WO2007063939A1 - テトラフルオロシクロブテノンの製造方法 - Google Patents

テトラフルオロシクロブテノンの製造方法 Download PDF

Info

Publication number
WO2007063939A1
WO2007063939A1 PCT/JP2006/323930 JP2006323930W WO2007063939A1 WO 2007063939 A1 WO2007063939 A1 WO 2007063939A1 JP 2006323930 W JP2006323930 W JP 2006323930W WO 2007063939 A1 WO2007063939 A1 WO 2007063939A1
Authority
WO
WIPO (PCT)
Prior art keywords
pentafluorocyclobutene
reaction
parts
tetrafluorocyclobutenone
acid
Prior art date
Application number
PCT/JP2006/323930
Other languages
English (en)
French (fr)
Inventor
Tatsuya Sugimoto
Takanobu Mase
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2007547995A priority Critical patent/JPWO2007063939A1/ja
Publication of WO2007063939A1 publication Critical patent/WO2007063939A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/687Unsaturated compounds containing a keto groups being part of a ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/513Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being an etherified hydroxyl group

Definitions

  • the present invention relates to a method for producing tetrafluorocyclobutenone useful as a plasma reaction gas, a raw material for producing a fluorine-containing polymer, and a fluorine-containing pharmaceutical intermediate used in the field of semiconductor device production.
  • Non-Patent Document 1 includes reacting hexafluorocyclobutene and benzyl alcohol in the presence of potassium hydroxide, By synthesizing 1-benzyloxypentafluorocyclobutene and heating the resulting 1-benzyloxypentafluorocyclobutene to 150 ° C in the presence of concentrated sulfuric acid, the desired product is recovered. It is stated that it can be obtained at a rate of 77.5%.
  • Non-Patent Document 2 discloses that 1-methoxypentafluorocyclobutene obtained by reacting hexafluorocyclobutene with sodium methoxide to synthesize 1-methoxypentafluorocyclobutene. By treating bromocyclobutene with thiosulfur trioxide, the desired product is obtained in a yield of 27%. Is stated.
  • this method has a low yield, is highly toxic and corrosive, and uses sulfur trioxide, so that tetrafluorocyclobutenone is produced on an industrial production scale. Is not preferred.
  • Non-patent literature l Dokl. Akad. Nauk SSSR, 1976, 229 (4), 870 (Chemical Abstract, Vol. 85, 176886 ⁇ )
  • Non-Patent Document 2 Journal of American Chemical Society, 1977, 99 (4), 121 8
  • the present invention has been made in view of the above-described prior art, and is an industrial product of tetrafluorocyclobutenone that can produce tetrafluorocyclobutenone with high yield and good reproducibility. It is an object to provide a simple manufacturing method.
  • the present inventors brought the target tetrafluorocyclobutenone into contact with a compound represented by the formula (1) described later with an acid catalyst.
  • the present inventors have found that it can be produced with high yield and good reproducibility, and have completed the present invention.
  • the formula (1) the formula (1)
  • an acid having an acid dissociation constant (pKa) at 25 ° C. of 13 or less as an acid catalyst in dimethyl sulfoxide.
  • the step of bringing the compound represented by the formula (1) into contact with an acid catalyst is a step of bringing the compound represented by the above formula (1) into contact with an acid catalyst in an aromatic hydrocarbon having a boiling point of 100 ° C. or higher. It is preferable that
  • the production method of the present invention tetrafluorocyclobutenone having good reproducibility can be produced with high yield under relatively mild conditions. Therefore, the production method of the present invention is useful as an industrial production method of tetrafluorocyclobutenone.
  • the method for producing tetrafluorocyclobutenone according to the present invention includes a step of bringing a compound represented by the above formula (1) (hereinafter sometimes referred to as “I compound (1)”) into contact with an acid catalyst. It is characterized by including.
  • the production method of the present invention uses compound (1) as a starting material.
  • R represents a methyl group, an ethyl group, an isopropyl group, an n-propyl group having 1 to 3 carbon atoms; a methoxy group, an ethoxy group, an isopropoxy group, or an n-propoxy group. 1 to 3 alkoxy groups or a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • n represents an integer of 1 to 5, and n is preferably 1 from the viewpoint of obtaining the target product with good yield and production cost.
  • the plurality of R may be the same or different.
  • Specific examples of the compound (1) include 1 (4 methylbenzyloxy) pentafluorocyclobutene, 1 (3 methylbenzyloxy) pentafluorocyclobutene, 1 (2— Methylbenzyloxy) pentafluorocyclobutene, 1- (4-ethylbenzyloxy) pentafluorocyclobutene, 1- (3-ethylbenzyloxy) pentafluorocyclobutene, 1— (2 Ethylbenzyloxy) pentafluorocyclobutene, 1— (4-Isopropylpyrbenzyloxy) pentafluorocyclobutene, 1— (3-Isopropylbenzyloxy) pentafluorocycl
  • compound (1) has a hexafluorocyclobutene represented by formula (3) and a target compound represented by formula (4) as shown in the following reaction formula. It can be obtained by reacting benzyl alcohol having a corresponding substituent (hereinafter referred to as “compound (4)”) in the presence of a base.
  • Examples of the base used include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; sodium carbonate Metal carbonates such as sodium, potassium carbonate and calcium carbonate; metal alkoxides such as sodium methoxide, sodium ethoxide, magnesium ethoxide and potassium t-butoxide; metal hydrides such as sodium hydride, potassium hydride and calcium hydride Organic bases such as triethylamine, pyridine, 1,8 diazabicyclo [5.4.0] undec-7 (DBU), and the like.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide
  • sodium carbonate Metal carbonates such as sodium, potassium carbonate and calcium carbonate
  • metal alkoxides such as sodium methoxide, sodium ethoxide, magnesium ethoxide and potassium t-butoxide
  • the amount of the base used is usually 1 to 3 equivalents relative to hexafluorocyclobutene.
  • the reaction for obtaining the compound (1) is preferably carried out in a solvent.
  • the solvent used is not particularly limited as long as it is inert to the reaction.
  • -tolyl such as acetonitrile Ethers such as hydrofuran; amides such as dimethylformamide; sulfoxides such as dimethyl sulfoxide; water; These solvents can be used alone or in combination of two or more.
  • the reaction temperature is a force depending on the type of the compound (4) to be used, etc. Usually-50 ° C to + 70 ° C, preferably 30 ° C to + 30 ° C.
  • reaction time is usually 30 minutes to 24 hours, preferably 1 hour to 10 hours.
  • Hexafluorocyclobutene as a starting material is a known compound, such as commercially available 1,2-dichlorocyclohexanefluorocyclobutane, 1,2-dibromohexafluorocyclobutane.
  • Etc. can be obtained by subjecting to a known dehalogenation reaction.
  • Examples of the method for dehalogenation include a method of reacting 1,2-dichlorocyclohexafluorocyclobutane with zinc.
  • 2-methylbenzyl alcohol, 4-methylbenzyl alcohol, 2-methoxybenzyl alcohol, 4-methoxybenzyl alcohol, 2-ethoxybenzyl alcohol, 4-methoxybenzyl are easily available industrially. Alcohol is preferred.
  • the production method of the present invention is characterized in that it includes a step of bringing compound (1) into contact with an acid catalyst (hereinafter, the reaction in this step is referred to as "main reaction").
  • the reaction mechanism of this reaction can be considered as follows. That is, first, when the compound (1) comes into contact with the acid catalyst, the substituted benzyl group is released very efficiently from the compound (1) depending on the molecular structure of the compound (1). Pentafluorocyclobutene is produced. This 1-hydroxypentafluorocyclobutene is then unstable Therefore, it is considered that hydrogen fluoride is easily detached and tetrafluorocyclobutenone which is the target product is generated.
  • the acid catalyst used in this reaction is not particularly limited as long as it is an acidic substance, but from the viewpoint of obtaining the desired product in good yield, the acid release constant (pKa at 25 ° C) in dimethyl sulfoxide (DMSO). ) Is preferably 13 or less.
  • the lower limit of pKa is usually about 1.
  • the values of the acid dissociation constant are, for example, hydrochloric acid: 2.1, sulfuric acid: 1.4, acetic acid: 12.6, methanesulfonic acid: 1.6, dichloroacetic acid: 6.4 (according to the above chemical manual).
  • an acid that dissociates in multiple stages such as sulfuric acid, it is preferable to use an acid having a first dissociation constant of 13 or less.
  • the acid dissociation constant is defined as follows for an n-valent acid (H A; n is the number of hydrogen atoms). That is, the first step of dissociation equilibrium of HA in dimethyl sulfoxide (DMSO) is as follows:
  • these acids may be appropriately selected according to the type of compound (1) and the like.
  • hydrochloric acid, Hydrochloric acid, sulfuric acid and methanesulfonic acid are preferred, with sulfuric acid, methanesulfonic acid and dichloroacetic acid being preferred.
  • the amount of the acid to be used is generally 0.001 to 5 equivalents, preferably 0.01 to 2 equivalents, relative to compound (1). By using an acid in such a range, the target product can be obtained with good yield.
  • This reaction can be carried out without solvent or in a solvent.
  • the solvent to be used is not particularly limited as long as it is an inert solvent for the reaction.
  • a solvent that reacts with hydrogen fluoride since hydrogen fluoride is by-produced as described above, it is not preferable to use a solvent that reacts with hydrogen fluoride.
  • an ether solvent is not preferable because the ether moiety is cleaved.
  • Aromatic hydrocarbons having a boiling point of 100 ° C or higher include toluene, xylene, trimethylbenzene, ethylbenzene, benzotrifluoride, hexafluorometaxylene, tris (trifluoromethyl) benzene, naphthalene, 1- Examples include methylnaphthalene, 2-methylnaphthalene, chlorobenzene, dichlorobenzene, trichlorobenzene, benzonitrinole, and tetralin. These solvents can be used alone or in combination of two or more.
  • dichlorobenzene and 1-methylnaphthalene which are preferable to xylene, dichlorobenzene, and 1-methylnaphthalene having a relatively high boiling point, is particularly preferable.
  • the aromatic hydrocarbon may be used alone as a reaction solvent, but may be mixed with an aromatic hydrocarbon having a boiling point of less than 100 ° C or any other solvent other than the aromatic hydrocarbon. It may be used.
  • the amount of the solvent to be used is not particularly limited, but from the viewpoint of production cost, ease of handling, etc., usually 0.01 to: LOO weight per 1 part by weight of compound (1) Parts, preferably 0.1 to 20 parts by weight.
  • the reaction temperature is usually 15 to 200 ° C, preferably 50 to 150 ° C.
  • the reaction time is usually 30 minutes to 24 hours, depending on the reaction scale.
  • the pressure in the reaction system may be normal pressure, it is preferable to reduce the pressure in the reaction system in order to quickly take out the target product out of the reaction system, as will be described later.
  • reducing the pressure inside the reaction system it is necessary to set the reaction temperature so that the target product distills out of the reaction system quickly and the solvent used does not distill out of the system, and select the degree of pressure reduction. There is.
  • Tetrafluorocyclobutenone which is the target product, is a compound having a relatively low boiling point and a low boiling point. Therefore, as a method for completely collecting tetrafluorocyclobutenone distilled from the reaction system force, a method using a cooled trap or the like is preferable.
  • a method of collecting using a cooled trap or the like there is no particular limitation, and a known trap method usually used for obtaining an object having a low boiling point can be employed.
  • a reaction vessel equipped with a simple distillation apparatus connected to a trap tube can be used to carry out the reaction while trapping the target product. More specifically, the inside of the system is depressurized using a vacuum pump from the out side (outlet side) of the simple distillation apparatus, and the trap tube is immersed in a refrigerant (for example, a dry ice-ethanol bath). By cooling, the reaction can be carried out while trapping the low boiling point target product.
  • a refrigerant for example, a dry ice-ethanol bath
  • the collected target product is preferably purified by performing normal rectification in order to further increase the purity.
  • the reaction is conducted without taking out the target product out of the reaction system while continuing the reaction.
  • the reaction solution is neutralized with an alkali, followed by usual operations such as washing with water, drying and distillation. It is of course possible to carry out the processing operation to produce the object.
  • Examples of the method for removing hydrogen fluoride include a method in which a substance that can remove hydrogen fluoride and is inert to this reaction is present in the reaction system.
  • Such substances include compounds that form complex salts with hydrogen fluoride such as sodium fluoride and potassium fluoride; substances that react with hydrogen fluoride such as alumina, molecular sieves, and synthetic zeolite.
  • the amount of the substance that removes hydrogen fluoride may be determined in consideration of the removal ability of the substance to be used, cost, and the like, but it is preferably an excess equivalent to the compound (1). Further, the form of the substance for removing hydrogen fluoride may be in the form of powder or pellets without particular restrictions.
  • the substance that removes hydrogen fluoride is placed in the reaction vessel that performs the reaction and in the trap provided to collect Z or the target substance.
  • the target tetrafluorocyclobutenone can be obtained with good reproducibility.
  • tetrafluorocyclobutenone which is useful as a plasma reaction gas used in the field of semiconductor device production, a raw material for producing a fluoropolymer, and a fluorochemical intermediate, is industrially advantageous. Can be manufactured.
  • the gaseous product emerging from the upper part of the reflux condenser was introduced and collected in a glass trap cooled to dry ice-ethanol (180 ° C).
  • the collected contents were analyzed by gas chromatography.
  • the target product was hexafluorocyclobutene (yield: 53 parts, yield 76%).
  • the yield of 1- (4-methoxybenzyloxy) pentafluorocyclobutene was 74.6% based on the starting hexafluorocyclobutene.
  • the obtained 1-methylnaphthalene solution containing 11- (4-methoxybenzyloxy) pentafluorocyclobutene was directly subjected to the next reaction.
  • the yield of 1- (4-methoxybenzyloxy) pentafluorocyclobutene was 82% based on the raw material hexafluorocyclobutene.
  • the obtained toluene solution containing 11- (4-methoxybenzyloxy) pentafluorocyclobutene was directly subjected to the next reaction.
  • the solid contained in the residue obtained by distilling off the acetonitrile with a reaction force evaporator was collected by filtration.
  • the obtained solid content was washed twice with water and dried over pentylaniline under reduced pressure to obtain 260 parts of the target product, 1-benzyloxypentafluorocyclobutene as white crystals. It was.
  • Example 1 the acid catalyst used was 0.8 part of methanesulfonic acid and 10 parts of dichroic acetic acid. The reaction was carried out in the same manner as in Example 1 except that As a result, 51 parts of the target product, tetrafluorocyclobutenone, was obtained (yield 60%).
  • Comparative Example 1 was performed according to the method described in Non-Patent Document 1.
  • a toluene solution containing 30 parts of 1 benzyloxypentafluorocyclobutene obtained in Production Example 4 10 parts of sodium fluoride, and a commercially available product 24 parts of 95% concentrated sulfuric acid was added, and the contents were stirred at 150 ° C. Stirring was continued for 7 hours, but nothing was collected in the glass trap cooled by a dry ice-ethanol bath (72 ° C). Further, the inside of the glass flask was changed to black.
  • the reaction mixture was analyzed by gas chromatography. Formation of tetrafluorocyclobutenone, the target compound, was not observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、下記に示すように、式(1)で示される化合物を、酸触媒と接触させる工程を含むことを特徴とする、式(2)で表されるテトラフルオロシクロブテノンの製造方法である。本発明によれば、高収率で、再現性よくテトラフルオロシクロブテノンを製造することができる。下記式中、Rは、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、またはハロゲン原子を表し、nは1~5の整数を表す。

Description

テトラフルォロシクロブテノンの製造方法
技術分野
[0001] 本発明は、半導体装置の製造分野で用いるプラズマ反応用ガス、含フッ素ポリマー の製造原料、及び含フッ素医薬中間体等として有用なテトラフルォロシクロブテノン の製造方法に関する。
背景技術
[0002] テトラフルォロシクロブテノンは、
[0003] [化 1]
Figure imgf000003_0001
[0004] で示される含フッ素化合物である。この化合物は、低分子量で適度な沸点(沸点: 45 〜46°C)を有するため、取り扱いが容易であり、半導体装置の製造分野等で利用価 値が高 、ものとして期待されて 、る。
し力しながら、この化合物の製造方法はあまり知られておらず、詳細な研究がなさ れて 、な 、のが実情である。
[0005] 従来のテトラフルォロシクロブテノンの製造方法としては、例えば、非特許文献 1に は、へキサフルォロシクロブテンとベンジルアルコールとを、水酸化カリウム存在下に 反応させて、 1—ベンジルォキシペンタフルォロシクロブテンを合成し、得られた 1— ベンジルォキシペンタフルォロシクロブテンを、濃硫酸存在下、 150°Cに加熱するこ とで、 目的物が収率 77. 5%で得られる旨が記載されている。
[0006] し力しながら、この方法は、反応の再現性に乏しぐ 目的物であるテトラフルォロシク ロブテノンが全く得られな 、場合がある。
[0007] また、非特許文献 2には、へキサフルォロシクロブテンをナトリウムメトキシドと反応さ せて、 1ーメトキシペンタフルォロシクロブテンを合成し、得られた 1ーメトキシペンタフ ルォロシクロブテンを三酸ィ匕硫黄で処理することにより、 目的物が収率 27%で得られ る旨が記載されている。
[0008] し力しながら、この方法は収率が低 、上に、毒性及び腐食性が強 、三酸化硫黄を 使用するため、テトラフルォロシクロブテノンを工業的生産規模で製造する方法として は好ましくない。
従って、高収率で、再現性よくテトラフルォロシクロブテノンを製造できる、テトラフル ォロシクロブテノンの工業的な製造方法の開発が望まれていた。
[0009] 非特許文献 l : Dokl. Akad. Nauk SSSR, 1976, 229 (4) , 870 (Chemical Ab stract, Vol. 85, 176886η)
非特許文献 2 Journal of American Chemical Society, 1977, 99 (4) , 121 8
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上述した従来技術の実情に鑑みてなされたものであり、高収率で、再現 性よくテトラフルォロシクロブテノンを製造できる、テトラフルォロシクロブテノンの工業 的な製造方法を提供することを課題とする。
課題を解決するための手段
[0011] 本発明者らは、上記課題を解決すべく鋭意研究した結果、後述する式(1)で示さ れる化合物を酸触媒と接触させることにより、目的とするテトラフルォロシクロブテノン を、高収率で、再現性よく製造できることを見出し、本発明を完成するに至った。 力べして、本発明によれば、式(1)
[0012] [化 2]
Figure imgf000004_0001
(式中、 Rは、炭素数 1〜3のアルキル基、炭素数 1〜3のアルコキシ基、またはハロゲ ン原子を表し、 nは 1〜5のいずれかの整数を表す。)で示される化合物を、酸触媒と 接触させる工程を含むことを特徴とする、式 (2)
[0014] [化 3]
Figure imgf000005_0001
[0015] で表されるテトラフルォロシクロブテノンの製造方法が提供される。
本発明のテトラフルォロシクロブテノンの製造方法においては、酸触媒として、ジメ チルスルホキシド中、 25°Cにおける酸解離定数 (pKa)が 13以下である酸を用いるこ とが好ましぐ前記式(1)で示される化合物を酸触媒と接触させる工程が、沸点が 10 0°C以上の芳香族炭化水素中、前記式 (1)で表される化合物と酸触媒とを接触させ る工程であることが好ましい。
発明の効果
[0016] 本発明の製造方法によれば、比較的温和な条件で、再現性よぐテトラフルォロシ クロブテノンを収率よく製造することができる。従って、本発明の製造方法は、テトラフ ルォロシクロブテノンの工業的製造方法として有用である。
発明を実施するための最良の形態
[0017] 以下、本発明を詳細に説明する。
本発明のテトラフルォロシクロブテノンの製造方法は、前記式(1)で表される化合物 (以下、「ィ匕合物(1)」ということがある。)を酸触媒と接触させる工程を含むことを特徴 とする。
[0018] 本発明の製造方法は,出発原料として、化合物(1)を用いる。
前記式(1)中、 Rは、メチル基、ェチル基、イソプロピル基、 n—プロピル基の炭素 数 1〜3のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基、 n—プロポキシ基の 炭素数 1〜3のアルコキシ基、又はフッ素原子、塩素原子、臭素原子、ヨウ素原子等 のハロゲン原子を表す。
[0019] nは 1〜5のいずれかの整数を表し、 目的物が収率よく得られる点、及び製造コスト の観点から、 nは 1であるのが好ましい。なお、 nが 2以上のとき、複数の Rは同一であ つても相異なって 、てもよ 、。 [0020] 化合物(1)の具体例としては、 1一(4 メチルベンジルォキシ)ペンタフルォロシク ロブテン、 1一(3 メチルベンジルォキシ)ペンタフルォロシクロブテン、 1一(2—メチ ルベンジルォキシ)ペンタフルォロシクロブテン、 1一(4 ェチルベンジルォキシ)ぺ ンタフルォロシクロブテン、 1一(3 ェチルベンジルォキシ)ペンタフルォロシクロブ テン、 1— (2 ェチルベンジルォキシ)ペンタフルォロシクロブテン、 1— (4—イソプ 口ピルベンジルォキシ)ペンタフルォロシクロブテン、 1— (3—イソプロピルべンジル ォキシ)ペンタフルォロシクロブテン、 1一(2—イソプロピルベンジルォキシ)ペンタフ ルォロシクロブテン、 1— (4— n—プロピルベンジルォキシ)ペンタフルォロシクロブテ ン、 1— (3— n—プロピルベンジルォキシ)ペンタフルォロシクロブテン、 1— (2— n— プロピルベンジルォキシ)ペンタフルォロシクロブテン、 1— (3, 5 ジメチルベンジル ォキシ)ペンタフルォロシクロブテン、 1ー(3, 4 ジメチルベンジルォキシ)ペンタフ ルォロシクロブテン、 1— (2, 6 ジメチルベンジルォキシ)ペンタフルォロシクロブテ ン、 1— (2, 4 ジメチルベンジルォキシ)ペンタフルォロシクロブテン、 1— (2, 4, 6 —トリメチルベンジルォキシ)ペンタフルォロシクロブテン等の、 Rが炭素数 1〜3のァ ルキル基である化合物;
[0021] 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテン、 1一(3—メトキシべ ンジルォキシ)ペンタフルォロシクロブテン、 1一(2—メトキシベンジルォキシ)ペンタ フルォロシクロブテン、 1一(4 エトキシベンジルォキシ)ペンタフルォロシクロブテン 、 1一(3 エトキシベンジルォキシ)ペンタフルォロシクロブテン、 1一(2 エトキシべ ンジルォキシ)ペンタフルォロシクロブテン、 1一(4 イソプロポキシベンジルォキシ) ペンタフルォロシクロブテン、 1一(3 イソプロポキシベンジルォキシ)ペンタフルォロ シクロブテン、 1一(2—イソプロポキシベンジルォキシ)ペンタフルォロシクロブテン、 1一(4— n—プロポキシベンジルォキシ)ペンタフルォロシクロブテン、 1 (3— n— プロポキシベンジルォキシ)ペンタフルォロシクロブテン、 1 (2—n—プロポキシベ ンジルォキシ)ペンタフルォロシクロブテン、 1ー(3, 5 ジメトキシベンジルォキシ)ぺ ンタフルォロシクロブテン、 1ー(3, 4 ジメトキシベンジルォキシ)ペンタフルォロシク ロブテン、 1一(2, 6 ジメトキシベンジルォキシ)ペンタフルォロシクロブテン、 1一(2 , 4 ジメトキシベンジルォキシ)ペンタフルォロシクロブテン、 1— (2, 3, 5 トリメトキ シベンジルォキシ)ペンタフルォロシクロブテン等の、 Rが炭素数 1〜3のアルコキシ 基である化合物;
[0022] 1一(4一フルォロベンジルォキシ)ペンタフルォロシクロブテン、 1一(3 フルォ口べ ンジルォキシ)ペンタフルォロシクロブテン、 1一(2—フルォロベンジルォキシ)ペンタ フルォロシクロブテン、 1一(4 クロ口ベンジルォキシ)ペンタフルォロシクロブテン、 1— (3 クロ口ベンジルォキシ)ペンタフルォロシクロブテン、 1— (2 クロ口べンジル ォキシ)ペンタフルォロシクロブテン、 1一(4 ブロモベンジルォキシ)ペンタフルォロ シクロブテン、 1一(3 ブロモベンジルォキシ)ペンタフルォロシクロブテン、 1一(2— ブロモベンジルォキシ)ペンタフルォロシクロブテン、 1一(4一ョードベンジルォキシ) ペンタフルォロシクロブテン、 1一(3 ョードベンジルォキシ)ペンタフルォロシクロブ テン、 1一(2 ョードベンジルォキシ)ペンタフルォロシクロブテン、 1ー(3, 5 ジク ロロベンジルォキシ)ペンタフルォロシクロブテン、 1— (3, 4—ジクロロべンジルォキ シ)ペンタフルォロシクロブテン、 1ー(2, 6 ジクロ口ベンジルォキシ)ペンタフルォロ シクロブテン、 1— (2, 4 ジクロロベンジルォキシ)ペンタフルォロシクロブテン、 1— (2, 4, 6 トリクロ口ベンジルォキシ)ペンタフルォロシクロブテン、 1— (2, 3, 4, 5- テトラクロ口ベンジルォキシ)ペンタフルォロシクロブテン、 1ー(2, 3, 4, 5, 6 ペン タフルォロベンジルォキシ)ペンタフルォロシクロブテン等の、 Rがハロゲン原子であ る化合物;
[0023] 1一(2—メチルー 4ーメトキシベンジルォキシ)ペンタフルォロシクロブテン、 1一(3 ーメトキシー4 メチルベンジルォキシ)ペンタフルォロシクロブテン、 1一(2 メチル —4 クロ口ベンジルォキシ)ペンタフルォロシクロブテン、 1— (3—クロ口一 4—メチ ルベンジルォキシ)ペンタフルォロシクロブテン、 1一(2 クロロー 4ーメトキシベンジ ルォキシ)ペンタフルォロシクロブテン、 1一(3 クロロー 4ーメトキシベンジルォキシ) ペンタフルォロシクロブテン、 1一(2—メチルー 4ーメトキシー6 クロ口べンジルォキ シ)ペンタフルォロシクロブテン等の、複数の Rが相異なる基である化合物;等が挙げ られる。
[0024] これらの中でも、入手が容易で、収率よく目的物を得ることができることから、 1 (4 メチルベンジルォキシ)ペンタフルォロシクロブテン、 1一(2—メチルベンジルォキ シ)ペンタフルォロシクロブテン、 1一(4 ェチルベンジルォキシ)ペンタフルォロシク ロブテン、 1一(2 ェチルベンジルォキシ)ペンタフルォロシクロブテン、 1一(4ーメト キシベンジルォキシ)ペンタフルォロシクロブテン、 1一(2—メトキシベンジルォキシ) ペンタフルォロシクロブテン、 1一(4 エトキシベンジルォキシ)ペンタフルォロシクロ ブテン、 1一(2—エトキシベンジルォキシ)ペンタフルォロシクロブテンが好ましぐ 1 一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテン、 1一(4 エトキシベン ジルォキシ)ペンタフルォロシクロブテンがより好まし!/、。
[0025] 出発原料である化合物(1)は、下記反応式に示すように、式(3)で表されるへキサ フルォロシクロブテンと、式 (4)で表される、 目的物に対応する置換基を有するベン ジルアルコール (以下、「ィ匕合物 (4)」という。)とを、塩基存在下に反応させることによ り得ることがでさる。
[0026] [化 4]
Figure imgf000008_0001
(3) (4) (1)
[0027] 用いる塩基としては、水酸化ナトリウム、水酸ィ匕カリウム等のアルカリ金属水酸ィ匕物; 水酸化マグネシウム、水酸ィ匕カルシウム等のアルカリ土類金属水酸ィ匕物;炭酸ナトリ ゥム、炭酸カリウム、炭酸カルシウム等の金属炭酸塩;ナトリウムメトキシド、ナトリウム エトキシド、マグネシウムエトキシド、カリウム t—ブトキシド等の金属アルコキシド;水素 化ナトリウム、水素化カリウム、水素化カルシウム等の金属水素化物;トリェチルァミン 、ピリジン、 1, 8 ジァザビシクロ [5. 4. 0]ゥンデセ— 7 ェン(DBU)等の有機塩基 ;等が挙げられる。
塩基の使用量は、へキサフルォロシクロブテンに対して、通常 1〜3当量である。
[0028] 化合物(1)を得る反応は溶媒中で行うのが好ましい。用いる溶媒としては、反応に 不活性なものであれば特に制約はない。例えば、ァセトニトリル等の-トリル類;テトラ ヒドロフラン等のエーテル類;ジメチルホルムアミド等のアミド類;ジメチルスルホキシド 等のスルホキシド類;水;等が挙げられる。これらの溶媒は一種単独で、あるいは二種 以上を混合して用いることができる。
[0029] 反応温度は、用いる化合物 (4)の種類等にもよる力 通常— 50°C〜 + 70°C、好ま しくは 30°C〜 + 30°Cである。
反応時間は、反応規模等にもよるが、通常 30分から 24時間、好ましくは、 1時間〜 10時間である。
[0030] 反応終了後にぉ 、ては、上記のようにして、へキサフルォロシクロブテンと化合物( 4)とを反応させて得られた化合物 (1)を含む反応液に、水及び水と非混和性の有機 溶媒とを添加し、分液して、有機層を分取する。次いで、分取した有機層から化合物 (1)を単離することができる。また、前記水と非混和性の有機溶媒として、次の、酸触 媒と接触させる工程に用いる有機溶媒を使用し、有機層から低沸点物質を除去して 得られる化合物(1)を含む有機溶媒溶液をそのまま次の反応に用いることもできる。
[0031] 出発原料であるへキサフルォロシクロブテンは公知化合物であり、例えば、市販の 1, 2—ジクロ口へキサフノレォロシクロブタン、 1, 2—ジブロモへキサフルォロシクロブ タン等を、公知の脱ハロゲンィ匕反応に付すことにより得ることができる。脱ハロゲンィ匕 する方法としては、例えば、 1, 2—ジクロ口へキサフルォロシクロブタンを亜鉛と反応 させる方法等が挙げられる。
化合物 (4)としては、工業的に入手容易であることから、 2—メチルベンジルアルコ ール、 4 メチルベンジルアルコール、 2—メトキシベンジルアルコール、 4ーメトキシ ベンジルアルコール、 2 エトキシベンジルアルコール、 4—メトキシベンジルアルコ ールが好適である。
[0032] 本発明の製造方法は、化合物(1)と酸触媒とを接触させる工程を含むことを特徴と する(以下、この工程における反応を「本反応」という)。
本反応の反応機構は、次のように考えることができる。すなわち、まず、化合物(1) が酸触媒と接触することにより、化合物(1)の分子構造に依存して、化合物(1)から 置換べンジル基が非常に効率的に遊離し、 1—ヒドロキシペンタフルォロシクロブテン が生成する。次いで、この 1ーヒドロキシペンタフルォロシクロブテンは不安定である ため、容易にフッ化水素が脱離して、目的物であるテトラフルォロシクロブテノンが生 成するものと考えられる。
[0033] 本反応に用いる酸触媒としては、酸性物質であれば、特に制約されないが、目的 物を収率よく得る観点から、ジメチルスルホキシド (DMSO)中、 25°Cにおける酸解 離定数 (pKa)が 13以下である酸が好ましい。なお、 pKaの下限は、通常、 1程度で ある。
[0034] ジメチルスルホキシド中における酸解離定数の値は、 Pure & Applied Chemi stry、 Vol. 49, pp963— 968、化学便覧 改訂 5版 基礎編 Π354ページ(日本ィ匕 学会編、丸善株式会社出版)等に記載されている。
酸解離定数の値は、例えば、塩酸: 2. 1、硫酸: 1. 4、酢酸: 12. 6、メタンスルホン 酸: 1. 6、ジクロロ酢酸: 6. 4である(前記化学便覧による)。なお、硫酸等のように多 段階に解離する酸である場合には、第 1の解離定数が 13以下であるものを用いるの が好ましい。
[0035] 上記酸解離定数は n価の酸 (H A ;nは水素原子の個数)について、以下のように 定義される。すなわち、ジメチルスルホキシド (DMSO)中、 H Aの 1段階目の解離平 衡反応は以下:
[0036] [化 5]
DMSO + HnA ^ HDMSO+ + Hn—,A -
[0037] のようになり、酸解離定数 pKaは以下:
[0038] [化 6] 一 , 〔HDMSO+ 〕〔Hn— A― 〕
Figure imgf000010_0001
[0039] のように定義される。
[0040] 本発明においては、これらの酸を、化合物(1)の種類等に応じて適宜選択して用い ればよい。なかでも、取り扱いが容易で、収率よく目的物が得られることから、塩酸、 硫酸、メタンスルホン酸、ジクロロ酢酸が好ましぐ塩酸、硫酸、メタンスルホン酸がより 好ましい。
[0041] 酸の使用量は、化合物(1)に対して、通常 0. 001〜5当量、好ましくは 0. 01〜2当 量である。このような範囲で酸を使用することにより、収率よく目的物を得ることができ る。
[0042] 本反応は、無溶媒又は溶媒中で行うことができる。
用いる溶媒としては、反応に不活性な溶媒であれば特に制約はない。本反応にお いては、前述のようにフッ化水素が副生するため、フッ化水素と反応する溶媒の使用 は好ましくない。例えば、エーテル系溶媒は、エーテル部分の切断が起こるため好ま しくない。
[0043] また、反応を促進するために高温で反応を行う上では、反応溶媒として、沸点が 10 0°C以上の溶媒の使用が好ましく、酸及びフッ化水素に対して安定であることから、 沸点が 100°C以上の芳香族炭化水素の使用がより好ましい。
[0044] 沸点が 100°C以上の芳香族炭化水素としては、トルエン、キシレン、トリメチルベン ゼン、ェチルベンゼン、ベンゾトリフルオリド、へキサフルォロメタキシレン、トリス(トリフ ルォロメチル)ベンゼン、ナフタレン、 1ーメチルナフタレン、 2—メチルナフタレン、ク ロロベンゼン、ジクロロベンゼン、トリクロ口ベンゼン、ベンゾニトリノレ、テトラリン等が挙 げられる。これらの溶媒は 1種単独で、あるいは 2種以上を混合して用いることができ る。
これらの中でも、相対的に沸点の高い、キシレン、ジクロロベンゼン、 1 メチルナフ タレンが好ましぐジクロロベンゼン、 1ーメチルナフタレンの使用が特に好ましい。
[0045] 前記芳香族炭化水素は、反応溶媒として、単独で用いてもよいが、沸点が 100°C 未満の芳香族炭化水素や、芳香族炭化水素以外のその他の任意の溶媒と混合して 用いてもよい。
[0046] 溶媒を用いる場合、溶媒の使用量は、特に制限されないが、製造コスト及び取り扱 い易さ等の観点から、化合物(1) 1重量部に対し、通常 0. 01〜: LOO重量部、好ましく は 0. 1〜 20重量部である。
[0047] 反応温度は、通常、 15〜200°C、好ましくは 50〜150°Cである。 反応時間は、反応規模等にもよるが、通常 30分から 24時間である。
[0048] 反応系内の圧力は、常圧でも構わないが、後述するように、目的物を反応系外へ 速やかに取り出す上では、反応系内を減圧にするのが好ましい。反応系内を減圧に する場合には、目的物が反応系外へ速やかに留出し、かつ、使用する溶媒が系外 へ留出しないような反応温度を設定して、減圧度を選択する必要がある。
[0049] 目的物であるテトラフルォロシクロブテノンは、比較的沸点の低 、ィ匕合物である。そ のため、反応系力 留出したテトラフルォロシクロブテノンを完全に捕集する方法とし ては、冷却したトラップ等を使用して捕集する方法が望ましい。
[0050] 冷却したトラップ等を使用して捕集する方法としては、特に制約はなぐ通常、低沸 点の目的物を得る場合に用いる公知のトラップ方法が採用できる。例えば、トラップ 管を接続した単蒸留装置を取り付けた反応容器を使用して、目的物をトラップしなが ら反応を行うことができる。より具体的には、単蒸留装置のアウト側(取り出し口側)か ら真空ポンプを使用して系内を減圧とし、トラップ管を冷媒 (例えば、ドライアイス—ェ タノール浴など)中に浸して冷却することにより、生成する低沸点の目的物をトラップ しながら、反応を行うことができる。
反応終了後、捕集した目的物は、更に純度を高めるために、通常の精留を行なって 精製することも好ましい。
[0051] 本発明においては、反応を継続しながら目的物を反応系外へ取り出すことなく反応 を行い、反応終了後に、反応溶液をアルカリで中和し、水洗、乾燥、蒸留等の通常の 後処理操作を行ない、目的物を製造することも、もちろん可能である。
[0052] また、本反応においてはフッ化水素が副生する。副生するフッ化水素は、そのまま 反応系内に留めておいても構わないが、人体に有害であり、金属等を腐食するため
、なるべく速やかに除去するのが好ましい。
[0053] フッ化水素を除去する方法としては、例えば、反応系内に、フッ化水素を除去する ことができ、かつ本反応に不活性な物質を存在させる方法が挙げられる。
そのような物質としては、フッ化ナトリウム、フッ化カリウム等のフッ化水素と複合塩を 形成する化合物;アルミナ、モレキュラーシーブス、合成ゼォライト等のフッ化水素と 反応する物質;等が挙げられる。 [0054] フッ化水素を除去する物質の使用量は、用いる物質の除去能力、コスト等を考慮し て決定すればよいが、化合物(1)よりも過剰当量であるのが好ましい。また、フッ化水 素を除去する物質の形態は、特に制約はなぐ粉末状であっても、ペレット状であつ ても構わない。
フッ化水素を除去する物質は、反応を行う反応容器及び Z又は目的物を捕集する ために設けたトラップ内に配置する。
[0055] 本発明の製造方法によれば、再現性よく目的とするテトラフルォロシクロブテノンを 得ることができる。
本発明の製造方法によれば、半導体装置の製造分野で用いるプラズマ反応用ガス 、含フッ素ポリマーの製造原料、及び含フッ素医薬中間体等として有用な、テトラフル ォロシクロブテノンを工業的に有利に製造することができる。
実施例
[0056] 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に よって何ら制限されるものではない。なお、「部」は、重量部を表す。
[0057] 以下の実施例および比較例における、ガスクロマトグラフィー、ガスクロマトグラフィ 一一質量分析 (GC/MS)、 19F— NMR、及び IRの測定は、下記の測定装置を使 用して行った。
[0058] (1)ガスクロマトグラフィー
検出器: HP— 6850(ヒューレットパッカード社製)
カラム: NB— 1 (GLサイエンス社製)
カラム温度:初期温度 40°Cで 10分間保持した後、 20°CZ分で 240°Cまで昇温し、 同温度を 10分間保持した。
(2) GC/MS
GC部分: HP— 6890(ヒューレットパッカード社製)
MS部分: 5773, NETWORK (ヒューレットパッカード社製)
(3) 19F-NMR
GX— 500 (日本電子社製)
(4) IR FT— IR8100 (島津製作所社製)
[0059] [製造例 1]へキサフルォロシクロブテンの製造
滴下ロート、攪拌機、及び還流冷却器を取り付けたガラス製反応器内に、亜鉛末 5 6部、トリエチレングリコールジメチルエーテル(トリグライム) 80部、及び酢酸 8部を入 れた。全容を 15°Cで攪拌しながら、 1, 2 ジクロロへキサフルォロシクロブタン (シン タエスト社製) 100部を、滴下ロートを使用して滴下し、滴下終了後、 70°Cまで昇温し 、 3時間さらに撹拌した。
その間、還流冷却器上部から出てくるガス状生成物を、ドライアイス—エタノール (一 80°C)に冷却したガラス製トラップ内に導入し捕集した。捕集した内容物をガスクロマ トグラフィ一にて分析した結果、 目的物のへキサフルォロシクロブテンであった (収量 : 53部、収率 76%)。
[0060] [製造例 2] 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテン溶液の調製 滴下ロートを取り付けたガラス製反応器内に、製造例 1の反応を繰り返して得られた へキサフルォロシクロブテン 140部、及びァセトニトリル 40部を入れ、 30°Cに冷却 した。
一方、 4—メトキシベンジルアルコール 127部、水酸化カリウム 51部、ァセトニトリル 5 6部、及び水 40部力 なる混合物を滴下ロートに入れた。次いで、反応器内の内容 物をポリテトラフルォロエチレン製攪拌子で攪拌しながら、滴下ロート内の混合物を 2 時間かけて滴下した。滴下終了後、反応温度を室温 (約 25°C)まで徐々に昇温しな がら、さらに 6時間撹拌した。
反応終了後、反応混合物の一部を採取し、このもののガスクロマトグラフィ一一質量 分析 (GCZMS)を行なった結果、 目的物である 1一(4ーメトキシベンジルォキシ)ぺ ンタフルォロシクロブテンが生成していることが確認された。
[0061] 次いで、水 210部及び 1—メチルナフタレン 51部を反応混合物に添カ卩し、 目的物 である 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテンを有機層に抽出 した。有機層を lkPaの減圧下として低沸点物質 (ァセトニトリルなど)を除去すること により、 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテンを含む 1ーメチ ルナフタレン溶液 220部を得た。 ガスクロマトグラフィー分析による、 1一(4ーメトキシベンジルォキシ)ペンタフルォロ シクロブテンの収率は、原料のへキサフルォロシクロブテン基準で 74. 6%であった。 得られた 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテンを含む 1ーメ チルナフタレン溶液はそのまま次の反応に付した。
GC/MS (EI-MS) :m/z 280(M+), 157, 121
[0062] [製造例 3] 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテン溶液の調製 滴下ロートを取り付けたガラス製反応器内に、製造例 1の反応を繰り返して得られた へキサフルォロシクロブテン 100部、及びァセトニトリル 20部を入れ、 30°Cに冷却 した。一方、 4—メトキシベンジルアルコール 63部、水酸ィ匕カリウム 26部、ァセトニトリ ル 28部、及び水 20部力もなる混合物を滴下ロートに入れた。次いで、反応器内の内 容物をポリテトラフルォロエチレン製攪拌子で攪拌しながら、滴下ロート内の混合物 を 1時間かけて滴下した。滴下終了後、反応温度を室温 (約 25°C)まで徐々に昇温し ながらさらに 4時間撹拌した。
反応終了後、反応混合物の一部を採取し、ガスクロマトグラフィ一—質量分析 (GC /MS)を行なった結果、 目的物である 1一(4ーメトキシベンジルォキシ)ペンタフル ォロシクロブテンが生成して 、ることが確認された。
[0063] 次いで、得られた反応混合物に水 100部及びトルエン 26部を添カ卩し、 目的物であ る 1— (4—メトキシベンジルォキシ)ペンタフルォロシクロブテンを有機層に抽出した 。有機層を 3kPaの減圧下として有機低沸点物質 (ァセトニトリルなど)を除去すること により、 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテンを含むトルエン 溶液 152部を得た。
ガスクロマトグラフィー分析による、 1一(4ーメトキシベンジルォキシ)ペンタフルォロ シクロブテンの収率は、原料のへキサフルォロシクロブテン基準で 82%であった。 得られた 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテンを含むトルェ ン溶液はそのまま次の反応に付した。
[0064] [製造例 4] 1 ベンジルォキシペンタフルォロシクロブテンの合成
滴下ロートを取り付けたガラス製反応器内に、製造例 1の反応を繰り返して得られた へキサフルォロシクロブテン 200部と、ァセトニトリル 120部を入れ、—40°Cに冷却し た。一方、ベンジルアルコール 135部、水酸化カリウム 74部、ァセトニトリル 25部、及 び水 50部を滴下ロートに入れた。反応器内の内容物をポリテトラフルォロエチレン製 攪拌子で攪拌しながら、滴下ロート内の混合物を 2. 5時間かけて滴下した。滴下終 了後、反応温度を 0°Cまで徐々に昇温しながらさらに 7時間撹拌した。
反応終了後、反応液力 エバポレーターにてァセトニトリルを留去して得られた残 留物に含まれる固形物を濾取した。得られた固形分を水で 2回洗浄し、減圧下、五酸 ィ匕ニリン上で乾燥して、 目的物である 1一べンジルォキシペンタフルォロシクロブテン 260部を白色結晶として得た。
[0065] [実施例 1]
ガラス製トラップを接続した単蒸留装置を取り付けたガラス製フラスコに、製造例 2 で得た 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテンの 1 メチルナフ タレン溶液 100部を入れ、ここにメタンスルホン酸 0. 8部を添カ卩した。単蒸留装置の アウト側を真空ポンプで lOkPaに減圧しながら、ガラス製フラスコ内の内容物を 100 °Cにて 4時間撹拌した。その間、単蒸留装置力も得られるガス状の反応生成物を、ド ライアイス一エタノール浴(一 72°C)により冷却したガラス製トラップ内に補集した。ガ ラス製トラップ内に捕集された液状物は 58部であった。このものをガスクロマトグラフィ 一により分析した結果、 目的物であるテトラフルォロシクロブテノンであった。 1— (4 —メトキシベンジルォキシ)ペンタフルォロシクロブテンを基準とした、テトラフルォロ シクロブテノンの収率は 69%であった。
[0066] この操作を、同条件で再度行なったところ、収率 67%で目的物であるテトラフルォ ロシクロブテノンが得られ、再現性のあることが確認された。
このものの19 F— NMR、 IR、 GC/MSデータを以下に示す。
[0067] 19F-NMR(CFC1 , CC1 ) δ ppm; - 100 (s, IF) , - 111. 3 (s, IF) , —114. 9
3 4
(s, 2F)
IR (gas) ; 1860, 1725、 1400、 1140、 1025cm"1
GC/MS (EI-MS) :m/z 140(M+), 112, 93
[0068] [実施例 2]
実施例 1において、用いる酸触媒をメタンスルホン酸 0. 8部カもジクロ口酢酸 10部 に代えた以外は実施例 1と同様にして反応を行った。その結果、 目的物であるテトラ フルォロシクロブテノン 51部が得られた(収率 60%)。
[0069] [実施例 3]
ガラス製トラップを接続した単蒸留装置を取り付けたガラス製フラスコに、製造例 3 で得た 1一(4ーメトキシベンジルォキシ)ペンタフルォロシクロブテンのトルエン溶液 1 00部を入れ、ここにメタンスルホン酸 1. 5部を添加した。単蒸留装置のアウト側を、真 空ポンプで lOkPaに減圧しながら、反応混合物を、 100°Cにて 7時間撹拌した。この 間、単蒸留装置力もガス状物として得られる反応生成物を、ドライアイス—エタノール 浴(一 72°C)により冷却したガラス製トラップ内に補集した。ガラス製トラップ内に捕集 された液状物は 24部であった。このものをガスクロマトグラフィーにより分析した結果 、 目的物であるテトラフルォロシクロブテノンであった。 1一(4ーメトキシベンジルォキ シ)ペンタフルォロシクロブテンを基準とした収率は 34%であった。
[0070] [比較例 1]
比較例 1は、非特許文献 1に記載された方法に準じて行った。ガラス製トラップを接 続した単蒸留装置を取り付けたガラス製フラスコに、製造例 4で得た 1 ベンジルォ キシペンタフルォロシクロブテン 30部を含むトルエン溶液、フッ化ナトリウム 10部、及 び市販の 95%濃硫酸 24部を入れ、 150°Cにて内容物を攪拌した。撹拌を 7時間継 続したが、ドライアイス—エタノール浴(一 72°C)により冷却したガラス製トラップ内に は何も補集されな力つた。また、ガラス製フラスコ内は黒色に変色していた。反応混 合物をガスクロマトグラフィーにより分析した力 目的物であるテトラフルォロシクロブ テノンの生成は認められなかった。
[0071] [比較例 2]
ガラス製トラップを接続した単蒸留装置を取り付けたガラス製フラスコに、製造例 4 で得た 1 ベンジルォキシペンタフルォロシクロブテン 30部、フッ化ナトリウム 10部、 市販の 95%濃硫酸 24部、及びトルエン 20部を入れ、 70°Cにて内容物を攪拌した。 撹拌を 9時間継続した力 ドライアイス一エタノール浴(一 72°C)により冷却したガラス 製トラップ内には何も補集されな力つた。また、ガラス製フラスコ内は黒色に変色して いた。反応混合物をガスクロマトグラフィー分析したところ、 目的物であるテトラフルォ ロシクロブテノンの生成は認められず、原料の 1一べンジルォキシペンタフルォロシク ロブテンの分解が認められた。
比較例 1、 2の実験結果では、 1一べンジルォキシペンタフルォロシクロブテンを原 料として用いた場合には、 目的とするテトラフルォロシクロブテノンの生成は確認する ことができな力 た。

Claims

請求の範囲 [1] 式 (1)
[化 1]
Figure imgf000019_0001
(式中、 Rは、炭素数 1〜3のアルキル基、炭素数 1〜3のアルコキシ基、またはハロゲ ン原子を表し、 nは 1〜5のいずれかの整数を表す。)で示される化合物を、酸触媒と 接触させる工程を含むことを特徴とする、式 (2)
[化 2]
Figure imgf000019_0002
で表されるテトラフルォロシクロブテノンの製造方法。
[2] 前記酸触媒として、ジメチルスルホキシド中、 25°Cにおける酸解離定数 (pKa)が 1 3以下である酸を用いることを特徴とする請求項 1に記載の製造方法。
[3] 前記式(1)で示される化合物を酸触媒と接触させる工程が、沸点が 100°C以上の 芳香族炭化水素中で行われる請求項 1または 2に記載の製造方法。
PCT/JP2006/323930 2005-11-30 2006-11-30 テトラフルオロシクロブテノンの製造方法 WO2007063939A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007547995A JPWO2007063939A1 (ja) 2005-11-30 2006-11-30 テトラフルオロシクロブテノンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005345073 2005-11-30
JP2005-345073 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007063939A1 true WO2007063939A1 (ja) 2007-06-07

Family

ID=38092273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323930 WO2007063939A1 (ja) 2005-11-30 2006-11-30 テトラフルオロシクロブテノンの製造方法

Country Status (2)

Country Link
JP (1) JPWO2007063939A1 (ja)
WO (1) WO2007063939A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043034A (ja) * 2008-08-14 2010-02-25 Nippon Zeon Co Ltd 含水素フルオロオレフィン化合物の製造方法
CN108906115A (zh) * 2018-06-19 2018-11-30 宇极(廊坊)新材料有限公司 一种用于合成1,2,3,3,4,4-六氟环丁烯的催化剂、其制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BEKKER R.A. ET AL.: "Perfluorinated alicyclic enols", DOKLADY AKADEMII NAUK SSSR, vol. 229, no. 4, 1976, pages 870 - 873, XP003014003 *
LINDNER P.E. ET AL.: "Highly Fluorinated Cycopentanones and Their Enols", J. ORG. CHEM., vol. 61, no. 15, 1996, pages 5109 - 5115, XP003014004 *
LINDNER P.E. ET AL.: "Novel Keto-Enol Systems: Cyclobutane Derivatives", J. AM. CHEM. SOC., vol. 118, no. 11, 1996, pages 2556 - 2563, XP003014002 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043034A (ja) * 2008-08-14 2010-02-25 Nippon Zeon Co Ltd 含水素フルオロオレフィン化合物の製造方法
CN108906115A (zh) * 2018-06-19 2018-11-30 宇极(廊坊)新材料有限公司 一种用于合成1,2,3,3,4,4-六氟环丁烯的催化剂、其制备方法及应用
CN108906115B (zh) * 2018-06-19 2021-07-02 泉州宇极新材料科技有限公司 一种用于合成1,2,3,3,4,4-六氟环丁烯的催化剂、其制备方法及应用

Also Published As

Publication number Publication date
JPWO2007063939A1 (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
KR101045717B1 (ko) 헥사플루오로-1,3-부타디엔의 제조 방법
GB2539158A (en) Bis(1, 1-dichloro-3,3,3-trifluoropropyl)ether and method for producing same
CN110637002B (zh) 六氟-1,3-丁二烯的制造方法
TW201119997A (en) Method for the manufacture of fluorinated ethylene carbonates
EP0180057A1 (en) Process for the preparation of halo aromatic compounds
JP5266902B2 (ja) 含フッ素オレフィン化合物の製造方法
JP2006342059A (ja) クロロフルオロブタンの製造方法
WO2011021491A1 (ja) ヘキサフルオロアセトン一水和物の製造方法
JP4923184B2 (ja) クロロエチレンカーボネートの製造方法
JP4922181B2 (ja) 1,2,2,2−テトラフルオロエチルジフルオロメチルエーテルの製造のための方法
WO2014003109A1 (ja) 1,3,3,3-テトラフルオロプロペンの製造方法
WO2007063939A1 (ja) テトラフルオロシクロブテノンの製造方法
EP0372621B1 (en) Preparation of difluorobenzenes containing electron withdrawing substituents
JP2828775B2 (ja) 1,1―ジクロロ―1―フルオロエタンの製造法
EP0197869B1 (fr) Procédé de préparation de dérivés pentafluoroéthoxy et pentafluoroéthylthiobenzéniques
JP2003040835A (ja) ブロモジフルオロ酢酸化合物の製造方法
KR20170133386A (ko) 불소화알칸의 제조 방법, 아미딘 염기의 분리, 회수 방법, 및 회수 아미딘 염기의 사용 방법
TW201930246A (zh) 用於製備鹵代苯之方法
JP2001247493A (ja) オクタフルオロシクロペンテンの製造方法
US6203671B1 (en) Method of producing fluorinated compounds
JP6074670B2 (ja) ペルフルオロアルケニルオキシ基含有アレーン化合物の製造法
JP2017530997A (ja) ハロ置換トリフルオロアセトフェノンを調製する方法
JP5521625B2 (ja) ジフルオロ酢酸エステルの製造方法
US11584702B2 (en) Process for producing trifluoroiodomethane (CF3I) from trifluoroacetic anhydride (TFAA)
JP2013112610A (ja) モノフルオロメタンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007547995

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833733

Country of ref document: EP

Kind code of ref document: A1