WO2007063686A1 - ゴム補強用コード - Google Patents

ゴム補強用コード Download PDF

Info

Publication number
WO2007063686A1
WO2007063686A1 PCT/JP2006/322303 JP2006322303W WO2007063686A1 WO 2007063686 A1 WO2007063686 A1 WO 2007063686A1 JP 2006322303 W JP2006322303 W JP 2006322303W WO 2007063686 A1 WO2007063686 A1 WO 2007063686A1
Authority
WO
WIPO (PCT)
Prior art keywords
strand
strands
twisted
cord
core
Prior art date
Application number
PCT/JP2006/322303
Other languages
English (en)
French (fr)
Inventor
Hideki Imanishi
Mitsuharu Akiyama
Hiroshi Iizuka
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to US12/084,538 priority Critical patent/US7814740B2/en
Priority to JP2007547884A priority patent/JP4801675B2/ja
Priority to CA002628805A priority patent/CA2628805A1/en
Priority to EP06823207.3A priority patent/EP1980657B8/en
Priority to CN2006800416468A priority patent/CN101305120B/zh
Publication of WO2007063686A1 publication Critical patent/WO2007063686A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0613Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the rope configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1044Rope or cable structures twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1052Rope or cable structures twisted using lang lay, i.e. the wires or filaments being inclined relative to the rope axis
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1056Rope or cable structures twisted using alternate lay, i.e. the wires or filaments in the strands being oppositely inclined relative to the rope axis
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1064Rope or cable structures twisted characterised by lay direction of the strand compared to the lay direction of the wires in the strand
    • D07B2201/1068Rope or cable structures twisted characterised by lay direction of the strand compared to the lay direction of the wires in the strand having the same lay direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2057Cores characterised by their structure comprising filaments or fibers resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure

Definitions

  • the present invention relates to a rubber reinforcing cord.
  • Japanese Patent Laid-Open No. 2001-114906 discloses a rubber reinforcing cord having excellent bending fatigue resistance, in which a twisted strand is used for a core material (inner layer) and a side material (outer layer). It is.
  • Japanese Patent Application Laid-Open No. 2004-11076 discloses a rubber reinforcing cord using strands having different twisting directions as a core material and a side material and excellent in bending fatigue resistance and dimensional stability. It is shown.
  • the present invention has been made paying attention to such conventional problems, and one of its purposes is a cord for rubber reinforcement excellent in bending fatigue resistance without deteriorating dimensional stability. It is to provide.
  • a first rubber reinforcing cord of the present invention includes a core strand including a plurality of strands (A), and a plurality of strands (B) arranged around the core strand.
  • the strand (A) is composed of a plurality of reinforcing fibers (A) and is twisted, and the plurality of strands (A) are twisted in the core strand.
  • the strand (B) is composed of a plurality of reinforcing fibers (B) and is twisted, and the plurality of strands (B) are twisted and arranged around the core strand.
  • the first rubber reinforcing cord of the present invention satisfies the following (i) and (ii) at least one configuration (configuration (i) and Z or (ii)) in which force is also selected.
  • a plurality of the strands (B) have an upper twist direction that is the same as a plurality of the strands (B) force selected. At least one strand (B) has a lower twist direction, and the strand (B) has a lower twist direction. The number is greater than the number of twists of the strand (A).
  • the plurality of strands (B) have an upper twist direction that is the same as a plurality of the strands (B) force selected by at least one selected strand (B), and the strands (B)
  • the upper twist number is larger than the upper twist number of the strand (A).
  • the number of twists of the strand (A) refers to the number of twists of the strand (A) before twisting the strand (A).
  • the number of twists of the strand (A) means the number of twists of the strand (A) in the core strand after the strands (A) and (B) are twisted together.
  • the second rubber reinforcing cord of the present invention includes a rubber reinforcing material including one core fiber (a) and a plurality of strands (b) arranged around the core fiber (a).
  • the core fiber (a) is twisted, and the strand (b) is composed of a plurality of reinforcing fibers (b).
  • a plurality of the strands (b) are twisted and arranged around the core fiber (a), and a plurality of the strands (b) are twisted in a plurality of directions.
  • the twist direction of at least one strand (b) selected from the strand (b) is the same, and the number of twists of the strand (b) is larger than the number of twists of the core fiber (a)! /, .
  • the number of twists of the core fiber (a) is not the number of twists before twisting the strand (b).
  • the core fiber in the rubber reinforcing cord after twisting together with the strand (b) The number of twists in (a).
  • FIG. 1 is a view schematically showing an example of a guide used for manufacturing a rubber reinforcing cord of the present invention.
  • the first reinforcing cord of the present invention for reinforcing rubber includes a core strand including a plurality of strands (A) and a plurality of strands (B) disposed around the core strand.
  • the strand (A) is composed of a plurality of reinforcing fibers (A) and is twisted. In the core strand, the multiple strands (A) are twisted.
  • the strand (B) is composed of a plurality of reinforcing fibers (B) and is twisted.
  • the plurality of strands (B) are twisted and arranged around the core strand.
  • the twisting direction of the plurality of strands (B) is the same as the twisting direction of at least one strand (B) selected from the plurality of strands (B). Further, the first reinforcing cord of the present invention has a lower twist number S of the strand (B) S than the twist number of the strand (A), and Z or an upper twist number strand of the strand (B) ( It is larger than the number of upper twists in A).
  • the shearing force acting on the adhesive layer (for example, the RFL layer), which is the cause of the cord breakage when the cord is bent, often constitutes the outermost layer of the cord.
  • the maximum value was obtained at the boundary between the lower twisted yarns.
  • the stress generated inside the core was not the dominant factor in the code destruction. Therefore, in order to reduce the shearing force that causes the cord to break, it is only necessary to realize a cord configuration that minimizes the shearing force between the twisted yarns that constitute the outermost layer of the cord.
  • the shearing force between the lower twisted yarns constituting the outermost layer of the cord can be reduced, and the cord is less damaged by bending fatigue. Code can be realized. Therefore, according to the present invention, it is possible to extend the life of the cord in a situation where bending fatigue occurs. Further, according to the present invention, it is possible to suppress the decrease in tensile strength and the elongation of the cord.
  • Examples of the reinforcing fibers (A) constituting the core strand include glass fibers, carbon fibers, aramid fibers such as polyparaphenylene-benzobisoxazole fibers (PBO fibers), nylon fibers, and steel fibers. be able to.
  • Examples of the reinforcing fiber (B) constituting the strand (B) include glass fiber, carbon fiber, a polyamide fiber such as PBO fiber, nylon fiber, and steel fiber.
  • Examples of the glass fiber include E glass fiber, K glass fiber, U glass fiber, S glass fiber, R glass fiber, and T glass fiber. Glass fiber is usually composed of a number of filaments
  • the reinforcing fiber (A) and the reinforcing fiber (B) may be the same or different.
  • Reinforcing fiber (A) Z Reinforcing fiber (B) preferred examples of combinations include: E glass fiber ZE glass fiber, PBO fiber ZE glass fiber, carbon fiber ZE glass fiber, PBO fiber ZU glass fiber , K glass fiber, ZK glass fiber, and the like.
  • the core strand is usually composed of 1 to 12 (eg, 1 to 3) strands (A).
  • a plurality of strands (A) are twisted to form a core strand.
  • the number of twists of the strand (A) is usually in the range of 0.1 times Z25mm to 10 times Z25mm, for example, 0.5 times Z25mm to 6.0 times Z25mm.
  • the twisting direction of the strand (A) may be the S direction or the Z direction.
  • the number of twists of the strand (A) is usually in the range of 0.1 times Z25mm to 10 times Z25mm.
  • the range is 0.5 times Z25 mm to 6.0 times Z25 mm.
  • the peripheral strands surrounding the core strand are usually composed of 5 to 24 (for example, 6 to 15) strands (B).
  • a plurality of strands (B) are twisted so as to surround the core strand to form a peripheral strand.
  • the rubber reinforcing cord of the present invention may be provided with an even number (for example, 6, 8, 16) of strands (B).
  • the strand (B) twisted in the S direction and the strand (B) twisted in the Z direction may be alternately arranged around the core strand!
  • the number of strands of the strand (B) is usually in the range of 0.1 times Z25mm to 10 times Z25mm, for example, 0.5 times Z25mm to 6.0 times Z25mm.
  • the twisting direction of the strand (B) may be the S direction, the Z direction, or the strands in the S direction and the strands in the Z direction may be mixed.
  • the number of twists of the strand (B) is usually in the range of 0.1 times Z25mm to 10 times Z25mm, for example, 0.5 times Z25mm to 6.0 times Z25mm.
  • the twist direction of the strand (B) may be the same as or different from the twist direction of the strand (A).
  • the upper twist direction of the strand (B) is made the same as the lower twist direction of at least one strand (B), a rubber reinforcing cord having excellent bending fatigue resistance can be obtained.
  • strand (A) / strand (B) 3 strands 8 strands 3 strands 12 strands 12 strands 15 strands 3 Z9, 7 Z 12, 7 Z11, 12 Z14, etc.
  • the number of twists of the strand (B) is greater than the number of twists of the strand (A)! /
  • the number of twists of the strand (B) is, for example, below the strand (A).
  • the number of twists is 1.1 to 100 times (for example, 2 to 12 times).
  • the number of twists of the strand (B) is larger than the number of twists of the strand (A).
  • the number of twists of the strand (B) is 1.1.
  • the range is double to 100 times (for example, 1.5 to 12 times).
  • the second reinforcing cord of the present invention for reinforcing rubber includes one core fiber (a) and a plurality of strands (b) arranged around the core fiber (a).
  • the core fiber (a) is twisted.
  • the strand (b) is composed of a plurality of reinforcing fibers (b) and is twisted.
  • the plurality of strands (b) are twisted and arranged around the core fiber (a).
  • the twisting direction of the plurality of strands (b) is the same as the twisting direction of at least one strand (b) selected from the plurality of strands (b).
  • the number of strands of the strand (b) is larger than the number of strands of the core fiber (a).
  • the core fiber (a) for example, polyparaphenylene-benzobenzoxazole fiber (P
  • the core fiber (a) is
  • a single strand may be used.
  • the fibers and the structure constituting the strand (b) are the same as the strands of the first rubber reinforcing cord (B
  • the core fiber (a) and the reinforcing fiber (b) may be the same or different.
  • Examples of preferred combinations of core fiber (a) Z reinforcing fiber (b) include, for example, E glass fiber ZE glass fiber, PBO fiber ZE glass fiber, carbon fiber Z
  • E glass fiber PBO fiber ZU glass fiber, K glass fiber ZK glass fiber, and various combinations.
  • the number of twists of the core fiber (a) is usually in the range of 0.1 times Z25mm to 10 times Z25mm, for example, 0.5 times Z25mm to 6.0 times Z25mm. As long as the configuration of the present invention is satisfied, the twisting direction of the core fiber (a) may be the S direction or the Z direction.
  • the peripheral strands surrounding the core fiber (a) are usually composed of 5 to 24 (eg, 6 to 15) strands (b).
  • a plurality of strands (A) are twisted so as to surround the core fiber (a) to form a peripheral strand.
  • the rubber reinforcing cord of the present invention may include an even number (for example, 6, 8, 12, 16) of strands (b).
  • strands (b) twisted in the S direction and strands (b) twisted in the Z direction may be alternately arranged around the core fiber (a)!
  • the number of twists of the strand (b) is usually in the range of 0.1 times Z25mm to 10 times Z25mm, for example, 0.5 times Z25mm to 6.0 times Z25mm.
  • the twisting direction of the strand (b) may be the S direction or the Z direction.
  • the number of twists of the strand (b) is usually in the range of 0.1 times Z25mm to 10 times Z25mm, for example, 0.5 times Z25mm to 6.0 times Z25mm.
  • the twisting direction of the strand (b) may or may not be the same as the twisting direction of the core fiber (a), but it is the same as the twisting direction of the strand (b). Is better in bending fatigue resistance.
  • the number of strands of the strand (b) is larger than the number of strands of the core fiber (a). For example, 1.1 to 100 times (for example, 2 to 12 times) the number of strands of the core fiber (a) ).
  • the reinforcing fibers and the strands may be bonded with an adhesive or the like.
  • an adhesive generally used for bonding reinforcing fibers of the rubber reinforcing cord can be applied.
  • a coating film (overcoat layer) may be formed on the surface of the rubber reinforcing cord.
  • the coating film is effective, for example, for enhancing the adhesion with the matrix rubber in which the rubber reinforcing code is embedded.
  • a coating film generally used for rubber reinforcing cords can be applied as the coating film.
  • the coating film can be formed, for example, by applying a mixed solution containing chlorosulfonated polyethylene, isocyanate, carbon black, P-trosobenzene, xylene, toluene, and the like to the strand and drying it.
  • the rubber reinforcing cord of the present invention can be manufactured by a general method.
  • the strand can be formed by a general method using a reinforcing fiber.
  • General methods can also be applied to the method of adding twist and the method of applying and drying the adhesive and sizing agent.
  • the reinforcing cord of the present invention can be applied to various rubber products.
  • the reinforcing cord of the present invention is For example, it can be particularly preferably applied to a toothed belt, a conveyor belt, a V-belt, a tire, and the like.
  • the rubber reinforcing cord of the present invention is embedded in a rubber part (matrix rubber) of a rubber product to reinforce the rubber product.
  • Example 1 three glass fibers (a bundle of 200 filaments having an E glass composition and an average diameter of 9 ⁇ m) were aligned, and the aqueous treatment liquid shown in Table 1 was applied and set to 150 ° C. It dried for 1 minute in the drying furnace, and obtained the glass fiber strand (1) in which the coating layer was formed.
  • the solid content in Table 1 means the amount of components other than the solvent'dispersion medium.
  • RF resorcinol-formaldehyde condensate (resorcinol-formalin condensate)
  • the glass fiber strand (1) was twisted 0.4 times Z25mm in the Z direction to obtain a strand (A). Further, the glass fiber strand (1) was twisted 3.0 times Z25 mm in the S direction to obtain a strand (B).
  • Example 1 with the exception of changing the number of twists, twists, and twists of the strands Similarly, rubber reinforcing cords (Example 2 and Comparative Examples 1 to 5) were produced. The configuration of each code is shown in Table 3 below.
  • a glass fiber strand (1) was produced in the same manner as in Example 1. This glass fiber strand (1) was twisted 1.0 times Z25 mm in the Z direction to obtain a strand (A). Further, the glass fiber strand (1) was twisted 2.0 times Z25 mm in the S direction or Z direction to obtain a strand (B).
  • a reinforcing cord of Comparative Example 6 was produced in the same manner as the reinforcing cord of Example 3 except that all the twisting directions of the strand (B) were changed to the Z direction. That is, as shown in Table 3, the configurations of Example 3 and Comparative Example 6 were the same except for the twisting direction of the strand (B).
  • An overcoat layer was formed on each reinforcing cord obtained as described above.
  • the overcoat layer was formed by applying and drying a mixture of chlorosulfonated polyethylene rubber (CSM rubber), isocyanate, p-trosobenzene, carbon black, and xylene.
  • CSM rubber chlorosulfonated polyethylene rubber
  • isocyanate isocyanate
  • p-trosobenzene carbon black
  • xylene xylene
  • a flat belt was produced using a reinforcing cord on which an overcoat layer was formed.
  • a flat belt (length 295 mm, width 9 mm, thickness 3 mm) was fabricated by embedding one reinforcing cord in the matrix rubber having the composition shown in Table 2.
  • the bending resistance of the produced flat belt was evaluated. Specifically, the flat belt was subjected to a bending test device, and the number of times of bending until a crack was found on the belt surface was counted, and this number of times was defined as the bending life.
  • the bending test was performed under conditions of a pulley radius: 5 mm, a tension: 10 N, and a frequency: 10 Hz.
  • Table 3 shows the configuration of the strands of the rubber reinforcing cord and the evaluation results.
  • peripheral strand Of the peripheral strand
  • Table 3 the dimensional stability was evaluated as ⁇ at 210N or more, ⁇ at 190 to 209N, and ⁇ at less than 190N.
  • both the bending fatigue resistance and the dimensional stability can be improved by increasing the number of strands of the strand (B) in the peripheral part of the strands (A) of the core. A satisfactory code was produced.
  • Example 3 since the strands (B) twisted in the S direction and strands (B) twisted in the Z direction are alternately arranged, the strands (B) The shear strength of the steel was the smallest, and the bending fatigue resistance was greatly improved as compared with Comparative Example 1. Even when compared with the cord of Comparative Example 6 in which only the arrangement of the strand (B) is different, the cord of Example 3 has the strand (B) twisted in the S direction and the strand twisted in the Z direction. It can be confirmed that better bending fatigue resistance can be obtained by alternately arranging (B).
  • a glass fiber strand (1) was produced in the same manner as in Example 1. This glass fiber strand (1) was twisted 2.0 times Z25 mm in the S direction to obtain a strand (A). Further, the glass fiber strand (1) was subjected to a twist of 2.0 mm in the S direction and Z25 mm was twisted to obtain a strand (B).
  • the three strands (A) were subjected to an upper twist of Z25 mm 5.0 times in the Z direction.
  • the three strands (A) and the eight strands (B) were collectively twisted 3.0 times Z25mm in the S direction.
  • the reinforcing cord of Example 4-1 was obtained.
  • the core strand of this cord was finally twisted 2.0 times Z25mm in the Z direction.
  • Example 4-1 instead of the guide 10 shown in FIG. 1, a guide having one central hole 10a and the same peripheral hole 10b as the guide 10 is used. Three strands (A) were passed through the holes 10a, and strands (B) were passed through the peripheral holes 10b.
  • Example 4-2 Examples 5 and 6, and Comparative Examples 7 to: A cord was produced using the same guide as in Example 4-1, even in L1.
  • Example 4-2 the strand (B) twisted in the S direction and the strand twisted in the Z direction) were alternately arranged to emphasize the top twist.
  • Example 4-3 an upper twist was applied in the same manner as in Example 4-1, using the strand (A) and the strand (B) produced by the same method as in Example 1. That is, as the example 4-3, strands (B) both both twist force under twist and above, greater co than strands (A) - to produce a de-0
  • X 10 6 or more less than 40 ⁇ 10 6 and ⁇ , less than 20 ⁇ 10 6 and ⁇ .
  • Table 4 the dimensional stability was evaluated as ⁇ at 210N or higher, ⁇ from 190 to 209mm, and ⁇ from less than 190N.
  • Example 4-2 the strand ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ) twisted in the S direction and the strand twisted in the ⁇ direction Since the strands (B) were alternately arranged, the shear force between the strands (B) was the smallest, and the bending fatigue resistance could be further improved as compared with Example 4-1.
  • the cords of Examples 4-1 and 4-2 are cords for reinforcing rubber including a core strand including a plurality of strands (A) and a plurality of strands (B) arranged around the core strand. It is.
  • the strand (A) is constituted by a plurality of reinforcing fibers (A) and is twisted, and the plurality of strands (A) are twisted in the core strand.
  • the strand (B) is composed of a plurality of reinforcing fibers (B) and is twisted, and the plurality of strands (B) are twisted and arranged around the core strand.
  • the number of twists of the strand (B) is larger than the number of twists of the strand (A).
  • the direction of the upper twist of the strand (B) is the same as the direction of the lower twist of at least one strand (B) selected from the plurality of strands (B).
  • the strand (B) twisted in the S direction and the strand (B) twisted in the Z direction may be alternately arranged around the core strand! / ,.
  • Example 3 As the core fiber (a), one strand of PBO fiber (manufactured by Toyobo, non-twisted product, 160 TEX) was prepared. Further, as in Example 3, a strand (b) twisted in the S direction and a strand (b) twisted in the Z direction were prepared. These strands were combined and twisted to produce a rubber reinforcing cord. An overcoat layer was formed on each reinforcing cord obtained as described above in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. Table 5 shows the structures and evaluation results of the rubber reinforcing cords of Examples 5 and 6 and Comparative Examples 10 and 11.
  • the core fiber (a) of Example 5 was twisted 3.0 times in the Z direction with a twist number of Z25mm, and twisted together with the peripheral strands in the S direction at a twist number of 2.0 times / 25mm (up Twisted). As a result, the core fiber (a) was finally twisted 1.0 times Z25 mm in the Z direction.
  • the core fiber (a) of Example 6 was twisted 1.0 times in the Z direction with a twist number of Z25mm and twisted with the surrounding strands 2.0 times in the S direction with a twist number of Z25mm (top twist) ). As a result, the core fiber (a) is finally 1.0 times in the S direction Z25mm Was twisted.
  • the rubber reinforcing cord of Comparative Example 10 was produced in the same manner as in Example 6 except for the arrangement in the twisting direction of the strand (b).
  • the core fiber (a) of Comparative Example 9 was twisted (top twisted) with a twist number of Z25 mm 2.0 times in the S direction together with the peripheral strands in an untwisted state. As a result, the core fiber (a) was finally twisted 2.0 times Z25mm in the S direction.
  • Example 5 the number of strands of the strand (b) is larger than the number of strands of the core.
  • the upper twist direction of the strand (b) is the same as the lower twist direction.
  • Example 5 is Comparative Example 1
  • Example 6 the strand (b) twisted in the S direction and the strand twisted in the Z direction Since the lands (b) are arranged alternately, the shear force between the strands (b) is minimized, and the bending fatigue resistance is improved. This can also be confirmed by comparison with Comparative Example 10 in which only the strand (b) sequence is different.
  • the present invention can be applied to a rubber reinforcing cord.

Abstract

 本発明のゴム補強用コードは、複数のストランド(A)を含むコアストランドと、コアストランドの周囲に配置された複数のストランド(B)とを含む。コアストランドにおいて、複数の前記ストランド(A)が上撚りされており、ストランド(A)は、複数の補強用繊維(A)によって構成され下撚りされている。ストランド(B)は、複数の補強用繊維(B)によって構成され下撚りされており、複数のストランド(B)が上撚りされてコアストランドの周囲に配置されている。複数のストランド(B)の上撚り方向が、複数のストランド(B)から選ばれる少なくとも1つのストランド(B)の下撚り方向と同じである。ストランド(B)の下撚り数が前記ストランド(B)の下撚り数よりも大きい、および/または、ストランド(B)の上撚り数が前記ストランド(B)の上撚り数よりも大きい。

Description

明 細 書
ゴム補強用コード
技術分野
[0001] 本発明は、ゴム補強用コードに関する。
背景技術
[0002] 従来から、ゴムを補強するためのコードが提案されてきた。
[0003] 例えば、特開 2001— 114906号公報には、下撚りされたストランドが芯材(内層) および側材 (外層)に用いられた、耐屈曲疲労性に優れるゴム補強用コードが開示さ れている。
[0004] また、特開 2004— 11076号公報には、下撚り方向が互いに異なるストランドを芯 材と側材とに用いた、耐屈曲疲労性と寸法安定性とに優れるゴム補強用コードが開 示されている。
[0005] また、特開平 10— 141445号公報、特開平 9— 42382号公報、特開平 1— 21347 8号公報および特開昭 59— 19744号公報には、ストランドの下撚り数や上撚り数を 限定することによって耐屈曲疲労性を向上させたゴム補強用コードが開示されている 。さらに、特開平 7— 144731号公報、特開平 10— 291618号公報、特開 2005— 8 069号公報および特開 2005— 22455号公報にも、ストランドの撚り数ゃ撚り方向が 限定されたゴム補強用コードが開示されている。
[0006] しかし、従来のゴム補強用コードでは、コードを屈曲させた場合に、コード内の下撚 り糸の間を結束している接着剤層(たとえば RFL層)にせん断力による亀裂が発生し 、それが起点となって、コードの破壊が始まるという問題があった。すなわち、上記に 示したような、撚り数ゃ撚り方向が限定された従来のゴム補強用コードでは、耐屈曲 疲労性が充分ではな力つた。
[0007] コードを繰り返し屈曲させた場合、最初に、下撚り糸の間の接着剤層に亀裂が発生 する。次に、この亀裂によってコード全体の応力バランスが変化し、各下撚り糸の局 所に、強い応力集中が発生する。そして、この応力集中によって下撚り糸を構成して V、るストランドが破断して、コード全体の破壊が始まる。 [0008] 接着剤層に加わるせん断力を下げる手法の 1つとして、上撚り数を大きくすることが 効果的である。しかし、単に上撚り数を大きくするだけでは、伸びやすく寸法安定性 の悪いコードになったり、あるいは、引張強度が下がったりする、という問題点がある。 発明の開示
[0009] 本発明は、このような従来の問題点に着目してなされたものであり、その目的の 1つ は、寸法安定性を低下させることなぐ耐屈曲疲労性に優れたゴム補強用コードを提 供することである。
[0010] 上記目的を達成するため、本発明の第 1のゴム補強用コードは、複数のストランド( A)を含むコアストランドと、前記コアストランドの周囲に配置された複数のストランド (B )とを含むゴム補強用コードであって、前記ストランド (A)は、複数の補強用繊維 (A) によって構成され下撚りされており、前記コアストランドにおいて、複数の前記ストラン ド (A)が上撚りされており、前記ストランド (B)は、複数の補強用繊維 (B)によって構 成され下撚りされており、複数の前記ストランド (B)が上撚りされて前記コアストランド の周囲に配置されている。さらに、本発明の第 1のゴム補強用コードは、以下に示す ( i)および (ii)力も選ばれる少なくとも何れか一方の構成 ( (i)および Zまたは (ii)の構 成)を満たす。
(i)複数の前記ストランド (B)の上撚り方向が、複数の前記ストランド (B)力 選ばれる 少なくとも 1つのストランド (B)の下撚り方向と同じであり、前記ストランド (B)の下撚り 数が、前記ストランド (A)の下撚り数よりも大きい。
(ii)複数の前記ストランド (B)の上撚り方向が、複数の前記ストランド (B)力 選ばれ る少なくとも 1つのストランド (B)の下撚りの方向と同じであり、前記ストランド (B)の上 撚り数が、前記ストランド (A)の上撚り数よりも大きい。
[0011] ここで、ストランド (A)の下撚り数とは、ストランド (A)を上撚りする前のストランド (A) の下撚り数をいう。また、ストランド (A)の上撚り数とは、ストランド (A)と (B)を合わせ て上撚りした後のコアストランド内におけるストランド (A)の上撚り数をいう。
[0012] また、本発明の第 2のゴム補強用コードは、 1本のコア繊維 (a)と、前記コア繊維 (a) の周囲に配置された複数のストランド (b)とを含むゴム補強用コードであって、前記コ ァ繊維 (a)は撚られており、前記ストランド (b)は、複数の補強用繊維 (b)によって構 成され下撚りされており、複数の前記ストランド (b)が上撚りされて前記コア繊維 (a) の周囲に配置されており、複数の前記ストランド (b)の上撚り方向が、複数の前記スト ランド (b)から選ばれる少なくとも 1つのストランド (b)の下撚り方向と同じであり、前記 ストランド (b)の下撚り数が、前記コア繊維 (a)の撚り数よりも大き!/、。
[0013] ここで、コア繊維 (a)の撚り数とは、ストランド (b)を上撚りする前の撚り数ではなぐ ストランド (b)と共に上撚りしたのちのゴム補強用コード内でのコア繊維 (a)の撚り数を いう。
[0014] 本発明によれば、寸法安定性を低下させることなぐ耐屈曲疲労性に優れたゴム補 強用コードが得られる。
図面の簡単な説明
[0015] [図 1]本発明のゴム補強用コードの製造に用いられるガイドの一例を模式的に示す図 である。
発明を実施するための最良の形態
[0016] 以下、本発明の実施の形態にっ 、て説明する。なお、以下で述べる材料やサイズ は、特に記載がない限り例示的なものであり、本発明はこれらに限定されない。
[0017] [第 1のゴム補強用コード]
ゴムを補強するための本発明の第 1の補強用コードは、複数のストランド (A)を含む コアストランドと、コアストランドの周囲に配置された複数のストランド (B)とを含む。スト ランド (A)は、複数の補強用繊維 (A)によって構成され下撚りされている。コアストラ ンドにおいて、複数のストランド (A)は上撚りされている。ストランド (B)は、複数の補 強用繊維 (B)によって構成され下撚りされている。複数のストランド (B)は、上撚りさ れてコアストランドの周囲に配置されている。複数のストランド (B)の上撚り方向は、複 数のストランド (B)から選ばれる少なくとも 1つのストランド (B)の下撚り方向と同じであ る。さらに、本発明の第 1の補強用コードは、ストランド (B)の下撚り数力 Sストランド (A) の下撚り数よりも大きい、および Zまたは、ストランド (B)の上撚り数力ストランド (A)の 上撚り数よりも大きい。
[0018] 発明者らが検討した結果、コードを屈曲させたときのコード破壊の開始原因である、 接着剤層(たとえば RFL層)に働くせん断力は、多くの場合、コードの最外層を構成 している下撚り糸同士の境界で最大値をとることが分力つた。そのため、コアの内部 で発生する応力は、コード破壊の支配要因ではないことが明ら力となった。そのため 、コードを破断に至らしめるせん断力を下げるには、コードの最外層を構成している 下撚り糸同士のせん断力を最小にするようなコードの構成を実現すればよい。
[0019] 上記本発明のゴム補強用コードの構成によれば、コードの最外層を構成している下 撚り糸同士のせん断力を小さくすることができ、屈曲疲労によるコードの損傷が少な いゴム補強用コードを実現できる。そのため、本発明によれば、屈曲疲労が生じるよう な状況下におけるコードの寿命を延ばすことができる。また、本発明によれば、引張 強度の低下やコードの伸びを抑制することもできる。
[0020] コアストランドを構成する補強用繊維 (A)としては、たとえば、ガラス繊維、カーボン ファイバ、ポリパラフエ-レンベンゾビスォキサゾール繊維(PBO繊維)などのァラミド 繊維、ナイロン繊維、スチール繊維を挙げることができる。ストランド (B)を構成する補 強用繊維(B)としては、たとえば、ガラス繊維、カーボンファイノ 、 PBO繊維などのァ ラミド繊維、ナイロン繊維、スチール繊維を挙げることができる。ガラス繊維としては、 たとえば、 Eガラス繊維、 Kガラス繊維、 Uガラス繊維、 Sガラス繊維、 Rガラス繊維、 T ガラス繊維が挙げられる。ガラス繊維は、通常、多数のフィラメントによって構成される
[0021] 本発明の効果が得られる限り、補強用繊維 (A)と補強用繊維 (B)とは同じでもよ ヽ し異なってもよ ヽ。補強用繊維 (A) Z補強用繊維 (B)の好ま ヽ組み合わせの例と しては、たとえば、 Eガラス繊維 ZEガラス繊維、 PBO繊維 ZEガラス繊維、カーボン ファイバ ZEガラス繊維、 PBO繊維 ZUガラス繊維、 Kガラス繊維 ZKガラス繊維、等 、種々の組み合わせが挙げられる。
[0022] コアストランドは、通常、 1本〜 12本 (たとえば 1本〜 3本)のストランド (A)で構成さ れる。複数のストランド (A)が上撚りされてコアストランドが構成される。
[0023] ストランド (A)の下撚り数は、通常、 0. 1回 Z25mm〜10回 Z25mmの範囲であり 、たとえば 0. 5回 Z25mm〜6. 0回 Z25mmの範囲である。本発明の構成を満たす 限り、ストランド (A)の下撚り方向は、 S方向でも Z方向でもよい。
[0024] ストランド (A)の上撚り数は、通常、 0. 1回 Z25mm〜10回 Z25mmの範囲であり 、たとえば 0. 5回 Z25mm〜6. 0回 Z25mmの範囲である。
[0025] コアストランドを取り巻く周辺部ストランドは、通常、 5本〜 24本 (たとえば 6本〜 15 本)のストランド (B)で構成される。コアストランドを取り巻くように複数のストランド (B) が上撚りされて周辺部ストランドが構成される。
[0026] 本発明のゴム補強用コードは、偶数本 (たとえば、 6本、 8本、 16本)のストランド (B) を備えてもよい。この場合、コアストランドの周囲には、 S方向に下撚りされたストランド (B)と Z方向に下撚りされたストランド (B)とが交互に配置されてもよ!、。
[0027] ストランド(B)の下撚り数は、通常、 0. 1回 Z25mm〜10回 Z25mmの範囲であり 、たとえば 0. 5回 Z25mm〜6. 0回 Z25mmの範囲である。本発明の構成を満たす 限り、ストランド (B)の下撚り方向は、 S方向でもよいし、 Z方向でもよいし、 S方向のス トランドと Z方向のストランドとが混ざっていてもよい。
[0028] ストランド(B)の上撚り数は、通常、 0. 1回 Z25mm〜10回 Z25mmの範囲であり 、たとえば 0. 5回 Z25mm〜6. 0回 Z25mmの範囲である。ストランド(B)の上撚り の方向は、ストランド (A)の撚りの方向と同じであってもよいし異なっていてもよい。一 方、ストランド (B)の上撚りの方向を、少なくとも 1つのストランド(B)の下撚りの方向と 同じとすることによって、耐屈曲疲労性に優れるゴム補強用コードが得られる。
[0029] ストランド (A)の数とストランド (B)の数の組み合わせの例としては、ストランド (A) / ストランド(B) = 3本 8本、 3本 Z 12本、 12本 15本、 3本 Z9本、 7本 Z 12本、 7 本 Z11本、 12本 Z14本などが挙げられる。
[0030] ストランド (B)の下撚り数力ストランド (A)の下撚り数よりも大き!/、構成の場合は、スト ランド (B)の下撚り数は、たとえば、ストランド (A)の下撚り数の 1. 1倍〜 100倍 (たと えば 2倍〜 12倍)の範囲である。ストランド (B)の上撚り数力 Sストランド (A)の上撚り数 よりも大きい構成の場合は、ストランド (B)の上撚り数は、たとえば、ストランド (A)の上 撚り数の 1. 1倍〜 100倍(たとえば 1. 5倍〜 12倍)の範囲である。
[0031] [第 2のゴム補強用コード]
ゴムを補強するための本発明の第 2の補強用コードは、 1本のコア繊維 (a)と、コア 繊維 (a)の周囲に配置された複数のストランド (b)とを含む。コア繊維 (a)は、撚られ ている。ストランド (b)は、複数の補強用繊維 (b)によって構成され下撚りされている。 複数のストランド (b)は、上撚りされてコア繊維 (a)の周囲に配置されている。複数の ストランド (b)の上撚り方向は、複数のストランド (b)から選ばれる少なくとも 1つのスト ランド (b)の下撚り方向と同じである。ストランド (b)の下撚り数は、コア繊維 (a)の撚り 数よりち大きい。
[0032] 上述したように、この構成によれば、コードの最外層を構成している下撚り糸同士の せん断力を小さくすることができ、屈曲疲労によるコードの損傷が少ないゴム補強用 コードを実現できる。そのため、本発明によれば、屈曲疲労が生じるような状況下に おけるコードの寿命を延ばすことができる。また、本発明によれば、引張強度の低下 やコードの伸びを抑制することもできる。
[0033] コア繊維(a)としては、たとえば、ポリパラフエ-レンベンゾビスォキサゾール繊維(P
BO繊維)、カーポンファイノく、ガラス繊維を挙げることができる。なお、コア繊維 (a)は
、 1本のストランドであってもよい。
[0034] ストランド (b)を構成する繊維および構造は、第 1のゴム補強用コードのストランド (B
)と同様であるため、重複する説明は省略する。
[0035] 本発明の効果が得られる限り、コア繊維 (a)と補強用繊維 (b)とは同じでもよ ヽし異 なってもよい。コア繊維 (a) Z補強用繊維 (b)の好ましい組み合わせの例としては、た とえば、 Eガラス繊維 ZEガラス繊維、 PBO繊維 ZEガラス繊維、カーボンファイバ Z
Eガラス繊維、 PBO繊維 ZUガラス繊維、 Kガラス繊維 ZKガラス繊維、等、種々の 組み合わせが挙げられる。
[0036] コア繊維(a)の撚り数は、通常、 0. 1回 Z25mm〜10回 Z25mmの範囲であり、た とえば 0. 5回 Z25mm〜6. 0回 Z25mmの範囲である。本発明の構成を満たす限 り、コア繊維 (a)の撚り方向は、 S方向でも Z方向でもよい。
[0037] コア繊維(a)を取り巻く周辺部ストランドは通常、 5本〜 24本 (たとえば 6本〜 15本) のストランド (b)で構成される。コア繊維 (a)を取り巻くように複数のストランド (A)が上 撚りされて周辺部ストランドが構成される。
[0038] 本発明のゴム補強用コードは、偶数本 (たとえば、 6本、 8本、 12本、 16本)のストラ ンド (b)を備えてもよい。この場合、コア繊維 (a)の周囲には、 S方向に下撚りされたス トランド (b)と Z方向に下撚りされたストランド (b)とが交互に配置されてもよ!、。 [0039] ストランド(b)の下撚り数は、通常、 0. 1回 Z25mm〜10回 Z25mmの範囲であり 、たとえば 0. 5回 Z25mm〜6. 0回 Z25mmの範囲である。本発明の構成を満たす 限り、ストランド (b)の下撚り方向は、 S方向でも Z方向でもよい。
[0040] ストランド(b)の上撚り数は、通常、 0. 1回 Z25mm〜10回 Z25mmの範囲であり 、たとえば 0. 5回 Z25mm〜6. 0回 Z25mmの範囲である。ストランド(b)の上撚り の方向は、コア繊維 (a)の撚りの方向と同じであってもよ 、し異なって!/、てもよ 、が、 ストランド (b)の下撚り方向と同じである方がより耐屈曲疲労性に優れる。
[0041] ストランド (b)の下撚り数は、コア繊維 (a)の撚り数よりも大きぐたとえば、コア繊維( a)の撚り数の 1. 1倍〜 100倍(たとえば 2倍〜 12倍)の範囲である。
[0042] 上記第 1および第 2のゴム補強用コードでは、補強用繊維同士およびストランド同 士は、接着剤などで接着されていてもよい。接着剤としては、ゴム補強用コードの補 強用繊維同士の接着に一般的に用いられる接着剤を適用できる。たとえば、レゾル シン ホルムアルデヒドの縮合物、イソシァネート、ブロックイソシァネート、ラテックス 、カーボンブラック、加硫剤や加硫助剤などカゝら少なくとも 2種を含んだ混合物が挙げ られる。
[0043] 上記第 1および第 2のゴム補強用コードでは、ゴム補強用コードの表面には、被覆 膜 (オーバーコート層)が形成されていてもよい。被覆膜は、たとえば、ゴム補強用コ ードが埋め込まれるマトリクスゴムとの接着性を高めるのに有効である。被覆膜として は、ゴム補強用コードに一般的に用いられる被覆膜を適用できる。被覆膜は、たとえ ば、クロロスルホン化ポリエチレン、イソシァネート、カーボンブラック、 P -トロソベン ゼン、キシレン、トルエンなどを含む混合液をストランドに塗布して乾燥させることによ つて形成でさる。
[0044] [ゴム補強用コードの製造方法]
本発明のゴム補強用コードは、一般的な方法で製造できる。ストランドは、補強用繊 維を用いて一般的な方法で形成できる。撚りを加える方法、および接着剤や収束剤 の塗布および乾燥の方法も、一般的な方法を適用できる。
[0045] [ゴム製品]
本発明の補強用コードは、様々なゴム製品に適用できる。本発明の補強用コードは 、たとえば、歯付ベルト、コンベア用ベルト、 Vベルト、タイヤなどに特に好ましく適用 できる。本発明のゴム補強用コードは、ゴム製品のゴム部(マトリクスゴム)に埋め込ま れてゴム製品を補強する。
実施例
[0046] 以下、実施例によって本発明を詳細に説明する。
[0047] [実施例 1]
実施例 1では、ガラス繊維 (Eガラス組成で平均径が 9 μ mのフィラメントを 200本集 束)を 3本引き揃えて、表 1に示す水性処理液を塗布し、 150°Cに設定した乾燥炉内 で 1分間乾燥し、被覆層が形成されたガラス繊維ストランド(1)を得た。なお、表 1の 固形分量とは、溶媒'分散媒以外の成分の量を意味する。
[0048] [表 1]
Figure imgf000009_0001
(*1 ) ZETPOL LATEX,日本ゼオン社製
RF:レゾルシン一ホルムアルデヒド縮合物(レゾルシン一ホルマリン縮合物)
[0049] 上記ガラス繊維ストランド(1)に、 Z方向に 0. 4回 Z25mmの下撚りをかけて、ストラ ンド (A)を得た。また、ガラス繊維ストランド(1)に S方向に 3. 0回 Z25mmの下撚り をかけて、ストランド (B)を得た。
[0050] 次に、 3本のストランド (A)と 8本のストランド(B)を用意し、図 1に示すガイド 10の中 心部の孔 10aにストランド (A)を通し、周辺部の孔 10bにストランド (B)を通した。そし て、ガイド 10を用いて、これらのストランドに、 S方向に 2回 Z25mmの上撚りをかけた 。これによつて、コアストランドおよび周辺部ストランドの両方に、 S方向に 2回 Z25m mの上撚りが加えられた。ここで、それぞれのストランドは個別に張力付加装置に接 続され、一定の張力が加えられた状態で上撚りを行った。補強用コードに占める被覆 層の量は 20質量%であった。
[0051] [実施例 2および比較例 1〜5]
ストランドの下撚り数、上撚り数、および撚りの方向を変えることを除き、実施例 1と 同様に、ゴム補強用コード (実施例 2および比較例 1〜5)を作製した。それぞれのコ ードの構成は、後述する表 3に示す。
[0052] [実施例 3および比較例 6]
実施例 1と同様の方法で、ガラス繊維ストランド(1)を作製した。このガラス繊維スト ランド(1)に、 Z方向に 1. 0回 Z25mmの下撚りをかけて、ストランド (A)を得た。また 、ガラス繊維ストランド(1)に、 S方向または Z方向に 2. 0回 Z25mmの下撚りをかけ て、ストランド (B)を得た。
[0053] このようにして、 3本のストランド (A)、 S方向に下撚りがかけられた 4本のストランド( B)、 Z方向に下撚りがかけられた 4本のストランド (B)を作製した。
[0054] 次に、これらの 11本のストランドを、図 1のガイド 10と同様のガイドに通した。 8個の 孔 10bには、 Z方向に下撚りがかけられたストランド (B)と S方向に下撚りがかけられ たストランド (B)とを交互に配置した。そして、すべてのストランドに S方向に 2. 0回 Z 25mmの上撚りをかけた。このようにして実施例 3のゴム補強用コードを得た。
[0055] ストランド (B)の下撚り方向を全て Z方向とした以外は、実施例 3の補強用コードと同 様の方法で比較例 6の補強用コードを作製した。すなわち、表 3に示すように、ストラ ンド (B)の下撚り方向以外は、実施例 3および比較例 6の構成は同様であった。
[0056] 以上のようにして得られたそれぞれの補強用コードに、オーバーコート層を形成し た。オーバーコート層は、クロロスルホン化ポリエチレンゴム(CSMゴム)、イソシァネ ート、 p— -トロソベンゼン、カーボンブラック、キシレンの混合物を塗布して乾燥する ことによって形成した。
[0057] 次に、オーバーコート層が形成されたそれぞれの補強用コードについて、寸法安定 性を評価した。具体的には、コードを引っ張り、 0. 8%伸びたときの張力を測定した。
[0058] また、オーバーコート層が形成された補強用コードを用いて、平ベルトを作製した。
具体的には、表 2の組成を有するマトリクスゴムに、補強用コード 1本を埋設して平べ ルト(長さ 295mm、幅 9mm、厚さ 3mm)を作製した。
[0059] [表 2] 成分 含有量 (質量部)
H— NBR(*2) 70
H-NBR/ZDMA(*3) 30
ZnO 1 0
ステアリン酸 1
カーボンブラック 30
Trioctyl Trimellitate 5
硫黄 0. 1
1 ,3 - Bis - (t— butylperoxy - isopropyl)-benzene 6
(*2) リルゴム (ZETPOL2020、日本ゼォン攝
(*3)ジメタクリル隨 i ZDMA)が れ Si ^リルゴム (ZSC 2000U日本ゼオン
[0060] 次に、作製した平ベルトの耐屈曲性を評価した。具体的には、平ベルトを屈曲試験 装置にかけ、ベルト表面に亀裂が発見されるまでの屈曲回数をカウントし、この回数 を屈曲寿命とした。なお、屈曲試験は、プーリ半径: 5mm、張力: 10N、周波数: 10 Hzの条件で行った。
[0061] ゴム補強用コードのストランドの構成、および評価結果について、表 3に示す。
[0062] [表 3]
実施 実施 比較 比較 比較 比較 比較 実施 比較 例 1 例 2 例 1 例 2 例 3 例 4 例 5 例 3 例 6
Eガ Eガ Eガ Eガ Eガ Eガ Eガ Eガ Eガ コアの材質
ラス ラス ラス ラス ラス ラス ラス ラス ラス コアの構成 3本 3本 3本 3本 3本 3本 3本 3本 3本 ストランド (A)の
Z Z Z Z Z S S Z Z
下撚リ方向
ストランド (A)の下撚リ数
0.4 2.0 2.0 4.0 2.0 2.0 4.0 1.0 1.0 (t/25mm)
コアの上撚リの方向 S S S S S S S S S コアの上撚リ数
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 (t/25mm)
Eガ Eガ Eガ Eガ Eガ Eガ Eガ Eガ Eガ ストランド(B)の材質
ラス ラス ラス ラス ラス ラス ラス ラス ラス 周辺部ストランドの構成 8本 8本 8本 8本 8本 8本 8本 8本 8本
SZS
ストランド(B)の
S S S S Z S S ZSZ Z
下撚リ方向
SZ
ストランド(B)の
3.0 4.0 2.0 4.0 2.0 2.0 4.0 2.0 2.0 下撚リ数 (t/25mm)
周辺部ストランドの上撚
S S S S S S S S S
りの方向
周辺部ストランドの
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 上撚リ数 (t/25mm)
屈曲寿命
55 42 33 41 7 33 39 59 6
(X106回)
0.8%伸び時の張力(N) 225 193 198 186 196 190 183 200 199 耐屈曲疲労性
評価 ◎ ◎ O ◎ 厶 O 〇 ◎ Δ 寸法安定性 ◎ 〇 o Δ O O 厶 o O
[0063] なお、表 3において、耐屈曲疲労性の評価は、屈曲寿命力 O X 10°以上で◎、 20
X 106以上 40 X 106未満で〇、 20 X 106未満で△とした。また、表 3において、寸法 安定性の評価は、 210N以上で◎、 190〜209Nで〇、 190N未満で△とした。
[0064] 表 3に示すように、コアのストランド (A)の下撚り数よりも周辺部のストランド(B)の下 撚り数を大きくすることによって、耐屈曲疲労性と寸法安定性の双方を満足するコー ドが作製できた。 [0065] また、実施例 3では、 S方向に下撚りされたストランド (B)と Z方向に下撚りされたスト ランド (B)とが交互に配列しているため、ストランド (B)間でのせん断力が最も小さくな り、比較例 1に比べて耐屈曲疲労性が非常に向上した。また、ストランド (B)の配列の みが異なる比較例 6のコードと比較しても、実施例 3のコードは、 S方向に下撚りされ たストランド (B)と Z方向に下撚りされたストランド (B)とを交互に配列することによって 、より優れた耐屈曲疲労性が得られることが確認できる。
[0066] [実施例 4]
実施例 1と同様の方法で、ガラス繊維ストランド(1)を作製した。このガラス繊維スト ランド(1)に、 S方向に 2. 0回 Z25mmの下撚りをかけて、ストランド (A)を得た。また 、ガラス繊維ストランド(1)に、 S方向〖こ 2. 0回 Z25mmの下撚りを力けて、ストランド( B)を得た。
[0067] 上記 3本のストランド (A)に、 Z方向に 5. 0回 Z25mmの上撚りをかけた。そして、こ の 3本のストランド(A)と、 8本のストランド(B)とを、まとめて S方向に 3. 0回 Z25mm の上撚りをかけた。このようにして、実施例 4—1の補強用コードを得た。このコードの コアストランドには、最終的に、 Z方向に 2. 0回 Z25mmの上撚りがかけられた。
[0068] なお、実施例 4—1では、図 1に示すガイド 10に代えて、中心部の孔 10aが 1つで周 辺部の孔 10bがガイド 10と同じであるガイドを用い、中心部の孔 10aにストランド (A) を 3本通し、周辺部の孔 10bにストランド (B)を通した。なお、実施例 4— 2、実施例 5 、 6、比較例 7〜: L 1でも、実施例 4—1と同じガイドを用いてコードを作製した。
[0069] 実施例 4— 2では、 S方向に下撚りされたストランド (B)と、 Z方向に下撚りされたスト ランド )とを交互に配置して上撚りを力けた。
[0070] 実施例 4— 3では、実施例 1と同様の方法で作製したストランド (A)とストランド (B)と を用い、実施例 4—1と同様の方法で上撚りをかけた。すなわち、実施例 4— 3として、 ストランド (B)力 下撚り数および上撚り数の両方ともに、ストランド (A)よりも大きいコ —ドを作製した 0
[0071] [比較例 7〜9]
上述した実施例および比較例と同様の方法で、比較例 7〜9のゴム補強用コードを 作製した。以上のようにして得られたそれぞれの補強用コードに、オーバーコート層 を形成し、実施例 1と同様の評価を行った。実施例 4—1、 4— 2および比較例 7〜9 のゴム補強用コードの構成および評価結果を表 4に示す。
[0072] [表 4]
Figure imgf000014_0001
[0073] なお、表 4において、耐屈曲疲労性の評価は、屈曲寿命力 Ο Χ 10°以上で◎、 20
X 106以上 40 Χ 106未満で〇、 20 Χ 106未満で△とした。また、表 4において、寸法 安定性の評価は、 210N以上で◎、 190〜209Νで〇、 190N未満で△とした。
[0074] 比較例 8および 9と異なり、実施例 4 1および 4 2では、コアの上撚り数よりも周辺 部ストランドの上撚り数が大きい。このような構成によって、耐屈曲疲労性を向上でき た。また、比較例 7は、ストランド (Β)の上撚り方向とストランド (Β)の下撚り方向とが異 なるため、実施例 4—1, 4— 2よりも屈曲寿命が短力つた。
[0075] また、実施例 4— 2では、 S方向に下撚りされたストランド (Β)と Ζ方向に下撚りされた ストランド (B)とが交互に配列しているため、ストランド (B)間でのせん断力が最も小さ くなり、実施例 4—1に比べて耐屈曲疲労性をさらに向上できた。
[0076] 実施例 4— 1および 4— 2のコードは、複数のストランド (A)を含むコアストランドと、コ ァストランドの周囲に配置された複数のストランド (B)とを含むゴム補強用コードであ る。このコードでは、ストランド (A)は、複数の補強用繊維 (A)によって構成され下撚 りされており、コアストランドにおいて、複数のストランド (A)が上撚りされている。また 、ストランド (B)は、複数の補強用繊維 (B)によって構成され下撚りされており、複数 のストランド (B)が上撚りされてコアストランドの周囲に配置されている。また、ストラン ド (B)の上撚り数は、ストランド (A)の上撚り数よりも大きい。また、ストランド (B)の上 撚りの方向は、複数のストランド (B)から選ばれる少なくとも 1つのストランド (B)の下 撚りの方向と同じである。
[0077] このコードにおいて、コアストランドの周囲には、 S方向に下撚りされたストランド(B) と Z方向に下撚りされたストランド (B)とが交互に配置されて 、てもよ!/、。
[0078] また、実施例 4— 3のように、ストランド (B)の上撚り数と下撚り数の両方を、ストランド
(A)より高くしても、同様の効果が得られる。
[0079] [実施例 5および 6、比較例 10および 11]
コア繊維 (a)として、 1本のストランドである PBO繊維 (東洋紡績製、無撚り品、 160 TEX)を用意した。また、実施例 3と同様に、 S方向に下撚りされたストランド (b)と、 Z 方向に下撚りされたストランド (b)とを用意した。これらのストランドを組み合わせて上 撚りし、ゴム補強用コードを作製した。以上のようにして得られたそれぞれの補強用コ ードに、実施例 1と同様にオーバーコート層を形成し、実施例 1と同様の評価を行つ た。実施例 5および 6、比較例 10および 11のゴム補強用コードの構成および評価結 果を表 5に示す。実施例 5のコア繊維 (a)は、 Z方向に 3. 0回 Z25mmの撚り数で撚 つておいて力も周辺部ストランドと一緒に S方向に 2. 0回 /25mmの撚り数で撚り(上 撚り)をかけた。その結果、コア繊維(a)には、最終的に Z方向に 1. 0回 Z25mmの 撚りがかけられた。実施例 6のコア繊維(a)は、 Z方向に 1. 0回 Z25mmの撚り数で 撚つておいて力 周辺部ストランドと一緒に S方向に 2. 0回 Z25mmの撚り数で撚り( 上撚り)をかけた。その結果、コア繊維(a)には、最終的に S方向に 1. 0回 Z25mm の撚りがかけられた。比較例 10のゴム補強用コードは、ストランド (b)の下撚り方向の 配列以外は、実施例 6と同様の方法で作製した。比較例 9のコア繊維 (a)は、無撚り の状態で周辺部ストランドと一緒に S方向に 2. 0回 Z25mmの撚り数で撚り(上撚り) をかけた。その結果、コア繊維(a)には、最終的に S方向に 2. 0回 Z25mmの撚りが かけられた。
[0080] [表 5]
Figure imgf000016_0001
[0081] なお、表 5において、耐屈曲疲労性の評価は、屈曲寿命力 O X 10°以上で◎、 20
X 106以上 40 X 106未満で〇、 20 X 106未満で△とした。また、表 5において、寸法 安定性の評価は、 150N以上で◎、 140〜149Nで〇とした。
[0082] 実施例 5および 6は、ストランド (b)の下撚り数がコアの撚り数よりも大きい。実施例 5 は、ストランド (b)の上撚り方向がその下撚り方向と同じである。実施例 5は、比較例 1
1に比べて寸法安定が高力つた。
[0083] また、実施例 6では、 S方向に下撚りされたストランド (b)と Z方向に下撚りされたスト ランド (b)とが交互に配列しているため、ストランド (b)間でのせん断力が最も小さくな り、耐屈曲疲労性が向上した。これは、ストランド (b)の配列のみが異なる比較例 10と の比較によっても確認できる。
[0084] 屈曲によるコード破壊の開始原因である、接着剤層(RFL層)に働くせん断力は、 多くの場合、周辺部ストランドにおける下撚り繊維同士の境界に発生する。そこで、周 辺部ストランドのみをラング撚りにしたり、あるいは、周辺部ストランドの撚り数を上げ たりすることによって、屈曲時にコード内部で発生する応力を少なくすることができ、コ ードの寿命を延ばすことができる。
産業上の利用可能性
[0085] 本発明はゴム補強用コードに適用できる。

Claims

請求の範囲
[1] 複数のストランド (A)を含むコアストランドと、前記コアストランドの周囲に配置された 複数のストランド (B)とを含むゴム補強用コードであって、
前記ストランド (A)は、複数の補強用繊維 (A)によって構成され下撚りされており、 前記コアストランドにおいて、複数の前記ストランド (A)が上撚りされており、 前記ストランド (B)は、複数の補強用繊維 (B)によって構成され下撚りされており、 複数の前記ストランド (B)が上撚りされて前記コアストランドの周囲に配置されてい るゴム補強用コードであって、さらに、
(i)複数の前記ストランド (B)の上撚り方向が、複数の前記ストランド (B)力 選ばれ る少なくとも 1つのストランド (B)の下撚り方向と同じであり、前記ストランド (B)の下撚 り数が、前記ストランド (A)の下撚り数よりも大きい、
および Zまたは、
(ii)複数の前記ストランド (B)の上撚り方向が、複数の前記ストランド (B)力 選ばれ る少なくとも 1つのストランド (B)の下撚りの方向と同じであり、前記ストランド (B)の上 撚り数が、前記ストランド (A)の上撚り数よりも大きい、
ゴム補強用コード。
[2] 偶数本の前記ストランド (B)を備え、
前記コアストランドの周囲には、 S方向に下撚りされた前記ストランド (B)と Z方向に 下撚りされた前記ストランド (B)とが交互に配置されて ヽる請求項 1に記載のゴム補 強用コード。
[3] 1本のコア繊維 (a)と、前記コア繊維 (a)の周囲に配置された複数のストランド (b)と を含むゴム補強用コードであって、
前記コア繊維 (a)は撚られており、
前記ストランド (b)は、複数の補強用繊維 (b)によって構成され下撚りされており、 複数の前記ストランド (b)が上撚りされて前記コア繊維 (a)の周囲に配置されており 複数の前記ストランド (b)の上撚り方向が、複数の前記ストランド (b)から選ばれる少 なくとも 1つのストランド (b)の下撚り方向と同じであり、 前記ストランド (b)の下撚り数が、前記コア繊維 (a)の撚り数よりも大き!/、ゴム補強用 コード。
偶数本の前記ストランド (b)を備え、
前記コア繊維 (a)の周囲には、 S方向に下撚りされた前記ストランド (b)と Z方向に下 撚りされた前記ストランド (b)とが交互に配置されている請求項 3に記載のゴム補強用 コード。
PCT/JP2006/322303 2005-11-09 2006-11-08 ゴム補強用コード WO2007063686A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/084,538 US7814740B2 (en) 2005-11-09 2006-11-08 Cord for rubber reinforcement
JP2007547884A JP4801675B2 (ja) 2005-11-09 2006-11-08 ゴム補強用コード
CA002628805A CA2628805A1 (en) 2005-11-09 2006-11-08 Cord for rubber reinforcement
EP06823207.3A EP1980657B8 (en) 2005-11-09 2006-11-08 Cord for rubber reinforcement
CN2006800416468A CN101305120B (zh) 2005-11-09 2006-11-08 橡胶增强用绳

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-325305 2005-11-09
JP2005325305 2005-11-09

Publications (1)

Publication Number Publication Date
WO2007063686A1 true WO2007063686A1 (ja) 2007-06-07

Family

ID=38092022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322303 WO2007063686A1 (ja) 2005-11-09 2006-11-08 ゴム補強用コード

Country Status (7)

Country Link
US (1) US7814740B2 (ja)
EP (1) EP1980657B8 (ja)
JP (1) JP4801675B2 (ja)
KR (1) KR20080066813A (ja)
CN (1) CN101305120B (ja)
CA (1) CA2628805A1 (ja)
WO (1) WO2007063686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063952A1 (ja) 2007-11-15 2009-05-22 Nippon Sheet Glass Company, Limited 補強用コードおよびそれを用いたゴム製品
JP2013534575A (ja) * 2010-07-16 2013-09-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 金属コアを有する複合コードおよびその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010043322A1 (de) * 2010-11-03 2012-05-03 Arntz Beteiligungs Gmbh & Co. Kg Antriebsriemen zur Übertragung einer Antriebsbewegung und Verfahren zur Herstellung eines Antriebsriemens
JP5632765B2 (ja) * 2011-02-04 2014-11-26 株式会社ブリヂストン ゴム物品補強用コード及び空気入りタイヤ
CN103443012B (zh) * 2011-03-21 2017-10-24 奥的斯电梯公司 电梯抗拉部件
RU2495970C1 (ru) * 2012-04-24 2013-10-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Прогресс" (ФГУП "НПП "Прогресс") Кордная арамидная нить
JP5835165B2 (ja) * 2012-09-07 2015-12-24 横浜ゴム株式会社 スチールコードおよびゴム製品の製造方法
BR112018070728A2 (pt) 2016-04-08 2019-02-12 Gates Corp cabo híbrido para reforço de artigos poliméricos e artigos reforçados
JP6633094B2 (ja) * 2016-06-21 2020-01-22 国立研究開発法人産業技術総合研究所 ロープ及びその製造方法
GB2558654A (en) * 2017-01-16 2018-07-18 Univ Bath Fibre ropes and composite materials containing fibre ropes
JP6603008B1 (ja) * 2018-03-19 2019-11-06 日本板硝子株式会社 ゴム補強用コード及びその製造方法、並びにゴム製品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114906A (ja) 1999-10-14 2001-04-24 Asahi Fiber Glass Co Ltd ゴム補強用ガラス繊維及びその製造方法
JP2004011076A (ja) 2002-06-10 2004-01-15 Nippon Sheet Glass Co Ltd ゴム補強用コードおよびそれを含有するゴム製品
JP2004183121A (ja) * 2002-12-02 2004-07-02 Nippon Sheet Glass Co Ltd ゴム補強用コードおよびそれを埋設したゴム製品
JP2005008069A (ja) 2003-06-19 2005-01-13 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
JP2005022455A (ja) 2003-06-30 2005-01-27 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
WO2005061766A1 (ja) * 2003-12-18 2005-07-07 Nippon Sheet Glass Company, Limited ゴム補強用コードおよびそれを用いたゴム製品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919744A (ja) * 1982-07-22 1984-02-01 Mitsuboshi Belting Ltd 動力伝動用ベルト
DE3570709D1 (en) * 1984-07-09 1989-07-06 Bekaert Sa Nv Compact steel cord for improved tensile strength
AU620194B2 (en) * 1989-02-06 1992-02-13 N.V. Bekaert S.A. Compact cord
JP2869025B2 (ja) * 1995-07-24 1999-03-10 バンドー化学株式会社 ベルト用抗張体及びベルト
JP3819550B2 (ja) * 1997-08-06 2006-09-13 株式会社ブリヂストン ゴム物品補強用スチールコードおよび空気入りタイヤ
JP2004285498A (ja) * 2003-03-20 2004-10-14 Teijin Ltd ハイブリッドコード
KR100635355B1 (ko) * 2003-04-09 2006-10-18 니혼 이타가라스 가부시키가이샤 고무를 보강하기 위한 보강용 코드 및 그것을 이용한 고무제품

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114906A (ja) 1999-10-14 2001-04-24 Asahi Fiber Glass Co Ltd ゴム補強用ガラス繊維及びその製造方法
JP2004011076A (ja) 2002-06-10 2004-01-15 Nippon Sheet Glass Co Ltd ゴム補強用コードおよびそれを含有するゴム製品
JP2004183121A (ja) * 2002-12-02 2004-07-02 Nippon Sheet Glass Co Ltd ゴム補強用コードおよびそれを埋設したゴム製品
JP2005008069A (ja) 2003-06-19 2005-01-13 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
JP2005022455A (ja) 2003-06-30 2005-01-27 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
WO2005061766A1 (ja) * 2003-12-18 2005-07-07 Nippon Sheet Glass Company, Limited ゴム補強用コードおよびそれを用いたゴム製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1980657A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063952A1 (ja) 2007-11-15 2009-05-22 Nippon Sheet Glass Company, Limited 補強用コードおよびそれを用いたゴム製品
US8176719B2 (en) 2007-11-15 2012-05-15 Nippon Sheet Glass Company, Limited Reinforcing cord and rubber product using the same
JP5367582B2 (ja) * 2007-11-15 2013-12-11 日本板硝子株式会社 補強用コードおよびそれを用いたゴム製品
JP2013534575A (ja) * 2010-07-16 2013-09-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 金属コアを有する複合コードおよびその製造方法

Also Published As

Publication number Publication date
KR20080066813A (ko) 2008-07-16
EP1980657B8 (en) 2015-09-23
US7814740B2 (en) 2010-10-19
EP1980657A1 (en) 2008-10-15
US20090229237A1 (en) 2009-09-17
JPWO2007063686A1 (ja) 2009-05-07
CN101305120A (zh) 2008-11-12
JP4801675B2 (ja) 2011-10-26
CA2628805A1 (en) 2007-06-07
EP1980657A4 (en) 2014-09-17
CN101305120B (zh) 2012-05-16
EP1980657B1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2007063686A1 (ja) ゴム補強用コード
US8176719B2 (en) Reinforcing cord and rubber product using the same
JP4018460B2 (ja) ゴム補強用コードおよびそれを含有するゴム製品
JP4295763B2 (ja) ゴムを補強するための補強用コードおよびそれを用いたゴム製品
CA2474651C (en) Hybrid cord for reinforcing rubber and rubber product
RU2270281C2 (ru) Способ изготовления упрочняющего элемента на основе углеродного волокна для пневматической шины
US20070144134A1 (en) Reinforcing cord for rubber reinforcement and rubber product including the same
JP4755994B2 (ja) ゴム補強用コードとそれを用いたゴムベルト
CN108431313B (zh) 橡胶增强用帘线及使用其的橡胶制品
JP4396945B2 (ja) ゴム補強用コードおよびその製造方法ならびにそれを用いたゴム製品
JP6945323B2 (ja) 極太ディップコード及びその製造方法
JPH03249449A (ja) 繊維補強ゴム製品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041646.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007547884

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2628805

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087012168

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 4528/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006823207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12084538

Country of ref document: US