time when siRNA was administered (SPR sensor 1).
  • FIG. 17 is a graph showing the correlation between the rate of change in SPR resonance angle and cell survival rate when siRNA is administered.
  • FIG. 18 is a graph showing the SPR resonance angle change with time under each CO concentration condition (
  • Figure 19 shows the phase of CO concentration and the rate of change in mitochondrial membrane potential at 35-40 minutes.
  • FIG. 20 is a graph showing the correlation between the rate of change of pH and the rate of change of mitochondrial membrane potential in 35 to 40 minutes.
  • the "live cell” in the method of the present invention is not particularly limited as long as it is a live cell having mitochondria.
  • normal cells, cancer cells, fertilized eggs, animal and plant clonal cells, ES cells may be used.
  • Stem cells and the like which may be cultured cells or cells derived from yarn and tissue.
  • the living cells to be used can be appropriately selected depending on the purpose of detecting changes in the mitochondrial polarization state in the living cells.
  • cancer cells and cancer stem cells are used for evaluation of anticancer agents
  • hepatocytes are used for lipid metabolism
  • Fertilized eggs and ES cells can be used for monitoring divhis
  • plant cells can be used for evaluating plant reactions, but are not limited thereto.
  • the step of detecting a change in the surface plasmon resonance angle due to a change in the mitochondrial polarization state means that the change in the surface plasmon resonance angle is substantially caused only by a change in the mitochondrial polarization state. It can be implemented as a process of detecting the change in the time zone.
  • the ability to change the surface plasmon resonance angle includes substances in living cells (for example, fenofibrate, uercetin, trans-res veratrol, Herceptin, etc. In the case of donating) (one or more) without limitation, usually after 20 minutes from the time of donating the substance More preferably, after 30 minutes, more preferably after 35 minutes.
  • the time zone in which the change in the surface plasmon resonance angle is substantially caused only by the change in the mitochondrial polarization state is that of the mitochondrial polarization state such as siRNA that induces apoptosis in living cells.
  • the mitochondrial polarization state such as siRNA that induces apoptosis in living cells.
  • the "method for evaluating the effect of one or more substances on the polarization state of mitochondria in a living cell" in the present invention is roughly divided into two cases.
  • One is a method of measuring the change in the surface plasmon resonance angle when a substance with unknown function is administered to a cell, and evaluating whether the reaction force also induces a change in the mitochondrial polarization state.
  • It is a method that evaluates to what extent the change is induced in another cell, using a substance that is already known to be capable of inducing changes in the mitochondrial polarization state in cells that have already used fluorescence techniques.
  • the conventional technology may see reactions other than changes in the mitochondrial polarization state.
  • reactions other than changes in the mitochondrial polarization state are not substantially detected.
  • the method of the present invention uses the slope of the graph (surface plasmon resonance angle change per hour, that is, the rate of change) when the signal of the surface plasmon resonance sensor force is recorded over time. It can also be used to quantify the effect of one or more on changes in the mitochondrial polarization state.
  • the change in the surface plasmon resonance angle is a time zone that is substantially caused only by the change in the polarization state of the mitochondria, and the change in the detected surface plasmon resonance angle is constant, that is, the surface plasmon resonance. It is possible to specify a time zone in which the slope of the graph when the signal of the resonance sensor force is recorded over time is almost linear, and use the slope of the graph in that time zone.
  • the length of such a specified time zone is at least 1 minute, preferably 3 minutes or more, more preferably 5 minutes or more, and even more preferably 10 minutes or more.
  • the rate of change of the surface plasmon resonance angle in that time zone is ⁇ 10% of the rate of change of the surface plasmon resonance angle in a time zone that includes the time zone and is 10% or longer. It is recommended to use the rate of change of the time zone that is within.
  • one feature of the present invention is that changes in the polarization state of mitochondria in living cells can be detected in a shorter time (within 1 hour) than conventional methods. If the change in the polarization state of mitochondria is considered to be detected late, a person skilled in the art can appropriately determine the detection time zone with reference to the description in this specification. Will
  • the rate of change of the surface plasmon resonance angle is obtained in the same manner for a substance having a degree of influence on the mitochondrial polarization state, and the rate of change of the target substance Can be compared. Furthermore, by comparing with a calibration curve prepared in the same manner, it is possible to quantitatively analyze the degree of influence of the target substance on the mitochondrial polarization state.
  • Examples of substances that can change the polarization state of mitochondria in living cells include: (a) lipid metabolism promoting substance (fat burning substance); (b) cell apoptosis inducer; (c) siRNA; (d (E) carcinogens; (£) substances that affect cell division activity; (g) endocrine disruptors; (h) toxic substances to cells; etc. It is possible to evaluate not only the effect of single-agent administration but also the effect of multi-drug administration.
  • a substance is not limited to a compound, and may be, for example, siRNA involved in apoptosis induction.
  • siRNA When evaluating changes in the mitochondrial polarization state in living cells by siRNA, refer to, for example, the method described in the Examples below, and the effect of siRNA on the change in mitochondrial polarization state after siRNA administration The time lag until it appears can be considered. The time lag is considered to be affected by the type of cell and the type of reaction of the target cell.
  • a surface plasmon resonance apparatus is used.
  • Surface plasmon resonance is a phenomenon that occurs when a metal surface plasmon is resonantly excited using an evanescent wave obtained by light such as laser light.
  • the evanescent wave can be generated on the opposite side of the reflecting surface by causing total reflection in the prism.
  • the metal layer is present on the prism, the evanescent wave passes through the metal layer and passes through the metal.
  • the surface plasmon on the opposite side is resonantly excited.
  • Factors that determine the conditions that cause resonance include the dielectric constant of the substance that forms the interface with the metal layer.
  • the intermolecular interaction is accompanied by changes in the dielectric constant, etc., and this determines the resonance conditions.
  • the condition of the evanescent wave that can induce resonance also changes, by detecting the change in the condition of the evanescent wave that induces resonance, it is possible to know the change in the dielectric constant, and thus the bonding between molecules. .
  • the condition of the evanescent wave changes depending on the incident angle ⁇ of the incident laser beam.
  • the incident angle and the reflection angle are defined as an angle with respect to the normal line of the equal substrate.
  • This change in reflected light intensity is detected by a detector, and the reflected light intensity is attenuated.
  • the surface plasmon resonance can be measured by a method that uses light diffraction using a diffraction grating as well as a method that totally reflects light using a prism. Based on the method for obtaining the resonance angle, as shown in the following formula, the dielectric constant of the measurement object corresponding to ⁇ s defines the resonance angle ⁇ as follows.
  • the measurement of the change of the surface plasmon resonance with respect to time can be obtained as a change of time of the surface plasmon resonance angle or a change of reflected light intensity at the surface plasmon resonance angle in the initial state.
  • white light can be used as a surface plasmon resonance excitation light source, and the detection light can be dispersed to detect the change in reflected light intensity at the wavelength at which the resonance phenomenon occurs or at a fixed wavelength. It is.
  • an existing surface plasmon resonance apparatus can be used.
  • JP 2005-17081 A may be used.
  • a change in the mitochondrial polarization state can be detected by the method of the present invention.
  • the rate of change obtained by the present invention and the fluorescence method of the prior art fluorescence dyes that respond to potential, such as cationic carbocyanine dyes, are introduced into cells and aggregated in mitochondria with high potential to change the fluorescence wavelength.
  • fluorescence dyes that respond to potential such as cationic carbocyanine dyes
  • the change rate of the mitochondrial polarization state obtained by the present invention in cells treated with an apoptosis-inducing substance and the conventional method of living There is a correlation between the cell viability calculated by the cell count method.
  • the method of the present invention makes it possible to more easily evaluate the action of the apoptosis-inducing substance than the conventional method for measuring the number of living cells.
  • the method of the present invention uses living cells, and the extracellular solution of the living cells may be any solution in which cells can survive during the measurement, for example, a cell culture medium. Forces including, but not limited to, buffer solution, physiological saline and sucrose solution.
  • the extracellular solution is a cell culture medium.
  • the method of the present invention can control the rate of change of the mitochondrial polarization state (mitochondrial membrane potential) in living cells by controlling the pH of the extracellular solution of living cells during detection. More specifically, the rate of change of the mitochondrial polarization state in living cells can be increased by changing the pH of the extracellular solution higher or lower. In this case, the faster the pH change rate, Increases the rate of change of the polarization state.
  • the rate of change in pH is the rate of change in pH per unit time, and can be calculated from the pH value of the extracellular solution before and after measurement and the measurement time. More specifically, it can be calculated as described in Example 5 described later.
  • this is an experimental system for measuring changes in the mitochondrial polarization state, with a CO concentration of 5%.
  • the change in the surface plasmon resonance angle is 2 hours to reach a time zone that is substantially caused only by the change in the mitochondrial polarization state.
  • this time can be shortened to about 30 minutes by controlling the pH of the extracellular solution.
  • the rate of change of the pH of the extracellular solution should be at least 0.005 / min, more preferably at least ⁇ . ⁇ / min, and even more preferably at least 0.02 / min. The rate of change must be within a range that allows viable cells to survive.
  • the solution of different pH is gradually changed to a solution of different pH. It can be performed by a method such as adding to the extracellular solution or controlling the CO concentration outside the extracellular solution. More specific
  • the method can refer to the embodiment of the present invention.
  • the method for detecting a change in the mitochondrial polarization state in a living cell of the present invention is a property of a living cell associated with mitochondrial polarization, such as mitotic activity, senescence state or malignant (cancer cell force normal cell Can be used to evaluate force).
  • mitochondrial polarization such as mitotic activity, senescence state or malignant (cancer cell force normal cell Can be used to evaluate force).
  • the degree of the desired activity or action is judged by comparing the values obtained by the surface plasmon resonance method between cells with the same conditions (cell system, culture medium system, optical conditions, etc.). That's right.
  • the method of the present invention is used to evaluate effects related to mitochondrial polarization, such as fat burning action, apoptosis inducing action, toxicity or endocrine disrupting action, on living cells of one or more substances, Can be.
  • the mitochondrial polarization state which has low mitotic activity, is also related to this, so the ability to monitor the mitochondrial polarization state can also be monitored. It can also be applied to the screening of drugs that activate cells and suppress aging. (See Biological Signals and Receptors 2001; 10: 176-188) Screening for fat burning substances (anti-obesity drugs):
  • Cancerous cells are known to have a markedly different mitochondrial polarization state compared to normal cells. This can be applied to distinguish normal cells from cancer cells. (See Cancer Research 2005; 65 (21): 9861- 9867)
  • RNAi RNA interference
  • RNA interference is a phenomenon in which double-stranded RNA introduced into a cell degrades mRNA having a complementary base sequence, and this phenomenon is used to artificially create double-stranded RNA.
  • the expression of any gene can be suppressed.
  • Examples of such RNAi include RNAi involved in cell apoptosis, cell division activity, aging, obesity, diabetes related to obesity, stroke, arteriosclerosis, brown adipocytes, hepatocytes, etc. It is not limited to these. (For RNAi: see Nature 2001; 411: 494-498) Environmental monitoring:
  • Endocrine disruptors such as bisphenol A, known as environmental hormones, have been shown to induce proliferation and apoptosis in specific cells depending on the type and concentration, and cell division and apoptosis in the aforementioned cell proliferation. Can be detected by monitoring the polarization state of mitochondria, so that it can be used to detect endocrine disruptors in the environment and evaluate their effects. (See Archives of Toxicology 2000; 74 (2): 99-105 and Journal of Biological Chemistry 2005; 280 (7): 6181-6196)
  • the method for detecting a change in the mitochondrial polarization state in a living cell of the present invention evaluates the division activity, senescence state, or malignancy (whether it is a cancer cell or a normal cell) of a candidate living cell group. Can be used for screening.
  • the method of the present invention can also be used for screening candidate substances (for example, pharmaceutical candidate compounds for treating diseases or conditions related to mitochondrial polarization). You can.
  • candidate substances for example, pharmaceutical candidate compounds for treating diseases or conditions related to mitochondrial polarization. You can.
  • screening methods specifically include:
  • Providing a candidate substance to a living cell detecting a change in a surface plasmon resonance angle resulting from a change in a mitochondrial polarization state after supplying the substance to a living cell;
  • the change in the surface plasmon resonance angle is a time zone that is substantially only due to the change in the polarization state of the mitochondria (for example, after 20 minutes when the substance is supplied), and the detected surface plasmon resonance angle
  • the change rate of the surface plasmon resonance angle in the time zone is specified by specifying the time zone where the change is constant (ie, the slope of the graph when the signal from the surface plasmon resonance sensor is recorded over time) A process for determining;
  • a step of selecting candidate substances based on the obtained surface plasmon resonance angle change rate is obtained.
  • diseases or conditions related to mitochondrial polarization include diseases or conditions related to cell division activity, aging, obesity or obesity related diabetes, stroke or arteriosclerosis, brown adipocytes or Mention may be made of diseases or conditions related to mitochondrial polarization in hepatocytes, diseases or conditions related to cancer and apoptosis.
  • the measurement of SPR signal and observation with a fluorescence microscope were carried out with an apparatus having a fluorescence microscope on the upper part of a living cell as a measurement object and an SPR sensor on the lower part.
  • a schematic diagram is shown in Fig. 1.
  • the SPR sensor uses an optical system with a kretschmann arrangement, the prism is a BK7 (refractive index 1.51) light source is a semiconductor laser (wavelength 670 output 3 mW, beam diameter lmm), and the detector is a silicon photodiode detector.
  • a vessel was used. Measurements should be performed in air (0: 20% C unless otherwise specified.
  • Axioplan 2 (Carl Zeiss) was used for the microscope, a 75W xenon lamp was used as the light source, and NTE / CCD Detector MicroMAX-512BFT (Princeton Instruments) was used as the detector.
  • the acquisition and analysis of images is performed using the fluorescence analysis software MetaFluor Imaging System Ver.4.6. 5 (Universal Imaging).
  • HepG-2 Human liver cancer cells HepG-2 were used as test cells. 37 ° C, CO 5% concentration, non-essential
  • a liquid medium EMEM containing 100 ⁇ of amino acid, penicillin 50 units / mL, streptomycin 50 ⁇ g / mL, and FBS 10% (v / v) was used as a complete medium and used for the experiment after pre-culture in the complete medium.
  • fenofibrate (2- [4- (4-Chlorobenzoyl) phenoxy]-2-methylpropanoic acid isopropyl ester
  • DMSO dimethyl sulfoxide
  • DMSO dimethyl sulfoxide
  • test cells are pre-cultured, the petri dish is peeled off, the cell concentration is adjusted to 2 X 10 6 cells / mL in complete medium, 100 L of the cell suspension is dropped onto the substrate, and the sample is incubated at 37 ° C, CO Under 5% concentration 1
  • test cells are also precultured, and the petri dish is peeled off.
  • the cell concentration is adjusted to 2 X 10 6 cells / mL in complete medium. Under 5% concentration 1
  • the medium on the substrate was replaced with EMEM in order to remove the medium containing JC-1 iodide, and then placed in the apparatus measurement unit, filled with 5 mL of EMEM, and measured at 37 ° C.
  • the fluorescence intensity was observed at an observation magnification of 630 times.
  • a filter set of 515-565 nm transmission and a 575-640 nm transmission filter are used to transmit 485 ⁇ 20 through the excitation filter.
  • Luther set was used.
  • Ten minutes after the start of measurement EMEM was removed and the medium was replaced with medium containing Fenofibrate, and the measurement was continued.
  • a medium containing DMSO 0.1% (v / v) was used as a control.
  • the cells were cultured in a liquid medium EMEM containing 100 ⁇ 100 non-essential amino acids, penicillin 50 units / mL, streptomycin 50 ⁇ g / mL, and FBS 10% (v / v).
  • Quercetin and trans-resveratrol were used as apoptosis inducers, and rutin, a non-apoptosis inducer, was used as a negative control.
  • 1000-fold solutions (10, 25, 50, and 100 mM) were prepared using dimethyl sulfoxide (DMSO) as a solvent, and used as stocks.
  • DMSO dimethyl sulfoxide
  • Herceptin a commercially available anticancer agent, was used as an apoptosis inducer, and each solution was diluted 1000-fold with physiological saline for final concentrations of 1, 10, and 100 g / mL. Prepared as solvent and used as stock.
  • the cell-adhered substrate was placed on the prism of the SPR sensor via matching oil (refractive index 1.51), and the substrate was filled with 5 mL of EMEM, and SPR signal measurement was started. 10 minutes after the start of measurement, remove EMEM and remove 5 mL of new EMEM containing 100 M quercetin or tran s-resveratroUrtin ⁇ Herceptin (DMSO used as a solvent for the phenol component 0.1% (v / Measurement was continued for 50 minutes after exchanging with 5 mL of EMEM containing 0.1% DMSO only as control. As a result, as shown in FIG. 5, a change (+) in the SPR signal due to depolarization of mitochondria by an apoptosis inducer was observed particularly after 35 minutes after drug administration. [0051] 2. Fluorescent reagent. Monitoring of mitochondrial polarization by TC-l
  • the liquid medium and the cell suspension was adjusted to an appropriate cell density 2xl0 6 cells / mL in liquid medium. After the preparation, 100 L of the cell suspension was dropped onto the substrate and cultured at 37 ° C. and CO concentration of 5% for 20 hours.
  • the substrate was rinsed with 5 mL of PBS to remove the cells that did not adhere to the medium.
  • a fluorescent indicator for measuring the polarization state of mitochondria drop EMEM 100 L (containing DMSO at a final concentration of 0.1%) containing 5 / z M of JC-1 iodide in a CO incubator (37 ° C, C
  • a reagent that inhibits mitochondrial depolarization when apoptosis is induced in cancer cells by quercetin and trans-resveratrol Confirmation was performed using.
  • Test cells of mitochondria MIA PaCa-2 should be placed at 37 ° C and 5% CO concentration, as described above. And cultured on the substrate for 20 hours.
  • Be ⁇ xL BH4 (4-23) (Human), Cell-Permeable (hereinafter referred to as TAT-BH4) that binds to the mitochondrial membrane as an apoptosis inhibitor and inhibits mitochondrial membrane depolarization and cytochrome c release was used. Remove the liquid medium on the substrate 15 minutes before the start of measurement and replace with 100 ⁇ L of EMEM containing 100 nM inhibitor, 37 ° C, CO 5
  • Incubation was carried out at a concentration of 15 minutes for 15 minutes to introduce the inhibitor into the cells.
  • replacement with 100 ⁇ L of EMEM containing an equal amount of PBS ( ⁇ ) used as a solvent for the inhibitor as a control was performed.
  • the cell-adhered substrate was placed in the instrument measurement section, and the substrate was filled with 5 mL of pestle, and fluorescence intensity measurement and SPR signal measurement were started in the same manner as described above.
  • the instrument used the SPR sensor (angle adjustment type) described above and measured the SPR resonance angle at a temperature of 37.0 ° C.
  • the substrate was placed on the prism on the SPR sensor, the substrate was filled with 5 mL of EMEM, and measurement was started.
  • 5 mL of new EMEM containing either quercetin 25 ⁇ M, trans-resv eratrol 25 ⁇ M, or quercetin 25 ⁇ M and trans-resveratrol 25 ⁇ M (final concentration of DMSO used as solvent for phenol component)
  • the sample was replaced with 5 mL of EMEM containing only DMSO 0.1% (v / v) as a control, and measurement of the change in SPR resonance angle was continued for another 50 minutes.
  • Fig. 12 shows the survival rate when the cell count force was calculated and the control was 100. Under the conditions where only uercetin or trans-resveratrol was administered, the survival rates were 76.1% and 56.2%, respectively. Under the conditions where both were administered together, the cancer cell survival rate was 17.8%. An anticancer effect greater than the sum of the effects (equivalent to a survival rate of 32.3%) was obtained. From this, the synergistic effect of the anticancer effect by the combined use of quercetin and trans-resveratrol was confirmed.
  • FIG. 13 shows the results of measurement of changes in SPR resonance angle with time when quercetin and trans-resveratrol were each administered alone or in combination.
  • the SPR resonance angle change was about 0.05 ° at 50 minutes after administration.
  • a change in resonance angle of 0.2 ° or more was observed after administration.
  • the change in SPR resonance angle obtained by administration of quercetin and trans-resveratrol is a change in mitochondrial membrane potential (depolarization) during apoptosis induction on cancer cells. This example shows that even when two types of substances are administered in combination, a change in mitochondrial membrane potential corresponding to the synergistic effect of apoptosis induction on cancer cells can be detected.
  • the change in SPR resonance angle is 35 to 40 minutes after reagent administration.
  • the force was also calculated as SPR resonance angle change rate (deg / sec). This value correlated with the survival rate obtained by the standard method (Fig. 14).
  • RNA interference (RNAi) by small interfering RNA (siRNA) was evaluated.
  • F ⁇ , LF et al. Bcl ⁇ 2 induced apoptosis and increase d sensitivity to 5—fluorouracil and HCPT in HepG2 cells. J. Drug Targeting 14, 21—2 6 (2006).
  • siRNA was evaluated by counting the number of cells that had decreased due to apoptosis as a result of Be-2 knockdown.
  • Human pancreatic cancer cells MIA PaCa -2 were used as test cells.
  • enes Dev. 17 (7) 832-837 (2003) 50 nM, 100 nM or siRNA
  • the transfection reagent used for transfection was replaced with 1 mL of EMEM containing the same concentration as when siRNA was introduced, and then cultivated (Cell Signaling Technology SignalSilence Be 2 siRNA Kit (Human Specific) was used according to the protocol of the kit). Forty-eight hours after the medium change, after trypan blue staining, the number of cells was counted with a hemocytometer, and the number of control cells was 100 under each condition for comparison.
  • the instrument used an angle-adjustable SPR sensor and measured the SPR resonance angle at a temperature of 37.0 ° C.
  • the change in resonance angle was measured for 50 minutes.
  • Figure 15 shows the results of the standard method (survival rate when the cell count capacity is also calculated and control is 100). Under control conditions, Bcl-2 siRNA 50nM was administered under the conditions of 80% and 100 nM with a survival rate of about 70%, and it was confirmed that the number of cells decreased due to induction of apoptosis by siRNA.
  • Fig. 16 shows the results of changes in SPR resonance angle with time after 1 hour of administration of each concentration of siRNA or transfection reagent alone. Under any condition, a stable change in SPR resonance angle was observed from around 15 minutes after the start of measurement, and an increase in the SPR resonance angle indicating a change in mitochondrial membrane potential (depolarization) was observed when Be ⁇ 2 siRNA 50nM or 100nM was administered. Was confirmed. From this, it was shown that apoptosis induced by knocking down Be ⁇ 2, an apoptosis inhibitor, with RNAi, can be detected as a change in mitochondrial membrane potential.
  • the cells were cultured in a liquid medium EMEM containing 100 ⁇ non-essential amino acids, penicillin 50 units / mL, streptomycin g / mL, and FBS 10% (v / v).
  • Trans-resveratrol an apoptosis-inducing reagent, was used to induce changes in mitochondrial membrane potential. Changes in pH during measurement Control of CO concentration and zero concentration is performed by adjusting the flow rate of various gases with a flow meter
  • the cell-adhered substrate was placed on the prism of the SPR sensor via matching oil (refractive index 1.51), and the substrate was filled with 5 mL of EMEM, and SPR signal measurement was started. Ten minutes after the start of measurement, EMEM was removed and replaced with 5 mL of new EMEM containing 100 M trans-resveratol, and measurement was continued for 50 minutes. The measurement was performed under Air (atmosphere. 0: 20%, CO: 0.035%), CO 2.5%, or CO 5.0%.
  • Air atmosphere. 0: 20%, CO: 0.035%), CO 2.5%, or CO 5.0%.
  • the CO concentration can be adjusted by mixing the air (atmosphere) and CO gas supplied by the CO cylinder with a flow meter.
  • the liquid medium and the cell suspension was adjusted to an appropriate cell density 2xl0 6 cells / mL in liquid medium.
  • 100 L of the cell suspension was dropped onto the substrate and cultured at 37 ° C. and CO concentration of 5% for 20 hours. After 20 hours, rinse the substrate with 5 mL of PBS. The cells that did not adhere to the medium were removed.
  • 100 L of EMEM containing 5 M of JC-1 iodide (containing DMSO at a final concentration of 0.1%) is added dropwise to the CO incubator (37 ° C, CO concentration of 5%). ) For 30 minutes. 30 minutes later
  • Air (under air. 0: 20%, CO: 0.035%)> CO 2.5%> CO 5.0%
  • the change in pH is a linear change.
  • the change rate of the pH of the medium it is about pH 0.022 / min in the atmosphere, about pH 0.01 / min under 2.5% CO, and about pHO under 5% CO.
  • Fig. 20 shows the relationship between the rate of change of pH and the rate of change of mitochondrial membrane potential in 35 to 40 minutes.
  • Figure 20 shows that the rate of change in pH correlates with the rate of change in mitochondrial membrane potential. In general, this is an experimental system for measuring the membrane potential of mitochondria.
  • the rate conditions (present in Examples 5 pH0.004 / min), the changes in mitochondrial membrane potential is a state that is not accelerated, mitochondrial membrane potential change is accelerated by no more P H change rate conditions It will be.
  • the relationship between the rate of change in pH and the rate of change in mitochondrial membrane potential varies somewhat depending on the cell type and the type of stimulation, but the faster the rate of pH change, the faster the rate of change in mitochondrial membrane potential. It is considered preferable for detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 生細胞内のミトコンドリアの分極状態の変化を検出する方法を課題とする。  表面プラズモン共鳴装置を用いて、該生細胞のミトコンドリアの分極状態の変化に起因する表面プラズモン共鳴角の変化を検出する。または、生細胞へ一または複数の物質を供与し、ミトコンドリアの分極状態の変化に起因する表面プラズモン共鳴角の変化を検出する。ミトコンドリアの分極状態の変化に起因する表面プラズモン共鳴角の変化を検出する工程は、表面プラズモン共鳴角の変化がミトコンドリアの分極状態の変化にのみに起因する時間帯におけるその変化を検出する工程とすることができ、好ましくは、物質を供与した時から20分経過以後、より好ましくは30分経過以後、さらに好ましくは35分経過以後の時間帯のその変化を検出する工程である。                                                                                 

Description

明 細 書
細胞内ミトコンドリアの分極モニタリング
技術分野
[0001] 本発明は、表面プラズモン共鳴 (SPR)センサーを用い、ミトコンドリアの分極状態を 非標識、リアルタイムで測定する方法に関するものである。この方法は、ミトコンドリア の分極状態が関与する生体現象のモニタリングおよび薬剤開発に有用である。例え ば、抗がん剤、脂肪燃焼物質、糖尿病のための薬剤のスクリーニング、老化を含む細 胞活性のモニタリング、薬剤の効果の定量等に用いることができる。
背景技術
[0002] ミトコンドリアは動植物を含め真核細胞生物全般に存在する細胞内小器官の一つ であり、生体の生命維持に不可欠なエネルギー代謝にぉ 、て重要な働きを担って ヽ る。このため、細胞分裂時、細胞死滅時および老化の過程や、がん、糖尿病、肥満な どの各種病変において、ミトコンドリアの活動は細胞の状態と密接に関連しており、そ の一つの指標としてミトコンドリアの分極状態の変化が挙げられる。例として挙げると、 老化した細胞ではミトコンドリアの分極程度が低下することや、逆に細胞分裂活性の 高い細胞では分極程度が高いこと(Biological Signals and Receptors 2001;10:176-18 8)が知られている。また、がん細胞に対して抗がん剤を投与した際、細胞が毒物に暴 露された際、脂肪細胞が脂肪を燃焼する際など様々な細胞応答に際してミトコンドリ ァの分極状態は様々に変化する(抗がん: Apoptosis 2005;10:687-705、毒物: Hepat ology 2000;31;1141- 1152および Toxicological Sciences 2005;86(2):436- 443、脂質代 謝: Biophysical journal 2002;82(1):1673 part2および FEBS Letters 1984;170(1):181- 185)。このため、ミトコンドリアの分極状態のモニターは各種の病状の診断や薬剤の 開発にぉ 、て有効な指標の一つとして用いられて 、る。
[0003] 細胞内ミトコンドリアの分極状態のモニタリングは、電位に応答する蛍光色素を細胞 内に導入すると、電位の高いミトコンドリアで凝集し、蛍光波長が変化し、また電位の 変化に応じて蛍光強度が変化する様子を、蛍光顕微鏡、フローサイトメトリーまたは 分光光度計などにより検出する方法が一般的である。 [0004] 一方、表面プラズモン(surface plasmon resonance; SPR)装置は、表面プラズモン 共鳴現象を利用し、共鳴角度変化を測定することができる装置である。この共鳴角度 変化は、センサ部の金膜表面近傍における誘電率の変化に依存する。 SPR装置にお いては、対象を金膜上に固定し、それに対するリガンドを供する。生体分子はそれぞ れ固有の誘電率を有しているが、金膜上に固定化された対象とリガンドとの結合が生 じた場合は複合体が形成され、誘電率が変化する。したがって金属膜表面の誘電率 を追うことにより、生体分子間の結合の有無、結合量、結合速度等に関する情報を得 ることがでさる。
[0005] SPR装置においては、タンパク質等の生体分子のみならず、生細胞を測定対象とす ることちでさる。
[0006] 例えば、特開 2002-85089号公報は、表面プラズモン共鳴装置を用いて生細胞に対 する外部刺激の生理活性を評価する方法を開示する。この方法においては、細胞が 刺激されて 、る期間のシグナル(1次シグナル)だけではなぐ 1次シグナルに引き続 き出現する 2次シグナルを指標として外部刺激の細胞活性を評価することを特徴とし ている。より具体的には、 SPR装置内に固定した生細胞にリガンドが結合すると、その 量に比例してベースラインが上昇し、安定ィ匕する(1次シグナル)力 リガンドが細胞に 対して生理活性を持つ場合、初期シグナルに続いて、単なる結合シグナルとは明ら かに異なるベースラインの上昇あるいはベースラインの周期的な変動(2次シグナル) が観測される。このような 2次シグナルは生理活性が確認されて ヽるリガンドを添加し たときにのみ現れることから、リガンドが生細胞へ結合することにより引き起こされる何 らかの生体反応を反映していると考えられ、したがつてこの方法によれば、細胞に対 する外部刺激の生理活性を正確に評価することが可能であるとしている。そして、こ の方法においては、 2次シグナルとして、外部刺激が除去された後に出現するシグナ ルを測定することを好ましい態様としている。実施例としては、 (1) CTLL-2細胞 (浮遊 細胞)と IL-2との反応、 (2) Papilla細胞(間葉系系細胞)と bFGFの反応、(3) mast cell ( 肥満細胞)の抗原に対する反応が検討されている。そして (1)については、 IL-2で刺 激されている数分間に得られる 1次シグナル、およびその後に出現する 2次シグナル を得て、 CTLL-2細胞とは本来結合しな 、試薬を添加したときには 2次シグナルが観 測されなかったことから、細胞が IL-2と結合したときに生じる何らかの現象を SPR装置 が捉えたと結論し; (2)については、 bFGFとリン酸ィ匕阻害剤(SU4984)を注入した場合 に、注入 10分後にシグナルがプラトーになった一方で、 bFGFのみを注入した場合に はシグナルは上昇しつづけたことから、 bFGFの結合によって引き起こされるシグナル 伝達がリン酸ィ匕阻害剤によって抑えられたことを反映していると結論し;さらに (3)に ついては、 IgEで感作している mast cellでは特異的な抗原抗体反応による活性化を 反映した強いシグナル (2次シグナル)が観測される力 未感作の mast cellでは特徴 的な変化は認められず、また、 IgEには結合するが細胞は活性ィ匕しない DNP-lysineを 添カ卩した場合には、 DNP-lysineの結合に伴う 1次シグナルは観察された力 2次シグ ナルは認められな力つたことから、この方法により、細胞の活性化を迅速に測定可能 であると結論している。
[0007] 特開 2002-85089号公報は、既存の反応系での検討により生じることが明らかな特 定の現象が、表面プラズモン共鳴装置では 2次シグナルに反映されて 、ることを開示 するものである。
[0008] また、特開 2005-17081号公報は、 SPR装置を用いた抗がん作用物質のスクリーニン グ方法を開示する。この方法は、がん細胞に目的とする試薬を作用させて表面ブラ ズモン共鳴を測定し、表面プラズモン共鳴の時間に対する変化率が安定している時 間帯における表面プラズモン共鳴変化率を求め、得られた表面プラズモン共鳴変化 率に基づいて、目的試薬の抗がん作用の程度を評価するものである。実施例では、 抗増殖作用を有するタエルセチンについて、測定開始後 2700〜3000秒 (試薬の投与 は、測定開始後 600秒の時点)の 5分間における表面プラズモン共鳴応答により得ら れたカーブの傾きを求め、一方で試薬に対する生存率を試薬投与力 48時間後のト リパンブルー染色により求め、両者に相関が合ったことから、所定の短時間での表面 プラズモン共鳴応答の変化率を測定することにより、細胞の生存率、すなわち抗がん 作用を定量的に評価することができると結論して 、る。
発明の開示
発明が解決しょうとする課題
[0009] 上述した蛍光顕微鏡、フローサイトメトリーまたは分光光度計などによりミトコンドリア の脱分極を検出する手法は、蛍光試薬の導入が必須であるため、煩雑な作業を要 するとともに、蛍光試薬の導入に伴う細胞への影響、蛍光試薬導入量の不均一性に 起因する再現性の低さ、検出に時間が力かること等が問題として挙げられる。
[0010] 一方、細胞力もミトコンドリアのみを分画し、溶液中に分散させた状態で電極などに より、非標識で直接電位測定する方法もあるが、細胞内外で外部刺激に対するミトコ ンドリアの応答は全く異なるため、生体内でのミトコンドリアの応答モニタリング法とし ては適当ではない。
課題を解決するための手段
[0011] 本発明者らは、種々の外部刺激に対する生細胞の応答をモニタリングする方法を 鋭意検討してきた。そして、表面プラズモン共鳴角装置を用いることにより、ミトコンド リアの分極状態の変化を検出できることを見いだし、本発明を完成した。
[0012] 本発明は、以下の発明を提供する:
〔1〕 生細胞内のミトコンドリアの分極状態の変化を検出する方法であって、 表面プラズモン共鳴装置を用いて、該生細胞のミトコンドリアの分極状態の変化に 起因する表面プラズモン共鳴角の変化を検出する工程を含む、前記方法。
〔2〕 生細胞内のミトコンドリアの分極状態の変化を検出する方法であって: 生細胞へ物質を供与する工程;および
生細胞に物質を供与した後に、ミトコンドリアの分極状態の変化に起因する表面プ ラズモン共鳴角の変化を検出する工程
を含む、前記方法。
発明の効果
[0013] 本発明により、ミトコンドリアの分極状態の変化が、表面プラズモン共鳴角の変化と して検出可能であることが明らかとなった。さらに、該ミトコンドリアの分極状態の変化 速度は、測定の際の pH変化速度の制御により制御可能であることが明らかとなった。
[0014] 本発明により、従来技術で問題となっていた蛍光試薬導入に伴う煩雑さ、細胞への 影響および試薬導入量の不均一性に起因する蛍光強度の低再現性の問題などが 解消される。また、従来技術によるよりも短時間でミトコンドリアの分極状態の変化が 検出できる。 図面の簡単な説明
[図 1]図 1は、実施例で用いた装置の模式図である。
[図 2]図 2は、 SPRセンサーを用いた、脂質代謝活性物質 Fenofibrateによるミトコンドリ ァ分極状態の変化についての測定結果を示すグラフである。
[図 3]図 3は、蛍光顕微鏡観察を用いた、脂質代謝活性物質 Fenofibrateによるミトコン ドリア分極状態の変化についての測定結果を示すグラフである。
[図 4]図 4は、実施例 2において、 SPRシグナル時間変化率 (試薬投与後 35〜45分)と 蛍光強度時間変化率 (試薬投与後 35〜45分)の相関を示したグラフである。
[図 5]図 5は、 SPRセンサーを用いた、アポトーシス誘導物質投与時のミトコンドリア脱 分極変化につ!、ての測定結果を示すグラフである。
[図 6]図 6は、蛍光顕微鏡観察による、アポトーシス誘導物質投与時のミトコンドリア脱 分極変化につ!、ての測定結果を示すグラフである。
[図 7]図 7は、 SPRシグナル時間変化率 (試薬投与後 35〜40分)と蛍光強度時間変化 率 (試薬投与後 35〜40分)の相関を示したグラフである。
[図 8]図 8は、ミトコンドリア脱分極阻害時のアポトーシス誘導物質 (Quercetin)投与に よるミトコンドリア脱分極変化を示すグラフである(蛍光顕微鏡観察)。
[図 9]図 9は、ミトコンドリア脱分極阻害時のアポトーシス誘導物質 (trans- Resveratrol) 投与によるミトコンドリア脱分極変化を示すグラフである (蛍光顕微鏡観察)。
[図 10]図 10は、ミトコンドリア脱分極阻害時のアポトーシス誘導物質 (Quercetin)投与 によるミトコンドリア脱分極変化にっ 、ての結果を示すグラフである(SPRセンサー)。
[図 11]図 11は、ミトコンドリア脱分極阻害時のアポトーシス誘導物質 (trans- Resveratr ol)投与によるミトコンドリア脱分極変化を示した結果である(SPRセンサー)。
[図 12]図 12は、アポトーシス誘導物質(quercetin、 trans- Resveratrol)単独または併用 投与 48時間後の、細胞の生存率を示すグラフである(細胞数測定)。
[図 13]図 13は、アポトーシス誘導物質(quercetin、 trans- Resveratrol)単独または併用 投与時の、 SPR共鳴角経時変化を示すグラフである(SPRセンサー)。
[図 14]図 14は、アポトーシス誘導物質(quercetin、 trans- Resveratrol)単独または併用 投与時の、 SPR共鳴角変化速度と細胞の生存率との相関を示すグラフである。 [図 15]図 15は、 siRNA投与 48時間後の、細胞の生存率を示すグラフである(細胞数測 定)。
[図 16]図 16は、 siRNA投与時の、 SPR共鳴角経時変化を示すグラフである(SPRセン サ一)。
[図 17]図 17は、 siRNA投与時の、 SPR共鳴角変化速度と細胞の生存率との相関を示 すグラフである。
[図 18]図 18は、各 CO濃度条件下における SPR共鳴角経時変化を示すグラフである(
2
SPRセンサー)。
[図 19]図 19は、 CO濃度と、ミトコンドリア膜電位の 35〜40分における変化速度との相
2
関を示すグラフである (蛍光顕微鏡観察)。
[図 20]図 20は、 pHの変化速度と、ミトコンドリア膜電位の 35〜40分における変化速度 との相関を示すグラフである。
発明を実施するための最良の形態
[0016] 本発明の方法における「生細胞」は、ミトコンドリアを有する生細胞であれば特に限 定されないが、例えば、正常細胞、がん細胞、受精卵、動植物のクローン細胞、 ES細 胞、がん幹細胞等が挙げられ、これらは培養細胞であっても糸且織由来の細胞であつ てもよい。使用する生細胞は、該生細胞内のミトコンドリアの分極状態の変化を検出 する目的により適宜選択することができ、例えば、抗癌剤の評価に際しては癌細胞や 癌幹細胞、脂質の代謝に際しては肝細胞、分ィヒのモニタリングに際しては受精卵や ES細胞、植物の反応評価に際しては植物細胞をそれぞれ使用することが出来るが、 これらに限定されるものではない。
[0017] 本発明における「ミトコンドリアの分極状態の変化に起因する表面プラズモン共鳴角 の変化を検出する工程」は、表面プラズモン共鳴角の変化が、実質的にミトコンドリア の分極状態の変化にのみに起因する時間帯におけるその変化を検出する工程とし て実施することができる。表面プラズモン共鳴角の変化力 実質的にミトコンドリアの 分極状態の変化にのみに起因する時間帯は、生細胞に物質 (例えば、 fenofibrate, Q uercetin、 trans- res veratrol、 Herceptin等が挙げられるがこれらに限定されな 、)(一ま たは複数)を供与する場合においては、通常、物質を供与した時から 20分経過以後 、より好ましくは 30分経過以後、さらに好ましくは 35分経過以後の時間帯である。
[0018] また、表面プラズモン共鳴角の変化が、実質的にミトコンドリアの分極状態の変化に のみに起因する時間帯は、生細胞に、例えばアポトーシスを誘導する siRNAのような 、ミトコンドリアの分極状態の変化に関する物質の影響が現れるまで時間が力かると 考えられる物質を供与する場合においては、生細胞に物質を供与した後に、ミトコン ドリアの分極状態の変化に関する該物質の影響が現れたとき (例えば物質がアポトー シスを誘導する Bd-2 siRNAである場合、生細胞に物質を供与して力ゝら約 1時間後)か ら、 20分経過以後、より好ましくは 30分経過以後、さらに好ましくは 35分経過以後の 時間帯である。「ミトコンドリアの分極状態の変化に関する物質の影響が現れたとき」 は、物質の種類によって異なり、例えば後述の実施例を参考に、従来技術の手法 (例 えば、蛍光法、生細胞数測定法)を用いて確認することによって決定することができる であろう。表面プラズモン共鳴装置を用いた場合に、ミトコンドリアの分極状態以外に 検出される反応には、細胞膜への物質の結合、およびそれに伴う細胞膜の分極状態 変化等があるが、これらの反応は、通常、物質の投与あるいは細胞外溶液の交換な ど、細胞外部環境の変化後 30分程度で収まる(Analytical Biochemistry 2002;302:28 -37)ので、その後の時間帯での共鳴角変化を捉えることで、ミトコンドリアの分極状態 変化以外の反応は実質的に検出されることはないと考えられる。また、本発明者らの 検討により、物質投与あるいは細胞外溶液の交換など、細胞外部環境の変化後約 30 分経過以降に起こる細胞内での反応は、 pH変化速度が好ま 、範囲である場合 (例 えば後述の実施例 1〜4の場合)には、実質的には表面プラズモン共鳴角の変化に影 響しな 、ことが分力つて 、る(実施例参照)。
[0019] 本発明でいう「生細胞内のミトコンドリアの分極状態への、一または複数の物質の影 響を評価する方法」は、 2つのケースに大別される。一方は、機能が未知の物質を細 胞に投与した場合の表面プラズモン共鳴角の変化を測定し、その反応力もミトコンド リア分極状態変化を誘導するか否かを評価する方法であり、他方は、既に蛍光法な どを用いてある細胞ではミトコンドリアの分極状態の変化を誘導する力否かが明らか な物質を、別の細胞ではどの程度変化を誘導するかを評価する方法である。前者の 場合、従来技術ではミトコンドリアの分極状態変化以外の反応を見てしまう可能性が 生じるが、本明細書に開示した方法によれば、ミトコンドリアの分極状態の変化以外 の反応は実質的に検出されることはない。
[0020] 本発明の方法は、表面プラズモン共鳴センサー力 のシグナルを経時的に記録し た場合のグラフの傾き(時間当たりの表面プラズモン共鳴角変化量、すなわち変化率 )を利用して、対象物質 (一または複数)がミトコンドリアの分極状態の変化に与える影 響を定量化する目的でも用いることができる。この場合、表面プラズモン共鳴角の変 化が、実質的にミトコンドリアの分極状態の変化にのみに起因する時間帯であって、 検出した表面プラズモン共鳴角の変化が一定である時間帯、すなわち表面ブラズモ ン共鳴センサー力ものシグナルを経時的に記録した場合のグラフの傾きがほぼ直線 である時間帯を特定して、その時間帯におけるグラフの傾きを利用することができる。 このような特定した時間帯の長さは、少なくとも 1分間、好ましくは 3分間以上、より好ま しくは 5分間以上、さらに好ましくは 10分間以上である。より正確な定量を目的とする 場合は、その時間帯における表面プラズモン共鳴角の変化率が、該時間帯を含みそ れより 10%以上長い時間帯における表面プラズモン共鳴角の変化率の ± 10%以内で あるような時間帯の変化率を利用するとよい。
[0021] 具体的には、 35〜40分の 5分間の場合にはそれより 10%以上長い時間、すなわち 5 分 30秒間以上(例えば、 30〜45分の 10分間)、 35〜45分の 10分間の場合にはそれよ り 10%以上長い時間、すなわち 11分間以上(例えば、 30〜50分の 15分間)の時間帯に おける変化率を算出しても、その変化率力 35〜40分の 5分間または 35〜45分の 10 分間の時間帯における変化率に対し、それぞれ ± 10%以内に収まっている場合、そ の 35〜40分の 5分間または 35〜45分の 10分間が選択可能となる。このように、従来の 方法よりも短時間 (1時間以内)で、生細胞内のミトコンドリアの分極状態の変化を検出 できることが本発明の 1つの特徴であるが、例えば pH変化速度が遅い場合等、ミトコ ンドリアの分極状態の変化が遅く検出されると考えられる場合には、本明細書中の記 載を参照して、当業者であれば、適宜検出の時間帯を決定することが出来るであろう
[0022] 本発明により、ミトコンドリアの分極状態に与える影響の程度が分力 ている物質に ついて、同様に表面プラズモン共鳴角の変化率を求めておき、対象物質の変化率と 比較することができる。さらに、同様に作成した検量線と比較することにより、対象物 質のミトコンドリアの分極状態に与える影響の程度を定量的に分析することができる。
[0023] 生細胞内のミトコンドリアの分極状態を変化し得る物質としては、例えば、 (a)脂質 代謝促進物質 (脂肪燃焼物質) ; (b)細胞のアポトーシス誘導物質; (c) siRNA;(d)抗が ん物質; (e)発がん物質 ;(£)細胞の分裂活性に影響を与える物質; (g)内分泌かく乱 物質; (h)細胞に対する毒性物質;等が挙げられ、このような物質に関して、単剤投与 の作用のみならず、多剤併用投与における作用を評価することも可能である。また、 このような物質は化合物に限定されるものではなぐ例えばアポトーシス誘導に関与 する siRNA等であることも可能である。 siRNAによる、生細胞内のミトコンドリアの分極 状態の変化を評価する際には、例えば後述の実施例に記載の手法を参照して、 siR NA投与後、ミトコンドリアの分極状態の変化に関する siRNAの影響が現れるまでのタ ィムラグを考慮することができる。該タイムラグは、細胞の種類や、対象とする細胞の 反応の種類にも影響をうけると考えられる。
[0024] 本発明には、表面プラズモン共鳴装置を用いる。
[0025] 表面プラズモン共鳴の原理を説明する。プリズムを用いた場合を説明すると、表面 プラズモン共鳴は、金属表面プラズモンをレーザー光などの光により得られるエバネ ッセント波を用いて共鳴励起することで起こる現象である。エバネッセント波はプリズ ム内で全反射を起こすことにより、その反射面の反対側に発生させることができ、プリ ズム上に薄!、金属層が存在する際、エバネッセント波は金属層を抜けて金属反対面 の表面プラズモンを共鳴励起する。共鳴を起こす条件を決定する要因として金属層 と界面をなしている物質の誘電率等があり、分子間相互作用には誘電率等の変化が 伴うことから、これにより共鳴条件が決定される。この際、共鳴を誘起できるエバネッセ ント波の条件も変化するので、逆に共鳴を誘起するエバネッセント波の条件の変化を 検出することで誘電率の変化、ひいては分子同士の結合などを知ることができる。実 際には、エバネッセント波の条件は入射するレーザー光の入射角 Θにより変化する。 入射角と反射角は等しぐ基板の法線に対する角度と定義する。共鳴現象が起こると き、エバネッセント波は金属層上の物質により影響を受けるため、反射光強度の急激 な減衰が起こる。この反射光強度の変化を検出器により検出し、反射光強度の減衰 が起きた入射角度 (共鳴角)をプロットしていくことにより、金属層上の微小な領域に おける変化を知ることができる。表面プラズモン共鳴の測定は、プリズムを用いて光を 全反射させる方法のほか、回折格子を用いて光の回折を利用する方法も使用するこ とができる。共鳴角を求める方法に基づくと、以下の公式に示すように、 ε sに相当す る測定対象物の誘電率は、共鳴角 Θを以下のように定義している。測定対象物であ る生細胞内ミトコンドリアの分極状態の変化は誘電率 ε sの変化をもたらすため、何ら かの刺激によりミトコンドリアの分極状態に変化がある場合、誘電率 ε sの変化に応じ て共鳴角 Θの変化として SPRセンサーにより検出可能である。
[0026] [数 1]
Figure imgf000012_0001
[0027] また、表面プラズモン共鳴の時間に対する変化の測定は、表面プラズモン共鳴角 の時間変化や、初期状態での表面プラズモン共鳴角における反射光強度の時間変 化などとして求めることができる。上述の共鳴角を求める検出方式のほか、白色光を 表面プラズモン共鳴励起光源として用い、検出光を分光し共鳴現象の起こる波長、 あるいは固定波長での反射光強度の変化を検出する方法も利用可能である。
[0028] 本発明の方法においては、既存の表面プラズモン共鳴装置を用いることができる。
例えば、特開 2005-17081号公報に開示された装置を用いてもよい。
[0029] 本発明の方法により、ミトコンドリアの分極状態の変化が検出できていることは、様 々な方法により確認することができる。例えば、本発明により得られた変化率と、従来 技術の蛍光法 (電位に応答する蛍光色素、例えばカチオン性カルボシァニン色素を 細胞内に導入し、電位の高いミトコンドリアで凝集して蛍光波長が変化し、また電位 の変化に応じて蛍光強度が変化する様子を、蛍光顕微鏡、フローサイトメトリーまた は分光光度計などにより検出する方法)により得られたミトコンドリアの分極に関する 値との相関を調べることにより、確認することができる。より具体的な手法は、本発明 の実施例を参照することができる。
[0030] また、例えば、後述の実施例 3および 4に記載するように、アポトーシス誘導物質を 作用させた細胞において、本発明により得られたミトコンドリアの分極状態の変化率と 、従来手法である生細胞数測定法により算出した細胞の生存率との間には相関関係 が認められる。このことから、本発明の方法により、アポトーシス誘導物質の作用を、 従来の生細胞数測定方法より簡便に評価することが可能となる。例えば、後述の実 施例を参照して説明すれば、アポトーシス誘導物質の作用を評価する場合、従来の 生細胞数測定方法によれば、アポトーシス誘導物質と細胞を 48時間以上共培養する 工程および細胞を染色し生細胞と死細胞を判別した後血球計算板等を用いて計測 する工程が必要であるのに対し、本発明の方法によれば、(細胞を染色することなく) 非標識で、かつ通常 1時間以内に結果を求めることが可能である。
[0031] 本発明の方法は、生細胞を用いるが、ここで該生細胞の細胞外溶液は、測定の間 、細胞が生存可能な溶液であればよぐそのような溶液として例えば細胞の培地、緩 衝液、生理食塩水やショ糖溶液が挙げられる力 これらに限定されない。好ましくは、 細胞外溶液は細胞の培地である。
[0032] 本発明の方法は、検出の際の生細胞の細胞外溶液の pHの制御により、生細胞中 のミトコンドリアの分極状態 (ミトコンドリア膜電位)の変化速度を制御することが可能で ある。より具体的には、細胞外溶液の pHを、高くまたは低く変化させることで生細胞 内のミトコンドリアの分極状態の変化速度を速めることができ、この際、 pHの変化速度 が速いほど、ミトコンドリアの分極状態の位変化速度を速くなる。 pHの変化速度は、 単位時間あたりの pHの変化率であり、測定前後の細胞外溶液の pH値と測定時間か ら算出することができる。より具体的は、後述の実施例 5に記載のように算出すること が出来る。
[0033] 一般にミトコンドリアの分極状態の変化を測定する実験系である、 CO濃度 5%の状
2
態の pH変化速度 (本実施例 5では pH0.004/min)や、大気中の CO濃度には影響を受
2
けな ヽような組成の細胞外溶液を利用する場合の pH変化速度等、 pHがほぼ一定に 保たれるような条件を、ミトコンドリアの分極状態の変化が加速して 、な 、状態とする と、これ以上の pH変化速度の条件ではミトコンドリアの分極状態の変化が加速される ことになる。 PH変化速度とミトコンドリア膜電位の変化速度との関係は、細胞の種類や 刺激の種類によって多少異なるが、 pH変化速度が速いほどミトコンドリア膜電位の変 化速度が速ぐミトコンドリアの分極状態の変化の検出に好ましいと考えられる。好ま しい pHの範囲は、細胞等によって多少は異なると考えられる。
[0034] 上記ミトコンドリアの分極状態の変化が加速して ヽな 、状態では、表面プラズモン 共鳴角の変化が、実質的にミトコンドリアの分極状態の変化にのみに起因する時間 帯に達するには 2時間以上力かるのに対し、このような細胞外溶液の pHの制御により 、この時間を 30分程度に短縮することができる。細胞外溶液の pHの制御は、例えば 細胞外溶液の pHの変化速度を、 pH0.005/min以上、より好ましくは ρΗΟ.ΟΙ/min以上 、さらにより好ましくは pH0.02/min以上とすることができる力 生細胞の生存が可能な 範囲の変化速度である必要がある。細胞外溶液の pHの制御は、生細胞に対する影 響を考慮して、当業者に公知の手法を用いることができ、例えば細胞外溶液を徐々 に異なる pHの溶液におきかえる、異なる pHの溶液を細胞外溶液に添加する、細胞 外溶液外部の CO濃度を制御する:等の手法により行うことが出来る。より具体的な
2
手法は、本発明の実施例を参照することができる。
[0035] 明 ¾施するための好ましい能様
本発明の生細胞内のミトコンドリアの分極状態の変化を検出する方法は、ミトコンド リアの分極に関連した生細胞の性質、例えば分裂活性、老化状態または悪性 (がん 細胞である力 正常細胞である力 )を評価するために用いることができる。この場合、 条件 (細胞系、培養液系、光学的条件など)を統一した細胞間で、表面プラズモン共 鳴法により得られる値を比較することにより、目的の活性または作用の程度を判断す ることがでさる。
[0036] 本発明の方法は、一または複数の物質の生細胞に対する、ミトコンドリアの分極に 関連した作用、例えば脂肪燃焼作用、アポトーシス誘導作用、毒性または内分泌か く乱作用を評価するために用 、ることができる。
[0037] 細胞の分裂活性の評価:
人工受精や動植物クローンにおける優良細胞の選抜においては分裂活性の高い 細胞を選択することが重要であるが、ミトコンドリアの分極状態は細胞の分裂活性と密 接に関連するため、本発明を用いて非標識下でミトコンドリアの分極状態をモニタリン グすることで上記用途にぉ 、て優良な細胞を非侵襲的に選抜可能である。 (Cancer Research 1998;58(13):2869- 2875参照)
細胞の老化状態の評価:
老化状態の細胞においては分裂活性が低ぐミトコンドリアの分極状態もこれと関連 しているため、ミトコンドリアの分極状態モニタリング力も細胞の老化状態のモニタリン グが可能である。また、細胞を活性化させ、老化を抑制するような薬剤のスクリーニン グに応用可能である。(Biological Signals and Receptors 2001;10: 176- 188参照) 脂肪燃焼物質 (抗肥満薬剤)のスクリーニング:
過度の脂肪の蓄積は肥満という症状のみでなぐ糖尿病、脳卒中、動脈硬化などの 疾患を引き起こすことが明らかになつていることから、抗肥満薬剤としての脂肪燃焼 物質の利用価値は非常に高い。また、脂肪燃焼は、褐色脂肪細胞や肝細胞により行 なわれるが、脂肪燃焼時は肝細胞内においてミトコンドリアの分極'脱分極が起こるこ とが明らかになっているため、褐色脂肪細胞のミトコンドリア分極状態モニタリングに より脂肪燃焼物質のスクリーニングが可能である。 (Biophysical journal 2002;82(1): 16 73 part2および FEBS Letters 1984;170(1): 181- 185参照)
がんの診断:
がん化した細胞では、正常な細胞と比較し、ミトコンドリアの分極状態が顕著に異な ることが知られていること力 正常細胞とがん細胞の判別に応用可能である。 (Cance r Research 2005;65(21):9861- 9867参照)
抗がん剤のスクリーニング:
アポトーシスの誘導により杭がん作用を示す杭がん剤においてミトコンドリアの脱分極 が起こるなど、抗がん剤が、がん細胞に作用する過程においてミトコンドリアの分極状 態に変化が起こることが知られている。また、その脱分極の程度カも抗がん作用の評 価が可能であることが見出されている。このため抗がん剤候補物質をがん細胞に投 与した際のミトコンドリア分極状態のモニタリングカも抗がん剤のスクリーニングが可 能である。 (Apoptosis 2005;10:687-705参照)また、例えばこのような抗がん剤候補 物質の併用投与による相乗効果の判断も、ミトコンドリア分極状態のモニタリングによ つて可能となる。
[0038] RNAiの評価:
RNAi(RNA interference; RNA干渉)は、細胞に導入された二本鎖 RNAが、それと 相補的な塩基配列を持つ mRNAを分解する現象で、この現象を利用して人工的に二 本鎖 RNAを導入することにより、任意の遺伝子の発現を抑制することができる。 RNAi のうち、特にミトコンドリアの脱分極に影響を与えると考えられるものについての効果 の判断が、ミトコンドリア分極状態のモニタリングによって可能となる。そのような RNAi としては、例えば、細胞のアポトーシス、細胞の分裂活性、老化、肥満、肥満に関連 した糖尿病、脳卒中、動脈硬化、褐色脂肪細胞、肝細胞等に関与する RNAiが挙げら れるが、これらに限定されない。(RNAiに関して: Nature 2001 ;411:494-498参照) 環境モニタリング:
環境ホルモンとして知られるビスフ ノール Aなどの内分泌力べ乱物質ではその種 類、濃度により特定の細胞に対し増殖やアポトーシスを誘導することが明らかになつ ており、上述の細胞増殖における細胞分裂やアポトーシスをミトコンドリアの分極状態 のモニタリングより検出可能なことから環境中の内分泌力べ乱物質の検出およびそれ らの影響評価に利用可能である。(Archives of Toxicology 2000;74(2):99-105、およ び Journal of Biological Chemistry 2005;280(7):6181- 6196参照)
毒性評価:
生細胞に対する毒性物質の投与はミトコンドリアの急激な脱分極を引き起こすこと が一般的に知られており、蛍光試薬によるミトコンドリア分極状態のモニタリングにより 各種物質の毒性評価を行なった例がある。本発明を用いて非標識下で簡便に毒性 評価が可能である。(Hepatology 2000;31;1141- 1152および Toxicological Sciences 2 005;86(2):436-443参照)
本発明の生細胞内のミトコンドリアの分極状態の変化を検出する方法は、候補生細 胞群の分裂活性、老化状態または悪性 (がん細胞であるか、正常細胞であるか)を評 価し、スクリーニングするために用いることができる。
[0039] また、本発明の方法は、候補物質 (例えば、ミトコンドリアの分極に関連した疾患ま たは状態を処置するための医薬候補ィ匕合物)を、スクリーニングするために用いるこ とができる。そのようなスクリーニング方法は、具体的には、
候補物質を生細胞に供与する工程;生細胞に物質を供与した後に、ミトコンドリアの 分極状態の変化に起因する表面プラズモン共鳴角の変化を検出する工程;
表面プラズモン共鳴角の変化が、実質的にミトコンドリアの分極状態の変化にのみ に起因する時間帯 (例えば、物質を供与した時力 20分経過以後)であって、検出し た表面プラズモン共鳴角の変化が一定である(すなわち表面プラズモン共鳴センサ 一からのシグナルを経時的に記録した場合のグラフの傾きがほぼ直線である)時間 帯を特定して、その時間帯における表面プラズモン共鳴角の変化率を求める工程; および
得られた表面プラズモン共鳴角変化率に基づいて候補物質を選抜する工程 を含む。
[0040] ミトコンドリアの分極に関連した疾患または状態の具体例としては、細胞の分裂活性 に関係する疾患または状態、老化、肥満または肥満に関連した糖尿病、脳卒中もしく は動脈硬化、褐色脂肪細胞または肝細胞におけるミトコンドリアの分極に関連した疾 患または状態、がんおよびアポトーシスに関連した疾患または状態を挙げることがで きる。
[実施例]
[0041] 以下に、ミトコンドリア分極状態モニタリングの実施例を示す。
[0042] 装置:
SPRシグナルの測定および蛍光顕微鏡観察は、測定対象物である生細胞の上部に 蛍光顕微鏡、下部に SPRセンサーを有する装置により行なった。模式図を図 1に示す SPRセンサーは kretschmann配置の光学系を用い、プリズムに BK7 (屈折率 1.51) 光源として半導体レーザー(波長 670 出力 3mW、ビーム径 lmm)、検出器にはシ リコンフォトダイオード検出器を用いた。測定は、特記しない限り、大気下 (0 : 20% C
2
0 : 0.035%)で行った。
2
[0043] 蛍光顕微鏡観察は、顕微鏡に Axioplan 2 (Carl Zeiss)、光源は 75Wキセノンランプ、 検出器には NTE/CCD Detector MicroMAX- 512BFT (Princeton Instruments)を用い た。また画像の取得および解析は蛍光解析ソフト MetaFluor Imaging System Ver.4.6. 5 (Universal Imaging)により行なった。
実施例 1
[0044] [脂質代謝促進物質の評価]
供試細胞には、ヒト肝臓がん細胞 HepG-2を用いた。 37°C、 CO 5%濃度下、非必須
2
アミノ酸 100 μ Μ、ペニシリン 50units/mL、ストレプトマイシン 50 μ g/mL、 FBS 10%(v/v) を含む液体培地 EMEMを完全培地とし、完全培地にて前培養した後実験に用いた。 また、脂質代謝促進物質としては、 fenofibrate (2- [4- (4- Chlorobenzoyl)phenoxy] - 2- methylpropanoic acid isopropyl ester)を用い、 25および 50 μ Μ添カ卩時の脂質代謝 活性にっ 、て評価を行なった。溶媒には DMSO (dimethyl sulfoxide)を用いた (培地 への添加後の最終濃度として 0.1% (v/v) DMSOを含む)。また controlには最終濃度 0. 1% (v/v)となるように DMSOのみ加えた。
[0045] 1 . SPRによる脂皙代謝活件評価
供試細胞は、前培養後、シャーレ力も剥離し、細胞濃度を完全培地中 2 X 106 cell/ mLに調製し、その細胞懸濁液 100 Lを基板上に滴下し、 37°C、 CO 5%濃度下にて 1
2
8時間培養した。 18時間後、基板を SPRセンサー上のプリズムに設置し、基板上を 5m Lの EMEMで満たし、測定を開始した。測定開始 10分後、 fenofibrateを含む培地と交 換し、さらに 50分間測定を続けた。その結果、図 2に示すように、特に試薬添加後約 2 0分付近から、脂質代謝の活性ィ匕に起因するミトコンドリアの分極により SPRシグナル の変化(-)が認められた。
[0046] 2.蛍光試薬. TC-1によるミトコンドリア分極状態のモニタリング
供試細胞は、前培養後、シャーレ力も剥離し、細胞濃度を完全培地中 2 X 106 cells/ mLに調製し、その細胞懸濁液 100 Lを基板上に滴下し、 37°C、 CO 5%濃度下にて 1
2
8時間培養した。 18時間後、 JC- 1 iodideを 2.5 M含む EMEM 100 L (最終濃度 0.1% の DMSOを含む)と交換後、 COインキュベーター内(37°C、 CO濃度 5%)に 20分間置
2 2
いた。 20分後、 JC-1 iodideを含む培地を除くため EMEMで基板上培地を交換した後 、装置測定部に設置し、 5mLの EMEMで満たし、 37°C下にて測定を行なった。蛍光強 度観察は、観察倍率 630倍で行った。励起フィルタ一により 485 ±20應を透過し、蛍 光検出には 515〜565 nm透過のフィルターセット、ならびに 575〜640 nm透過のフィ ルターセットを用いた。測定開始 10分後、 EMEMを除き、 Fenofibrateを含む培地と交 換し、測定を続けた。 controlは DMSOを 0.1% (v/v)を含む培地を用いた。その結果、 図 3に示すように、特に試薬添加後約 20分付近から、脂質代謝の活性化に起因する ミトコンドリアの分極により蛍光強度の増加が認められた。また、図 4に示すように、 SP Rシグナルの時間変化率とミトコンドリアの分極程度に高い相関 (r = 0.990)が認めら れ、 SPRシグナルの変化がミトコンドリアの分極状態の変化に起因することが示された 実施例 2
[0047] [アポトーシス誘導物質の評価]
供試細胞にはヒトすい臓がん細胞 MIA PaCa-2を用いた。 37°C、 CO 5%濃度下にお
2
いて、非必須アミノ酸 100 μ Μ、ペニシリン 50 units/mL、ストレプトマイシン 50 μ g/mL 、 FBS10% (v/v)を含む液体培地 EMEMにて培養した。
[0048] また、アポトーシス誘導物質としては、 Quercetinおよび trans- resveratrolを用い、非 アポトーシス誘導物質の rutinをネガティブコントロールとして用いた。使用時の最終 濃度 10、 25、 50、 100 μ Μに対し、それぞれ 1000倍濃度溶液 (10、 25、 50、 100 mM)を dimethyl sulfoxide (DMSO)を溶媒として調製し、ストックとした。
[0049] また、アポトーシス誘導物質として巿販抗がん剤である Herceptinも用い、使用時の 最終濃度 1、 10、 100 g/mLに対し、それぞれ 1000倍濃度溶液を、生理食塩水を希 釈溶媒として調製し、ストックとした。
[0050] 1. SPRシグナル測定
SPRシグナル測定は、細胞の接着した基板をマッチングオイル (屈折率 1.51)を介して SPRセンサーのプリズム上に設置し、基板上を 5 mLの EMEMで満たし、 SPRシグナル 測定を開始した。測定開始 10分後に、 EMEMをー且除き、 100 Mの quercetin、 tran s-resveratroU rutinゝ Herceptinのいずれかを含む新しい EMEM 5mL (フエノーノレ成分 の溶媒として用いた DMSOを最終濃度で 0.1%(v/v)含む)、もしくは controlとして 0.1%の DMSOのみを含む EMEM 5mLと交換した後、 50分間測定を続けた。その結果、図 5に 示すように、特に薬剤投与後 35分以降において、アポトーシス誘導物質によるミトコン ドリアの脱分極に起因して SPRシグナルの変化(+ )が認められた。 [0051] 2.蛍光試薬. TC-lによるミトコンドリア分極状態のモニタリング
シャーレから細胞を剥離後、液体培地により細胞懸濁液とし、液体培地により適宜 細胞濃度 2xl06 cells/mLに調製した。調製後、細胞懸濁液 100 Lを基板上に滴下し 、 37°C、 CO濃度 5%下にて 20時間培養した。
2
[0052] 20時間後、基板上を 5 mLの PBSですすぎ、培地と接着しな力つた細胞を除 、た。ミ トコンドリアの分極状態測定用の蛍光指示薬として、 JC-1 iodideを 5 /z M含む EMEM 100 L (最終濃度 0.1%の DMSOを含む)を滴下し、 COインキュベーター内(37°C、 C
2
0濃度 5%)に 30分間置いた。 30分後、基板上を 5 mLの PBSですすぎ、装置測定部に
2
設置した後、 5 mLの EMEMで満たし、 37°C下にて測定を行なった。蛍光強度観察は 、観察倍率 200倍で行った。励起フィルタ一により 485 ±20應を透過し、蛍光検出に は 515〜565 nm透過のフィルターセット、ならびに 575〜640 nm透過のフィルターセッ トを用いた。測定開始 10分後、 EMEMを除き、 100 Mの quercetinまたは trans- resve ratrolを含む新しい EMEM 5 mL (溶媒として用いた DMSOを最終濃度で 0.1%(v/v)含 む)、もしくは controlとして 0.1%の DMSOのみを含む EMEM 5 mLと交換した後、 50分 間測定を続けた。その結果、図 6に示すように各々のアポトーシス誘導物質により時 間依存的なミトコンドリア脱分極の様子が確認された。
[0053] また、実施例 1〜3に示した SPRセンサーによる得られるシグナルの変化力 ミトコン ドリアの脱分極に由来するものであることを確認するために、実施例 3を例にとり、試 薬直後の細胞膜表面への試薬の結合や細胞膜の分極状態変化などのミトコンドリア 分極状態モニターに好ましくない細胞応答が収束した後、 5分間程度 (実施例 3では 、試薬投与後 35〜40分)における SPRシグナルの変化量と同様の時間帯における蛍 光標識により得られたミトコンドリア分極状態変化量を比較したところ、図 7に示すよう に非常に高い相関 (r = 0.936)が得られた。
[0054] 3.ミトコンドリア脱分極抑制によるアポトーシス阻害試験
さらに、 SPRシグナルの変化がミトコンドリアの分極状態の変化を検出したものである ことを確認するため、 quercetinおよび trans- resveratrolによりがん細胞にアポトーシス が誘導される際のミトコンドリアの脱分極を阻害する試薬を用いて、確認を行った。ミト コンドリアの供試細胞 MIA PaCa-2は上述の条件と同様に、 37°C、 CO濃度 5%下にお いて基板上で 20時間培養した。アポトーシス阻害剤としてミトコンドリア膜上に結合し 、ミトコンドリア膜の脱分極、 cytochrome c放出の阻害を行なう Be卜 xL BH4 (4- 23) (H uman) , Cell-Permeable (以下、 TAT-BH4と示す)を用いた。測定開始 15分前に基板 上の液体培地を除き、 100 nMの阻害剤を含む EMEM100 μ Lと交換し、 37°C、 CO 5
2
%濃度下で 15分間インキュベートし、細胞内へ阻害剤の導入を行なった。もしくは、 co ntrolとして阻害剤の溶媒として用いた PBS (-)を等量含む EMEM100 μ Lとの交換を行 なった。細胞の接着した基板を装置測定部に設置し、基板上を 5 mLの ΕΜΕΜで満た し、上述の方法と同様に蛍光強度測定および SPRシグナル測定を開始した。測定開 始 10分後に、 EMEMをー且除き、 100 Mの quercetin、 trans- resveratrolのいずれか を含む新しい EMEM 5 mL (フエノール成分の溶媒として用いた DMSOを最終濃度で 0. 1%(ν/ν)含む)、もしくは controlとして 0.1%の DMSOのみを含む EMEM 5 mLと交換した 後、 50分間測定を続けた。その結果、図 8および 9に示す蛍光標識により確認したミト コンドリアの脱分極阻害の様子と同様に、図 10および 11に示すように SPRシグナルの 変化においてもシグナルの変化が抑制されることが確認され、 SPRセンサーにより検 出されるシグナルがミトコンドリアの分極状態の変化であることが確認された。
実施例 3
[0055] [多剤併用効果の評価]
アポトーシス誘導物質 (抗がん作用物質)の多剤併用による相乗効果を評価した。 該相乗効果が知られて 、る物質として、 Quercetinおよび trans- Resveratrolを用いた 。両者の多剤併用によるアポトーシスにおける相乗効果については、 Mouria, M. et a 1. rood— derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome c release and apoptosis. Int. J. Cancer. 98, 761-769 (2002)に不されて いる。
[0056] 1 .細q数沏 から 出した牛存率による多剤併用の評俯標衡去)
多剤併用による効果の評価は、供試薬と細胞を共培養し、アポトーシスにより減少 した細胞数を計数する方法により行った。供試細胞にはヒトすい臓がん細胞 MIA PaC a-2を用いた。培地として、 FBS 10% (v/v)、ペニシリン 50units/mL、ストレプトマイシン 50 μ g/mL、非必須アミノ酸 100 μ Μを含む EMEM (Eagles' minimum essential mediu m)を用いて、 5 X 104 cells/mlの細胞懸濁液として調製し、 6cmシャーレにそれぞれ 5m Lずつ分注し、 37°C、 CO 5%濃度下にて前培養した。 24時間後、上述の培地に加え
2
て quercetin 25 μ M、 trans— resveratrol 25 μ M¾た iiquercetin 25 μ Mおよび trans— re sveratrol 25 μ Mのいずれかを含む新しい EMEM 5mL (フエノール成分の溶媒として 用いた DMSOを最終濃度で 0.1%(v/v)含む)、あるいは controlとして DMSO 0.1% (v/v) のみを含む EMEM 5mLと交換し、培養した。培地交換から 48時間後、トリパンブルー 染色後、血球計算板により細胞数を計測し、各条件について controlの細胞数を 100 として比較を行った。
[0057] 2. SPRシグナル測定
装置は上述した SPRセンサー (角度調節型)を用い、 37.0°C温調下にて SPR共鳴角 測定を行った。生存率測定と同様にして、 2(106 cells/mlの細胞懸濁液を調製し、そ の細胞懸濁液 100 Lを SPR測定用金基板上に滴下し、 37°C、 CO濃度 5%下にて 20
2
時間培養した。 20時間後、基板を SPRセンサー上のプリズムに設置し、基板上を 5mL の EMEMで満たし、測定を開始した。測定開始 10分後、 quercetin 25 μ M、 trans- resv eratrol 25 μ Mまたは quercetin 25 μ Mおよび trans- resveratrol 25 μ Mのいずれかを 含む新しい EMEM 5mL (フエノール成分の溶媒として用いた DMSOを最終濃度で 0.1% (v/v)含む)、あるいは controlとして DMSO 0.1% (v/v)のみを含む EMEM 5mLと交換し 、さらに 50分間、 SPR共鳴角変化の測定を続けた。
[0058]
細胞数計数力も算出した、コントロールを 100とした場合の生存率を図 12に示す。 Q uercetin、もしくは trans- resveratrolのみを投与した条件では、それぞれ、 76.1%、 56.2 %の生存率であった力 両者を併用投与した条件ではがん細胞生存率 17.8%と、両者 の抗がん作用効果の和(32.3%の生存率に相当)以上の抗がん作用効果が得られた 。このことから、 quercetinと trans- resveratrolの併用による抗がん作用の相乗効果が 確認された。
[0059] 図 13に、 quercetin, trans- resveratrol、それぞれ単独で、ならびに両者を併用投与 した際の SPR共鳴角経時変化測定の結果を示す。 quercetin、 trans-resveratrolの単 剤投与では、投与後 50分で 0.05° 程度の SPR共鳴角変化であつたが、両者の併用 投与では 0.2° 以上の共鳴角変化が観察された。実施例 2に示すように、 quercetinお よび trans-resveratrolの投与により得られる SPR共鳴角の変化は、がん細胞に対する アポトーシス誘導時のミトコンドリア膜電位の変化 (脱分極)である。本実施例により、 2 種類の物質を併用投与した場合でも、がん細胞に対するアポトーシス誘導の相乗効 果に対応したミトコンドリア膜電位の変化を検出できることが示された。
[0060] さらに、図 13に示した SPR共鳴角変化から、標準法 (細胞数測定により算出した生存 率)の結果との相関を求めるため、試薬投与後、 35〜40分の SPR共鳴角変化力も SPR 共鳴角変化速度 (deg/sec)を算出した。この値は、標準法により求めた生存率と相関 を示した(図 14)。 SPR法による生細胞のミトコンドリア膜電位変化測定により、 2種の試 薬の併用による相乗効果の場合でも、迅速かつ定量的に杭がん作用の効果が予測 可能であった。
実施例 4
[0061] [RNA干渉 (RNA interference: RNAi)の評価]
small interfering RNA (siRNA)による RNA干渉(RNA interference: RNAi)を評価した 。細胞内においてアポトーシス抑制に働いているとされる分子 Be卜 2を RNAiによりノッ クダウンし、アポトーシスを誘導した。その際のミトコンドリア分極状態の変化を SPRに よりモニタリングし、その変化量から siRNAの有効性を評価した。 Be卜 2の siRNAによる ポト ~~シス ¾|導につ ヽて ίま Feng, L.F. et al. Bcl~2 induced apoptosis and increase d sensitivity to 5— fluorouracil and HCPT in HepG2 cells. J. Drug Targeting 14, 21—2 6 (2006)に示されている。
[0062] 1.纏 沏 I から ίΒした牛. 率による siRNAの 言平俯標 法)
siRNAの有効性評価は、 Be卜 2がノックダウンされた結果、アポトーシスにより減少し た細胞数を計数する方法により行った。供試細胞にはヒトすい臓がん細胞 MIA PaCa -2を用いた。培地として、 FBS 10% (v/v)、ペニシリン 50units/mL、ストレプトマイシン 5 0 μ g/mL、非必須アミノ酸 100 μ Μを含む ΕΜΕΜを用いて、 1 X 10* cells/mLの細胞懸 濁液として調製し、 24ゥエルシヤーレディッシュにそれぞれ lmLずつ分注し、 37°C、 5% CO濃度下にて前培養した。 24時間後、上述の培地にカ卩えて Be卜 2 siRNA (配列は G
2
enes Dev. 17(7)832-837 (2003)を参照) 50nM、 100nMまたは controlとして siRNAの導 入に用いるトランスフエクシヨン試薬を siRNA導入時と同濃度含む EMEM lmLと交換 し、 ¾·養した (Cell Signaling Technology社 SignalSilence Be卜 2 siRNA Kit (Human Specific)をキットのプロトコルに従って使用)。培地交換から 48時間後、トリパンブルー 染色後、血球計算板により細胞数を計測し、各条件について controlの細胞数を 100 として比較を行った。
[0063] 2. SPRシグナル測定
装置は角度調節型 SPRセンサーを用い、 37.0°C温調下にて SPR共鳴角測定を行つ た。生存率測定と同様にして、 2(106 cells/mlの細胞懸濁液を調製し、その細胞懸濁 液 100 Lを SPR測定用金基板上に滴下し、 37°C、 CO濃度 5%下にて 20時間培養した
2
。 20時間後、 Bcl-2 siRNA 50nM、 100nMもしくは controlとして siRNAの導入に用いるト ランスフエクシヨン試薬のいずれかを含む新しい EMEM 5mLと交換し、さらに 1時間、ト ランスフエクシヨンバッファーの共存による外乱を落ち着力せるため、また、試薬投与 後からミトコンドリア膜電位が検出感度に達するほどの大きさ、頻度で起こるまでのタ ィムラグを考慮して、 37°C、 CO濃度 5%下にて静置した後、供試細胞の応答を、 SPR
2
共鳴角変化として 50分間測定した。
[0064] 腿
標準法の結果 (細胞数計数力も算出した、コントロールを 100とした場合の生存率)を 図 15に示す。 Control条件に対し、 Bcl-2 siRNA 50nMを投与した条件では、 80%、 100 nMでは 70%程度の生存率となり、 siRNAによるアポトーシス誘導により細胞数が減少し ていることが確認された。
[0065] 図 16に、各濃度 siRNAもしくはトランスフエクシヨン試薬のみ投与 1時間後からの SPR 共鳴角経時変化の結果を示す。いずれの条件においても測定開始 15分後付近から 安定した SPR共鳴角変化が観察され、 Be卜 2 siRNA 50nMもしくは 100nMを投与した 条件では、ミトコンドリア膜電位変化 (脱分極)を示す SPR共鳴角の増加が確認された 。このことから、アポトーシス抑制因子である Be卜 2を RNAiによりノックダウンすることで 誘導されるアポトーシスをミトコンドリア膜電位の変化として検出できることが示された
[0066] さらに、図 16に示した SPR共鳴角変化から、標準法 (細胞数測定により算出した生存 率)の結果との相関を求めるため、測定開始後、 35〜40分の SPR共鳴角変化より SPR 共鳴角変化速度 (deg/sec)を算出した。この値は、標準法により求めた生存率と相関 を示した(図 17)。以上の結果より、 SPR法により RNAiを非常に迅速に定量評価できる ことが示された。
実施例 5
[0067] [ミトコンドリア膜電位変化加速法]
測定に用いる細胞外溶液の pHの制御により、生細胞中のミトコンドリア膜電位変化 速度を制御する方法を示す。 pH変化は、細胞外溶液 (緩衝液)外部の大気中の CO
2 濃度の制御によって細胞外溶液の平衡を変化させることにより行った。
[0068] 装置は上述の SPRセンサー (蛍光顕微鏡付属、角度調節型)を用い、 37.0°C温調下 にて行った。供試細胞にはヒトすい臓がん細胞 MIA PaCa-2を用いた。 37°C、 CO 5%
2 濃度下において、非必須アミノ酸 100 μ Μ、ペニシリン 50 units/mL、ストレプトマイシ ン g/mL、 FBS10% (v/v)を含む液体培地 EMEMにて培養した。ミトコンドリア膜電 位変化の誘導には、アポトーシス誘導試薬である trans-resveratrolを用いた。測定時 の pHの変化 CO濃度および 0濃度の制御は流量計により、各種気体の流量を調節
2 2
して行った。
[0069] 1. SPRシグナル測定
SPRシグナル測定は、細胞の接着した基板をマッチングオイル (屈折率 1.51)を介して SPRセンサーのプリズム上に設置し、基板上を 5 mLの EMEMで満たし、 SPRシグナル 測定を開始した。測定開始 10分後に、 EMEMをー且除き、 100 Mの trans-resveratr olを含む新しい EMEM 5mLと交換した後、 50分間測定を続けた。測定は、 Air下(大 気下。 0 : 20%、 CO : 0.035%)、 CO 2.5%下、または CO 5.0%下で、それぞれ行った。
2 2 2 2
CO濃度の調節は、流量計で空気 (大気)と CO ボンべ力 供給される CO ガスを混
2 2 2 合することで行った。結果を図 18に示す。
[0070] 2.带光試靠 TC- 1によるミトコンドリア分極状能のモニタリング
シャーレから細胞を剥離後、液体培地により細胞懸濁液とし、液体培地により適宜 細胞濃度 2xl06 cells/mLに調製した。調製後、細胞懸濁液 100 Lを基板上に滴下し 、 37°C、 CO濃度 5%下にて 20時間培養した。 20時間後、基板上を 5 mLの PBSですす ぎ、培地と接着しな力つた細胞を除いた。ミトコンドリアの分極状態測定用の蛍光指 示薬として、 JC- 1 iodideを 5 M含む EMEM 100 L (最終濃度 0.1%の DMSOを含む )を滴下し、 COインキュベーター内(37°C、 CO濃度 5%)に 30分間置いた。 30分後、
2 2
基板上を 5 mLの PBSですすぎ、装置測定部に設置した後、 5 mLの EMEMで満たし、 37°C下にて、上記 1.の場合と同様に、 Air下(大気下。 0 : 20%、 CO : 0.035%)、 CO 2.
2 2 2
5%下、または CO 5.0%下で、それぞれ測定を行った。蛍光強度観察は、観察倍率 20
2
0倍で行った。励起フィルタ一により 485 ±20 nmを透過し、蛍光検出には 575〜640 n m透過のフィルターセットを用いた。測定開始 10分後、 EMEMを除き、 100 Mの tran s- resveratrolを含む新しい EMEM 5 mL (溶媒として用いた DMSOを最終濃度で 0.1%(v /v)含む)と交換した後、 50分間測定を続けた。試薬投与直後の細胞膜表面への試薬 の結合や細胞膜の分極状態変化などのミトコンドリア分極状態モニターに好ましくな い細胞応答が収束した後、 5分間程度 (実施例 5では、試薬投与後 35〜40分)におけ る、蛍光標識により得られたミトコンドリア分極状態変化を観察した。各時間における 蛍光観察画像中から、ミトコンドリア膜電位の大きさに対応する蛍光強度の積算値を 算出した。積算値の経時変化を求めたもの (ミトコンドリア膜電位の 35〜40分における 変化速度)と、 CO濃度との関係を図 19に示す。
2
図 18に示すように、 Air (大気下。 0 : 20%、 CO : 0.035%) >CO 2.5% > CO 5.0%の
2 2 2 2 順に、 CO濃度が高くなるにつれ、 SPR共鳴角変化の増加として検出されるミトコンドリ
2
ァ膜電位の減少が加速する結果となった。図 19に示されるように蛍光試薬を用いたミ トコンドリア膜電位変化測定においても同様の結果であった。測定開始前、細胞外溶 液である培地 (緩衝液)の pHは 7.3であったのに対し、 50分にわたる測定の終了時、培 地は、大気下で pH 8.4付近、 CO 2.5%下で pH 7.8付近、 CO 5%下で pH 7.5付近で
2 2
あった。 pHの変化は直線的変化である。この結果力も培地の pHの変化速度を算出 すると、大気下で約 pH0.022/min、 CO 2.5%下で約 pH0.01/min、 CO 5%下で約 pHO.
2 2
004/minとなる。 pHの変化速度と、ミトコンドリア膜電位の 35〜40分における変化速度 との関係を図 20に示す。図 20から、 pHの変化速度とミトコンドリア膜電位の変化速度 が相関することが示された。 一般にミトコンドリアの膜電位を測定する実験系である、 CO濃度 5%の状態の pH変
2
化速度 (本実施例 5では pH0.004/min)の条件を、ミトコンドリア膜電位の変化が加速し ていない状態とすると、これ以上の PH変化速度の条件ではミトコンドリア膜電位変化 が加速されることになる。 pH変化速度とミトコンドリア膜電位の変化速度との関係は、 細胞の種類や刺激の種類によって多少異なるが、 pH変化速度が速いほどミトコンドリ ァ膜電位の変化速度が速ぐミトコンドリアの分極状態の変化の検出に好ましいと考 えられる。

Claims

請求の範囲
[1] 生細胞内のミトコンドリアの分極状態の変化を検出する方法であって、
表面プラズモン共鳴装置を用いて、該生細胞のミトコンドリアの分極状態の変化に 起因する表面プラズモン共鳴角の変化を検出する工程を含む、前記方法。
[2] 生細胞内のミトコンドリアの分極状態の変化を検出する方法であって:
生細胞へ一または複数の物質を供与する工程;および
生細胞に物質を供与した後に、ミトコンドリアの分極状態の変化に起因する表面プ ラズモン共鳴角の変化を検出する工程
を含む、前記方法。
[3] ミトコンドリアの分極状態の変化に起因する表面プラズモン共鳴角の変化を検出す る工程力 表面プラズモン共鳴角の変化がミトコンドリアの分極状態の変化にのみに 起因する時間帯におけるその変化を検出する工程である、請求項 2に記載の方法。
[4] ミトコンドリアの分極状態の変化に起因する表面プラズモン共鳴角変化を検出する 工程が、物質を供与した時カゝら 20分経過以後、より好ましくは 30分経過以後、さらに 好ましくは 35分経過以後の時間帯のその変化を検出する工程である、請求項 2に記 載の方法。
[5] 検出した表面プラズモン共鳴角の変化が一定である時間帯であって、少なくとも 1 分間、好ましくは 3分間以上、より好ましくは 5分間以上、さらに好ましくは 10分間以上 である時間帯を特定し、その時間帯における表面プラズモン共鳴角の変化率を求め る工程をさらに含む、請求項 3または 4に記載の方法。
[6] 特定した時間帯が、その時間帯における表面プラズモン共鳴角の変化率が、該時 間帯を含みそれより 10%以上長い時間帯における表面プラズモン共鳴角の変化率の
± 10%以内である、請求項 5に記載の方法。
[7] 求めた変化率と、ミトコンドリアの分極状態に与える影響の程度が分力つている物質 について同様に求めた表面プラズモン共鳴角の変化率とを比較する工程を含む、請 求項 4に記載の方法。
[8] 前記生細胞が、培養がん細胞である、請求項 1または 2に記載の方法。
[9] 前記生細胞内のミトコンドリアの分極状態の変化が、以下の工程 (a)〜(! 1)、好ましく は (a)〜(d)の、 1つ以上、好ましくはいずれか 1つ:
(a)生細胞へ脂質代謝促進物質を供与する工程;
(b)生細胞へ細胞のアポトーシス誘導物質を供与する工程;
(c)生細胞へ siRNAを供与する工程;
(d)生細胞へ抗がん物質を供与する工程;
(e)生細胞へ発がん物質を供与する工程;
(D生細胞へ細胞の分裂活性に影響を与える物質を供与する工程;
(g)生細胞へ内分泌かく乱物質を供与する工程;
(h) )生細胞へ細胞に対する毒性物質を供与する工程;
の後に検出される、請求項 1または 2に記載の方法。
前記表面プラズモン共鳴角の変化を検出する工程における細胞外溶液の PHの変化 速度が、 pH0.005/min以上、より好ましくは pHO.Ol/min以上、さらにより好ましくは pHO .02/min以上である請求項 1または 2に記載の方法。
PCT/JP2006/324960 2005-12-14 2006-12-14 細胞内ミトコンドリアの分極モニタリング WO2007069692A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007550225A JP5486768B2 (ja) 2005-12-14 2006-12-14 細胞内ミトコンドリアの分極モニタリング
US12/086,394 US20110003321A1 (en) 2005-12-14 2006-12-14 Monitoring of Intercellular Mitochondorial Polarization
EP06834714A EP1961824A4 (en) 2005-12-14 2006-12-14 MONITORING INTRA-CELLULAR MITOCHONDRIAL LOCALIZATION
CN2006800520438A CN101336297B (zh) 2005-12-14 2006-12-14 细胞内线粒体的极化监控

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005360458 2005-12-14
JP2005-360458 2005-12-14

Publications (1)

Publication Number Publication Date
WO2007069692A1 true WO2007069692A1 (ja) 2007-06-21

Family

ID=38162994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324960 WO2007069692A1 (ja) 2005-12-14 2006-12-14 細胞内ミトコンドリアの分極モニタリング

Country Status (5)

Country Link
US (1) US20110003321A1 (ja)
EP (1) EP1961824A4 (ja)
JP (2) JP5486768B2 (ja)
CN (1) CN101336297B (ja)
WO (1) WO2007069692A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122016A (ja) * 2007-11-16 2009-06-04 Kyushu Univ 判定装置、選定装置、判定方法、細胞生産方法、プログラム及び記録媒体
JP2014221735A (ja) * 2013-05-13 2014-11-27 株式会社エヌ・エル・エー ショウガオール類を有効成分として含有する肝細胞活性化剤、並びに該肝細胞活性化剤を含有する固形製剤、液状製剤及び機能性食品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881355B (zh) * 2021-01-17 2022-03-18 复旦大学 用于细胞内pH和氧气浓度同时测量的双参数荧光纳米传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085089A (ja) 2000-09-06 2002-03-26 Japan Science & Technology Corp 細胞活性の評価方法
WO2004042079A1 (en) * 2002-11-07 2004-05-21 Unisearch Limited Induction of the mitochondrial permeability transition
JP2005017081A (ja) 2003-06-25 2005-01-20 Japan Science & Technology Agency 抗がん作用物質のスクリーニング方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085089A (ja) 2000-09-06 2002-03-26 Japan Science & Technology Corp 細胞活性の評価方法
WO2004042079A1 (en) * 2002-11-07 2004-05-21 Unisearch Limited Induction of the mitochondrial permeability transition
JP2005017081A (ja) 2003-06-25 2005-01-20 Japan Science & Technology Agency 抗がん作用物質のスクリーニング方法及び装置

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL BIOCHEMISTRY, vol. 302, 2002, pages 28 - 37
ANTICANCER: APOPTOSIS, vol. 10, 2005, pages 687 - 705
APOPTOSIS, vol. 10, 2005, pages 687 - 705
ARCHIVES OF TOXICOLOGY, vol. 74, no. 2, 2000, pages 99 - 105
BIOLOGICAL SIGNALS AND RECEPTORS, vol. 10, 2001
BIOLOGICAL SIGNALS AND RECEPTORS, vol. 10, 2001, pages 176 - 188
BIOPHYSICAL JOURNAL, vol. 82, no. 1, 2002, pages 1673
CANCER RESEARCH, vol. 58, no. 13, 1998, pages 2869 - 2875
CANCER RESEARCH, vol. 65, no. 21, 2005, pages 9861 - 9867
FEBS LETTERS, vol. 170, no. 1, 1984, pages 181 - 185
FENG, L.F. ET AL.: "Bcl-2 induced apoptosis and increased sensitivity to 5-fluorouracil and HCPT in HepG2 cells.", J. DRUG TARGETING, vol. 14, 2006, pages 21 - 26
GENES DEV., vol. 17, no. 7, 2003, pages 832 - 837
HAIL N.: "Mitochondria: A novel target for the chemoprevention of cancer", APOPTOSIS, vol. 10, no. 4, August 2005 (2005-08-01), pages 687 - 705, XP019204728 *
HEPATOLOGY, vol. 31, 2000, pages 1141 - 1152
HIDE M. ET AL.: "Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cell using a surface plasmon resonance-based biosensor", ANALYTICAL BIOCHEMISTRY, vol. 302, 2002, pages 28 - 37, XP002392579 *
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, no. 7, 2005, pages 6181 - 6196
KOSAIHIRA A. ET AL.: "Identification of molecular mechanism of apoptosis via mitochondrial pathway detected by Surface Plasmon Resonance", 20TH IUBMB INTERNATIONAL CONGRESS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY AND 11TH FAOBMB CONGRESS, 2006, pages A14667 (3P-A-352), XP003013984 *
LIPID METABOLISM: BIOPHYSICAL JOURNAL, vol. 82, no. 1, 2002, pages 1673
MOURIA M. ET AL.: "Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis", J. CANCER, vol. 98, no. 5, 2002, pages 761 - 769, XP003013983 *
MOURIA, M. ET AL.: "Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome c release and apoptosis", INT. J. CANCER., vol. 98, 2002, pages 761 - 769
NATURE, vol. 411, 2001, pages 494 - 498
TOXIC AGENT: HEPATOLOGY, vol. 31, 2000, pages 1141 - 1152
TOXICOLOGICAL SCIENCE, vol. 86, no. 2, 2005, pages 436 - 443
TOXICOLOGICAL SCIENCES, vol. 86, no. 2, 2005, pages 436 - 443

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122016A (ja) * 2007-11-16 2009-06-04 Kyushu Univ 判定装置、選定装置、判定方法、細胞生産方法、プログラム及び記録媒体
JP2014221735A (ja) * 2013-05-13 2014-11-27 株式会社エヌ・エル・エー ショウガオール類を有効成分として含有する肝細胞活性化剤、並びに該肝細胞活性化剤を含有する固形製剤、液状製剤及び機能性食品

Also Published As

Publication number Publication date
EP1961824A1 (en) 2008-08-27
JPWO2007069692A1 (ja) 2009-05-28
CN101336297B (zh) 2011-09-07
US20110003321A1 (en) 2011-01-06
JP2012093369A (ja) 2012-05-17
EP1961824A4 (en) 2009-04-08
JP5514233B2 (ja) 2014-06-04
CN101336297A (zh) 2008-12-31
JP5486768B2 (ja) 2014-05-07

Similar Documents

Publication Publication Date Title
Inada et al. Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
Palmer et al. Autofluorescence Spectroscopy of Normal and Malignant Human Breast Cell Lines¶
Shevchenko et al. Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior
Kafitz et al. Developmental profile and properties of sulforhodamine 101—Labeled glial cells in acute brain slices of rat hippocampus
US6251688B1 (en) Method and apparatus for measurement of binding between a protein and a nucleotide
Marandi et al. Two-photon chloride imaging in neurons of brain slices
JP2017198680A (ja) 生細胞干渉法を介した急速超並列単細胞薬物反応測定法
Li et al. Astrocyte VAMP3 vesicles undergo Ca2+‐independent cycling and modulate glutamate transporter trafficking
US7903239B2 (en) Porous photonic crystal with light scattering domains and methods of synthesis and use thereof
JP2011514963A (ja) 細胞応答のデュアル検出システム及び方法
Han et al. Specific detection of aquaporin-2 using plasmonic tilted fiber grating sensors
Li et al. Engineering of NEMO as calcium indicators with large dynamics and high sensitivity
JP2012510059A (ja) 肝細胞毒性分析
JP5514233B2 (ja) 細胞内ミトコンドリアの分極モニタリング
Nishijima et al. Development of signaling echo method for cell-based quantitative efficacy evaluation of anti-cancer drugs in apoptosis without drug presence using high-precision surface plasmon resonance sensing
Lee et al. Ultrasensitive hypoxia sensing at the single-molecule level via super-resolution quantum dot-linked immunosandwich assay
Kosaihira et al. Rapid and quantitative method for evaluating the personal therapeutic potential of cancer drugs
Sun et al. Graphene-based confocal refractive index microscopy for label-free differentiation of living epithelial and mesenchymal cells
Mettikolla et al. Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence
McLennan et al. A biophotonic approach to measure pH in small volumes in vitro: Quantifiable differences in metabolic flux around the cumulus‐oocyte‐complex (COC)
Meng et al. A sensitive mitochondrial thermometry 2.0 and the availability of thermogenic capacity of brown adipocyte
Pereira-Rodrigues et al. Combined system for the simultaneous optical and electrochemical monitoring of intra-and extracellular NO produced by glioblastoma cells
Rong et al. Real‐time detection of single‐living pancreatic β‐cell by laser tweezers Raman spectroscopy: High glucose stimulation
Fritzsche et al. A cell-based sensor system for toxicity testing using multiwavelength fluorescence spectroscopy
WO2005001472A1 (ja) 抗がん作用物質のスクリーニング方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550225

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3592/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200680052043.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12086394

Country of ref document: US