WO2007058169A1 - 耐熱性樹脂組成物 - Google Patents
耐熱性樹脂組成物 Download PDFInfo
- Publication number
- WO2007058169A1 WO2007058169A1 PCT/JP2006/322654 JP2006322654W WO2007058169A1 WO 2007058169 A1 WO2007058169 A1 WO 2007058169A1 JP 2006322654 W JP2006322654 W JP 2006322654W WO 2007058169 A1 WO2007058169 A1 WO 2007058169A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- polyamide
- parts
- aromatic polyamide
- resin composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/10—Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0083—Nucleating agents promoting the crystallisation of the polymer matrix
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/08—Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
Definitions
- the present invention relates to a resin composition excellent in heat resistance, impact strength, low water absorption, fluidity, and low linear expansion.
- the present invention also relates to a sheet having excellent heat resistance, “impact strength”, “low water absorption”, fluidity, and excellent vacuum formability.
- the resin composition and sheet obtained by the present invention can be advantageously used in a wide range of fields such as electric / electronic parts, OA parts, vehicle parts, and machine parts.
- it can be preferably used for automobile exterior materials by taking advantage of low linear expansion and low water absorption.
- the resin composition of the present invention has heat resistance that can withstand a lead-free solder compatible reflow furnace, and also has excellent strength to cause cracks during pin press fitting required for SMT connectors and the like.
- Polyamide polyphenylene ether alloy has been conventionally used for various applications such as automotive exterior materials and junction blocks in automobile engine rooms.
- polyamides having relatively low heat resistance such as polyamide 6, 6 and polyamide 6 have been mainly used.
- the polyamide-polyphenylene ether resin composition using these low heat-resistant polyamides has a large dimensional change due to water absorption or heat, for example, when used as an exterior material such as a fender.
- an exterior material such as a fender.
- there were various restrictions such as having to devise a fender mounting method.
- solder used in SMT surface mount technology
- SMT surface mount technology
- JP-A-2000-212433, JP-A-2000-212434 and JP-A-2004-083792 disclose polyamide-polyphenylene ether.
- a technique using a specific aromatic polyamide is disclosed as a polyamide material to be used.
- US Publication Nos. 2005-0038159, 2005-0038171, 2005-0038191 and 2005-0038203 disclose a technique using aromatic polyamide having a terminal amino group concentration of a specific amount or more. It is disclosed.
- Patent Document 1 JP 2000-212433 A
- Patent Document 2 Japanese Patent Laid-Open No. 2000-212434
- Patent Document 3 Japanese Patent Application Laid-Open No. 2004-083792
- Patent Document 4 US Publication No. 2005-0038159
- Patent Document 5 US Publication No. 2005-0038171
- Patent Document 6 US Publication No. 2005-0038191
- Patent Document 7 US Publication No. 2005-0038203
- An object of the present invention is to provide a resin composition having excellent heat resistance, “impact strength”, low water absorption, “fluidity”, low linear expansion, high weld strength, and greatly improved cracking during pin press-fitting. That is true.
- Another object of the present invention is to provide a film having the above characteristics.
- Still another object of the present invention is to provide a production method capable of greatly reducing the temperature of the resin during processing when producing a conductive resin composition having the above-mentioned characteristics. There is to serve.
- the present invention is as follows.
- terephthalic acid units from 60 to 100 mole 0/0 containing dicarboxylic acid units and (a), 1, 9-nonamethylene di ⁇ Min units (b-l) and Z or 2-methyl-1, 8-Otatame 60- or more diene units (b) containing LOO mol% of dienediamine units (b-2): aromatic polyamides, polyphenylene ethers, polyamide and polyphenylene ether compatibilizers, and bonds A resin composition comprising a crystal nucleating agent, wherein the aromatic polyamide has a terminal amino group concentration of 5 ⁇ mol Zg or more and 45 mol Zg or less.
- the amount of the compatibilizer of the aromatic polyamide and polyphenylene ether is 0.05 to 5 parts by mass with respect to 100 parts by mass in total of the aromatic polyamide and the polyphenylene ether.
- the rosin composition as described.
- the conductive carbon black is contained in an amount of 0.5 to 5 parts by mass with respect to a total of 100 parts by mass of the aromatic polyamide and the polyphenylene ether as the conductivity imparting material. Fat composition.
- the resin composition according to (1) comprising an aliphatic polyamide in an amount of 100 parts by mass or less with respect to 100 parts by mass of the aromatic polyamide.
- the aliphatic polyamide is an aliphatic polyamide having 4 to 8 carbon atoms and an aliphatic polyamide having an aliphatic dicarboxylic acid power having 4 to 8 carbon atoms, an aliphatic polyamide having an ratata power having 6 to 8 carbon atoms, and
- a block copolymer comprising a polymer block mainly composed of an aromatic vinyl compound and a polymer block mainly composed of a conjugated diene compound, wherein the aromatic vinyl in the block copolymer
- the impact modifier which is the block copolymer in which the molecular weight of one of the polymer blocks mainly composed of a compound is in the range of 15,000-50,000, is added to 100 parts by mass of the polyphenylene ether.
- the rosin composition according to (1) further comprising an amount of 10 to 70 parts by mass.
- An SMT-compatible component comprising the resin composition according to (1).
- An ether compatibilizing agent comprising 0.05 to 5 parts by mass of an ether compatibilizing agent, wherein the aromatic polyamide has a terminal amino group concentration of 5 mol Zg or more and 45 mol Zg or less. Including film with a thickness of 1 to 200 ⁇ m.
- terephthalic acid units from 60 to 100 mole 0/0 containing dicarboxylic acid units and (a), 1, 9-nonamethylene di ⁇ Min Unit (bl) and Z or 2-methyl-1, 8-Otatamechirenji Amin units ( b-2) 60 ⁇ : Diamine unit containing L00 mol% (b) and 80 ⁇ 40 parts by mass of aromatic polyamide, 20 ⁇ 60 parts by weight of polyphenylene ether, and polyamide and polyphenylene ether A compatibilizing agent containing 0.05 to 5 parts by mass of a compatibilizing agent, wherein the aromatic polyamide has a terminal amino group concentration of 5 ⁇ mol Zg or more and 45 ⁇ mol Zg or less, and the polyphenylene ether.
- the aromatic polyamide has a morphology that is a continuous phase, the total light transmittance (JIS K7361-1) is 10% or more, and the haze (JI S K7136) is 95% or less.
- a translucent molded article comprising the above rosin composition.
- terephthalic acid units from 60 to 100 mole 0/0 containing dicarboxylic acid units and (a), 1, 9-nonamethylene di ⁇ Min Unit (bl) and Z or 2-methyl-1, 8-Otatamechirenji Amin units ( b-2) 60-: Diamine units containing L00 mol% (b) and powerful aromatic polyamide, polyphenylene ether, compatibilizer of polyamide and polyphenylene ether, and a conductivity-imparting agent
- a method for producing a fat composition comprising the following steps in the order:
- a mixture of both of the aromatic polyamide and the conductivity-imparting material is prepared without melting, and the mixture is supplied to the remaining molten aromatic polyamide, melt-kneaded, and aromatic A step of producing a master pellet of polyamide and conductivity imparting material,
- a resin composition having excellent heat resistance, impact strength, low water absorption, fluidity, low linear expansion, high weld strength, and greatly improved cracking upon pin press-fitting. can do.
- the polyamide used as an essential component in the present invention is an aromatic polyamide which also comprises dicarboxylic acid unit (a) and diamine unit (b) forces.
- Dicarboxylic acid unit constituting the aromatic polyamide (a) is 60 to terephthalic acid unit: LO 0 mole 0/0 contains.
- the content of terephthalic acid units in the dicarboxylic acid units (a), Aru be force Ri preferably within it is the preferred instrument 90 to 100 mol% in the range of 75 to 100 mole 0/0 device
- substantially all dicarboxylic acid units are terephthalic acid units.
- the dicarboxylic acid unit (a) may contain a dicarboxylic acid unit other than the terephthalic acid unit as long as it is 40 mol% or less.
- Other dicarboxylic acid units in this case include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2 dimethyldaltaric acid, 3 , 3-Detylsuccinic acid, azelaic acid, sebacic acid, suberic acid and other aliphatic dicarboxylic acids; 1,3 cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids; isophthalic acid, 2 , 6 Naphthalenedicarboxylic acid, 2, 7 Naphthalene dicarboxylic acid, 1, 4 Naphthalenedicarboxylic acid, 1, 4 Phylenedioxyd
- derived units Mention may be made of derived units, one or more of these may be used. Among these, units capable of inducing aromatic dicarboxylic acid power are preferred. Furthermore, units derived from polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid may be included as long as melt molding is possible.
- the content of these other dicarboxylic acid units in the dicarboxylic acid unit (a) is substantially 25 mol% or less, more preferably 10 mol% or less, and even more preferably substantially! /, That is the most preferred,
- the diamine unit (b) constituting the aromatic polyamide of the present invention comprises 1,9 nonamethylenediamine unit (b1) and 2-methyl-1,8-otatamethylenediamin unit (b-2). 60 to 100 mole 0/0 contains the total amount.
- the content of 1,9 nonamethylenediamine unit (b-1) and 2-methyl-1,8-otatamethylenediamine unit (b-2) in diamine unit (b) is 75 ⁇ 100 mol% is more preferred 90 ⁇ : LOO mol% is more preferred Virtually all diamine units are 1, 9 nonamethylene diamine units (b— 1) And 2-methyl-1,8-otatamethylenediamine unit (b-2) forces are also most preferred.
- Jiamin units in the aromatic polyamide (b) is 1, 9 nonamethylene Jiamin units and 2-methyl-1, other Jiamin unit other than 8-OTA Tame Chi range ⁇ Minh units, 40 mole 0 / If it is 0 or less, it may be included.
- diamine units in this case include ethylene diamine, propylene diamine, 1,4 butane diamine, 1, 6 hexandamine, 1,8-otatamethylene diamine, 1, 10 decandiamine, 1, 12 Aliphatic diamines such as dodecane diamine, 3-methyl-1,5-pentanediamine, 2, 2, 4 trimethyl-1,6 hexanediamine, 2,4,4 trimethyl-1,6 hexanediamine, 5-methyl-1,9 nonamethylenediamine, etc .; Cyclohexanediamine, methylcyclohexanedi Alicyclic diamines such as amines and isophorone diamines; ⁇ phenylenediamine, m-phenolene diamine, xylylenediamine, 4,4'-diaminodiphenylenomethane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenol -Units derived from aromatic diamines such as
- the preferred ratio of the namethylenediamine unit (b-l) is preferably 60% by weight as the lower limit.
- a more preferred lower limit is 70% by weight, even more preferred is 75% by weight, and most preferred is 80% by weight.
- the upper limit is preferably 100% by weight. More preferably 95% by weight, still more preferably 90% by weight. By lowering the upper limit, the mechanical properties such as impact resistance and tensile elongation can be improved, and the weld strength can be greatly improved.
- the terminal amino group concentration of the aromatic polyamide has an upper limit and a lower limit.
- the lower limit of the terminal amino group concentration is required to be at least 5 mol / g.
- a more preferred lower limit is 10 mol Zg, even more preferably 12 molZg, and most preferably 15 / z molZg.
- the upper limit must be 45 ⁇ mol / g.
- a preferred upper limit is 40 ⁇ mol / g, more preferably 35 ⁇ molZg, and most preferably 30 ⁇ molZg.
- the terminal carboxyl group concentration of the aromatic polyamide is not particularly limited, but the lower limit is preferably 20 ⁇ molZg, more preferably 30 ⁇ molZg. Further, the upper limit is preferably 150 ⁇ molZg, more preferably 100 ⁇ molZg, and most preferably 80 mol / g.
- terminal carboxyl group concentration alone is a factor in the characteristics of the composition.
- the ratio of terminal amino group concentration to terminal carboxyl group concentration (terminal amino group concentration Z terminal carboxyl group concentration) has a great influence on the mechanical properties. There are preferred ranges.
- a preferred ratio between the terminal amino group concentration and the terminal carboxyl group concentration is 1.0 or less. More preferably, it is 0.9 or less, more preferably 0.8 or less, and most preferably 0.7 or less. Since it is a concentration ratio, there is no particular lower limit, but by setting it to 0.1 or more, it becomes easy to obtain a composition having excellent impact properties and fluidity.
- a known method can be used.
- a diamine compound, a monoamine compound, a dicarboxylic acid compound, a monocarboxylic acid compound, an acid anhydride, a monoisocyanate so as to have a predetermined terminal concentration during polymerization of polyamide resin.
- Examples include a method of adding a terminal regulator such as monoacid halide, monoester, monoalcohol.
- the terminal conditioner that reacts with the terminal amino group includes acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, strong prillic acid, lauric acid, tridecanoic acid, myristic acid, normitic acid, stearin.
- Aliphatic monocarboxylic acids such as acid, bivalic acid and isobutyric acid, cycloaliphatic monocarboxylic acids such as cyclohexane carboxylic acid, benzoic acid, toluic acid, a naphthalene carboxylic acid, 13-naphthalene carboxylic acid, methyl naphthalene carboxylic acid
- aromatic monocarboxylic acids such as acid and phenylacetic acid, and mixtures of these forces arbitrarily selected.
- acetic acid propionic acid, butyric acid, valeric acid, caproic acid, strong prillic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, in terms of reactivity, stability of the sealing end, price, etc.
- Benzoic acid is most preferred, with stearic acid and benzoic acid being preferred.
- aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, jetylamine, dipropylamine, dibutyramine and the like.
- reaction Peptylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and arlin are preferred from the standpoints of stability, boiling point, stability of the sealing end, and price.
- the concentrations of these amino terminal groups and carboxyl terminal groups it is preferable in terms of accuracy and simplicity to obtain the integrated value of the characteristic signal corresponding to each terminal group by NMR.
- deuterated trifluoroacetic acid is useful as a measurement solvent.
- the number of integrations of 3 ⁇ 4-NMR requires at least 300 scans even when measured with an instrument having sufficient resolution.
- quantification by 1 H-NMR is more preferable in order to eliminate the influence of mixed additives, lubricants and the like.
- the active terminal is sealed.
- a terminal group sealed with a phenyl group terminal is generated.
- concentration of these end groups sealed is 20%, more preferably 40%, still more preferably 45%, and most preferably 50%.
- the upper limit is 85%, more preferably 80%, and most preferably 75%.
- the terminal blocking rate of the aromatic polyamide of the present invention was determined by measuring the number of terminal carboxyl groups, terminal amino groups, and terminal groups blocked with terminal blocking agents present in the polyamide-based resin. Can be obtained according to the equation (1)
- End-capping rate (%) [( ⁇ - ⁇ 8) ⁇ ⁇ ] ⁇ 100 (1)
- ⁇ represents the total number of end groups of the molecular chain (this is usually equal to twice the number of polyamide molecules), and ⁇ is the total number of carboxyl group ends and amino group ends remaining unblocked. Represents.
- One preferred embodiment of the present invention is that two or more aromatic polyamides having different terminal amino group concentrations are used in combination. Specifically, there may be mentioned a mixture of an aromatic polyamide having a terminal amino group concentration exceeding 45 / z molZg and an aromatic polyamide having a terminal amino group concentration of 45 ⁇ molZg or less. Even in this case, mixed polyamide mixing The average terminal amino group concentration of the product should be within the scope of the claims of the present invention. In this case, the average terminal amino group concentration of the polyamide mixture mixed at a desired mixing ratio can be confirmed by quantifying the terminal amino group concentration of the polyamide mixture using 1 H-NMR.
- the aromatic polyamide of the present invention preferably has an intrinsic viscosity [7?] Of 0.6 to 2 OdlZg measured in concentrated sulfuric acid at 30 ° C. in the range of 0.7 to 1.4 dlZg. It is more preferred to be 0.7 to 1.2 dlZg, particularly preferred to be in the range of 0.7 to 1. OdlZg U, most preferred.
- an aromatic polyamide having an intrinsic viscosity in the range indicated as the range the fluidity in the mold at the time of injection molding is greatly increased, and the molding piece when an inorganic filler such as glass fiber is blended is used. The appearance can be improved.
- the intrinsic viscosity is generally called the intrinsic viscosity and is equivalent to the viscosity.
- a specific method for obtaining this was to measure ⁇ spZc of several measuring solvents with different concentrations in 96% concentrated sulfuric acid at 30 ° C, and determine their respective ⁇ spZc and concentration (c ) Is derived and the concentration is extrapolated to zero.
- the value extrapolated to zero is the intrinsic viscosity.
- the number of measurement solvents having different concentrations is at least four.
- the preferred concentrations of the viscosity measurement solution at least at four points with different recommended concentrations are 0.05 g / dl, 0.4 lg / dl, 0.2 gZdl, and 0.4 gZdl.
- the aromatic polyamide of the present invention can be produced by any method known as a method for producing crystalline polyamide.
- it can be produced by a solution polymerization method or an interfacial polymerization method using acid chloride and diamine as raw materials, a melt polymerization method using dicarboxylic acid and diamine as raw materials, a solid phase polymerization method, a melt extrusion polymerization method, or the like.
- the production methods described in JP-A-7 228689 and JP-A-2000-103847 can be used.
- a catalyst and, if necessary, an end-capping agent are added all at once to diamine and dicarboxylic acid to produce a polyamide salt, and then in concentrated sulfuric acid at a temperature of 200 to 250 ° C. and under a constant pressure.
- Prepolymers with an intrinsic viscosity [ ⁇ ?] At 30 ° C of 0.10 to 0.60 dlZg are produced.
- an aromatic polyamide can be easily obtained by further polymerizing the resultant by using a solid-phase polymerization force or a melt extruder.
- the intrinsic viscosity [r?] Of the prepolymer is preferably in the range of 0.10 to 0.60 dlZg, a shift in the molar balance of the carboxyl group and the amino group and a decrease in the polymerization rate are caused in the post-polymerization stage.
- An aromatic polyamide having a small molecular weight distribution and excellent molding fluidity can be obtained.
- the final stage of the polymerization is carried out by solid phase polymerization, it is preferably carried out under reduced pressure or under inert gas flow. If the polymerization temperature is in the range of 200 to 280 ° C, the polymerization rate is increased and the productivity is increased. It is excellent because it can effectively suppress coloring and gelling.
- the polymerization temperature is 370 ° C or lower because there is almost no degradation of the polyamide and there is no deterioration, and an aromatic polyamide can be obtained.
- the prepolymer After producing the prepolymer, it is flashed under atmospheric pressure to obtain a powdered aromatic polyamide prepolymer, which is flowed using a stirrable device under reduced pressure or inert gas flow. There is also a method of performing solid-phase polymerization at 1.
- the aromatic polyamide can obtain an unexpected effect by being in a powder form.
- the term “powdered” as used herein refers to a polyamide powder having an average particle diameter in the range of 200 to 1000 / ⁇ ⁇ . A more preferable average particle diameter is 300 to 800 / ⁇ ⁇ , and further preferably 400 to 700 / ⁇ ⁇ .
- the rosin composition contains an aromatic polyamide crystal nucleating agent. Preferred amounts include a lower limit and an upper limit.
- a preferable lower limit is 0.001 part by mass with respect to 100 parts by mass in total of the aromatic polyamide and the polyphenylene ether.
- a more preferred lower limit is 0.01 parts by mass, a still more preferred lower limit is 0.02 parts by mass, and most preferred is 0.03 parts by mass.
- the upper limit is 5 parts by mass, more preferably 3 parts by mass, still more preferably 2 parts by mass, most preferably 100 parts by mass in total of the aromatic polyamide and the polyphenylene ether. Is also preferably 1 part by mass.
- the preferred crystal nucleating agent is not particularly limited.
- inorganic fine particles such as talc, silica, dalafite, and boron nitride, and metal oxides such as magnesium oxide, acid aluminum, acid zinc, and the like.
- polyamide oligomers such as force prolactam dimers.
- inorganic particles such as talc, silica and boron nitride are preferred, and talc is particularly preferred.
- talc is used as the crystal nucleating agent, a preferable average particle size of talc is 5 ⁇ m or less. More preferably, it is 4 ⁇ m or less, and most preferably 3 ⁇ m or less. The lower limit is 0.1 m.
- this crystal nucleating agent makes it possible to greatly reduce the water absorption rate of the resin composition. In addition, it is possible to drastically suppress the foaming phenomenon that occurs when the molded piece such as the connector having the power of the resin composition of the present invention absorbs water and is heated in a reflow furnace. Moreover, although the reason is not known, it is possible to suppress discoloration of the molded piece that occurs when it is overheated in a reflow furnace.
- crystal nucleating agents are preferably present in the polyamide, so that it is possible to improve the deflection temperature under load, which is an index of heat resistance, not only by enhancing the above-described effects.
- the method for preserving the crystal nucleating agent in the polyamide such as melt-kneading with a short-screw extruder, twin-screw extruder, kneader, etc., and aromatic polyamide. Examples thereof include a method of adding at the polymerization stage, a method of mixing with a forced mixer such as Henschel, and then compressing to a master batch. Of course, this is not a limitation.
- Whether or not it is effective as a crystal nucleating agent can be determined by using a differential scanning calorimetry (DSC) measuring device, the crystallization peak temperature of an aromatic polyamide containing a crystal nucleating agent, and an aromatic containing no crystal nucleating agent. This can be confirmed by measuring the crystallization peak temperature of the polyamide. Specifically, the sample is once heated to a temperature equal to or higher than the melting point of the aromatic polyamide, brought into a molten state and held for at least 10 minutes, and then the sample is cooled at a temperature drop rate of 20 ° C. Zmin. An example is a method of measuring the peak top of the exothermic peak.
- DSC differential scanning calorimetry
- a crystal nucleating agent with a crystal nucleating agent effect produces a peak top temperature difference of 5 ° C or higher. It is a more desirable aspect to mix
- the coffin composition of the present invention contains a specific amount of phosphorus element in the coffin composition.
- the preferable amount thereof is 1 to 500 ppm as the phosphorus element, more preferably 5 to 250 ppm as the phosphorus element, and most preferably the phosphorus element when the total amount of the resin composition is 100% by mass. As 50-200ppm.
- the amount of phosphorus element be 1 ppm or more.
- the flowability of the resin composition here, the flowability during melt flow such as MVR
- the phosphorus element in the present invention includes 1) phosphoric acid, phosphorous acid and hypophosphorous acid, 2) metal phosphate, metal phosphite and metal hypophosphite, and 3) phosphate ester and phosphite. It is preferably added as a phosphorus element-containing compound containing at least one selected from phosphoric acid compounds, phosphorous acid compounds, and hypophosphorous acid compounds such as phosphoric acid esters.
- Examples of 1) phosphoric acid, phosphorous acid and hypophosphorous acid include phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphorous acid and diphosphorous acid.
- the metal phosphate, metal phosphite, and metal hypophosphite of 2) above include the phosphorus compound of 1) and metals of Groups 1 and 2 of the periodic table, manganese, zinc and aluminum. And salts with ammonia, alkylamines, cycloalkylamines and diamines.
- the phosphates and phosphites of 3) above are represented by the following general formula. Phosphate ester; (OR) nPO (OH)
- n 1, 2 or 3
- R represents an alkyl group, a phenyl group, or an alkyl group in which a part of these groups is substituted with a hydrocarbon group or the like.
- the plurality of (RO) groups in the general formula may be the same or different.
- R examples include methyl, ethyl, n-propyl, n-butyl, t-butyl, n-hexyl, cyclohexyl, n-octyl, nonyl, decyl, and stearyl.
- the preferred phosphorus compound that can be added in the present invention is at least one selected from metal phosphates, metal phosphites, and metal hypophosphites.
- it is a metal salt composed of a phosphorus compound selected from phosphoric acid, phosphorous acid and hypophosphorous acid and a metal of Group 1 of the periodic table, and more preferably phosphorous acid or hypophosphorous acid and a peripheral salt.
- phenylphosphonic acid can be particularly preferably used.
- these phosphorus element-containing compounds are also present in the aromatic polyamide in advance.
- a method for preferentially presenting these phosphorus element-containing compounds in the aromatic polyamide include, for example, a method of adding the phosphorus element-containing compound in the production stage of the aromatic polyamide, and an aromatic polyamide.
- Examples include a method in which a phosphorus element-containing compound is added as a master pellet obtained by melt-kneading the phosphorus element-containing compound in advance.
- the amount of the phosphorus element-containing compound is preferably 1 to 500 ppm, more preferably 30 to 400 ppm as the phosphorus element when the aromatic polyamide containing the phosphorus element-containing compound is 100% by mass. Yes, most preferably 150-400 ppm.
- Phosphorus element quantification in cocoon yarn and aromatic polyamide can be performed by, for example, using an IRISZIP manufactured by ThermoJarrellAsh as a measurement device, and by means of high frequency inductively coupled plasma (ICP) emission spectrometry, wavelength 213.618 (nm) Can be done.
- ICP inductively coupled plasma
- a metal stabilizer as described in JP-A-1-163262 can also be used without any problem.
- Cul, CuCl, copper acetate, cerium stearate, etc. are listed. More preferred are copper compounds represented by Cul, copper acetate and the like. More preferred is Cul.
- the preferred compounding amount of these copper compounds is 1 to 200 ppm, more preferably 1 to 100 ppm, and still more preferably 1 to 30 ppm as the copper element when all the resin compositions are 100% by mass.
- the determination of copper element can be performed by high-frequency inductively coupled plasma (ICP) emission analysis using, for example, an IRISZIP manufactured by ThermoJarrellAsh, as well as the determination of phosphorus element.
- ICP inductively coupled plasma
- Representative halogenated alkyl metal compounds can also be suitably used, and it is preferable to add a copper compound and a halogenated alkyl metal compound in combination.
- polyamides other than the aromatic polyamide may be added to the resin composition of the present invention within a range that does not impair the object of the present invention.
- examples of the polyamide other than the aromatic polyamide that may be added include aliphatic polyamides. Specifically, aliphatic polyamides having 4 to 8 carbon atoms and aliphatic polyamides having 4 to 8 carbon atoms and aliphatic polyamides having 6 to 8 carbon atoms, aliphatic polyamides having amino acid powers, and aminocarboxylic acid powers.
- the aliphatic polyamide is one or more selected from the following aliphatic polyamides.
- polyamide, 6, polyamide, 6, 6, polyamide, 6/6, 6, polyamide, 11, positive amide 12, polyamide 4, 6, polyamide 6, 10, polyamide 6, 12, polyamide 6, 6, 6 and polyamide 6Z6, 12, and the like, and aliphatic polyamides obtained by copolymerizing a plurality of polyamides with an extruder or the like can also be used.
- a preferred aliphatic polyamide is at least one selected from polyamide 6, polyamide 6, 6, polyamide 4, 6, polyamide 11, and polyamide 12.
- the most preferred polyamide is polyamide 6, polyamide 6, or a mixture of both.
- a preferable blending amount of these aliphatic polyamides is 100 parts by mass or less with respect to 100 parts by mass of the aromatic polyamide. More preferably, it is 80 parts by mass or less, more preferably 50 parts by mass or less, and most preferably 30 parts by mass or less.
- the terminal amino group concentration of the aliphatic polyamide is preferably larger than the terminal amino group concentration of the aromatic polyamide.
- the aromatic polyamide is a mixture, it means the average terminal amino group concentration of these aromatic polyamides.
- additives that can be added to the polyamide may be added in an amount of less than 10 parts by mass with respect to 100 parts by mass of the polyamide.
- the polyphenylene ether that can be used in the present invention is a single polymer having a repeating structural unit represented by the following formula (1). A combination and Z or a copolymer.
- each R is independently hydrogen, halogen, primary or secondary C1-C7 alkyl group, phenol group, C1-C7 haloalkyl group, C1-C7 amino group
- Specific examples of the polyphenylene ether of the present invention include, for example, poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), and poly (2,6-dimethyl-1,4-phenylene ether).
- polyphenylene ethers are poly (2,6 dimethyl-1,4 phenylene ether), 2,6 dimethyl 1,1,4 phenol and 2,3,6 trimethyl-1,4 phenol. Or a mixture thereof.
- the ratio of each monomer unit is the total amount of polyphenylene ether copolymer.
- a copolymer containing 10 to 30% by mass of 2, 3, 6 trimethyl-1,4 phenol when 100% by mass is preferred. More preferably, it is 15 to 25% by mass, and most preferably 20 to 25 parts by mass.
- the preferred molecular weight distribution [weight average molecular weight Z number average molecular weight (MwZMn;)] of a copolymer of 2,6 dimethyl-1,4 phenol and 2,3,6 trimethyl-1,4 phenol is 2.5. It is in the range of ⁇ 4.0. A range of 2.8 to 3.8 is more preferable, and a range of 3.0 to 3.5 is most preferable.
- the method for producing the polyphenylene ether used in the present invention is not particularly limited as long as it is a known method.
- U.S. Pat.Nos. 3,306,874, 3,306,875, 3,257,357, and 3,257,358, JP-A-50-51197, JP-B-52-17880, and the like examples thereof include the production methods described in JP-A-63-152628.
- the reduced viscosity (r? Sp / c: 0.5 g Zdl, Kloform-form solution, measured at 30 ° C) of the polyphenylene ether that can be used in the present invention is in the range of 0.15 to 0.70 dlZg. More preferably, it is in the range of 0.20 to 0.60 dlZg, more preferably 0.40 to 0.55 dl / g. It is in the range of g.
- two or more types of polyphenylene ethers having different reduced viscosities can be used without any problem.
- the power includes, but is not limited to, a mixture of polyphenylene ether.
- stabilizers can also be suitably used for stabilizing the polyphenylene ether.
- examples of the stabilizer include organic stabilizers such as metal stabilizers such as zinc oxide and zinc sulfide, hindered phenol stabilizers, phosphate ester stabilizers, and hindered amine stabilizers. These preferable amounts are less than 5 parts by mass with respect to 100 parts by mass of the polyphenylene ether.
- the preferred mass ratio of the aromatic polyamide to the polyphenylene ether is 20 to 90 parts by mass of the aromatic polyamide and 10 to 80 parts by mass of the polyphenylene ether (here, the aromatic polyamide and the polyphenylene).
- the total amount of ether is 100 parts by mass). More preferably, the aromatic polyamide is 30 to 80 parts by mass, and the polyphenylene ether is 20 to 70 parts by mass. More preferably, the aromatic polyamide is 40 to 80 parts by mass, and the polyphenylene ether is 20 to 60 parts by mass. Preferred are 50 to 65 parts by mass of aromatic polyamide and 35 to 50 parts by mass of polyphenylene ether.
- a dispersed form in which an aromatic polyamide forms a continuous phase and a polyphenylene ether (PPE) forms a dispersed phase is preferable.
- the polyphenylene ether particles are preferably present as a dispersed phase having an average particle size of 0.1 to 5 m. More preferably, it is in the range of 0.3 to 3 111, and most preferably 0.5 to 2 / ⁇ ⁇ .
- the particle shape cannot be regarded as a sphere, measure the minor axis and the major axis, and the sum of the two, 1Z2, is the particle diameter.
- To calculate the average particle size it is necessary to measure at least 1000 particles.
- a compatibilizing agent for polyamide and polyphenylene ether is essential.
- the compatibilizing agent that can be used is described in detail in International Publication WO01Z81473.
- compatibilizers one or more selected from maleic acid, fumaric acid, citrate, and mixtures thereof can be preferably mentioned. Particularly preferred are maleic acid and Z or its anhydride.
- maleic acid and Z or their anhydrides as compatibilizers, it becomes possible to dramatically improve the weld strength of the resin composition and to increase the gloss (dalos value) of the surface of the molded piece. When you improve, you will see the effect.
- the amount of the compatibilizer for polyamide and polyphenylene ether is preferably in the range of 0.01 to 8 parts by mass with respect to 100 parts by mass in total of the aromatic polyamide and polyphenylene ether. More preferably, it is 0.05 to 5 parts by mass, and still more preferably 0.1 to 3 parts by mass.
- the amount of the compatibilizer is 0.01 or more, and the flowability in the mold (spiral flow distance) during injection molding is poor. In order to suppress crystallization, it is desirable that the amount not exceed 8 parts by mass.
- an impact modifier in an amount of 10 to 70 parts by mass per 100 parts by mass of the polyethylene ether may be added. Absent.
- a block copolymer comprising at least one polymer block mainly composed of an aromatic beryl compound and at least one polymer block mainly composed of a conjugated Jenig compound.
- Polymer and its hydrogenated product, and ethylene a- ref There may be one or more types in which the in-copolymer strength is selected.
- "Mainly" in the polymer block mainly composed of the aromatic vinyl compound of the present invention refers to a block in which at least 50% by mass or more of the block is an aromatic vinyl compound. . More preferably, it is 70% by mass or more, more preferably 80% by mass or more, and most preferably 90% by mass or more.
- a polymer block mainly composed of a conjugated genie compound refers to a block in which at least 50% by mass or more is a conjugated genie compound. More preferably, it is 70 mass% or more, More preferably, it is 80 mass% or more, Most preferably, it is 90 mass% or more.
- conjugation compound examples include butadiene, isoprene, piperylene, 1,3-pentagen and the like.
- One or more compounds selected from these forces are used, but butadiene, isoprene and combinations thereof are particularly preferable.
- the microstructure of the block portion of the conjugated conjugated compound in the block copolymer is preferably 1,2-bule content, or the total weight of 1,2-bule content and 3,4-bule content is 5-80%. More preferably, it is 10 to 50%, and most preferably 15 to 40%.
- the block copolymer in the present invention includes a polymer block [A] mainly composed of an aromatic vinyl compound and a polymer block [B] mainly composed of a conjugated diene compound.
- AB-A type or A-B-A-B type force It may be a block copolymer having a bond type selected, and a mixture thereof.
- the block copolymer of the aromatic belief compound and the conjugated diene compound that can be used in the present invention is a hydrogenated block copolymer.
- a hydrogenated block copolymer is an aliphatic dimer of a polymer block mainly composed of a conjugated diene compound by hydrogenating the above-mentioned block copolymer of an aromatic bur compound and a conjugated diene compound. This means that the double bond is controlled in the range of more than 0 to 100%.
- the hydrogenated block copolymer preferably has a hydrogenation rate of 80% or more, and most preferably 98% or more.
- block copolymers can be used as a mixture of the block copolymer and the hydrogenated block copolymer without any problem after being hydrogenated.
- block copolymers of these aromatic vinyl compounds and one conjugated gen compounds are different in bond type, different in aromatic vinyl compound types, and in different conjugated gen compound types unless contrary to the spirit of the present invention. May be used in combination with a different total amount of 1,2-bonded buthl and 3,4-bonded vinyl content, or different aromatic vinyl compound content. .
- a mixture of a low molecular weight block copolymer and a high molecular weight block copolymer can be preferably used. Specifically, it is a mixture of a low molecular weight block copolymer having a number average molecular weight of less than 120,000 and a high molecular weight block copolymer having a number average molecular weight of 120,000 or more. More preferably, it is a mixture of a low molecular weight block copolymer having a number average molecular weight of less than 120,000 and a high molecular weight block copolymer having a number average molecular weight of 170,000 or more.
- the number average molecular weight of each block copolymer refers to the number average molecular weight measured with an ultraviolet spectroscopic detector using a gel permeation chromatography measuring device (GPC) and converted to standard polystyrene. At this time, a low molecular weight component due to catalyst deactivation during polymerization may be detected, but in this case, the low molecular weight component is not included in the molecular weight calculation.
- GPC gel permeation chromatography measuring device
- the block copolymer has a molecular weight in the range of 15,000 to 50,000 in the block copolymer mainly composed of one aromatic vinyl compound. Better!/,.
- the number average molecular weight of one polymer block mainly composed of an aromatic vinyl compound of one type of block copolymer can be obtained by the following formula using the number average molecular weight of the block copolymer described above. .
- Mn (a), n is the number average molecular weight of one polymer block mainly composed of the aromatic vinyl compound of block copolymer n
- Mn is the number average molecular weight of block copolymer n
- b is the mass% of the polymer block mainly composed of the conjugated diene compound in the block copolymer n
- N (a) represents the number of polymer blocks mainly composed of an aromatic vinyl compound in the block copolymer n.
- the mass ratio of the low molecular weight block copolymer to the high molecular weight block copolymer is 95Z5 to 5Z95, preferably 90ZlO to 10Z90.
- the block copolymer used in the present invention includes a block copolymer containing a polymer block mainly composed of an aromatic vinyl compound in an amount of 55% by mass or more and less than 90% by mass, and an aromatic vinyl compound.
- a mixture of two or more kinds of block copolymers composed of a block copolymer containing a polymer block mainly composed of 20% by mass and less than 55% by mass can also be preferably used.
- the block copolymer used in the present invention is a mixture of an unmodified block copolymer and a modified block copolymer, even if it is a completely modified block copolymer. It doesn't matter.
- the modified block copolymer here means at least one carbon-carbon double bond or triple bond in the molecular structure, and at least one carboxylic acid group, acid anhydride group, amino group, hydroxyl group, Or it refers to a block copolymer modified with at least one modified compound having a glycidyl group. At least one modified carbon atom having at least one carbon-carbon double bond or triple bond and at least one carboxylic acid group, acid anhydride group, amino group, hydroxyl group, or glycidyl group in the molecular structure here.
- the same compound as described in the modified polyphenylene ether can be used.
- the blending amount of the impact modifier in the present invention is preferably less than 50 parts by mass with respect to 100 parts by mass of the total amount of aromatic polyamide and polyphenylene ether, from the viewpoint of heat resistance and fluidity. From 1 to 35 parts by mass is more preferable. From 3 to 30 parts by mass is most preferable.
- the resin composition of the present invention may contain a styrene polymer. Examples of the styrenic polymer in the present invention include homopolystyrene, rubber-modified polystyrene (HIPS), styrene-acrylonitrile copolymer (AS resin), styrene-rubber polymer-atari mouth-tolyl copolymer.
- the preferred blending amount of the styrenic polymer is less than 50 parts by mass with respect to 100 parts by mass in total of polyamide and polyphenylene ether.
- an inorganic reinforcing filler may be added to the resin composition of the present invention.
- Examples of the inorganic reinforcing filler that can be used in the present invention include glass fiber, wollastonite, talc, kaolin, zonotlite, titanium oxide, potassium titanate, calcium carbonate, zinc oxide and the like. Among them, glass fiber, wollastonite, talc, clay, titanium oxide, and zinc oxide are more preferable, and glass fiber, wollastonite, talc, and titanium oxide are more preferable. More preferable inorganic reinforcing fillers include one or more selected from talc, my strength, wollastonite, glass fiber, carbon fiber, and calcium carbonate strength.
- the wollastonite that can be used in the present invention will be described in detail.
- the wollastonite that can be used in the present invention is a refined, ground and classified natural mineral containing calcium silicate as a component. Artificially synthesized materials can also be used.
- the size of wollastonite is preferably an average particle diameter of 2 to 9 ⁇ m and an aspect ratio of 5 or more, more preferably an average particle diameter of 3 to 7 / ⁇ ⁇ , an aspect ratio of 5 or more, and Preferably, the average particle diameter is 3 to 7 ⁇ m and the aspect ratio is 8 or more and 30 or less.
- talc that can be used in the present invention will be described in detail.
- Talc that can be suitably used in the present invention is a refined, ground and classified natural mineral containing magnesium silicate as a component. More preferably, the crystallite diameter of the (0 0 2) diffraction plane of talc by wide-angle X-ray diffraction is 570A or more.
- the (0 0 2) diffracting surface of talc here is obtained by using a wide-angle X-ray diffractometer.
- O O
- Preferred shapes are those with an average particle size of 1 ⁇ m or more and 20 ⁇ m or less, a small particle size V, and a force of 25% particle size (d25%) and 75% particle size (d75%).
- the average particle size of talc is preferably 1 ⁇ m or more and 16 ⁇ m or less, more preferably more than 3 ⁇ m and less than 9 m.
- the average particle size and particle size distribution of talc are the volume-based particle sizes measured using a laser diffraction Z-scattering particle size distribution measuring device. Moreover, it is a value measured using ethanol as a dispersion solvent for talc.
- Examples of carbon fibers that can be preferably used in the present invention include polyacrylonitrile-based carbon fibers, rayon-based carbon fibers, lignin-based carbon fibers, and pitch-based carbon fibers. These may be used alone or in combination of two or more.
- the preferred fiber diameter is 5 ⁇ m to 20 ⁇ m, more preferably 5 to 13 ⁇ m.
- the aspect ratio should be 10 or more.
- a chopped strand having a fiber diameter of 5 ⁇ m to 20 ⁇ m is preferable from the viewpoint of mechanical properties and handleability.
- a more preferable fiber diameter is 8 ⁇ m to 15 ⁇ m.
- These reinforcing inorganic fillers also have higher fatty acids or derivatives thereof such as esters and salts (for example, stearic acid, oleic acid, palmitic acid, magnesium stearate, calcium stearate, aluminum stearate, stearin) as surface treatment agents.
- Acid And stearic acid ethyl ester and coupling agents (for example, silane, titanate, aluminum, zirconium, etc.) can be used if necessary.
- the amount of use is 0.05 to 5 parts by mass when the reinforcing inorganic filler is 100 parts by mass. More preferably, it is 0.1 to 2 parts by mass.
- a preferable amount of these reinforcing inorganic fillers is 10 to 60% by mass when the amount of all the resin composition is 100% by mass. More preferably from 15 to 50 wt%, still more preferably from 18 to 45 weight 0/0.
- These reinforcing inorganic fillers may be bundled with a sizing agent for the purpose of improving the handleability or for improving the adhesion to the resin.
- a sizing agent for the purpose of improving the handleability or for improving the adhesion to the resin.
- epoxy-based, urethane-based, urethane Z maleic acid-modified compounds, and urethane Z amine-modified compounds can be preferably used.
- these sizing agents may be used in combination.
- an epoxy-based compound having a plurality of epoxy groups in the molecular structure can be used particularly preferably.
- novolak type epoxy is particularly preferable.
- an epoxy compound having a plurality of epoxy groups in the molecular structure as a sizing material, it is possible to reduce the water absorption rate and improve the heat resistance of the reflow furnace.
- the reinforced inorganic filler can be added at any stage from the polymerization stage of polyamide or polyphenylene ether to the molding stage of the resin composition, but the extrusion process and molding process of the resin composition. It is preferable to add at the stage (including dry blending).
- a method of adding a reinforced inorganic filler to the melted resin composition and melt-kneading in the extrusion step can be mentioned. It is also useful to add a reinforcing inorganic filler in the form of a masterbatch that is pre-mixed in polyamide or polyphenylene ether. There are no restrictions on the preparation method of the masterbatch at this time. Mixing without melting with polyamide or polyphenylene ether, melting and kneading with an extruder, etc., reinforced inorganic filler in molten polyamide or polyphenylene ether And the like can be preferably used.
- the reinforcing inorganic filler is a fibrous filler
- a method in which it is added to molten polyamide or polyphenylene ether and melt-kneaded is more preferable.
- the blending amount of the conductive additive at this time is 0.1 to LO mass% when all the resin compositions are 100 mass%. More preferably, it is 0.5 to 5% by mass, and most preferably 1 to 3% by mass.
- a preferable conductivity imparting material is at least one selected from conductive carbon black, graphite, and a group force that also has a force-bon fibril force.
- the preferred conductive carbon black in the case of using conductive carbon black as the conductivity-imparting material has a dibutyl phthalate (DBP) oil absorption of 250 mlZlOOg or more. More preferred is a conductive carbon black having a DBP oil absorption of 300 mlZlOOg or more, more preferably 350 mlZlOOg or more.
- DBP oil absorption referred to here is a value measured by the method defined in A STM D2414.
- the conductive carbon black that can be used in the present invention preferably has a BET specific surface area (JIS K6221-1982) of 200 m 2 Zg or more, and more preferably 400 m 2 Zg or more.
- BET specific surface area JIS K6221-1982
- Examples of commercially available products include Ketjen Black EC available from Ketjen Black International, Inc. Ketjen Black EC-600JD, etc.
- the fiber diameter is less than 75 nm, and is a hollow-structured carbon fiber with less branching. Also included is a coiled shape that makes a round with a pitch of 1 m or less.
- Examples of commercially available products include carbon fibrils (BN fibrillar) available from Hyperi
- the graphite that can be used as the conductivity imparting material in the present invention includes naturally obtained graphite as well as those obtained by heating anthracite, pitch, etc. in an arc furnace at a high temperature.
- a preferable weight average particle diameter is 0.1 to 50 m, and more preferably 1 to 30 ⁇ m.
- aromatic polyamide there is no particular limitation on the method of adding these conductivity-imparting materials, but aromatic polyamide and Examples thereof include a method of adding a conductivity-imparting material to a melted mixture of polyphenylene ether and melt-kneading, a method of adding it in the form of a masterbatch in which a conductivity-imparting material is pre-blended with an aromatic polyamide, and the like. In particular, it is preferable to add in the form of a masterbatch obtained by blending an electrical conductivity-imparting material in an aromatic polyamide.
- a polyamide Z carbon fibril master batch available from Hyperion Catalyst International can be used as the master batch.
- the amount of conductivity imparting material in these master batches is 100 mass
- the amount of the conductivity imparting material is desirably 5 to 25% by mass.
- the amount of the conductivity imparting material in a suitable masterbatch is 5% by mass to 15% by mass, more preferably 8% by mass to 12% by mass. is there.
- the amount of the conductivity imparting material in a suitable masterbatch is 15% by mass to 25% by mass, more preferably 18% by mass to It is 23% by mass.
- the resin used in the conductivity-imparting material master batch examples include one or more selected from polyamide, polyphenylene ether, or impact modifier. Particularly preferred is polyamide.
- polyamide it is more preferable that the polyamide to be used is an aromatic polyamide, and it is desirable that the intrinsic viscosity [r?] Is within a range of 0.7 to 1. ldlZg.
- an aromatic polyamide having an intrinsic viscosity range of the above-mentioned range the efficiency during production of the masterbatch is improved (increased production per unit time), and furthermore, the resin obtained using the masterbatch It is possible to increase the surface impact strength of the composition.
- the aromatic polyamide used in the masterbatch can obtain an unexpected effect by being in a powder form.
- the powdery aromatic polyamide as used herein refers to a polyamide powder having an average particle size in the range of 200 to 1,000 m. By using powdered aromatic polyamide, it is possible to obtain an unexpected effect that the temperature of the resin during extrusion can be greatly reduced.
- aromatic A method in which the polyamide and the conductivity-imparting material are mixed without melting and then kneaded at a temperature at which the resin temperature is equal to or higher than the melting point of the aromatic polyamide.
- the conductivity-imparting material is added to the molten aromatic polyamide.
- a mixture of the aromatic polyamide and the conductivity-imparting material is prepared without melting, and the mixture is fed into the remaining aromatic polyamide after melting.
- Examples thereof include a kneading method, and (4) a method of supplying a conductivity-imparting material into molten aromatic polyamide and melt-kneading, and then supplying aromatic polyamide and melt-kneading.
- the most preferable embodiment is (3) preparing a mixture of both of the aromatic polyamide and the conductivity-imparting material without melting the mixture, and supplying the mixture into the molten aromatic polyamide. , Melt kneading method.
- the upstream supply port force supplies a part of the aromatic polyamide and exceeds the melting point of the aromatic polyamide.
- a twin-screw extruder with one supply port in the upstream, one in the midstream, and one in the downstream, supply the upstream supply loca aromatic polyamide and the melting point of the aromatic polyamide.
- Examples include a method in which after the melt kneading at the above temperature, a midstream portion supply port conductivity imparting agent is added and further melt kneaded, and the downstream portion supply port force aromatic polyamide is added and further melt kneaded.
- a particularly preferred embodiment is the production method (3).
- the cylinder set temperature of the processing machine when manufacturing these master batches.
- the temperature is equal to or higher than the melting point of the aromatic polyamide. More preferably it is a range
- a preferred production method is to pass the following steps in that order.
- a mixture of both of the aromatic polyamide and the conductivity-imparting material is prepared without melting, and the mixture is supplied to the molten residual aromatic polyamide, melt-kneaded, and the aromatic polyamide and Process for producing master pellets of conductivity imparting material
- a flame retardant may be added to the resin composition of the present invention.
- flame retardants that can be preferably used include phosphate ester compounds, phosphazene compounds, and phosphinic acid salts. Of these, phosphinic acid salts are particularly preferred.
- phosphinic acid salts preferably usable in the present invention are diphosphinic acid salts represented by the following formulas (I) and Z or the following formula ( ⁇ ), or condensates thereof (in the present specification, all of the C ) which may be abbreviated as inoates
- R 1 and R 2 are the same or different and are linear or branched C to C-alkyl.
- R 3 is a linear or branched C_ to C alcohololene, c
- M is calcium (ion), magnesium (ion), al
- Minium (ion), dumbbell (ion), bismuth (ion), manganese (ion), sodium (ion), potassium (ion), and protonic nitrogen basic power are one or more selected, and m is 2 or 3, n is 1 to 3, and x is 1 or 2.
- phosphinates include polymer phosphinates which are condensates having a condensation strength of ⁇ 3 depending on the environment, depending on the reaction conditions which are essentially monomeric compounds.
- Phosphinates that can be used in the present invention exhibit higher flame retardancy and MD generation From the viewpoint of suppression, it is preferable that the phosphinic acid salt represented by the following formula (I) is contained in an amount of 90% by mass or more, more preferably 95% by mass or more, and most preferably 98% by mass or more.
- R 1 and R 2 are the same or different and are linear or branched C to C-alkyl.
- M calcium (ion), magnesium (ion), aluminum (ion), dumbbell (ion), bismuth (ion), manganese (ion) , Sodium (ion), potassium (ion), and protonated nitrogen base force are also one or more selected, and m is 2 or 3.
- phosphinic acid that can be preferably used in the present invention include dimethylphosphinic acid, ethylmethylphosphinic acid, jetylphosphinic acid, methyl-n-propylphosphinic acid, methanedi (methylphosphinic acid), benzene-1,4 — (Dimethylphosphinic acid), methylphenol phosphinic acid, diphenylphosphinic acid, and mixtures thereof.
- Preferred metal components that can be used include calcium ions, magnesium ions, anoleminium, bismuth, bismuth, mangany, sodium, potassium ions, and Z or protonated nitrogen basicity.
- phosphinates that can be preferably used include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, magnesium ethylmethylphosphinate, Aluminum tilmethylphosphinate, ethylmethylphosphinate Lead, calcium jetyl phosphinate, magnesium jetyl phosphinate, aluminum jetyl phosphinate, zinc jetyl phosphinate, calcium methyl-n-propylphosphinate, magnesium methyl-n-propylphosphinate, methyl-n-propylphosphine Acid aluminum, methyl n-propyl propylphosphinate, methandi (methylphosphinic acid) calcium, methanedi (methylphosphinic acid) magnesium, methanedi (methylphosphinic acid) aluminum, methanedi (methylphosphinic acid) zinc, benzene 1,
- the preferred amount of phosphinic acid salt is 1 to 50 parts by mass, more preferably 2 to 25 parts by mass, particularly preferably 2 to 100 parts by mass in total of the aromatic polyamide and the polyphenylene ether. To 15 parts by mass, most preferably 3 to L0 parts by mass. In order to achieve sufficient flame retardancy, the amount of phosphinates is preferably 1 part by mass or more. To obtain a melt viscosity suitable for extrusion, the amount of phosphinates is preferably 50 parts by mass or less. Yes.
- the preferred lower limit of the average particle diameter of phosphinates is 0.1 ⁇ m.
- a more preferred lower limit is 0.5 m.
- the upper limit of the number average particle diameter of phosphinic acid salts is preferably 40 ⁇ m, the more preferable upper limit is 20 ⁇ m, and the most preferable upper limit is 10 / zm.
- the number average particle diameter of the phosphinic acid salt is 0.1 ⁇ m or more, handling property and penetration into an extruder are improved during processing such as melt kneading.
- the average particle diameter is 40 m or less, the mechanical strength of the resin composition is easily developed, and the good surface appearance of the molded product is improved.
- the average particle size of these phosphinates can be measured and analyzed by dispersing the phosphinates in water using a laser diffraction particle size distribution analyzer (for example, trade name: SALD-2000, manufactured by Shimadzu Corporation, Japan). it can.
- a laser diffraction particle size distribution analyzer for example, trade name: SALD-2000, manufactured by Shimadzu Corporation, Japan. It can.
- SALD-2000 laser diffraction particle size distribution analyzer
- the phosphinic acid salts in the present invention may leave unreacted substances or by-products as long as the effects of the present invention are not impaired.
- the phosphinic acid salts usable in the present invention may be added in the form of a flame retardant master batch in which an aromatic polyamide is mixed in advance.
- the ratio of the preferred phosphinates in the flame retardant masterbatch is 10 to 60 parts by mass when the flame retardant masterbatch is 100% by mass. More preferably, it is 20 mass%-50 mass%.
- There are no particular restrictions on the method for producing the master batch of the flame retardant but specific examples include: (1) a method of melt-kneading a mixture of aromatic polyamide and phosphinic acid salt without melting, (2) A method in which phosphinic acid salts are added to a molten aromatic polyamide and further melt-kneaded. The latter method is desirable because it improves the dispersibility of the flame retardant.
- the resin composition of the present invention can be made into a resin composition having transparency by appropriately selecting constituent components.
- aromatic polyamides having a terminal amino group concentration of 5 ⁇ mol Zg or more and 45 ⁇ mol Zg or less 80 to 40 parts by mass of polyphenylene ether 20 to 60 parts by mass, a phase of polyamide and polyphenylene ether
- the index of transparency at this time is that the total light transmittance (JIS K7361-1) is 10% or more and the haze (JIS K7136) is 95% or less.
- Examples of the molded article having transparency according to the present invention include injection molded articles, sheets, and films.
- the total light transmittance (JIS K7361-1) of the molded body is preferably 15% or more, more preferably 20% or more.
- the total light transmittance varies depending on the thickness of the molded product.
- the total light transmittance here is expressed as the total light transmittance of the portion of the injection molded product or sheet having a thickness of 2.5 mm.
- the preferable range of the haze value (JIS K7136) of the molded article having transparency of the present invention is 92% or less, more preferably 90% or less, still more preferably 85% or less, and particularly preferably 80% or less.
- the haze value is a measurement result particularly at a thickness of 2.5 mm in the injection molded body or sheet.
- haze is defined as the ratio of diffuse transmittance to total light transmittance.
- the molded article having transparency according to the present invention it is necessary not to add an impact modifier, to make it a very small amount without affecting the transparency, or to add a certain amount or more. In this case, it is necessary to select and add the type of impact modifier.
- Specific examples of the impact modifier include those described in the explanation of the impact modifier of the resin composition, and when added to a large amount of usable force, the transparency may be significantly impaired.
- preferable impact modifiers are mainly composed of at least one polymer block mainly composed of aromatic beryl compound and at least one conjugated diene compound.
- a block copolymer having a polymer blocking power which contains a polymer block mainly composed of an aromatic beryl compound in an amount of 55% by mass or more and less than 90% by mass, or a hydrogenated product thereof Is mentioned. If the block copolymer exemplified here or its hydrogenated product is added in a large amount, the transparency is not impaired. Impact resistance can be imparted.
- the resin composition constituting the molded article having transparency of the present invention may be combined with the resin composition of the present invention as long as the transparency is not impaired. Anything can be added.
- Flame retardant halogenated resin, silicone flame retardant, magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, red phosphorus, etc.
- fluorinated polymer with anti-dripping effect fluidity improvement Materials (oil, low molecular weight polyolefin, polyethylene glycol, fatty acid esters, etc.), flame retardant aids such as antimony trioxide, antistatic agents, various peroxides, antioxidants, UV absorbers, light stability Agents, dyes, pigments, additives, and the like.
- the amount of each of these additional components is in a range not exceeding 20 parts by mass with respect to a total of 100 parts by mass of polyamide and polyphenylene ether, and the total amount is not exceeding 50 parts by mass. is there.
- Specific processing machines for obtaining the resin composition of the present invention include, for example, a single screw extruder, a twin screw extruder, a roll, a kneader, a Brabender plastograph, a Banbury mixer, and the like.
- a twin screw extruder is preferred, especially a screw diameter of 25 mm or more with an upstream supply port and one or more downstream supply ports, and a twin screw extruder with an LZD of 30 or more is preferred.
- a twin screw extruder with LZD of 30 or more is most preferred.
- the upper limit of the screw diameter is desirably 120 mm or less from the viewpoint of suppressing an increase in the temperature of the resin.
- the cylinder setting temperature of the processing machine at this time is not particularly limited. Usually, the medium force of 240 to 360 ° C. The force that can arbitrarily select the conditions for obtaining a suitable composition. Preferable V, the setting temperature is 300. It is in the range of ⁇ 350 ° C.
- thermoplastic resin composition of the present invention is used to mold by any molding method such as injection molding, extrusion molding, press molding, blow molding, calendar molding, casting molding, etc. Products can be produced and can also be formed by a combination of these molding techniques. Furthermore, it can also be a composite molded body with various materials such as various thermoplastic resins or compositions thereof, thermosetting resins, paper, fabric, metal, wood, ceramics.
- the resin composition of the present invention Since the resin composition of the present invention has many excellent characteristics, it undergoes the molding process as described above, and is used for automobile parts, industrial materials, industrial materials, electrical and electronic parts, machine parts, office equipment parts, household equipment. It can be used effectively in the manufacture of articles, sheets, films, fibers, and other molded articles of any shape and application.
- motorcycles and automobile electrical parts typified by relay block materials, IC tray materials, chassis such as various disc players, cabinets, electrical and electronic parts such as SMT connectors, various computers and their OA parts and machine parts such as peripheral equipment, motorcycle cowl, automobile bumper 'fender' door panel, various malls, emblems, outer door handles, door mirror housings, wheels, caps, roof rails and their stiffeners ⁇
- exterior parts such as spoilers, interior parts such as instrument panels, console boxes and trims, automobile underwood parts, and parts around automobile engines.
- electric / electronic parts such as SMT connectors and automobile exterior materials.
- the resin composition of the present invention can be used as a film.
- a person skilled in the art may refer to a film as a sheet depending on its thickness. There is no threshold for thickness to clearly distinguish a film from a sheet.
- the present invention relates to a dicarboxylic acid unit (a) containing 60 to: 00 mol% of terephthalic acid units, 1,9 nonamethylenediamine units (b-l) and Z or 2-methyl- 1, 8 - 60 the OTA Tame Chi range ⁇ Minh units (b- 2): LOO mol 0/0 80-40 parts by Jiamin units (b) and the force becomes aromatic polyamide containing, Porifue - ether 20
- a film or sheet having a thickness of 1 to 200 ⁇ m comprising a resin composition comprising 60 parts by mass, 0.05 to 5 parts by mass of a compatibilizing agent for polyamide and polyphenylene ether.
- the detailed description of the aromatic polyamide, the polyphenylene ether, and the compatibilizer of the polyamide and the polyphenylene ether here is the same as that described in the detailed description of the resin composition.
- the resin composition used for the film may be added to the resin composition of the present invention.
- the film of the present invention can be obtained by extrusion film forming or the like using the resin composition of the present invention as a raw material, or each component constituting the resin composition of the present invention is directly charged into an extrusion film molding machine. Alternatively, kneading and film forming can be carried out simultaneously.
- the film of the present invention can also be produced by an extrusion tubular method, and sometimes a method called an inflation method.
- an inflation method In order to prevent the parison coming out of the cylinder from cooling immediately, the medium force in the temperature range of 50 to 310 ° C is also selected appropriately, and temperature control of the parison makes the film thickness uniform and does not cause delamination It is extremely important in the production of films. It is also possible to obtain a multilayer film of the polyamide polyphenylene ether-based resin composition of the present invention and another resin by the multilayer inflation method.
- the film of the present invention can also be produced by T-die extrusion.
- the film may be used without stretching, or may be uniaxially stretched or biaxially stretched. If it is desired to increase the strength of the film, it can be achieved by stretching.
- a multilayer film of the polyamide-polyphenylene ether series resin composition of the present invention and another resin can be obtained by a multilayer T-die extrusion method.
- the film of the present invention thus obtained is excellent in heat resistance, low water absorption, chemical resistance, tear resistance, heat resistance strength and vacuum formability when vacuum forming is performed in the subsequent process, and in addition, has a heat shrinkage rate. It is small and has excellent characteristics such as flame retardancy, mechanical strength, insulation, dielectric constant and dielectric loss tangent, and excellent hydrolysis resistance. Therefore, it can be used for applications requiring these characteristics.
- Examples of applications include printed circuit board materials, printed circuit board peripheral parts, semiconductor packages, data magnetic tape, APS photographic film, film capacitors, insulating films, insulating materials such as motors and transformers, speaker diaphragms, automobiles, etc.
- Film sensor 1. Wire tape insulation tape, TAB tape, generator slot liner interlayer insulation Materials, toner agitators, and insulating washers such as lithium ion batteries.
- terephthalic acid as a dicarboxylic acid component
- 1,9 nonamethylenediamine as a diamine component
- 2-methyl-1,8 otatamethylenediamine octylamine or benzoic acid as an end-capping agent
- sodium hypophosphite monohydrate and distilled water as a polymerization catalyst were placed in an autoclave and sealed (water content in reaction system: 25% by weight). After the autoclave was sufficiently purged with nitrogen, the internal temperature was raised to 260 ° C over 2 hours with stirring, and the reaction was allowed to proceed. The internal pressure at this time was 46 atmospheres.
- the reaction product was kept under a nitrogen atmosphere for 3 minutes from the nozzle (6 mm diameter) at the bottom of the reaction vessel while maintaining the temperature in the reaction vessel at 260 ° C and the water content at 25% by weight. After taking it out in a container at room temperature and pressure, it was dried at 120 ° C. to obtain a non-foamed powdery primary polycondensate. Furthermore, this powdery primary polycondensate was stirred under a nitrogen atmosphere. The temperature was raised to 250 ° C. over 2 hours, and solid phase polymerization was performed for a predetermined time.
- Aromatic polyamides having various end group concentrations and intrinsic viscosities were obtained by appropriately changing the type and amount of the end-capping material and further adjusting the time for solid phase polymerization.
- the end-capping rate and end-group concentration of the obtained aromatic polyamide were measured in accordance with the end-capping rate measurement described in the examples of JP-A-7-228689. It was carried out at a wavelength of 213.618 (nm) by high frequency inductively coupled plasma (ICP) emission analysis using IRISZIP manufactured by ThermoJarrellAsh.
- ICP inductively coupled plasma
- Polyphenylene ether Poly (2,6 dimethyl-1,4-phenylene ether)
- PPE-1 Reduced viscosity is 0.52dl / g (measured at 0.5gZdl, black mouth form solution, 30 ° C)
- PPE-2 Reduced viscosity is 0.41dl / g (measured at 0.5gZdl, black mouth form solution, 30 ° C)
- MAH Maleic anhydride Product name: CRYSTALMAN— AB (manufactured by NOF Corporation)
- CA Chenic acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.)
- Talc 1 Talc with an average particle size of 2.5 m (no surface treatment)
- Talc 2 Talc with an average particle size of 5.0 m (no surface treatment)
- GF—1 Chopped strand glass fiber with a fiber diameter of 13 m, focused with a novolac epoxy compound
- GF-2 Chopped strand glass fiber with a fiber diameter of 13 m, focused with an acrylic compound
- PA66 Polyhexamethylene adipamide
- Terminal amino group concentration is 33 ⁇ mol / g, and terminal carboxyl group concentration is 39 ⁇ mo.
- twin screw extruder [ZSK-25: manufactured by Coperion (Germany)] with one supply port in the upstream of the extruder and one discharge port in the middle stream, supply the downstream supply port downstream 3 20 ° C up to the front of the mouth, 280 ° C up to the middle part supply loca up to the die, screw rotation speed 300rpm, discharge 15kgZh, upstream feed loca 40 parts PPE-1, 10 parts PPE After supplying 0.4 parts by mass of MABS, 0.4 parts by mass of MAH, and melt-kneading, 50 parts by mass of PA9T and 0.05 parts by mass of talc-1 were supplied from the midstream supply port to melt.
- All the PA9Ts used at this time were powders with an average particle diameter of about 500 m, NZI specific power 85/15, intrinsic viscosity [7?] Of about 1.2, and the phosphorus element in polyamide 9T.
- the concentration was about 300 ppm (quantified at a wavelength of 213.618 (nm) by high frequency inductively coupled plasma (ICP) emission analysis using IRISZIP manufactured by ThermoJarrellAsh), but the concentration of terminal groups was different. Table 1 shows the end group concentration.
- the obtained pellets were placed in a hot air dryer at 80 ° C to evaporate the adhering water, and then placed in an aluminum-coated moisture-proof bag to prevent water absorption.
- Izod impact strength was measured according to ISO180.
- a molded piece for measuring weld strength was molded at a cylinder temperature of 340 ° C and a mold temperature of 140 ° C.
- the test piece for measuring the weld strength is 128 mm long, 12.8 mm wide, and 0.8 mm thick, and there are gates for inflow of grease at both ends in the length direction. The more infused resin collides with the center of the specimen and forms a welded part. At this time, as a blank, close one gate, A test piece of the same size without forming a weld was also formed.
- the tensile yield strength of each of the obtained specimens (the strength at tensile rupture for those that fracture before yielding) was measured.
- the test was basically carried out in accordance with IS0527 except that the distance between the crossheads was 100 mm and the crosshead speed was fixed at 5 mmZ.
- the ratio of the tensile yield strength of the test piece having the weld portion to the tensile yield strength of the test piece having no weld portion was expressed as the weld strength retention rate.
- Example 7 The procedure was the same as in Example 4 except that PA9T having an NZl ratio of 95Z5 was used.
- the PA9T used in Example 7 is the same as the PA9T used here except that the NZl ratio is different. The results obtained are shown in Table 1.
- polyamide 9T was a mixture of 9 ⁇ m having a terminal amino group concentration of 10 ⁇ molZg and 9 ⁇ m of 30 ⁇ molZg.
- the terminal amino group concentration of this PA9T mixture was adjusted by the blending ratio so as to be the same as in Example 3. The results obtained are shown in Table 1.
- PA9Ts used at this time were powders with an average particle size of about 400 ⁇ m, NZI specific power 85Z15, intrinsic viscosity [r?] Of 0.95, and terminal amino group concentration of 10 / z.
- the phosphorus element concentration in molZg and polyamide 9T was about 300 ppm.
- the obtained pellets were placed in a hot air dryer at 80 ° C to evaporate the adhering water, and then placed in an aluminum-coated moisture-proof bag to prevent water absorption.
- the resin pellets were molded into multi-purpose test pieces with a thickness of 4mm in accordance with IS0294-1 using IS-80EPN molding machine (Toshiba Machine Co., Ltd.) under conditions of cylinder temperature 330 ° C, mold temperature 130 ° C.
- the deflection temperature under load of 0.45 MPa and the deflection temperature under load of 1.8 MPa were measured according to IS075.
- test pieces having a cylinder temperature of 340 ° C, a mold temperature of 140 ° C, a length of 128 mm, a width of 12.8 mm, and a thickness of 0.8 mm were prepared.
- test piece having a length of 128 mm, a width of 12.8 mm, and a thickness of 0.8 mm was immersed in water at 80 ° C. for 48 hours, taken out, and left in an atmosphere of 23 ° C. and 50% humidity for 240 hours.
- the water absorption rate of the molded piece was calculated by the following equation. [(Weight of molded piece after standing for 240 hours after immersion) / (Weight of molded piece before immersion) 1] X 100
- the molded piece used for water absorption measurement which was conditioned for 240 hours after immersion in warm water, was heated in a hot air reflow oven to check the occurrence of blistering (foaming) in the molded piece and the degree of discoloration. Judged by criteria.
- Blister occurs on the entire surface.
- the hot air reflow furnace used at this time is an air reflow furnace that supports lead-free soldering.
- temperature setting is 181 ° C ⁇ 186 ° C for heaters 1-8, 200 ° C for heaters 9 and 10, 238 ° C for heaters 11 and 12 and heaters 13 and 14 were set to 275 ° C.
- the conveyor belt speed in the reflow oven was 0.45mZ. Under these conditions, the temperature profile in the furnace was confirmed.
- the heat exposure time from 140 ° C to 200 ° C was 86 seconds, the heat exposure time above 220 ° C was 56 seconds, and the heat exposure time above 260 ° C. was 8 seconds and the maximum temperature reached 263 ° C.
- test piece (length 127 mm, width 12.7 mm, thickness 1.6 mm) was molded using an injection molding machine (Toshiba Machine Co., Ltd .: IS-80EPN). Molding temperature is 330 ° C, mold
- the temperature was 150 ° C.
- the flame retardant class shows the flame retardant class classified by UL94 vertical flame test. However, all the samples were tested 5 times and judged.
- the outline of the classification method is as follows. Other details conform to UL94 standard.
- V—0 Average burning time 5 seconds or less Maximum burning time 10 seconds or less No flame dropping
- V— 1 Average burning time 25 seconds or less Maximum burning time 30 seconds or less No flaming dripping
- V-2 Average burning time 25 seconds or less Maximum burning time 30 seconds or less
- Example 9 The procedure was the same as in Example 9 except that talc 1 was added and the power was reduced. The results are shown in Table 2.
- Example 9 The procedure was the same as Example 9 except that PA9T was used with a terminal amino group concentration of 9 ⁇ m. The results are shown in Table 2.
- Example 11 The same procedure as in Example 11 was performed except that talc 1 was prepared in advance as a master batch melt-kneaded with PA9T. The results are shown in Table 2.
- the master batch was prepared by mixing 100 parts by weight of PA9T and 0.24 parts by weight of talc 1 with a Henschel mixer at 700 rpm for 3 minutes to create a mixture.
- the cylinder set temperature was all set to 320 ° C, and melt kneading was performed under the conditions of a screw speed of 300 rpm and a discharge rate of 70 kgZh.
- Example 7 The same procedure as in Example 7 was conducted except that the amount of talc 1 was changed to 0.01 parts by mass. The results are shown in Table 2.
- Example 9 All were carried out in the same manner as Example 9 except that PA9T having an NZl ratio of 70Z30 was used.
- the PA9T used in Example 9 is the same as the PA9T used here except that the NZl ratio is different.
- the results are shown in Table 2.
- Example 11 The procedure was the same as Example 11 except that the glass fiber was changed to GF-2. The results are shown in Table 2.
- PA9T N / I ratio is 70/30
- Example 18 is MAH
- Example 19 is CA
- Example 20 is not added
- melt-kneaded melt-kneaded
- 52 parts by mass of PA9T from the midstream supply port 0.1 parts by weight of turquoise 1, lOOppm yowi copper, 2000 ppm potassium yoi potassium, and 2.0 parts by weight KB were extruded, extruded, and cut to produce a resin composition pellet.
- 1 part by weight of PPE-1, SEBS-1, SEBS-2 and compatibilizer were mixed in a tumbler, and the remaining PPE-1 and PPE-2 were separately used with separate feeders. Feeded to the extruder.
- the mixture of PA9T, talc 1, copper iodide, potassium iodide and KB used was a Henschel mixer mixed at 700 rpm for 3 minutes.
- All the PA9Ts used at this time are powders having an average particle diameter of about 500 m, an NZI specific power of 85/15, an intrinsic viscosity [r?] Of 1.2, and a terminal amino group concentration of 30 /
- the concentration of phosphorus element in ⁇ ⁇ 1 / 8 and polyamide 9 ⁇ was about 300 ppm.
- the obtained pellets were placed in a hot air dryer at 80 ° C to evaporate the adhering water, and then placed in an aluminum-coated moisture-proof bag to prevent water absorption.
- an ultrathin section with a thickness of 80 nm was prepared in a direction in which the flow direction of the scab of the obtained pellet could be observed, and observed with a transmission electron microscope.
- the aromatic polyamide forms a continuous phase and the polyphenylene ether It was confirmed that a dispersed phase was formed.
- 10 photographs were taken at an observation magnification of 5,000 times, and the average particle diameter of the PPE dispersed particles was determined based on the obtained electron micrograph.
- the dispersed particle size is not arbitrary, and arbitrarily measure the short diameter and long diameter of 1000 dispersed particles, determine the average of both, specify the particle size of each, and determine the number average
- the particle size ( ⁇ di / ni) was calculated.
- Example 2 Using the same twin screw extruder as in Example 1, set the upstream supply loca to the die at 320 ° C, the screw speed of 300 rpm, the discharge rate of 15 kgZh, and the upstream supply loca of 40 parts by mass of PPE-2. 6 parts by mass of SEBS-1, 1 part by mass of SEBS-2, 0.4 parts by mass of MAH, melted and kneaded, then 50 parts by mass of PA9T and 0.08 parts by mass from the downstream supply port Of talc 1 was melt-kneaded, extruded, and cut to produce a resin composition pellet.
- PPE-1 1 part by mass of PPE-1, SEBS-1 and SEBS-2, and MAH were mixed in a tumbler, and other PPEs were fed using a separate feeder. Supplied to the extruder. PA9T and talc 1 were mixed for 3 minutes at 700 rpm using a Henschel mixer.
- the concentration of phosphorus element in polyamide 9T was about 300 ppm, but the end group concentrations were different. Table 4 shows the end group concentrations.
- the obtained pellets were placed in a hot air dryer at 80 ° C to evaporate the adhering water, and then placed in an aluminum-coated moisture-proof bag to prevent water absorption.
- Example 23 (Invention)
- Example 21 The same procedure as in Example 21 was performed except that 50% by mass of PA9T used in Example 21 was changed to PA66. The results are shown in Table 4.
- Example 3 Using the pellets obtained in Example 3, using a single-screw extruder (Union Plastic Co., Ltd., screw diameter 40 mm, LZD28) and coat hanger die (width 400 mm, die lip interval 0.8 mm), cylinder temperature 320 Extruded into a film at ° C. By adjusting the number of rotations of the screw and the take-up roll, the take-up was performed so that stretching was applied in a uniaxial direction, and the thickness was adjusted to 100 m. The film obtained at this time was evaluated for tear resistance and film thickness uniformity.
- a single-screw extruder Union Plastic Co., Ltd., screw diameter 40 mm, LZD28
- coat hanger die width 400 mm, die lip interval 0.8 mm
- the temperature of the heater was adjusted so that the surface temperature of the obtained film was 320 ° C, and vacuum forming into a cup-shaped molded body was performed.
- the cup has a shape with an opening diameter of 3 cm, a bottom diameter of 2 cm, and a depth of 2 cm. As a result, a vacuum formed body having excellent thickness uniformity was obtained.
- Example 3 the pellets obtained in Example 3 were supplied to a 30 mm ⁇ single screw extruder and extruded into a sheet having a width of 400 mm. When the thickness of the sheet was measured, it was about 2.5 mm. The drawdown property during the sheet extrusion and the production state of the die line were evaluated. The results are shown in Table 5.
- a slit of about 5mm was made at one end of the film with scissors, and it was torn by hand in the direction perpendicular to the stretching direction. At that time, tearing ease was evaluated. Those whose tearing direction changed in the direction of elongation, which was easy to tear, were evaluated as “+”, and those whose tearing direction did not change were evaluated as “ ⁇ ”.
- the thickness was measured at five force points in the direction perpendicular to the stretching direction of the obtained film, and the width of thickness variation was used as the evaluation standard. A film with less thickness variation is positioned as a better film. ⁇ Sheet extrudability>
- the degree of dripping (draw-down property) of the molten sheet-like resin between the die and the die force during sheet extrusion about 15 cm in the horizontal direction was evaluated visually according to the following criteria.
- Example 25 The procedure was the same as in Example 25 except that the pellets obtained in Example 5 were used. The results are shown in Table 5.
- Example 25 The procedure was the same as in Example 25 except that the pellets obtained in Example 6 were used. The results are shown in Table 5.
- Example 1 use 1.
- the twin-screw extruder cylinder temperature was set to 320 ° C, the screw rotation speed was 300 rpm, the discharge rate was 15 kgZh, and 50 parts by mass of PPE-2, 0 from the upstream supply port. .
- the mixture of PPE and MAH and the mixture of PA9T and talc 1 were mixed for 3 minutes at 700 rpm with a Henschel mixer.
- PA9Ts used at this time were powders with an average particle diameter of about 500 m, NZI specific power 85/15, intrinsic viscosity [7?] Of about 1.2, and the phosphorus element in polyamide 9T.
- the concentration was about 300 ppm.
- the obtained pellets were placed in a hot air dryer at 80 ° C to evaporate the adhering water, and then placed in an aluminum-coated moisture-proof bag to prevent water absorption.
- the obtained pellets were supplied to a 30 mm ⁇ single screw extruder and extruded into a sheet shape having a width of 400 mm. When the thickness of the sheet was measured, it was about 2.5 mm. The total light transmittance, haze, and surface impact strength of this sheet were evaluated. As a result, the total light transmittance was 26%, and the haze was 91%, which was sufficiently translucent. The surface impact strength was about 10J.
- Example 28 All were carried out in the same manner as in Example 28 except that 40 parts by mass of PPE-2, 10 parts by mass of SEBS-2, and 0.4 parts by mass of MAH were used.
- the total light transmittance was 27%, haze was 87%, and surface impact strength was about 28J.
- the obtained approximately 2.5 mm thick sheet was cut into a 50 ⁇ 90 mm square size, and the total light transmittance was measured using a turbidimeter NDH 2000 (manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K7361- 1: In accordance with 1996, the haze was measured in accordance with JIS K7136: 2000. The haze was calculated as a ratio (percentage) of diffuse transmittance to total light transmittance. ⁇ Surface impact strength>
- the obtained sheet was cut to a size of 50 ⁇ 90 to obtain a flat test piece.
- the surface impact strength was measured according to the surface impact strength measurement method described in Example 1.
- Example 29 (Invention) The midstream supply port and downstream supply port of the twin-screw extruder used in Example 9 were closed, and the cylinder set temperature was all set to 320 ° C. Supplying 90 mass of PA9T and 10 mass parts of KB from the upstream supply port under the conditions of screw rotation speed of 300 rpm and discharge rate of 100 kg / h, melt-kneading, extruding, cutting, and producing a conductive master batch .
- this master batch is abbreviated as MB-1.
- the PA9T used at this time was a powder with an average particle diameter of about 400 m, an NZI specific power of 85/15, an intrinsic viscosity [7?] Of 0.95, a terminal amino group concentration of 10 molZg, polyamide The concentration of phosphorus element in 9T was about 300ppm.
- the midstream supply port of the same extruder can be used, and the temperature setting is the same.
- the upstream supply port 18 parts by mass of PPE-1, 18 parts by mass of PPE-2, and 6 parts by mass of SEBS—
- the midstream supply roller was also 32 parts by mass of PA9T, 20 parts by mass of MB-1 and 0. 1 part by mass of talc-1, 100 ppm of copper iodide, and 2000 ppm of potassium iodide were supplied, extruded and cut to produce a resin composition pellet.
- PPE-1, SEBS-1, SEBS-2, and the compatibilizer mixed in a tumbler were used, and the remaining PPE-1 and PPE-2 were supplied separately.
- the PA9T, talc-1, copper iodide, and potassium iodide mixture used was a Henschel mixer mixed at 700 rpm for 3 minutes.
- MB-1 was fed to the extruder with a different feeder.
- the PA9T used here is a powder with an average particle diameter of about 500 m, an NZI specific power of 85/15, an intrinsic viscosity [7?] Of 1.2, and a terminal amino group concentration of 30 molZg, The concentration of elemental phosphorus in polyamide 9 T was about 300 ppm.
- the obtained pellets were placed in a hot air dryer at 80 ° C to evaporate the adhering water, and then placed in an aluminum-coated moisture-proof bag to prevent water absorption.
- the appearance of the strand was evaluated according to the following criteria.
- the middle-stream supply port of the twin-screw extruder used in Example 29 can be used, 90 mass PA9T is fed from the upstream feed port, and 10 mass parts KB is fed from the middle-stream feed port, melt-kneaded, extruded, It cut
- this master batch is abbreviated as MB-2. Except for the production of the masterbatch, everything was done as in Example 29.
- a resin composition pellet was prepared in the same manner as in Example 29 except that MB-2 was used, and the same evaluation was performed. The results are shown in Table 6.
- Example 30 Using the twin-screw extruder used in Example 30, 50 mass PA9T from the upstream supply port, 40 mass PA9T from the midstream supply port, and 10 mass KB from the different supply devices were melted. It knead
- this master batch is abbreviated as MB-3. Everything else related to the production of the masterbatch was carried out as in Example 29.
- a resin composition pellet was prepared in the same manner as in Example 29 except that MB-2 was used, and the same evaluation was performed. The results are shown in Table 6.
- a master batch was prepared in the same manner as in Example 31 except that the talc 1 produced in Example 13 was used as PA9T and the premixed material melt-kneaded in PA9T was used.
- This master batch is abbreviated as MB-4.
- the PA9T used at this time was a powder with an average particle diameter of about 400 m, an NZI specific power of 85/15, an intrinsic viscosity [7?] Of 0.95, a terminal amino group concentration of 10 molZg, polyamide The concentration of phosphorus element in 9T was about 300ppm.
- the extruder used in Example 30 18 parts PPE-1, 18 parts PPE-2, 6 parts SEBS-1, 4 parts SEBS-2, and 0 from the upstream feed port
- 1 part by mass of PPE-1, SEBS-1, SEBS2, and compatibilizer mixed in a tumbler were used, and the remaining PPE-1 and PPE-2 were each using a separate feeder. Feeded to the extruder.
- the PA9T, copper iodide, and potassium iodide mixture used was a Henschel mixer mixed at 700 rpm for 3 minutes.
- MB-4 was fed to the extruder with a different feeder.
- the PA9T used here is a powder with an average particle diameter of about 500 m, an NZI specific power of 85/15, an intrinsic viscosity [7?] Of 1.2, and a terminal amino group concentration of 30 molZg, The concentration of elemental phosphorus in polyamide 9 T was about 300 ppm.
- the present invention The present invention
- the present invention The present invention
- the present invention The present invention
- the present invention it is possible to provide a resin composition having excellent heat resistance, impact strength, low water absorption, fluidity, and low linear expansion, high weld strength, and greatly improved cracking during pin press-fitting.
- the resin composition of the present invention can be used in a wide range of fields such as electric / electronic parts, OA parts, vehicle parts, and machine parts. In particular, it is extremely useful for automobile outer panels (such as automobile fenders) and SMT compatible parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本発明の、末端アミノ基濃度が5μモル/g以上、45μモル/g以下の芳香族ポリアミド、ポリフェニレンエーテル、ポリアミドとポリフェニレンエーテルの相溶化剤及び結晶造核剤を含む樹脂組成物を用いることにより、自動車外板(自動車フェンダーなど)や、SMT対応部品等に極めて有用な組成物を得ることができる。
Description
明 細 書
耐熱性樹脂組成物
技術分野
[0001] 本発明は、耐熱性 ·衝撃強度 ·低吸水性 ·流動性 ·低線膨張性に優れる榭脂組成 物に関する。また本発明は、耐熱性'衝撃強度'低吸水性'流動性に優れ、真空成形 性にも優れるシートにも関する。
本発明により得られる榭脂組成物及びシートは、電気 ·電子部品、 OA部品、車両 部品、機械部品などの幅広い分野に有利に使用することができる。特に、低線膨張と 低吸水性を活かし、自動車の外装材に好ましく使用することができる。更に、本発明 の榭脂組成物は、鉛フリーはんだ対応リフロー炉に耐えうる耐熱性を有し、 SMTコネ クタ一等に要求されるピン圧入時の割れの原因となるゥヱルド強度にも優れるため、
SMT対応部品にも好ましく用いることができる。
背景技術
[0002] ポリアミド ポリフエ-レンエーテルァロイは、従来より、自動車外装材料や自動車 エンジンルーム内のジャンクションブロック等、多種多様な用途に使用されている。 このポリアミド ポリフエ-レンエーテルァロイに用いられるポリアミドとしては、主とし てポリアミド 6, 6やポリアミド 6といった比較的低耐熱のポリアミドが用いられてきてい た。
し力しながら、これら低耐熱のポリアミドを用いたポリアミド一ポリフエ-レンエーテル 榭脂組成物は、吸水や熱による寸法変化が大きぐ例えば、フェンダー等の外装材と して用いる際に、ドアとの隙間を維持するため、フェンダー取り付けの方法を工夫しな ければならないなど、種々の制限があった。
また、環境規制を発端として、 SMT (表面実装技術)に使用されるハンダが、鉛を 含まないハンダへと急速に移行しており、そのため表面実装時に使用するリフロー装 置の炉内温度がより高温になってきている。
これにより、従来のポリアミド 6, 6等を用いたポリアミド ポリフエ-レンエーテル材 料力もなるコネクターでは、実装時の膨れ等の発生と 、つた問題が顕在化してきてお
り、改善が求められていた。
これら吸水性に起因する種々の課題を解決するために、例えば、特開 2000— 212 433号公報、特開 2000— 212434号公報及び特開 2004— 083792号公報には、 ポリアミド一ポリフエ-レンエーテルとして用いるポリアミド材料として、特定の芳香族 ポリアミドを使用する技術が開示されている。
また、米国公開公報 2005— 0038159号、同 2005— 0038171号、同 2005— 00 38191号及び同 2005— 0038203号には、末端アミノ基濃度を特定量以上とした芳 香族ポリアミドを使用する技術が開示されている。
し力しながら、これらの技術では、充分な流動性と耐衝撃性のバランスを維持するこ とは困難であり、また、 SMT対応コネクタ一等に要求されるピン圧入強度に直接影 響を及ぼすウエルド強度も充分でないといった問題点があり、更なる改善が求められ ていた。
特許文献 1 :特開 2000— 212433号公報
特許文献 2:特開 2000— 212434号公報
特許文献 3 :特開 2004— 083792号公報
特許文献 4:米国公開公報 2005— 0038159号
特許文献 5 :米国公開公報 2005— 0038171号
特許文献 6 :米国公開公報 2005— 0038191号
特許文献 7:米国公開公報 2005— 0038203号
発明の開示
発明が解決しょうとする課題
本発明の課題は、耐熱性'衝撃強度'低吸水性 '流動性'低線膨張性に優れ、ゥェ ルド強度が高くピン圧入時の割れが大幅に改善された榭脂組成物を提供することに ある。
本発明の他の 1つの目的は、上記の特性を兼ね備えたフィルムを提供することにあ る。
本発明の更に他の 1つの目的は、上記の特性を保持した導電性榭脂組成物を製 造するにあたり、加工時の榭脂温度を大幅に低下させることが可能な製造方法を提
供することにある。
課題を解決するための手段
本発明者は、前記課題を解決するため検討を行った結果、驚くべきことに、特定の 芳香族ポリアミド、ポリフエ-レンエーテル、ポリアミドとポリフエ-レンエーテルの相溶 ィ匕剤及び結晶造核剤を含む榭脂組成物を用いることにより、上述した困難な課題を 解決できることを見出し、本発明に到達した。
本発明は以下の通りである。
(1) テレフタル酸単位を 60〜 100モル0 /0含有するジカルボン酸単位(a)と、 1, 9 ノナメチレンジァミン単位 (b— l)及び Z又は 2—メチルー 1, 8—オタタメチレンジアミ ン単位 (b— 2)を 60〜: LOOモル%含有するジァミン単位 (b)と力もなる芳香族ポリアミ ド、ポリフエ-レンエーテル、ポリアミドとポリフエ-レンエーテルの相溶化剤、及び結 晶造核剤を含む榭脂組成物であって、該芳香族ポリアミドの末端アミノ基濃度が 5 μ モル Zg以上、 45 モル Zg以下である、上記榭脂組成物。
(2) 前記結晶造核剤の量が芳香族ポリアミドとポリフエ-レンエーテルの合計 100 質量部に対して 0. 01〜1質量部である、(1)に記載の榭脂組成物。
(3) 前記芳香族ポリアミドの末端アミノ基濃度が 10 モル Zg以上、 35 μモル Zg 以下である、(1)に記載の榭脂組成物。
(4) 前記芳香族ポリアミドのジァミン単位中において、 1, 9 ノナメチレンジァミン単 位 (b— 1)と 2—メチルー 1 , 8—オタタメチレンジァミン単位 (b 2)の合計量に対す る 1, 9 ノナメチレンジァミン単位 (b— l)の比率が 75〜90質量0 /0である、(1)に記 載の榭脂組成物。
(5) 前記芳香族ポリアミドが平均粒子径 200〜 1000 μ mの粉体状である、 (1)に 記載の榭脂組成物。
(6) 前記芳香族ポリアミドとポリフエ-レンエーテルの相溶化剤の量力 前記芳香族 ポリアミドと前記ポリフエ-レンエーテルの合計 100質量部に対して 0. 05〜5質量部 である、(1)に記載の榭脂組成物。
(7) 前記芳香族ポリアミドとポリフエ-レンエーテルの相溶化剤がマレイン酸又はそ の無水物である、(1)に記載の榭脂組成物。
(8) 前記芳香族ポリアミドと前記ポリフ -レンエーテルの合計量に対して、前記芳 香族ポリアミドの比率力 0〜80質量0 /0、前記ポリフエ-レンエーテルの比率が 20〜 60質量%である、(1)に記載の榭脂組成物。
(9) 更に、導電性付与材を、榭脂組成物の全質量に対して 0. 1〜10質量%の量 で含む、(1)に記載の榭脂組成物。
(10) 前記導電性付与材として、導電性カーボンブラックを、前記芳香族ポリアミドと 前記ポリフエ-レンエーテルの合計 100質量部に対して 0. 5〜5質量部含む、(9)に 記載の榭脂組成物。
(11) 更に、強化無機フィラーを含む、(1)に記載の榭脂組成物。
(12) 前記強化無機フィラーがエポキシィ匕合物で集束されたガラス繊維である、 (11 )に記載の榭脂組成物。
(13) 前記強化無機フィラーの量が、榭脂組成物の全質量に対して 10〜60質量% である、(11)に記載の榭脂組成物。
(14) 脂肪族ポリアミドを、前記芳香族ポリアミド 100質量部に対して 100質量部以 下の量で含む、(1)に記載の榭脂組成物。
(15) 前記脂肪族ポリアミドが、炭素数 4〜8の脂肪族ジァミンと炭素数 4〜8の脂肪 族ジカルボン酸力 なる脂肪族ポリアミド、炭素数 6〜8のラタタム類力 なる脂肪族 ポリアミド、及びアミノカルボン酸力もなる脂肪族ポリアミドからなる群力 選ばれる 1種 以上である、(14)に記載の榭脂組成物。
(16) 前記脂肪族ポリアミドの末端アミノ基濃度が、前記芳香族ポリアミドの末端アミ ノ基濃度より大きい、(15)に記載の榭脂組成物。
( 17) 芳香族ビニル化合物を主体とする重合体ブロックと共役ジェン化合物を主体 とする重合体ブロックとを含むブロック共重合体であって、ここで、該ブロック共重合 体中の、芳香族ビニル化合物を主体とする重合体ブロックのうちの一つのブロックの 分子量が 15, 000-50, 000の範囲内である上記ブロック共重合体である衝撃改良 材を、前記ポリフエ-レンエーテル 100質量部に対して 10〜70質量部の量で、更に 含む、(1)に記載の榭脂組成物。
(18) (1)の榭脂組成物を含む SMT対応部品。
(19) テレフタル酸単位を 60〜 100モル0 /0含有するジカルボン酸単位(a)と、 1, 9 ノナメチレンジァミン単位 (b— l)及び Z又は 2—メチルー 1, 8—オタタメチレンジ ァミン単位 (b— 2)を 60〜: LOOモル%含有するジァミン単位 (b)と力もなる芳香族ポリ アミド 80〜40質量部、ポリフエ-レンエーテル 20〜60質量部、及びポリアミドとポリフ ェ-レンエーテルの相溶化剤 0. 05〜5質量部を含む榭脂組成物であって、該芳香 族ポリアミドの末端アミノ基濃度が 5 モル Zg以上、 45 モル Zg以下である、上記 榭脂組成物を含む、厚みが 1〜200 μ mのフィルム。
(20) テレフタル酸単位を 60〜 100モル0 /0含有するジカルボン酸単位(a)と、 1, 9 ノナメチレンジァミン単位 (b l)及び Z又は 2—メチルー 1, 8—オタタメチレンジ ァミン単位 (b— 2)を 60〜: L00モル%含有するジァミン単位 (b)と力もなる芳香族ポリ アミド 80〜40質量部、ポリフエ-レンエーテル 20〜60質量部、及びポリアミドとポリフ ェ-レンエーテルの相溶化剤 0. 05〜5質量部を含む榭脂組成物であって、該芳香 族ポリアミドの末端アミノ基濃度が 5 μモル Zg以上、 45 μモル Zg以下であり、該ポ リフエ-レンエーテルが分散相であり、該芳香族ポリアミドが連続相であるモルフォロ ジーを有し、全光線透過率 (JIS K7361— 1)が 10%以上であって、かつヘーズ (JI S K7136)が 95%以下である、上記榭脂組成物を含むことを特徴とする半透明性 成形体。
(21) テレフタル酸単位を 60〜 100モル0 /0含有するジカルボン酸単位(a)と、 1, 9 ノナメチレンジァミン単位 (b l)及び Z又は 2—メチルー 1, 8—オタタメチレンジ ァミン単位 (b— 2)を 60〜: L00モル%含有するジァミン単位 (b)と力もなる芳香族ポリ アミド、ポリフエ-レンエーテル、ポリアミドとポリフエ-レンエーテルの相溶化剤、及び 導電性付与材を含む榭脂組成物の製造方法であって、以下の工程をその順に経る ことを特徴とする上記方法:
1) 該芳香族ポリアミドの一部と該導電性付与材を溶融することなく両者の混合物を 作成し、該混合物を、溶融した残余の芳香族ポリアミドに供給し、溶融混練して、芳 香族ポリアミドと導電性付与材のマスターペレットを製造する工程、
2) 該マスターペレットを、該ポリフエ-レンエーテルと、該ポリアミドとポリフエ-レン エーテルの相溶化剤との溶融混合物と溶融混練して溶融混合物ペレットを得る工程
、及び
3) 該溶融混合物ペレットの水分を除去する工程。
発明の効果
[0005] 本発明によれば耐熱性 ·衝撃強度 ·低吸水性 ·流動性 ·低線膨張性に優れ、ゥエル ド強度が高くピン圧入時の割れが大幅に改善された榭脂組成物を提供することがで きる。
本発明の上記及びその他の諸目的、諸特徴並びに諸利益は、以下の発明の詳細 な説明及び請求の範囲の記載から明らかになる。
発明を実施するための最良の形態
[0006] 本発明の榭脂組成物、フィルム、及び導電性榭脂組成物を構成する各成分にっ 、 て以下に詳しく述べる。
本発明において必須成分として使用されるポリアミドは、ジカルボン酸単位 (a)とジ ァミン単位 (b)力も構成される芳香族ポリアミドである。
芳香族ポリアミドを構成するジカルボン酸単位 (a)は、テレフタル酸単位を 60〜: LO 0モル0 /0含有する。ジカルボン酸単位(a)中におけるテレフタル酸単位の含有率は、 75〜 100モル0 /0の範囲内であることが好ましぐ 90〜100モル%の範囲内でぁること 力 り好ましぐ実質的にすべてのジカルボン酸単位がテレフタル酸単位であることが 最も好ま U、。実質的にすべてのジカルボン酸単位をテレフタル酸単位とすることに より、ポリアミド一ポリフエ-レンエーテル組成物の線膨張係数を大幅に低減すること が可能となる。
上述したように、ジカルボン酸単位(a)は、テレフタル酸単位以外の他のジカルボン 酸単位を、 40モル%以下であれば、含んでいてもよい。この場合の、他のジカルボン 酸単位としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、 2 —メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、 2, 2 ジメチルダルタル酸、 3 , 3—ジェチルコハク酸、ァゼライン酸、セバシン酸、スベリン酸等の脂肪族ジカルボ ン酸; 1, 3 シクロペンタンジカルボン酸、 1, 4ーシクロへキサンジカルボン酸等の脂 環式ジカルボン酸;イソフタル酸、 2, 6 ナフタレンジカルボン酸、 2, 7 ナフタレン ジカルボン酸、 1, 4 ナフタレンジカルボン酸、 1, 4 フエ-レンジォキシジ酢酸、 1
, 3—フエ-レンジォキシジ酢酸、ジフェン酸、ジフエ-ルメタン一 4, 4,一ジカルボン 酸、ジフエ-ルスルホン— 4, 4,ージカルボン酸、 4, 4,ービフエ-ルジカルボン酸等 の芳香族ジカルボン酸力も誘導される単位を挙げることができ、これらのうちの 1種又 は 2種以上を使用することができる。これらのなかでも芳香族ジカルボン酸力も誘導さ れる単位が好ましい。さらに、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カル ボン酸から誘導される単位を、溶融成形が可能な範囲内で含んで 、てもよ 、。
ジカルボン酸単位(a)におけるこれらの他のジカルボン酸単位の含有率は、 25モ ル%以下であることがより好ましぐ 10モル%以下であることが更に好ましぐ実質的 に含まな!/、ことが最も好ま 、。
本発明の芳香族ポリアミドを構成するジァミン単位 (b)は、 1, 9 ノナメチレンジアミ ン単位 (b 1)及び 2—メチルー 1 , 8—オタタメチレンジァミン単位 (b— 2)を合計量 として 60〜100モル0 /0含有している。
ジァミン単位 (b)中における、 1, 9 ノナメチレンジァミン単位 (b— 1)及び 2—メチ ルー 1, 8—オタタメチレンジァミン単位(b— 2)の含有率は、 75〜100モル%でぁる ことがより好ましぐ 90〜: LOOモル%であることが更に好ましぐ実質的にすべてのジ ァミン単位が、 1, 9 ノナメチレンジァミン単位 (b— 1)及び 2—メチル 1, 8—オタ タメチレンジァミン単位 (b— 2)力も構成されていることが、最も好ましい。実質的にす ベてのジァミン単位を、 1, 9 ノナメチレンジァミン単位(b— l)及び 2—メチルー 1, 8—オタタメチレンジァミン単位 (b— 2)で構成させることにより、リフロー炉の加熱時 の発泡現象を大幅に抑制できるようになる。
本発明においては、芳香族ポリアミド中のジァミン単位 (b)は、 1, 9 ノナメチレン ジァミン単位及び 2—メチルー 1, 8—オタタメチレンジァミン単位以外の他のジァミン 単位を、 40モル0 /0以下であれば、含んでいてもよい。この場合の他のジァミン単位と しては、エチレンジァミン、プロピレンジァミン、 1, 4 ブタンジァミン、 1, 6 へキサ ンジァミン、 1, 8—オタタメチレンジァミン、 1, 10 デカンジァミン、 1, 12 ドデカン ジァミン、 3—メチルー 1, 5 ペンタンジァミン、 2, 2, 4 トリメチルー 1, 6 へキサ ンジァミン、 2, 4, 4 トリメチルー 1, 6 へキサンジァミン、 5—メチルー 1, 9 ノナメ チレンジァミン等の脂肪族ジァミン;シクロへキサンジァミン、メチルシクロへキサンジ
ァミン、イソホロンジァミン等の脂環式ジァミン; ρ フエ-レンジァミン、 m—フエ-レン ジァミン、キシリレンジァミン、 4, 4'ージアミノジフエ二ノレメタン、 4, 4'ージアミノジフエ ニルスルホン、 4, 4'ージアミノジフエ-ルエーテル等の芳香族ジァミンから誘導され る単位を挙げることができ、これらのうち 1種又は 2種以上を含むことができる。ジアミ ン単位 (b)における、これらの他のジァミン単位の含有率は 25モル0 /0以下であること 力 り好ましぐ 10モル%以下であることが更に好ましぐ実質的に含まないことが最 も好ましい。
また、ジァミン単位中の、 1, 9 ノナメチレンジァミン単位(b— l)と 2—メチルー 1, 8—オタタメチレンジァミン単位 (b— 2)の合計量に対する、 1, 9 ノナメチレンジアミ ン単位 (b—l)の好ましい比率は、下限値として、 60重量%が好ましい。より好ましい 下限値は、 70重量%、更に好ましくは 75重量%、最も好ましくは 80重量%である。 下限値をより高くすることにより、耐熱性を高めるとともに、リフロー炉での加熱時の変 形を抑制することができる。上限値としては、 100重量%が好ましい。より好ましくは 9 5重量%、更に好ましくは 90質量%である。上限値をより低くすることにより、耐衝撃 性や、引っ張り伸びといった機械的特性を向上させるとともに、ウエルド強度が大幅に 向上すると 、つた効果が得られる。
本発明において最も重要なことの一つは、芳香族ポリアミドの末端アミノ基濃度であ る。末端アミノ基濃度には上限値と下限値がある。ウエルド強度の低下を抑制し、ピン 圧入強度を高めるためには、末端アミノ基濃度の下限値としては少なくとも 5 モル /gは必要である。より好ましい下限値は、 10 モル Zgであり、更に好ましくは 12 molZgであり、最も好ましくは 15 /z molZgである。流動性の極度の悪化を抑制する ためには、上限値を 45 μ mol/gとする必要がある。好ましい上限値は 40 μ mol/g であり、より好ましくは 35 μ molZgであり、最も好ましくは 30 μ molZgである。
また、芳香族ポリアミドの末端カルボキシル基濃度には特に制限はないが、下限値 としては、 20 μ molZgが好ましぐより好ましくは 30 μ molZgである。また、上限値 としては、 150 μ molZgが好ましぐより好ましくは 100 μ molZgであり、最も好まし くは、 80 mol/gである。
本発明においては、末端カルボキシル基濃度はそれ単独で、組成物の特性に影
響を及ぼすと ヽぅ関係は見 ヽ出されな ヽが、末端アミノ基濃度と末端カルボキシル基 濃度の比 (末端アミノ基濃度 Z末端カルボキシル基濃度)は、機械的特性に大きな 影響を及ぼすため、好ましい範囲が存在する。
好ましい末端アミノ基濃度と末端カルボキシル基濃度の比は、 1. 0以下である。より 好ましくは、 0. 9以下であり、更に好ましくは 0. 8以下であり、最も好ましくは 0. 7以 下である。濃度比であるので、下限は特にないが、 0. 1以上とすることにより、衝撃性 と流動性に優れる組成物を得やすくなる。
これら芳香族ポリアミドの末端基濃度の調整方法としては、公知の方法を用いること ができる。例えばポリアミド榭脂の重合時に所定の末端濃度となるように、ジアミンィ匕 合物、モノアミンィ匕合物、ジカルボン酸ィ匕合物、モノカルボン酸ィ匕合物、酸無水物、 モノイソシァネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などの末 端調整剤を添加する方法が挙げられる。
具体的には、末端アミノ基と反応する末端調整剤としては、酢酸、プロピオン酸、酪 酸、吉草酸、カプロン酸、力プリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、ノ ルミチ ン酸、ステアリン酸、ビバリン酸、イソ酪酸等の脂肪族モノカルボン酸、シクロへキサン カルボン酸等の脂環式モノカルボン酸、安息香酸、トルィル酸、 a ナフタレンカル ボン酸、 13—ナフタレンカルボン酸、メチルナフタレンカルボン酸、フエニル酢酸等の 芳香族モノカルボン酸、及びこれら力 任意に選ばれる複数の混合物などを挙げるこ とができる。これらのなかでも、反応性、封止末端の安定性、価格などの点から、酢酸 、プロピオン酸、酪酸、吉草酸、カプロン酸、力プリル酸、ラウリン酸、トリデカン酸、ミリ スチン酸、パルミチン酸、ステアリン酸、安息香酸が好ましぐ安息香酸が最も好まし い。
また、末端カルボキシル基と反応する末端調整剤としては、、例えば、メチルァミン 、ェチルァミン、プロピルァミン、ブチルァミン、へキシルァミン、ォクチルァミン、デシ ルァミン、ステアリルァミン、ジメチルァミン、ジェチルァミン、ジプロピルァミン、ジブチ ルァミン等の脂肪族モノアミン、シクロへキシルァミン、ジシクロへキシルァミン等の脂 環式モノアミン、ァ-リン、トルイジン、ジフエ-ルァミン、ナフチルァミン等の芳香族モ ノアミン及びこれらの任意の混合物などを挙げることができる。これらの中でも、反応
性、沸点、封止末端の安定性、価格などの点から、プチルァミン、へキシルァミン、ォ クチルァミン、デシルァミン、ステアリルァミン、シクロへキシルァミン、ァ-リンが好まし い。
これら、ァミノ末端基及びカルボキシル末端基の濃度は、 — NMRにより、各末 端基に対応する特性シグナルの積分値力 求めるのが精度、簡便さの点で好ましい 。具体的方法としては、特開平 7— 228775号公報に記載された方法に従うことが推 奨される。この時、測定溶媒としては、重トリフルォロ酢酸が有用である。また、 ¾- NMRの積算回数は、充分な分解能を有する機器で測定した際においても、少なくと も 300スキャンは必要である。そのほかに、特開 2003— 055549号公報に記載され ているような滴定による測定方法もあるが、混在する添加剤 *潤滑剤等影響をなくす ためには1 H— NMRによる定量がより好ましい。
モノアミン化合物やモノカルボン酸化合物で末端基を調節すると、活性末端が封止 された状態となる。例えばモノカルボン酸として安息香酸を用いると、フエニル基末端 で封止された末端基が生じる。これら封止された末端基の濃度には好ましい上限値 と下限値が存在する。下限値は、 20%であり、より好ましくは 40%であり、更に好まし くは 45%、最も好ましくは 50%である。上限値は、 85%であり、より好ましくは 80%で あり、最も好ましくは 75%である。
本発明の芳香族ポリアミドの末端封止率は、ポリアミド系榭脂に存在する末端カル ボキシル基、末端アミノ基及び末端封止剤によって封止された末端基の数をそれぞ れ測定し、下記の式(1)に従って求めることができる
末端封止率 (%) = [ ( α— ι8 ) Ζ α ] Χ 100 (1)
(式中、 αは分子鎖の末端基の総数 (これは通常、ポリアミド分子の数の 2倍に等しい )を表し、 βは封止されずに残ったカルボキシル基末端及びアミノ基末端の合計数を 表す。)
本発明における好ま 、態様の一つとして、末端アミノ基濃度の異なる 2種以上の 芳香族ポリアミドを併用することが挙げられる。具体的には、 45 /z molZgを超える末 端ァミノ基濃度を有する芳香族ポリアミドと 45 μ molZg以下の末端アミノ基濃度を有 する芳香族ポリアミドの混合が挙げられる。この場合でも、混合されたポリアミド混合
物の平均末端アミノ基濃度は、本発明の請求の範囲内である必要がある。この場合 における所望の混合比率で混合したポリアミド混合物の平均末端アミノ基濃度は、ポ リアミド混合物の末端アミノ基濃度を1 H— NMRを用いて定量することにより確認する ことができる。
本発明の芳香族ポリアミドは、濃硫酸中 30°Cの条件下で測定した固有粘度 [ 7? ]が 、 0. 6〜2. OdlZgであることが好ましぐ 0. 7〜1. 4dlZgであることがより好ましぐ 0. 7〜1. 2dlZgであることが特に好ましぐ 0. 7〜1. OdlZgの範囲内であることが 最も好ま U、。特に最も好ま 、範囲として示した範囲の固有粘度の芳香族ポリアミド を使用することにより、射出成形時の金型内流動性を大幅に高め、ガラス繊維等の 無機フィラーを配合した際における成形片の外観を向上させることが可能となる。 ここで 、う固有粘度とは一般的に極限粘度と呼ばれて 、る粘度と同意である。これ を求める具体的な方法としては、 96%濃硫酸中、 30°Cの温度条件下で、濃度の異 なるいくつかの測定溶媒の η spZcを測定し、そのそれぞれの η spZcと濃度 (c)の 関係式を導き出し、濃度をゼロに外挿する方法である。このゼロに外挿した値が固有 粘度である。
これらの詳細は、例えば、 Polymer Process Engineering (Prentice - Hall, I nc 1994)の 291ページ〜 294ページ等に記載されている。
このとき濃度の異なるいくつかの測定溶媒の個数は、少なくとも 4点とすることが精 度の観点より望ましい。このときの推奨される濃度の異なる少なくとも 4点の好ましい 粘度測定溶液の濃度は、 0. 05g/dl, 0. lg/dl, 0. 2gZdl、 0. 4gZdlの 4点であ る。
本発明の芳香族ポリアミドは、結晶性ポリアミドを製造する方法として知られている 任意の方法を用いて製造することができる。例えば、酸クロリドとジァミンを原料とする 溶液重合法又は界面重合法、ジカルボン酸とジァミンを原料とする溶融重合法、固 相重合法、溶融押出重合法などの方法により製造することができる。特に、特開平 7 228689号公報、及び特開 2000— 103847号公報に記載されている製造方法を 用!/、ることができる。
以下に、具体的な芳香族ポリアミドの製造方法の一例を示す。
まず、触媒、及び必要に応じて末端封止剤を、最初にジァミン及びジカルボン酸に 一括して添加し、ポリアミド塩を製造した後、 200〜250°Cの温度及び一定圧下で、 濃硫酸中 30°Cにおける固有粘度 [ τ? ]が 0. 10〜0. 60dlZgのプレボリマーを製造 する。次いで、これをさらに固相重合する力、あるいは溶融押出機を用いて重合を行 うことにより、容易に芳香族ポリアミドを得ることができる。ここで、プレボリマーの固有 粘度 [ r? ]が好ましくは 0. 10〜0. 60dlZgの範囲内にあると、後重合の段階におい てカルボキシル基とアミノ基のモルバランスのずれや重合速度の低下が少なぐさら に分子量分布が小さぐ成形流動性に優れた芳香族ポリアミドが得られる。重合の最 終段階を固相重合により行う場合、減圧下又は不活性ガス流通下に行うのが好ましく 、重合温度が 200〜280°Cの範囲内であれば、重合速度が大きぐ生産性に優れ、 着色やゲルィ匕を有効に押さえることができるので好まし 、。重合の最終段階を溶融 押出機により行う場合、重合温度が 370°C以下であるとポリアミドの分解がほとんどな く、劣化の無 、芳香族ポリアミドが得られるので好まし 、。
また、プレボリマーを製造した後、これを大気圧下にフラッシュして、粉末状の芳香 族ポリアミドプレボリマーを得て、これを撹拌可能な装置を用いて流動させながら減 圧下又は不活性ガス流通下にて固相重合を行う方法も挙げられる。
本発明において、芳香族ポリアミドは、粉末状であることにより予想外の効果を得る ことができる。ここでいう粉末状とは、平均粒子径が 200〜1000 /ζ πιの範囲内にある ポリアミド粉体を指す。より好ましい平均粒子径は 300〜800 /ζ πιであり、更に好まし くは 400〜700 /ζ πιである。粉体状の芳香族ポリアミドを使用することにより、押出加 ェ時の樹脂温度を大幅に低下させることができるという予想外の効果が得られる。 本発明においては、榭脂組成物中に芳香族ポリアミドの結晶造核剤を含むことが 必須である。好ましい量としては、下限値と上限値が存在する。
好ましい下限値は、芳香族ポリアミドとポリフエ-レンエーテルの合計 100質量部に 対して 0. 001質量部である。より好ましい下限値は 0. 01質量部であり、更に好まし い下限値は 0. 02質量部であり、最も好ましくは 0. 03質量部である。
また好まし 、上限値としては、芳香族ポリアミドとポリフエ-レンエーテルの合計 100 質量部に対して 5質量部であり、より好ましくは 3質量部、更に好ましくは 2質量部、最
も好ましくは 1質量部である。
好ましい結晶造核剤としては特に制限はないが、例を挙げるとタルク、シリカ、ダラ ファイト、窒化ホウ素などの無機微粒子、酸化マグネシウム、酸ィ匕アルミニウム、酸ィ匕 亜鉛などの金属酸ィ匕物、力プロラクタムニ量体などのポリアミドオリゴマーなどが挙げ られる。これらの中では、タルク、シリカ、窒化ホウ素などの無機微粒子が好ましぐ特 にタルクが好ましい。結晶造核剤にタルクを用いる際の、好ましいタルクの平均粒子 径は、 5 μ m以下である。より好ましくは 4 μ m以下、最も好ましくは 3 μ m以下である。 下限値としては、 0. 1 mである。
この結晶造核剤が存在することで、榭脂組成物の吸水率を大幅に低下させることが 可能となる。また、本発明の榭脂組成物力もなるコネクタ一等の成形片を、吸水させ、 リフロー炉中で加熱した際に起きる発泡現象も飛躍的に抑制することが可能となる。 また、理由は判らないが、リフロー炉で過熱した際に起きる成形片の変色も抑制する ことができる。
これら結晶造核剤は、ポリアミド中にあら力じめ存在させておくことで、上述した効果 をより高めるだけではなぐ耐熱性の指標である荷重たわみ温度を向上させることも 可能となり好ましい。この結晶造核剤をポリアミド中にあら力じめ存在させておくため の方法としては特に制限はなぐ短軸押出機、二軸押出機又はニーダ一等で溶融混 練する方法、芳香族ポリアミドの重合段階で添加する方法、ヘンシェル等の強制混 合機で混合した後、圧縮してマスターバッチとする方法等が挙げられる。もちろんこ れに制限されるものではない。
結晶造核剤としての効果があるか否は、示差走査熱量 (DSC)測定装置を用いて、 結晶造核剤を含む芳香族ポリアミドの結晶化ピーク温度と、結晶造核剤を含まない 芳香族ポリアミドの結晶化ピーク温度を測定することで確認することができる。具体的 には、試料を芳香族ポリアミドの融点以上の温度にいったん加熱し、溶融状態にして 、少なくとも 10分間保持した後、試料を 20°CZminの降温速度で冷却し、その冷却 プロセスで観測される発熱ピークのピークトップを測定する方法が例示できる。両者 のピークトップの温度差が 2°C以上であれば、結晶造核剤効果が認められると判断で きる。結晶造核剤効果のある結晶造核剤を、 5°C以上のピークトップの温度差の生じ
る量で配合することが、より望まれる態様である。
本発明の榭脂組成物は、榭脂組成物中に特定量のリン元素を含むことが望ましい 。その好ましい量は、榭脂組成物すベてを 100質量%としたとき、該組成物中に、リ ン元素として l〜500ppm、より好ましくはリン元素として 5〜250ppm、最も好ましく は、リン元素として 50〜200ppmである。
成形機での滞留安定性を悪化させないためにはリン元素量を lppm以上とすること が望ましぐ榭脂組成物の流動性 (ここでは MVR等の溶融流動時の流動性)の悪ィ匕 を抑制するためには、 500ppm以下とすることが望ま U 、。
本発明でのリン元素は、 1)リン酸類、亜リン酸類及び次亜リン酸類、 2)リン酸金属 塩類、亜リン酸金属塩類及び次亜リン酸金属塩類、及び 3)リン酸エステル及び亜リ ン酸エステル類等の、リン酸化合物、亜リン酸化合物、及び次亜リン酸化合物から選 ばれる 1種以上を含むリン元素含有ィ匕合物として添加されることが好ましい。
上記 1)のリン酸類、亜リン酸類及び次亜リン酸類としては、例えばリン酸、亜リン酸 、次亜リン酸、ピロ亜リン酸、二亜リン酸などを挙げることができる。
上記 2)のリン酸金属塩類、亜リン酸金属塩類及び次亜リン酸金属塩類としては、前 記 1)のリン化合物と周期律表第 1族及び第 2族の金属、マンガン、亜鉛、アルミニゥ ム、アンモニア、アルキルァミン、シクロアルキルァミン、ジァミンとの塩を挙げることが できる。上記 3)のリン酸エステル及び亜リン酸エステル類は下記一般式で表される。 リン酸エステル;(OR) nPO (OH)
3-n
亜リン酸エステル;(OR) nP (OH)
3-n
ここで、 nは 1、 2又は 3を表し、 Rはアルキル基、フエ-ル基、又はそれらの基の一部 が炭化水素基などで置換されたアルキル基を表す。 nが 2以上の場合、前記一般式 内の複数の (RO)基は同じでも異なって 、てもよ 、。
前記 Rとしては、メチル基、ェチル基、 n—プロピル基、 n—ブチル基、 t—ブチル基 、 n—へキシル基、シクロへキシル基、 n—ォクチル基、ノニル基、デシル基、ステアリ ル基、ォレイル基などの脂肪族基、フヱニル基、ビフヱ-ル基などの芳香族基、又は ヒドロキシル基、メチル基、ェチル基、プロピル基、メトキシ基、エトキシ基などの置換 基を有する芳香族基などを挙げることができる。
[0014] これらの中でも、本発明で添加できる好ましいリンィ匕合物は、リン酸金属塩類、亜リ ン酸金属塩類及び次亜リン酸金属塩類から選ばれる 1種以上である。中でも、リン酸 、亜リン酸、及び次亜リン酸から選ばれるリン化合物と、周期律表第 1族及び第 2族の 金属、マンガン、亜鉛、及びアルミニウム力 選ばれる金属との塩であることが好まし い。より好ましくは、リン酸、亜リン酸及び次亜リン酸から選ばれるリン化合物と周期律 表第 1族の金属とからなる金属塩であり、更に好ましくは亜リン酸又は次亜リン酸と周 期律表第 1族の金属とからなる金属塩であり、もっとも好ましくは次亜リン酸ナトリウム ( NaH PO )又はその水和物(NaH PO ·ηΗ Ο)である。
2 2 2 2 2
また、リン酸エステル類の中では、特にフヱニルホスホン酸が特に好ましく使用する ことができる。
これらリン元素含有ィ匕合物も、あらかじめ芳香族ポリアミド中に存在させておくことが より望ましい。あら力じめ芳香族ポリアミド中に存在させることにより、流動性と耐衝撃 性のバランスをより高めることが可能となる。これらリン元素含有ィ匕合物をあら力じめ 芳香族ポリアミド中に存在させておく方法としては、例えば芳香族ポリアミドの製造段 階でリン元素含有ィ匕合物を添加する方法、芳香族ポリアミド中にあらかじめリン元素 含有ィ匕合物を溶融混練してなるマスターペレットとして添加する方法等が挙げられる リン元素含有ィ匕合物をあらかじめ芳香族ポリアミド中に存在させる場合、芳香族ポリ アミド中におけるリン元素含有ィ匕合物の量は、リン元素含有ィ匕合物を含む芳香族ポリ アミドを 100質量%とした時、リン元素として、 l〜500ppmが好ましぐより好ましくは 30〜400ppmであり、最も好ましくは、 150〜400ppmである。
榭脂糸且成物中及び芳香族ポリアミド中におけるリン元素の定量は、例えば、測定装 置として ThermoJarrellAsh製 IRISZIPを用いて、高周波誘導結合プラズマ (ICP) 発光分析により、波長 213. 618 (nm)で行うことが可能である。
[0015] また、本発明においてはポリアミドの耐熱安定性を向上させる目的で、特開平 1—1 63262号公報に記載されているような金属系安定剤も、問題なく使用することができ る。
これら金属系安定剤の中でも、 Cul、 CuCl、酢酸銅、ステアリン酸セリウム等が挙
げられ、 Cul、酢酸銅等に代表される銅化合物がより好ましい。さらに好ましくは Cul である。
これら銅化合物の好まし 、配合量は、すべての榭脂組成物を 100質量%としたとき 、銅元素として l〜200ppm、より好ましくは l〜100ppm、さらに好ましくは l〜30pp mである。
銅元素の定量は、リン元素の定量同様に、例えば、装置は ThermoJarrellAsh製 I RISZIPを用いて、高周波誘導結合プラズマ (ICP)発光分析により行うことができる また、ヨウ化カリウム、臭化カリウム等に代表されるハロゲンィ匕アルキル金属化合物 も好適に使用することができ、銅化合物とハロゲンィ匕アルキル金属化合物を併用して 添加することが好ましい。
本発明の榭脂組成物中に、芳香族ポリアミド以外の他のポリアミドを本発明の目的 を損なわな 、範囲で添加しても、もちろん構わな 、。
ここで、添加しても構わない芳香族ポリアミド以外のポリアミドとしては、脂肪族ポリア ミドが挙げられる。具体的には、炭素数 4〜8の脂肪族ジァミンと炭素数 4〜8の脂肪 族ジカルボン酸力 なる脂肪族ポリアミド、炭素数 6〜8のラタタム類力 なる脂肪族 ポリアミド、又はアミノカルボン酸力もなる脂肪族ポリアミドから選ばれる 1種以上であ る脂肪族ポリアミドである。
より具体的には、ポリアミド、 6、ポリアミド、 6, 6、ポリアミド、 6/6, 6、ポリアミド、 11、ポジ アミド 12、ポリアミド 4, 6、ポリアミド 6, 10、ポリアミド 6, 12、ポリアミド 6,6, 6、ポリア ミド 6Z6, 12、などが挙げられ、複数のポリアミドを押出機等で共重合ィ匕した脂肪族 ポリアミド類も使用することができる。好ましい脂肪族ポリアミドは、ポリアミド 6、ポリアミ ド 6, 6、ポリアミド 4, 6、ポリアミド 11、ポリアミド 12から選ばれる 1種以上である。その 中でも最も好ましいポリアミドは、ポリアミド 6、ポリアミド 6, 6、又はこの両者の混合物 である。
これら脂肪族ポリアミドの好ましい配合量は、芳香族ポリアミド 100質量部に対して、 100質量部以下である。より好ましくは、 80質量部以下、更に好ましくは 50質量部以 下、最も好ましくは 30質量部以下である。
また、この時、脂肪族ポリアミドの末端アミノ基濃度は、芳香族ポリアミドの末端アミノ 基濃度より大きいことが望ましい。芳香族ポリアミドが混合物である場合は、これら芳 香族ポリアミドの平均末端アミノ基濃度を指す。
脂肪族ポリアミドを少量配合することにより、若干の耐熱性の低下は生じるが、機械 的特性 (衝撃強度及び引っ張り伸び)と流動性のノ ランスをより高いレベルに引き上 げることができる。
本発明においては、更に、ポリアミドに添加することが可能な他の公知の添加剤等 もポリアミド 100質量部に対して 10質量部未満の量で添加しても構わない。
次に、本発明で使用することのできるポリフエ-レンエーテルに関して詳細に述べる 本発明で使用可能なポリフエ-レンエーテルとは、下記式(1)で表される繰り返し構 造単位を有する、単独重合体及び Z又は共重合体である。
[化 1]
(式中、 Oは酸素原子、各 Rは、それぞれ独立に、水素、ハロゲン、第一級若しくは第 二級の C1〜C7アルキル基、フエ-ル基、 C1〜C7ハロアルキル基、 C1〜C7ァミノ アルキル基、 C1〜C7ヒドロカルビロキシ基、又はハロヒドロカルビ口キシ基(但し、少 なくとも 2個の炭素原子がハロゲン原子と酸素原子を隔てている)を表す。)
本発明のポリフエ-レンエーテルの具体的な例としては、例えば、ポリ(2, 6 ジメ チルー 1, 4 フエ-レンエーテル)、ポリ(2—メチルー 6 ェチルー 1, 4 フエ-レ ンエーテル)、ポリ(2—メチルー 6 フエ-ルー 1, 4 フエ-レンエーテル)、ポリ(2, 6 ジクロロ一 1, 4 フエ-レンエーテル)等が挙げられ、さらに 2, 6 ジメチルフエノ ールと他のフエノール類との共重合体 (例えば、 日本国特公昭 52— 17880号公報 に記載されているような 2, 3, 6 トリメチルフエノールとの共重合体や 2—メチルー 6 ブチルフエノールとの共重合体)のごときポリフエ-レンエーテル共重合体も挙げら れる。
これらの中でも特に好ましいポリフエ-レンエーテルとしては、ポリ(2, 6 ジメチル —1, 4 フエ二レンエーテル)、 2, 6 ジメチル一 1, 4 フエノールと 2, 3, 6 トリメ チルー 1, 4 フエノールとの共重合体、又はこれらの混合物である。
また、 2, 6 ジメチル一 1, 4 フエノールと 2, 3, 6 トリメチルー 1, 4 フエノール との共重合体を使用する場合の各単量体ユニットの比率は、ポリフエ-レンエーテル 共重合体全量を 100質量%としたときに 10〜30質量%の 2, 3, 6 トリメチルー 1, 4 フエノールを含む共重合体が好ましい。より好ましくは、 15〜25質量%であり、最 も好ましくは 20〜25質量部である。
また、 2, 6 ジメチル一 1, 4 フエノールと 2, 3, 6 トリメチルー 1, 4 フエノール との共重合体の好ま 、分子量分布 [重量平均分子量 Z数平均分子量 (MwZMn ;) ]は、 2. 5〜4. 0の範囲である。より好ましくは 2. 8〜3. 8の範囲であり、最も好まし くは、 3. 0〜3. 5の範囲である。
本発明で用いるポリフエ-レンエーテルの製造方法は公知の方法であれば特に限 定されるものではない。例えば、米国特許第 3306874号明細書、同第 3306875号 明細書、同第 3257357号明細書及び同第 3257358号明細書、特開昭 50— 5119 7号公報、特公昭 52— 17880号公報及び同 63— 152628号公報等に記載された 製造方法等が挙げられる。
本発明で使用することのできるポリフエ-レンエーテルの還元粘度( r? sp/c : 0. 5g Zdl、クロ口ホルム溶液、 30°C測定)は、 0. 15〜0. 70dlZgの範囲であることが好ま しく、さらに好ましくは 0. 20〜0. 60dlZgの範囲、より好ましくは 0. 40〜0. 55dl/
gの範囲である。
本発明にお 、ては、 2種以上の還元粘度の異なるポリフエ-レンエーテルをブレン ドしたものであっても何ら問題なく使用することができる。例えば、還元粘度 0. 45dl Zg以下のポリフエ-レンエーテルと還元粘度 0. 50dlZg以上のポリフエ-レンエー テルの混合物、還元粘度 0. 40dlZg以下の低分子量ポリフエ-レンエーテルと還元 粘度 0. 50dlZg以上のポリフエ-レンエーテルの混合物等が挙げられる力 もちろ ん、これらに限定されることはない。
また、ポリフエ-レンエーテルの安定ィ匕のために公知の各種安定剤も好適に使用 することができる。安定剤の例としては、酸化亜鉛、硫化亜鉛等の金属系安定剤、ヒ ンダードフエノール系安定剤、リン酸エステル系安定剤、ヒンダードアミン系安定剤等 の有機安定剤が挙げられる。これらの好ましい配合量は、ポリフエ-レンエーテル 10 0質量部に対して 5質量部未満である。
更に、ポリフエ-レンエーテルに添加することが可能な他の公知の添加剤等も、ポリ フエ-レンエーテル 100質量部に対して 10質量部未満の量で添カ卩しても構わない。 本発明において、芳香族ポリアミドとポリフエ-レンエーテルの好ましい質量比は、 芳香族ポリアミド 20〜90質量部、ポリフエ-レンエーテル 10〜80質量部である(こ こで、芳香族ポリアミドとポリフエ-レンエーテルの合計量が 100質量部とする)。より 好ましくは芳香族ポリアミド 30〜80質量部、ポリフエ-レンエーテル 20〜70質量部 であり、更に好ましくは、芳香族ポリアミド 40〜80質量部、ポリフエ-レンエーテル 20〜60質量部であり、最も好ましくは、芳香族ポリアミド 50〜65質量部、ポリフエ- レンエーテル 35〜50質量部である。
本発明における好ましい分散形態としては、芳香族ポリアミドが連続相を形成し、ポ リフエ-レンエーテル (PPE)が分散相を形成する分散形態が好ましい。特に透過型 電子顕微鏡で観察した際に、ポリフエ-レンエーテル粒子が平均粒子径 0. 1〜5 mの分散相として存在することが好ましい。より好ましくは、 0. 3〜3 111の範囲内で あり、最も好ましくは、 0. 5〜2 /ζ πιである。
なお、本発明における ΡΡΕ分散粒子の平均粒子径は、電子顕微鏡写真法により求 めることができ、次のように算出した。すなわち、ペレット又は成型品から切り取った超
薄切片の透過電子顕微鏡写真 (5000倍)を撮影し、分散粒子径 di、粒子数 niを求 め、 PPE分散粒子の数平均粒子径( =∑ d n Z∑ n )を算出する。
この場合、粒子形状を球形とみなせない場合には、その短径と長径を測定し、両者 の和の 1Z2を粒子径とする。平均粒子径の算出には最低 1000個の粒子径を測定 する必要がある。
本発明において使用される、ポリアミドとポリフエ-レンエーテルの相溶化剤に関し て詳述する。
本発明にお 、ては、ポリアミドとポリフエ-レンエーテルの相溶化剤は必須である。 用いることのできる相溶化剤としては、国際公開 WO01Z81473号明細書中に詳細 に記載されている。
これらの相溶化剤の中でも、マレイン酸、フマル酸、クェン酸及びこれらの混合物か ら選ばれる 1種以上が好ましく挙げることができる。特に好ましいのがマレイン酸及び Z又はその無水物である。特に相溶化剤としてマレイン酸及び Z又はその無水物を 選択することで、榭脂組成物のウエルド強度を飛躍的に向上させることが可能となると ともに、成形片表面の光沢度 (ダロス値)が向上するといつた効果が見られるようにな る。
ポリアミドとポリフエ-レンエーテルの相溶化剤の量は、芳香族ポリアミドと、ポリフエ 二レンエーテルの合計 100質量部に対して、 0. 01〜8質量部の範囲が好ましい。よ り好ましくは、 0. 05〜5質量部であり、更に好ましくは、 0. 1〜3質量部である。
榭脂組成物としての耐衝撃性を低下させないためには、相溶化剤の量は、 0. 01 以上である事が望ましぐ射出成形時の金型内流動性 (スパイラルフロー距離)の悪 化を抑制するためには、 8質量部を上回らな 、ことが望ま 、。
また、本発明の榭脂組成物においては耐衝撃性を更に向上させる目的で、ポリフエ 二レンエーテル 100質量部に対して 10〜70質量部の量の衝撃改良剤を添カ卩しても 構わない。
本発明で使用できる衝撃改良剤としては、少なくとも 1個の芳香族ビ-ルイ匕合物を 主体とする重合体ブロックと少なくとも 1個の共役ジェンィヒ合物を主体とする重合体 ブロックからなるブロック共重合体及びその水素添加物、及びエチレン aーォレフ
イン共重合体力もなる群力も選ばれる 1種以上を挙げることができる。
[0020] 本発明の芳香族ビニルイ匕合物を主体とする重合体ブロックにおける「主体とする」と は、当該ブロックにおいて、少なくとも 50質量%以上が芳香族ビニルイ匕合物であるブ ロックを指す。より好ましくは 70質量%以上、更に好ましくは 80質量%以上、最も好 ましくは 90質量%以上である。
また、共役ジェンィ匕合物を主体とする重合体ブロックにおける「主体とする」に関し ても同様で、少なくとも 50質量%以上が共役ジェンィ匕合物であるブロックを指す。より 好ましくは 70質量%以上、更に好ましくは 80質量%以上、最も好ましくは 90質量% 以上である。
この場合、例えば芳香族ビ-ルイ匕合物ブロック中にランダムに少量の共役ジェンィ匕 合物又は他の化合物が結合されているブロックの場合であっても、該ブロックの 50質 量%が芳香族ビニル化合物から形成されて!ヽれば、芳香族ビニル化合物を主体とす るブロック共重合体とみなす。また、共役ジェンィ匕合物の場合においても同様である 芳香族ビュル化合物の具体例としてはスチレン、 aーメチルスチレン、ビュルトルェ ン等が挙げられ、これら力 選ばれた 1種以上の化合物が用いられる力 中でもスチ レンが特に好ましい。
共役ジェン化合物の具体例としては、ブタジエン、イソプレン、ピペリレン、 1, 3— ペンタジェン等が挙げられる。これら力 選ばれた 1種以上の化合物が用いられるが 、中でもブタジエン、イソプレン及びこれらの組み合わせが好ましい。
ブロック共重合体の共役ジェンィ匕合物ブロック部分のミクロ構造は 1, 2—ビュル含 量、又は 1, 2—ビュル含量と 3, 4—ビュル含量の合計量力 5〜80%であることが 好ましぐさらには 10〜50%であることが好ましぐ 15〜40%であることが最も好まし い。
[0021] 本発明におけるブロック共重合体は、芳香族ビニル化合物を主体とする重合体ブ ロック [A]と共役ジェンィ匕合物を主体とする重合体ブロック [B]が、 A— B型、 A-B —A型、又は A—B—A—B型力 選ばれる結合形式を有するブロック共重合体であ ることが好ましぐこれらの混合物であっても構わない。これらの中でも A—B— A型、
A—B—A—B型、又はこれらの混合物がより好ましぐ A—B— A型が最も好ましい。 また、本発明で使用することのできる芳香族ビ-ルイ匕合物と共役ジェンィ匕合物のブ ロック共重合体は、水素添加されたブロック共重合体であることがより好ましい。水素 添加されたブロック共重合体とは、上述の芳香族ビュル化合物と共役ジェン化合物 のブロック共重合体を水素添加処理することにより、共役ジェンィ匕合物を主体とする 重合体ブロックの脂肪族二重結合を 0を超えて 100%の範囲で制御したものをいう。 該水素添加されたブロック共重合体の好ま 、水素添加率は 80%以上であり、最も 好ましくは 98%以上である。
これらブロック共重合体は水素添加されて ヽな 、ブロック共重合体と水素添加され たブロック共重合体の混合物としても問題なく使用可能である。
また、これら芳香族ビニル化合物一共役ジェン化合物のブロック共重合体は、本発 明の趣旨に反しない限り、結合形式の異なるもの、芳香族ビニル化合物種の異なる もの、共役ジェンィ匕合物種の異なるもの、 1, 2—結合ビュル含有量と 3, 4—結合ビ ニル含有量の合計量の異なるもの、芳香族ビニルイ匕合物成分含有量の異なるもの等 を混合して用いても構わな 、。
本発明に使用するブロック共重合体として、低分子量ブロック共重合体と高分子量 ブロック共重合体との混合物が好ましく使用可能である。具体的には、数平均分子量 120, 000未満の低分子量ブロック共重合体と、数平均分子量 120, 000以上の高 分子量ブロック共重合体の混合物である。より好ましくは、数平均分子量 120, 000 未満の低分子量ブロック共重合体と、数平均分子量 170, 000以上の高分子量プロ ック共重合体の混合物である。
各ブロック共重合体の数平均分子量とは、ゲルパーミエーシヨンクロマトグラフィー 測定装置 (GPC)を用いて、紫外分光検出器で測定し、標準ポリスチレンで換算した 数平均分子量を指す。この時、重合時の触媒失活による低分子量成分が検出される ことがあるが、その場合は分子量計算に低分子量成分は含めない。
また、該ブロック共重合体中の一つの芳香族ビニルイ匕合物を主体とする重合体ブ ロックの分子量が 15, 000〜50, 000の範囲内であるブロック共重合体であることが より望まし!/、。
1種類のブロック共重合体の芳香族ビニル化合物を主体とする一つの重合体ブロッ クの数平均分子量は、上述したブロック共重合体の数平均分子量を用いて、下式に より求めることができる。
Mn (a) , n= {Mn X a/ (a+b) }/N (a) (3)
上式中において、 Mn (a) , nはブロック共重合体 nの芳香族ビニル化合物を主体と する一つの重合体ブロックの数平均分子量、 Mnはブロック共重合体 nの数平均分子 量、 aはブロック共重合体 n中の芳香族ビニル化合物を主体とする重合体ブロックの 質量%、 bはブロック共重合体 n中の共役ジェンィ匕合物を主体とする重合体ブロック の質量%、及び N (a)はブロック共重合体 n中の芳香族ビニル化合物を主体とする重 合体ブロックの数を表す。
[0023] これら低分子量ブロック共重合体と高分子量ブロック共重合体の質量比 (低分子量 ブロック共重合体 Z高分子量ブロック共重合体)は 95Z5〜5Z95であり、好ましくは 90ZlO〜10Z90である。
本発明に使用するブロック共重合体としては、芳香族ビニル化合物を主体とする重 合体ブロックを 55質量%以上 90質量%未満の量で含有するブロック共重合体と、芳 香族ビニルイ匕合物を主体とする重合体ブロックを 20質量%以上 55質量%未満の量 で含有するブロック共重合体から構成される 2種類以上のブロック共重合体の混合物 でも好ましく使用可能である。
特に、ブロック共重合体として芳香族ビニル化合物を主体とする重合体ブロックを 5 5質量%以上 90質量%未満の量で含有するブロック共重合体のみを用いた場合、 高 、衝撃性を有しつつ、透明性のある榭脂組成物が得られる。
[0024] また、本発明で使用するブロック共重合体は、全部が変性されたブロック共重合体 であっても、未変性のブロック共重合体と変性されたブロック共重合体との混合物で あっても構わない。
ここでいう変性されたブロック共重合体とは、分子構造内に少なくとも 1個の炭素 炭素二重結合又は三重結合、及び少なくとも 1個のカルボン酸基、酸無水物基、アミ ノ基、水酸基、又はグリシジル基を有する、少なくとも 1種の変性ィ匕合物で変性された ブロック共重合体を指す。
ここでいう分子構造内に少なくとも 1個の炭素 炭素二重結合又は三重結合、及び 少なくとも 1個のカルボン酸基、酸無水物基、アミノ基、水酸基、又はグリシジル基を 有する少なくとも 1種の変性ィ匕合物とは、変性されたポリフエ-レンエーテルで述べた 変性ィ匕合物と同じものが使用できる。
[0025] 本発明における衝撃改良剤の配合量としては、芳香族ポリアミド及びポリフエ-レン エーテルの合計量 100質量部に対し、 50質量部未満であることが好ましぐ耐熱性 及び流動性の観点から、 1〜35質量部がより好ましぐ 3〜30質量部が最も好ましい さらに、本発明の榭脂組成物はスチレン系重合体を含んでいてもよい。本発明でい うスチレン系重合体としては、ホモポリスチレン、ゴム変性ポリスチレン(HIPS)、スチ レン—アクリロニトリル共重合体 (AS榭脂)、スチレン—ゴム質重合体—アタリ口-トリ ル共重合体 (ABS榭脂)等が挙げられる。スチレン系重合体を含むことで、本発明の 課題を達成するほかに、耐候性を向上することができる。スチレン系重合体の好まし い配合量は、ポリアミド、ポリフエ-レンエーテルの合計 100質量部に対し、 50質量 部未満である。
[0026] また、本発明の榭脂組成物においては、無機強化フィラーを添加しても構わない。
本発明において使用できる無機強化フィラーの例としては、ガラス繊維、ウォラストナ イト、タルク、カオリン、ゾノトライト、酸化チタン、チタン酸カリウム、炭酸カルシウム、酸 化亜鉛等が挙げられる。中でもガラス繊維、ウォラストナイト、タルク、クレイ、酸化チタ ン、酸ィ匕亜鉛が好ましぐより好ましくはガラス繊維、ウォラストナイト、タルク、酸化チタ ンである。より好ましい無機強化フイラ一としてはタルク、マイ力、ゥェラストナイト、ガラ ス繊維、炭素繊維、炭酸カルシウム力 選ばれる 1種以上が挙げられる。
本発明において使用することができるウォラストナイトについて詳細に説明する。 本発明で使用可能なウォラストナイトは、珪酸カルシウムを成分とする天然鉱物を精 製、粉砕及び分級したものである。また、人工的に合成したものも使用可能である。ゥ オラストナイトの大きさとしては、平均粒子径 2〜9 μ m、アスペクト比 5以上のものが好 ましぐより好ましくは平均粒子径 3〜7 /ζ πι、アスペクト比 5以上のもの、さらに好まし くは平均粒子径 3〜7 μ m、アスペクト比 8以上 30以下のものである。
次に、本発明で使用することができるタルクについて詳細に説明する。
本発明で好適に使用可能なタルクとは、珪酸マグネシウムを成分とする天然鉱物を 精製、粉砕及び分級したものである。また広角 X線回折によるタルクの(0 0 2)回 折面の結晶子径が 570A以上であることがより好ましい。
ここでいうタルクの(0 0 2)回折面は、広角 X線回折装置を用いて、タルク Mg Si
3 4
O (OH) の存在が同定され、その層間距離がタルクの(0 0 2)回折面による格子
10 2
面間隔である約 9. 39Aに一致することにより確認できる。また、タルクの(0 0 2)回 折面の結晶子径は、そのピークの半値幅から算出される。
好ましい形状としては、平均粒子径が 1 μ m以上 20 μ m以下であり、粒子径の小さ V、方力ら 25%の粒径 (d25%)と 75%の粒径 (d75%)の it (d75%/d25%)力 1. 0 以上 2. 5以下である粒径分布を有するものである。更には、(d75%Zd25%)が 1. 5以上 2. 2以下であることがより好ましい。
タルクの好ましい平均粒子径は、 1 μ m以上 16 μ m以下であり、さらに好ましくは 3 μ mより大きく 9 m未満である。
ここで ヽぅタルクの平均粒子径及び粒子径分布は、レーザー回折 Z散乱式粒度分 布測定装置を用いて測定した体積基準の粒子径である。また、タルクの分散溶媒とし てエタノールを用いて測定される値である。
本発明で好ましく使用可能な炭素繊維としては、ポリアクリロニトリル系炭素繊維、レ 一ヨン系炭素繊維、リグニン系炭素繊維、ピッチ系炭素繊維等が挙げられる。これら は単独で使用しても構わな ヽし、 2種類以上を併用しても構わなヽ。好まし ヽ繊維径 は、 5 μ m〜20 μ mであり、より好ましくは 5〜13 μ mである。アスペクト比は 10以上 であることが望ましい。
本発明で好適に使用可能なガラス繊維としては、繊維径が 5 μ m〜20 μ mのチヨッ プドストランドが、機械的特性及び取り扱い性の観点より好ましい。より好ましい繊維 径は 8 μ m〜15 μ mである。
また、これらの強化無機フィラーには、表面処理剤として、高級脂肪酸又はそのェ ステル、塩等の誘導体 (例えば、ステアリン酸、ォレイン酸、パルミチン酸、ステアリン 酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸アミ
ド、ステアリン酸ェチルエステル等)やカップリング剤(例えば、シラン系、チタネート系 、アルミニウム系、ジルコニウム系等)を必要により使用することができる。その使用量 としては強化無機フィラーを 100質量部としたとき、 0. 05〜5質量部である。より好ま しくは 0. 1〜 2質量部である。
これら、強化無機フィラーの好ましい量は、すべての榭脂組成物の量を 100質量% としたとき、 10〜60質量%である。より好ましくは 15〜50質量%であり、更に好ましく は 18〜45質量0 /0である。
これらの強化無機フィラーには、取り扱い性を高める目的で、又は樹脂との密着性 を改善する目的で、集束剤で集束されていてもよい。この際の集束材としては、ェポ キシ系、ウレタン系、ウレタン Zマレイン酸変性系、ウレタン Zアミン変性系の化合物 が好ましく使用できる。これら集束剤はもちろん併用してもよい。また、この集束剤とし て、分子構造内に複数のエポキシ基を有するエポキシ系化合物を用いたもの力 上 述の中では、特に好ましく使用可能である。エポキシ化合物の中でも、ノボラック型ェ ポキシが特に好ましい。
集束材として分子構造内に複数のエポキシ基を有するエポキシ系化合物を用いる ことにより、吸水率を低減させ、リフロー炉耐熱を向上させることが可能となる。
本発明において強化無機フイラ一は、ポリアミド又はポリフエ-レンエーテルの重合 段階から、榭脂組成物の成形段階までの任意の段階で添加することができるが、榭 脂組成物の押出工程及び成形工程 (ドライブレンドを含む)の段階で添加することが 好ましい。
具体的には、押出工程において、溶融した榭脂組成物中に強化無機フィラーを添 加し溶融混練する方法が挙げられる。また、強化無機フィラーを、あらかじめポリアミド やポリフエ-レンエーテル中に配合してなるマスターバッチの形態で添加することも 有用である。この際のマスターバッチの調製方法に制限はなぐポリアミド又はポリフ ェ-レンエーテルと溶融することなく混合し、押出機等にて溶融混練する方法、溶融 したポリアミド又はポリフエ-レンエーテル中に強化無機フィラーを添加する方法等が 好ましく使用できる。特に、強化無機フィラーが繊維状フイラ一の場合、溶融したポリ アミド又はポリフエ-レンエーテル中に添加して溶融混練する方法がより好ましい。
[0029] 本発明にお 、て、導電性付与材を更に含むことが可能である。このときの導電性付 与材の配合量は、すべての榭脂組成物を 100質量%としたとき、 0. 1〜: LO質量%で ある。より好ましくは、 0. 5〜5質量%であり、最も好ましくは、 1〜3質量%である。 この場合の好ましい導電性付与材は、導電性カーボンブラック、グラフアイト及び力 一ボンフィブリル力もなる群力も選ばれる 1種以上である。
本発明にお 、て導電性付与材として導電性カーボンブラックを用いる場合の好まし い導電性カーボンブラックは、ジブチルフタレート (DBP)吸油量が 250mlZlOOg以 上のものである。より好ましくは DBP吸油量が 300mlZlOOg以上、更に好ましくは 3 50mlZlOOg以上の導電性カーボンブラックである。ここで言う DBP吸油量とは、 A STM D2414に定められた方法で測定した値である。
また、本発明で使用できる導電性カーボンブラックは BET比表面積 (JIS K6221 - 1982)が 200m2Zg以上のものが好ましぐ更には 400m2Zg以上のものがより好 ましい。市販されているものを例示すると、ケッチェンブラックインターナショナル社よ り入手可能なケッチェンブラック ECゃケッチェンブラック EC— 600JD等が挙げられる 本発明にお 、て導電性付与材として使用できるカーボンフィブリルとしては、米国 特許 4663230号明細書、米国特許 5165909号公報、米国特許 5171560号公報 、米国特許 5578543号明細書、米国特許 5589152号明細書、米国特許 565037 0号明細書、米国特許 6235674号明細書等に記載されている繊維径が 75nm未満 で中空構造をした分岐の少ない炭素系繊維を言う。また、 1 m以下のピッチでらせ んが一周するコイル状形状のものも含まれる。巿販されているものとしては、ハイペリ オンキヤタリシスインターナショナル社から入手可能なカーボンフィブリル(BNフイブリ ノレ)を挙げることができる。
[0030] 本発明において導電性付与材として使用できるグラフアイトとしては、無煙炭、ピッ チ等をアーク炉で高温加熱して得られるものはもちろんのこと、天然に産出される石 墨も包含される。好ましい重量平均粒子径は 0. 1〜50 mであり、より好ましくは 1〜 30 μ mである。
これら導電性付与材の添加方法に関しては特に制限はないが、芳香族ポリアミドと
ポリフエ-レンエーテルの溶融混合物中に、導電性付与材を添加して溶融混練する 方法、芳香族ポリアミドに導電性付与材を予め配合してなるマスターバッチの形態で 添加する方法等が挙げられる。特に、芳香族ポリアミド中に導電性付与材を配合して なるマスターバッチの形態で添加することが好ましい。
導電性付与材がカーボンフィブリルの場合には、マスターバッチとして、ハイペリオ ンキヤタリストインターナショナル社力も入手可能なポリアミド Zカーボンフィブリルマ スターバッチを使用することができる。
これらマスターバッチ中の導電性付与材の量としては、マスターバッチを 100質量
%としたとき、導電性付与材の量が 5〜25質量%であることが望ましい。導電性付与 材として導電性カーボンブラックを使用する場合の好適なマスターバッチ中の導電性 付与材の量は、 5質量%〜15質量%であり、より好ましい量は 8質量%〜 12質量% である。また、導電性付与材として、グラフアイト又はカーボンフィブリルを使用する場 合の好適なマスターバッチ中の導電性付与材の量は、 15質量%〜25質量%であり 、より好ましくは 18質量%〜23質量%である。
導電性付与材マスターバッチに使用される榭脂としては、ポリアミド、ポリフエ-レン エーテル又は衝撃改良材カも選ばれる 1種以上を挙げることができる。特に好ましい のはポリアミドである。この際、使用するポリアミドとしては芳香族ポリアミドであることが より好ましぐその好ましい粘度は固有粘度 [ r? ]は 0. 7〜1. ldlZgの範囲内である ことが望ましい。固有粘度範囲を上述の範囲の芳香族ポリアミドとすることにより、該 マスターバッチ生産時の効率を向上(単位時間あたりの生産量の増カロ)させ、更には 該マスターバッチを用いて得られる榭脂組成物の面衝撃強度を高めることが可能と なる。
マスターバッチに供される芳香族ポリアミドは、粉末状であることにより予想外の効 果を得ることができる。ここでいう粉末状芳香族ポリアミドとは、平均粒子径が 200〜1 000 mの範囲内にあるポリアミド粉体を指す。粉体状の芳香族ポリアミドを使用する ことにより、押出加工時の榭脂温度を大幅に低下させることができるという予想外の効 果を得ることが可能となる。
これら導電性マスターバッチの製造方法としては、特に制限はないが、(1)芳香族
ポリアミドと導電性付与材を溶融することなく混合したのち、榭脂温度が芳香族ポリア ミドの融点以上となる温度で溶融混練する方法、(2)溶融した芳香族ポリアミド中に 導電性付与材を添加して溶融混練する方法、 (3)芳香族ポリアミドの一部と導電性 付与材を溶融することなく両者の混合物を作成し、該混合物を溶融した残余の芳香 族ポリアミド中に供給し、溶融混練する方法、(4)溶融した芳香族ポリアミド中に導電 性付与材を供給し溶融混練した後、更に芳香族ポリアミドを供給し溶融混練する方 法等が挙げられる。
これらの中で最も好ましい態様は、(3)芳香族ポリアミドの一部と導電性付与材を溶 融することなく両者の混合物を作成し、該混合物を溶融した残余の芳香族ポリアミド 中に供給し、溶融混練する方法である。
この好ましい製造方法を採ることにより、導電製マスターバッチ製造時の榭脂温度 を大幅に低下させることが可能となり、導電性榭脂組成物とした後の、モールドデポ ジット(以下、本明細書中にわたり MDと略すことがある)の抑制に非常に効果的であ る。
上述した製法を具体的例を挙げて説明する。
(1)上流部に 1箇所の供給口を有する二軸押出機を使用して、上流部供給口から 芳香族ポリアミドと導電性付与材を混合した混合物を供給し、芳香族ポリアミドの融点 以上の温度で溶融混練する方法。
(2)上流部に 1箇所と下流部に 1箇所の供給口を有する二軸押出機を使用して、上 流部供給口力 芳香族ポリアミドを供給し、芳香族ポリアミドの融点以上の温度で溶 融混練した後、下流部供給口から導電性付与材を添加して更に溶融混練する製造 方法、
(3)上流部に 1箇所と下流部に 1箇所の供給口を有する二軸押出機を使用して、上 流部供給口力 芳香族ポリアミドの一部を供給し、芳香族ポリアミドの融点以上の温 度で溶融混練した後、下流部供給口力 残りのポリアミドと導電性付与材を溶融する ことなく混合した混合物を添加して更に溶融混練する製造方法、
(4)上流部に 1箇所、中流部に 1箇所、下流部に 1箇所の供給口を有する二軸押出 機を使用して、上流部供給ロカ 芳香族ポリアミドを供給し、芳香族ポリアミドの融点
以上の温度で溶融混練した後、中流部供給口力 導電性付与材を添加して更に溶 融混練し、下流部供給口力 芳香族ポリアミドを添加して更に溶融混練する方法が 挙げられる。
これらの中で特に好ましい態様は、(3)の製造方法である。
また、これらマスターバッチを製造する際の加工機械のシリンダー設定温度として 特に制限はなぐ上述のように芳香族ポリアミドの融点以上の温度であれば問題ない 力 好ましい範囲としては、 290〜350°Cの範囲であることが好ましぐより好ましくは
300〜330。Cの範囲である。
[0033] 本発明の榭脂組成物に導電性付与材を添加して導電性榭脂組成物を製造するに あたり、好ましい製造方法は、以下の工程をその順に経ることである。
(1)芳香族ポリアミドの一部と導電性付与材を溶融することなく両者の混合物を作成 し、該混合物を、溶融した残余の芳香族ポリアミドに供給し、溶融混練して、芳香族 ポリアミドと導電性付与材のマスターペレットを製造する工程
(2)上記マスターペレットを、上記ポリフエ-レンエーテルと、上記ポリアミドとポリフエ 二レンエーテルの相溶化剤との溶融混合物と溶融混練して溶融混合物ペレットを得 る工程
(3)上記溶融混合物ペレットの水分を除去する工程
上述の工程をこの順に経ることにより、導電性榭脂組成物の射出成形時の MDの 抑制とシルバーストリークス発生の抑制、及びシート押出時のダイリップ部への目や に生成の抑制効果が得られる。
この際に、芳香族ポリアミドとして粉体状の芳香族ポリアミドを使用することにより、こ れら効果がより高められることは既述のとおりである。
本発明の榭脂組成物には、難燃剤を添加しても構わない。好ましく使用可能な難 燃剤としては、リン酸エステル化合物、ホスファゼンィ匕合物、ホスフィン酸塩類等が挙 げられる。これらの中で特に好ましいのは、ホスフィン酸塩類である。
[0034] 以下に具体的に好ま 、ホスフィン酸塩にっ 、て説明する。
本発明で好適に使用可能なホスフィン酸塩は、下式 (I)及び Z又は下式 (Π)で表さ れるジホスフィン酸塩、又はこれらの縮合物(本明細書中では、すべてにわたりホスフ
イン酸塩類と略記することがある)である c
[化 2]
(式中、 R1及び R2は、同一か又は異なり、直鎖状若しくは分岐状の C〜C—アルキ
—ァリールアルキレンであり、 Mはカルシウム(イオン)、マグネシウム(イオン)、アル
0
ミニゥム (イオン)、亜鈴 (イオン)、ビスマス (イオン)、マンガン (イオン)、ナトリウム (ィ オン)、カリウム (イオン)及びプロトンィ匕された窒素塩基力も選ばれる 1種以上であり、 mは 2又は 3であり、 nは 1〜3であり、 xは 1又は 2である。 )
これらは、ヨーロッパ特許出願公開第 699708号公報ゃ特開平 08— 73720号公 報に記載されているように、ホスフィン酸と金属炭酸塩、金属水酸化物又は金属酸化 物を用いて水溶液中で製造される。
これらホスフィン酸塩類は、本質的にモノマー性ィ匕合物である力 反応条件に依存 して、環境によっては縮合度力^〜 3の縮合物であるポリマー性ホスフィン酸塩も含ま れる。
本発明で使用可能なホスフィン酸塩類は、より高い難燃性の発現、及び MD発生
の抑制の観点から、下式 (I)で表されるホスフィン酸塩を 90質量%以上、さらに好ま しくは 95質量%以上、最も好ましくは 98質量%以上含んで 、ることが好まし 、。
[化 3]
(式中、 R1及び R2は、同一か又は異なり、直鎖状若しくは分岐状の C〜C—アルキ
1 6 ル及び Z又はァリール若しくはフエ-ルであり、 Mはカルシウム(イオン)、マグネシゥ ム(ィ才ン)、アルミニウム(イオン)、亜鈴 (イオン)、ビスマス (イオン)、マンガン (ィォ ン)、ナトリウム (イオン)、カリウム (イオン)及びプロトンィ匕された窒素塩基力も選ばれ る 1種以上であり、 mは 2又は 3である。 )
本発明において、好ましく使用可能なホスフィン酸の具体例としては、ジメチルホス フィン酸、ェチルメチルホスフィン酸、ジェチルホスフィン酸、メチルー n—プロピルホ スフイン酸、メタンジ(メチルホスフィン酸)、ベンゼン一 1, 4— (ジメチルホスフィン酸) 、メチルフエ-ルホスフィン酸、ジフヱ-ルホスフィン酸及びこれらの混合物等が挙げ られる。
また好ましく使用可能な金属成分としてはカルシウムイオン、マグネシウムイオン、 ァノレミニゥムィ才ン、亜 |ィ才ン、ビスマスィ才ン、マンガンィ才ン、ナトリウムィ才ン、 カリウムイオン及び Z又はプロトンィ匕された窒素塩基力 選ばれる 1種以上であり、よ り好ましくは、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオン 力 選ばれる 1種以上である。
ホスフィン酸塩類の好ましく使用可能な具体例としては、ジメチルホスフィン酸カル シゥム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチ ルホスフィン酸亜鉛、ェチルメチルホスフィン酸カルシウム、ェチルメチルホスフィン 酸マグネシウム、ェチルメチルホスフィン酸アルミニウム、ェチルメチルホスフィン酸亜
鉛、ジェチルホスフィン酸カルシウム、ジェチルホスフィン酸マグネシウム、ジェチル ホスフィン酸アルミニウム、ジェチルホスフィン酸亜鉛、メチル—n—プロピルホスフィ ン酸カルシウム、メチルー n—プロピルホスフィン酸マグネシウム、メチルー n—プロピ ルホスフィン酸アルミニウム、メチルー n プロピルホスフィン酸亜鉛、メタンジ(メチル ホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチル ホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン 1, 4 (ジ メチルホスフィン酸)カルシウム、ベンゼン 1, 4 (ジメチルホスフィン酸)マグネシゥ ム、ベンゼン一 1, 4— (ジメチルホスフィン酸)アルミニウム、ベンゼン一 1, 4— (ジメ チルホスフィン酸)亜鉛、メチルフエ-ルホスフィン酸カルシウム、メチルフエ-ルホス フィン酸マグネシウム、メチルフエ-ルホスフィン酸アルミニウム、メチルフエ-ルホス フィン酸亜鉛、ジフエ-ルホスフィン酸カルシウム、ジフエ-ルホスフィン酸マグネシゥ ム、ジフエ-ルホスフィン酸アルミニウム、ジフエ-ルホスフィン酸亜鉛が挙げられる。 特に高い難燃性の発現、 MD抑制の観点力ゝらジメチルホスフィン酸カルシウム、ジメ チルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、ェチルメチルホスフィン酸 カルシウム、ェチルメチルホスフィン酸アルミニウム、ェチルメチルホスフィン酸亜鉛、 ジェチルホスフィン酸カルシウム、ジェチルホスフィン酸アルミニウム、ジェチルホスフ イン酸亜鉛が好ましい。
本発明において、好ましいホスフィン酸塩類の量は、芳香族ポリアミド及びポリフエ 二レンエーテルの合計 100質量部に対し、 1〜50質量部であり、さらに好ましくは、 2 〜25質量部、特に好ましくは 2〜 15質量部、最も好ましくは 3〜: L0質量部である。充 分な難燃性を発現させるためにはホスフィン酸塩類の量は 1質量部以上が好ましぐ 押出加工に適した溶融粘度にするにはホスフィン酸塩類の量は 50質量部以下が好 ましい。
また、本発明の難燃性榭脂組成物を成形して得られる成形品の機械的強度、成形 品外観を考慮し、好ましいホスフィン酸塩類の平均粒子径の下限値は 0. 1 μ mであ り、より好ましい下限値は 0. 5 mである。好ましいホスフィン酸塩類の数平均粒子径 の上限値は 40 μ mであり、より好ましい上限値は 20 μ mであり、最も好ましい上限値 は 10 /z mである。
ホスフィン酸塩類の数平均粒子径を 0. 1 μ m以上とすると、溶融混練等の加工時 において、取扱い性や押出し機等への嚙み込み性が向上し好ましい。また、平均粒 子径を 40 m以下とすることにより、榭脂組成物の機械的強度が発現し易くなり、か つ成形品の表面良外観が向上する。
これらホスフィン酸塩類の平均粒子径は、レーザー回折式粒度分布計 (例えば、 日 本国、島津製作所社製、商品名: SALD— 2000)を用い、水中にホスフィン酸塩類 を分散させ測定解析することができる。超音波拡散機及び Z又は攪拌機を備えた攪 拌槽に水及びホスフィン酸塩類を加える方法により、水中にホスフィン酸塩類を分散 させた分散駅をポンプを介して測定セルへ送液し、レーザー回折により粒子径を測 定する。測定によって得られる粒子径と粒子数の頻度分布から、数平均粒子径を計 算することができる。
また、本発明におけるホスフィン酸塩類は、本発明の効果を損なわなければ、未反 応物又は副生成物が残存して 、ても構わな 、。
本発明で使用可能なホスフィン酸塩類は、あらかじめ芳香族ポリアミドを混合した難 燃剤マスターバッチの形態で添加しても構わな、。難燃剤マスターバッチ中の好まし いホスフィン酸塩類の割合は、難燃剤マスターバッチを 100質量%としたとき、 10〜6 0質量部である。より好ましくは 20質量%〜50質量%である。この難燃剤のマスター バッチの製造方法については、特に制限はないが、具体例を挙げると、(1)芳香族 ポリアミドとホスフィン酸塩類を溶融することなくあらかじめ混合した混合物を溶融混 練する方法、(2)ホスフィン酸塩類を溶融した芳香族ポリアミド中に添加して、更に溶 融混練する方法等が挙げられる。後者の方法が難燃剤の分散性が向上するため望 ましい。
本発明の榭脂組成物は、構成する成分を適宜、選択することにより透明性を有する 榭脂組成物とすることが可能である。
具体的には、末端アミノ基濃度が 5 μモル Zg以上、 45 μモル Zg以下の芳香族ポ リアミド 80〜40質量部、ポリフエ-レンエーテル 20〜60質量部、ポリアミドとポリフエ 二レンエーテルの相溶化剤 0. 05〜5質量部を含む榭脂組成物であって、ポリフエ- レンエーテルが分散相、芳香族ポリアミドが連続相であるモルフォロジ一を有する榭
脂組成物である。
このときの透明性の指標は、全光線透過率 (JIS K7361— 1)が 10%以上であつ て、かつヘーズ (JIS K7136)が 95%以下であるものである。
本発明の透明性を有する成形体としては、射出成形体、シート、フィルムが挙げら れる。
成形体の全光線透過率 (JIS K7361— 1)は、 15%以上であることが好ましぐより 好ましくは、 20%以上である。全光線透過率は、成形体の厚みにより変化するもので あるが、ここでの全光線透過率は、射出成形体やシートにおける厚みが 2. 5mmの 部分の全光線透過率で表す。
本発明の透明性を有する成形体のヘーズ値 (JIS K7136)の好ましい範囲は、 92 %以下であり、より好ましくは 90%以下、さらに好ましくは 85%以下、特に好ましくは 80%以下である。
この場合においても、ヘーズ値は特に、射出成形体やシートにおける厚みが 2. 5m mの部分での測定結果である。
なお、本発明における全光線透過率の測定は、 JIS K7361— 1 : 1996〖こ準拠し、 ヘーズの測定は、 JIS K7136 : 2000〖こ準拠した。また一般に、ヘーズは、全光線 透過率に対する拡散透過率の比として定義される。
本発明の透明性を有する成形体には、衝撃改良材の添カ卩は行わないか、透明性 に影響を与えな 、程度のごく少量とするか、又は一定量以上の添加の必要があるの であれば衝撃改良材の種類を選択して添加する必要がある。具体的な、衝撃改良材 としては、榭脂組成物の衝撃改良材の説明で記載したものは使用可能である力 多 量に加えると著しく透明性を損なう可能性がある。
一定量以上の添加の必要がある場合の好ましい衝撃改良材としては、少なくとも 1 個の芳香族ビ-ルイ匕合物を主体とする重合体ブロックと、少なくとも 1個の共役ジェン 化合物を主体とする重合体ブロック力 なるブロック共重合体であって、芳香族ビ- ル化合物を主体とする重合体ブロックを 55質量%以上 90質量%未満の量で含有す るブロック共重合体又はその水素添加物が挙げられる。ここで例示したブロック共重 合体又はその水素添加物であれば、多量に添加した場合でも透明性を損なわずに
耐衝撃性を付与することが可能となる。
[0040] また、本発明の透明性を有する成形体を構成する榭脂組成物には、透明性を損な わな 、範囲であれば、本発明の榭脂組成物にカ卩えてよ 、として 、るものはすべて添 加可能である。
本発明の榭脂組成物、フィルム又は透明性を有する成形体では、上記した成分の 他に、本発明の効果を損なわない範囲で必要に応じて付加的成分を添加しても構わ ない。
付加的成分の例を以下に挙げる。
難燃剤 (ハロゲン化された榭脂、シリコーン系難燃剤、水酸化マグネシウム、水酸ィ匕 アルミニウム、ポリ燐酸アンモ-ゥム、赤燐など)、滴下防止効果を示すフッ素系ポリ マー、流動性改良材 (オイル、低分子量ポリオレフイン、ポリエチレングリコール、脂肪 酸エステル類等)、及び三酸化アンチモン等の難燃助剤、帯電防止剤、各種過酸ィ匕 物、酸化防止剤、紫外線吸収剤、光安定剤、染料、顔料、添着剤、等である。これら 付カ卩的成分のそれぞれの配合量は、ポリアミドとポリフエ-レンエーテルの合計 100 質量部に対して、 20質量部を超えない範囲であり、合計量としては 50質量部を超え ない範囲である。
本発明の榭脂組成物を得るための具体的な加工機械としては、例えば、単軸押出 機、二軸押出機、ロール、ニーダー、ブラベンダープラストグラフ、バンバリ一ミキサー 等が挙げられる。中でも二軸押出機が好ましぐ特に、上流部供給口と 1力所以上の 下流部供給口を備えたスクリュー直径 25mm以上で LZDが 30以上の二軸押出機 が好ましぐスクリュー直径 45mm以上で LZDが 30以上の二軸押出機が最も好まし い。スクリュー直径の上限としては、榭脂温度の上昇を抑制する観点より 120mm以 下であることが望ましい。
この際の加工機械のシリンダー設定温度は特に限定されるものではなぐ通常 240 〜360°Cの中力 好適な組成物が得られる条件を任意に選ぶことができる力 好まし V、設定温度は 300〜350°Cの範囲である。
[0041] 本発明の榭脂組成物を用いて成形品を製造するに当たっては、目的とする成形品 の種類、用途、形状などに応じて、一般に用いられている種々の成形方法や成形装
置が使用できる。何ら限定されるものではないが、本発明の熱可塑性榭脂組成物を 用いて、例えば、射出成形、押出成形、プレス成形、ブロー成形、カレンダー成形、 流延成形などの任意の成形法によって成形品を製造することができ、またそれらの成 形技術の複合によっても成形を行うことができる。さらに、各種熱可塑性榭脂又はそ の組成物、熱硬化性榭脂、紙、布帛、金属、木材、セラミックスなどの各種の材料との 複合成形体とすることもできる。
本発明の榭脂組成物は、多くの優れた特性を有するため、上述したような成形プロ セスを経て、自動車部品、工業材料、産業資材、電気電子部品、機械部品、事務機 器用部品、家庭用品、シート、フィルム、繊維、その他の任意の形状及び用途の各 種成形品の製造に有効に使用することができる。
具体例としては、例えばリレーブロック材料等に代表されるオートバイ ·自動車の電 装部品、 ICトレー材料、各種ディスクプレーヤ一等のシャーシー、キャビネット、 SMT コネクタ一等の電気 ·電子部品、各種コンピューター及びその周辺機器等の OA部品 や機械部品、さらにはオートバイのカウルや、自動車のバンパー 'フェンダー 'ドア一 パネル .各種モール .エンブレム .アウタードアハンドル .ドアミラーハウジング .ホイ一 ル,キャップ ·ルーフレール及びそのスティ材 ·スポイラ一等に代表される外装品や、 インストウルメントパネル、コンソールボックス、トリム等に代表される内装部品、自動車 アンダーウード部品、自動車エンジン周り部品等に好適に使用できる。特に SMTコ ネクター等の電気 ·電子部品や、自動車外装材に好ましく適用可能である。
本発明の榭脂組成物は、フィルムとして利用可能である。なお、当業者によっては、 フィルムをその厚みによりシートと称することもある力 フィルムとシートを明確に区別 するための厚みに関する閾値はない。
具体的には、本発明は、テレフタル酸単位を 60〜: L 00モル%含有するジカルボン 酸単位 (a)と、 1, 9 ノナメチレンジァミン単位 (b— l)及び Z又は 2—メチルー 1, 8 —オタタメチレンジァミン単位 (b— 2)を 60〜: LOOモル0 /0含有するジァミン単位 (b)と 力 なる芳香族ポリアミド 80〜40質量部、ポリフエ-レンエーテル 20〜60質量部、 ポリアミドとポリフエ-レンエーテルの相溶化剤 0. 05〜5質量部を含む榭脂組成物か らなる厚みが 1〜200 μ mのフィルム又はシートを提供する。
ここでいう、芳香族ポリアミド、ポリフエ-レンエーテル、及びポリアミドとポリフエ-レ ンエーテルの相溶化剤に関する詳細な説明は、榭脂組成物の詳細な説明で行った ちのと同じである。
また、フィルムに供される榭脂組成物には、本発明の榭脂組成物に加えてよいとし て!、るものはすべて添カ卩可能である。
本発明のフィルムは、本発明の榭脂組成物を原料とし、押出フィルム成形等により 得ることもできるし、本発明の榭脂組成物を構成する各々の成分を押出フィルム成形 機に直接投入し、混練とフィルム成形を同時に実施して得ることもできる。
本発明のフィルムは、押出しチューブラー法、場合によってはインフレーション法と も呼ばれる方法にて製造することもできる。円筒から出てきたパリソンがすぐに冷却し てしまわないように、 50〜310°Cの温度範囲の中力も適宜選択して、パリソンを温度 制御することがフィルム厚みを均一にし、層剥離のないフィルムを製造する上で極め て重要である。多層インフレーション方法により、本発明のポリアミド ポリフエ-レン エーテル系榭脂組成物と他の樹脂との多層フィルムを得ることも可能である。
また、本発明のフィルムは、 Tダイ押出成形によっても製造することができる。この場 合、無延伸のまま用いてもよいし、 1軸延伸してもよいし、 2軸延伸することによつても 得られる。フィルムの強度を高めたい場合は、延伸することにより達成することができ る。また、多層 Tダイ押し出し成形方法により、本発明のポリアミド—ポリフエ-レンェ 一テル系榭脂組成物と他の樹脂との多層フィルムを得ることができる。
こうして得られた本発明のフィルムは、耐熱性、低吸水性、耐薬品性、耐引き裂き性 、耐熱強度及び後工程で真空成形を行う際の真空成形性に優れ、加えて、熱収縮 率が小さぐまた難燃性、機械的強度、絶縁性や誘電率や誘電正接などに代表され る電気特性にも優れ、耐加水分解性にも優れる特徴を有する。従って、これらの特性 が要求される用途に用いることができる。
用途の例としては、例えば、プリント基板材料、プリント基板周辺部品、半導体パッ ケージ、データ系磁気テープ、 APS写真フィルム、フィルムコンデンサー、絶縁フィル ム、モーターやトランスなどの絶縁材料、スピーカー振動板、自動車用フィルムセンサ 一、ワイヤーケーブルの絶縁テープ、 TABテープ、発電機スロットライナ層間絶縁材
料、トナーアジテーター、リチウムイオン電池などの絶縁ワッシャー、などが挙げられ る。
実施例
[0044] 以下、本発明を実施例及び比較例により、更に詳細に説明するが、本発明はこの 実施例に示されたものに限定されるものではない。
(用いた原料)
1.芳香族ポリアミド (ポリアミド 9T)の製造
特開 2000— 103847号公報の実施例に記載されている方法に従い、ジカルボン 酸成分としてテレフタル酸、ジァミン成分として 1, 9 ノナメチレンジァミン及び 2—メ チルー 1, 8 オタタメチレンジァミン、末端封止剤としてォクチルァミン又は安息香酸 、重合触媒として次亜リン酸ナトリウム一水和物、及び蒸留水を、オートクレープに入 れ密閉した (反応系における水分量 25重量%)。オートクレープを充分、窒素置換し た後、撹拌しながら 2時間かけて、内部温度を 260°Cまで昇温し、そのまま反応させ た。この時の内部圧力は 46気圧を示した。
次に、上記反応物を、反応容器内の温度を 260°C、水分量を 25重量%に保った状 態で、反応容器の下部のノズル (6mm径)から 3分間かけて窒素雰囲気下、常温、常 圧の容器に取り出した後、 120°Cで乾燥して、非発泡粉末状の一次重縮合物を得た 更に、この粉末状一次重縮合物を、窒素雰囲気下で、攪拌しながら 2時間かけて 2 50°Cまで昇温し、更にそのまま所定時間、固相重合を行った。
末端封止材の種類と量を適宜変更し、更に、固相重合の時間を調整することにより 、種々の末端基濃度と固有粘度を有する芳香族ポリアミドを得た。
得られた芳香族ポリアミドの末端封止率と末端基濃度の測定は、特開平 7— 2286 89号公報の実施例に記載されている末端封止率の測定に従い実施し、リン元素の 定量は ThermoJarrellAsh製 IRISZIPを用いて、高周波誘導結合プラズマ(ICP) 発光分析により、波長 213. 618 (nm)で実施した。
[0045] 2.ポリフエ-レンエーテル:ポリ(2, 6 ジメチルー 1, 4—フエ-レンエーテル)
PPE—1 :還元粘度が 0. 52dl/g (0. 5gZdl、クロ口ホルム溶液、 30°Cで測定)
PPE— 2 :還元粘度が 0. 41dl/g (0. 5gZdl、クロ口ホルム溶液、 30°Cで測定)
3.衝撃改良材
SEBS— 1:ポリスチレン一水素添カ卩ポリブタジエン ポリスチレンブロック共重合体 数平均分子量 = 246, 000
スチレン成分合計含有量 = 33%
SEBS 2:ポリスチレン一水素添カ卩ポリブタジエン ポリスチレンブロック共重合体 数平均分子量 = 110, 000
スチレン成分合計含有量 =67%
4.ポリアミドとポリフエ-レンエーテルの相溶化剤
MAH:無水マレイン酸 商品名: CRYSTALMAN— AB (日本油脂社製) CA:クェン酸一水和物 (和光純薬社製)
FA:フマル酸 (和光純薬製)
5.結晶造核剤
タルク 1 :平均粒子径 2. 5 mのタルク(表面処理なし)
タルク 2 :平均粒子径 5. 0 mのタルク(表面処理なし)
6.強化無機フィラー
GF— 1:ノボラックエポキシ系化合物で集束された繊維径 13 mのチョップドストラ ンドガラス繊維
ECS03T— 747 日本電気硝子社製
GF- 2:アクリル系化合物で集束された繊維径 13 mのチョップドストランドガラス 繊維
ECS03T- 297 日本電気硝子社製
7.導電性付与材
KB :ケッチェンブラック EC600JD
8.脂肪族ポリアミド
PA66:ポリへキサメチレンアジパミド
固有粘度 [ r? ] : 2. 0
末端アミノ基濃度が 33 μ mol/g,末端カルボキシル基濃度が 39 μ mo
9.ジェチルホスフィン酸アルミニウム
DEP : Exolit OP930 (クラリアントジャパン社製) 平均粒子径 5 m 例 1〜例 4 (本発明)
押出機上流部に 1力所、中流部に 1力所の供給口を有する二軸押出機 [ZSK— 25 :コぺリオン社製 (ドイツ) ]を用いて、上流部供給口力 下流部供給口の手前までを 3 20°C、中流部供給ロカもダイまでを 280°Cに設定し、スクリュー回転数 300rpm、吐 出量 15kgZhで、上流部供給ロカ 40質量部の PPE—1、 10質量部の SEBS— 1 、 0. 4質量部の MAHを供給し、溶融混練した後、中流部供給口から 50質量部の P A9T、及び 0. 05質量部のタルク— 1を供給して、溶融混練し、押出し、切断し、榭脂 組成物ペレットを作製した。なお、 SEBS、 MAHはタンブラ一で混合したものを用い 、 PPEはこれらとは別の供給装置を用いて押出機に供給した。また、 PA9Tとタルク — 1はヘンシェルミキサーを用いて、 700rpmで 3分間混合したものを用いた。
このとき用いたすべての PA9Tは、平均粒子径約 500 mの粉体であり、 NZI比 力 85/15であり、固有粘度 [ 7? ]はほぼ 1. 2であり、ポリアミド 9T中のリン元素濃度 は約 300ppm (ThermoJarrellAsh製 IRISZIPを用いて、高周波誘導結合プラズマ (ICP)発光分析により、波長 213. 618 (nm)で定量)であったが、末端基濃度がそ れぞれ異なっていた。末端基濃度を表 1に示す。
この得られたペレットは、押出した直後に 80°Cの熱風乾燥機中に入れ、付着水を 蒸発させた後、吸水を防ぐため、アルミコート防湿袋に入れた。
得られたペレットを用いて、以下の項目について試験を実施し、結果を表 1に示す
< MVR>
榭脂ペレットを ISOl 133に準拠し、シリンダー温度 310°C、荷重 5kgで MVRを測 し 7こ。
<アイゾッド衝撃強度 >
榭脂ペレットを IS - 80EPN成形機 (東芝機械社製)でシリンダー温度 330°C金型 温度 130°Cの条件で、 IS0294- 1に準拠した 4mm厚みの多目的試験片及び 50
X 90 X 2. 5mmの平板状試験片を成形した。
得られた多目的試験片を用いて、 ISO180に準拠しアイゾッド衝撃強度を測定した
<引張伸度 >
得られた多目的試験片を用いて、 IS0527— 1に準拠し引張伸度を測定した。 <線膨張係数 >
50 (流動方向) X 90 (流動直角方向) X 2. 5mm (厚み方向)の平板状試験片を、 厚み方向はそのままとし、 10mm (流動方向) X 4mm (流動直角方向)の形状に精密 カットソーを用いて切削を行い、直方体形状の試験片を得た。得られた試験片を用 いて、 TMA— 7 (パーキン 'エルマ一社製)を用いて、流動方向の線膨張係数を窒素 雰囲気下で測定した。以下のような条件で測定を行い、 30°C〜120°Cの範囲の線 膨張係数を計算した。
測定温度範囲: 50°C〜 150°C
昇温速度: 5°CZ分
プリロード荷重:10mN
<面衝撃強度 >
得られた 50 X 90 X 2. 5mmの平板状試験片を用いて、グラフィックインパクトテスタ 一 (東洋精機社製)を用いて、ホルダ径 φ 40mm,ストライカ一径 12. 7mm、ストライ カー重量 6. 5kgを使用し、高さ 128cm力も衝撃試験を行い、全吸収エネルギーを 2 3°C及び 30°Cの 2つの温度条件下で測定した。なお、測定温度は 23°Cと 30°C で測定した。 30°Cの測定は、—30°Cに設定した恒温槽中に少なくとも 30分間温 度調整を実施したものを素早く取り出し、面衝撃強度を測定した。
<ウエルド強度保持率 >
IS— 80EPN成形機を用ぃてシリンダー温度340°C、金型温度 140°Cで、ウエルド 強度測定用の成形片を成形した。ウエルド強度測定用の試験片は、長さ 128mm、 幅 12. 8mm、厚み 0. 8mmの試験片であり、榭脂流入のためのゲートが長さ方向の 両端に存在するものであり、この両端より流入した榭脂が試験片中央部で衝突し、ゥ エルド部を形成するものである。なお、このときブランクとして、片方のゲートを閉じて、
ウエルド部が生じない同寸法の試験片も成形した。
得られた両試験片の引張降伏強度 (降伏前に破断するものは引張破断時強度)を それぞれ測定した。なお、このとき、クロスヘッド間距離を 100mmとし、クロスへッドス ピードを、 5mmZ分に固定して測定した以外は、基本的に IS0527の準拠する方法 で試験を実施した。そして、ウエルド部がない試験片の引張降伏強度に対する、ゥェ ルド部を有する試験片の引張降伏強度の割合をウエルド強度保持率として表した。
[0048] 例 5及び例 6 (比較)
例 1と同様に押出、成形評価を実施した。ポリアミド 9Tの末端アミノ基濃度が、本発 明の特許請求の範囲内から外れて 、るものであった。得られた結果を表 1に示す。
[0049] 例 7 (本発明)
NZl比が 95Z5である PA9Tを用いた以外は、すべて例 4と同様に実施した。例 7 で使用した PA9Tとここで使用した PA9Tは、 NZl比が異なるという事を除くと、すべ て同じである。得られた結果を表 1に示す。
[0050] 例 8 (本発明)
ポリアミド 9Tを末端アミノ基濃度が 10 μ molZgの ΡΑ9Τと、 30 μ molZgの ΡΑ9Τ の混合物とした以外は、すべて例 3と同様に実施した。なお、この PA9T混合物の末 端ァミノ基濃度は、例 3と同じになるよう配合比で調節した。得られた結果を表 1に示 す。
[表 1]
押出機上流部に 1力所、中流部に 1力所、下流部に更に 1力所の供給口を有する
軸押出機 (ZSK—40MC:コぺリオン社製 (ドイツ) )を用いて、シリンダー設定温度は すべて 320°Cに設定し、スクリュー回転数 450rpm、吐出量 150kgZhの条件で、上 流部供給口より 18質量部の PPE— 2、 0. 3質量部の MAHを供給し溶融混練した後 、中流部供給口より 42質量部の PA9T、及び 0. 1質量部のタルク 1を供給し、下 流部供給口から、 40質量%の GF— 1及び 10質量%の DEP (質量%表記:全榭脂 組成物を 100質量%をベース)を供給して、溶融混練し、押出し、切断し、榭脂組成 物ペレットを作製した。なお、 PPEと MAHの混合物及び PA9Tとタルク 1の混合物 は、ヘンシェルミキサーで 700rpmで 3分間混合したものをそれぞれ用いた。
このとき用いたすべての PA9Tは、平均粒子径約 400 μ mの粉体であり、 NZI比 力 85Z15であり、固有粘度 [ r? ]は 0. 95であり、末端アミノ基濃度は 10 /z molZg 、ポリアミド 9T中のリン元素濃度は約 300ppmであった。
この得られたペレットは、押出した直後に 80°Cの熱風乾燥機中に入れ、付着水を 蒸発させた後、吸水を防ぐため、アルミコート防湿袋に入れた。
得られたペレットを用いて、以下の項目について試験を実施し、結果を表 2に示す
<荷重たわみ温度 >
榭脂ペレットを IS - 80EPN成形機 (東芝機械社製)でシリンダー温度 330°C金型 温度 130°Cの条件で、 IS0294- 1に準拠した 4mm厚みの多目的試験片を成形し た。
得られた多目的試験片を用いて IS075に準拠し、 0. 45MPa荷重での荷重たわ み温度と 1. 8MPaでの荷重たわみ温度を測定した。
<吸水率>
同じ成形機を用いてシリンダー温度 340°C、金型温度 140°Cで、長さ 128mm、幅 12. 8mm、厚み 0. 8mmの試験片を作成した。
得られた長さ 128mm、幅 12. 8mm、厚み 0. 8mmの試験片を、 80°Cの水中に 48 時間浸漬し、取り出し、 23°C、 50%湿度の雰囲気中に 240時間放置した。
このときの浸漬前の成形片の重量と、浸漬後 240時間放置した成形片の重量から、 成形片の吸水率を下式により計算した。
[ (浸漬後 240時間放置した後の成形片の重量) / (浸漬前の成形片の重量) 1] X 100
<リフロー時のブリスター発生状況 >
吸水率測定で使用した、温水浸漬後 240時間調湿した成形片を、熱風リフロー炉 で加熱して、成形片におけるブリスター (発泡)の発生の有無と、変色の度合いを確 認し、以下の基準で判定した。
+ +:ブリスターの発生なし。成形片の変色もなし力、ごくわずかな変色のみ。
+ :ブリスターの発生なし。成形片の明らかな変色が確認される。
:部分的にブリスターが発生する。
:全面にブリスターが発生する。
なお、このとき使用した熱風リフロー炉としては、鉛フリーハンダ対応エアリフロー炉
RA— MS (松下電工社製)を用い、温度設定は、ヒーター 1〜8までを 181°C〜18 6°C、ヒーター 9及び 10を 200°C、ヒーター 11及び 12を 238°C、ヒーター 13及び 14 を 275°Cに設定した。また、リフロー炉内のコンベア ベルト速度は 0. 45mZ分とし た。この条件下において、炉内の温度プロファイルを確認したところ、 140°C〜200 °Cの熱暴露時間が 86秒、 220°C以上の熱暴露時間が 56秒、 260°C以上の熱暴露 時間が 8秒であり、最高到達温度は、 263°Cであった。
く難燃性 (UL— 94VB) >
UL94 (米国 Under Writers Laboratories Incで定められた規格)の方法を用 いて、 1サンプル当たり、それぞれ 5本ずつ測定を行った。なお試験片 (長さ 127mm 、幅 12. 7mm,厚み 1. 6mm)は射出成形機 (東芝機械 (株)製: IS— 80EPN)を用 いて成形した。成形はシリンダー温度 330°C、金型
温度 150°Cで実施した。
難燃等級には、 UL94垂直燃焼試験によって分類される難燃性のクラスを示した。 ただし、全てのサンプルで試験を 5回行 、判定を行った。
分類方法の概要は以下の通りである。その他詳細は UL94規格に準ずる。
V— 0 :平均燃焼時間 5秒以下 最大燃焼時間 10秒以下 有炎滴下なし
V— 1 :平均燃焼時間 25秒以下 最大燃焼時間 30秒以下 有炎滴下なし
V— 2 :平均燃焼時間 25秒以下 最大燃焼時間 30秒以下 有炎滴下あり
[0053] 例 10 (比較)
タルク 1を配合しな力つた以外はすべて例 9と同様に実施した。結果を表 2に示す
[0054] 例 11 (本発明)
PA9Tとして末端アミノ基濃度が 30 μ molZgの ΡΑ9Τを使用した以外はすべて例 9と同様に実施した。結果を表 2に示す。
[0055] 例 12 (比較)
タルク一 1を配合しな力つた以外はすべて例 11と同様に実施した。結果を表 2に示 す。
[0056] 例 13 (本発明)
タルク 1をあらかじめ、 PA9Tに溶融混練したマスターバッチとした以外はすべて 例 11と同様に実施した。結果を表 2に示す。
なお、マスターバッチは、 100質量部の PA9Tと、 0. 24質量部のタルク 1をヘン シェルミキサーで 700rpmで 3分間混合して、混合物を作成し、次いでその混合物を 、押出機上流部に 1力所だけ供給口を有する二軸押出機を用いて、シリンダー設定 温度はすべて 320°Cに設定し、スクリュー回転数 300rpm、吐出量 70kgZhの条件 で溶融混練を実施した。
[0057] 例 14 (本発明)
タルクをタルク 2に変更した以外はすべて例 7と同様に実施した。結果を表 2に示 す。
[0058] 例 15 (本発明)
タルク 1の配合量を 0. 01質量部とした以外はすべて例 7と同様に実施した。結 果を表 2に示す。
[0059] 例 16 (本発明)
NZl比が 70Z30である PA9Tを用いた以外はすべて、例 9と同様に実施した。例 9で使用した PA9Tとここで使用した PA9Tは、 NZl比が異なるということを除くと、す ベて同じである。結果を表 2に示す。
例 17 (本発明)
ガラス繊維を GF— 2に変更した以外はすべて例 11と同様に実施した。結果を表 2 に示す。
[表 2]
*1: あらかじめ PA9T中にタルクを配合 *2: PA9Tの N/I比が 70/30
例 18〜19 (本発明)
押出機上流部に 1力所、中流部に 1力所の供給口を有する二軸押出機 (TEM58S S :東芝機械社製(日本))を用いて、シリンダー設定温度はすべて 320°Cに設定し、 スクリュー回転数 400rpm、吐出量 450kgZhの条件で、上流部供給口から 18質量 部の PPE—1、 18質量部の PPE— 2、 6質量部の SEBS— 1、 4質量部の SEBS— 2 、及び 0. 2質量部の相溶化剤(例 18は、 MAH、例 19では CA、例 20は添加せず) を供給し、溶融混練した後、中流部供給口から 52質量部の PA9T、0. 1質量部のタ ルクー 1、 lOOppmのョウイ匕銅、 2000ppmのョウイ匕カリウム、及び 2. 0質量部の KB を供給し、押出し、切断し、榭脂組成物ペレットを作製した。なお、 1質量部の PPE— 1、 SEBS— 1、 SEBS— 2及び相溶化剤はタンブラ一で混合したものを用い、残りの PPE— 1及び PPE— 2は、それぞれ別の供給装置を用いて押出機に供給した。また 、 PA9T、タルク 1、ヨウ化銅、ヨウ化カリウム及び KBの混合物は、ヘンシェルミキサ 一で 700rpmで 3分間混合したものを用いた。
このとき用いたすべての PA9Tは、平均粒子径約 500 mの粉体であり、 NZI比 力 85/15であり、固有粘度 [ r? ]は 1. 2であり、末端アミノ基濃度は 30 /ζ πιο1/8、 ポリアミド 9Τ中のリン元素濃度は約 300ppmであった。
この得られたペレットは、押出した直後に 80°Cの熱風乾燥機中に入れ、付着水を 蒸発させた後、吸水を防ぐため、アルミコート防湿袋に入れた。
得られたペレットを用いて、以下の項目について試験を実施し、結果を表 3に示す
<アイゾッド衝撃強度 >
例 1で実施した要領で実施した。
<ウエルド強度保持率 >
例 1で実施した要領で実施した。
<分散粒子径>
ウルトラミクロトームを用いて、得られたペレットの榭脂の流動方向が観察できる方向 で厚み 80nmの超薄切片を作成し、それを透過型電子顕微鏡で観察した。その結果 いずれのサンプルも、芳香族ポリアミドが連続相を形成し、ポリフエ-レンエーテルが
分散相を形成していることが確認された。また、 5, 000倍の観察倍率で写真を 10枚 撮影し、得られた電子顕微鏡写真を元に、 PPE分散粒子の平均粒子径を求めた。 具体的には、分散粒子径を恣意的ではなく任意に 1000個の分散粒子について、そ の短径と長径を測定し、両者の平均を求め、それぞれの粒子径を特定し、その数平 均粒子径(∑ di/ni)を算出した。
<導電性 >
アイゾッド衝撃試験で用いた多目的試験片の中央部から両端方向に 25mm離れた 位置に、カッターナイフで約 0. 3〜0. 5mmの切り込みを入れた後、ドライアイス Zメ タノールの冷却液中に試験片を約 30分間浸漬した。その後、試験片を取り出し、両 端を折り取り、長さ方向が 50mmの直方体形状の破断サンプルを得た。この破断面 に銀ペーストを塗布し、充分乾燥した後、その両端間の抵抗値をエレクト口メーター( アドバンテスト製、 R8340A)を用いて、 250Vの印加電圧で測定した。得られた抵抗 値を下式により体積固有抵抗値として表した。得られた結果を表 3に示す。
(体積固有抵抗) = (電圧計で測定した電圧) X (試験片の断面積) Z (試験片の 長さ)
[表 3]
例 1と同じ二軸押出機を用いて、上流部供給ロカもダイまでを 320°C設定し、スクリ ユー回転数 300rpm、吐出量 15kgZhで、上流部供給ロカ 40質量部の PPE— 2
、 6質量部の SEBS— 1、 4質量部の SEBS— 2、 0. 4質量部の MAHを供給し、溶融 混練した後、下流部供給口から 50質量部の PA9T、及び 0. 08質量部のタルク 1 を供給して、溶融混練し、押出し、切断し、榭脂組成物ペレットを作製した。
なお、この時 1質量部の PPE—1、 SEBS— 1及び SEBS— 2のすベて、及び MAH はタンブラ一で混合したものを用い、他の PPEはこれらとは別の供給装置を用いて押 出機に供給した。また、 PA9Tとタルク 1はヘンシェルミキサーを用いて、 700rpm で 3分間混合したものを用いた。
このとき用いた PA9Tは、一部を除き、平均粒子径約 500 mの粉体、 N/I比が、 85/15,固有粘度 [ r? ] = l . 2であり、末端アミノ基濃度は 20 molZgであった。 ポリアミド 9T中のリン元素濃度は約 300ppmであったが、末端基濃度がそれぞれ異 なっていた。末端基濃度を表 4に示す。
この得られたペレットは、押出した直後に 80°Cの熱風乾燥機中に入れ、付着水を 蒸発させた後、吸水を防ぐため、アルミコート防湿袋に入れた。
得られたペレットを用いて、以下の項目について試験を実施し、結果を表 4に示す
< MVR>
例 1と同様に測定を実施した。
<アイゾッド衝撃強度 >
例 1と同様に測定を実施した。
<引張伸度 >
例 1と同様に測定を実施した。
<面衝撃強度 >
例 1と同様に測定を実施した。
<4. 5Mpa荷重時の荷重たわみ温度 >
例 1と同様に測定を実施した。
例 22 (本発明)
例 21で使用した PA9Tのうち、その 20質量%を PA66に変更した以外は、すべて 例 21と同様に実施した。結果を表 4に示す。
例 23 (本発明)
例 21で使用した PA9Tのうち、その 50質量%を PA66に変更した以外は、すべて 例 21と同様に実施した。結果を表 4に示す。
[¾41
//// //////00丁 1 800寸寸vdV2丁S90dH_A-ss S3szda3g3"-l
例 3で得られたペレットを用いて、単軸押出し成形機 (ユニオンプラスチック (株)製 、スクリュー径 40mm、 LZD28)とコートハンガーダイ(幅 400mm、ダイリップ間隔 0 . 8mm)を用い、シリンダー温度 320°Cにてフィルム状に押出した。スクリュー及び引 き取りロールの回転数を調整して、一軸方向に延伸が力かるように引き取りを実施し 、厚みが 100 mになるように調整した。この時に得られたフィルムの耐引き裂き性、 及びフィルム厚みの均一性を評価した。
また、得られたフィルムをフィルムの表面温度が 320°Cとなるようにヒーターの設定 温度を調節して、カップ型の成形体への真空成形を実施した。カップの形状は開口 部直径が 3cm、底部直径が 2cm、深さが 2cmの形状である。その結果、厚みの均一 性に優れる真空成形体が得られた。
それとは別に、例 3で得られたペレットを 30mm φの単軸押出し成形機に供給し、 幅 400mmのシート状に押出した。シートの厚みを測定したところ約 2. 5mmであった 。このシート押出時のドローダウン性とダイラインの生成状況を評価した。結果を表 5 に示す。
<フィルムの耐弓 Iき裂き性 >
フィルムの一端に、はさみで約 5mmの切れ込みを入れ、延伸方向と垂直の方向に 手で引き裂いた。その際に、引き裂き容易性を評価した。引き裂きが容易でなぐ延 伸方向へ引き裂き方向が変化するものを「 +」と評価し、引き裂き方向が変化しないも のを「―」と評価した。
<フィルム厚みの均一性 >
得られたフィルムの延伸方向に対して垂直方向で 5力所、厚みを実測し、厚み変動 の幅を評価基準とした。厚み変動が少ない方が良好なフィルムと位置づけられる。 <シート押出性 >
シート押出時のダイとダイ力 約 15cm水平方向に離れた位置にある第一ローラー との間での溶融シート状榭脂のたれ具合 (ドローダウン性)を以下の基準に従い目視 で評価した。
+ + +:シート全体が均等に水平状態を保ったままでローラーまで到達し、ダイライ
ンの発生なし
+ +:シート全体が均等に水平状態を保ったままでローラーまで到達するがダイラ インが発生
+:ドローダウンが激しぐシートとしてはまともに成形できない。
[0067] 例 25 (比較)
例 5で得られたペレットを用いた以外は、すべて例 25と同様に実施した。結果を表 5に示す。
また、真空成形性を評価したが、カップの底部に穴が開き、良好な成形体を得るこ とができな力 た。
[0068] 例 26 (比較)
例 6で得られたペレットを用いた以外は、すべて例 25と同様に実施した。結果を表 5に示す。
また、真空成形性を評価したが、成形体の開口部付近にシヮが発生し、良好な成 形体を得ることはできな力つた。
[表 5]
例 1で用 1、た二軸押出機のシリンダー温度をすベて 320°Cに設定し、スクリュー回 転数 300rpm、吐出量 15kgZhで、上流部供給口から 50質量部の PPE— 2、 0. 5
質量部の MAHを供給し、溶融混練した後、下流部供給口から 50質量部の PA9T、 及び 0. 05質量部のタルク— 1を供給して、溶融混練し、押出し、切断し、榭脂組成 物ペレットを作製した。なお、 PPEと MAHの混合物及び PA9Tとタルク 1の混合物 は、ヘンシェルミキサーで 700rpmで 3分間混合したものをそれぞれ用いた。
このとき用いたすべての PA9Tは、平均粒子径約 500 mの粉体であり、 NZI比 力 85/15であり、固有粘度 [ 7? ]はほぼ 1. 2であり、ポリアミド 9T中のリン元素濃度 は約 300ppmであつた。
この得られたペレットは、押出した直後に 80°Cの熱風乾燥機中に入れ、付着水を 蒸発させた後、吸水を防ぐため、アルミコート防湿袋に入れた。
得られたペレットを 30mm φの単軸押出し成形機に供給し、幅 400mmのシート状 に押出した。シートの厚みを測定したところ約 2. 5mmであった。このシートの全光線 透過率、ヘーズ及び面衝撃強度を評価した。結果は、全光線透過率は 26%であり、 ヘーズは 91 %であり、充分な半透明性を有していた。面衝撃強度は約 10Jであった
[0070] 例 28 (本発明)
上流部供給ロカ 40質量部の PPE— 2、 10質量部の SEBS— 2、 0. 4質量部の MAHとした以外はすべて例 28と同様に行った。全光線透過率は、 27%、ヘーズは 87%であり、面衝撃強度は約 28Jであった。
<全光線透過率及びヘーズ >
得られた約 2. 5mm厚のシートを 50 X 90mm角のサイズに切り出し、濁度計 NDH 2000 (日本電色工業 (株)製)を用いて、全光線透過率の測定は、 JIS K7361 - 1 : 1996に準拠し、ヘーズの測定は、 JIS K7136 : 2000に準拠して測定を行った。な お、ヘーズは、全光線透過率に対する拡散透過率の比(百分率)として算出した。 <面衝撃強度 >
得られたシートを 50 X 90の大きさに切削し、平板状試験片として得た。この平板状 試験片を用いて、例 1に記載した面衝撃強度の測定法に従い、面衝撃強度を測定し た。
[0071] 例 29 (本発明)
例 9で用いた二軸押出機の中流部供給口と下流部供給口を塞ぎ、シリンダー設定 温度はすべて 320°Cに設定した。スクリュー回転数 300rpm、吐出量 100kg/hの条 件で、上流部供給口から 90質量の PA9T及び 10質量部の KBを供給し、溶融混練 し、押出し、切断し、導電性マスターバッチを作製した。以下、このマスターバッチを、 MB— 1と略記する。
この時用いた PA9Tは、平均粒子径約 400 mの粉体であり、 NZI比力 85/15 であり、固有粘度 [ 7? ]は 0. 95であり、末端アミノ基濃度は 10 molZg、ポリアミド 9 T中のリン元素濃度は約 300ppmであった。
このマスターバッチの製造時の状況に関して以下の指標で評価を行った。得られた 結果を表 6に示す。
次に、同じ押出機の中流部供給口を使用可能とし、温度設定も同様とし、上流部供 給口から 18質量部の PPE—1、 18質量部の PPE— 2、 6質量部の SEBS— 1、 4質 量部の SEBS— 2、及び 0. 2質量部の MAHを供給し、溶融混練した後、中流部供 給ロカも 32質量部の PA9T、 20質量部の MB— 1、 0. 1質量部のタルク— 1、 100p pmのヨウ化銅、及び 2000ppmのヨウ化カリウムを供給し、押出し、切断し、榭脂組成 物ペレットを作製した。なお、 1質量部の PPE—1、 SEBS— 1、 SEBS— 2、及び相 溶化剤はタンブラ一で混合したものを用い、残りの PPE— 1及び PPE— 2は、それぞ れ別の供給装置を用いて押出機に供給した。また、 PA9T、タルク— 1、ヨウ化銅、及 びヨウ化カリウムの混合物は、ヘンシェルミキサーで 700rpmで 3分間混合したものを 用いた。 MB— 1はこれらとは異なる供給装置で押出機に供給した。
このとき用いた PA9Tは、平均粒子径約 500 mの粉体であり、 NZI比力 85/1 5であり、固有粘度 [ 7? ]は 1. 2であり、末端アミノ基濃度は 30 molZg、ポリアミド 9 T中のリン元素濃度は約 300ppmであった。
この得られたペレットは、押出した直後に 80°Cの熱風乾燥機中に入れ、付着水を 蒸発させた後、吸水を防ぐため、アルミコート防湿袋に入れた。
得られたペレットを用いて、導電性と、面衝撃強度を実施し、結果を表 6に示す。 <マスターバッチ製造時の榭脂温度 >
押出機のダイスから出てくるストランドの温度を熱電対で実測した。
<マスターバッチのストランド外観 >
ストランドの外観を以下の基準で評価した。
+ + +:平滑な表面を有するストランド
+ +:ざらつきを有するストランド
+:毛羽だった表面を有するストランド
<導電性 >
例 18〜 19で実施した方法と同様の方法により測定した。
<面衝撃強度 >
例 1〜例 4で実施した方法と同様の方法により測定した。
[0072] 例 30 (本発明)
例 29で用いた二軸押出機の中流部供給口を使用可能として、上流部供給口から 9 0質量の PA9T、中流部供給口から 10質量部の KBを供給し、溶融混練し、押出し、 切断し、導電性マスターバッチを作製した。以下、このマスターバッチを、 MB— 2と 略記する。マスターバッチの製造に関するそれ以外はすべて例 29と同様に行った。
MB— 2を用いた以外は、例 29と同様に榭脂組成物ペレットを作製して、同様の評 価を行った。結果を表 6に示す。
[0073] 例 31 (本発明)
例 30で用いた二軸押出機を用いて、上流部供給口から 50質量の PA9T、中流部 供給口より 40質量部の PA9T及び 10質量部の KBを異なる供給装置を用いて供給 し、溶融混練し、押出し、切断し、導電性マスターバッチを作製した。以下、このマス ターバッチを、 MB— 3と略記する。マスターバッチの製造に関するそれ以外はすべ て例 29と同様に行った。
MB— 2を用いた以外は、例 29と同様に榭脂組成物ペレットを作製して、同様の評 価を行った。結果を表 6に示す。
[0074] 例 32 (本発明)
PA9Tとして例 13で製造したタルク 1をあら力じめ PA9Tに溶融混練した予備混 合物を用いた以外はすべて例 31と同様に行い、マスターバッチを作成した。このマス ターバッチを MB— 4と略記する。
この時用いた PA9Tは、平均粒子径約 400 mの粉体であり、 NZI比力 85/15 であり、固有粘度 [ 7? ]は 0. 95であり、末端アミノ基濃度は 10 molZg、ポリアミド 9 T中のリン元素濃度は約 300ppmであった。
次に、例 30で用いた押出機、上流部供給口から 18質量部の PPE— 1、 18質量部 の PPE— 2、 6質量部の SEBS— 1、 4質量部の SEBS— 2、及び 0. 2質量部の MA Hを供給し溶融混練した後、中流部供給口から 32質量部の PA9T、 20質量部の M B— 1、 lOOppmのヨウ化銅、及び 2000ppmのヨウ化カリウムを供給し、押出し、切断 し、榭脂組成物ペレットを作製した。なお、 1質量部の PPE— 1、 SEBS— 1、 SEBS 2、及び相溶化剤はタンブラ一で混合したものを用い、残りの PPE—1及び PPE— 2は、それぞれ別の供給装置を用いて押出機に供給した。また、 PA9T、ヨウ化銅、 及びヨウ化カリウムの混合物は、ヘンシェルミキサーで 700rpmで 3分間混合したもの を用いた。 MB— 4はこれらとは異なる供給装置で押出機に供給した。
このとき用いた PA9Tは、平均粒子径約 500 mの粉体であり、 NZI比力 85/1 5であり、固有粘度 [ 7? ]は 1. 2であり、末端アミノ基濃度は 30 molZg、ポリアミド 9 T中のリン元素濃度は約 300ppmであった。
次に例 29と同様の評価を実施した。結果を表 6に示す。
[表 6]
例 29 例 30 例 31 例 32
本発明 本発明 本発明 本発明
MBの種類 ― MB— 1 MB— 2 MB— 3 MB— 3
PA9Tの形状 ― 粉体 粉体 粉体 ペレット
MB加工時の樹脂温度 °C 359 352 336 344 ストランドの平滑性 +++〜十 + + + + + + + + + 組成物の導電性 Ω - cm 2X104 2X104 3X104 9 104 面衝撃強度 J 23 28 39 31
産業上の利用可能性
本発明により、耐熱性'衝撃強度 ·低吸水性 ·流動性'低線膨張性に優れ、ウエルド 強度が高くピン圧入時の割れが大幅に改善された榭脂組成物を提供できる。本発明 の榭脂組成物は、電気'電子部品、 OA部品、車両部品、機械部品などの幅広い分 野に使用することができる。特に、自動車外板(自動車フェンダーなど)や、 SMT対 応部品等に極めて有用である。
Claims
[1] テレフタル酸単位を 60〜 100モル0 /0含有するジカルボン酸単位(a)と、 1, 9ーノナ メチレンジァミン単位(b—l)及び Z又は 2—メチルー 1, 8—オタタメチレンジァミン 単位 (b— 2)を 60〜: LOOモル%含有するジァミン単位 (b)と力もなる芳香族ポリアミド 、ポリフエ-レンエーテル、ポリアミドとポリフエ-レンエーテルの相溶化剤、及び結晶 造核剤を含む榭脂組成物であって、該芳香族ポリアミドの末端アミノ基濃度が 5 モ ル Zg以上、 45 モル Zg以下である、上記榭脂組成物。
[2] 前記結晶造核剤の量が芳香族ポリアミドとポリフエ-レンエーテルの合計 100質量 部に対して 0. 01〜1質量部である、請求項 1に記載の榭脂組成物。
[3] 前記芳香族ポリアミドの末端アミノ基濃度が 10 μモル Zg以上、 35 μモル Zg以下 である、請求項 1に記載の榭脂組成物。
[4] 前記芳香族ポリアミドのジァミン単位中において、 1, 9 ノナメチレンジァミン単位( b— l)と 2—メチルー 1 , 8—オタタメチレンジァミン単位 (b - 2)の合計量に対する 1 , 9 ノナメチレンジァミン単位 (b— l)の比率が 75〜90質量%である、請求項 1に記 載の榭脂組成物。
[5] 前記芳香族ポリアミドが平均粒子径 200〜 1000 μ mの粉体状である、請求項 1に 記載の榭脂組成物。
[6] 前記芳香族ポリアミドとポリフエ-レンエーテルの相溶化剤の量力 前記芳香族ポリ アミドと前記ポリフエ-レンエーテルの合計 100質量部に対して 0. 05〜5質量部であ る、請求項 1に記載の榭脂組成物。
[7] 前記芳香族ポリアミドとポリフエ-レンエーテルの相溶化剤がマレイン酸又はその無 水物である、請求項 1に記載の榭脂組成物。
[8] 前記芳香族ポリアミドと前記ポリフエ-レンエーテルの合計量に対して、前記芳香族 ポリアミドの比率力 0〜80質量0 /0、前記ポリフエ-レンエーテルの比率が 20〜60質 量%である、請求項 1に記載の榭脂組成物。
[9] 更に、導電性付与材を、榭脂組成物の全質量に対して 0. 1〜10質量%の量で含 む、請求項 1に記載の榭脂組成物。
[10] 前記導電性付与材として、導電性カーボンブラックを、前記芳香族ポリアミドと前記
ポリフエ-レンエーテルの合計 100質量部に対して 0. 5〜5質量部含む、請求項 9に 記載の榭脂組成物。
[11] 更に、強化無機フィラーを含む、請求項 1に記載の榭脂組成物。
[12] 前記強化無機フィラーがエポキシ化合物で集束されたガラス繊維である、請求項 1
1に記載の榭脂組成物。
[13] 前記強化無機フィラーの量が、榭脂組成物の全質量に対して 10〜60質量%であ る、請求項 11に記載の榭脂組成物。
[14] 脂肪族ポリアミドを、前記芳香族ポリアミド 100質量部に対して 100質量部以下の量 で含む、請求項 1に記載の榭脂組成物。
[15] 前記脂肪族ポリアミドが、炭素数 4〜8の脂肪族ジァミンと炭素数 4〜8の脂肪族ジ カルボン酸力 なる脂肪族ポリアミド、炭素数 6〜8のラタタム類力 なる脂肪族ポリア ミド、及びアミノカルボン酸力 なる脂肪族ポリアミドからなる群力 選ばれる 1種以上 である、請求項 14に記載の榭脂組成物。
[16] 前記脂肪族ポリアミドの末端アミノ基濃度が、前記芳香族ポリアミドの末端アミノ基 濃度より大きい、請求項 15に記載の榭脂組成物。
[17] 芳香族ビニル化合物を主体とする重合体ブロックと共役ジェン化合物を主体とする 重合体ブロックとを含むブロック共重合体であって、ここで、該ブロック共重合体中の
、芳香族ビニル化合物を主体とする重合体ブロックのうちの一つのブロックの分子量 力 000-50, 000の範囲内である上記ブロック共重合体である衝撃改良材を、 前記ポリフエ-レンエーテル 100質量部に対して 10〜70質量部の量で、更に含む、 請求項 1に記載の榭脂組成物。
[18] 請求項 1の榭脂組成物を含む SMT対応部品。
[19] テレフタル酸単位を 60〜 100モル0 /0含有するジカルボン酸単位(a)と、 1, 9ーノナ メチレンジァミン単位(b—l)及び Z又は 2—メチルー 1, 8—オタタメチレンジァミン 単位 (b— 2)を 60〜: LOOモル%含有するジァミン単位 (b)と力もなる芳香族ポリアミド 80〜40質量部、ポリフエ-レンエーテル 20〜60質量部、及びポリアミドとポリフエ- レンエーテルの相溶化剤 0. 05〜5質量部を含む榭脂組成物であって、該芳香族ポ リアミドの末端アミノ基濃度が 5 μモル Zg以上、 45 μモル Zg以下である、上記榭脂
組成物を含む、厚みが 1〜200 μ mのフィルム。
[20] テレフタル酸単位を 60〜 100モル0 /0含有するジカルボン酸単位(a)と、 1, 9ーノナ メチレンジァミン単位(b—l)及び Z又は 2—メチルー 1, 8—オタタメチレンジァミン 単位 (b— 2)を 60〜: LOOモル%含有するジァミン単位 (b)と力もなる芳香族ポリアミド 80〜40質量部、ポリフエ-レンエーテル 20〜60質量部、及びポリアミドとポリフエ- レンエーテルの相溶化剤 0. 05〜5質量部を含む榭脂組成物であって、該芳香族ポ リアミドの末端アミノ基濃度が 5 μモル Zg以上、 45 μモル Zg以下であり、該ポリフエ 二レンエーテルが分散相であり、該芳香族ポリアミドが連続相であるモルフォロジ一を 有し、全光線透過率 (JIS K7361— 1)が 10%以上であって、かつヘーズ (JIS K7 136)が 95%以下である、上記榭脂組成物を含むことを特徴とする半透明性成形体
[21] テレフタル酸単位を 60〜 100モル0 /0含有するジカルボン酸単位(a)と、 1, 9ーノナ メチレンジァミン単位(b—l)及び Z又は 2—メチルー 1, 8—オタタメチレンジァミン 単位 (b— 2)を 60〜: L00モル%含有するジァミン単位 (b)と力もなる芳香族ポリアミド 、ポリフエ-レンエーテル、ポリアミドとポリフエ-レンエーテルの相溶化剤、及び導電 性付与材を含む榭脂組成物の製造方法であって、以下の工程をその順に経ることを 特徴とする上記方法:
(1)該芳香族ポリアミドの一部と該導電性付与材を溶融することなく両者の混合物を 作成し、該混合物を、溶融した残余の芳香族ポリアミドに供給し、溶融混練して、芳 香族ポリアミドと導電性付与材のマスターペレットを製造する工程、
(2)該マスターペレットを、該ポリフエ-レンエーテルと、該ポリアミドとポリフエ-レン エーテルの相溶化剤との溶融混合物と溶融混練して溶融混合物ペレットを得る工程 、及び
(3)該溶融混合物ペレットの水分を除去する工程。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06823378.2A EP1950248B1 (en) | 2005-11-15 | 2006-11-14 | Heat-resistant resin composition |
CN2006800424411A CN101309971B (zh) | 2005-11-15 | 2006-11-14 | 耐热性树脂组合物 |
US12/084,897 US8263697B2 (en) | 2005-11-15 | 2006-11-14 | Heat-resistant resin composition |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-329894 | 2005-11-15 | ||
JP2005329894 | 2005-11-15 | ||
JP2005354771 | 2005-12-08 | ||
JP2005-354771 | 2005-12-08 | ||
JP2005-355583 | 2005-12-09 | ||
JP2005355583 | 2005-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007058169A1 true WO2007058169A1 (ja) | 2007-05-24 |
Family
ID=38048555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/322654 WO2007058169A1 (ja) | 2005-11-15 | 2006-11-14 | 耐熱性樹脂組成物 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8263697B2 (ja) |
EP (1) | EP1950248B1 (ja) |
WO (1) | WO2007058169A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008157034A1 (en) * | 2007-06-19 | 2008-12-24 | Sabic Innovative Plastics Ip B.V. | Flame retardant poly(arylene ether)/polyamide compositions, methods, and articles |
WO2009110480A1 (ja) | 2008-03-03 | 2009-09-11 | 旭化成ケミカルズ株式会社 | 難燃性樹脂組成物 |
US20130261245A1 (en) * | 2010-07-26 | 2013-10-03 | Dsm Ip Assets B.V. | Fuel part and process for producing of a fuel part |
EP2154203B1 (en) * | 2007-06-04 | 2015-08-26 | Asahi Kasei Chemicals Corporation | Polyamide-polyphenylene ether resin composition and film |
CN108864685A (zh) * | 2018-06-12 | 2018-11-23 | 四川大学 | 一种提高热塑性碳纤维复合材料力学性能的界面组装结构及方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8247492B2 (en) | 2006-11-09 | 2012-08-21 | Valspar Sourcing, Inc. | Polyester powder compositions, methods and articles |
ATE525429T1 (de) * | 2006-11-09 | 2011-10-15 | Valspar Sourcing Inc | Pulverzusammensetzungen und verfahren zur herstellung von gegenständen daraus |
US8172035B2 (en) * | 2008-03-27 | 2012-05-08 | Bose Corporation | Waterproofing loudspeaker cones |
FR2934864B1 (fr) | 2008-08-08 | 2012-05-25 | Arkema France | Polyamide semi-aromatique a terminaison de chaine |
US8450412B2 (en) | 2009-12-22 | 2013-05-28 | Sabic Innovative Plastics Ip B.V. | Flame retardant polyamide composition, method, and article |
EA023632B1 (ru) * | 2010-07-26 | 2016-06-30 | ДСМ АйПи АССЕТС Б.В. | Деталь топливной системы и способ изготовления детали топливной системы |
JP5644249B2 (ja) * | 2010-08-12 | 2014-12-24 | 日立金属株式会社 | 熱可塑性樹脂組成物および接着フィルム、並びにそれを用いた配線フィルム |
US8808819B2 (en) * | 2011-03-24 | 2014-08-19 | Fuji Xerox Co., Ltd. | Tubular member, tubular member unit, intermediate transfer member, and image forming apparatus |
US20120095605A1 (en) | 2011-09-17 | 2012-04-19 | Tran Bao Q | Smart building systems and methods |
US8359750B2 (en) | 2011-12-28 | 2013-01-29 | Tran Bao Q | Smart building systems and methods |
US8722837B2 (en) | 2012-01-31 | 2014-05-13 | Sabic Innovative Plastics Ip B.V. | Poly(phenylene ether)-polysiloxane composition and method |
FR2998299B1 (fr) * | 2012-11-19 | 2015-04-03 | Arkema France | Composition a base d'un copolyamide semi-aromatique, d'une polyolefine et d'un stabilisant thermique au cuivre, sa preparation et ses utilisations |
US8592549B1 (en) | 2012-12-05 | 2013-11-26 | Sabic Innovative Plastics Ip B.V. | Polyamide composition, method, and article |
CN107001791B (zh) * | 2014-12-16 | 2019-12-03 | 株式会社可乐丽 | 聚酰胺树脂组合物及其成型品 |
WO2016160703A1 (en) | 2015-03-27 | 2016-10-06 | Harrup Mason K | All-inorganic solvents for electrolytes |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
KR102017124B1 (ko) * | 2017-11-14 | 2019-09-02 | 에스케이씨 주식회사 | 내열 수지 조성물 및 이로부터 얻어진 성형용품 |
CN116925534A (zh) * | 2022-03-29 | 2023-10-24 | 珠海万通特种工程塑料有限公司 | 一种介电常数可调的尼龙组合物及其制备方法和应用 |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3257357A (en) | 1963-04-01 | 1966-06-21 | Du Pont | Copolymers of polyphenylene ethers |
US3257358A (en) | 1963-07-02 | 1966-06-21 | Du Pont | 2, 6-dichloro-1, 4-polyphenylene ether |
US3306874A (en) | 1962-07-24 | 1967-02-28 | Gen Electric | Oxidation of phenols |
US3306875A (en) | 1962-07-24 | 1967-02-28 | Gen Electric | Oxidation of phenols and resulting products |
JPS5051197A (ja) | 1973-09-06 | 1975-05-07 | ||
JPS5217880A (en) | 1975-07-31 | 1977-02-10 | Mitsubishi Heavy Ind Ltd | Method to walk inside tube |
US4663230A (en) | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
JPS63152628A (ja) | 1986-12-17 | 1988-06-25 | Asahi Chem Ind Co Ltd | 色調の優れたポリフエニレンエ−テル系樹脂の製造法 |
JPH01163262A (ja) | 1987-10-09 | 1989-06-27 | General Electric Co <Ge> | 安定化ポリフェニレンエーテル−ポリアミド組成物 |
US5165909A (en) | 1984-12-06 | 1992-11-24 | Hyperion Catalysis Int'l., Inc. | Carbon fibrils and method for producing same |
US5171560A (en) | 1984-12-06 | 1992-12-15 | Hyperion Catalysis International | Carbon fibrils, method for producing same, and encapsulated catalyst |
EP0659799A2 (en) | 1993-12-24 | 1995-06-28 | Kuraray Co., Ltd. | Polyamide and polyamide composition |
JPH07228775A (ja) | 1994-02-17 | 1995-08-29 | Kuraray Co Ltd | 難燃性ポリアミド組成物 |
JPH07228689A (ja) | 1994-02-16 | 1995-08-29 | Kuraray Co Ltd | ポリアミド樹脂 |
EP0699708A2 (de) | 1994-08-31 | 1996-03-06 | Hoechst Aktiengesellschaft | Flammengeschützte Polyesterformmassen |
JP2000103847A (ja) | 1998-07-30 | 2000-04-11 | Kuraray Co Ltd | ポリアミドの製造方法 |
JP2000212433A (ja) | 1999-01-21 | 2000-08-02 | Kuraray Co Ltd | 熱可塑性樹脂組成物およびそれからなる成形品 |
WO2001081473A1 (fr) | 2000-04-26 | 2001-11-01 | Asahi Kasei Kabushiki Kaisha | Composition de resine conductrice et procede de production correspondant |
JP2002338805A (ja) * | 2001-05-18 | 2002-11-27 | Asahi Kasei Corp | 樹脂組成物 |
EP1262525A1 (en) | 2001-05-21 | 2002-12-04 | Kuraray Co., Ltd. | Polyamide composition |
JP2003041117A (ja) * | 2001-05-21 | 2003-02-13 | Kuraray Co Ltd | ポリアミド組成物 |
JP2003055549A (ja) | 2001-06-05 | 2003-02-26 | Kuraray Co Ltd | ポリアミド組成物 |
JP2004083817A (ja) * | 2002-08-29 | 2004-03-18 | Kuraray Co Ltd | ポリアミド |
JP2004083792A (ja) * | 2002-08-28 | 2004-03-18 | Kuraray Co Ltd | 熱可塑性樹脂組成物 |
JP2004143240A (ja) * | 2002-10-23 | 2004-05-20 | Asahi Kasei Chemicals Corp | 樹脂組成物 |
JP2004150500A (ja) * | 2002-10-29 | 2004-05-27 | Kuraray Co Ltd | 燃料透過耐性に優れた燃料配管用継手 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2852485A (en) * | 1954-04-22 | 1958-09-16 | Polymer Corp | Shaped polyamide articles |
JP2961546B2 (ja) * | 1989-02-09 | 1999-10-12 | 住友化学工業株式会社 | 熱可塑性樹脂組成物 |
US5278231A (en) * | 1990-05-24 | 1994-01-11 | Ferro Corporation | Impact-resistant compatibilized polymer blends of olefin polymers and polyamides |
JP3127518B2 (ja) * | 1991-09-11 | 2001-01-29 | 旭化成工業株式会社 | 熱可塑性樹脂組成物 |
EP0675165A1 (en) | 1994-03-25 | 1995-10-04 | General Electric Company | Extrudable thermoplastic composition comprising a compatibilized polyphenylene ether polyamide resin blend |
DE69401919C5 (de) | 1994-06-01 | 2010-08-26 | Sabic Innovative Plastics Ip B.V. | Thermoplastische Zusammensetzung aus kompatibilisiertem Polyphenylenether-Polyamidharz und elektrisch leitender Russ |
CN1075827C (zh) | 1994-11-18 | 2001-12-05 | 旭化成株式会社 | 聚酰胺树脂组合物 |
JP2000212434A (ja) | 1999-01-21 | 2000-08-02 | Kuraray Co Ltd | 熱可塑性樹脂組成物およびそれからなる成形品 |
EP1266930B1 (en) | 2001-06-05 | 2006-12-20 | Kuraray Co., Ltd. | Polyamide composition |
US7115677B2 (en) * | 2001-11-30 | 2006-10-03 | Polyplastics Co., Ltd. | Flame-retardant resin composition |
US7182886B2 (en) * | 2003-08-16 | 2007-02-27 | General Electric Company | Poly (arylene ether)/polyamide composition |
US7132063B2 (en) * | 2003-08-16 | 2006-11-07 | General Electric Company | Poly(arylene ether)/polyamide composition |
US7166243B2 (en) * | 2003-08-16 | 2007-01-23 | General Electric Company | Reinforced poly(arylene ether)/polyamide composition |
US7118691B2 (en) * | 2003-08-16 | 2006-10-10 | General Electric Company | Poly(arylene ether)/polyamide composition |
-
2006
- 2006-11-14 WO PCT/JP2006/322654 patent/WO2007058169A1/ja active Application Filing
- 2006-11-14 EP EP06823378.2A patent/EP1950248B1/en active Active
- 2006-11-14 US US12/084,897 patent/US8263697B2/en active Active
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3306874A (en) | 1962-07-24 | 1967-02-28 | Gen Electric | Oxidation of phenols |
US3306875A (en) | 1962-07-24 | 1967-02-28 | Gen Electric | Oxidation of phenols and resulting products |
US3257357A (en) | 1963-04-01 | 1966-06-21 | Du Pont | Copolymers of polyphenylene ethers |
US3257358A (en) | 1963-07-02 | 1966-06-21 | Du Pont | 2, 6-dichloro-1, 4-polyphenylene ether |
JPS5051197A (ja) | 1973-09-06 | 1975-05-07 | ||
JPS5217880A (en) | 1975-07-31 | 1977-02-10 | Mitsubishi Heavy Ind Ltd | Method to walk inside tube |
US4663230A (en) | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
US5578543A (en) | 1984-12-06 | 1996-11-26 | Hyperion Catalysis Int'l, Inc. | Carbon fibrils, method for producing same and adhesive compositions containing same |
US6235674B1 (en) | 1984-12-06 | 2001-05-22 | Hyperion Catalysis International | Carbon fibrils, methods for producing same and adhesive compositions containing same |
US5165909A (en) | 1984-12-06 | 1992-11-24 | Hyperion Catalysis Int'l., Inc. | Carbon fibrils and method for producing same |
US5171560A (en) | 1984-12-06 | 1992-12-15 | Hyperion Catalysis International | Carbon fibrils, method for producing same, and encapsulated catalyst |
US5650370A (en) | 1984-12-06 | 1997-07-22 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and adhesive compositions containing same |
US5589152A (en) | 1984-12-06 | 1996-12-31 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and adhesive compositions containing same |
JPS63152628A (ja) | 1986-12-17 | 1988-06-25 | Asahi Chem Ind Co Ltd | 色調の優れたポリフエニレンエ−テル系樹脂の製造法 |
JPH01163262A (ja) | 1987-10-09 | 1989-06-27 | General Electric Co <Ge> | 安定化ポリフェニレンエーテル−ポリアミド組成物 |
EP0659799A2 (en) | 1993-12-24 | 1995-06-28 | Kuraray Co., Ltd. | Polyamide and polyamide composition |
JPH07228689A (ja) | 1994-02-16 | 1995-08-29 | Kuraray Co Ltd | ポリアミド樹脂 |
JPH07228775A (ja) | 1994-02-17 | 1995-08-29 | Kuraray Co Ltd | 難燃性ポリアミド組成物 |
EP0699708A2 (de) | 1994-08-31 | 1996-03-06 | Hoechst Aktiengesellschaft | Flammengeschützte Polyesterformmassen |
JPH0873720A (ja) | 1994-08-31 | 1996-03-19 | Hoechst Ag | 防炎性ポリエステル成形材料 |
JP2000103847A (ja) | 1998-07-30 | 2000-04-11 | Kuraray Co Ltd | ポリアミドの製造方法 |
JP2000212433A (ja) | 1999-01-21 | 2000-08-02 | Kuraray Co Ltd | 熱可塑性樹脂組成物およびそれからなる成形品 |
WO2001081473A1 (fr) | 2000-04-26 | 2001-11-01 | Asahi Kasei Kabushiki Kaisha | Composition de resine conductrice et procede de production correspondant |
JP2002338805A (ja) * | 2001-05-18 | 2002-11-27 | Asahi Kasei Corp | 樹脂組成物 |
EP1262525A1 (en) | 2001-05-21 | 2002-12-04 | Kuraray Co., Ltd. | Polyamide composition |
JP2003041117A (ja) * | 2001-05-21 | 2003-02-13 | Kuraray Co Ltd | ポリアミド組成物 |
JP2003055549A (ja) | 2001-06-05 | 2003-02-26 | Kuraray Co Ltd | ポリアミド組成物 |
JP2004083792A (ja) * | 2002-08-28 | 2004-03-18 | Kuraray Co Ltd | 熱可塑性樹脂組成物 |
JP2004083817A (ja) * | 2002-08-29 | 2004-03-18 | Kuraray Co Ltd | ポリアミド |
JP2004143240A (ja) * | 2002-10-23 | 2004-05-20 | Asahi Kasei Chemicals Corp | 樹脂組成物 |
JP2004150500A (ja) * | 2002-10-29 | 2004-05-27 | Kuraray Co Ltd | 燃料透過耐性に優れた燃料配管用継手 |
Non-Patent Citations (2)
Title |
---|
"Polymer Process Engineering", 1994, PRENTICE-HALL, INC., pages: 291 - 294 |
See also references of EP1950248A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2154203B1 (en) * | 2007-06-04 | 2015-08-26 | Asahi Kasei Chemicals Corporation | Polyamide-polyphenylene ether resin composition and film |
WO2008157034A1 (en) * | 2007-06-19 | 2008-12-24 | Sabic Innovative Plastics Ip B.V. | Flame retardant poly(arylene ether)/polyamide compositions, methods, and articles |
WO2009110480A1 (ja) | 2008-03-03 | 2009-09-11 | 旭化成ケミカルズ株式会社 | 難燃性樹脂組成物 |
EP2256167A1 (en) * | 2008-03-03 | 2010-12-01 | Asahi Kasei Chemicals Corporation | Flame-retardant resin composition |
EP2256167A4 (en) * | 2008-03-03 | 2013-05-01 | Asahi Kasei Chemicals Corp | FLAME RETARDANT RESIN COMPOSITION |
US20130261245A1 (en) * | 2010-07-26 | 2013-10-03 | Dsm Ip Assets B.V. | Fuel part and process for producing of a fuel part |
US9309406B2 (en) * | 2010-07-26 | 2016-04-12 | Dsm Ip Assets B.V. | Fuel part and process for producing of a fuel part |
CN108864685A (zh) * | 2018-06-12 | 2018-11-23 | 四川大学 | 一种提高热塑性碳纤维复合材料力学性能的界面组装结构及方法 |
CN108864685B (zh) * | 2018-06-12 | 2020-10-30 | 四川大学 | 一种提高热塑性碳纤维复合材料力学性能的界面组装结构及方法 |
Also Published As
Publication number | Publication date |
---|---|
US20090305016A1 (en) | 2009-12-10 |
EP1950248A1 (en) | 2008-07-30 |
US8263697B2 (en) | 2012-09-11 |
EP1950248A4 (en) | 2011-06-22 |
EP1950248B1 (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4621648B2 (ja) | 耐熱性樹脂組成物 | |
WO2007058169A1 (ja) | 耐熱性樹脂組成物 | |
JP5404393B2 (ja) | ポリアミド−ポリフェニレンエーテル樹脂組成物及びフィルム | |
JP4070218B2 (ja) | 耐熱性に優れる樹脂組成物 | |
EP1950249B1 (en) | Resin composition having excellent heat resistance | |
EP1736512B1 (en) | Conductive resin composition | |
CN101309971B (zh) | 耐热性树脂组合物 | |
JP5284176B2 (ja) | 熱可塑性樹脂組成物及びその成形体 | |
JP5295050B2 (ja) | ポリアミド−ポリフェニレンエーテル樹脂組成物及び成形品 | |
US20090275682A1 (en) | Resin Composition Excellent in Flame Retardance | |
JP4236006B2 (ja) | ポリアミド−ポリフェニレンエーテル樹脂組成物 | |
JP2008038125A (ja) | 難燃性に優れた樹脂組成物 | |
JP2008038149A (ja) | 難燃性に優れた樹脂組成物 | |
JP2009263461A (ja) | 低腐食性樹脂組成物 | |
JPWO2008081878A1 (ja) | 難燃性高耐熱樹脂組成物 | |
JP2007154127A (ja) | ポリアミド−ポリフェニレンエーテル樹脂組成物 | |
JP2010222578A (ja) | 外装材用樹脂組成物 | |
JP2010260995A (ja) | 樹脂組成物及びその製造方法 | |
JP2007169537A (ja) | 導電性ポリアミド−ポリフェニレンエーテル樹脂組成物 | |
JP2009263460A (ja) | チューブ成形に適した樹脂組成物およびそれからなるチューブ | |
JP2005298545A (ja) | 導電性樹脂組成物の製造方法 | |
JP2007154110A (ja) | 耐熱性に優れる樹脂組成物 | |
JP5590706B2 (ja) | 樹脂組成物及びその成形体 | |
JP2007154107A (ja) | 耐熱性樹脂組成物 | |
JP2007154108A (ja) | 剛性に優れる樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680042441.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006823378 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12084897 Country of ref document: US |