WO2007054169A1 - Fluidpumpe - Google Patents

Fluidpumpe Download PDF

Info

Publication number
WO2007054169A1
WO2007054169A1 PCT/EP2006/009761 EP2006009761W WO2007054169A1 WO 2007054169 A1 WO2007054169 A1 WO 2007054169A1 EP 2006009761 W EP2006009761 W EP 2006009761W WO 2007054169 A1 WO2007054169 A1 WO 2007054169A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing part
pump
stator
motor housing
fluid pump
Prior art date
Application number
PCT/EP2006/009761
Other languages
English (en)
French (fr)
Inventor
Albert Genster
Original Assignee
Pierburg Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg Gmbh filed Critical Pierburg Gmbh
Priority to CN2006800506623A priority Critical patent/CN101356374B/zh
Priority to JP2008539272A priority patent/JP2009515084A/ja
Priority to US12/093,419 priority patent/US20110164995A1/en
Priority to EP06806138A priority patent/EP2002123B1/de
Priority to AT06806138T priority patent/ATE524656T1/de
Publication of WO2007054169A1 publication Critical patent/WO2007054169A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/528Casings; Connections of working fluid for axial pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/548Specially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps

Definitions

  • the invention relates to a fluid pump for internal combustion engines with an electric motor having a rotor arranged in a motor housing and a stator, wherein the rotor is at least rotationally fixed on a drive shaft, an impeller which is mounted on the drive shaft, at least one stator, which is arranged in the flow direction of the fluid to be conveyed behind the impeller, and a pump housing, which surrounds the motor housing, the impeller and the stator and on which at the axial ends opposite a discharge nozzle and a suction nozzle are formed.
  • Fluid pumps for internal combustion engines are used in particular as coolant pumps in the cooling circuit. Whereas in the past there was a direct coupling to the engine speed and the pumps were driven by belt drives or chain drives, in newer engines variable speed electric coolant pumps with split tubes are increasingly used to realize a modern heat management. An abundance in the flow rate can thus be prevented, so that, for example, a faster heating of the internal combustion engine after the cold start is possible.
  • the flow rate can be regulated according to the actually required cooling capacity.
  • Such a pump is known for example from MTZ no.11 Jg.2005 (S. 872-877).
  • This electric coolant pump comprises an EC motor as a drive unit and has a pump head with axial inlet and tangential outlet.
  • the components used here and in particular housing parts are relatively large for the power consumption of the pump, since a relatively large drive motor must be used.
  • an electric fluid pump is disclosed in Halbaxialbauweise, with the same power consumption of the electric motor, this can be made smaller to achieve higher speeds, so that with smaller size equal flow rates can be achieved.
  • It has a completely encapsulated electric motor, on whose outer side a stator is formed. In the flow direction behind the stator, however, obstacles to carry out the electrical contact with the electronics unit arise.
  • the impeller side the entire motor is sealed by seals against the environment. To what extent such a seal on the rotating parts is sufficient at least questionable.
  • the pump housing is made in two parts and has different gradations and through holes for the electrical contact. Depending on the desired maximum flow rate different electric motors and housings have to be designed. Complete twist freedom is probably not achieved due to the relatively short vanes. Also, the pressure loss through the feedthroughs of the electrical contact is relatively high, so that the gain in terms of power consumption of the electric motor is partially counteracted by the pressure losses occurring.
  • This object is achieved in that support ribs between a radially outer pump housing part and a first radially inner motor housing part are arranged, which surrounds the electric motor radially, wherein the radially outer pump housing part with the first motor housing part and the support ribs is integrally formed.
  • the radially outer pump housing part is cylindrical, whereby the connection to a suction-side and a pressure-side pump housing part is easy to produce and low losses occur.
  • the support ribs are preferably shaped in such a way that they serve as a stator of the fluid pump. As a result, the support ribs assume the additional function of converting the tangential flow component into an axial flow component without higher pressure losses. The efficiency is increased and components saved.
  • the support ribs have such a width that an electrical contact element of an electronic unit to the stator winding through a hole in one or more of the support ribs is feasible is particularly advantageous. This reduces the flow resistance and increases the efficiency of the pump, since internal internals are omitted in the flow.
  • a suction-side pump housing part which widens in the flow direction is formed integrally with a housing part of an upstream valve. It can thus be achieved a modular design with upstream bypass or thermostatic valves, which in turn reduces parts and costs are saved.
  • the first motor housing part limits the electric motor on the suction side.
  • the production remains cost-effective, for example, in aluminum die casting, again the number of parts is low, the sensitivity to corrosion is low and assembly errors are avoided.
  • the figure shows a side view of a fluid pump according to the invention in a sectional representation.
  • the fluid pump shown in the figure which is particularly suitable as a coolant pump in internal combustion engines, is driven by an electronically commutated electric motor 1, which consists of a stator 2 and a rotor 4 arranged on a drive shaft 3.
  • an impeller 5 is arranged, which is designed in a semi-axial design and by the rotation of the fluid to be delivered, in particular a coolant from a suction nozzle 6 is conveyed substantially axially through the fluid pump to a discharge nozzle 7.
  • the electric motor 1 is arranged in a motor housing which consists of a first suction-side motor housing part 8 and a second pressure-side motor housing part 9.
  • the suction-side motor housing part 8 Through the suction-side motor housing part 8, the drive shaft 3 is guided, on which the impeller 5 is arranged.
  • the suction-side motor housing part 8 has a bore 10 in which a first bearing 11 for supporting the drive shaft 3 is arranged.
  • the spacer serves to extend the distance of the first bearing 11 to a second bearing 15, whereby an angular error in the manufacture of the bore 10 for receiving the bearing can be better compensated.
  • a rotor laminated core 16 is arranged on the shaft, which has slits extending in the axial direction for receiving magnets 17, which correspond in a known manner to a stator winding 18.
  • the rotor 4 is bounded axially and radially by a capsule 19.
  • the stator winding 18 is wound on an insulating body 20 and axially limited in a known manner a stator lamination 21.
  • This Statorblechmulti 21 is to close of the magnetic circuit positively connected to a return plate 22.
  • This return plate 22 abuts against a stop 23, which is formed on an inner surface of the first suction-side motor housing part 8.
  • the rotor 4 is separated from the stator 2 by a split tube 24, which rests on the suction side of the pump in a corresponding receiving opening 25 of the suction-side motor housing part 8 and the opposite axial end is in turn arranged in a corresponding receiving opening 26 of the pressure-side motor housing part 9.
  • the stator 2 with its sensitive winding 18 thus lies in a dry space separated by the two motor housing parts 8 and 9 and the can 24.
  • a closure member 27 is arranged, in which the second bearing 15 is arranged for mounting the drive shaft 3. Axially, this closure member 27 is secured by the pressure-side motor housing part 9, which is arranged with the interposition of a seal 28 in a receiving opening 29 of the suction-side motor housing part 8.
  • the support ribs 31 are shaped such that they also serve as a stator, so that no additional stator immediately behind the impeller 5 is necessary. This allows a simple one-piece production of the suction-side motor housing 8 with the support ribs and a cylindrical ra- dial outer pump housing part 32. This pump housing part 32 surrounds the radially inner motor housing part 8 and the entire electric motor. 1
  • the suction side in the flow direction expanding pump housing part 33 comprises the suction nozzle 6 which is designed as a cylindrical portion 35 and an adjoining widening portion 36.
  • the semi-axial impeller 5 of the fluid pump is arranged in the transition region 37 between the first portion 35 and the second portion 36.
  • the expanding section 36 is followed by another short cylindrical section 38 of larger diameter, in order to achieve a clean transition to the cylindrical pump housing part 32.
  • grooves 39 are formed in the identical pump housing parts 33, 34, into which radial ends 40 of return vanes 41 engage.
  • These return blades 41 serve as a Nachleitapparat 42 by means of which behind the discharge nozzle 7 a completely twist-free flow is achieved.
  • This Nachleitapparat 42 is formed on a surface 43 of the pressure-side motor housing part 9 and is therefore necessary that the serving as a stator support ribs 31 are made relatively short and in this area of the fluid pump complete swirl reduction is not achieved in the rule.
  • the pressure-side motor housing part 9 can be produced in plastic, while the suction-side motor housing part is made as far as possible in aluminum and is therefore more expensive.
  • the fluid to be delivered in particular the coolant
  • the impeller 5 which consists of a plurality of impeller blades 44
  • a part of the fluid flows behind the impeller 5 through holes 45 which are formed in the suction-side motor housing part 8. Another part of the fluid also flows behind the impeller 5 to the drive shaft 3 and here between the first bearing 11 and the drive shaft 3, so that the existing sliding bearing is sufficiently lubricated.
  • coolant is in the rotor chamber, which in turn is continued between the drive shaft 3 and the second bearing 15 and by non-visible holes in the closure member 27 in a space 46 behind it.
  • This space 46 is connected via a further bore 47, which extends axially through the pressure-side motor housing part 9, with the space behind it. This results in both a lubrication of the bearings 11, 15 as well as a possibility for cooling and removal of possibly existing amounts of air in the rotor chamber.
  • This semi-axial pump is characterized in particular by the fact that it is very small to build, since the same power consumption an equal capacity with a smaller motor size and increased speed compared to known pumps can be achieved. This is achieved in particular by the extremely reduced pressure losses in such a design, but also by the semi-axial design.
  • the suction-side pump housing part 33 it is also conceivable, by the simplicity, in particular of the suction-side pump housing part 33, to carry this integrally with valve housing parts, so that the pump housing part 33 has, for example, a receptacle for a bypass or an integrated thermostatic valve. Also, parts of the housing of a sliding ring valve could be made in one piece with the suction-side pump housing part 33. It should be noted that the illustrated embodiment is merely a possible embodiment of the invention, the construction of which is subject to change without departing from the scope of the claims.

Abstract

Es wird eine Ausführung einer elektrischen Fluidpumpe in Halbaxialbauweise vorgeschlagen, bei der Stützrippen (31) zwischen einem radial außen liegendem Pumpengehäuseteil (32) und einem ersten radial innenliegenden Motorgehäuseteil (8) angeordnet sind, welches den Elektromotor (1) radial umgibt, wobei das radial außen liegende Pumpengehäuseteil (32) mit dem ersten Motorgehäuseteil (8) und den Stützrippen (31) einstückig ausgebildet ist. Hierdurch können im Vergleich zu bekannten Ausführungen geringe Wandstärken des Pumpengehäuses verwirklicht werden, da durch die Stützrippen eine ausreichende Festigkeit gegeben ist. Die Teilanzahl und das Gewicht werden somit reduziert.

Description

Pierburg GmbH, 41460 Neuss
B E S C H R E I B U N G
Fluidpumpe
Die Erfindung betrifft eine Fluidpumpe für Verbrennungskraftmaschinen mit einem Elektromotor, der einen in einem Motorgehäuse angeordneten Rotor und einen Sta- tor aufweist, wobei der Rotor zumindest drehfest auf einer Antriebswelle angeordnet ist, einem Laufrad, welches auf der Antriebswelle befestigt ist, zumindest einem Leitrad, welches in Strömungsrichtung des zu fördernden Fluides hinter dem Laufrad angeordnet ist, und einem Pumpengehäuse, welches das Motorgehäuse, das Laufrad und das Leitrad umgibt und an dem an den axialen Enden gegenüberliegend ein Druckstutzen und ein Saugstutzen ausgebildet sind.
Fluidpumpen für Verbrennungskraftmaschinen werden insbesondere als Kühlmittelpumpen im Kühlkreislauf eingesetzt. Während in der Vergangenheit eine direkte Kopplung zur Motordrehzahl vorhanden war und die Pumpen über Riemen- oder Kettentriebe angetrieben wurde werden in neueren Motoren drehzahlregelbare elektrische Kühlmittelpumpen mit Spaltrohr verstärkt eingesetzt, um ein modernes Wärmemanagement zu verwirklichen. Ein Überfluss in der Förderleistung kann somit verhindert werden, so dass beispielsweise eine schnellere Aufheizung der Verbrennungskraftmaschine nach dem Kaltstart möglich ist. Die Fördermenge kann entspre- chend der tatsächlich benötigten Kühlleistung geregelt werden.
Eine derartige Pumpe ist beispielsweise aus der MTZ Nr.11 Jg.2005 (S. 872-877) bekannt. Diese elektrische Kühlmittelpumpe umfasst einen EC-Motor als Antriebsaggregat und weist einen Pumpenkopf mit axialem Eintritt und tangentialem Austritt auf. Die hier verwendeten Bauteile und insbesondere Gehäuseteile sind jedoch für die Leistungsaufnahme der Pumpe relativ groß, da ein relativ großer Antriebsmotor verwendet werden muss. In der US 2002/0106290 A1 wird daher eine elektrische Fluidpumpe in Halbaxialbauweise offenbart, mit der bei gleicher Leistungsaufnahme des Elektromotors, dieser zur Erreichung größerer Drehzahlen kleiner ausgeführt werden kann, so dass bei kleinerer Bauweise gleiche Fördermengen erreichbar sind. Er weist einen vollständig gekapselten Elektromotor auf, an dessen Außenseite ein Leitrad ausgebildet ist. In Strömungsrichtung hinter dem Leitrad entstehen jedoch Hindernisse zur Durchführung der elektrischen Kontaktierung zur Elektronikeinheit. An der Laufradseite ist der gesamte Motor über Dichtungen gegenüber der Umgebung abgedichtet. Inwieweit eine derartige Abdichtung an den sich drehenden Teilen ausreicht ist zumindest fraglich.
Das Pumpengehäuse ist zweiteilig ausgeführt und weist verschiedene Abstufungen und Durchgangslöcher für die elektrische Kontaktierung auf. Je nach gewünschter Höchstfördermenge sind verschiedene Elektromotoren und Gehäuse zu entwerfen. Eine vollständige Drallfreiheit wird wahrscheinlich aufgrund der relativ kurzen Leitschaufeln nicht erzielt. Auch ist der Druckverlust durch die Durchführungen der elektrischen Kontaktierung relativ hoch, so dass der Gewinn bezüglich der Leistungsaufnahme des Elektromotors durch die auftretenden Druckverluste zum Teil konterkariert wird.
Es ist daher Aufgabe der Erfindung, bei gleichbleibender Förderleistung die Größe der Pumpe und somit auch des Elektromotors zu reduzieren und Druckverluste zu vermeiden also den Wirkungsgrad der Pumpe zu erhöhen. Des weiteren soll das Gewicht der Pumpe und die Teileanzahl reduziert werden.
Diese Aufgabe wird dadurch gelöst, dass Stützrippen zwischen einem radial außen liegendem Pumpengehäuseteil und einem ersten radial innen liegenden Motorgehäuseteil angeordnet sind, welches den Elektromotor radial umgibt, wobei das radial außen liegende Pumpengehäuseteil mit dem ersten Motorgehäuseteil und den Stütz- rippen einstückig ausgebildet ist. Somit können im Vergleich zu bekannten Ausführungen geringe Wandstärken des Pumpengehäuses verwirklicht werden, da durch die Stützrippen eine ausreichende Festigkeit gegeben ist. Die Teileanzahl und das Gewicht werden somit reduziert. In einer weiterführenden Ausführungsform ist das radial außen liegende Pumpenge- häuseteil zylindrisch ausgebildet, wodurch der Anschluss zu einem saugseitigen und einem druckseitigen Pumpengehäuseteil einfach herstellbar ist und geringe Verluste auftreten.
Vorzugsweise sind die Stützrippen derart geformt sind, dass sie als Leitrad der FIu- idpumpe dienen. Hierdurch übernehmen die Stützrippen die zusätzliche Funktion der Umwandlung der Tangentialströmungskomponente in eine Axialströmungskompo- nente ohne höhere Druckverluste. Der Wirkungsgrad wird gesteigert und Bauteile eingespart.
Besonders vorteilhaft ist es, wenn die Stützrippen eine derartige Breite aufweisen, dass ein elektrisches Kontaktelement von einer Elektronikeinheit zur Statorwicklung durch eine Bohrung in einer oder mehrerer der Stützrippen führbar ist. Dies verringert den Strömungswiderstand und erhöht den Wirkungsgrad der Pumpe, da innere Einbauten in der Strömung wegfallen.
In einer besonderen Ausführungsform ist ein sich in Strömungsrichtung erweiterndes saugseitiges Pumpengehäuseteil einstückig mit einem Gehäuseteil eines vorgeschalteten Ventils ausgebildet. Es kann somit eine modulartige Bauweise mit vorgeschalteten Bypass- oder Thermostatventilen erzielt werden, wodurch wiederum Teile reduziert und Kosten eingespart werden.
Vorzugsweise begrenzt das erste Motorgehäuseteil den Elektromotor saugseitig. Die Herstellung bleibt dennoch beispielsweise im Aluminiumdruckguss kostengünstig möglich, wobei erneut die Teileanzahl gering ist, die Empfindlichkeit gegen Korrosion gering ist und Montagefehler vermieden werden.
Es wird somit eine Fluidpumpe geschaffen, welche eine geringe Teileanzahl und ein geringes Gewicht aufweist, leicht zu montieren ist, Strömungsverluste reduziert und so den Wirkungsgrad im Vergleich zu bekannten Pumpen steigert. Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird nachfolgend beschrieben.
Die Figur zeigt eine Seitenansicht einer erfindungsgemäßen Fluidpumpe in geschnit- tener Darstellung.
Die in der Figur dargestellte Fluidpumpe, welche sich insbesondere als Kühlmittelpumpe in Verbrennungskraftmaschinen eignet, wird von einem elektronisch kommu- tierten Elektromotor 1 angetrieben, der aus einem Stator 2 sowie einem auf einer An- triebswelle 3 angeordneten Rotor 4 besteht. Am axialen Ende der Antriebswelle 3 ist ein Laufrad 5 angeordnet, welches in halbaxialer Bauweise ausgeführt ist und durch dessen Drehung das zu fördernde Fluid, insbesondere ein Kühlmittel von einem Saugstutzen 6 im Wesentlichen axial durch die Fluidpumpe zu einem Druckstutzen 7 gefördert wird.
Der Elektromotor 1 ist in einem Motorgehäuse angeordnet, welches aus einem ersten saugseitigen Motorgehäuseteil 8 und einem zweiten druckseitigen Motorgehäuseteil 9 besteht. Durch das saugseitige Motorgehäuseteil 8 ist die Antriebswelle 3 geführt, auf der das Laufrad 5 angeordnet ist. Hierzu weist das saugseitige Motorge- häuseteil 8 eine Bohrung 10 auf, in der ein erstes Lager 11 zur Lagerung der Antriebswelle 3 angeordnet ist. Von der Saugseite aus betrachtet hinter dem ersten Lager 11 befindet sich ein keramisches Axialgleitlager 12 sowie eine Gummimanschette 13 und ein Distanzstück 14. Durch diesen Zusammenbau wird eine ausreichend schwingungsgedämpfte Lagerung der Laufradseite der Antriebswelle 3 des Elektro- motors 1 erreicht. Das Distanzstück dient zur Verlängerung des Abstandes des ersten Lagers 11 zu einem zweiten Lager 15, wodurch ein Winkelfehler bei der Fertigung der Bohrung 10 zur Aufnahme der Lager besser ausgeglichen werden kann. Wiederum hinter dem Distanzstück 14 ist auf der Welle ein Rotorblechpaket 16 angeordnet, welches in axialer Richtung verlaufende Schlitze zur Aufnahme von Mag- neten 17 aufweist, welche in bekannter Weise mit einer Statorwicklung 18 korrespondieren. Der Rotor 4 wird axial und radial durch eine Kapsel 19 begrenzt. Die Statorwicklung 18 ist auf einem Isolierkörper 20 gewickelt und begrenzt axial in bekannter Weise ein Statorblechpaket 21. Dieses Statorblechpaket 21 ist zum Schließen des magnetischen Kreises formschlüssig mit einem Rückschlussblech 22 verbunden. Dieses Rückschlussblech 22 liegt gegen einen Anschlag 23 an, der an einer Innenfläche des ersten saugseitigen Motorgehäuseteils 8 ausgebildet ist.
Der Rotor 4 ist vom Stator 2 durch ein Spaltrohr 24 getrennt, welches an der Saugseite der Pumpe in einer korrespondierenden Aufnahmeöffnung 25 des saugseitigen Motorgehäuseteils 8 anliegt und dessen entgegengesetztes axiales Ende wiederum in einer entsprechenden Aufnahmeöffnung 26 des druckseitigen Motorgehäuseteils 9 angeordnet ist. Der Stator 2 mit seiner empfindlichen Wicklung 18 liegt somit in ei- nem durch die beiden Motorgehäuseteile 8 und 9 sowie das Spaltrohr 24 abgetrennten trockenen Raum.
Am druckseitigen Ende des Spaltrohres 24 ist ein Verschlussteil 27 angeordnet, in dem das zweite Lager 15 zur Lagerung der Antriebswelle 3 angeordnet ist. Axial wird dieses Verschlussteil 27 durch das druckseitige Motorgehäuseteil 9 gesichert, welches unter Zwischenlage einer Dichtung 28 in einer Aufnahmeöffnung 29 des saugseitigen Motorgehäuseteils 8 angeordnet ist.
Die Kontaktierung der Statorwicklung 18 erfolgt über eine Bohrung 30, in radialer Richtung durch das druckseitige Motorgehäuseteil 9. Um Strömungsverluste durch derartige zusätzliche Einbauten zu verhindern, wie es aus dem Stand der Technik bekannt ist, wird diese Bohrung durch Stützrippen 31 geführt, welche zur ausreichenden Festigkeit und Befestigung eines Pumpengehäuses notwendig sind. Hierzu weisen die Stützrippen 31 eine ausreichende Breite auf und sind in einer Art Tragflä- chenform ausgeführt, so dass keine Querschnittsverengung entsteht. Durch die Bohrung 30 kann nun also ein nicht dargestelltes elektrisches Kontaktelement durch die Bohrung 30 zu einer ebenfalls nicht dargestellten Elektronikeinheit zur Ansteuerung des Motors 1 geführt werden.
In der dargestellten Ausführung sind die Stützrippen 31 derart geformt, dass sie gleichzeitig als Leitrad dienen, so dass kein zusätzliches Leitrad unmittelbar hinter dem Laufrad 5 notwendig ist. Dies ermöglicht eine einfache einteilige Herstellung des saugseitigen Motorgehäuses 8 mit den Stützrippen und einem zylindrischen ra- dial außen liegenden Pumpengehäuseteil 32. Dieses Pumpengehäuseteil 32 umgibt das radial innen liegende Motorgehäuseteil 8 sowie den gesamten Elektromotor 1.
An der stromabwärtigen und der stromaufwärtigen Seite des Gehäuseteils 8, 31 , 32 sind jeweils unter Zwischenlage einer Dichtung 50 zwei identische Pumpengehäuse- teile 33, 34 mittels einer Schraubverbindung befestigt. Das saugseitige sich in Strömungsrichtung erweiternde Pumpengehäuseteil 33 umfasst den Saugstutzen 6 der als zylindrischer Abschnitt 35 ausgeführt ist sowie ein sich daran anschließenden erweiternden Abschnitt 36. Im Übergangsbereich 37 zwischen dem ersten Abschnitt 35 und dem zweiten Abschnitt 36 ist das halbaxiale Laufrad 5 der Fluidpumpe angeordnet. An den sich erweiternden Abschnitt 36 schließt sich in vorliegender Ausführungsform ein weiterer kurz ausgeführter zylindrischer Abschnitt 38 größeren Durchmessers an, um einen sauberen Übergang zum zylindrischen Pumpengehäuseteil 32 zu erreichen.
Entsprechende sich in Strömungsrichtung gesehen verengende Abschnitte und zylindrische Abschnitte weist auch das druckseitige Pumpengehäuseteil 34 auf, wobei aufgrund der Identität der Teile gleiche Bezugszeichen verwendet werden.
Des Weiteren sind in den identischen Pumpengehäuseteilen 33, 34 Nuten 39 ausgebildet, in welche radiale Enden 40 von Rückführschaufeln 41 greifen. Diese Rückführschaufeln 41 dienen als Nachleitapparat 42 mittels dessen hinter dem Druckstutzen 7 eine vollständig drallfreie Strömung erzielt wird. Dieser Nachleitapparat 42 ist an einer Oberfläche 43 des druckseitigen Motorgehäuseteils 9 ausgebildet und wird dadurch notwendig, das die als Leitrad dienenden Stützrippen 31 relativ kurz ausgeführt werden und in diesem Bereich der Fluidpumpe eine vollständige Drallreduzierung in der Regel nicht erreicht wird. Des Weiteren kann das druckseitige Motorgehäuseteil 9 in Kunststoff hergestellt werden, während das saugseitige Motorgehäuseteil möglichst in Aluminium herzustellen und somit teurer ist. Eine Ausführung des Leitrades in diesem Bereich würde ein relativ teures Verfahren zur Herstellung notwendig machen, während der Nachleitapparat am Kunststoffgehäuseteil 9 einfach und kostengünstig herzustellen ist. Durch die Nuten 39 wird gleichzeitig die Lage des druckseitigen Pumpengehäuse- teils 34 zum druckseitigen Motorgehäuseteil 9 festgelegt. Beim Zusammenbau der Pumpe drückt beim Anziehen der Schrauben zur Befestigung des druckseitigen Pumpengehäuseteils 34 am zylindrischen Pumpengehäuseteils 32 das druckseitige Pumpengehäuseteil 34 über die Rückführschaufeln 40 das Motorgehäuseteil 9 gegen das Motorgehäuseteil 8 beziehungsweise in die Aufnahmeöffnungen 29 des Motorgehäuseteils 8. Des Weiteren wird hierdurch das Motorgehäuseteil 9 gegen das Verschlussteil 27 beziehungsweise das Spaltrohr 24 gedrückt, so dass eine zusätzliche Befestigung der beiden Motorgehäuseteile 8, 9 nicht notwendig ist.
Beim Lauf der Pumpe wird das zu fördernde Fluid insbesondere das Kühlmittel durch die Drehung des Laufrades 5, welches aus mehreren Laufradschaufeln 44 besteht, durch den Raum zwischen Pumpengehäuse 32, 33, 34 und Motorgehäuse 8 und 9 gefördert, fließt vorbei an den Stützrippen 31 , wo bereits ein Teil des Dralls aus der Strömung durch ihre Funktion als Leitrad entfernt wird und weiter über den Nachleit- apparat 42, in dem die Strömung vollständig vom vorhandenen Drall befreit wird, so dass die aufgewendete Energie möglichst vollständig in Druckenergie und somit axiale Strömung umgewandelt werden kann, ohne große Reibungsverluste zu erhalten.
Ein Teil des Fluids strömt hinter dem Laufrad 5 durch Bohrungen 45, welche im saugseitigen Motorgehäuseteil 8 ausgebildet sind. Ein weiterer Teil des Fluids strömt auch hinter dem Laufrad 5 bis zur Antriebswelle 3 und hier zwischen dem ersten Lager 11 und der Antriebswelle 3 hindurch, so dass das vorhandene Gleitlager ausreichend geschmiert wird. Somit steht Kühlflüssigkeit im Rotorraum, welche wiederum zwischen Antriebswelle 3 und dem zweiten Lager 15 sowie durch nicht sichtbare Bohrungen im Verschlussteil 27 in einen dahinter liegenden Raum 46 weitergeführt wird. Dieser Raum 46 ist über eine weitere Bohrung 47, welche axial durch das druckseitige Motorgehäuseteil 9 verläuft, mit dem dahinter liegenden Raum verbunden. Somit entsteht sowohl eine Schmierung der Lager 11 , 15 als auch eine Mög- lichkeit zur Kühlung und Abführung eventuell vorhandener Luftmengen im Rotorraum. Diese Halbaxialpumpe zeichnet sich insbesondere dadurch aus, dass sie besonders klein zu bauen ist, da bei gleicher Leistungsaufnahme eine gleiche Förderleistung bei geringerer Motorgröße und gesteigerter Drehzahl im Vergleich zu bekannten Pumpen zu erreichen ist. Dies wird insbesondere durch die extrem reduzierten Druckverluste bei einer derartigen Ausführung, aber auch durch die halbaxiale Bauweise erreicht.
Eine derartige Pumpe kann des Weiteren sehr kostengünstig hergestellt werden, da weniger unterschiedlich ausgeführte Bauteile vorhanden sind. Dies reduziert gleich- zeitig mögliche Fehler bei der Montage. Durch den Verzicht des zusätzlichen Leitrades und die Integration der elektrischen Kontaktierung in die Stützrippen werden zusätzliche Bauteile vermieden und Druckveriuste reduziert. Es wird somit insgesamt ein höherer Wirkungsgrad erreicht.
Selbstverständlich ist es auch möglich aufgrund der Einfachheit der Pumpengehäu- seteile 33, 34, diese mit einem am Druck- beziehungsweise Saugstutzen angeordneten Flansch auszustatten. Hierdurch ist es sowohl möglich, eine Anbindung direkt an ein Motorgehäuse herzustellen als auch zur Erhöhung des geförderten Fluidvolu- menstroms mehrere Pumpen in Reihe zu schalten. Dies wird insbesondere dadurch möglich, dass durch den Nachleitapparat 42 eine drallfreie Strömung erzeugt wird, so dass direkt das Laufrad 5 einer nachgeschalteten Pumpe angeströmt werden könnte ohne Energieverluste zu erhalten. Somit ist es auch nicht notwendig bei geforderter doppelter Leistung eine größere Pumpe mit wiederum größerem Motor zu bauen, sondern durch die Teilegleichheit einfach die entsprechende benötigte Anzahl Pum- pen hintereinander zu schalten.
Auch ist es denkbar, durch die Einfachheit insbesondere des saugseitigen Pumpen- gehäuseteils 33 dieses einstückig mit Ventilgehäuseteilen auszuführen, so dass das Pumpengehäuseteil 33 beispielsweise eine Aufnahme für einen Bypass oder ein in- tegriertes Thermostatventil aufweist. Auch Teile des Gehäuses eines Ringschieberventils könnten einstückig mit dem saugseitigen Pumpengehäuseteil 33 hergestellt werden. Es wird darauf hingewiesen, dass es sich bei dem dargestellten Ausführungsbeispiel lediglich um eine mögliche Ausführung der Erfindung handelt, dessen Konstruktion in verschiedenen Punkten zu ändern ist, ohne den Schutzbereich der Patentansprüche zu verlassen.

Claims

Pierburg GmbH, 41460 NeussP A T E N T A N S P R Ü C H E
1. Fluidpumpe für Verbrennungskraftmaschinen mit einem Elektromotor, der einen in einem Motorgehäuse angeordneten Rotor und einen Stator aufweist, wobei der Rotor zumindest drehfest auf einer Antriebswelle angeordnet ist, einem Laufrad, welches auf der Antriebswelle befestigt ist, zumindest einem Leitrad, welches in Strömungsrichtung des zu fördernden Fluides hinter dem Laufrad angeordnet ist, und einem Pumpengehäuse, welches das Motorgehäuse, das Laufrad und das
Leitrad umgibt und an dem an den axialen Enden gegenüberliegend ein Druckstutzen und ein Saugstutzen ausgebildet sind, dadurch gekennzeichnet, dass
Stützrippen (31) zwischen einem radial außen liegendem Pumpengehäuseteil (32) und einem ersten radial innenliegenden Motorgehäuseteil (8) angeordnet sind, welches den Elektromotor (1) radial umgibt, wobei das radial außen liegende Pumpengehäuseteil (32) mit dem Motorgehäuseteil (8) und den Stützrippen (31 ) einstückig ausgebildet ist.
2. Fluidpumpe für Verbrennungskraftmaschinen nach Anspruch 1 , dadurch ge- kennzeichnet, dass das radial außen liegende Pumpengehäuseteil (32) zylindrisch ausgebildet ist.
3. Fluidpumpe für Verbrennungskraftmaschinen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Stützrippen (31) derart geformt sind, dass sie als Leitrad der Fluidpumpe dienen.
4. Fluidpumpe für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Stützrippen (31) eine derartige Breite aufweisen, dass ein elektrisches Kontaktelelement von einer Elektronikeinheit zu einer Statorwicklung (18) durch eine Bohrung (30) in einer oder mehrerer der Stützrippen (31) führbar ist.
5. Fluidpumpe für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein sich in Strömungsrichtung erweiterndes saugseitiges Pumpengehäuseteil (33) einstückig mit einem Gehäuseteil eines vorgeschalteten Ventils ausgebildet ist.
6. Fluidpumpe für Verbrennungskraftmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Motorgehäuseteil (8) den Elektromotor (8) saugseitig begrenzt.
PCT/EP2006/009761 2005-11-10 2006-10-10 Fluidpumpe WO2007054169A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800506623A CN101356374B (zh) 2005-11-10 2006-10-10 流体泵
JP2008539272A JP2009515084A (ja) 2005-11-10 2006-10-10 液体ポンプ
US12/093,419 US20110164995A1 (en) 2005-11-10 2006-10-10 Fluid pump
EP06806138A EP2002123B1 (de) 2005-11-10 2006-10-10 Fluidpumpe
AT06806138T ATE524656T1 (de) 2005-11-10 2006-10-10 Fluidpumpe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005054026.0 2005-11-10
DE102005054026A DE102005054026A1 (de) 2005-11-10 2005-11-10 Fluidpumpe

Publications (1)

Publication Number Publication Date
WO2007054169A1 true WO2007054169A1 (de) 2007-05-18

Family

ID=37667636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/009761 WO2007054169A1 (de) 2005-11-10 2006-10-10 Fluidpumpe

Country Status (7)

Country Link
US (1) US20110164995A1 (de)
EP (1) EP2002123B1 (de)
JP (1) JP2009515084A (de)
CN (1) CN101356374B (de)
AT (1) ATE524656T1 (de)
DE (1) DE102005054026A1 (de)
WO (1) WO2007054169A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695536B (zh) 2009-08-11 2016-02-24 瑞思迈发动机及马达技术股份有限公司 单级轴对称鼓风机和便携式通风机
FR2984035A1 (fr) * 2011-12-13 2013-06-14 Victor Jean Ballestra Moteur pour pompe ou broyeur sanitaire, du type rotor-stator immerge dans de l'huile dans une carcasse etanche
DE102013009451A1 (de) * 2013-06-06 2014-12-11 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektrische Kühlmittelpumpe
DE102014113412B3 (de) * 2014-09-17 2015-09-24 Nidec Gpm Gmbh Strömungsgekühlte Kühlmittelpumpe mit Nassläufer
US11323003B2 (en) * 2017-10-25 2022-05-03 Flowserve Management Company Compact, modular, pump or turbine with integral modular motor or generator and coaxial fluid flow
US20190120249A1 (en) * 2017-10-25 2019-04-25 Flowserve Management Company Modular, multi-stage, integral sealed motor pump with integrally-cooled motors and independently controlled rotor speeds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2222885A5 (de) * 1973-03-23 1974-10-18 Lucas Industries Ltd
US6175173B1 (en) * 1998-09-15 2001-01-16 Wilo Gmbh Tube pump
DE20201183U1 (de) * 2002-01-25 2002-07-04 Allweiler Ag Pumpe mit einen Antriebsmotor durchsetzender Pumpenwelle
US20020106290A1 (en) * 2001-02-05 2002-08-08 Engineered Machined Products, Inc. Electronic fluid pump

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1949796A (en) * 1931-08-29 1934-03-06 Himmelwerk Ag Pump or impeller
US2824520A (en) * 1952-11-10 1958-02-25 Henning G Bartels Device for increasing the pressure or the speed of a fluid flowing within a pipe-line
US2855141A (en) * 1955-11-25 1958-10-07 Jacobus C Van Rijn Two-piece cantilever fan and motor
US2968249A (en) * 1958-09-04 1961-01-17 Borg Warner Axial flow apparatus
US3102679A (en) * 1962-01-15 1963-09-03 Loren Cook Company Centrifugal impeller units
US3135212A (en) * 1962-03-29 1964-06-02 Symington Wayne Corp Submersible pump
JPS4119177Y1 (de) * 1964-03-12 1966-09-07
US3398694A (en) * 1966-08-11 1968-08-27 Marine Constr & Design Co Submersible pump device for net brailing
DE2159025C2 (de) * 1971-11-29 1982-12-30 Robert Bosch Gmbh, 7000 Stuttgart Kraftstofförderaggregat, bestehend aus einer Seitenkanalpumpe und einem Elektromotor
US4213745A (en) * 1978-09-11 1980-07-22 Roberts Samuel A Pump for central heating system
US5487644A (en) * 1987-02-13 1996-01-30 Ishigaki Mechanical Industry Co., Ltd Pump having a single or a plurality of helical blades
IT1263654B (it) * 1992-04-14 1996-08-27 Ebara Corp Corpo pompa in lamiera metallica
JP2958218B2 (ja) * 1993-07-16 1999-10-06 株式会社荏原製作所 ポンプ
US6056518A (en) * 1997-06-16 2000-05-02 Engineered Machined Products Fluid pump
CN1093607C (zh) * 1998-09-25 2002-10-30 振源(厦门)工业有限公司 制造密封式微型潜水泵的方法
US6135098A (en) * 1998-10-06 2000-10-24 Engineered Machine Products, Inc. Flow-through controllable air charger
US6761532B2 (en) * 2001-03-14 2004-07-13 Vascor, Inc. Touch down of blood pump impellers
JP4122852B2 (ja) * 2002-06-14 2008-07-23 株式会社デンソー 冷却水用ポンプ
US6702555B2 (en) * 2002-07-17 2004-03-09 Engineered Machined Products, Inc. Fluid pump having an isolated stator assembly
US6843638B2 (en) * 2002-12-10 2005-01-18 Honeywell International Inc. Vane radial mounting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2222885A5 (de) * 1973-03-23 1974-10-18 Lucas Industries Ltd
US6175173B1 (en) * 1998-09-15 2001-01-16 Wilo Gmbh Tube pump
US20020106290A1 (en) * 2001-02-05 2002-08-08 Engineered Machined Products, Inc. Electronic fluid pump
DE20201183U1 (de) * 2002-01-25 2002-07-04 Allweiler Ag Pumpe mit einen Antriebsmotor durchsetzender Pumpenwelle

Also Published As

Publication number Publication date
CN101356374A (zh) 2009-01-28
ATE524656T1 (de) 2011-09-15
JP2009515084A (ja) 2009-04-09
CN101356374B (zh) 2011-06-29
US20110164995A1 (en) 2011-07-07
EP2002123A1 (de) 2008-12-17
DE102005054026A1 (de) 2007-05-16
EP2002123B1 (de) 2011-09-14

Similar Documents

Publication Publication Date Title
EP3179106B1 (de) Elektromotorisch angetriebene flüssigkeitspumpe
EP1725775B1 (de) Anordnung mit einem elektronisch kommutierten aussenläufermotor
EP0346730B1 (de) Tauchpumpenaggregat
EP3374642B1 (de) Elektrische kfz-axial-flüssigkeitspumpe
EP2002123B1 (de) Fluidpumpe
EP1767786A1 (de) Tauchpumpenaggregat
DE102016115291A1 (de) Elektrische Kühlmittelpumpe
EP1945955B1 (de) Fluidpumpe
WO2007033818A1 (de) Spaltrohr
DE102011055599A1 (de) Pumpe für einen Temperaturkreislauf in einem Fahrzeug
WO2011026678A1 (de) Zweistufige kreiselpumpe
WO2016000930A1 (de) Elektrischer verdichter für eine verbrennungskraftmaschine
DE102014201487B3 (de) Kreiselpumpenlaufrad
WO2007033817A1 (de) Pumpenaggregat
WO2010145730A1 (de) Laufzeug für eine fluidenergiemaschine sowie elektrisch angetriebener turbolader
EP2729667A1 (de) Vakuumpumpe zum einsatz im kraftfahrzeugbereich
EP1945954A1 (de) Fluidpumpe
DE102011077777B3 (de) Tauchpumpe und Verfahren zum Zusammenbau einer Tauchpumpe
WO2016000929A1 (de) Elektrischer verdichter für eine verbrennungskraftmaschine
EP1310672B1 (de) Kraftstoff-Pumpeinrichtung für ein Kraftstoffsystem einer Brennkraftmaschine sowie Kraftstoffsystem
EP2626510B1 (de) Kfz-Hilfsaggregat-Vakuumpumpe
DE19949322C1 (de) Kühlgebläse, insbesondere Kühlerventilator für Kraftfahrzeuge
DE202006005067U1 (de) Hydraulikpumpe
DE102004047637B4 (de) Elektrisch betriebene Pumpe mit Außenrotor
DE102004047635B4 (de) Elektrisch betriebene Pumpe mit Innenrotor

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006806138

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3703/DELNP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008539272

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200680050662.3

Country of ref document: CN