WO2007061077A1 - 核酸導入用担体、核酸導入用キット、及び核酸の細胞内への導入方法 - Google Patents

核酸導入用担体、核酸導入用キット、及び核酸の細胞内への導入方法 Download PDF

Info

Publication number
WO2007061077A1
WO2007061077A1 PCT/JP2006/323500 JP2006323500W WO2007061077A1 WO 2007061077 A1 WO2007061077 A1 WO 2007061077A1 JP 2006323500 W JP2006323500 W JP 2006323500W WO 2007061077 A1 WO2007061077 A1 WO 2007061077A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
group
compound
introduction
carrier
Prior art date
Application number
PCT/JP2006/323500
Other languages
English (en)
French (fr)
Inventor
Hisafumi Ikeda
Madoka Tonosaki
Original Assignee
Credia Japan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Credia Japan Co., Ltd. filed Critical Credia Japan Co., Ltd.
Publication of WO2007061077A1 publication Critical patent/WO2007061077A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Definitions

  • nucleic acid introduction carrier for introducing nucleic acid into cells
  • the present invention relates to a nucleic acid introduction carrier, a nucleic acid introduction kit, and a method for introducing a nucleic acid into a cell.
  • a technique for efficiently introducing a nucleic acid into a cell is important in screening for a nucleic acid having a useful bioactive function, such as siRNA (small interfering RNA), and has recently been put into practical use. It is also indispensable for carrying out a certain gene therapy.
  • cationic lipids have been widely used as carriers for introducing nucleic acids used for introducing nucleic acids into cells in vivo or in vitro.
  • conventional nucleic acid introduction carriers are not always satisfactory in nucleic acid introduction efficiency, and development of a nucleic acid introduction carrier having higher nucleic acid introduction efficiency is desired.
  • Patent Document 1 Journal of Peptide & protein Research (1994), 44 (1), 19-23
  • an object of the present invention is to provide a nucleic acid introduction carrier capable of efficiently introducing a nucleic acid into a cell. Furthermore, an object of the present invention is to provide a nucleic acid introduction method, a nucleic acid introduction kit and the like using the nucleic acid introduction carrier.
  • the present inventors diligently studied to solve the above problems, and as a result, by introducing a nucleic acid into a cell using a compound represented by the following general formula (1) as a nucleic acid introduction carrier.
  • the present inventors have found that an excellent nucleic acid introduction rate can be obtained.
  • the present invention has been completed through various studies based on such knowledge. That is, the present invention has the following aspects. Provide Ming:
  • a nucleic acid introduction carrier comprising a compound represented by the following general formula (1).
  • nl is an integer of 0 to
  • n2 is an integer of 1 to 50
  • n3 is an integer of 1 to 10
  • ml is an integer of 0 to 100
  • m2 is 0 to 100
  • M3 is an integer from 0 to 100
  • m4 is an integer from 0 or 1
  • m5 is an integer from 0 to 100
  • m6 is an integer from 0 to 100;
  • Y represents a hydroxyl group or an amino group
  • E represents N or CH
  • R represents an amino acid residue, or 2 to: a peptide residue having a force of L00 amino acid residues;
  • L represents a hydrogen atom, a group having a lipid residue, a group having a fatty acid residue, or a fluorescent group Indicates the group present;
  • nl is 2 or more
  • ml in repeating unit A may be the same or different in each repeating unit A;
  • n2 is 2 or more
  • m2 to m5 and R in repeating unit B may be the same or different in each repeating unit B;
  • n3 is 2 or more
  • m6 in repeating unit C may be the same or different in each repeating unit C.
  • R is an amino acid residue selected from the group consisting of an arginine residue, a lysine residue, and a serine residue, or a peptide residue containing at least one of these amino acid residues Item 2.
  • Item 3 The nucleic acid introduction carrier according to Item 1, wherein L in the formula (1) is a group having a lipid residue or a group having a fatty acid residue.
  • R is an amino acid residue composed of one or more amino acid residues selected from the group consisting of an arginine residue, a lysine residue, and a serine residue Item 2.
  • Item 5 The nucleic acid introduction carrier according to Item 1, wherein, in the formula (1), R is a peptide residue composed of 2 to 5 arginine residue forces.
  • nl is an integer from 0 to 2
  • n2 is an integer from 1 to 10
  • n3 is an integer from 0 to 2.
  • Item 7 The nucleic acid introduction carrier according to Item 1, wherein in Formula (1), E is N, m2 is 2, m3 and m4 are 1, and m5 is 5.
  • Item 8 The nucleic acid introduction carrier according to Item 1, wherein in Formula (1), E is CH, m2, m3 and m4 are 0, and m5 is 4.
  • Item 9 The nucleic acid introduction carrier according to Item 1, further comprising a lipid.
  • Item 10 The nucleic acid introduction carrier according to Item 1, wherein the nucleic acid is at least one selected from the group consisting of siRNA, miRNA, RNA aptamer, and plasmid DNA.
  • Item 11 A method for introducing a nucleic acid into a cell, comprising bringing the carrier for introducing a nucleic acid according to any one of Items 1 to 10 together with the nucleic acid into the cell in vitro or in vivo.
  • Item 12. A nucleic acid introduction kit comprising the nucleic acid introduction carrier according to any one of Items 1 to 10.
  • Item 13 Use of a compound represented by the following general formula (1) as a nucleic acid introduction carrier:
  • nl to n3, ml to m6, Y, E, R, and L are the same as above.
  • nl to n3, ml to m6, Y, ⁇ , R, and L are the same as above.
  • nucleic acid introduction carrier of the present invention since the introduction efficiency of the nucleic acid into the target cell is remarkably superior to the conventional nucleic acid introduction carrier, research in clinical medicine and genetic engineering is possible. It is highly useful in such fields.
  • FIG. 1 In Test Example 7! /, An image of a fluorescence micrograph of a cell into which plasmid DNA was introduced using Fugene6 (Roche) alone (A in the figure), And, an image (B in the figure) of a fluorescence micrograph of a cell into which plasmid DNA was introduced using Fugene6 (Roche) and PR35 T in combination.
  • FIG. 2 is a view showing a test result in Test Example 9 (detection result of be ⁇ 2 protein expression by Western blotting).
  • each lane corresponds to the following: Lane 1: Negative control lane 2: Introduction of be ⁇ 2 compatible siRNA (supplement of 45 pmpl / well): Xtreme Gene
  • Lane 3 be ⁇ 2 compatible siRNA Introducing (supplement amount 90 pmpl/well): XtremeGene lane 4: GFP-compatible siRNA (supplement amount 42.5pmpl / well): Nucleic acid introduction carrier lane in Example 3 5: bc-2 supporting siRNA ( Introduction of supplementary amount 13.5 pmpl / well): Nucleic acid introduction carrier lane 6 of Example 3: Introduction of be ⁇ 2-compatible siRNA (supplementary amount 45 pmpl / well): Nucleic acid introduction carrier lane of Example 3 7 : Introduction of siRNA (supplement amount 135pmpl / well) for be ⁇ 2: carrier lane for nucleic acid introduction
  • compound ( ⁇ ) The compounds represented by the general formula (1) used in the present invention (hereinafter sometimes simply referred to as “compound ( ⁇ )”) are as shown below.
  • nl represents the number of repeating units A, and represents an integer of 0 to 0, preferably an integer of 0 to 5, more preferably an integer of 0 to 2.
  • ml represents an integer of 0 to 100, preferably an integer of 0 to 30, more preferably an integer of 0 to 11.
  • nl is an integer of 2 or more, that is, when there are two or more repeating units A, ml may be the same or different in each repeating unit A.
  • n2 represents the number of repeating units B, an integer of 1 to 50, preferably an integer of 1 to 20, more preferably an integer of 1 to 10.
  • m2 represents an integer of 0 to 100, preferably an integer of 0 to 20, more preferably an integer of 0 to 2.
  • m3 represents an integer of 0 to 100, preferably an integer of 0 to 20, more preferably an integer of 0 to 2.
  • m4 represents an integer of 0 or 1.
  • m5 represents an integer of 0 to 100, preferably an integer of 0 to 30 and more preferably 0 to: an integer of L1.
  • E represents N or CH.
  • m2 is 0-2, preferably 2, m3 is 0-1, preferably 1, m4 is 1, m5 is 0-11, preferably The compound which is 5 is illustrated suitably.
  • m2 is 0 to 2, preferably 0; m3 is 0 to 1, preferably 0; m4 is 0; m5 is 0 to 11, A compound that is preferably 5 is suitably exemplified.
  • R represents an amino acid residue or a peptide residue having 2 to LOO amino acid residues.
  • amino acid residues include natural amino acid residues or unnatural amino acid residues. Any group may be used without any particular limitation. From the viewpoint of providing the compound represented by the general formula (1) with excellent nucleic acid introduction properties, an arginine residue, a lysine residue, and a serine residue are preferable, and an arginine residue is more preferable.
  • the type of amino acid residues constituting the peptide residues of R is not particularly limited as long as it is composed of 2 to 100 amino acid residues.
  • the peptide residue at least selected from the group consisting of an arginine residue, a lysine residue, and a serine residue from the viewpoint of providing the compound represented by the general formula (1) with a nucleic acid introduction property.
  • Peptide residues containing one type of amino acid residue preferably arginine residues, lysine residues, and peptide residues having only serine residues as constituent amino acid residues; particularly preferably arginine residues and Z or lysine residues Peptide residues whose constituent amino acid residues are only groups are exemplified
  • the peptide residue includes a lysine residue as a constituent amino acid residue, either the ⁇ -position or the ⁇ -position amino group of the lysine, or both of the amino groups
  • a peptide bond can be formed with a carboxyl group of an adjacent amino acid.
  • the number of amino acid residues constituting the peptide residue is preferably 2 to 50, more preferably 2 to 20, more preferably 2 to 5, and particularly preferably 2 to 3.
  • a peptide residue composed of 2 to 5 arginine residues, particularly preferably, a triarginine residue composed of 3 arginine residues is exemplified.
  • the compound represented by the general formula (1) can be provided with more excellent nucleic acid introduction properties.
  • the amino acid residue or peptide residue is bonded to the carboxyl group power of the constituent amino acid on the C-terminal side in the form of dehydration condensation with the side chain amino group of the repeating unit! /, Ru. That is, the amino acid residue or peptide residue of R corresponds to a group in which the carboxyl group of the constituent amino acid on the C-terminal side of the amino acid or peptide is removed.
  • m2 is an integer of 2 or more, that is, when there are two or more repeating units B, m2 to m5 and R may be the same in each repeating unit B. , May be different.
  • n3 represents the number of repeating units C, and represents an integer of 0 to 0, preferably an integer of 0 to 5, more preferably an integer of 0 to 2.
  • m6 represents an integer of 0 to 100, preferably an integer of 0 to 30, more preferably an integer of 0 to 11.
  • n3 is an integer of 2 or more, that is, when there are two or more repeating units C, m6 may be the same or different in each repeating unit C.
  • nl is an integer of 0 to 2
  • n2 is an integer of 1 to 10
  • n3 is an integer of 0 to 2
  • nl is 1 or 2
  • N2 is an integer of 4 to 6
  • Y represents a hydroxyl group or an amino group.
  • L represents a hydrogen atom, a group having a lipid residue, a group having a fatty acid residue, or a group having a fluorescent group.
  • the constituent lipid of the group having a lipid residue is not particularly limited, but phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sphingomyelin, sphingosine, ceramide, plasmalogen, phosphatidylglycerol And phospholipids such as phosphatidic acid; glycose oral glycolipids such as galactosyl diglycerol and 6-sulfoquinovosyl diacyl glycerol; sphingoglycolipids such as galactocerebroside; steroids; prostaglandins and the like.
  • phospholipids are preferable, and phosphatidylethanolamine is more preferable.
  • the fatty acid residue constituting these lipid residues is not particularly limited, and examples thereof include saturated or unsaturated fatty acid residues having 4 to 30 carbon atoms (preferably 12 to 20). Specific examples of such fatty acid residues include lauroyl group, myristoyl group, palmitoyl group, stearyl group, oleoyl group, linoleyl group and the like. Preferred examples of the fatty acid residue include palmitoyl group and oleoyl group.
  • the group having a lipid residue may be the lipid residue itself! / ⁇ , or a group having a linker bonded to a lipid residue.
  • the linker for example, one having the structure shown in the following (a) and (b) is used.
  • i represents an integer of 1 to 20, preferably 1 to 8
  • j represents an integer of 1 to 1000, preferably 1 to 21,
  • the group in which the linker is bonded to the lipid residue is exemplified by a group represented by the following formula (L1) when the constituent lipid has an amino group; the constituent lipid is a carboxyl group Have!
  • a group represented by the following formula (L2) is exemplified.
  • the group having a lipid residue may be one having one lipid residue or two or more lipid residues.
  • the group having a fatty acid residue in L may be a fatty acid residue itself, or may be a group in which a linker is bonded to a fatty acid residue.
  • the fatty acid residue refers to a group in which OH of the carboxyl group of the fatty acid is removed.
  • Specific examples of the fatty acid residue include saturated or unsaturated fatty acid residues having 4 to 30 (preferably 12 to 20) carbon atoms.
  • Specific examples of such fatty acid residues include lauroyl group, myristoyl group, palmitolyl group, stearoyl group, oleoyl group, linoleyl group and the like.
  • the fatty acid residue include palmitoyl group and oleoyl group.
  • a linker is bonded to a fatty acid residue
  • those having the structures shown in the above (a) and (b) are used as the linker.
  • the group represented by the following formula (L3) is exemplified as a group formed by bonding a linker to a fatty acid residue.
  • the group having a fatty acid residue may be a group formed by bonding two or more (for example, 2 to 8, preferably 2 to 4) fatty acid residues!
  • Specific examples of the group to which two or more fatty acid residues are bonded include the groups shown below.
  • the group having a fluorescent group in L may be the fluorescent group itself, or may be a group in which a linker is bonded to a lipid residue.
  • the fluorescent group refers to a group having a property of emitting fluorescence.
  • a known fluorescent compound can be used, and examples thereof include FITC (fluorescene isothiocyanate), ROX (carboxy X-rhodamine) and the like.
  • FITC fluorescene isothiocyanate
  • ROX carboxy X-rhodamine
  • the compound represented by the general formula (1) when L is a group having a fluorescent group, the compound represented by the general formula (1) can be fluorescently labeled, and the compound can be detected by the presence or absence of fluorescence. .
  • the compound represented by the general formula (1) is produced by combining known chemical synthesis methods. can do. Specifically, as the first production method of the compound represented by the general formula (1), there can be mentioned a method of sequentially carrying out the following Step 1-1 to Step 1-5. Step 1-1 to Step 1-5 will be described in detail for each step.
  • Step 1-1 a compound represented by the general formula (0) is synthesized using a compound represented by the following general formula (I) and a solid phase resin or solid phase compound.
  • the protecting group refers to a linking group in a specific region constituting the intermediate compound used for the synthesis of the compound represented by the general formula (1), and other constituent regions of the intermediate compound.
  • Typical examples of the protecting group are tertiary butoxycarbonyl group (Boc group) or 9-fluorenylmethoxycarbonyl group (Fmoc group), but other protecting groups can also be used.
  • the protecting group X is preferably a Boc group or an Fmoc group.
  • Solid Phase represents a solid phase resin or a solid phase compound.
  • the compound represented by the general formula (I) is a known compound or a compound produced according to a known production method.
  • the solid phase resin or solid phase compound used in the step is not particularly limited.
  • MBHA methyl benzylidyl amine
  • PAL peptide amide linker
  • O Examples include xime (P—-trobenzophenone oxime), PAM (4-hydroxymethyl phenol-amidomethyl resin), Merrifield resin, and the like.
  • the compound represented by the general formula (I) is subjected to a condensation reaction with a solid phase resin or a solid phase compound.
  • the condensation reaction between the compound represented by the general formula (I) and the solid phase resin or the solid phase compound is carried out with respect to 1 mole of the compound represented by the general formula (I).
  • the compound is usually mixed in an amount of 0.01 to 100 mol, preferably 0.1 to 10 mol.
  • the condensation reaction of the compound represented by the general formula (I) with the solid phase resin or solid phase compound is usually carried out in an appropriate solvent.
  • the solvent known solvents can be widely used as long as they do not inhibit the reaction. Examples of such a solvent include dimethylformamide (DMF), N-methylpyrrolidone (NMP) and the like.
  • the condensation reaction between the compound represented by the general formula (I) and the solid phase resin or solid phase compound is preferably carried out using a condensing agent and a reaction accelerator.
  • the condensing agent include: 0- (azabenzotriazol-1-yl) - ⁇ , ⁇ , ',-,-tetramethyl-mu-hexafluorophosphate (HATU), O- (benzotriazole) -1-yl)- ⁇ , ⁇ , ⁇ ', ⁇ ⁇ ⁇ , -tetramethyl hex-hexafluorophosphate (HBTU), 1-ethyl chloride hydrochloride 3- (3-dimethylaminopropyl) carbodiimide (EDCI), Examples include dicyclohexyl carpositimide (DCC).
  • HATU is preferably used as the condensing agent.
  • the reaction accelerator include N, N-diisopropylethylamine (DIEA), triethylamine (TEA) and the like.
  • DIEA N, N-diisopropylethylamine
  • TAA triethylamine
  • the reaction accelerator is preferably DIEA.
  • the amount of the condensing agent to be used is generally 0.01 to 100 mol, preferably 0.1 to 10 mol in terms of the total amount of the condensing agent relative to 1 mol of the solid phase resin or solid phase compound.
  • the amount of the reaction accelerator used is usually 0.01 to 100 mol, preferably 0.1 to 10 mol of the total amount of the condensing agent with respect to 1 mol of the solid phase resin or solid phase compound. Good.
  • the condensation reaction between the compound represented by the general formula (I) and the solid phase resin or solid phase compound is usually 5 to 80 ° C, preferably 10 to 30 ° C, preferably 0.1 to 48 hours. Is carried out by stirring for 0.1 to 1 hour, if necessary.
  • one compound represented by the general formula (I) is condensed with a solid phase resin or solid phase compound.
  • a compound having the following structure can be obtained.
  • a compound bonded to a solid phase resin or a solid phase compound is referred to as a solid phase binding compound.
  • the protecting group X of the solid-phase-bound compound thus obtained is removed.
  • the removal of the protecting group X of the solid phase binding compound is carried out by appropriately adopting a method corresponding to the type of the protecting group X.
  • a method corresponding to the type of the protecting group X For example, when the protecting group X is a Boc group, a method of treating in a TFA (trifluoroacetic acid) solution (95% by volume TFAZ5% by volume m-cresol) at 10 to 30 ° C. for 0.1 to 1 hour is exemplified. Further, when the protecting group X is an Fmoc group, a method of treating in a piperidine solution (20 vol% piperidine Z80 volume 0 / oDMF) at 10 to 30 ° C.
  • TFA trifluoroacetic acid
  • step 1-2 the compound represented by general formula GO shown below using compound represented by general formula (0 shown in step 1-1 and the compound represented by general formula ( ⁇ ) below) Is synthesized.
  • the protecting group X of the solid-phase-bound compound is eliminated.
  • the method for removing the protecting group X can employ the same conditions as in Step 1-1.
  • the same conditions as in the condensation reaction in Step 1-1 above can be employed. Specifically, under the condensation reaction conditions in the above 1-1, the solid phase resin or solid phase compound is replaced with a solid phase binding compound, and the compound represented by the general formula (I) is further converted to the general formula (II). By substituting the compound represented by (), the condensation reaction in the first or second step is carried out.
  • Step 1-3 using the compound represented by General Formula (ii) obtained in Step 1-2 and the compound represented by the following General Formula (III), the following General Formula (iii) Synthesize the indicated compound.
  • the elimination reaction of the protecting group X of the solid phase-bound CC RNIII. Compound is performed.
  • the method for removing the protecting group X can employ the same conditions as in the first step.
  • the same conditions as those in the condensation reaction in the first step 1-1 can be employed. Specifically, in the condensation reaction conditions of Step 1-1 above, the solid phase resin or solid phase compound is replaced with a solid phase binding compound, and the compound represented by general formula (I) is By substituting the compound represented by the formula (III), the condensation reaction in the first to third steps is carried out.
  • Step 1-4 the compound represented by Formula (iii) obtained in Step 1-3 and an amino acid in which a protecting group Za is bonded to a functional group other than a carboxyl group bonded to the ⁇ -position carbon atom.
  • a protecting group Za is bonded to a functional group other than a carboxyl group bonded to the ⁇ -position carbon atom.
  • RZa means that the protecting group Za is bonded to the functional group of the amino acid residue or peptide residue of R.
  • the protective groups Za bonded to the respective functional groups may be the same protective groups.
  • There may be different types of protecting groups. Examples of functional groups of amino acid residues or peptide residues include amino groups, carboxyl groups, guanidyl groups, imidazol groups, thiol groups, and the like.
  • the protective group Za may be bonded to a functional group other than the carboxy group bonded to the ⁇ -position carbon atom.
  • the protective group Za may be bonded to the amino group bonded to the carbon atom in the a-position. Good.
  • the protecting group Za is bonded to the functional group.
  • the protecting group Za of the amino group bonded to the ⁇ -position carbon atom and the protecting group Za of the functional group bonded to a site other than the carbon atom of the a-position are preferably different types of protecting groups. .
  • the amino acid has two or more protecting groups Za, by selecting different types, only the protecting group Za-1 bonded to the amino group used for the condensation reaction is selected.
  • the protective group Za-2 bonded to other functional groups can be left as it is.
  • first, elimination reaction of the protective group Za bonded to the amino group used for the condensation reaction in the solid phase binding compound is performed.
  • the method for removing the protecting group Za can employ the same conditions as those in the above-mentioned first step 1-1.
  • the same conditions as in the condensation reaction of the 1-1st step can be adopted. Specifically, the solid phase resin or solid phase compound is replaced with a solid phase binding compound under the condensation reaction conditions in the above step 1-1, and more general By substituting the above-mentioned amino acid for the compound represented by the formula (I), the condensation reaction of Step 1-4 is carried out.
  • a compound of formula (iv) is obtained.
  • R is an amino acid residue
  • R A peptide residue compound consisting of 3 amino acid residues is synthesized.
  • the solid phase resin or solid phase compound is separated to form —COOH or —CONH at the terminal, and a protective group.
  • the terminal amino group of the repeating unit A of the compound represented by the general formula (1) has a group having a lipid residue, a group having a fatty acid residue, or a fluorescent group. Bond the group.
  • the compound represented by the general formula (1) is synthesized.
  • Y is a carboxyl group by exposure to super strong acidic conditions. Can be obtained.
  • MBHA resin is used as the solid phase resin or solid phase compound, it is represented by the general formula (1) in which Y is an amino group by exposing it to a super strong acid condition. Can be obtained.
  • Step 2-1 to Step 2-5 a method of sequentially carrying out the following Step 2-1 to Step 2-5. Steps 2-1 to 2-5 will be described in detail for each step.
  • Step 2-1 the compound represented by the general formula (0) is synthesized using the solid phase resin or solid phase compound represented by the general formula (I).
  • Step 2-2 the following general formula is used, using the compound represented by the general formula (II) and an amino acid having a protective group Za bonded to a functional group other than a carboxyl group bonded to the ⁇ -position carbon atom.
  • a compound represented by the formula ( ⁇ ′) is synthesized.
  • step 2-2 it is desirable that the carboxyl group of the compound represented by the general formula (II) is protected with a protecting group different from X and Za.
  • the protecting group Za of the compound represented by the general formula ( ⁇ ) is removed.
  • the removal of the protecting group Za is carried out under the same conditions as in Step 1-4 above.
  • the elimination reaction of the protective group Za bonded to the amino group used in the condensation reaction, and the compound obtained by eliminating the protective group Za bonded to the amino group used in the condensation reaction and the above A compound represented by the general formula ( ⁇ ) is obtained by carrying out the condensation reaction with an amino acid in total 1 to: L00 times.
  • step 2-3 using the compound represented by general formula (i) obtained in step 2-1 and the compound represented by general formula ( ⁇ ′) obtained in step 2-2, A compound represented by the general formula ( ⁇ ') is synthesized.
  • the protecting group X of the solid phase binding compound is removed.
  • the method for removing the protecting group X can employ the same conditions as in Step 1-2 above.
  • step 2-4 the compound represented by general formula ( ⁇ ') obtained in step 2-3 and general formula (III
  • Step 2-4 from the compound represented by the general formula (iv) obtained in Step 2-4, the solid phase resin or solid phase compound is separated to form —COOH or —CONH at the terminal, and a protective group.
  • step 2-5 is performed in the same manner as step 1-5 above.
  • the nucleic acid introduction carrier of the present invention is characterized by containing the compound represented by the general formula (1).
  • the carrier for introducing a nucleic acid is a reagent used for transferring a nucleic acid into a cell, and is used as a nucleic acid transfection reagent.
  • the nucleic acid to be introduced in the nucleic acid introduction carrier of the present invention is not particularly limited, and may be any of DNA, RNA, PNA (peptide nucleic acid), a hybrid of these and a protein, or a chimera. There may be. Specific examples include DNA decoys, siRNA, miRNA, RNA aptamers, plasmid DNA, mRNA, plasmid DNA, genes and the like.
  • the target nucleic acid may be a PCR product amplified by PCR. Of these, siRNA, miRNA, RNA aptamer, and plasmid DNA are preferable.
  • the nucleic acid is not particularly limited in its origin, and may be derived from humans, animals, plants, bacteria, viruses, etc. Also good. Furthermore, these nucleic acids may be single-stranded, double-stranded or triple-stranded, and the molecular weight is not particularly limited, and may be an oligonucleic acid or a polynucleic acid. . In the present invention, one type of nucleic acid may be used alone, or two or more types of nucleic acids may be used in appropriate combination.
  • a compound represented by the general formula (1) when L is a group having a lipid residue or a group having a fatty acid residue, the effect of introducing the nucleic acid into the cell of the compound can be further enhanced. It is. Therefore, a compound represented by the general formula (1), which is a group having a lipid residue or a group having a fatty acid residue, generally has a nucleic acid (for example, a molecular weight of 150000) that is difficult to introduce into cells. Particularly suitable for introduction of the above nucleic acids and plasmid DNA. Used for.
  • the nucleic acid to be introduced has a molecular weight of about 3000 or less, even if L is not a group having a lipid residue or a group having a fatty acid residue, the nucleic acid is introduced into the cell. Can be implemented efficiently.
  • the carrier for nucleic acid introduction of the present invention can contain a lipid in addition to the compound represented by the general formula (1).
  • lipids include phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sphingomyelin, sphingosine, plasmalogen, phosphatidylglycerol, phosphatidic acid and other phospholipids; galactosyldiglycerol, 6-sulfoquino Examples include glyceglycoglycolipids such as bosyl diglyceryl; sphingoglycolipids such as ceramide and galactocerebroside; steroids; prostaglandins and the like. These lipids may be used alone or in any combination of two or more!
  • fatty acid residues constituting these lipids include saturated or unsaturated fatty acid residues having 4 to 30 carbon atoms (preferably 12 to 20 carbon atoms). Specific examples of such fatty acid residues include lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oleol group, and linoleyl group.
  • Lipids to be blended in the nucleic acid introduction carrier of the present invention are preferably phospholipids, more preferably 1,2-dioleoyl-sn-glycose mouth-3-phosphoethanolamine and 1-palmitoyl- 2-oleoyl-sn-glycose mouth-3-phosphatidylcholine.
  • the amount of the lipid depends on the type of lipid used, the type of nucleic acid to be introduced, the type of cell to be introduced, and the like. Set as appropriate.
  • the blending ratio of the lipid when the total amount of the compound represented by the general formula (1) and the lipid is 100 parts by weight, the lipid is 5 to 95 parts by weight, preferably 10 to 70 parts by weight. More preferably, the ratio is 30 to 50 parts by weight.
  • the carrier for introducing a nucleic acid of the present invention isotonic agent, diluent, preservative, surfactant, thickener, as long as it does not interfere with the effects of the present invention. It may contain other additives such as photoresponsive compounds.
  • the nucleic acid introduction carrier of the present invention is used by being applied so as to come into contact with a cell together with a nucleic acid to be introduced into the cell.
  • the mixing ratio between the nucleic acid to be introduced and the nucleic acid introduction carrier of the present invention varies depending on the type of nucleic acid to be used, the type of target cell, the type of nucleic acid introduction carrier to be used, etc.
  • Nucleic acid is 1 to: L0000 parts by weight, preferably 10 to: L000 parts by weight, more preferably 30 to 300 parts per 100 parts by weight of the total amount of the compound represented by the general formula (1) contained in the carrier for introduction. Part by weight is exemplified.
  • the nucleic acid introduction carrier of the present invention is applied to cells in vitro or in vivo together with nucleic acids, whereby the nucleic acids are introduced into the cells.
  • introduction of a nucleic acid into a cell in vitro is performed by incubating the target cell in a solution to which a nucleic acid introduction carrier and a nucleic acid to be introduced are added.
  • the solution used for incubating the target cells is preferably based on a buffer solution such as physiological saline, but is preferably based on serum or serum-free medium.
  • the carrier for introducing nucleic acid and the nucleic acid to be introduced may be sequentially added to the above solution! It is desirable that the kite is added to the solution after mixing the nucleic acid introduction carrier and the nucleic acid to be introduced in advance to form a complex thereof.
  • the mixing ratio of the target cell and the carrier for nucleic acid introduction is not particularly limited.
  • the nucleic acid may be contained in a solution having a target cell concentration of 10,000 to 100,000 cells / ml.
  • Total force of the compound represented by the general formula (1) contained in the carrier for introduction is usually 0.001 to 2000 ⁇ g / ml, preferably 0.01 to 200 ⁇ g / ml, more preferably 0.1 to 20 / zg / ml. The ratio which becomes is illustrated.
  • the mixing ratio between the target cell and the introduction target nucleic acid includes the mixing ratio between the introduction target nucleic acid and the nucleic acid introduction carrier, and the target cell and the nucleic acid introduction carrier.
  • the nucleic acid to be introduced is usually 0.001 to 1000 in a solution having a target cell concentration of 1000 to 100000 cells / ml.
  • the ratio is preferably 0.01 to 50 ⁇ g / ml, more preferably 0.1 to 5 ⁇ g / ml.
  • the incubation conditions of the target cell in the presence of the nucleic acid introduction carrier and the introduction target nucleic acid are not particularly limited as long as the nucleic acid is introduced into the target cell.
  • the incubation time may be 0.5 to 168 hours, preferably 0.5 to 72 hours, and more preferably 2 to 48 hours.
  • nucleic acid introduction composition a composition comprising an effective amount of a nucleic acid introduction carrier and a nucleic acid to be introduced (hereinafter referred to as “nucleic acid introduction composition”). May be administered orally to the host (living body) or parenterally, such as surgical treatment or injection, to the target organ or tissue of the host (living body)!
  • the dosage form is appropriately set according to the administration form.
  • the composition for nucleic acid introduction administered orally In this case, tablets, powders, granules, capsules, syrups and the like can be mentioned.
  • examples thereof include injections, eye drops, ointments, suppositories, and patches.
  • a preferred embodiment includes a method of administering a nucleic acid introduction composition by local injection into a target cell or organ.
  • the nucleic acid introduction carrier of the present invention is used together with a conventionally known nucleic acid introduction carrier for introduction of nucleic acid into cells in-vitro or in-vivo.
  • a conventionally known nucleic acid introduction carrier for introduction of nucleic acid into cells in-vitro or in-vivo.
  • the nucleic acid introduction efficiency is synergistically improved.
  • the compound represented by the above general formula (1) may enhance the nucleic acid introduction action of a conventionally known nucleic acid introduction carrier, and it contains a compound represented by the general formula (1).
  • the carrier can also serve as an engine for other nucleic acid introduction carriers.
  • the nucleic acid introduction carrier of the present invention a nucleic acid can be efficiently introduced into a cell. Therefore, the nucleic acid introduction carrier of the present invention can be provided as one reagent of a nucleic acid introduction kit. In the nucleic acid introduction kit, in addition to the nucleic acid introduction carrier, the nucleic acid is intracellular. Including other reagents used to introduce into.
  • compound (11) A compound represented by the following general formula (11) (hereinafter referred to as compound (11)) was synthesized.
  • the product (681 mg, 2.0 mmol) was dissolved and stirred at room temperature for 6 hours.
  • compound (1-A) represented by the following general formula (hereinafter referred to as compound (1-A)) was synthesized.
  • Standard tBoc method (cf. Koch, T .; Hansen, H.F .; Andersen, P .; Larsen, T .; Batz, H.G .;
  • reaction step r2-4 After deprotecting the Boc group by TFA treatment (95% TFA / 5% m-cresol) (reaction step r2-4), the compound represented by the following formula (13) (hereinafter referred to as compound) (Denoted (13)) (58.6 mg, 109.8 / z mol) was condensed using the condensing agent HATU (41.7 mg, 109.8 mol) and DIEA (50 / z L) (room temperature, 30 minutes) ). This operation was repeated a total of 5 times (reaction steps r2-5 and 2-6).
  • a compound (1-B) represented by the following general formula (hereinafter referred to as compound (1-B)) was synthesized.
  • reaction step r3-7 Fmoc-Arg (Mts) -OH-IPE (747 mg.about.1098 mol) was condensed using a condensing agent HATU (417 mg, 1098 mol) and DIEA (192 L) (room temperature, 30 minutes). This operation was repeated 3 times in total (reaction steps r3-8 to r3-10).
  • a compound (1-C) represented by the following general formula (hereinafter referred to as compound (1-C)) was synthesized.
  • the solid phase carrier MBHA (120 mg, 73.2 ⁇ mol) is a ⁇ -amino acid for linker use.
  • Boc—HN—CH 2 —COOH (34.3 mg ⁇ 109.8 mol)
  • condensing agent HATU (41.7 mg ⁇ 109.8 / z mol)
  • a condensation reaction (room temperature, 30 minutes) was performed using EA (50 ⁇ L) (reaction step r4-1). After deprotecting the Boc group by TFA treatment (9 5% TFA / 5% m-cresol), Boc— HN— C H — COOH
  • reaction steps r4-2 and r4- 3 were used for sequential extension reaction (room temperature, 30 minutes) (reaction steps r4-2 and r4- 3).
  • reaction step r4-4 After deprotecting the Boc group by TFA treatment (95% TFA / 5% m-cresol) (reaction step r4-4), the compound represented by the formula (13) (58.6 mg, 109.8 mol) was condensed using the condensing agent HATU (41.7 mg, 109.8 mol) and DIEA (50 L) (room temperature, 30 minutes). This operation was repeated 5 times in total (reaction steps r4-5 and 4-6).
  • compound (1-D) A compound represented by the following general formula (1-D) (hereinafter referred to as compound (1-D)) was synthesized.
  • the solid phase carrier MBHA (120 mg, 73.2 ⁇ mol) is a ⁇ -amino acid for linker use.
  • Boc—HN—CH 2 —COOH (34.3 mg ⁇ 109.8 mol)
  • condensing agent HATU (41.7 mg ⁇ 109.8 / z mol)
  • a condensation reaction (room temperature, 30 minutes) was performed using EA (50 ⁇ L) (reaction step r5-1). After deprotecting the Boc group by TFA treatment (9 5% TFA / 5% m-cresol), Boc— HN— C H — COOH
  • reaction step r5-4 After deprotecting the Boc group by TFA treatment (95% TFA / 5% m-cresol) (reaction step r5-4), the compound represented by the formula (13) (58.6 mg, 109.8 mol) was condensed using the condensing agent HATU (41.7 mg, 109.8 mol) and DIEA (50 L) (room temperature, 30 minutes). This operation was repeated 5 times in total (reaction steps r5-5 and 5-6).
  • Fmoc group was deprotected by piperidine treatment (20% piperidine in DMF, room temperature for 5 minutes) (reaction step r5-7).
  • Fmoc-Lys (Boc)-OH (534 mg ⁇ 1098 mol) was condensed using the condensing agents HATU (417 mg, 1098 mol) and DIEA (192 L) (room temperature, 30 minutes) (reverse Response process r5-8).
  • Fmoc group was deprotected by piperidine treatment, and Fmoc- Ser (Trt) -OH (415 mg, 1098 / z mol) was added to the condensing agent HATU (417 mg, 1098 / z mol) and DIEA ( 192 L) (room temperature, 30 minutes) (reaction step r5- 10).
  • compound (1-E) A compound represented by the following general formula (1-E) (hereinafter referred to as compound (1-E)) was synthesized.
  • the solid phase carrier MBHA (120 mg, 73.2 ⁇ mol) is a ⁇ -amino acid for linker use.
  • Boc— ⁇ — CH 2 -COOH (34.3 mg ⁇ 109.8 mol)
  • condensing agent HATU (41.7 mg ⁇ 109.8 mol)
  • DIE Determination Agent
  • reaction step r6-1 A (50 ⁇ L) was used for the condensation reaction (room temperature, 30 minutes) (reaction step r6-1).
  • reaction step r6-1 After deprotecting the Boc group by TFA treatment (95% TFA / 5% m-cresol), the compound represented by the following formula (14) (4 2.2 mg, 109.8 i u mol) was added to the condensing agent HATU (41.7 mg 109.8 mol) and DIEA (50 L) were used for the reaction (room temperature, 30 minutes) (reaction steps r6-2 and r6-3).
  • Boc-NH-C H -COOH (34.3 mg ⁇ 109.8 mol)
  • condensing agent HATU (41.7 mg ⁇ 109.8 ⁇ mol
  • reaction steps r6- 4 and 6-5) were used for the condensation reaction (room temperature, 30 minutes) (reaction steps r6- 4 and 6-5) [0182]
  • the Boc group was deprotected by TFA treatment (95% TFA / 5% m-cresol) (reaction step r6-6).
  • the compound represented by the formula (13) (58.6 mg, 109.8 / z mol) was condensed using a condensing agent H ATU (41.7 mg, 109.8 mol) and DIEA (50 L) (room temperature, 30 Min). This operation was repeated a total of 5 times (reaction steps r6-7 and r6-8).
  • reaction step r6-9 piperidine treatment (20% piperidine in DMF, room temperature for 5 minutes) was used to deprotect the Fmoc group (reaction step r6-9).
  • Fmoc-Arg (Mts)-OH-IPE (747 mg ⁇ 1098 / z mol) was then condensed using the condensing agents HATU (417 mg, 1098 mol) and DIEA (192 L) (room temperature, 30 min. ). This operation was repeated 3 times in total (reaction steps r6-10 to r6-12).
  • reaction step r7-1 For condensation (room temperature, 30 minutes) (reaction step r7-1).
  • compound (11) (193 mg, 360 ⁇ mol) was added to condensing agents HATU (137 mg, 360 ⁇ mol) and DIEA (63 ⁇ mol). L) for condensation (room temperature, 30 minutes). This operation was repeated a total of 5 times (reaction steps r7-2 to r7-4).
  • Solid phase carrier PAL 180 mg, 72 mol was first added to piperidine.
  • the Fmoc group was deprotected by treatment (20% piperidine in DMF, room temperature for 5 minutes).
  • Linker for this ⁇ -amino Acid Fmoc— HN— CH — COOH (305 mg ⁇ 720 mol)
  • condensing agent HATU (274 mg ⁇
  • reaction step r8-1 piperidine treatment was performed to deprotect the Fmoc group, and then compound (11) (193 mg, 360 mol) was added to condensing agent HATU (137 mg, 360 ⁇ mol) and DIEA. (63 ⁇ L) was used for condensation (room temperature, 30 minutes). This operation was repeated a total of 4 times (reaction steps r8-2 to r8-4).
  • reaction step r8-5 5 mg ⁇ 720 ⁇ mol), condensed using HATU (274 mg ⁇ 720 ⁇ mol) and DIEA (126 ⁇ L) (room temperature, 30 minutes) (reaction step r8-5).
  • reaction step r8-8 Fmoc-Lys (Boc)-OH (525 mg ⁇ 1080 / z mol) was condensed using the condensing agent HATU (410 mg ⁇ 10 80 mol) and DIEA (188 L) (room temperature, 30 minutes) . This operation was repeated a total of 3 times (reaction steps r8-9 to r8-l 1).
  • reaction step r9-1 Next, after deprotecting the Fmoc group by piperidine treatment, compound (11) (193 mg, 360 mol) was added to the condensing agent HATU (137 mg, 360 ⁇ mol) and DIEA. (63 ⁇ L) was used for condensation (room temperature, 30 minutes). This operation was repeated a total of 5 times (reaction steps r9-2 to r9-4).
  • Condensation was carried out using 5 mg ⁇ ⁇ 720 ⁇ mol), the condensing agent HATU (274 mg ⁇ 720 ⁇ mol) and DIEA (126 ⁇ L) (room temperature, 30 minutes) (reaction step r9-5).
  • reaction step r9-6 the Fmoc group was deprotected by piperidine treatment. Thereafter, oleic acid (40 mg ⁇ 144 ⁇ mol) was condensed using the condensing agent HATU (54.6 mg ⁇ 144 ⁇ mol) and DIEA (25 L) (reaction step r9-7).
  • reaction step r9-8 Fmoc-Arg (Pbl)-OH-0.3IPE (733 mg ⁇ 1080 / z mol) was then condensed using the condensing agents HATU (410 mg, 1080 mol) and DIEA (188 L) (room temperature, 30 Min). This operation was repeated 3 times in total (reaction steps r9-9 to r9-ll).
  • Solid phase carrier PAL 180 mg, 72 mol was first added to piperidine.
  • the Fmoc group was deprotected by treatment (20% piperidine in DMF, room temperature for 5 minutes).
  • Linker for this ⁇ -amino Acid Fmoc— HN— CH — COOH (305 mg ⁇ 720 mol)
  • condensing agent HATU (274 mg ⁇
  • reaction step rlO-1 piperidine treatment was performed to deprotect the Fmoc group, and then compound (11) (193 mg, 360 mol) was added to condensing agent HATU (137 mg, 360 ⁇ mol) and DIEA. (63 ⁇ L) was used for condensation (room temperature, 30 minutes). This operation was repeated a total of 5 times (reaction steps rl0-2 to rl0-4).
  • N-hydroxysuccinimide (306 mg ⁇ 144 ⁇ mol) was condensed using DMF I DIEA (1 mL / 50 ⁇ L) solution (reaction process rlO-7).
  • reaction process rl0-8 (5 mL, 0.75 mL, room temperature for 30 minutes) was treated twice to deprotect the Alloc group (reaction process rl0-8).
  • Fmoc-Arg (Pbl)-OH-0.3IPE (733 mg ⁇ 1080 / z mol) was then condensed using the condensing agents HATU (410 mg, 1080 mol) and DIEA (188 L) (room temperature, 30 Min). This operation was repeated 3 times in total (reaction steps rl0-9 to rl0-ll).
  • compound (1-F) A compound represented by the following general formula (1-F) (hereinafter referred to as compound (1-F)) was synthesized.
  • Boc—HN— is the first ⁇ -amino acid for the linker on the solid phase support MBHA (120 mg, 73.2 mol).
  • CH-COOH (34.3 mg ⁇ 109.8 mol)
  • condensing agent HATU (41.7 mg ⁇ 109.8 / z mol)
  • DIE Determination Agent
  • a condensation reaction (room temperature, 30 minutes) was carried out using A (50 / z L) (reaction step rl 1-1).
  • the compound represented by the formula (14) (42.2 mg, 109.8 / z mol) was added to the condensing agent HATU (41.7 mg, 109.8 mol) and DIEA (50 L) were used for reaction (room temperature, 30 minutes) (reaction steps rl 1-2 and rl 1-3).
  • reaction step rll-9 Fmoc-Arg (Mts)-OH-IPE (747 mg ⁇ 1098 / z mol) was then condensed using the condensing agents HATU (417 mg, 1098 mol) and DIEA (192 L) (room temperature, 30 min. ). This operation was repeated 3 times in total (reaction process rl l-10 to rl 1-12).
  • a compound (1-G) represented by the following general formula (hereinafter referred to as compound (1-G)) was synthesized.
  • reaction steps rl2-2 and rl2-3) were used for sequential extension reaction (room temperature, 30 minutes) (reaction steps rl2-2 and rl2-3).
  • reaction steps rl2-2 and rl2-3) were used for sequential extension reaction (room temperature, 30 minutes) (reaction steps rl2-2 and rl2-3).
  • reaction process rl2-4 After deprotecting the Boc group by TFA treatment (95% TFA / 5% m-cresol) (reaction process rl2-4), compound (13) (58.6 mg ⁇ 109.8 / z mol) was added. Then, condensation was performed using the condensing agent HATU (41.7 mg ⁇ 109.8 / z mol) and DIEA (50 L) (room temperature, 30 minutes). This operation was repeated a total of 5 times (reaction steps rl2-5 and 12-6).
  • a compound (1-H) represented by the following general formula (hereinafter referred to as compound (1-H)) was synthesized.
  • reaction step rl3-l was used for condensation (room temperature, 30 minutes) (reaction step rl3-l).
  • Fmoc-Lys (Boc)-OH (505 mg ⁇ 1080 ⁇ mol) was condensed using the condensing agent HATU (410 mg ⁇ 1 080 mol) and DIEA (188 L) (room temperature, 30 ⁇ m). Min) (reaction step rl3-7).
  • Fmoc- Ser (Boc) -OH (414 mg ⁇ 1080 ⁇ mol) was condensed using the condensing agent HATU (410 mg ⁇ 10 80 mol) and DIEA (188 L) (room temperature, 30 minutes) ( Reaction step r 13-8).
  • Boc—Arg (Pbf) — ⁇ ⁇ 0.3 ⁇ (569 mg, 1080 / z mol) was then condensed using the condensing agent HATU (4 10 mg, 1080 / z mol) and DIEA (188 L). (Room temperature, 30 minutes) (reaction step r 13-9).
  • Boc-Arg (Pbf) — ⁇ ⁇ 0.3 ⁇ (569 mg, 1080 / z mol) was condensed using the condensing agent HATU (410 mg, 1080 mol) and DIEA (188 L) (room temperature, 30 minutes) (reaction process rl4-11).
  • a fat dissolved in an organic solvent and the above-mentioned cationic ribosome component unit (the composition is shown in Table 1) into a glass container with a suitable size, such as a cuvette or a cuvette), and remove the solvent with a rotary evaporator. (Production of film). After completely removing the solvent under vacuum conditions (6 hours or longer), hydrate with phosphate buffer (PBS buffer, pH 7.4) to a final concentration of 2.0 mM, and completely peel off the formed film. A lipid suspension was prepared. The “Freeze-t haw” operation, in which this suspension is alternately applied to a dry ice bath and warm water, was repeated 10 times to produce multilamellar vesicles (MLV).
  • a suitable size such as a cuvette or a cuvette
  • PBS buffer pH 7.4
  • LUV large unilamellar vesicle
  • SUV small unilamellar vesicle
  • the LUV was produced with a standard production apparatus (Mini-Extruder manufactured by Avanti).
  • the SUV was produced using a probe tip type locator (TOM-UD UD-220).
  • TOM-UD UD-220 probe tip type locator
  • DOPE 1,2-dioleoyl oil -sir Darice mouth-3-phosphatidylethanolamine
  • POPC 1-palmitoyl-2-oleoyl-sn-glyce mouth-3-phosphatidylcholine
  • Test Example 1 Nucleic acid introduction experiment (oligo DNA level)
  • PC3 Human lung adenocarcinoma
  • UMUC3 Human bladder carcinoma
  • T24 Human urinary bladder carcinoma
  • NIH—3T3 Human embryonic fibroblast
  • RPMI medium containing 10% FBS PC3 cells, NIH-3T3 cells, T24 cells
  • 10% FBS-containing DMEM medium UMUC cells
  • Nucleic acid introduction carrier shown in Table 2 [Solution in which compound (1_F), (1-A) or (1-B) is 0.37, 0 ⁇ 13, 0 ⁇ 04 mM, respectively] l 1 is serum-free medium 50 Placed in L, mixed by tapping and incubated at room temperature for 5 minutes. Next, FITC-labeled single-stranded DNA (20 mer) (FITC-TAATACGACTCACTATAGGG: manufactured by Proligo; SEQ ID NO: 1) 0.3 ⁇ g was added, mixed by tapping, and incubated at 37 ° C for 30 minutes (tapped every 10 minutes to mix).
  • the obtained mixed solution was added to the above-mentioned well after cell culture, gently homogenized and incubated at 37 ° C for 4 hours. Cells were collected, and FITC-positive cells were measured by FACS to calculate DNA introduction efficiency (%).
  • PC3 cells were used in the same manner as described above, using the recommended protocols corresponding to 0.3 ⁇ g of introduced nucleic acid. The efficiency of siRNA introduction (%) was determined.
  • nucleic acid introduction carrier of the present invention is superior in nucleic acid introduction efficiency compared to conventional nucleic acid introduction carriers (RoG FuGene 6, Invitrogen Lipofectamine 2000, Mirus Translt-TKO). It was confirmed that
  • Trans IT-TKO Made by Mi rus
  • PC 3 Human lung adenocarcinoma
  • UMUC3 Human bladder carcinoma
  • T24 Human urinary bladder carcinoma
  • the efficiency of introduction of siRNA into the cells was calculated by measuring at 1.
  • the introduction efficiency (%) of siRNA into the cells was determined.
  • Test Example 3 Nucleic acid introduction experiment (siRNA level) — 2
  • PC3 Human lung adenocarcinoma cells are seeded on a 6-well plate the day before the introduction so that they become 50-60% confluent at the time of siRNA introduction, and are grown in a 37 ° C, 5% C02 incubator.
  • TBS Tris-buffered saline pH 7.5
  • compound (1L-E) containing 12.5 ⁇ 1 Opt-MEM in a 1.5 ml tube
  • a carrier for introducing a nucleic acid containing the compound (1L-E) was prepared by adding 2.0 ⁇ l of the solution.
  • Test Example 4 Nucleic acid introduction experiment (plasmid DNA level) — 1
  • PC3 Human lung adenocarcinoma cells are seeded on a 6-well plate the day before the introduction so that they become 60-70% confluent when plasmid DNA is introduced, and cultured under conditions of 37 ° C and 5% CO.
  • the culture medium in each well was replaced with a serum-free medium (RPMI medium) 2 hours before introduction.
  • RPMI medium serum-free medium
  • Opti-MEM pEGFP-N3 containing EGFP recombinant plasmid DNA (pEGFP-N3) is further added to this. (Concentration: 5.0 ⁇ g / 250 ml) 250 1 was added, lightly tapped, and allowed to stand for 15 minutes to form a complex of plasmid DNA and compound (1 LA).
  • the culture was further continued for 45 hours under 2 2 (total 47 hours). After culturing, GFP (green fluorescent protein) positive cells were measured with a flow cytometer to calculate the efficiency (%) of introducing plasmid DNA into the cells.
  • Table 5 shows the obtained results. From this result, it became clear that plasmid DNA can be introduced into cells by using compound (1L-A).
  • Test Example 5 Nucleic acid introduction experiment (plasmid DNA level) 2
  • PC3 Human lung adenocarcinoma cells are seeded on a 6-well plate the day before the introduction so that they become 60-70% confluent when plasmid DNA is introduced, and cultured under conditions of 37 ° C and 5% CO.
  • plasmid DNA can be introduced into cells by using compound (1-A), compound (1-B) or compound (1-G).
  • Test Example 6 Nucleic acid introduction experiment (plasmid DNA level) 3
  • PC3 Human lung adenocarcinoma cells are seeded on a 6-well plate the day before the introduction so that they become 60-70% confluent when plasmid DNA is introduced, and cultured under conditions of 37 ° C and 5% CO.
  • the culture medium in each well was replaced with a serum-free medium (RPMI medium) 2 hours before introduction.
  • RPMI medium serum-free medium
  • a compound (1L-C) or compound (1L-D) was added to a PBS solution to a concentration of 0.0444 mM to prepare a nucleic acid introduction carrier.
  • the efficiency of introduction of plasmid DNA into the cells was calculated by measuring the cells with a flow cytometer (FACS).
  • PC3 Human lung ade nocarcinoma
  • T24 Human urinary ladder carcinoma
  • NIH-3T3 Human embryonic fibroblast
  • Each cell was seeded on a 12-well plate the day before the introduction so as to be 60-70% confluent at the time of plasmid DNA introduction, and cultured at 37 ° C under 5% CO conditions.
  • PC3 Human lung ade nocarcinoma
  • Each cell was seeded on a 12-well plate the day before the introduction so that the cells were 60-70% confluent at the time of plasmid DNA introduction, and cultured at 37 ° C under 5% CO conditions.
  • Serum-free medium 50 ⁇ l is added to a 1.5 ml tube containing 0.0.37 mM of compound (1-A), compound (1-B), or compound (1-F). 1 ⁇ l of PBS solution was added and preincubated for 10 minutes at 37 ° C. FuGene6 0.5 ⁇ 1 was directly added to this, mixed by tapping, and allowed to stand at room temperature for 5 minutes. Furthermore, 0.5 ⁇ g of EGFP recombinant plasmid DNA was collected, mixed by tapping, and incubated at 37 ° C for 15 minutes. This was dropped into a well where cells were present in a 60-70% confluent state and incubated at 37 ° C for about 48 hours. In addition, plasmid DNA was introduced into cells under the same conditions as above except that compound (1-A), compound (1-B) or compound (1-F) was not added as a control.
  • PC3 Human lung adenocarcinoma
  • Bc 2 cells cells into which Be 3 insertion plasmid has been introduced into PC3
  • Power Seed in 6 well plate the day before the introduction so that it becomes 50-60% confluent at the time of RNA introduction 37 ° C, 5% C02 incubator.
  • siRNA ((sense) GACCCGCGCCGAGGUGAAGUU; SEQ ID NO: 4 / (Antisence) CUUCACCUCGGCGCGGGUCUU; SEQ ID NO: 5, manufactured by Proligo) was allowed to stand for 15 minutes, A complex of siRNA and a carrier for gene transfer was formed, which was dropped into a well containing cells at 50-60% confluence and incubated at 37 ° C. for about 48 hours. The be-2 protein expression was detected by a simple Western plot method.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明の目的は、核酸を細胞内に効率的に導入することができる核酸導入用担体を提供することである。  一般式(1)で表される化合物、及び/又は該化合物に脂質が結合している複合化合物を核酸導入用担体として用いる。  [化1]

Description

明 細 書
核酸導入用担体、核酸導入用キット、及び核酸の細胞内への導入方法 技術分野
[0001] 本発明は、核酸導入用担体、核酸導入用キット、及び核酸の細胞内への導入方法 に関する。
背景技術
[0002] 核酸を細胞内に効率的に導入する技術は、 siRNA (small interfering RNA)等の有 用な生理活性機能を有する核酸をスクリーニングする上で重要であり、更には、近年 実用化されつつある遺伝子治療を実施する上でも不可欠である。従来、核酸をイン · ビボ又はイン ·ビトロで細胞内に導入するために使用される核酸導入用担体として、 カチオン性の脂質が広く使用されている。しかしながら、従来の核酸導入用担体では 、その核酸導入効率は必ずしも満足できるものでなぐより核酸導入効率に優れた核 酸導入用担体の開発が望まれている。
[0003] これまでに、本発明者等は、分岐構造を有する種々の化合物について提唱してお り、その有用生理機能について報告している。一方、細胞内に核酸を導入する作用 を有する化合物として、分岐構造を有するものにっ 、ては殆ど知られて 、な 、。 特許文献 1: Journal of Peptide & protein Research (1994), 44(1), 19-23
発明の開示
発明が解決しょうとする課題
[0004] そこで、本発明は、核酸を細胞内に効率的に導入することができる核酸導入用担 体を提供することを目的とする。更に、本発明は、該核酸導入用担体を利用した核酸 導入方法及び核酸導入用キット等を提供することを目的とする。
課題を解決するための手段
[0005] 本発明者等は、上記課題を解決すべく鋭意検討したところ、後記する一般式 (1)で 表される化合物を核酸導入用担体として用いて、細胞内に核酸を導入することにより 、優れた核酸導入率が得られることを見出した。本発明は、かかる知見に基づいて、 種々の検討を重ねて完成したものである。即ち、本発明は、下記に掲げる態様の発 明を提供する:
項 1. 下記一般式 (1)で表される化合物を含有することを特徴とする、核酸導入用担 体。
[0006] [化 1]
Figure imgf000003_0001
[0007] [式 (1)中、 nlは 0〜10の整数、 n2は 1〜50の整数、及び n3は 1〜10の整数を示し; mlは 0〜100の整数、 m2は 0〜100の整数、 m3は 0〜100の整数、 m4は 0又は 1の 整数、 m5は 0〜100の整数、及び m6は 0〜 100の整数を示し;
Yは、水酸基又はアミノ基を示し;
Eは、 N又は CHを示し;
Rは、アミノ酸残基、又は 2〜: L00個のアミノ酸残基力もなるペプチド残基を示し; Lは、水素原子、脂質残基を有する基、脂肪酸残基を有する基、又は蛍光性基を有 する基を示し;
nlが 2以上である場合、繰返単位 Aにおける mlは、それぞれの繰返単位 A同士で、 同一又は異なって 、てもよく;
n2が 2以上である場合、繰返単位 B中における m2〜m5及び Rは、それぞれの繰返単 位 B同士で、同一又は異なっていてもよく;
n3が 2以上である場合、繰返単位 Cにおける m6は、それぞれの繰返単位 C同士で、 同一又は異なっていてもよい。 ]
項 2. 式 (1)中、 Rが、アルギニン残基、リジン残基、及びセリン残基よりなる群から選 択されるアミノ酸残基、或いはこれらのアミノ酸残基の少なくとも 1種を含むペプチド 残基である、項 1に記載の核酸導入用担体。
項 3. 式 (1)中、 Lが、脂質残基を有する基、又は脂肪酸残基を有する基である、項 1 に記載の核酸導入用担体。 項 4. 式 (1)中、 Rが、アルギニン残基、リジン残基、及びセリン残基よりなる群から選 択される 1種又は 2種以上のアミノ酸残基から構成される、アミノ酸残基の総数が 2〜 20個のペプチド残基である、項 1に記載の核酸導入用担体。
項 5. 式 (1)中、 Rが、 2〜5個のアルギニン残基力も構成されるペプチド残基である、 項 1に記載の核酸導入用担体。
項 6. 式 (1)中、 nlは 0〜2の整数、 n2は 1〜10の整数、 n3は 0〜2の整数である、項
1に記載の核酸導入用担体。
項 7. 式 (1)中、 Eが Nであり、 m2が 2であり、 m3及び m4が 1であり、 m5が 5である、項 1 に記載の核酸導入用担体。
項 8. 式 (1)中、 Eが CHであり、 m2、 m3及び m4が 0であり、 m5が 4である、項 1に記載 の核酸導入用担体。
項 9. 更に、脂質を含む、項 1に記載の核酸導入用担体。
項 10. 核酸が、 siRNA、 miRNA、 RNAァプタマ一、及びプラスミド DNAよりなる群から 選択される少なくとも 1種である、項 1に記載の核酸導入用担体。
項 11. 項 1乃至 10のいずれかに記載の核酸導入用担体を核酸と共に、イン'ビトロ 又はイン'ビボで細胞に接触させることを特徴とする、核酸の細胞内への導入方法。 項 12. 項 1乃至 10のいずれかに記載の核酸導入用担体を含む、核酸導入用キット 項 13. 下記一般式 (1)で表される化合物の、核酸導入用担体としての使用
[0008] [化 2]
Figure imgf000004_0001
[0009] [式 (1)中、 nl〜n3、 ml〜m6、 Y、 E、 R、及び Lは前記と同じ。 ]
項 14. 下記一般式 (1)で表される化合物の、核酸導入用担体の製造のための使用 [0010] [化 3]
Figure imgf000005_0001
[0011] [式 (1)中、 nl〜n3、 ml〜m6、 Y、 Ε、 R、及び Lは前記と同じ。 ]
発明の効果
[0012] 本発明の核酸導入用担体によれば、従来の核酸導入用担体と比較して、標的細 胞内への核酸の導入効率が格段に優れているので、臨床医療、遺伝子工学の研究 等の分野にぉ 、て有用性が高 、。
図面の簡単な説明
[0013] [図 1]試験例 7にお!/、て、 Fugene6 (Roche社製)を単独で使用してプラスミド DNAの導 入を行った細胞の蛍光顕微鏡写真の像(図中 A)、及び Fugene6 (Roche社製)と PR35 Tを併用してプラスミド DNAの導入を行った細胞の蛍光顕微鏡写真の像(図中 B)を 示す。
[図 2]試験例 9における試験結果(ウェスタンブロット法により、 be卜 2タンパク質発現の 検出結果)を示す図である。図中、各レーンは、以下のものに対応する:レーン 1 :ネ ガティブコントロールレーン 2: be卜 2対応 siRNA (添カ卩量 45pmpl/well)の導入: Xtreme Geneレーン 3: be卜 2対応 siRNA (添カ卩量 90pmpl/well)の導入: XtremeGeneレーン 4: G FP対応 siRNA (添カ卩量 42.5pmpl/well)の導入:実施例 3の核酸導入用担体レーン 5 : b c卜 2対応 siRNA (添カ卩量 13.5pmpl/well)の導入:実施例 3の核酸導入用担体レーン 6: be卜 2対応 siRNA (添カ卩量 45pmpl/well)の導入:実施例 3の核酸導入用担体レーン 7: be卜 2対応 siRNA (添カ卩量 135pmpl/well)の導入:実施例 3の核酸導入用担体レーン 8 : be卜 2対応 siRNA (添カ卩量 225pmpl/well)の導入:実施例 3の核酸導入用担体レーン 9: be卜 2対応 siRNA (添加量 450pmpl/well)の導入:実施例 3の核酸導入用担体 発明を実施するための最良の形態 [0014] l. x ^
H.—!^: ωで されるィ
本発明で使用される一般式 (1)で表される化合物 (以下、単に「化合物 (ι)」と表記す ることもある)は、以下に示す通りである。
[0015] [化 4]
Figure imgf000006_0001
[0016] 式 (1)中、 nlは、繰返単位 Aの数を示し、 0〜10の整数、好ましくは 0〜5の整数、更 に好ましくは 0〜 2の整数を示す。
[0017] 繰返単位 A中、 mlは 0〜100の整数、好ましくは 0〜30の整数、更に好ましくは 0〜 11の整数を示す。 nlが 2以上の整数、即ち繰返単位 Aが 2個以上ある場合、それぞ れの繰返単位 A同士で、 mlは同一であってもよいし、異なっていてもよい。
[0018] また、式 (1)中、 n2は、繰返単位 Bの数を示し、 1〜50の整数、好ましくは 1〜20の整 数、更に好ましくは 1〜 10の整数を示す。
[0019] 繰返単位 B中、 m2は 0〜100の整数、好ましくは 0〜20の整数、更に好ましくは 0〜 2の整数を示す。 m3は 0〜100の整数、好ましくは 0〜20の整数、更に好ましくは 0〜 2の整数を示す。 m4は 0又は 1の整数を示す。 m5は 0〜100の整数、好ましくは 0〜3 0の整数、更に好ましくは 0〜: L 1の整数を示す。
[0020] また、繰返単位 B中、 Eは、 N又は CHを示す。繰返単位 Bにおいて、 Eが Nの場合、 m2が 0〜2、好ましくは 2であり; m3が 0〜1、好ましくは 1であり; m4が 1であり; m5が 0 〜11、好ましくは 5である化合物が好適に例示される。また、繰返単位 Bにおいて、 E 力 SCHの場合、 m2が 0〜2、好ましくは 0であり; m3が 0〜1、好ましくは 0であり; m4が 0 であり; m5が 0〜11、好ましくは 5である化合物が好適に例示される。
[0021] 繰返単位 B中、 Rは、アミノ酸残基、又は 2〜: LOO個のアミノ酸残基力もなるペプチド 残基を示す。 Rの内、アミノ酸残基としては、天然アミノ酸残基又は非天然アミノ酸残 基のいずれであってもよぐ特に制限されるものではない。一般式 (1)で示される化合 物に優れた核酸導入特性を備えさせるという観点から、好ましくはアルギニン残基、リ ジン残基、及びセリン残基であり、更に好ましくはアルギニン残基である。
[0022] また、 Rの内、ペプチド残基についても、 2〜100個のアミノ酸残基からなるものであ れば、その構成アミノ酸残基の種類については特に制限されない。該ペプチド残基 の一例として、一般式 (1)で示される化合物に核酸導入特性を備えさせるという観点 から、アルギニン残基、リジン残基、及びセリン残基よりなる群から選択される少なくと も 1種のアミノ酸残基を含むペプチド残基;好ましくはアルギニン残基、リジン残基、及 びセリン残基のみを構成アミノ酸残基とするペプチド残基;特に好ましくはアルギニン 残基及び Z又はリジン残基のみを構成アミノ酸残基とするペプチド残基が例示される
[0023] また、該ペプチド残基にお!、て、リジン残基を構成アミノ酸残基として含む場合、リ ジンの α位又は ε位のアミノ基の何れか一方、又はその双方のァミノ基が、隣接する アミノ酸のカルボキシル基とペプチド結合を構成することができる。
[0024] ペプチド残基を構成するアミノ酸残基の数としては、好ましくは 2〜50、更に好まし くは 2〜20、より好ましくは 2〜5、特に好ましくは 2〜3が挙げられる。
[0025] Rの好ましい形態の一例として、 2〜5つのアルギニン残基からなるペプチド残基、 特に好まし 、例として、 3つのアルギニン残基力 なるトリアルギニン残基が例示され る。このようなペプチド残基を有することによって、一般式 (1)で示される化合物が一層 優れた核酸導入特性を備えることが可能になる。
[0026] 繰返単位 Βにお ヽて、アミノ酸残基又はペプチド残基は、 C末端側の構成アミノ酸 のカルボキシル基力 繰返単位の側鎖のァミノ基と脱水縮合した形態で結合して!/、る 。即ち、 Rのアミノ酸残基又はペプチド残基は、アミノ酸又はペプチドの C末端側の構 成アミノ酸のカルボキシル基の ΟΗが除かれている基に相当する。
[0027] 繰返単位 Β中、 m2が 2以上の整数、即ち繰返単位 Bが 2個以上ある場合、それぞれ の繰返単位 B同士で、 m2〜m5及び Rは同一であってもよいし、異なっていてもよい。
[0028] 式 (1)中、 n3は、繰返単位 Cの数を示し、 0〜10の整数、好ましくは 0〜5の整数、更 に好ましくは 0〜 2の整数を示す。 [0029] 繰返単位 C中、 m6は 0〜100の整数、好ましくは 0〜 30の整数、更に好ましくは 0〜 11の整数を示す。 n3が 2以上の整数、即ち繰返単位 Cが 2個以上ある場合、それぞ れの繰返単位 C同士で、 m6は同一であってもよいし、異なっていてもよい。
[0030] 式 (1)における nl〜n3の具体例として、 nlが 0〜2の整数、 n2が 1〜10の整数、且つ n3が 0〜2の整数、特に好ましくは、 nlが 1又は 2の整数、 n2が 4〜6の整数、且つ n3 力 Si又は 2の整数が例示される。
[0031] 式 (1)にお 、て、 Yは、水酸基又はアミノ基を示す。
[0032] 式 (1)において、 Lは、水素原子、脂質残基を有する基、脂肪酸残基を有する基、又 は蛍光性基を有する基を示す。
[0033] 脂質残基を有する基の構成脂質としては、特に制限されないが、ホスファチジルェ タノールァミン、ホスファリジルコリン、ホスファチジルセリン、ホスファチジルイノシトー ル、スフインゴミエリン、スフインゴシン、セラミド、プラスマロゲン、ホスファチジルグリセ ロール、ホスファチジン酸等のリン脂質;ガラクトシルジグリセロール、 6—スルホキノボ シルジァシルグリセロール等のグリセ口糖脂質;ガラクトセレブロシド等のスフインゴ糖 脂質;ステロイド;プロスタグランジン等が挙げられる。これらの中で、好ましくはリン脂 質であり、更に好ましくはホスファチジルエタノールアミンを挙げることができる。これら の脂質残基を構成する脂肪酸残基としては、特に制限されないが、炭素数 4〜30 ( 好ましくは 12〜20)の飽和又は不飽和の脂肪酸残基が挙げられる。このような脂肪 酸残基として、具体的には、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイ ル基、ォレオイル基、リノレイル基等が例示される。当該脂肪酸残基の内、好適なも のとしては、パルミトイル基、及びォレオイル基が例示される。
[0034] 脂質残基を有する基は、脂質残基自体であってもよ!/ヽが、脂質残基にリンカ一が結 合している基であってもよい。リンカ一としては、例えば、以下の (a)及び (b)に示す構 造のものが使用される。
[0035] [化 5]
一 CO—((¾ 一 CO (a)
-0 (CH2CH20) j - (b)
[0036] iは 1〜20、好ましくは 1〜8の整数、 jは 1〜1000、好ましくは 1〜21の整数を示す, 具体的には、脂質残基にリンカ一が結合している基としては、構成脂質がアミノ基を 有している場合、下記式 (L1)で示される基が例示され;構成脂質がカルボキシル基を 有して!/ヽる場合、下記式 (L2)で示される基が例示される。
[0037] [化 6]
Figure imgf000009_0001
[0038] 式 (L1)及び (L2)中、 i及び jは前記と同じである。
[0039] なお、脂質残基を有する基は、 1つの脂質残基を有するものであっても、 2以上の 脂質残基を有するものであってもよ 、。
[0040] また、 Lの内、脂肪酸残基を有する基としては、脂肪酸残基自体であってもよいが、 脂肪酸残基にリンカ一が結合している基であってもよい。ここで、脂肪酸残基とは、脂 肪酸のカルボキシル基の OHが除かれている基を指す。脂肪酸残基としては、具体 的には、炭素数 4〜30 (好ましくは 12〜20)の飽和又は不飽和の脂肪酸残基が挙げ られる。このような脂肪酸残基として、具体的には、ラウロイル基、ミリストイル基、パル ミトィル基、ステアロイル基、ォレオイル基、リノレイル基等が例示される。当該脂肪酸 残基の内、好適なものとしては、パルミトイル基、及びォレオイル基が例示される。 また、脂肪酸残基にリンカ一が結合している基の場合、該リンカ一としては、上記 (a) 及び (b)に示す構造のものが使用される。具体的には、脂肪酸残基にリンカ一が結合 して ヽる基としては、下記式 (L3)で示される基が例示される。
[0041] [化 7] 脂質酸残基 一 CO— 0 (CH2 CH20) j— (L3)
[0042] 式 (L3)中、 jは前記と同じ。
[0043] また、脂肪酸残基を有する基は、 2個以上 (例えば 2〜8個、好ましくは 2〜4個)の 脂肪酸残基が結合して 、る基であってもよ!、。 2個以上の脂肪酸残基が結合して 、 る基としては、具体的には、以下に示す基が例示される。
[0044] [化 8]
Figure imgf000010_0001
[0045] また、 Lの内、蛍光性基を有する基としては、蛍光性基自体であってもよいが、脂質 残基にリンカ一が結合している基であってもよい。蛍光性基とは、蛍光を発する性質 を有する基を指す。蛍光性基としては、公知の蛍光化合物を使用することができ、例 えば、 FITC (フルオレセンイソチオシァネート)、 ROX (カルボキシー X—ローダミン) 等が挙げられる。また、蛍光性基の一例として、以下の構造のものが挙げられる。
[0046] [化 9]
Figure imgf000010_0002
[0047] また、脂肪酸残基にリンカ一が結合している基の場合、該リンカ一としては、上記 (a) 及び (b)に示す構造のものが使用される。
[0048] 式 (1)において、 Lが、脂質残基を有する基又は脂肪酸残基を有する基である場合 には、一般式 (1)で示される化合物による核酸の膜透過性を向上させたり、油性成分 に対する相溶性を高めることが可能になるという利点がある。
[0049] また、式 (1)において、 Lが、蛍光性基を有する基である場合、一般式 (1)で示される 化合物を蛍光標識でき、蛍光の有無により該化合物の検出が可能になる。
[0050] 1-2.— (1)で示されるイ^^の観告 法
一般式 (1)で示される化合物は、公知の化学合成法を組み合わせることにより製造 することができる。具体的には、一般式 (1)で示される化合物の第 1の製造方法として 、以下に示す第 1-1工程〜第 1-5工程を順次実施する方法が挙げられる。第 1-1工程 〜第 1-5工程について、工程毎に詳述する。
[0051] 第ト 1工程
第 1-1工程では、下記一般式 (I)で示される化合物と、固相榭脂又は固相化合物を 用いて、一般式 (0で示される化合物を合成する。
[0052] [化 10]
X - HN— (CH2 ) — OH (I)
m一 C
6 ll
0
[0053] [式 (I)中、 m6は前記と同じ。 Xは保護基を示す。 ]
ここで、保護基とは、一般式 (1)で示される化合物の合成に使用される中間体化合 物を構成している特定の領域における結合基を、当該中間体化合物の他の構成領 域における酸化、還元、加水分解、縮合などによる反応による影響を受けないように 保護している基であって、所定の条件下において脱離して水素原子や水酸基に置 換される基のことを指す。保護基としては、ターシャリーブトキシカルボニル基 (Boc基 )又は 9 フルォレニルメトキシカルボ-ル基(Fmoc基)が代表的であるが、これら以 外にも他の保護基も使用可能である。保護基 Xとして、好ましくは Boc基又は Fmoc基 である。
[0054] [化 11]
Figure imgf000011_0001
[0055] [式 (0中、 n3、 m6及び Xは前記と同じ。 Solid Phaseは、固相榭脂又は固相化合物を示 す。]
一般式 (I)で示される化合物は、公知化合物又は公知の製造方法に準じて製造され る化合物である。
[0056] 当該工程で使用される固相榭脂又は固相化合物としては、特に制限されないが、 例えば、 MBHA (メチルベンジドリルアミン榭脂)、 PAL (ペプチドアミドリンカ一)、 O xime (P— -トロべンゾフエノンォキシム)、 PAM (4—ヒドロキシメチルフエ-ルァセト アミドメチル榭脂)、 Merrifield榭脂等が例示される。
[0057] まず、上記一般式 (I)で示される化合物を、固相榭脂又は固相化合物と縮合反応さ せる。
[0058] 一般式 (I)で示される化合物と、固相榭脂又は固相化合物との縮合反応は、一般式 ( I)で示される化合物 1モルに対して、固相榭脂又は固相化合物を通常 0.01〜100モル 、好ましくは 0.1〜10モル混合して行なわれる。
[0059] 一般式 (I)で示される化合物と、固相榭脂又は固相化合物との縮合反応は、通常、 適当な溶媒中で行われる。溶媒としては、反応を阻害しない溶媒であれば公知のも のを広く使用できる。このような溶媒としては、例えば、ジメチルホルムアミド(DMF)、 N-メチルピロリドン (NMP)等が挙げられる。
[0060] 一般式 (I)で示される化合物と、固相榭脂又は固相化合物との縮合反応は、縮合剤 及び反応促進剤を用いて実施することが望ましい。縮合剤としては、例えば、 0- (ァ ザべンゾトリァゾル -1-ィル) - Ν,Ν,Ν' ,Ν, -テトラメチルゥ口-ゥムへキサフルォロリン酸 塩 (HATU)、 O- (ベンゾトリアゾル- 1-ィル) - Ν,Ν,Ν' ,Ν,-テトラメチルゥ口-ゥムへキサ フルォロリン酸塩 (HBTU)、塩酸 1ーェチルー 3—(3—ジメチルァミノプロピル)カルボ ジイミド (EDCI)、ジシクロへキシルカルポジイミド (DCC)などが挙げられる。縮合剤とし て、好ましくは HATUが好適に使用される。また、反応促進剤としては、例えば、 N, N —ジイソプロピルェチルァミン(DIEA)、トリェチルァミン (TEA)等が挙げられる。反応 促進剤として、好ましくは DIEAである。
[0061] 縮合剤の使用量は、固相榭脂又は固相化合物 1モルに対して、縮合剤が総量で通 常 0.01〜100モル、好ましくは 0.1〜10モルとするのがよい。
[0062] また、上記反応促進剤の使用量は、固相榭脂又は固相化合物 1モルに対して、縮 合剤が総量で通常 0.01〜100モル、好ましくは 0.1〜10モルとするのがよい。
[0063] 一般式 (I)で示される化合物と、固相榭脂又は固相化合物との縮合反応は、通常 5 〜80°C、好ましくは 10〜30°Cで、 0.1〜48時間、好ましくは 0.1〜1時間、必要に応じ て撹拌することにより行われる。
[0064] 斯くして、固相榭脂又は固相化合物に 1個の一般式 (I)で示される化合物を縮合さ せた下記構造の化合物を得ることができる。以下、固相榭脂又は固相化合物に結合 した状態の化合物を固相結合ィ匕合物と表記する。
[0065] [化 12]
Figure imgf000013_0001
[0066] 斯くして得られた固相結合化合物の保護基 Xの脱離を行う。固相結合化合物の保 護基 Xの脱離は、保護基 Xの種類に応じた方法を適宜採用して実施される。例えば、 保護基 Xが Boc基である場合、 TFA (トリフルォロ酢酸)溶液 (95容量% TFAZ5容量 % m-cresol)中で 10〜30°Cで 0.1〜1時間処理する方法が例示される。また、保護 基 Xが Fmoc基である場合、ピぺリジン溶液 (20容量%ピぺリジン Z80容量0 /oDMF) 中で 10〜30°Cで 0.01〜0.5時間処理する方法が例示される。更に、保護基 Xが Alloc である場合、 Pd(PPh3)4 (テトラキスートリフエ-ルフォスフィンパラジウム錯体、 312 mg )溶液(55容量%クロ口ホルム Z30容量%酢酸 Z15容量%N- methylmorphorine)中 で 10〜30°Cで 0.1〜1時間処理する方法が例示される。
[0067] 次 ヽで、保護基 Xを脱離した固相結合ィ匕合物と一般式 (I)で示される化合物の縮合 反応を実施する。当該縮合反応の条件等は、固相榭脂又は固相化合物と固相結合 化合物を置き換える以外は、上記の縮合反応と同様である。
[0068] 上記した固相結合化合物の保護基 Xの脱離反応、及び保護基 Xを脱離した固相結 合化合物と一般式 (I)で示される化合物の縮合反応を、 n3 1回繰り返し実施するこ とにより、一般式 (0で示される化合物が得られる。
[0069] 第ト 2工程
第 1-2工程では、第 1-1工程で得られた一般式 (0で示される化合物と、下記の一般 式 (π)で示される化合物を用いて、下記の一般式 GOで示される化合物を合成する。
[0070] [化 13]
Figure imgf000013_0002
[0071] 式 (II)中、 E、 m2〜m5、 Xは前記と同じである。 Zaは、保護基 Xとは異なる保護基 (保 護基 Za)である。一般式 (II)で示される化合物は、公知化合物又は公知の製造方法に 準じて製造される化合物である。
[0072] [化 14]
Figure imgf000014_0001
[0073] 式 (ii)中、 E、 n2、 n3、 m2〜m6、 X、 Za及び Solid Phaseは前記と同じである。
[0074] 第 2工程では、まず、固相結合化合物の保護基 Xの脱離反応を行う。保護基 Xの脱 離を行う方法は、前記第 1-1工程の場合と同様の条件を採用できる。
[0075] 次 ヽで、保護基 Xを脱離した固相結合ィ匕合物と一般式 (Π)で示される化合物の縮合 反応を実施する。
[0076] 保護基 Xを脱離した固相結合ィ匕合物と一般式 (Π)で示される化合物の縮合反応は、 上記第 1-1工程の縮合反応と同様の条件が採用できる。具体的には、上記第 1-1ェ 程の縮合反応条件において、固相榭脂又は固相化合物を固相結合化合物に置き 換え、更に一般式 (I)で示される化合物を一般式 (II)で示される化合物に置き換えるこ とにより、第 1-2工程の縮合反応が実施される。
[0077] 上記した固相結合化合物の保護基 Xの脱離反応、及び保護基 Xを脱離した固相結 合化合物と一般式 (Π)で示される化合物の縮合反応を、合計 n2回実施することにより 、一般式 (ii)で示される化合物が得られる。
[0078] 第ト 3工程
第 1-3工程では、第 1-2工程で得られた一般式 (ii)で示される化合物と、下記の一般 式 (III)で示される化合物を用いて、下記の一般式 (iii)で示される化合物を合成する。
[0079] [化 15]
X一 HN— (CH2 )— C一 0H
ml (I
0
[0080] 式 (III)中、 ml及び Xは前記と同じである。一般式 (III)で示される化合物は、公知化 合物又は公知の製造方法に準じて製造される化合物である。
[0081] [化 16]
tHN- (CH2 )-CJ bHN— (CH2 ) (Hi)
m1 '
Figure imgf000015_0001
[0082] 式 (iii)中、 E、 nl〜n3、 ml〜m6、 X、 Za及び Solid Phaseは前記と同じである。
[0083] 第 1-3工程では、まず、固相結合CC RNIII.化合物の保護基 Xの脱離反応を行う。保護基 Xの 脱離を行う方法は、前記第 1工程の場合と同様の条件を採用できる。
[0084] 次 ヽで、保護基 Xを脱離した固相結合化合物と下記一般式 (ΠΙ)で示される化合物 の縮合反応を実施する。
[0085] 保護基 Xを脱離した固相結合化合物と一般式 (ΠΙ)で示される化合物の縮合反応は 、上記第 1-1工程の縮合反応と同様の条件が採用できる。具体的には、上記第 1-1 工程の縮合反応条件において、固相榭脂又は固相化合物を固相結合ィ匕合物に置 き換え、更に一般式 (I)で示される化合物を一般式 (III)で示される化合物に置き換える ことにより、第 1-3工程の縮合反応が実施される。
[0086] 上記した固相結合化合物の保護基 Xの脱離反応、及び保護基 Xを脱離した固相結 合ィ匕合物と一般式 (ΠΙ)で示される化合物の縮合反応を、合計 n3回実施することにより
、一般式 (m)で示される化合物が得られる。
[0087] 第ト4工程
第 1-4工程では、第 1-3工程で得られた一般式 (iii)で示される化合物と、 α位の炭素 原子に結合したカルボキシル基以外の官能基に保護基 Zaを結合させたアミノ酸を用 いて、下記の一般式 (iv)で示される化合物を合成する。
[0088] [化 17]
X- τHN- (CH21)-C HN(CH2 E(Ch¾ HN- (CH, )-CJ Solid Phase
y (iv) [0089] 式 (iv)中、 E、 nl〜n3、 ml〜m6、 X、及び Solid Phaseは前記と同じである。また、 RZa とは、前記 Rのアミノ酸残基又はペプチド残基の官能基に前記保護基 Zaが結合して いることを示す。なお、前記 Rのアミノ酸残基又はペプチド残基において、官能基が 2 以上存在する場合には、それぞれの官能基に結合している保護基 Zaは、それぞれ 同一の保護基であってもよぐ異なる種類の保護基であってもよい。アミノ酸残基又は ペプチド残基の官能基としては、アミノ基、カルボキシル基、グァ -ジル基、イミダゾ ール基、チオール基等が例示される。
[0090] また、本工程に使用される上記のアミノ酸は、 α位の炭素原子に結合したカルボキ シル基以外の官能基に保護基 Zaが結合して 、ればよ 、。
[0091] 例えば、 α位の炭素原子に結合したカルボキシル基及びアミノ基以外に官能基が な 、アミノ酸の場合、 a位の炭素原子に結合したァミノ基に保護基 Zaが結合して ヽ ればよい。
[0092] また、例えば、リジン、アルギニン、セリン等のように、 α位の炭素原子以外に官能 基が結合して 、るアミノ酸の場合、 a位の炭素原子に結合したカルボキシル基以外 の全ての官能基に保護基 Zaが結合していればよい。この場合、 α位の炭素原子に 結合したァミノ基の保護基 Zaと、 a位の炭素原子以外の部位に結合した官能基の保 護基 Zaは、それぞれ異なる種類の保護基であることが望ましい。このように、上記アミ ノ酸に 2以上の保護基 Zaがある場合に、それぞれ異なる種類のものを採用することに より、縮合反応に使用するァミノ基に結合した保護基 Za-1のみを選択的に脱離させ、 他の官能基に結合した保護基 Za-2は残存させた状態にすることが可能になる。
[0093] 第 1-4工程では、まず、固相結合化合物において縮合反応に使用されるァミノ基に 結合した保護基 Zaの脱離反応を行う。保護基 Zaの脱離を行う方法は、前記第 1-1ェ 程の場合と同様の条件を採用できる。
[0094] 次 、で、上記のようにして保護基 Zaを脱離した固相結合ィ匕合物と、上記アミノ酸の 縮合反応を実施する。
[0095] 保護基 Zaを脱離した固相結合ィ匕合物と上記アミノ酸の縮合反応は、上記第 1-1ェ 程の縮合反応と同様の条件が採用できる。具体的には、上記第 1-1工程の縮合反応 条件において、固相榭脂又は固相化合物を固相結合ィ匕合物に置き換え、更に一般 式 (I)で示される化合物を上記アミノ酸に置き換えることにより、第 1-4工程の縮合反応 が実施される。
[0096] 上記した固相結合化合物の保護基 Zaの脱離反応、及び保護基 Zaを脱離した固相 結合化合物と上記アミノ酸の縮合反応を、 1〜100回繰り返し実施することにより、一 般式 (iv)で示される化合物が得られる。例えば、上記保護基 Zaの脱離及び縮合反応 を 1回実施すると、 Rがアミノ酸残基の化合物が合成され、また、例えば、上記保護基 Zaの脱離及び縮合反応を 3回実施すると、 Rが 3個のアミノ酸残基カゝらなるペプチド残 基の化合物が合成される。
[0097] 第ト 5工程
次いで、第 1-4工程で得られた一般式 (iv)で示される化合物から、固相榭脂又は固 相化合物を切り離して末端に— COOH又は— CONHを形成させると共に、保護基
2
X及び Zを脱離させて水素原子と置換する。また、必要に応じて、一般式 (1)で示され る化合物の繰返単位 Aの末端アミノ基に、脂質残基を有する基、脂肪酸残基を有す る基、又は蛍光性基を有する基を結合させる。斯くして、一般式 (1)で示される化合物 が合成される。
[0098] 例えば、固相榭脂又は固相化合物として、 Merrifield榭脂を用いて 、る場合には、 超強酸性条件下に晒すことにより、 Yがカルボキシル基である一般式 (1)で示される化 合物を得ることができる。また、例えば、固相榭脂又は固相化合物として、 MBHA榭 脂レジンを用いている場合には、超強酸性条件下に晒すことにより、 Yがァミノ基であ る一般式 (1)で示される化合物を得ることができる。
[0099] 更に、一般式 (1)で示される化合物の第 2の製造方法として、以下に示す第 2-1工程 〜第 2-5工程を順次実施する方法が挙げられる。第 2-1工程〜第 2-5工程について、 工程毎に詳述する。
[0100] 第 2-1工程
第 2-1工程では、前記一般式 (I)で示される化合物固相榭脂又は固相化合物を用い て、一般式 (0で示される化合物を合成する。
[0101] まず、前記一般式 (I)で示される化合物を、固相榭脂又は固相化合物に縮合させて 固相結合ィ匕合物を得た後、当該固相結合化合物の保護基 Xの脱離反応を行う。保 護基 Xの脱離は、上記第 1-1工程の場合と同様の条件で実施される。
[0102] 次 ヽで、保護基 Xを脱離した固相結合ィ匕合物と一般式 (I)で示される化合物の縮合 反応を n3— 1回繰り返し実施する実施する。当該縮合反応は、上記第 1-1工程の場 合と同様の条件で実施される。斯くして、一般式 (0で示される化合物を得ることができ る。
[0103] 第 2- 2工程
第 2-2工程では、前記一般式 (II)で示される化合物、及び α位の炭素原子に結合し たカルボキシル基以外の官能基に保護基 Zaを結合させたアミノ酸を用いて、下記一 般式 (Π')で示される化合物を合成する。
[0104] [化 18]
Figure imgf000018_0001
X-HN- (CH2 ) -E- (CH2 ) -C
m2 Γπ3 | |一 OH
[0105] 式 (Π')中、 m2〜m5、 X及び RZaは前記と同じである。
[0106] 本第 2-2工程において、一般式 (II)で示される化合物のカルボキシル基は、 X及び Z aとは異なる保護基で保護しておくことが望ま 、。
[0107] まず、一般式 (Π)で示される化合物の保護基 Zaの脱離を行う。保護基 Zaの脱離は、 上記第 1-4工程の場合と同様の条件で実施される。
[0108] 次 ヽで、保護基 Zaを脱離した一般式 (Π)で示される化合物と、上記アミノ酸の縮合反 応を実施する。当該縮合反応は、上記第 1-4工程の場合と同様の条件で実施される
[0109] 上記のように、縮合反応に使用されるァミノ基に結合した保護基 Zaの脱離反応、及 び縮合反応に使用されるァミノ基に結合した保護基 Zaを脱離した化合物と上記アミノ 酸との縮合反応を、合計 1〜: L00回実施することにより、一般式 (ΙΓ)で示される化合物 が得られる。
[0110] 篾 2-3工 第 2-3工程では、第 2-1工程で得られた一般式 (i)で示される化合物及び第 2-2工程 で得られた一般式 (Π')で示される化合物を用いて、下記一般式 (ϋ')で示される化合物 を合成する。
[0111] [化 19]
Figure imgf000019_0001
[0112] 式 (ϋ')中 n2、 n3、 m2〜m6、 RZa、及び Solid Phaseは前記と同じである。
[0113] まず、固相結合ィ匕合物の保護基 Xの脱離を行う。保護基 Xの脱離を行う方法は、前 記第 1-2工程の場合と同様の条件を採用できる。
[0114] 次いで、保護基 Xを脱離した固相結合ィ匕合物と一般式 (III)で示される化合物の縮 合反応を実施する。当該縮合反応は、上記第 1-2工程の場合と同様の条件で実施さ れる。
[0115] 上記した固相結合化合物の保護基 Xの脱離反応、及び保護基 Xを脱離した固相結 合ィ匕合物と一般式 (Π')で示される化合物の縮合反応を、合計 η2回実施することにより
、以下の一般式 Gi')で示される化合物が得られる。
[0116] 第 2- 4工程
第 2-4工程では、第 2-3工程で得られた一般式 (ϋ')で示される化合物及び一般式 (III
)で示される化合物を用いて、一般式 (iv)で示される化合物を合成する。
[0117] まず、固相結合化合物の保護基 Xの脱離反応を行う。保護基 Xの脱離を行う方法は
、前記第 1-3工程の場合と同様の条件を採用できる。
[0118] 次いで、保護基 Xを脱離した固相結合ィ匕合物と一般式 (III)で示される化合物の縮 合反応を実施する。当該縮合反応は、上記第 1-3工程の場合と同様の条件で実施さ れる。
[0119] 上記した固相結合化合物の保護基 Xの脱離反応、及び保護基 Xを脱離した固相結 合ィ匕合物と一般式 (ΠΙ)で示される化合物の縮合反応を、合計 nl回実施することにより 、一般式 Gv)で示される化合物が得られる。 [0120] 第 2- 5工程
次いで、第 2-4工程で得られた一般式 (iv)で示される化合物から、固相榭脂又は固 相化合物を切り離して末端に— COOH又は— CONHを形成させると共に、保護基
2
X及び Zaを脱離させる。また、必要に応じて、一般式 (1)で示される化合物の繰返単 位 Aの末端アミノ基に、脂質残基を有する基、脂肪酸残基を有する基、蛍光性基を有 する基を結合させる。斯くして、一般式 (1)で示される化合物が合成される。なお、本 第 2-5工程は、上記第 1-5工程と同様の方法で実施される。
[0121] 1- 3. 入 ffl¾体
本発明の核酸導入用担体は、上記一般式 (1)で示される化合物を含有することを特 徴とするものである。核酸導入用担体とは、核酸を細胞内に移入させるために使用さ れる試薬であり、核酸のトランスフエクシヨン試薬として使用されるものである。
[0122] 本発明の核酸導入用担体において、導入対象となる核酸については、特に制限さ れず、 DNA、 RNA、 PNA (ペプチド核酸)、これらとタンパク質等とのハイブリッド体又 はキメラ体のいずれであってもよい。具体的には、 DNAデコイ、 siRNA、 miRNA、 RNA ァプタマ一、プラスミド DNA、 mRNA、プラスミド DNA、遺伝子等が挙げられる。本発明 において、対象とする核酸は、 PCRにより増幅された PCR産物であってもよい。これら の中でも、好ましくは siRNA、 miRNA、 RNAァプタマ一、プラスミド DNAが例示される。
[0123] 上記核酸は、その由来については特に制限されず、ヒト、動物、植物、細菌、ウィル ス等に由来するものであってもよぐまたィ匕学的に合成されたものであってもよい。更 に、これらの核酸は、 1本鎖、 2本鎖、 3本鎖のいずれでもよぐ更にその分子量につ いても特に制限されず、オリゴ核酸であっても、ポリ核酸であってもよい。本発明にお いて、核酸は、 1種のものを単独で使用してもよぐまた 2種以上のものを適宜組み合 わせて使用してもよい。
[0124] 一般式 (1)で示される化合物において、 Lが脂質残基を有する基、又は脂肪酸残基 を有する基である場合には、当該化合物の細胞内への核酸導入作用が一層高めら れている。従って、脂質残基を有する基、又は脂肪酸残基を有する基である一般式( 1)で示される化合物は、一般に細胞内への導入が困難とされている核酸 (例えば、分 子量が 150000以上の核酸やプラスミド DNA等)を導入対象とする場合に、特に好適 に使用される。
[0125] 一方、導入対象の核酸が分子量 3000程度以下の場合には、 Lが脂質残基を有す る基、又は脂肪酸残基を有する基でなくても、細胞内への核酸の導入を効率的に実 施できる。
[0126] 本発明の核酸導入用担体は、上記一般式 (1)で示される化合物の他に、脂質を含 有することができる。このように脂質を含むことにより、核酸の細胞内への導入効率を より一層向上させることが可能になる。このような脂質としては、ホスファチジルェタノ ールァミン、ホスファリジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、 スフインゴミエリン、スフインゴシン、プラスマロゲン、ホスファチジルグリセロール、ホス ファチジン酸等のリン脂質;ガラクトシルジグリセロール、 6—スルホキノボシルジァシ ルグリセロール等のグリセ口糖脂質;セラミド、ガラクトセレブロシド等のスフインゴ糖脂 質;ステロイド;プロスタグランジン等が挙げられる。これらの脂質は 1種単独で使用し てもよく、また 2種以上を任意に組み合わせて使用してもよ!、。
[0127] また、これらの脂質を構成する脂肪酸残基としては、例えば、炭素数 4〜30 (好まし くは 12〜20)の飽和又は不飽和の脂肪酸残基が挙げられる。このような脂肪酸残基 として、具体的には、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、ォ レオィル基、リノレイル基等が例示される。
[0128] 本発明の核酸導入用担体に配合される脂質として、好ましくはリン脂質、更に好ま しくは、 1,2-ジォレオイル- sn-グリセ口- 3-ホスホエタノールァミン及び、 1-パルミトイル -2-ォレオイル- sn-グリセ口- 3-ホスファチジルコリンが挙げられる。
[0129] 本発明の核酸導入用担体に上記脂質を配合して使用する場合、脂質の配合量に ついては、使用する脂質の種類、導入対象核酸の種類、導入される細胞の種類等に 応じて適宜設定される。脂質の配合割合の一例として、上記一般式 (1)で示される化 合物と、脂質の合計量を 100重量部とした場合に、脂質が 5〜95重量部、好ましくは 10〜70重量部、更に好ましくは 30〜50重量部となる割合が例示される。
[0130] 本発明の核酸導入用担体には、上記成分の他に、本発明の効果を妨げないことを 限度として、等張化剤、希釈剤、保存剤、界面活性化剤、増粘剤、光応答化合物等 他の添加剤を含有して 、てもよ 、。 [0131] 本発明の核酸導入用担体は、細胞内への導入対象となる核酸と共に細胞に接触 するように適用することにより使用される。導入対象となる核酸と、本発明の核酸導入 用担体との混合比については、使用する核酸の種類、対象となる細胞の種類、使用 する核酸導入用担体の種類等によって異なるが、例えば、核酸導入用担体に含まれ る上記一般式 (1)で示される化合物の総量 100重量部に対して、核酸が 1〜: L0000 重量部、好ましくは 10〜: L000重量部、更に好ましくは 30〜300重量部が例示され る。
[0132] 本発明の核酸導入用担体において、核酸の導入対象となる細胞としては、ヒト細胞 、実験動物の細胞、その他ほ乳動物由来の培養細胞、植物細胞等の細胞が挙げら れる。また、ここで例示する細胞以外にも、例えば、微生物、魚類、爬虫類、両生類、 鳥類、昆虫等、全ての生物種の細胞に適用することもできる。また、細胞の形態につ いても特に制限されるものではなぐ上記正常細胞の他、がん細胞に代表される異常 細胞、初代培養細胞、胚性幹細胞、神経細胞等の細胞に適用することもできる。
[0133] 本発明の核酸導入用担体は、核酸と共にイン'ビトロ又はイン'ビボで細胞に適用さ れ、これによつて細胞内に核酸が導入される。
[0134] 具体的には、イン'ビトロで細胞内に核酸を導入するには、核酸導入用担体及び導 入対象核酸を添加した溶液中で、標的細胞をインキュベートすることによって行われ る。ここで、標的細胞のインキュベートに使用される溶液としては、生理食塩水等の緩 衝液を基剤としてもょ 、が、血清又は無血清培地を基剤とすることが好まし 、。
[0135] イン'ビトロにおける核酸の導入において、核酸導入用担体及び導入対象核酸は 上記溶液中に順次添加してもよ!/ヽが、核酸導入用担体及び導入対象核酸を予め混 合して、これらの複合体を形成させた後に上記溶液に添加することが望ま 、。
[0136] また、イン'ビトロにおける核酸の導入において、標的細胞と核酸導入用担体の混 合比としては、特に制限されないが、例えば、標的細胞濃度が 10000〜1000000cells /mlの溶液中に、核酸導入用担体に含まれる上記一般式 (1)で示される化合物の合 計力 通常 0.001〜2000 μ g/ml、好ましくは 0.01〜200 μ g/ml、更に好ましくは 0.1〜2 0 /z g/mlとなる割合が例示される。一方、標的細胞と導入対象核酸の混合比としては 、上記の導入対象核酸と核酸導入用担体の混合比、及び標的細胞と核酸導入用担 体の混合比に基づいて設定することができるが、具体的には、標的細胞濃度が 1000 0〜1000000cells/mlの溶液中に、導入対象核酸が、通常0.001〜1000
Figure imgf000023_0001
好まし くは 0.01〜50 μ g/ml、更に好ましくは 0.1〜5 μ g/mlとなる割合が挙げられる。
[0137] イン'ビトロにおける核酸の導入において、核酸導入用担体及び導入対象核酸存 在下での標的細胞のインキュベート条件は、標的細胞内に核酸が導入される限り、 特に制限されないが、通常 37°C、 5%二酸化炭素の雰囲気で、インキュベート時間を 0.5〜168時間、好ましくは 0.5〜72時間、更に好ましくは 2〜48時間とすればよい。
[0138] 一方、イン'ビボで生体内の標的細胞に核酸を導入するには、有効量の核酸導入 用担体及び導入対象核酸を含む組成物(以下、「核酸導入用組成物」と表記するこ ともある)を、宿主 (生体)に経口投与、又は宿主 (生体)の目的の器官や組織に外科 的処置や注射等の非経口投与すればよ!、。
[0139] イン'ビボにおける核酸の導入に使用される核酸導入用組成物において、その剤 型については、その投与形態に応じて適宜設定されるが、例えば、経口投与される 核酸導入用組成物の場合、錠剤、散剤、顆粒剤、カプセル剤、シロップ剤等が挙げ られる。また、非経口投与される核酸導入用組成物の場合であれば、例えば、注射 剤、点眼剤、軟膏剤、坐剤、貼付剤等を挙げることができる。
[0140] イン'ビボでの核酸の導入において、好ましい実施形態として、核酸導入用組成物 を、標的細胞や臓器に対しての局所注射により投与する方法が挙げられる。
[0141] また、本発明の核酸導入用担体は、イン'ビトロ又はイン'ビボにおける細胞内への 核酸の導入に際して、従来公知の核酸導入用担体と共に使用することによって、核 酸導入効率が相加的に向上するのに止まらず、核酸導入効率が相乗的に向上する 場合もある。特に、上記一般式 (1)で示される化合物には、従来公知の核酸導入用担 体の核酸導入作用を増強させることがあり、該一般式 (1)で示される化合物を含む核 酸導入用担体は、他の核酸導入用担体と併用することによって、他の核酸導入用担 体のェンノヽンサ一としての役割を果たすこともできる。
[0142] 本発明の核酸導入用担体によれば、効率的に細胞内に核酸を導入させることがで きる。従って、本発明の核酸導入用担体は、核酸導入用キットの一試薬として提供す ることができる。当該核酸導入用キットには、核酸導入用担体以外に、核酸を細胞内 に導入するために使用される他の試薬を含んで 、てもよ 、。
実施例
[0143] 以下に、実施例等に基づいて本発明を詳細に説明する力 本発明はこれらによつ て限定されるものではない。
合成例 1 一般式 (11)で表される化合物の合成
以下に示す一般式 (11)で表される化合物 (以下、化合物 (11)と表記する)を合成し た。
[0144] [化 20]
Figure imgf000024_0001
[0145] 具体的には、 Alloc (ァリルォキシカルボ-ル)—HN—C H —OH (891 mg, 3.0 mm
5 10
ol)と Ρή)— OH (ペンタフルオロフヱノール)(754 mg, 4.5 mmol)の塩化メチレン溶液(1 2 mL)に DCC ( 1,3-ジサイクロへキシルカルボジイミド) (845 mg, 4.5 mmol)を水冷下 加え、この反応液を 0°Cで 30分、次いで室温で 15時間撹拌した。反応液を濾過し濾 液を減圧濃縮し、残渣をシリカゲルカラムクロマト法 (CH C1 )により精製した後、へキ
2 2
サンで再結晶し白色粉末として Alloc— HN—C H -Ο-Ρίρ (537.5 mg, 98%)を得た
5 10
。 NMR(CDC1 ) δ 5.92 (m, 1 Η), 5.26 (m, 2 Η), 4.96 (brt, 1 Η), 4.57 (brd, 2 Η), 3
3
.22 (q, J = 6.2 Hz, 2 H), 2.69 (t, J = 7.2 Hz, 2 H), 2.0 - 1.8 (m, 2 H), 1.75 - 1.1 (m, 8 H); LRMS (FAB+) calcd for C H F NO [(M+H)1 382.3 observed 382.
16 17 5 4
次いで、アセトン(6.0 mL)と水(1.0 mL)の混合溶液に NaHCO (67.2 mg, 0.8 mmol
3
)を加え、 Alloc— HN—C H -O -Pip (763 mg, 2.0 mmol)と下式 (12)で表される化合
5 10
物(681 mg, 2.0 mmol)を溶解し、室温で 6時間撹拌した。
[0146] [化 21]
Figure imgf000024_0002
[0147] 水冷した 1 N塩酸で、冷却した反応溶液を pH 3.0とし、さらに 1%クェン酸水溶液を 加えた後、酢酸ェチルで抽出し、有機層を飽和食塩水で洗浄をした。有機層を無水 硫酸マグネシウムで乾燥させて濃縮し、シリカゲルカラムクロマト法(1-5% MeOH/C H C1 )で精製した。この後、塩化メチレンに溶かし、減圧濃縮しアモルファスパウダ
2 2
一として化合物 (11) (157.3 mg, 80%)を得た。 NMR(CDC1 ) δ 7.75 (d, J = 6.8 Hz,
3
2 H), 7.59 (d, J = 7.6 Hz, 2 H), 7.35 (m, 4 H), 5.8 (m, 1 H), 5.8 (ma) and 5.6 (mi) ( m, 1 H), 5.2 (m, 2 H), 4.6 (mi) and 4.53 (ma) (brd, 2 H), 4.37 (brd, 2 H), 4.22 (mi) a nd 4.04 (ma) (brd, 2 H), 3.50 (m, 2 H), 3.33 (m, 2 H), 3.16 (m, 2 H), 2.37 (ma) and 2.2 (mi) (brt, 2 H), 1.8 - 1.2 (m, 6 H); LRMS (FAB^ calcd for C H N O [(M+H)+] 5
29 36 3 7
38.6 observed 538。
[0148] 合成例 2 一般式で表される化合物 (1-A)の合成
以下の一般式で表される化合物 (1-A) (以下、化合物 (1-A)と表記する)を合成した
[0149] [化 22]
Figure imgf000025_0001
[0150」 標準的 tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.;
Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、まず、固相担体 MBHA(4— Methy benzhydrylamine)榭脂(120 mg, 73.2 μ mol)に Boc— HN— C H
5 10
— COOH (t—ブトキシカルボ-ル- 6-アミノカプロン酸; 34.3 mg、 109.8 mol)、縮合 剤 HATU (2- (1H- 9-ァザべンゾトリアゾール -1-ィル) -1,1, 3, 3テトラメチルラウ-ゥム へキサフルォロホスフェイト) (41.7 mg、 109.8 mol)と DIEA (ジイソプロピルェチルァ ミン) (50 μ L)を用いて縮合反応(室温、 30分)を行った (反応工程 r2-l)。 TFA処理( 95% TFA/5% m-cresol)により Boc基を脱保護した後、 Boc— HN— C H —COO
5 10
H (34.3 mg、 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 mol)と DIEA (50 ;z L)を 用いて逐次伸長反応(室温、 30分)を行った (反応工程 r2-2及び r2-3)。
[0151] 次 、で、 TFA処理 (95% TFA/5% m-cresol)により Boc基を脱保護した後(反応 工程 r2-4)、下式 (13)で表される化合物(以下、化合物 (13)と表記する)(58.6 mg、 109 .8 /z mol)を、縮合剤 HATU (41.7 mg、 109.8 mol)と DIEA (50 /z L)を用いて縮合さ せた(室温、 30分)。この操作を計 5回繰り返した (反応工程 r2-5及び 2-6)。
[0152] [化 23]
Figure imgf000026_0001
[0153] その後、ピぺリジン処理(20%piperidine in DMF、室温 5分)して Fmoc基を脱保護し た(反応工程 r2- 7)。次いで、 Fmoc-Arg(Mts :N- mesitylene- 2- sulfonyl)-OH -IPE (isopropylethylamine) (747 mgゝ 1098 mol)を縮合剤 HATU (417 mgゝ 1098 ^ mol) と DIEA(192 L)を用いて縮合させた(室温、 30分)。この操作を計 3回繰り返した (反 応工程 r2-8〜r2-10)。
[0154] 最後にピぺリジン処理により Fmoc基を脱保護した後、常法 (TFAZTFMSAZp— cr esol/thioanisol=60/25/10/10)により固相担体 MBHAからの切り出し、と Argの 保護基 Mts基の脱保護を行って、目的物 (ィ匕合物 (1-A))を得た (反応工程 r2- 11)。 M ALDI-TOF MS : calcd. 3653.53 (M + H+) , found 3654.57.
[0155] [化 24] H2 MBHA resin r2-2
Figure imgf000027_0001
H MBHA resin BocHN^^ ^v^w-^^/^-^W MBHA resin
H2N Nf
•2-3 2-4
Figure imgf000027_0002
[0156] 合成例 3 一般式で表される化合物 (1-B)の合成
以下の一般式で表される化合物 (1-B) (以下、化合物 (1- B)と表記する)を合成した。
[0157] [化 25]
Figure imgf000028_0001
[0158] 具体的には、標準的 tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T. ; Batz, H.G.; Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、まず 、固相担体 MBHA(120 mg, 73.2 μ mol)にリンカ一用 ω—アミノ酸である Boc—HN— C H -COOH (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 mol)と DIE
5 10
A (50 μ L)を用いて縮合反応(室温、 30分)を行った (反応工程 r3- 1)。 TFA処理 (95 % TFA/5% m-cresol)により Boc基を脱保護した後、 Boc— HN— C H — COOH (
5 10
34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 mol)と DIEA (50 /z L)を用 Vヽて逐次伸長反応(室温、 30分)を行った (反応工程 r3-2及び r3-3)。
[0159] 次いで、 TFA処理 (95% TFA/5% m-cresol)により Boc基を脱保護した後(反応 工程 r3— 4)、 Boc— Lys(Fmoc)— OH (53.4 mgゝ 109.8 /z mol)を、縮合剤 HATU (41.7 mg、 109.8 /z mol)と DIEA(50 L)を用いて縮合させた(室温、 30分)。この操作を計 5回繰り返した(反応工程 r3-5及び r3-6)。
[0160] その後、ピぺリジン処理(20%piperidine in DMF、室温 5分)して Fmoc基を脱保護し た(反応工程 r3- 7)。次いで、 Fmoc - Arg(Mts) - OH - IPE (747 mgゝ 1098 mol)を縮 合剤 HATU (417 mg、 1098 mol)と DIEA (192 L)を用いて縮合させた(室温、 30分 )。この操作を計 3回繰り返した (反応工程 r3-8〜r3-10)。
[0161] 最後にピぺリジン処理により Fmoc基を脱保護した後、常法 (TFAZTFMSAZp— cr esol/thioanisol=60/25/10/10)により固相担体 MBHAからの切り出しと、 Argの 保護基 Mts基の脱保護を行って、目的物 (ィ匕合物 (1-B))を得た (反応工程 r3- 11)。 M ALDI-TOF MS : calcd. 3228.00 (M + H+) , found 3227.91.
[化 26]
Hi
H2N† BHA resin BocHN-^^V^ MBHA resin 3-2 O
Figure imgf000030_0001
[0163] 合成例 4 一般式で表される化合物 (1-C)の合成
以下の一般式で表される化合物 (1-C) (以下、化合物 (1—C)と表記する)を合成し た。
[0164] [化 27]
Figure imgf000031_0001
[0165] 具体的には、標準的 tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.
; Batz, H.G.; Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、まず 、固相担体 MBHA(120 mg, 73.2 μ mol)にリンカ一用 ω—アミノ酸である Boc—HN— C H -COOH ( (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 /z mol)と DI
5 10
EA (50 μ L)を用いて縮合反応(室温、 30分)を行った (反応工程 r4- 1)。 TFA処理 (9 5% TFA/5% m-cresol)により Boc基を脱保護した後、 Boc— HN— C H — COOH
5 10
(34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 mol)と DIEA (50 ;z L)を 用いて逐次伸長反応(室温、 30分)を行った (反応工程 r4-2及び r4-3)。
[0166] 次 、で、 TFA処理 (95% TFA/5% m-cresol)により Boc基を脱保護した後(反応 工程 r4- 4)、前記式 (13)で表される化合物(58.6 mg、 109.8 mol)を、縮合剤 HATU ( 41.7 mg, 109.8 mol)と DIEA(50 L)を用いて縮合させた(室温、 30分)。この操作 を計 5回繰り返した (反応工程 r4-5及び 4-6)。
[0167] その後、ピぺリジン処理(20%piperidine in DMF、室温 5分)して Fmoc基を脱保護し た(反応工程 r4- 7)。次いで、 Fmoc - Lys(Boc) - OH (534 mgゝ 1098 /z mol)を、縮合 剤 HATU (417 mg、 1098 mol)と DIEA (192 L)を用いて縮合させた(室温、 30分)
。この操作を計 3回繰り返した (反応工程 r4-8〜r4-10)。
[0168] 最後にピぺリジン処理により Fmoc基を脱保護した後、常法 (TFAZTFMSAZp— cr esol/thioanisol=60/25/10/10)により固相担体 MBHAからの切り出しと、 Lysの 保護基 Boc基の脱保護を行 ヽ、目的物 (ィ匕合物 (1-C))を得た (反応工程 r4-l 1)。 MA
LDI-TOF MS : calcd. 3233.32 (M + H+) , found 3233.60.
[0169] [化 28]
Figure imgf000033_0001
[0170] 合成例 5 一般式 (1-D)で表される化合物の合成
以下の一般式 (1-D)で表される化合物 (以下、化合物 (1- D)と表記する)を合成した
[0171] [化 29]
Figure imgf000034_0001
[0172] 具体的には、標準的 tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.
; Batz, H.G.; Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、まず 、固相担体 MBHA(120 mg, 73.2 μ mol)にリンカ一用 ω—アミノ酸である Boc—HN— C H -COOH ( (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 /z mol)と DI
5 10
EA (50 μ L)を用いて縮合反応(室温、 30分)を行った (反応工程 r5- 1)。 TFA処理 (9 5% TFA/5% m-cresol)により Boc基を脱保護した後、 Boc— HN— C H — COOH
5 10
(34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 mol)と DIEA (50 ;z L)を 用いて逐次伸長反応(室温、 30分)を行った (反応工程 r5-2及び r5-3)。
[0173] 次 、で、 TFA処理 (95% TFA/5% m-cresol)により Boc基を脱保護した後(反応 工程 r5- 4)、前記式 (13)で表される化合物(58.6 mg、 109.8 mol)を、縮合剤 HATU ( 41.7 mg, 109.8 mol)と DIEA(50 L)を用いて縮合させた(室温、 30分)。この操作 を計 5回繰り返した (反応工程 r5-5及び 5-6)。
[0174] その後、ピぺリジン処理(20%piperidine in DMF、室温 5分)して Fmoc基を脱保護し た(反応工程 r5- 7)。次いで、 Fmoc - Lys(Boc) - OH (534 mgゝ 1098 mol)を縮合剤 HATU (417 mg、 1098 mol)と DIEA (192 L)を用いて縮合させた(室温、 30分)(反 応工程 r5-8)。次に、ピぺリジン処理にて Fmoc基を脱保護し、 Fmoc— Arg(Mts)— OH •IPE (747 mg、 1098 /z mol)を、縮合剤 HATU (417 mgゝ 1098 mol)と DIEA (192 L )を用いて縮合させた (室温、 30分)(反応工程 r5-9)。更に、ピぺリジン処理にて Fmo c基を脱保護し、 Fmoc— Ser(Trt)— OH (415 mg、 1098 /z mol)を、縮合剤 HATU (417 mg、 1098 /z mol)と DIEA(192 L)を用いて縮合させた(室温、 30分)(反応工程 r5- 1 0)。
[0175] 最後に、ピぺリジン処理により Fmoc基を脱保護した後、常法 (TFAZTFMSAZp— c resol/thioanisol = 60/25/10/ 10)により固相担体 MBHAからの切り出しと、 Lysの 保護基 Boc基、 Argの保護基 Mts基、 Serの保護基 Trt基の脱保護を行い、目的物(ィ匕 合物 (1- D))を得た(反応工程 r5- 11)。 MALDI-TOF MS : calcd. 3167.92 (M + H+) , fo und 3166.89.
[0176] [化 30]
H2 BHA resin BocHN*^^^^1, MBHA resin
r 5-2
MBHA resin BocHN -^^ -N+MBHA resin
5-3 54
Figure imgf000036_0001
[0177] 合成例 6 一般式 (1-E)で表される化合物の合成
以下の一般式 (1-E)で表される化合物(以下、化合物 (1- E)と表記する)を合成した。
[0178] [化 31]
Figure imgf000037_0001
[0179] 具体的には、標準的 tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.
; Batz, H.G.; Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、まず 、固相担体 MBHA(120 mg, 73.2 μ mol)にリンカ一用 ω—アミノ酸である Boc— ΗΝ— C H -COOH (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 mol)と DIE
5 10
A (50 μ L)を用いて縮合反応(室温、 30分)を行った (反応工程 r6- 1)。 TFA処理 (95 % TFA/5% m-cresol)により Boc基を脱保護した後、下式 (14)で表される化合物 (4 2.2mg、 109.8 iu mol)を、縮合剤HATU (41.7 mg、 109.8 mol)と DIEA (50 L)を用 V、て反応(室温、 30分)を行った (反応工程 r6-2及び r6- 3)。
[0180] [化 32]
Figure imgf000037_0002
次いで、 TFA処理(95% TFA/5% m-cresol)により Boc基を脱保護した後、 Boc- NH-C H -COOH (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 ^ mol
5 10
)と DIEA (50 μ L)を用いて縮合反応(室温、 30分)を行った (反応工程 r6- 4及び 6- 5) [0182] 次!、で、 TFA処理(95% TFA/5% m— cresol)により Boc基を脱保護した (反応ェ 程 r6-6)。その後、前記式 (13)で表される化合物(58.6 mg、 109.8 /z mol)を、縮合剤 H ATU (41.7 mg、 109.8 mol)と DIEA(50 L)を用いて縮合させた(室温、 30分)。こ の操作を計 5回繰り返した (反応工程 r6-7及び r6-8)。
[0183] 次!、で、ピぺリジン処理(20%piperidine in DMF、室温 5分)して Fmoc基を脱保護し た(反応工程 r6- 9)。次いで、 Fmoc - Arg(Mts) - OH - IPE (747 mgゝ 1098 /z mol)を、 縮合剤 HATU (417 mg、 1098 mol)と DIEA (192 L)を用いて縮合させた(室温、 30 分)。この操作を計 3回繰り返した (反応工程 r6- 10〜r6-12)。
[0184] 更に、 TFA処理により Boc基を脱保護した後、 FITC (143 mg、 366 μ mol)の Pyridine /DMF/CHC1 (1/5/4、 1.5 mL)溶液を室温で 24時間攪拌して、蛍光標識化した (反
3
応工程 r6-13)。
[0185] 最後に、ピぺリジン処理により Fmoc基を脱保護した後、常法 (TFAZTFMSAZp— c resol/thioanisol = 60/25/10/ 10)により固相担体 MBHAからの切り出しと、 Argの 保護基 Mts基の脱保護を行 ヽ、目的物 (ィ匕合物 (1- E))を得た (反応工程 r6- 14)。 MA LDI-TOF MS : calcd. 4310.17 (M + H+) , found 4305.64.
[0186] [化 33- 1]
H2N MBHA resin ~~ BocHN^^ MBHA resin •6-2
O
Figure imgf000039_0001
33- 2]
Figure imgf000040_0001
[0188] 合成例 7 化合物 (1L-A)の合成
以下の一般式で表される化合物 (1L-A)を合成した c
[0189] [化 34]
Figure imgf000040_0002
具体的には、標準的 Fmoc法(cf. Carpino, L.A. ; Han, G.Y. J. Org. Chem. 1972, 3 7, 3404- 9.)〖こ従い、まず、固相担体 PAL (5-(4 Aminomethy 3',5 dimethoxypheno xy)- valeric acid) (180 mg, 72 μ mol)をピペリジン処理(20%piperidine in DMFゝ室 温 5分)して Fmoc基を脱保護した。これにリンカ一用 ω—アミノ酸である Fmoc— HN-C
H - COOH (305 mgゝ 720 μ mol)を、縮合剤 HATU (274 mgゝ 720 μ mol)と DIEA (1
10 20
26 a L)を用いて縮合 (室温、 30分)させた (反応工程 r7- 1)。 [0191] 次いで、ピぺリジン処理して Fmoc基を脱保護した後、化合物 (11) (193 mg、 360 μ m ol)を、縮合剤 HATU (137 mg、 360 μ mol)と DIEA (63 μ L)を用いて縮合させた(室 温、 30分)。この操作を計 5回繰り返した (反応工程 r7-2〜r7-4)。
[0192] 次に、ピぺリジン処理して Fmoc基を脱保護した後、 Fmoc— HN -C H — COOH (3
10 20
05 mgゝ 720 μ mol)、縮合剤 HATU (274 mgゝ 720 μ mol)と DIEA (126 μ L)を用いて 縮合 (室温、 30分)させた (反応工程 r7-5)。
[0193] 次 、で、ピぺリジン処理して Fmoc基を脱保護した (反応工程 r7-6)。その後、リン脂 質活性エステル体 DOPE- NHS (ジォレオイルホスファチジルエタノールァミン N-hy droxysuccinimide) (90.5 mg、 92.3 μ mol)を、 DMF I DIEA (1 mL / 50 μ L)溶液を用
V、て縮合させた (反応工程 r7-7)。
[0194] 次いで、 Pd(PPh ) (tetrakis (triphenvlphosphine)palladium(O))の CHC1 I AcOH I
3 4 3
N-methylmorphorine溶液(312 mg, 2.8 mL, 1.5 mL, 0.75 mLゝ室温 30分)にて 2度処 理し、 Alloc基を脱保護した (反応工程 r7- 8)。次いで、 Fmoc- Arg(Pbl) - OH - 0.3IPE (733 mgゝ 1080 mol)を、縮合剤 HATU (410 mgゝ 1080 mol)と DIEA (188 ;z L)を 用いて縮合させた (室温、 30分)。この操作を計 3回繰り返した (反応工程 r7-9〜r7- 11
) o
[0195] 最後に、ピぺリジン処理後により Fmoc基を脱保護した後、 TFA処理 (95% TFA/5 % m-cresol)により、固相担体 PALからの切り出しと、 Argの保護基 Pbf基の脱保護を 行 、、目的物(ィ匕合物 (1L- A))を得た(反応工程 r 7- 12)。 MALDI- TOF MS: calcd. 46 32.90 (M + H+) , found 4632.63.
[0196] [化 35- 1]
Figure imgf000042_0001
化 35- 2]
Figure imgf000043_0001
Figure imgf000043_0002
[0198] 合成例 8 一般式 (1L-B)で表される化合物の合成
以下の一般式 (1L-B)で表される化合物 (以下、化合物 (1L-B)と表記する)を合成し た。
[0199] [化 36]
Figure imgf000043_0003
具体的には、標準的 Fmoc法(cf. Carpino, L.A.; Han, G.Y. J. Org. Chem. 1972, 3 7, 3404-9.)に従い、まず、固相担体 PAL (180 mg, 72 mol)をピペリジン処理(20% piperidine in DMF、室温 5分)して Fmoc基を脱保護した。これにリンカ一用 ω—ァミノ 酸である Fmoc— HN— C H — COOH (305 mgゝ 720 mol)、縮合剤 HATU (274 mgゝ
10 20
720 /z mol)と DIEA(126 L)を用いて縮合(室温、 30分)させた。(反応工程 r8- 1) 次いで、ピぺリジン処理して Fmoc基を脱保護した後、化合物 (11) (193 mg、 360 m ol)を、縮合剤 HATU (137 mg、 360 μ mol)と DIEA (63 μ L)を用いて縮合させた(室 温、 30分)。この操作を計 4回繰り返した (反応工程 r8-2〜r8-4)。
[0201] 次に、ピぺリジン処理して Fmoc基を脱保護した後、 Fmoc— HN-C H — COOH (30
10 20
5 mgゝ 720 μ mol)、縮合剤 HATU (274 mgゝ 720 μ mol)と DIEA (126 μ L)を用いて縮 合 (室温、 30分)させた (反応工程 r8-5)。
[0202] 次 、で、ピぺリジン処理して Fmoc基を脱保護した (反応工程 r8-6)。その後、リン脂 質活性エステル体 DOPE- NHS (ジォレオイルホスファチジルエタノールァミン N-hy droxysuccinimide) (90.5 mg、 92.3 μ mol)を、 DMF I DIEA (1 mし / 50 μ L)溶液を用
V、て縮合させた (反応工程 r8-7)。
[0203] 更に、 Pd(PPh )の CHC1 / AcOH / N-methylmorphorine溶液(312 mg, 2.8 mL, 1.
3 4 3
5 mL, 0.75 mL、室温 30分)にて 2度処理し、 Alloc基を脱保護した (反応工程 r8-8)。 次いで、 Fmoc - Lys(Boc) - OH (525 mgゝ 1080 /z mol)を、縮合剤 HATU (410 mgゝ 10 80 mol)と DIEA (188 L)を用いて縮合させた (室温、 30分)。この操作を計 3回繰 り返した(反応工程 r8-9〜r8-l 1)。
[0204] 最後に、ピぺリジン処理により Fmoc基を脱保護した後、 TFA処理 (95% TFA/5% m— cresol)により、固相担体 PALからの切り出しと、 Lysの保護基 Boc基の脱保護を行 い、目的物(ィ匕合物 (1L- B))を得た(反応工程 r8- 12)。 MALDHTOF MS: calcd. 3614. 91 (M + H+) , found 3611.60.
[0205] [化 37- 1]
Figure imgf000045_0001
化 37- 2]
Figure imgf000046_0001
[0207] 合成例 9 一般式で表される化合物 (1L-C)の合成
以下の一般式で表される化合物 (1L-C) (以下、化合物 (1L-C)と表記する)を合成し た。
[0208] [化 38]
Figure imgf000046_0002
[0209] 具体的には、標準的 Fmoc法(cf. Carpino, L.A.; Han, G.Y. J. Org. Chem. 1972, 3 7, 3404-9.)に従い、まず、固相担体 PAL (180 mg, 72 mol)をピペリジン処理(20% piperidine in DMF、室温 5分)して Fmoc基を脱保護した。これにリンカ一用 ω—ァミノ 酸である Fmoc— HN— C H — COOH (305 mgゝ 720 mol)、縮合剤 HATU (274 mgゝ
10 20
720 /z mol)と DIEA(126 L)を用いて縮合(室温、 30分)させた。(反応工程 r9- 1) 次いで、ピぺリジン処理して Fmoc基を脱保護した後、化合物 (11) (193 mg、 360 m ol)を、縮合剤 HATU (137 mg、 360 μ mol)と DIEA (63 μ L)を用いて縮合させた(室 温、 30分)。この操作を計 5回繰り返した (反応工程 r9-2〜r9-4)。
[0210] 次に、ピぺリジン処理して Fmoc基を脱保護した後、 Fmoc— HN-C H — COOH (30
10 20
5 mgゝ 720 μ mol)、縮合剤 HATU (274 mgゝ 720 μ mol)と DIEA (126 μ L)を用いて縮 合 (室温、 30分)させた (反応工程 r9-5)。
[0211] 次いで、ピぺリジン処理して Fmoc基を脱保護した (反応工程 r9-6)。その後、ォレイ ン酸(40 mgゝ 144 μ mol)を、縮合剤 HATU (54.6 mgゝ 144 μ mol)と DIEA (25 L)を 用いて縮合させた (反応工程 r9-7)。
[0212] 更に、 Pd(PPh )の CHC1 / AcOH / N—methylmorphorine溶液(312 mg, 2.8 mL, 1.
3 4 3
5 mL, 0.75 mL、室温 30分)にて 2度処理し、 Alloc基を脱保護した (反応工程 r9-8)。 次いで、 Fmoc - Arg(Pbl) - OH - 0.3IPE (733 mgゝ 1080 /z mol)を、縮合剤 HATU (410 mg、 1080 mol)と DIEA (188 L)を用いて縮合させた(室温、 30分)。この操作を計 3回繰り返した(反応工程 r9-9〜r9-ll)。
[0213] 最後に、ピぺリジン処理により Fmoc基を脱保護した後、 TFA処理 (95% TFA/5% m-cresol)により、固相担体 PALからの切り出しと、 Argの保護基 Pbf基の脱保護を行 い、目的物 (ィ匕合物 (1L-C))を得た (反応工程 r9-12)。
[0214] [化 39- 1] H
Figure imgf000048_0001
Figure imgf000048_0002
Figure imgf000048_0003
39- 2]
Figure imgf000049_0001
9-12
Figure imgf000049_0002
[0216] 合成例 10 一般式 (1L-D)で表される化合物の合成
nli—
以下の一般式 (1L-D)で表される化合物 (以下、化合物 (1L-D)と表記する)を合成し た。
[0217] [化 40]
Figure imgf000049_0003
具体的には、標準的 Fmoc法(cf. Carpino, L.A.; Han, G.Y. J. Org. Chem. 1972, 3 7, 3404-9.)に従い、まず、固相担体 PAL (180 mg, 72 mol)をピペリジン処理(20% piperidine in DMF、室温 5分)して Fmoc基を脱保護した。これにリンカ一用 ω—ァミノ 酸である Fmoc— HN— C H — COOH (305 mgゝ 720 mol)、縮合剤 HATU (274 mgゝ
10 20
720 mol)と DIEA (126 L)を用いて縮合(室温、 30分)させた。(反応工程 rlO- 1) 次いで、ピぺリジン処理して Fmoc基を脱保護した後、化合物 (11) (193 mg、 360 m ol)を、縮合剤 HATU (137 mg、 360 μ mol)と DIEA (63 μ L)を用いて縮合させた(室 温、 30分)。この操作を計 5回繰り返した (反応工程 rl0-2〜rl0-4)。
[0219] 次に、ピぺリジン処理して Fmoc基を脱保護した後、 Fmoc— HN-C H — COOH (30
10 20
5 mgゝ 720 μ mol)、縮合剤 HATU (274 mgゝ 720 μ mol)と DIEA (126 μ L)を用いて縮 合 (室温、 30分)させた (反応工程 rl0-5)。
[0220] 次 、で、ピぺリジン処理して Fmoc基を脱保護した (反応工程 rlO-6)。その後、リン脂 質活性エステル体 Ole-PEG- NHS [ォレイン酸-ポリエチレングリコール (分子量 2000)-
N-hydroxysuccinimide] (306 mgゝ 144 μ mol)を、 DMF I DIEA (1 mL / 50 μ L)溶液 を用いて縮合させた (反応工程 rlO-7)。
[0221] 更に、 Pd(PPh )の CHC1 / AcOH / N—methylmorphorine溶液(312 mg, 2.8 mL, 1.
3 4 3
5 mL, 0.75 mL、室温 30分)にて 2度処理し、 Alloc基を脱保護した (反応工程 rl0-8)。 次いで、 Fmoc - Arg(Pbl) - OH - 0.3IPE (733 mgゝ 1080 /z mol)を、縮合剤 HATU (410 mg、 1080 mol)と DIEA (188 L)を用いて縮合させた(室温、 30分)。この操作を計 3回繰り返した(反応工程 rl0-9〜rl0-ll)。
[0222] 最後にピぺリジン処理により Fmoc基を脱保護した後、 TFA処理 (95% TFA/5% m
-cresol)により、固相担体 PALからの切り出しと、 Argの保護基 Pbf基の脱保護を行い 、目的物 (ィ匕合物 (1L-D))を得た (反応工程 rlO-12)。
[0223] [化 41- 1]
Figure imgf000051_0001
Figure imgf000051_0002
1— 2] 10- 10
Figure imgf000052_0001
Figure imgf000052_0002
! I
[0225] 合成例 11 一般式 (1-F)で表される化合物の合成
以下の一般式 (1-F)で表される化合物(以下、化合物 (1- F)と表記する)を合成した。
[0226] [化 42]
Figure imgf000052_0003
[0227] 具体的には、標準的 tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T. ; Batz, H.G.; Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80— 88.)に従い、まず 、固相担体 MBHA (120 mg, 73.2 mol)にリンカ一用 ω—アミノ酸である Boc— HN— C H -COOH (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 /z mol)と DIE
5 10
A (50 /z L)を用いて縮合反応(室温、 30分)を行った (反応工程 rl 1-1)。 TFA処理 (95 % TFA/5% m-cresol)により Boc基を脱保護した後、式 (14)で表される化合物 (42. 2mg、 109.8 /z mol)を、縮合剤 HATU (41.7 mg、 109.8 mol)と DIEA (50 L)を用い て反応(室温、 30分)を行った (反応工程 rl 1-2及び rl 1-3)。
[0228] 次!、で、 TFA処理(95% TFA/5% m-cresol)により Boc基を脱保護した後、 Boc- NH-C H -COOH (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mgゝ 109.8 ^ mol
5 10
)と DIEA(50 /z L)を用いて縮合反応(室温、 30分)を行った (反応工程 rl 1-4及び 11- 5)。
[0229] 次!、で、 TFA処理(95% TFA/5% m-cresol)により Boc基を脱保護した (反応ェ 程 rll- 6)。その後、前記式 (13)で表される化合物(58.6 mg、 109.8 /z mol)を、縮合剤 HATU (41.7 mg、 109.8 mol)と DIEA(50 L)を用いて縮合させた(室温、 30分)。 この操作を計 5回繰り返した (反応工程 rl 1-7及び rl 1-8)。
[0230] 次!、で、ピぺリジン処理(20%piperidine in DMF、室温 5分)して Fmoc基を脱保護し た(反応工程 rll- 9)。次いで、 Fmoc - Arg(Mts) - OH - IPE (747 mgゝ 1098 /z mol)を、 縮合剤 HATU (417 mg、 1098 mol)と DIEA (192 L)を用いて縮合させた(室温、 30 分)。この操作を計 3回繰り返した (反応工程 rl l-10〜rl 1-12)。
[0231] 最後に、ピぺリジン処理により Fmoc基を脱保護した後、常法 (TFAZTFMSAZp— c resol/thioanisol = 60/25/10/ 10)により固相担体 MBHAからの切り出しと、 Argの 保護基 Mts基の脱保護を行 ヽ、目的物 (ィ匕合物 (1-F))を得た (反応工程 rl 1-13)。
[0232] [化 43- 1]
Figure imgf000054_0001
43- 2]
Figure imgf000055_0001
合成例 12 一般式 (1-G)で表される化合物の合成
以下の一般式で表される化合物 (1-G) (以下、化合物 (1-G)と表記する)を合成した
[0235] [化 44]
Figure imgf000055_0002
[0236] 標準的 tBoc法(cf. Koch, T.; Hansen, H.F.; Andersen, P.; Larsen, T.; Batz, H.G.;
Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80-88.)に従い、まず、固相担体 MBHA (4— Methy benzhydrylamine)榭脂(120 mg, 73.2 μ mol)に Boc— HN— C H
5 10
— C00H (t—ブトキシカルボ-ル- 6-アミノカプロン酸; 34.3 mg、 109.8 mol)、縮合 剤 HATU (41.7 mg、 109.8 mol)と DIEA (50 L)を用いて縮合反応(室温、 30分)を 行った(反応工程 rl2- 1)。 TFA処理(95% TFA/5% m— cresol)により Boc基を脱保 護した後、 Boc-HN-C H -COOH (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7
5 10
mg、 109.8 /z mol)と DIEA (50 L)を用いて逐次伸長反応(室温、 30分)を行った(反 応工程 rl2-2及び rl2-3)。 [0237] 次 、で、 TFA処理 (95% TFA/5% m— cresol)により Boc基を脱保護した後(反応 工程 rl2- 4)、化合物 (13) (58.6 mgゝ 109.8 /z mol)を、縮合剤 HATU (41.7 mgゝ 109.8 /z mol)と DIEA(50 L)を用いて縮合させた(室温、 30分)。この操作を計 5回繰り返し た (反応工程 rl2-5及び 12-6)。
[0238] 次 、で、 TFA処理 (95% TFA/5% m— cresol)により Boc基を脱保護した後(反応 工程 rl2- 7)、 Boc—DAP(Boc)— OH (34.3 mgゝ 109.8 mol)、縮合剤 HATU (41.7 mg 、 109.8 /z mol)と DIEA (50 L)を用いて伸長反応(室温、 30分)を行った (反応工程 r 12-8) o次いで、 TFA処理 (95% TFA/5% m— cresol)により Boc基を脱保護した後( 反応工程 rl2— 9)、 Myristic acid (50.1 mgゝ 219.6 μ mol)、縮合剤 HATU (41.7 mgゝ 10 9.8 /z mol)と DIEA(50 L)を用いて伸長反応(室温、 30分)を行った (反応工程 rl2- 10)。
[0239] その後、ピぺリジン処理(20%piperidine in DMF、室温 5分)して Fmoc基を脱保護し た(反応工程 rl2- 11)。次いで、 Fmoc-Arg(Mts :N- mesitylene- 2- sulfonyl)-OH -I PE (isopropylethylamine) (747 mgゝ 1098 mol)を縮合剤 HATU (417 mgゝ 1098 ^ mo 1)と DIEA(192 /z L)を用いて縮合させた (室温、 30分)。この操作を計 3回繰り返した( 反応工程 rl2- 12〜rl2- 14)。
[0240] 最後にピぺリジン処理により Fmoc基を脱保護した後、常法 (TFAZTFMSAZp— cr esol/thioanisol=60/25/10/10)により固相担体 MBHAからの切り出し、と Argの 保護基 Mts基の脱保護を行って、目的物 (ィ匕合物 (1-G))を得た (反応工程 rl2-15)。 MALDI-TOF MS : calcd. 4691.74 (M + H+) , found 4694.62.
[0241] [化 45- 1]
H2N4MBHA resin r 12-l 12-2
Figure imgf000057_0001
H H
r^ BHA resin Nf BHA resin o r 12-3 H O r 12-4
Figure imgf000057_0002
12-6
Figure imgf000057_0003
Figure imgf000057_0004
" 8
Figure imgf000057_0005
Figure imgf000057_0006
Figure imgf000057_0007
- 2]
Figure imgf000058_0001
r 12-12
Figure imgf000058_0002
Figure imgf000058_0003
[0243] 合成例 13 一般式 (1-H)で表される化合物の合成
以下の一般式で表される化合物 (1-H) (以下、化合物 (1-H)と表記する)を合成した。
[0244] [化 46]
Figure imgf000059_0001
[0245] 具体的には、標準的 Fmoc法(cf. Carpino, L.A.; Han, G.Y. J. Org. Chem. 1972, 3 7,3404-9.)に従い、まず、固相担体 PALをピペリジン処理(20%piperidine in DMF、 室温 5分)して Fmoc基を脱保護した。これにリンカ一用 ω—アミノ酸である Fmoc— ΗΝ — C H — COOH (305 mg、 720 mol)を、縮合剤 HATU (274 mg、 720 mol)と DIE
10 20
A (126 /z L)を用いて縮合 (室温、 30分)させた (反応工程 rl3-l)。
[0246] 次いで、ピぺリジン処理して Fmoc基を脱保護した後、化合物 (11) (193 mg、 360 μ m ol)を、縮合剤 HATU (137 mg、 360 μ mol)と DIEA (63 μ L)を用いて縮合させた(室 温、 30分)。この操作を計 3回繰り返した (反応工程 rl3-2〜rl3-4)。
[0247] 次に、ピぺリジン処理して Fmoc基を脱保護した後、 Boc— HN- C H —COOH (305
5 10
mg、 720 μ mol)、縮合剤 HATU (274 mg、 720 μ mol)と DIEA (126 μ L)を用いて縮合 (室温、 30分)させた (反応工程 rl3- 5)。
[0248] Pd(PPh3)4 (tetrakis (triphenylphosphine)palladium(O))の CHC1 /酢酸/ N— methvlmor
3
phorine溶液(312 mg, 2.8 mL/1.5 mL/0.75 mL、室温 30分)にて 2度処理し、 Alloc基 を脱保護した (反応工程 rl3-6)。
[0249] 次いで、 Fmoc - Lys(Boc) - OH (505 mgゝ 1080 μ mol)を、縮合剤 HATU (410 mgゝ 1 080 mol)と DIEA (188 L)を用いて縮合させた(室温、 30分)(反応工程 rl3- 7)。 その後、 Fmoc— Ser(Boc)— OH (414 mgゝ 1080 μ mol)を、縮合剤 HATU (410 mgゝ 10 80 mol)と DIEA(188 L)を用いて縮合させた(室温、 30分)(反応工程 r 13-8)。更 に、その後、 Boc— Arg(Pbf)— ΟΗ ·0.3ΙΡΕ (569 mg、 1080 /z mol)を、縮合剤 HATU (4 10 mg、 1080 /z mol)と DIEA(188 L)を用いて縮合させた(室温、 30分)(反応工程 r 13-9)。
[0250] 最後に、 TFA処理(95% TFA/5% m— cresol)〖こより、固相担体 PALからの切り出 しと、アミノ酸の各種保護基の脱保護を行い、 目的物 (ィ匕合物 (1-H))を得た (反応ェ 程 rl3- 10)。 MALDI- TOF MS : calcd. 2068.65 (M + H + ) , found 2066.06.
[0251] [化 47]
H2N"†PAL resin FmocHN ihr-PAL resin
r 13- 13-2
Figure imgf000061_0001
合成例 14 一般式 (1L-E)で表される化合物の合成
以下の一般式で表される化合物 (1L-E) (以下、化合物 (1L-E)と表記する)を合成した [0253] [化 48]
Figure imgf000062_0001
[0254] 具体的には、標準的 Fmoc法(cf. Carpino, L.A.; Han, G.Y. J. Org. Chem. 1972, 3 7,3404-9.)に従い、まず、固相担体 PAL (180 mg, 72 mol)をピペリジン処理(20%p iperidine in DMF、室温 5分)して Fmoc基を脱保護した。これにリンカ一用 ω—ァミノ 酸である Fmoc— HN— C H — COOH (305 mg、 720 mol)を、縮合剤 HATU (274 mg
10 20
、 720 /z mol)と DIEA(126 L)を用いて縮合(室温、 30分)させた(反応工程 rl4- 1)。
[0255] 次いで、ピぺリジン処理して Fmoc基を脱保護した後、化合物 (11) (193 mg、 360 μ m ol)を、縮合剤 HATU (137 mg、 360 μ mol)と DIEA (63 μ L)を用いて縮合させた(室 温、 30分)。この操作を計 3回繰り返した (反応工程 rl4-2〜rl4-4)。
[0256] 次に、ピぺリジン処理して Fmoc基を脱保護した後、 Fmoc—HN - C H —COOH (3
10 20
05 mgゝ 720 μ mol)、縮合剤 HATU (274 mgゝ 720 μ mol)と DIEA (126 μ L)を用いて 縮合 (室温、 30分)させた (反応工程 rl4-5)。
[0257] 次 、で、ピぺリジン処理して Fmoc基を脱保護した (反応工程 rl4-6)。その後、リン脂 質活性エステル体 DOPE- NHS (ジォレオイルホスファチジルエタノールァミン N-hy droxysuccinimide) (90.5 mgゝ 92.3 μ mol)を、 DMF/DIEA (1 mL/50 μ L)溶液を用い て縮合させた (反応工程 rl4-7)。 [0258] Pd(PPh3)4 (tetrakis (triphenylphosphine)palladium(O))の CHC1 /酢酸/ N— methylmor
3
phorine溶液(312 mg, 2.8 mL, 1.5 mL, 0.75 mL、室温 30分)にて 2度処理し、 Alloc基 を脱保護した (反応工程 rl4-8)。
[0259] 次いで、 Fmoc - Lys(Boc) - OH (505 mgゝ 1080 μ mol)を、縮合剤 HATU (410 mgゝ 1 080 /z mol)と DIEA(188 L)を用いて縮合させた(室温、 30分)(反応工程 rl4- 9)。 その後、 Fmoc— Ser(Boc)— OH (414 mgゝ 1080 μ mol)を、縮合剤 HATU (410 mgゝ 10 80 /z mol)と DIEA(188 L)を用いて縮合させた(室温、 30分)(反応工程 rl4- 10)。 更にその後、 Boc-Arg(Pbf)— ΟΗ·0.3ΙΡΕ (569 mg、 1080 /z mol)を、縮合剤 HATU ( 410 mg、 1080 mol)と DIEA(188 L)を用いて縮合させた(室温、 30分)(反応工程 rl4- 11)。
[0260] 最後に、 TFA処理(95% TFA/5% m— cresol)〖こより、固相担体 PALからの切り出 しと、アミノ酸の各種保護基の脱保護を行い、 目的物 (ィ匕合物 (1L-E))を得た (反応ェ 程 rl4— 12)。 MALDI-TOF MS : calcd. 2978.91 (M + H + ) , found 2979.56.
[0261] [化 49- 1]
Figure imgf000064_0001
- 2]
Figure imgf000065_0001
Figure imgf000065_0002
[0263] 実施例 1—17 核酸導入用担体の作成
適当な大きさのガラス容器けスフラスコゃキュベットなど)に有機溶媒に溶かした脂 質および前述のカチォニックリボソーム構成ユニットを入れ (構成は表 1に示す)、ロー タリーエバポレーターで溶媒を留去した (フィルムの作製)。真空条件下 (6時間以上) で完全に溶媒を除いた後、リン酸緩衝液 (PBS buffer, pH 7.4)で最終濃度が 2.0 mM になるように水和し、形成されたフィルムを完全にはがし、脂質サスペンジョンを作製 した。このサスペンジョンをドライアイスバスとぬるま湯に交互に付けるという" Freeze-t haw"操作を 10回繰り返し行い、多重層リボソーム(MLV: multilamellar vesicle)を作製 した。
[0264] 次!、で、 MLVは粒径 200〜100 nm程度の LUV(large unilamellar vesicle),又は粒径 20nm程度の SUV(small unilamellar vesicle)に調整した。 LUVは標準的な作製装置(A vanti社製 Mini- Extruder)により作製した。また、 SUVはプローブチップ型ソ-ケータ 一(TOMY社製 UD- 220)により作製した。 [0265] [表 1]
Figure imgf000066_0001
DOPE: 1,2-ジォレオイル -sirダリセ口- 3-ホスファチジルエタノールァミン
POPC: 1-パルミトイル -2-ォレオイル- sn-グリセ口- 3-ホスファチジルコリン
[0266] 試験例 1 核酸導入実験 (オリゴ DNAレベル)
12ウエノレプレートに、 PC3 (Human lung adenocarcinoma)細胞、 UMUC3 (Human bla dder carcinoma)細胞、 T24 (Human urinary bladder carcinoma)細胞或いは NIH— 3T3 (Mouse embryonic fibroblast)細胞を、 10%FBS含有 RPMI培地(PC3細胞、 NIH- 3T3 細胞、 T24細胞)或いは 10%FBS含有 DMEM培地(UMUC細胞)で予め培養し、 60-70 %コンフルェントの状態にした。
[0267] 表 2に示す核酸導入用担体 [化合物(1_F)、 (1-A)又は(1- B)を各々 0.37、0·13、0· 04mMとした溶液] l 1を無血清培地 50 Lにカ卩え、タッピングにより混合し、室温で 5分間インキュベートした。次に、上記で調製した核酸導入用担体含有培地に、 FITC 標識一本鎖 DNA(20 mer) (FITC- TAATACGACTCACTATAGGG:プロリゴ社製; 配列番号 1) 0.3 μ gを添加し、タッピングにより混合し、 37°Cで 30分間インキュベートし た(10分おきにタッピングし混合)。得られた混合液を、細胞培養後の上記のゥエルに 添加し、軽くゆすって均一化した後で 37 °Cで 4時間インキュベートした。細胞を回収 し、 FACSのより FITC陽性細胞を測定することにより、 DNAの細胞内への導入効率( %)を算出した。また、従来の核酸導入用担体(Lipofectamine 2000、 Translt-TKO, Fugene 6)との比較を行うため、導入核酸量 0.3 μ gに対応した各社推奨プロトコルを 使用して、上記と同様に、 PC3細胞内への siRNAの導入効率(%)を求めた。
[0268] 得られた結果を表 2に示す。この結果から、本発明の核酸導入用担体には、従来 の核酸導入用担体(Roche社製 FuGene 6, Invitrogen社製 Lipofectamine 2000, Mirus 社製 Translt-TKO)に比して、核酸導入効率が優れていることが確認された。
[0269] [表 2]
DNAの細胞内への導入効率 (%)
Figure imgf000067_0001
ipo ec amine : nv i rogen i
Trans IT-TKO: Mi rus社製
FuGene 6: Roche社製
試験例 2 核酸導入実験 (siRNAレベル) -1
PC 3 (Human lung adenocarcinoma)糸田胞、 UMUC3 (Human bladder carcinomaノ糸田胞 、或いは T24 (Human urinary bladder carcinoma)細胞を、 siRNA導入時に 50- 60%コ ンフルェントとなるように、導入前日に 6ゥエルプレートへ播種し 37°C、 5% C02インキ ュベータで培養した。
[0271] 1.5mlのチューブに 100 μ 1の Opti-MEMを加えて、これに実施例 3又は 8の核酸導入 用担体を含有する PBS溶液 (各核酸導入用担体の含有量は、化合物 (1L-A)が 0.067 mMとなるように調整) 1、 3又は 10 1を添カ卩し、室温でおよそ 10分静置した後に、更に FITC標識 siRNA (蛍光標識 siRNA ( (sense) Fluo- GACCCGCGCCGAGGUGAAGUU ;配列番号 2/ (Antisence) CUUCACCUCGGCGCGGGUCUU;配列番号 3、プロリゴ 社製) 0.5 gを添加し、 15分間静置し、 siRNAと遺伝子導入用担体との複合体を形成 した。
[0272] また、別途、 1.5mlのチューブに 50 μ 1の Opti-MEMを加えて、これに 0.6mMの化合 物(1- A)、 (1- B)又は (1- F)を含有する PBS溶液 1、 3、 10 1を添加し、タッピングによ り混合し、室温で 5分間静置した後に、更に FITC標識 siRNA (上記と同様) 0.5 gを添 加し、 30分間静置することによって、 siRNAと、化合物(1-A)、化合物(1- B)又は化合 物 (1-F)との複合体を形成した。
[0273] 斯くして調製した siRNAと核酸導入用担体の含有液を、細胞が 50-60%コンフルェ ントで存在している各ゥエルに添加し、プレートを前後左右に、緩やかに揺らした後、 37°C、 5%CO条件下で 2時間培養した。培養後、 FITC陽性細胞をフローサイトメータ
2
一で測定することにより、細胞内への siRNAの導入効率(%)を算出した。また、従来 の核酸導入用担体(Lipofectamine 2000、 Transit- TKO、 Metafectene、 oligofectamin e)との比較を行うため、導入核酸量 0.5 μ gに対応した各社推奨プロトコルを使用して 、上記と同様に、細胞内への siRNAの導入効率(%)を求めた。
[0274] 得られた結果を表 3に示す。この結果から、化合物 (1L-A)を使用することにより、従 来公知の核酸導入用担体に比べて、細胞内へ siRNAを効率的に導入できることが明 らかとなつた。
[0275] [表 3] 細胞内への s iRNAの導入効率 (%)
Figure imgf000069_0001
ipoi ec amme : nvi rogen
Trans I t-TKO: Mi nis社製
Met afec tene: Bi ont ex ¾S
01 igofec tamine: Invi t rogen社製
[0276] 試験例 3 核酸導入実験 (siRNAレベル)— 2
PC3 (Human lung adenocarcinoma)細胞を、 siRNA導入時に 50- 60%コンフルェント となるように、導入前日に 6ゥエルプレートへ播種し 37°C、 5% C02インキュベータで培 し 7こ。
[0277] 1.5mlのチューブに 12.5 μ 1の Optト MEMをカ卩えて、これに 0.665、 2.217、又は 6.65 p molの化合物(1L- E)を含有する TBS (トリス緩衝生理食塩水 pH 7.5)溶液 2.0 μ 1を添 加することにより、化合物(1L-E)を含む核酸導入用担体を調製した。この核酸挿入 用担体 12.5 μ 1を、別の 1.5mlのチューブに移し、更に FITC標識 siRNA (Silencer FAM ™ labeled Negative Control #1 siRNAゝ Ambion社製、 50 μ mol/1)を 0.3 l (15pmol) 添加し、 30分間静置して siRNAと化合物(1L-E)との複合体を形成させた。これを、 50 -60%コンフルェントの状態で細胞が存在するゥヱルへ滴下し、 37°Cで約 24時間イン キュペートした。インキュベート後、蛍光顕微鏡により観察を行い、 FITC陽性細胞数 を計測し、 siRNA導入効率 (%)を全細胞数に対する FITC陽性細胞数の割合として算 出した。
[0278] 得られた結果を表 4に示す。この結果から、化合物 (1L-E)にも、細胞内へ siRNAを 効率的に導入する作用を有して!/ヽることが確認された。 [0279] [表 4]
Figure imgf000070_0001
[0280] 試験例 4 核酸導入実験 (プラスミド DNAレベル)— 1
PC3 (Human lung adenocarcinoma)細胞がプラスミド DNA導入時に 60- 70%コンフル ェントとなるように、導入前日に 6ゥエルプレートへ播種し 37°C、 5% CO条件下で培養
2
した。各ゥエル中の培養液を、導入 2時間前に無血清培地 (RPMI培地)に置換した。
[0281] 1.5mlのチューブに 250 μ 1の Opti-MEMを加えて、これに実施例 3の核酸導入用担 体を含有する PBS溶液 (各核酸導入用担体の含有量は、化合物 (1L-A)が 0.133mMと なるように調整 ) 5 1を添加し、室温でおよそ 10分静置した後に、更に、これに EGFP 組み換えプラスミド DNA (pEGFP- N3)を含む Opti- MEM (pEGFP- N3の濃度:5.0 ^ g /250ml) 250 1を添加し、軽くタッピング後、 15分間静置し、プラスミド DNAと化合物 (1 L-A)との複合体を形成させた。
[0282] 斯くして調製した siRNAと核酸導入用担体の含有液を、細胞が 60-70%コンフルェ ントで存在している各ゥエルに添加し、プレートを前後左右に、緩やかに揺らした後、 37°C、 5%CO条件下で 2時間培養した後に、完全培地に置換し、 37°C、 5 % CO 条件
2 2 下で更に 45時間培養した (合計 47時間)。培養後、 GFP (緑色蛍光タンパク質)の陽 性細胞をフローサイトメーターで測定することにより、細胞内へのプラスミド DNAの導 入効率 (%)を算出した。
[0283] また、従来の核酸導入用担体 (FuGene 6、 Lipofectamine 2000、 Metafectene)との 比較を行うため、各社推奨プロトコルに順じて、細胞内へのプラスミド DNAを導入し、 上記と同様に導入効率 (%)を求めた。
[0284] 得られた結果を表 5に示す。この結果から、化合物 (1L-A)を使用することにより、細 胞内へプラスミド DNAを導入できることが明ら力となった。
[0285] [表 5] 細胞内へのプラスミド DNAの導入効率 (%)
Figure imgf000071_0001
[0286] 試験例 5 核酸導入実験 (プラスミド DNAレベル) 2
PC3 (Human lung adenocarcinoma)細胞がプラスミド DNA導入時に 60- 70%コンフル ェントとなるように、導入前日に 6ゥエルプレートへ播種し 37°C、 5% CO条件下で培養
2
した。各ゥエル中の培養液を、導入 2時間前に無血清培地 (RPMI培地)に置換した。 また、別途、 PBS溶液に、化合物 (1-A)、化合物 (1- B)又は化合物 (1- G)を 0.63mMの濃 度となるように添加し、核酸導入用担体を調製した。
[0287] 1.5mlのチューブに 50 1の無血清培地をカ卩えて、これに上記の核酸導入用担体 1
L添加し、室温でおよそ 10分静置した。次いで、更にこれに EGFP組み換えプラスミ ド DNA(pEGFP- N3)溶液(pEGFP- N3の濃度: 1.0 g/ 1) 0.5 Lを添加し、軽くタツ ビング後、 15分間静置し、プラスミド DNAと、化合物 (1-A)、化合物 (1- B)又は化合物 (1 -G)との複合体を形成させた。
[0288] 斯くして調製した siRNAと核酸導入用担体の含有液を、細胞が 60-70%コンフルェ ントで存在している各ゥエルに添加し、プレートを前後左右に、緩やかに揺らした後、 37°C、 5%CO条件下で 48時間培養した。培養後、 GFP (緑色蛍光タンパク質)の陽性
2
細胞をフローサイトメーター (FACS)で測定した。
[0289] その結果、化合物 (1-A)、化合物 (1-B)又は化合物 (1-G)を使用することにより、細胞 内へプラスミド DNAを導入できることが確認された。
[0290] 試験例 6 核酸導入実験 (プラスミド DNAレベル) 3
PC3 (Human lung adenocarcinoma)細胞がプラスミド DNA導入時に 60- 70%コンフル ェントとなるように、導入前日に 6ゥエルプレートへ播種し 37°C、 5% CO条件下で培養
2
した。各ゥエル中の培養液を、導入 2時間前に無血清培地 (RPMI培地)に置換した。 また、別途、 PBS溶液に、化合物 (1L-C)又は化合物 (1L-D)を 0.0444mMの濃度となる ように添加し、核酸導入用担体を調製した。
[0291] 1.5mlのチューブに 50 1の無血清培地をカ卩えて、これに上記の核酸導入用担体 1、 3又は 10 L添カ卩し、室温でおよそ 10分静置した。次いで、更にこれに EGFP組み換 えプラスミド DNA(pEGFP- N3)溶液(pEGFP- N3の濃度: 1.0 μ g/ μ 1) 0.5 μ Lを添加し 、軽くタッピング後、 15分間静置し、プラスミド DNAと、化合物 (1L-C)又は化合物 (1L- D)との複合体を形成させた。
[0292] 斯くして調製した siRNAと核酸導入用担体の含有液を、細胞が 60-70%コンフルェ ントで存在している各ゥエルに添加し、プレートを前後左右に、緩やかに揺らした後、 37°C、 5%CO条件下で 48時間培養した。培養後、 GFP (緑色蛍光タンパク質)の陽性
2
細胞をフローサイトメーター (FACS)で測定することにより、細胞内へのプラスミド DNA の導入効率 (%)を算出した。
[0293] この結果からも、化合物 (1L-C)又は化合物 (1L-D)は、細胞内へプラスミド DNAを導 入する作用が優れて 、ることが確認された。
[0294] 試験例 7 核酸導入実験 (従来の核酸導入用担体に対する核酸導入増強効果 1
)
従来の核酸導入用担体 (Roche社製 FuGene 6)と比較して、本発明の核酸導入用 担体を併用した際の核酸導入効果について検討するために、 PC3 (Human lung ade nocarcinoma)糸田胞、 UMUCJ (Human bladder carcinoma)糸田胞、 T24 (Human urinary b ladder carcinoma)細胞或いは NIH— 3T3 (Mouse embryonic fibroblast)細胞を用いて 以下の試験を行った。
[0295] 各細胞がプラスミド DNA導入時に 60-70%コンフルェントとなるように、導入前日に 1 2ゥエルプレートへ播種し 37°C、 5% CO条件下で培養した。
2
[0296] 1.5mlのチューブに、無血清培地 50 μ 1を添カ卩し、これに 0.0.37mMの化合物 (1- F)を 含有する PBS溶液 1 μ 1を添カ卩し、 37°Cで 10分間プレインキュペートした。これに FuGen e6 0.5 1を直接添カ卩し、タッピングにより混合し、室温で 5分間静置した。さら〖こ EGFP 組換えプラスミド DNA 0.2 μ gをカ卩えて、タッピングで混合し、 37°Cで 15分間インキュ ペートした。これを、 60-70%コンフルェントの状態で細胞が存在するゥエルへ滴下し 、 37°Cで約 48時間インキュベートした。また、コントロールとして、化合物(1- F)を添カロ しな 、こと以外は、上記と同様の条件でプラスミド DNAの細胞への導入を行った。
[0297] インキュベート後、培養後の各細胞にっ 、て、蛍光顕微鏡により観察すると共に、 G FP (緑色蛍光タンパク質)の陽性細胞をフローサイトメーターで測定することにより、 細胞内へのプラスミド DNAの導入効率を算出した。
[0298] 得られた結果を図 1及び表 6に示す。この結果から、化合物(1-F)には、従来公知 の核酸導入用担体 (FuGene6)のプラスミド DNAの細胞内への導入作用を増強する 効果があることが明ら力となった。
[0299] [表 6]
細胞内へのプラスミド DNAの導入効率 (%)
Figure imgf000073_0001
[0300] 試験例 8 核酸導入実験 (従来の核酸導入用担体に対する核酸導入増強効果 2 )
従来の核酸導入用担体 (Roche社製 FuGene 6)と比較して、本発明の核酸導入用 担体を併用した際の核酸導入効果について検討するために、 PC3 (Human lung ade nocarcinoma)細胞を用いて以下の試験を行った。
[0301] 各細胞がプラスミド DNA導入時に 60-70%コンフルェントとなるように、導入前日に 1 2ゥエルプレートへ播種し 37°C、 5% CO条件下で培養した。
2
[0302] 1.5mlのチューブに、無血清培地 50 μ 1を添カ卩し、これに 0.0.37mMの化合物(1-A)、 化合物 (1- B)又は化合物 (1- F)を含有する PBS溶液 1 μ 1を添加し、 37°Cで 10分間プレ インキュベートした。これに FuGene6 0.5 μ 1を直接添カ卩し、タッピングにより混合し、室 温で 5分間静置した。さらに EGFP組換えプラスミド DNA 0.5 μ gをカ卩えて、タッピング で混合し、 37°Cで 15分間インキュベートした。これを、 60-70%コンフルェントの状態 で細胞が存在するゥエルへ滴下し、 37°Cで約 48時間インキュベートした。また、コント ロールとして、化合物(1-A)、化合物 (1- B)又は化合物 (1- F)を添加しないこと以外は 、上記と同様の条件でプラスミド DNAの細胞への導入を行った。
[0303] インキュベート後、培養後の各細胞について、 GFP (緑色蛍光タンパク質)の陽性細 胞をフローサイトメーターで測定することにより、細胞内へのプラスミド DNAの導入効 率を算出した。 [0304] 得られた結果を表 7に示す。この結果力 も、化合物(1-A)、化合物 (1- B)及びィ匕合 物 (1-F)には、従来公知の核酸導入用担体(FuGene6)のプラスミド DNAの細胞内へ の導入作用を増強する効果があることが明らかとなった。
[0305] [表 7]
細胞内へのプラスミド DNAの導入効率 (%)
Figure imgf000074_0001
[0306] 試験例 9 核酸導入実験 (siRNAレベル)
PC3(Human lung adenocarcinoma)/Bcト 2細胞(PC3へ Beト 2挿入プラスミドを導入し た細胞)力 RNA導入時に 50-60%コンフルェントとなるように、導入前日に 6ゥエルプ レートへ播種し 37°C、 5% C02インキュベータで培養した。
[0307] 1.5mlのチューブに、 100 μ 1の Opt卜 MEMを添カ卩し、これに実施例 3の核酸導入用 担体を含有する PBS溶液 (各核酸導入用担体の含有量は、化合物 (1L-A)が 0.067m Mとなるように調整)6 1を添カ卩し、室温で 10分間プレインキュペートした。これに、 13. 5- 450pmolの be卜 2対応 siRNA (siRNA ( (sense) GACCCGCGCCGAGGUGAAGUU; 配列番号 4/ (Antisence) CUUCACCUCGGCGCGGGUCUU;配列番号 5、プロリゴ社 製)を添加し、 15分間静置して、 siRNAと遺伝子導入用担体との複合体を形成させた 。これを、 50-60%コンフルェントの状態で細胞が存在するゥエルへ滴下し、 37°Cで約 48時間インキュベートした。培養後、標準的なウェスタンプロット法により、 be卜 2タンパ ク質発現を検出した。
[0308] また、従来の核酸導入用担体(Roche社製 XtremeGene)との比較を行うため、導入 核酸量 0.5 gに対応した推奨プロトコルを使用して、上記と同様に、細胞内へ be卜 2 対応 siRNAを導入効率した (lane2,3)。また、標的配列を有さない GFP対応 siRNAが 複合体で導入された場合でも、 beト 2タンパク質発現の抑制効果を引き起こさないこと を証明した (lane4)。各 laneの詳細な導入条件に関しては下表に示す。
[0309] 得られた結果を図 2に示す。この結果から、化合物 (1L-A)を使用することにより、従 来公知の核酸導入用担体に比べて、細胞内へ導入された siRNAが効率的にタンパク 質発現抑制効果を示すことが明らかとなった。

Claims

請求の範囲 下記一般式 (1)で表される化合物を含有することを特徴とする、核酸導入用担体。 [化 1]
[式 (1)中、 nlは 0〜10の整数、 n2は 1〜50の整数、及び n3は 1〜10の整数を示し; mlは 0〜100の整数、 m2は 0〜100の整数、 m3は 0〜100の整数、 m4は 0又は 1の 整数、 m5は 0〜100の整数、及び m6は 0〜 100の整数を示し;
Yは、水酸基又はアミノ基を示し;
Eは、 N又は CHを示し;
Rは、アミノ酸残基、又は 2〜: L00個のアミノ酸残基力もなるペプチド残基を示し; Lは、水素原子、脂質残基を有する基、脂肪酸残基を有する基、又は蛍光性基を有 する基を示し;
nlが 2以上である場合、繰返単位 Aにおける mlは、それぞれの繰返単位 A同士で、 同一又は異なって 、てもよく;
n2が 2以上である場合、繰返単位 B中における m2〜m5及び Rは、それぞれの繰返単 位 B同士で、同一又は異なっていてもよく;
n3が 2以上である場合、繰返単位 Cにおける m6は、それぞれの繰返単位 C同士で、 同一又は異なっていてもよい。 ]
[2] 式 (1)中、 Rが、アルギニン残基、リジン残基、及びセリン残基よりなる群から選択され るアミノ酸残基、或いはこれらのアミノ酸残基の少なくとも 1種を含むペプチド残基で ある、請求項 1に記載の核酸導入用担体。
[3] 式 (1)中、 Lが、脂質残基を有する基、又は脂肪酸残基を有する基である、請求項 1に 記載の核酸導入用担体。
[4] 式 (1)中、 Rが、アルギニン残基、リジン残基、及びセリン残基よりなる群から選択され る 1種又は 2種以上のアミノ酸残基から構成される、アミノ酸残基の総数が 2〜20個の ペプチド残基である、請求項 1に記載の核酸導入用担体。
[5] 式 (1)中、 Rが、 2〜5個のアルギニン残基力も構成されるペプチド残基である、請求項
1に記載の核酸導入用担体。
[6] 式 (1)中、 nlは 0〜2の整数、 n2は 1〜10の整数、 n3は 0〜2の整数である、請求項 1 に記載の核酸導入用担体。
[7] 式 (1)中、 Eが Nであり、 m2が 2であり、 m3及び m4が 1であり、 m5が 5である、請求項 1に 記載の核酸導入用担体。
[8] 式 (1)中、 Eが CHであり、 m2、 m3及び m4が 0であり、 m5が 4である、請求項 1に記載の 核酸導入用担体。
[9] 更に、脂質を含む、請求項 1に記載の核酸導入用担体。
[10] 核酸が、 siRNA、 miRNA、 RNAァプタマ一、及びプラスミド DNAよりなる群から選択さ れる少なくとも 1種である、請求項 1に記載の核酸導入用担体。
[11] 請求項 1乃至 10のいずれかに記載の核酸導入用担体を核酸と共に、イン'ビトロ又 はイン'ビボで細胞に接触させることを特徴とする、核酸の細胞内への導入方法。
[12] 請求項 1乃至 10のいずれかに記載の核酸導入用担体を含む、核酸導入用キット。
[13] 下記一般式 (1)で表される化合物の、核酸導入用担体としての使用。
[化 2]
Figure imgf000077_0001
[式 (1)中、 nl〜n3、 ml〜m6、 Y、 E、 R、及び Lは前記と同じ。 ]
下記一般式 (1)で表される化合物の、核酸導入用担体の製造のための使用。
[化 3]
Figure imgf000078_0001
[式 (1)中、 nl〜n3、 ml〜m6、 Y、 E、 R、及び Lは前記と同じ。 ]
PCT/JP2006/323500 2005-11-25 2006-11-24 核酸導入用担体、核酸導入用キット、及び核酸の細胞内への導入方法 WO2007061077A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005340398 2005-11-25
JP2005-340398 2005-11-25

Publications (1)

Publication Number Publication Date
WO2007061077A1 true WO2007061077A1 (ja) 2007-05-31

Family

ID=38067300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323500 WO2007061077A1 (ja) 2005-11-25 2006-11-24 核酸導入用担体、核酸導入用キット、及び核酸の細胞内への導入方法

Country Status (1)

Country Link
WO (1) WO2007061077A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502337A (ja) * 1994-04-22 1998-03-03 アンスティテュ・パストゥール Hivの細胞侵入を阻害するための、 dppivの基質であるペプチド類縁体、特にkpr型の該類縁体の複合提示
WO2006115230A1 (ja) * 2005-04-22 2006-11-02 Credia Japan Co., Ltd. アミノ酸残基又はペプチド残基を有する化合物、及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502337A (ja) * 1994-04-22 1998-03-03 アンスティテュ・パストゥール Hivの細胞侵入を阻害するための、 dppivの基質であるペプチド類縁体、特にkpr型の該類縁体の複合提示
WO2006115230A1 (ja) * 2005-04-22 2006-11-02 Credia Japan Co., Ltd. アミノ酸残基又はペプチド残基を有する化合物、及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JANECKA A. ET AL: "New, highly active antagonists of LHRH with acylated lysine and p-aminophenylalanine in positions 5 and 6", JOURNAL OF PEPT. PROTEIN RES., vol. 44, no. 1, 1994, pages 19 - 23, XP003013618 *
MIRANDA L.P. ET AL: "Unichemo protection: A concept for Chemical Synthesis", ANGEW. CHEM. INT. ED. ENGL., vol. 40, no. 19, 2001, pages 3655 - 3657, XP003013619 *

Similar Documents

Publication Publication Date Title
US8575305B2 (en) Cell penetrating peptides
CN103998458B (zh) 具有中央疏水域的细胞穿透肽
JP5264502B2 (ja) 細胞透過性ペプチドとして使用できるペプチド
JP5059411B2 (ja) 短鎖干渉rnaの細胞トランスフェクティング処方物、関連する組成物および作製方法ならびに使用
JP3941854B2 (ja) 核酸送達用の脂質−ポリアミド結合体および組成物
JP2014508521A (ja) 細胞内へのカーゴ送達のためのシステム
US8889631B2 (en) Disruptors of early/recycling endosomes
WO2022202816A1 (ja) ペプチド及びペプチドを含む組成物
CN108712913A (zh) 内体g蛋白-偶联的受体的三部分调节剂
EP4352231A1 (en) Treatment of angptl4 related diseases
WO2006115230A1 (ja) アミノ酸残基又はペプチド残基を有する化合物、及びその製造方法
US20220195401A1 (en) Modified piggybac transposase polypeptide, polynucleotide encoding them, introducing carrier, kit, method of incorporating target sequence into cell genome, and method of producing cell
WO2007061077A1 (ja) 核酸導入用担体、核酸導入用キット、及び核酸の細胞内への導入方法
US20220340899A1 (en) Stereoselective ph responsive peptide dendrimers for nucleic acid transfection
JP5363327B2 (ja) ミトコンドリアの表面および内部における活性剤の選択的局在化法ならびに相当する活性剤
JP6679085B2 (ja) 培養基材への細胞の固定を促進する化合物
ES2370638B1 (es) Dendrimeros como vehiculos no virales para terapia genica
EP2376518A1 (en) A complex and method for enhancing nuclear delivery
JP7262105B2 (ja) 細胞透過性配列を有するポリペプチド及びそれを含む組成物
CN101163713A (zh) 具有氨基酸残基或肽残基的化合物及其制备方法
WO2023126751A1 (en) Therapeutical peptidomimetic
WO2024110492A1 (en) Novel carriers for nucleic acid and/or protein delivery
JP2020536104A (ja) 抗がんペプチド及びその使用
Pack et al. Acquisition of High Field Nuclear Magnetic Resonance Spectrometers for Research in Molecular Structure, Function and Dynamics
JP2013247890A (ja) トロポニンtと結合するdna、これを用いた腫瘍組織における血管新生および/または脈管形成抑制剤ならびにこれを用いた細胞内へ目的物質が取り込まれることを促進する剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007546515

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, DATED 15.09.2008

122 Ep: pct application non-entry in european phase

Ref document number: 06833304

Country of ref document: EP

Kind code of ref document: A1