WO2007057480A1 - Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asíncrono - Google Patents

Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asíncrono Download PDF

Info

Publication number
WO2007057480A1
WO2007057480A1 PCT/ES2006/000254 ES2006000254W WO2007057480A1 WO 2007057480 A1 WO2007057480 A1 WO 2007057480A1 ES 2006000254 W ES2006000254 W ES 2006000254W WO 2007057480 A1 WO2007057480 A1 WO 2007057480A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
current
asymmetric
faults
type generators
Prior art date
Application number
PCT/ES2006/000254
Other languages
English (en)
French (fr)
Inventor
Josu Ruiz Flores
Eneko Olea Oregui
Iker Garmendia Olarreaga
Nagore AZCARATE-ASCASU BLÁZQUEZ
Josu Elorriaga Llanos
Original Assignee
Ingeteam Technology, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingeteam Technology, S.A. filed Critical Ingeteam Technology, S.A.
Priority to ES06755341T priority Critical patent/ES2704407T3/es
Priority to JP2008541767A priority patent/JP2009516998A/ja
Priority to CA2630232A priority patent/CA2630232C/en
Priority to DK06755341.2T priority patent/DK1965075T3/en
Priority to EP06755341.2A priority patent/EP1965075B1/en
Priority to US12/085,194 priority patent/US7939954B2/en
Priority to AU2006314464A priority patent/AU2006314464B2/en
Publication of WO2007057480A1 publication Critical patent/WO2007057480A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention refers to a control and protection system, in case of network failures, of a double-fed asynchronous generator used in wind turbines that are part of a wind farm.
  • the difference in behavior of the machine doubly fed to asymmetric faults or symmetrical faults is important.
  • the protection of the converter by overcurrent causes its disconnection since it cannot control the comment imposed on the rotor as a result of the short-circuit in the stator.
  • said disconnection is not sufficient to protect the system since the current flows through the free diodes of the converter, causing the BUS voltage of the intermediate circuit (3) to rise, jeopardizing the elements that configure the converter . Therefore, in order to protect the converter, the rotor is short-circuited and the generator is disconnected from the network.
  • the invention consists of a control system for double-powered asynchronous generators that allows on the one hand to keep the generator connected to the network by absorbing the initial transient, and on the other to maintain the control of the wind turbine during both symmetrical and asymmetric faults. in such a way that the requirements or specifications of the different network connection regulations related to the supply of active and reactive power in situations of failure are met and which aim to collaborate in the restoration of the network.
  • the invention develops a control and protection system against symmetric and asymmetric faults, for asynchronous type generators of which they are doubly fed, whose stator is connected to the electrical network and consists of:
  • a CCU control unit responsible for governing the elements of the system; characterized in that a) an initial energy absorption controller block appears in connection with the crowbar, in the presence of a fault and which consists of parallel branches composed of ai) resistive devices to short-circuit the generator rotor, 8 2 ) electronic devices with interruption function to control said resistive means; b)
  • the control unit consists of means to capture, at least, the following electrical variables: the grid voltage, rotor current, generator stator current, intermediate circuit voltage, crowbar voltage and controller block variables and of means so that if any of said electrical variables leaves predetermined working limits, the resistive means are activated, so that the voltage The rotor does not reach a value that allows the circulation of current from the rotor to the intermediate circuit of the converter.
  • control unit has programmed control means consisting of two power loops that in turn have two current loops integrated, each patent loop consisting of a power regulator Pl, and each current loop of a current regulator Pl, said power regulators generating the current setpoints (Sp-lrot-d, Sp-lrot-q) and the current regulators generating the voltage setpoints (Sp-Vd, Sp-Vq) to be imposed on The generator rotor.
  • Figure 1 shows the assembly formed by the generator, converter and equipment.
  • the different elements that form it are the following:
  • Three-phase inverter consisting of 6 switches (usually IGBTs)
  • Intermediate circuit of the converter consisting of a continuous bus and used to couple the rectifier and the inverter.
  • Three-phase rectifier composed of 6 switches responsible for maintaining the intermediate circuit voltage level at a certain value.
  • - SMART Crowbar as an element of a comprehensive control and regulation system to maintain control of the generator during asymmetric faults.
  • Double-powered asynchronous generator whose stator is connected to the network and the rotor is controlled by the three-phase inverter.
  • Figure 2 shows the equivalent circuit of the asynchronous machine referred to the stator in a two-axis reference system (D, Q).
  • Figure 3 shows the evolution of the flow of the machine when a three-phase gap is produced. It is shown in two reference systems (Axes Q 1 D and Axes ALPHA, BHETA)
  • Figure 4 shows the tension vector in a fixed two-axis reference system (ALFA, BETA) and in a mobile two-axis reference system (D, Q).
  • Figure 5 represents the hardware support on which the initial energy absorption is performed, according to Figure 6.
  • Said hardware is formed by four branches.
  • Each of the branches is formed by a resistor and a semiconductor which in this case is an IGBT.
  • Figure 6 represents the Crowbar activation states, setting the actuation times of each of the resistors.
  • FIG. 7 represents the regulation loops on axes d, q, of the control system.
  • Each loop consists of a current regulator Pl and a power regulator Pl.
  • the outputs of the regulators are the output voltage setpoints on the d, q axes.
  • Figure 8 shows a direct three-phase system.
  • Figure 9 shows an inverse three-phase system.
  • Figure 10 shows a three-phase homo polar system. PREFERRED EMBODIMENT OF THE INVENTION
  • any three-phase system can be represented by the sum of three balanced three-phase systems: direct, inverse and homopolar.
  • the magnetization branch of the asynchronous machine (7) will react to maintain continuity in the flow.
  • the flow of the machine does not vary instantaneously, then there will be a sudden voltage difference between the machine's fem (proportional to the flow and the speed) and the network voltage limited only by the leakage impedance, which will lead to an over current in the stator.
  • the equivalent circuit of the asynchronous machine can be similar to the equivalent circuit of a transformer ( Figure 2), with the exception that in the case of the asynchronous machine the secondary (rotor) is a dynamic part that rotates and where the frequency of the signals is a function of the speed of rotation. Due to the existing coupling between stator and rotor in an asynchronous machine, the currents that are established on one side will influence the shape of the current on the other.
  • the disturbed three-phase system has an asymmetry, which makes that in addition to the positive sequence there is a negative sequence and depending on the type of fault and the system connections (neutral and earth) also a homopolar sequence.
  • the positive sequence is represented by a vector that rotates counterclockwise at a speed ws (V +).
  • the negative sequence is represented by another vector that rotates at the same speed but in the opposite direction (time) (V-). In this way, an observer located on the reference system that rotates with the positive vector (V +), will see the negative vector (V-) rotate at a speed 2 * ws.
  • the amplitude of the vector of the negative sequence will be projected on the axes of the positive reference system (D +, Q +) causing the projection on D + and Q + axes (figure 4) of the positive vector (v +) to present a 2 * ws frequency oscillation which will be added to the base amplitude.
  • the reasoning is analogous to an observer located on the negative reference system (D-, Q-).
  • the rotor is short-circuited through resistors (R1, R2, R3 , R4 of Figure 5) that allow controlling the generated transient.
  • the control of said resistors defined by Figure 6, must be such that at no time they can occur on voltages in the rotor that endanger the converter (1, 2) due to uncontrolled currents that can be established between the Crowbar ( 6) and the DC bus (3).
  • the system represented in Figure 5 is composed of 4 branches of resistance (R1, R2, R3, R4), which are individually controlled.
  • the resistors must be controlled in such a way that the rotational voltage does not exceed a value such that there is current flow from the rotor to the intermediate circuit of the converter.
  • the system consists of a diode rectifier (5) connected to the generator rotor.
  • the rectified tension is called Crowbar tension.
  • Crowbar voltage is the voltage seen by the 4 branches formed by the resistors (R1, R2, R3, R4) and switches Q1, Q2, Q3 and Q4.
  • R1, R2, R3 and R4 are the resistances with which the control will be carried out during the initial transition. The value and power characteristics of said Resistances depend on the work cycles that must be supported and the generator to which the Crowbar is associated. V1, V2, V3 and V4 are diodes in parallel with the resistors as a protection element for these over voltage.
  • the system of Figure 5 has passive protection elements in parallel with the branches of resistance. Said elements may be varistors that act when Crowbar's tension exceeds a certain value.
  • the control of the different switches (Q1, Q2, Q3, Q4) of each branch is carried out from the control unit (8) that governs the frequency converter (1, 2), which receives the necessary control signals.
  • the control of said switches can also be carried out by an independent control system governed by the frequency converter formed by the inverter (2) and rectifier (1). Said system would receive the necessary measurement signals for the control of each of the switches.
  • the times T1, T2, T3, T4, T5, T6 can also be times of a fixed value, different or equal each of them.
  • each of the equivalent resistors can be different in number and value, depending on the control strategy to be used.
  • the resistance control strategy (R1, R2, R3, R4) allows that after the deactivation of the last resistance, the rotational voltage must be such that there is no current flow to the intermediate circuit of the BUS.
  • the exit condition of the last state must be fulfilled in both asymmetric and symmetrical faults.
  • the three-phase inverter (2) stops switching, thus not firing the IGBTs that configure said converter.
  • the rectifier (1) or converter on the network side continues to operate, ensuring the control of the BUS voltage both in asymmetric faults and symmetrical faults.
  • a first effect is the oscillation that occurs in the machine (7) as a result of the short circuit, which corresponds to the frequency of rotation of the generator.
  • the extinction time of said transitory In order for the extinction time of said transitory to be minimal and thus comply with current regulatory requirements, it is necessary to dampen the fluctuations in flow (Figure 3) by means of damping mechanisms included in the control model ( Figure 7).
  • K1 is the transformation ratio between stator and rotor and K represents a term that is proportional to the rotational current.
  • the generator control system (7) is formed by two power loops which in turn have two current loops integrated. Each loop is formed by a Pl regulator, so that there are four Pl regulators: two power Pl (P, Q) (9 and 11) and two Pl of current (Id, Iq) (10 and 12).
  • the power regulators generate the current setpoints (Sp_Irot_d, Sp_lrot_q) on the 'd' and ⁇ q 'axes (figure 4), and the current regulators generate the voltage setpoints (Sp_Vd, Sp_Vq) to be imposed on the rotor of the generator on the 'd' and 'q' axes (figure 4).
  • a second effect that occurs in the electrical variables of the system is the oscillation as a consequence of the asymmetry of the fault itself.
  • the effect explained above generates a frequency oscillation 2 * Fs (Amplitude NQ and ND of Figure 4) that is necessary to take it into account from the point of view of the regulation of the machine. In the case of not having a high enough bandwidth, this frequency should not be regulated. Therefore, the control system must ignore this frequency, leaving it circular.
  • a first step is the detection of the asymmetry of the fault. For this, from the readings of the voltages of each of the phases it is calculated
  • the FACTOR variable is an adjustable variable, from which it is considered that there is an asymmetric lack. The calculation of the asymmetry must be carried out during state 1, so that when the inverter takes control of the generator, said calculation has been made.
  • the current loops (10, 12) must not take into account said frequencies, for this purpose a filter tuned to 2 * Fs (15, 16) must be applied to the output of the current regulators. Said filter must be applied when the fault produced is asymmetric.
  • the described invention provides an integral solution that allows to protect and maintain control of the asynchronous generator against the occurrence of symmetric faults and especially asymmetric faults (biphasic or monophasic).
  • Vrd Rotational tension of the machine referred to the 'd' axis.
  • k (Ird) Constant dependent on the rotating current referred to the axis 'd'
  • Kl Proportional constant.
  • Lms Magentizing inductance.
  • Ws Synchronous angular electric speed W- Electric speed of the machine.
  • fr rotor frequency
  • Irq Rotor current referred to axis 'q'
  • Imsq Magnetization current referred to axis 'q'.
  • Vrq Rotational tension of the machine referred to the 'q' axis.
  • SP_lrot_q Setpoint of the rotating current referred to the axis 'q'

Abstract

Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asíncrono doblemente alimentado que permite, ante una falta simétrica o asimétrica, seguir conectado a red absorbiendo el transitorio inicial y mantener el control del aerogenerador. De este modo se cumplen los requisitos de las diferentes normativas de conexión a red, relativas al suministro de potencia activa y reactiva en situaciones de falta, que tienen como objeto colaborar al reestablecimiento de la red.

Description

UN SISTEMA DE CONTROL Y PROTECCIÓN ANTE FALTAS SIMÉTRICAS Y ASIMÉTRICAS, PARA GENERADORES DE TIPO
ASÍNCRONO
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención hace referencia a un sistema de control y protección, ante faltas en Ia red, de un generador asincrono doblemente alimentado de los utilizados en aerogeneradores que forman parte de un parque eólico.
ANTECEDENTES DE LA INVENCIÓN
En los últimos años el número de aerogeneradores y parques eólicos conectados a Ia red eléctrica ha aumentado de forma notable. Por este motivo, los operadores de red han incrementado el nivel de exigencia de las máquinas, especificando una serie de requisitos de actuación ante faltas simétricas y asimétricas que eviten Ia desconexión del generador asincrono y Ia desestabilización de Ia red.
La diferencia de comportamiento de Ia máquina doblemente alimentada ante faltas asimétricas ó faltas simétricas es importante. Ante Ia ocurrencia de huecos en Ia red, Ia protección del convertidor por sobre comente provoca su desconexión ya que no puede controlar Ia comente impuesta en el rotor como consecuencia del cortocircuito en el estator. Sin embargo, dicha desconexión no es suficiente para proteger el sistema dado que Ia corriente fluye a través de los diodos libres del convertidor, provocando que Ia tensión de BUS del circuito intermedio (3) se eleve, poniendo en peligro los elementos que configuran el convertidor. Por tanto, con el fin de proteger el convertidor, se cortocircuita el rotor y se procede a Ia desconexión del generador de Ia red. En el caso de las faltas asimétricas, Ia problemática se agrava como consecuencia de Ia aparición de forma permanente de oscilaciones de corriente que imposibilitan Ia regulación de potencia del generador, como consecuencia de Ia actuación de los elementos de protección del convertidor. Es necesario que en el sistema de regulación se introduzcan mecanismos de control que permitan, ante Ia ocurrencia de faltas asimétricas, mantener Ia regulación del generador (7). Sin estos mecanismos, objeto de Ia invención, el generador (7), termina por desacoplarse de Ia red. Estos mecanismos de control, motivo de Ia invención se describen en el apartado 7 (Control de sistemas durante faltas asimétricas y simétricas)
Por tanto, el sistema de control y regulación debe de tener en cuenta Ia tipología de Ia falta. Actualmente existen diversas soluciones que afrontan el problema cuando se producen faltas simétricas, algunas de las cuales se muestras en los documentos WO 03/065567, WO 2004/067958,
WO 2004/091085 o WO 2005/015730. Sin embargo, no existe una solución integral que a partir de los requisitos de las diferentes normativas, resuelva Ia problemática cuando se producen faltas asimétricas (bifásicas ó monofásicas).
DESCRIPCIÓN DE LA INVENCIÓN
A partir de dicha premisa, Ia invención consiste en un sistema de control para generadores asincronos doblemente alimentados que permita por un lado mantener el generador conectado a Ia red absorbiendo el transitorio inicial, y por otro mantener el control del aerogenerador durante faltas tanto simétricas como asimétricas de forma que se cumplan los requisitos ó especificaciones de las diferentes normativas de conexión a red relativas al suministro de potencia activa y reactiva en situaciones de falta y que tienen como objetivo colaborar al reestablecimiento de Ia red. En concreto, el invento desarrolla un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono de los que están doblemente alimentados, cuyo estator se conecta a Ia red eléctrica y consta de:
- un inversor trifásico,
- un circuito intermedio del convertidor formado por un BUS de continua y que sirve para acoplar el inversor con
- un rectificador trifásico,
- un crowbar para poder mantener el control del generador durante las faltas simétricas y asimétricas y evitar su desconexión de Ia red eléctrica,
- una unidad de control CCU encargada de gobernar los elementos del sistema; que se caracteriza porque a) se dispone en conexión con el crowbar de un bloque controlador de absorción de energía inicial aparecida ante Ia presencia de una falta y que consta de ramas en paralelo compuestas por a-i) dispositivos resistivos para cortocircuitar el rotor del generador, 82) dispositivos electrónicos con función interrupción para controlar a dichos medios resistivos; b) Ia unidad de control consta de medios para captar, al menos, las siguientes variables eléctricas: Ia tensión de red, corriente de rotor, corriente de estator del generador, tensión del circuito intermedio, tensión de crowbar y de las variables del bloque controlador y de medios para que si alguna de dichas variables eléctricas se sale de unos límites de trabajo preestablecidos, se activen los medios resistivos, de forma que Ia tensión rotórica no alcance un valor que permita Ia circulación de corriente del rotor al circuito intermedio del convertidor.
También se caracteriza porque Ia unidad de control dispone de medios programados de control que constan de dos lazos de potencia que a su vez llevan integrados dos lazos de corriente, constando cada lazo de patencia de un regulador de potencia Pl, y cada lazo de corriente de un regulador de corriente Pl, generando dichos reguladores de potencia las consignas de corriente (Sp-lrot-d, Sp-lrot-q) y los reguladores de corriente generando las consignas de tensión (Sp-Vd, Sp-Vq) a imponer en el rotor del generador.
DESCRIPCIÓN DE LAS FIGURAS
Para comprender mejor el objeto de Ia presente invención, se representa en los planos una forma preferente de realización práctica, susceptible de cambios accesorios que no desvirtúen su fundamento.
La figura 1 muestra el conjunto formado por el generador, convertidor y aparellaje. Los diferentes elementos que Io forman son los siguientes:
- Inversor trifásico compuesto por 6 switches (normalmente IGBTs) - Circuito intermedio del Convertidor formado por un BUS de continua y que sirve para acoplar el rectificador y el inversor.
- Rectificador trifásico compuesto por 6 switches encargado de mantener el nivel de tensión del circuito intermedio en un valor determinado.
- Unidad de Control CCU, encargada de gobernar los anteriores elementos y el elemento motivo de Ia invención.
- SMART Crowbar, como elemento de un sistema integral de control y regulación para poder mantener el control del generador durante las faltas asimétricas. - Generador asincrono doblemente alimentado, cuyo estator está conectado a Ia red y el rotor es controlado por el inversor trifásico.
- Aparellaje formado por los elementos (Contactores, Seccionadores, resistencias de precarga, etc.) necesarios para Ia activación y aislamiento de los elementos críticos del sistema.
La figura 2 muestra el circuito equivalente de Ia máquina asincrona referido al estator en un sistema de referencia de dos ejes (D, Q).
La figura 3 muestra Ia evolución del flujo de Ia máquina al producirse un hueco trifásico. Se muestra en dos sistemas de referencias (Ejes Q1 D y Ejes ALPHA, BHETA)
La figura 4 muestra el vector de tensión en un sistema de referencia de dos ejes fijo (ALFA, BETA) y en un sistema de referencia de dos ejes móvil (D, Q).
La figura 5 representa el soporte hardware sobre el cual se realiza Ia absorción de energía inicial, según Ia figura 6. Dicho hardware está formado por cuatro ramas. Cada una de las ramas está formada por una resistencia y un semiconductor que en este caso es un IGBT.
La figura 6 representa los estados de activación del Crowbar, fijando los tiempos de actuación de cada una de las resistencias.
La figura 7 representa los lazos de regulación en ejes d, q, del sistema de control. Cada lazo está formado por un regulador Pl de corriente y un regulador Pl de potencia. Las salidas de los reguladores son las consignas de tensión de salida en los ejes d,q.
La figura 8 muestra un sistema trifásico directo.
La figura 9 muestra un sistema trifásico inverso.
La figura 10 muestra un sistema trifásico homo polar. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Se describe a continuación un ejemplo de realización práctica, no limitativa, del presente invento.
Debido a que a Io largo de Ia explicación se van a manejar los conceptos de sistema directo, y sistema inverso es necesario explicar que un sistema trifásico cualquiera se puede representar mediante la suma de tres sistemas trifásicos equilibrados: directo, inverso y homopolar.
Sistema directo (Fig. 8):
Vectores de misma amplitud.
Desfasados 120° entre si.
Dispuestos de forma que un observador en reposo ve desfilar los vectores en orden V1 V2 V3.
Sistema Inverso (Fig. 9):
Vectores de misma amplitud.
Desfasados 120° entre si.
Dispuestos de forma que un observador en reposo ve desfilar los vectores en orden V1 V3 V2.
Sistema Homopolar (Fig. 10):
Vectores de misma amplitud.
En fase, por Io tanto un observador en reposo los vería pasar al mismo tiempo.
Una variación brusca de tensión en el estator de un generador asincrono (7) conectado a la red, tiene como consecuencia Ia aparición de un transitorio en el que los valores de corriente de estator, corriente de rotor y tensión de rotor pueden sufrir fuertes variaciones que serán función de Ia severidad y duración del hueco y los parámetros eléctricos de Ia máquina y Ia red a Ia que esté conectada.
Frente a un hueco de red, Ia rama de magnetización de Ia máquina asincrona (7) reaccionará para mantener Ia continuidad en el flujo. El flujo de Ia máquina no varía de forma instantánea, luego existirá una diferencia de tensión brusca entre Ia fem de Ia máquina (proporcional al flujo y a Ia velocidad) y Ia tensión de red limitada únicamente por Ia impedancia de fugas, Io que dará lugar a una sobre corriente en el estator.
El circuito equivalente de Ia máquina asincrona se puede asemejar al circuito equivalente de un transformador (Figura 2), con Ia excepción de que en el caso de Ia máquina asincrona el secundario (rotor) es una parte dinámica que gira y donde Ia frecuencia de las señales es función de Ia velocidad de giro. Debido al acoplamiento existente entre estator y rotor en una máquina asincrona, las corrientes que se establezcan en un lado, influirán en Ia forma de Ia corriente del otro.
El efecto que se observa en las corrientes rotóricas es diferente si Ia falta es simétrica ó asimétrica. En el caso de Ia falta simétrica Ia magnetización de Ia máquina se reduce hasta un valor determinado por el nivel de tensión de Ia red, cuyo transitorio va a depender de los parámetros eléctricos de Ia máquina. Durante dicho transitorio aparece una componente continua en las corrientes estatóricas provocada por Ia desmagnetización de Ia máquina. Sobre esta componente se superpone la frecuencia de de 50 Hz de Ia propia red. En el lado rotórico aparece ese transitorio sobre las corrientes rotóricas pero con una oscilación correspondiente a Ia frecuencia de giro de Ia máquina. La amplitud inicial de dichas oscilaciones va a depender de Ia profundidad del hueco terminándose por amortiguar al cabo de un tiempo. En Ia figura 3 se muestra Ia evolución del flujo de Ia máquina al producirse un hueco trifásico. Se muestra en 2 sistemas de referencias (Ejes Q, D y Ejes ALPHA, BHETA). Los ejes Q1D y ALPHA, BETA son los ejes a los que todas las variables se referencian, mostrándose en Ia figura 4.
En los huecos simétricos no se presenta ninguna asimetría por Io que el sistema trifásico, aún estando perturbado por una disminución de amplitud sigue siendo equilibrado. Así, las secuencias inversa (figura 9) y homopolar (figura 10) las y el sistema estará compuesto únicamente por Ia secuencia positiva (figura 8).
Por otro lado, en el caso de las faltas asimétricas, el sistema trifásico perturbado presenta una asimetría, Io que hace que además de Ia secuencia positiva exista una secuencia negativa y dependiendo del tipo de falta y las conexiones del sistema (neutros y tierras) también una secuencia homopolar. En la figura 4, Ia secuencia positiva se representa mediante un vector que gira en sentido anti-horario a una velocidad ws (V+). La secuencia negativa se representa mediante otro vector que gira a Ia misma velocidad pero en sentido contrario (horario) (V-). De esta manera, un observador situado sobre el sistema de referencia que gira con el vector positivo (V+), verá girar al vector negativo (V-) a una velocidad 2*ws. La amplitud del vector de Ia secuencia negativa se proyectará sobre los ejes del sistema de referencia positivo (D+, Q+) provocando que Ia proyección en ejes D+ y Q+ (figura 4) del vector positivo (v+) presente una oscilación a frecuencia 2*ws que vendrá a añadirse a Ia amplitud de base. El razonamiento es análogo para un observador situado sobre el sistema de referencia negativo (D-, Q-).
El efecto por tante, es diferente en función del tipo de falta que se produzca.
Por otro lado, ante el evento de un hueco en Ia red, e independientemente de Ia tipología del hueco, se genera un transitorio inicial que provoca Ia desmagnetización del generador (7). Una vez las corrientes rotóricas alcancen un valor inferior a Ia corriente máxima del convertidor (2) (momento en el que Ia magnetización de Ia máquina queda definida por el nivel de tensión de red), es retomado el control de potencia del generador.
Por tanto, el proceso se divide en dos estados:
- Absorción del transitorio de energía inicial (Estado 1)
- Control del sistema con faltas asimétricas ó simétricas (Estado
2).
Absorción del transitorio de energía Inicial.
Un primer estado en el que es necesario amortiguar las corrientes rotóricas, de forma que dicha energía no fluya en dirección del Convertidor (1 , 2), Para ello, se procede al cortocircuitado del rotor a través de unas resistencias (R1 , R2, R3, R4 de Ia figura 5) que permitan controlar el transitorio generado. El control de dichas resistencias definido por Ia figura 6, debe de ser tal que en ningún momento se puedan producir sobre tensiones en el rotor que pongan en peligro el convertidor (1 , 2) debido a corrientes incontroladas que se puedan establecer entre el Crowbar (6) y el bus DC (3).
El sistema representado en Ia figura 5 se compone de 4 ramas de resistencias (R1 , R2, R3, R4), las cuales se encuentran controladas de forma individual. Las resistencias deben de controlarse de tal forma que Ia tensión rotórica no exceda un valor tal que exista circulación de corriente del rotor al circuito intermedio del convertidor.
El sistema se compone de un rectificador a diodos (5) conectado al rotor del generador. La tensión rectificada se denomina tensión de Crowbar. La tensión de Crowbar es Ia tensión que ven las 4 ramas formadas por las resistencias (R1 , R2, R3, R4) y los interruptores Q1 , Q2, Q3 y Q4.
R1 , R2, R3 y R4 son las resistencias con las que se realizará el control durante el transitorio inicial. Las características de valor y potencia de dichas resistencias dependen de los ciclos de trabajo que deban de soportar y del generador al que vaya asociado el Crowbar. V1 , V2, V3 y V4 son diodos en paralelo con las resistencias como elemento de protección de estas ante sobre tensiones.
El sistema de Ia figura 5 dispone de unos elementos pasivos de protección en paralelo con las ramas de resistencias. Dichos elementos pueden ser Varistores que actúan cuando Ia tensión de Crowbar sobrepasa un valor determinado.
También dispone de los elementos de medida de Ia tensión de Crowbar y Corriente de Crowbar, para poder realizar el control (figura 6) de los diferentes estados de cada una de las combinaciones de las resistencias.
El control de los diferentes interruptores (Q1 , Q2, Q3, Q4) de cada rama se realiza desde Ia unidad de control (8) que gobierna el convertidor de frecuencia (1 , 2), el cual recibe las señales de control necesarias. Así mismo, el control de dichos interruptores puede realizarse también de un sistema de control independiente al que gobierna el convertidor de frecuencia formado por el inversor (2) y rectificador (1 ). Dicho sistema recibiría las señales de medida necesarias para el control de cada uno de los interruptores.
Ante una falta en Ia red se realiza Ia supervisión y control de las siguientes magnitudes; Tensiones de red, Corriente de rotor, Corriente de Estator, Tensión de Bus, tensión de Crowbar y las variables necesarias para poder realizar el control de las cuatro ramas (figura 5). Si alguna de dichas variables se sale de los límites de trabajo en funcionamiento normal, se procede a Ia activación de las ramas de resistencias según Ia figura 6. Los tiempos T1 , T2, T3, T4, T5, T6 (figura 6) son tiempos variables que dependen de Ia evolución de los valores de Ia tensión de Crowbar, Ia corriente de estator, Ia corriente de rotor ó Ia tensión de BUS.
Los tiempos T1 , T2, T3, T4, T5, T6 (figura 6) pueden ser también tiempos de un valor fijo, diferentes ó iguales cada uno de ellos.
Así mismo, los diferentes estados formados por cada una de las resistencias equivalentes (REQ1 , REQ2, REQ3, REQ4, REQ5, REQ6) pueden ser diferentes en número y valor, dependiendo de Ia estrategia de control a utilizar.
La estrategia del control de las resistencias (R1 , R2, R3, R4) permite que tras Ia desactivación de Ia última resistencia, Ia tensión rotórica deba de ser tal que no se produzca circulación de corriente hacia el circuito intermedio del BUS. La condición de salida del último estado debe de cumplirse tanto en faltas asimétricas como en faltas simétricas.
Durante Ia activación de las diferentes ramas de resistencias
(figura 5), el inversor trifásico (2) deja de conmutar no disparando por tanto los IGBTs que configuran dicho convertidor. El rectificador (1 ) ó convertidor del lado de red sigue funcionando asegurando el control de Ia tensión de BUS tanto en faltas asimétricas como en faltas simétricas.
Control del Sistema durante faltas Asimétricas y Simétricas
Como se ha explicado anteriormente, ante Ia aparición de un hueco simétrico ó asimétrico se producen dos efectos que se superponen y que se muestran en forma de oscilaciones en las corrientes rotóricas del generador. A continuación se explican los mecanismos de control definidos por Ia figura 7 y que son implementados por Ia unidad de control, CCU (8), para el correcto control del sistema definido por Ia figura 1. 1. Amortiguación de Ia oscilación residual del transitorio tras Ia toma de control
Un primer efecto es Ia oscilación que se produce en Ia máquina (7) como consecuencia del cortocircuito, Ia cual corresponde con Ia frecuencia de giro del generador. Con el fin de que el tiempo de extinción de dicho transitorio sea mínimo y así cumplir con los requerimientos normativos actuales es necesario amortiguar las oscilaciones de flujo (figura 3) mediante mecanismos de amortiguación incluidos en el modelo de control (Figura 7).
Dichos mecanismos de amortiguación se justifican a continuación:
Las ecuaciones de Ia máquina asincrona una vez desarrolladas en dos ejes se pueden resumir en
Vrd = k(Ird) + Kl* Lms * d lmsd _ (Ws - W)(Kl2 U fr * Irq + Kl* Lms * Imsg) (1 ) dt Vrq = k(Irq) + Kl* Lms * d lmsq + (Ws - W)(Kl2 V fr * Irq + Kl* Lms * Im^) (2) dt
Donde K1 es Ia relación de transformación entre estator y rotor y K representa un término que es proporcional a Ia corriente rotórica.
Se observa que el sistema va a depender por un lado de las corrientes rotóricas y por otro lado de Ia corriente de magnetización con una oscilación función de Ia velocidad del generador. Por tanto, es necesario que el sistema de control tenga en cuenta dichas oscilaciones, con el fin de poder mantener el sistema controlado.
El sistema de control del generador (7), como se ve en Ia figura 7, está formado por dos lazos de potencia que a su vez llevan integrados dos lazos de corriente. Cada lazo está formado por un regulador Pl, de forma que se tienen cuatro reguladores Pl: dos Pl de potencia (P, Q) (9 y 11 ) y dos Pl de corriente (Id, Iq) (10 y 12). Los reguladores de potencia generan las consignas de corriente (Sp_Irot_d, Sp_lrot_q) en los ejes 'd' y ¡q' (figura 4), y los reguladores de corriente generan las consignas de tensión (Sp_Vd, Sp_Vq) a imponer en el rotor del generador en los ejes 'd' y 'q' (figura 4).
Por tanto, con el fin de amortiguar dichas oscilaciones de flujo
(figura 3), se sumarán en contrafase, a Ia salida de cada regulador de corriente un término proporcional a Io indicado en las ecuaciones (1 ) (2) en sus segundos términos y que contemple tan solo las oscilaciones que aparecen en Ia corriente de magnetización (Elementos 13 y 14 de Ia figura 7).
De esta forma, se puede retomar el control de Ia máquina a los niveles de Ia corriente máxima del convertidor (2) y disminuir por otro lado el tiempo de actuación del estado 1 que se ha explicado anteriormente.
2 Tratamiento de Ia oscilación debido a Ia asimetría de Ia falta.
Un segundo efecto que se produce en las variables eléctricas del sistema es Ia oscilación como consecuencia de Ia asimetría de Ia propia falta. El efecto ya explicado anteriormente genera una oscilación de frecuencia 2*Fs (Amplitud NQ y ND de Ia figura 4) que es necesaria tenerla en cuenta desde el punto de vista de Ia regulación de Ia máquina. En el caso de no disponer de un ancho de banda Io suficientemente alto, dicha frecuencia no debe regularse. Por tanto, el sistema de control debe ignorar dicha frecuencia, dejándola circular.
Para ello, es necesario Io siguiente: Un primer paso es Ia detección de Ia asimetría de Ia falta. Para ello, a partir de las lecturas de las tensiones de cada una de las fases se calcula
Vr Vr Vs
1 < Factor Ó 1 < Factor Ó 1 < Factor
Vs Vt Vt Si se produce alguna de esas condiciones se considera que Ia falta es asimétrica. La variable FACTOR es una variable ajustable, a partir de Ia cual se considera que se tiene una falta asimétrica. El cálculo de Ia asimetría debe de realizarse durante el estado 1 , de forma que cuando el inversor retome el control del generador dicho cálculo se haya realizado.
Una vez realizado dicho cálculo los lazos de corriente (10, 12) no deben de tener en cuenta dichas frecuencias, para ello un filtro sintonizado a 2*Fs (15, 16) debe de aplicarse a Ia salida de los reguladores de corriente. Dicho filtro debe de aplicarse cuando Ia falta producida es asimétrica.
La invención descrita aporta una solución integral que permite proteger y mantener el control del generador asincrono ante Ia ocurrencia de faltas simétricas y en especial ante faltas asimétricas (bifásicas ó monofásicas).
LISTADO DE TÉRMINOS
Vrd = Tensión rotórica de Ia máquina referida al eje 'd'. k(Ird) = Constante dependiente de Ia corriente rotórica referida al eje 'd'
Kl= Constante proporcional. Lms = Inductancia magentizante.
— =Derivada de Ia corriente de magnetización referida al eje dt
'd', respecto del tiempo
Ws = Velocidad eléctrico angular síncrona W- Velocidad eléctrica de Ia máquina. fr = fecuencia de rotor Irq = Corriente de rotor referida al eje 'q'
Imsq = Corriente de magnetización referida al eje 'q'. Vrq = Tensión rotórica de Ia máquina referida al eje 'q'. k(Irq )= Constante dependiente de Ia corriente rotórica referida al eje [q' msq = Derivada de Ia corriente de magnetización referida al eje dt
'q', respecto del tiempo SP_Q = Consigna de Potencia Reactiva
AV_Q = Valor actual de Ia Potencia Reactiva SP_lrot_d = Consigna de Ia corriente rotórica referida al eje 'd\ AV_lrot_d = Valor actual de Ia corriente rotórica referida al eje 'd'. lm_d = Corriente de magnetización referida al eje 'd' lrot_d = Corriente rotórica referida al eje 'd1
SP_Vd = Consigna de Tensión referida al eje 'd' SP_Vq = Consigna de tensión referida al eje 'qJ SP_P = Consigna de Potencia Activa AV_P= Valor Actual de Ia potencia activa AV_lrot_q = Valor actual de Ia corriente rotórica referida al eje 'q!
SP_lrot_q = Consigna de Ia corriente rotórica referida al eje 'q'

Claims

R E I V I N D I C A C I O N E S
1.- Un sistema dθ control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono de los que están doblemente alimentados, cuyo estator se conecta a Ia red eléctrica y consta de:
- un inversor trifásico (2),
- un circuito intermedio del convertidor (3) formado por un BUS de continua y que sirve para acoplar el inversor (2) con
- un rectificador trifásico (1 ), - un crowbar (5) para poder mantener el control del generador (7) durante las faltas simétricas y asimétricas y evitar su desconexión de Ia red eléctrica,
- una unidad de control CCU (8) encargada de gobernar los elementos del sistema; caracterizado porque a) se dispone en conexión con el crowbar (5) de un bloque controlador (6) de absorción de energía inicial aparecida ante Ia presencia de una falta y que consta de ramas en paralelo compuestas por a-i) dispositivos resistivos (R) para cortocircuitar el rotor del generador (7) a2) dispositivos electrónicos (Q) con función interrupción para controlar a dichos medios resistivos; b) Ia unidad de control (8) consta de medios para captar, al menos, las siguientes variables eléctricas: Ia tensión de red, corriente de rotor, corriente de estator del generador (7), tensión del circuito intermedio
(3), tensión de crowbar (5) y de las variables del bloque controlador (6) y de medios para que si alguna de dichas variables eléctricas se sale de unos límites de trabajo preestablecidos, se activen los medios resistivos (8), de forma que Ia tensión rotórica no alcance un valor que permita Ia circulación de corriente del rotor al circuito intermedio (3) del convertidor.
2.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación anterior, caracterizado porque Ia unidad de control (8) dispone de medios programados de control que constan de dos lazos de potencia que a su vez llevan integrados dos lazos de corriente, constando cada lazo de patencia de un regulador de potencia Pl (9), (11 ) y cada lazo de corriente de un regulador de corriente Pl (10), (12), generando dichos reguladores de potencia las consignas de corriente (Sp-lrot-d, Sp-lrot-q) y los reguladores de corriente generando las consignas de tensión (Sp-Vd, Sp-Vq) a imponer en el rotor del generador (7).
3.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación 2, caracterizado porque Ia unidad de control (8) dispone de medios de programa para que siendo las ecuaciones de funcionamiento del generador
(7)
Vrd = k(Ird) + Kl*Lms *^^ -(Ws -W)(Kl2L'fr*Irq + Kl*Lms *ϊmsq) (ϊ ) dt
Vrd = k(Irq) + Kl* Lms * É^l +s _ W)(Kl2 V fr * Irq + Kl * Lms * Imsq) (2) di y para amortiguar las oscilaciones de flujo ocasionadas por una falta se suman en contrafase, a Ia salida de cada regulador de corriente un término proporcional a Io indicado en las ecuaciones (1 ), (2) en sus segundos términos y que contemple tan solo las oscilaciones que aparecen en Ia corriente de magnetización (13), (14).
4.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación 2, caracterizado porque Ia unidad de control (8) dispone de medios de programa para que cuando el bloque controlador (6) absorbe Ia energía inicial, calcula
Vr Vr . Vs
1 < Factor Ó 1 < Factor ó 1 < Factor
Vs Vt Vt
y decide que si se produce alguna de esas condiciones se considera que Ia falta es asimétrica y que los lazos de corriente (10), (12) no tengan en cuenta las correspondientes frecuencias, para Io que dispone de un filtro sintonizado a 2*Fs (15), (16) aplicado a Ia salida de los reguladores de corriente y de forma que cuando el inversor trifásico (2) retome el control del generador (7) dicho calculo se haya realizado.
5.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación 1 , caracterizado porque consta de medios de control incorporados a Ia salida de los reguladores de corriente y/o de potencia que tiene como objeto el minimizar el tiempo de absorción del transitorio de energía inicial, mediante
Ia actuación del Crowbar.
6.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación 5, caracterizado porque los medios de control constan de un filtro ó un sistema de orden complejo más una ganancia, cuya entrada puede ser Ia corriente del rotor ó Ia corriente de estator ó Ia corriente de flujo, y cuya salida se suma ó resta a Ia salida de los reguladores de corriente.
7.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación 6, caracterizado porque consta de una ganancia que puede ser fija, variable ó dependiente de los parámetros eléctricos del sistema.
8.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicaciones 5, 6 y 7, caracterizado porque dispone de un mecanismo de control capaz de minimizar el tiempo de absorción del transitorio de energía, de forma que se retoma el control del generador por encima de Ia corriente nominal del convertidor.
9.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación 1 , caracterizado porque consta de medios de control que tiene como objeto el mantenimiento del control de forma permanente durante las faltas asimétricas.
10.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación 9, caracterizado porque se aplican los medios de control a las consignas de tensión que aplican los reguladores de corriente.
11.- Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asincrono, según reivindicación 8, caracterizado porque el mecanismo de control está formado por un filtro de tipo Pasa bajo, ó pasa alto ó pasa banda ó por una función de transferencia de estructura compleja.
PCT/ES2006/000254 2005-11-21 2006-05-17 Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asíncrono WO2007057480A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES06755341T ES2704407T3 (es) 2005-11-21 2006-05-17 Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asíncrono
JP2008541767A JP2009516998A (ja) 2005-11-21 2006-05-17 非同期型発電機のための対称および非対称故障に対する保護およびコントロールのためのシステム
CA2630232A CA2630232C (en) 2005-11-21 2006-05-17 A control and protection system for asynchronous generators in the event of symmetrical and asymmetrical faults
DK06755341.2T DK1965075T3 (en) 2005-11-21 2006-05-17 SYSTEM FOR MANAGING AND PROTECTING SYMMETRIC AND ASYMMETRIC ERRORS IN ASYNCHRONIC GENERATORS
EP06755341.2A EP1965075B1 (en) 2005-11-21 2006-05-17 System for controlling and protecting against symmetrical and asymmetrical faults for asynchronous-type generators
US12/085,194 US7939954B2 (en) 2005-11-21 2006-05-17 System for controlling and protecting against symmetrical and asymmetrical faults for asynchronous-type generators
AU2006314464A AU2006314464B2 (en) 2005-11-21 2006-05-17 System for controlling and protecting against symmetrical and asymmetrical faults for asynchronous-type generators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200502844A ES2296483B1 (es) 2005-11-21 2005-11-21 Un sistema de control y proteccion ante faltas simetricas y asimetricas, para generadores de tipo asincrono.
ESP200502844 2005-11-21

Publications (1)

Publication Number Publication Date
WO2007057480A1 true WO2007057480A1 (es) 2007-05-24

Family

ID=38048314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000254 WO2007057480A1 (es) 2005-11-21 2006-05-17 Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asíncrono

Country Status (9)

Country Link
US (1) US7939954B2 (es)
EP (1) EP1965075B1 (es)
JP (1) JP2009516998A (es)
AU (1) AU2006314464B2 (es)
CA (1) CA2630232C (es)
DK (1) DK1965075T3 (es)
ES (2) ES2296483B1 (es)
TR (1) TR201903221T4 (es)
WO (1) WO2007057480A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011026250A1 (de) 2009-09-03 2011-03-10 Ids Holding Ag Generatorsystem mit direkt netzgekoppeltem generator und verfahren zum durchfahren von netzstörungen
JP2011523341A (ja) * 2008-06-09 2011-08-04 ロールス・ロイス・ピーエルシー 同期発電機
WO2011157862A1 (es) 2010-06-14 2011-12-22 Ingeteam Energy, S. A. Sistema de generación eléctrica resistente a huecos de tensión
CN102444553A (zh) * 2010-09-30 2012-05-09 通用电气公司 用于确认风力涡轮机性能不足的系统和方法
EP2102495B1 (de) 2006-11-20 2017-01-11 Senvion GmbH Windenergieanlage mit gegensystemregelung und betriebsverfahren
CN106329577A (zh) * 2016-09-05 2017-01-11 易事特集团股份有限公司 无刷双馈电机的并网控制系统

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977925B2 (en) * 2008-04-04 2011-07-12 General Electric Company Systems and methods involving starting variable speed generators
AU2008363217A1 (en) * 2008-10-20 2010-04-29 Woodward Kempen Gmbh Protection system of a doubly-fed induction machine
DE102008037566A1 (de) * 2008-11-19 2010-05-27 Woodward Seg Gmbh & Co. Kg Vorrichtung zur Regelung einer doppelt gespeisten Asynchronmaschine
US9065329B2 (en) * 2009-01-12 2015-06-23 Vestas Wind Systems A/S Reconfigurable power converter module
WO2010082317A1 (ja) * 2009-01-14 2010-07-22 東芝三菱電機産業システム株式会社 ダブルフェッド誘導発電機を備えた風力発電システムに用いられる保護回路
EP2379880A1 (de) * 2009-01-20 2011-10-26 Powerwind Gmbh Verfahren und schaltungsanordnung zur speisung eines mehrphasigen elektrischen netzes
EP2394054A1 (de) * 2009-02-09 2011-12-14 Powerwind Gmbh Verfahren zur speisung eines mehrphasigen elektrischen netzes und zugehörige schaltungsanordnung
CH701753A1 (de) * 2009-09-03 2011-03-15 Ids Holding Ag Generatorsystem mit direkt netzgekoppeltem Generator und Verfahren zum Durchfahren von Netzstörungen.
WO2011045263A1 (en) * 2009-10-12 2011-04-21 Vestas Wind Systems A/S Damping of drive train oscillations by dc-link absorption means
US9478987B2 (en) * 2009-11-10 2016-10-25 Siemens Aktiengesellschaft Power oscillation damping employing a full or partial conversion wind turbine
ES2459940T5 (es) * 2010-04-29 2017-07-24 Ingeteam Power Technology, S.A. Sistema y procedimiento de control de un generador eléctrico
JP5589085B2 (ja) * 2010-09-22 2014-09-10 東芝三菱電機産業システム株式会社 電力変換装置
EP2463976A1 (en) * 2010-12-08 2012-06-13 Siemens Aktiengesellschaft Circuit and method for regulating a DC voltage and power con-verter
US8570003B2 (en) 2011-04-13 2013-10-29 Rockwell Automation Technologies, Inc. Double fed induction generator converter and method for suppressing transient in deactivation of crowbar circuit for grid fault ridethrough
US9041234B2 (en) 2012-03-26 2015-05-26 Rockwell Automation Technologies, Inc. Double fed induction generator (DFIG) converter and method for improved grid fault ridethrough
EP2662561A1 (en) * 2012-05-09 2013-11-13 Siemens Aktiengesellschaft Method and arrangement for damping a shaft oscillation
DK2672624T3 (en) * 2012-06-05 2014-12-01 Siemens Ag Power regulator and generator system
CN103066622B (zh) * 2012-12-28 2015-06-24 东方电气集团东方汽轮机有限公司 一种新型双馈风力发电机组及其运行方式
EP3004637B2 (en) 2013-06-04 2020-12-02 General Electric Company Methods for operating wind turbine system having dynamic brake
US8975768B2 (en) 2013-06-05 2015-03-10 General Electic Company Methods for operating wind turbine system having dynamic brake
US9231509B2 (en) 2013-11-25 2016-01-05 General Electric Company System and method for operating a power generation system within a power storage/discharge mode or a dynamic brake mode
ES2950289T3 (es) 2013-12-18 2023-10-06 Ingeteam Power Tech Sa Dispositivo de impedancia variable para una turbina eólica
US9337685B2 (en) 2013-12-23 2016-05-10 General Electric Company Optimized filter for battery energy storage on alternate energy systems
US9467081B2 (en) * 2014-09-29 2016-10-11 Ingeteam Power Technology, S.A. Protection system for a power converter connected to a doubly fed induction generator
JP6697578B2 (ja) * 2016-04-19 2020-05-20 インジティーム パワー テクノロジー,ソシエダッド アノニマIngeteam Power Technology,S.A. 電力変換システムの交流側用のフィルタリング方法および電力変換システム
US9847733B2 (en) 2016-05-12 2017-12-19 Rockwell Automation Technologies, Inc. Power conversion system with DC bus regulation for abnormal grid condition ride through
CN110080944B (zh) * 2018-01-26 2021-09-24 通用电气公司 风力发电系统及其控制方法
CN117578596B (zh) * 2024-01-16 2024-03-29 湖南大学 一种直驱永磁风力发电机组连续故障穿越控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812729A (en) * 1986-08-19 1989-03-14 Hitachi Ltd. Protecting apparatus for secondary excitation type variable speed AC generator/motor
JPH0767393A (ja) * 1993-08-24 1995-03-10 Tokyo Electric Power Co Inc:The 可変速揚水発電システムの過電圧保護装置
WO2003065567A1 (de) 2002-01-29 2003-08-07 Vestas Wind Systems A/S Schaltungsanordnung zum einsatz bei einer windenergieanlage
WO2004067958A1 (en) 2003-01-24 2004-08-12 General Electric Company Wind turbine generator with a low voltage ride through controller and a method for controlling wind turbine components
WO2004070936A1 (en) * 2003-02-07 2004-08-19 Vestas Wind Systems A/S Method for controlling a power-grid connected wind turbine generator during grid faults and apparatus for implementing said method
WO2004091085A1 (en) 2003-04-08 2004-10-21 Abb Oy Configuration and method for protecting converter means
EP1499009A1 (en) * 2003-07-15 2005-01-19 Gamesa Eolica, S.A. (Sociedad Unipersonal) Control and protection of a doubly-fed induction generator system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US116476A (en) * 1871-06-27 Improvement in street-lamps
US237678A (en) * 1881-02-15 Grain-separator
PT1384002E (pt) * 2001-04-20 2010-10-11 Baw Gmbh Processo para exploração de uma instalação de energia eólica
US7411309B2 (en) * 2003-05-02 2008-08-12 Xantrex Technology Inc. Control system for doubly fed induction generator
US7233129B2 (en) * 2003-05-07 2007-06-19 Clipper Windpower Technology, Inc. Generator with utility fault ride-through capability
DK1752660T3 (da) * 2005-08-12 2013-06-17 Gen Electric Beskyttelsesindretning mod overspænding til en vindmølle
US7423412B2 (en) * 2006-01-31 2008-09-09 General Electric Company Method, apparatus and computer program product for injecting current
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7622815B2 (en) * 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7709972B2 (en) * 2007-08-30 2010-05-04 Mitsubishi Heavy Industries, Ltd. Wind turbine system for satisfying low-voltage ride through requirement

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812729A (en) * 1986-08-19 1989-03-14 Hitachi Ltd. Protecting apparatus for secondary excitation type variable speed AC generator/motor
JPH0767393A (ja) * 1993-08-24 1995-03-10 Tokyo Electric Power Co Inc:The 可変速揚水発電システムの過電圧保護装置
WO2003065567A1 (de) 2002-01-29 2003-08-07 Vestas Wind Systems A/S Schaltungsanordnung zum einsatz bei einer windenergieanlage
US20050116476A1 (en) * 2002-01-29 2005-06-02 Lorenz Feddersen Circuit to be used in a wind power plant
WO2004067958A1 (en) 2003-01-24 2004-08-12 General Electric Company Wind turbine generator with a low voltage ride through controller and a method for controlling wind turbine components
WO2004070936A1 (en) * 2003-02-07 2004-08-19 Vestas Wind Systems A/S Method for controlling a power-grid connected wind turbine generator during grid faults and apparatus for implementing said method
WO2004091085A1 (en) 2003-04-08 2004-10-21 Abb Oy Configuration and method for protecting converter means
US20050237678A1 (en) * 2003-04-08 2005-10-27 Reijo Virtanen Configuration and method for protecting converter means
EP1499009A1 (en) * 2003-07-15 2005-01-19 Gamesa Eolica, S.A. (Sociedad Unipersonal) Control and protection of a doubly-fed induction generator system
WO2005015730A1 (en) 2003-07-15 2005-02-17 Gamesa Eolica, S.A., Sociedad Unipersonal Control and protection of a doubly-fed induction generator system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2102495B1 (de) 2006-11-20 2017-01-11 Senvion GmbH Windenergieanlage mit gegensystemregelung und betriebsverfahren
JP2011523341A (ja) * 2008-06-09 2011-08-04 ロールス・ロイス・ピーエルシー 同期発電機
WO2011026250A1 (de) 2009-09-03 2011-03-10 Ids Holding Ag Generatorsystem mit direkt netzgekoppeltem generator und verfahren zum durchfahren von netzstörungen
WO2011157862A1 (es) 2010-06-14 2011-12-22 Ingeteam Energy, S. A. Sistema de generación eléctrica resistente a huecos de tensión
CN102444553A (zh) * 2010-09-30 2012-05-09 通用电气公司 用于确认风力涡轮机性能不足的系统和方法
CN102444553B (zh) * 2010-09-30 2015-09-23 通用电气公司 用于确认风力涡轮机性能不足的系统和方法
CN106329577A (zh) * 2016-09-05 2017-01-11 易事特集团股份有限公司 无刷双馈电机的并网控制系统
CN106329577B (zh) * 2016-09-05 2019-02-12 易事特集团股份有限公司 无刷双馈电机的并网控制系统

Also Published As

Publication number Publication date
AU2006314464A8 (en) 2009-07-02
JP2009516998A (ja) 2009-04-23
ES2704407T3 (es) 2019-03-18
CA2630232C (en) 2012-09-18
AU2006314464B2 (en) 2011-10-13
DK1965075T3 (en) 2019-04-01
AU2006314464A1 (en) 2007-05-24
ES2296483A1 (es) 2008-04-16
TR201903221T4 (tr) 2019-03-21
EP1965075A4 (en) 2017-06-07
CA2630232A1 (en) 2007-05-24
ES2296483B1 (es) 2009-03-01
EP1965075A1 (en) 2008-09-03
EP1965075B1 (en) 2018-12-12
US7939954B2 (en) 2011-05-10
US20090273185A1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
WO2007057480A1 (es) Un sistema de control y protección ante faltas simétricas y asimétricas, para generadores de tipo asíncrono
Geng et al. Synchronization and reactive current support of PMSG-based wind farm during severe grid fault
ES2436650T3 (es) Sistema para caídas de tensión para un aerogenerador de velocidad variable que tiene una máquina excitatriz y un convertidor de potencia no conectado a la red
US9461573B2 (en) Fault handling system for doubly fed induction generator
ES2622189T3 (es) Dispositivo de conversión de energía
ES2730573T3 (es) Procedimiento y dispositivo para inyectar intensidad reactiva durante un hueco de tensión de red
ES2743177T3 (es) Equilibrado de corriente reactiva entre un estator de DFIG y un inversor de lado de red de distribución
Chen et al. Addressing protection challenges associated with Type 3 and Type 4 wind turbine generators
Noureldeen Behavior of DFIG wind turbines with crowbar protection under short circuit
Sava et al. Comparison of active crowbar protection schemes for DFIGs wind turbines
Villanueva et al. Grid-voltage-oriented sliding mode control for DFIG under balanced and unbalanced grid faults
Huang et al. Fault ride-through configuration and transient management scheme for self-excited induction generator-based wind turbine
US11056885B2 (en) Method of providing power support to an electrical power grid
Jin et al. DVR control of DFIG for compensating fault ride-through based on stationary and synchronous reference frame
US11146166B2 (en) Modular multi-level converter with full-bridge cell fault current blocking for wind-turbines
Jerin et al. FRT Capability in DFIG based wind turbines using DVR with Combined Feed-Forward and Feed-Back Control
ES2533471T3 (es) Disposición de circuito para su uso en un aerogenerador
WO2012117133A1 (es) Controlador de admitancia virtual basado en convertidores estáticos de potencia
WO2015125377A1 (ja) 電力変換装置および電力変換装置の制御方法
ES2584535B2 (es) Método y sistema para el control de tensión y frecuencia en una red aislada
JP4034458B2 (ja) 自励式交直変換器制御装置および遮断器回路制御装置
Ngom et al. An improved control for DC-link fluctuation during voltage dip based on DFIG
ES2327021A1 (es) Sistema y procedimiento para evitar la desconexion de un parque de generadores de energia electrica debida a huecos de tension en la red.
WO2011018542A2 (es) Método para el control de un sistema de conversión de energía
Yang et al. Fault ride-through of doubly-fed induction generator with converter protection schemes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2630232

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12085194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/006504

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008541767

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1032/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006314464

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006755341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006314464

Country of ref document: AU

Date of ref document: 20060517

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006314464

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006755341

Country of ref document: EP