WO2007052800A1 - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor Download PDF

Info

Publication number
WO2007052800A1
WO2007052800A1 PCT/JP2006/322127 JP2006322127W WO2007052800A1 WO 2007052800 A1 WO2007052800 A1 WO 2007052800A1 JP 2006322127 W JP2006322127 W JP 2006322127W WO 2007052800 A1 WO2007052800 A1 WO 2007052800A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
semiconductor
schottky
semiconductor pressure
film
Prior art date
Application number
PCT/JP2006/322127
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Igaki
Hideaki Shikata
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005322752A external-priority patent/JP2009047423A/en
Priority claimed from JP2006210149A external-priority patent/JP2009049026A/en
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Publication of WO2007052800A1 publication Critical patent/WO2007052800A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0098Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means using semiconductor body comprising at least one PN junction as detecting element

Definitions

  • the present invention relates to a semiconductor pressure sensor used for sensing pressure.
  • micromachining which produces ultra-small machines (micromachines) that physically move by taking advantage of the semiconductor microfabrication technology used in the manufacture of semiconductor integrated circuits.
  • semiconductor sensors such as semiconductor pressure sensors
  • Semiconductor pressure sensors are widely used in automobiles, home appliances, industrial measuring instruments, and so on.
  • a silicon diaphragm type pressure sensor is mainly used.
  • FIG. 28 shows the structure of a conventional piezoresistive effect type semiconductor pressure sensor, in which (a) shows a longitudinal sectional structure and (b) shows a planar structure (see, for example, Patent Documents 1 and 2).
  • the semiconductor chip 50 in FIG. 28 is made of silicon (Si) and has a substantially flat plate shape.
  • the semiconductor chip 50 is formed with a truncated cone-shaped opening hole in the center so that the taper 53 is formed, leaving the pedestal 52, and the semiconductor chip 50 has a thinned diameter W in the center.
  • a diaphragm portion (elastic portion) 54 is formed.
  • a diffusion resistor 51 having a piezo effect is formed on the upper surface of the diaphragm portion 54.
  • the pressure is introduced from the lower part of the semiconductor chip 50 toward the diaphragm portion 54. Due to this pressure, uneven deformation occurs in the diaphragm portion 54, and the diffusion resistor 51 expands and contracts (distorts) due to the uneven deformation, and the interatomic distance of the silicon crystal changes, and the resistance value of the diffusion resistor 51 changes.
  • the so-called piezo effect is used to detect the pressure of the resistance changing force.
  • Patent Document 1 JP-A-6-163941
  • Patent Document 2 JP-A-5-340828 Disclosure of the invention
  • the piezoresistive effect is small, but the resistance change due to temperature change is also large in silicon. Therefore, a system is adopted in which four diffusion resistors 51 are bridge-coupled to extract signals. Used.
  • the thickness t of the diaphragm portion 54 is usually a thin film of about 20 m or less so as to be sensitively unevenly deformed by the pressure difference between the upper and lower sides, and alkali etching or the like is performed to form the diaphragm portion 54. Because it is difficult to control to a certain degree of accuracy, the yield is low and the cost is high.
  • A is a proportionality constant. Therefore, in order to improve the sensitivity S, the thickness t of the diaphragm portion 54 is made as thin as possible, and the diameter W of the diaphragm portion 54 needs to be made as large as possible.
  • the present invention was created to solve the above-described problems, and has a simple configuration, easy control of the thickness of the diaphragm portion, etc., high yield, low cost, and temperature dependence. It aims to provide a low and high sensitivity semiconductor pressure sensor.
  • the invention according to claim 1 is a semiconductor pressure sensor that detects a pressure by distortion of a diaphragm, and the diaphragm includes A semiconductor pressure sensor including a Schottky junction.
  • the invention according to claim 2 is the semiconductor pressure sensor according to claim 1, wherein the Schottky junction is formed by bringing a barrier film into contact with a semiconductor.
  • the electrode formed on the semiconductor, the barrier film, and the semiconductor constitute a Schottky noria diode. It is a semiconductor pressure sensor.
  • the invention according to claim 4 is characterized in that a forward current is passed between the electrode and the barrier film, and the pressure is detected by a change in the resistance value of the Schottky junction.
  • the invention according to claim 5 is characterized in that the electrode is formed so as to surround the periphery of the barrier film. This is a semiconductor pressure sensor.
  • the invention according to claim 6 is the semiconductor pressure sensor according to claim 5, wherein the barrier film is formed in a central portion of the semiconductor.
  • a plurality of the Schottky junctions are arranged in a distributed manner.
  • the invention according to claim 8 is the semiconductor pressure sensor according to claim 7, wherein the Schottky junction portion constitutes a Wheatstone bridge circuit.
  • the invention according to claim 9 includes a pad electrode connected to the anode side or the force sword side of the Schottky noria diode, and the force according to claim 7 or claim 8,
  • the semiconductor pressure sensor according to the first configuration of the present invention a completely new configuration, that is, contact between a metal and a semiconductor, is not used for detecting pressure, unlike the prior art using a diffusion resistor having a piezo effect. Since the Schottky junction generated by the above is used, high sensitivity can be achieved. Further, since the forward characteristics of the Schottky noria diode having the Schottky junction are used for pressure detection, the temperature dependence is low, and a sensor can be obtained. In addition, when a pedestal is provided as a configuration of the semiconductor pressure sensor, there is a hole for introducing pressure. The formed pedestal is joined to a thinly polished diaphragm so that it can be elastically deformed.
  • a shot junction is used for the pressure sensing portion, and a plurality of Schottky junctions are formed dispersed in the diaphragm! /, Therefore, it is possible to reduce the influence of the asymmetry of the stress distribution caused by the uneven deflection of the diaphragm. Furthermore, by using a plurality of Schottky junctions, the sensitivity can be further improved as compared with the case of using a single Schottky junction, and high sensitivity can be maintained even if the thickness of the diaphragm is increased.
  • FIG. 1 is a diagram showing a structure of a first semiconductor pressure sensor of the present invention.
  • FIG. 2 is a view showing a structure of a second semiconductor pressure sensor of the present invention.
  • FIG. 3 is a graph showing the forward current vs. forward voltage characteristics for each element temperature of the semiconductor pressure sensor.
  • FIG. 4 is a graph showing a pressure-output voltage change characteristic of a semiconductor pressure sensor.
  • FIG. 5 is a graph showing forward current vs. forward voltage characteristics for each element temperature of a semiconductor pressure sensor.
  • FIG. 6 is a graph showing a pressure-output voltage change characteristic of a semiconductor pressure sensor.
  • FIG. 7 is a diagram showing a forward current vs. forward voltage characteristic for each element temperature of a semiconductor pressure sensor.
  • FIG. 8 is a graph showing a pressure-output voltage change characteristic of a semiconductor pressure sensor.
  • FIG. 9 is a diagram showing the structure of a can-type pressure sensor using the first semiconductor pressure sensor.
  • FIG. 10 is a diagram showing a structure of a can-type pressure sensor using a Schottky noria diode element portion of the first semiconductor pressure sensor.
  • FIG. 11 shows the structure of a can type pressure sensor using a second semiconductor pressure sensor.
  • FIG. 12 is a diagram showing a structure of a can type pressure sensor using a Schottky noria diode element portion of a second semiconductor pressure sensor.
  • FIG. 13 is a plan view showing the structure of a third semiconductor pressure sensor of the present invention.
  • FIG. 14 is a side view showing the structure of a third semiconductor pressure sensor of the present invention.
  • FIG. 15 is a diagram showing a connection configuration of Schottky noria diodes in a third semiconductor pressure sensor.
  • FIG. 16 is a diagram showing a connection configuration in which the Schottky noria diode in FIG. 15 is replaced with the value of the internal resistance.
  • FIG. 17 is a diagram showing the types of stress acting on the Schottky noria diode on the third semiconductor pressure sensor.
  • FIG. 18 is a diagram showing forward current vs. forward voltage characteristics of one Schottky barrier diode.
  • FIG. 19 is a diagram showing forward current-forward voltage characteristics according to temperature of a Schottky noria diode.
  • FIG. 20 is a diagram showing forward current Kerr temperature variation characteristics of a semiconductor pressure sensor.
  • FIG. 21 is a diagram showing a structure of a semiconductor pressure sensor using one Schottky barrier diode.
  • FIG. 22 is a diagram showing the characteristics of the diaphragm thickness and output voltage of a semiconductor pressure sensor.
  • FIG. 23 is a graph showing the pressure output voltage change characteristic of the semiconductor pressure sensor.
  • FIG. 24 is a diagram showing a structure of a third semiconductor pressure sensor having a pedestal portion.
  • FIG. 25 is a view showing a structure of a third semiconductor pressure sensor having no pedestal portion.
  • FIG. 26 is a diagram comparing the sensitivities of a third semiconductor pressure sensor having no pedestal portion and a third semiconductor pressure sensor having a pedestal portion.
  • FIG. 27 is a view showing a pressure sensor of a mold type structure using a third semiconductor pressure sensor having no pedestal portion.
  • FIG. 28 is a diagram showing a conventional diffusion resistance type semiconductor pressure sensor, explanation of reference numerals
  • FIG. 1 shows the structure of a first semiconductor pressure sensor according to the present invention
  • FIG. 1 ( a ) shows a planar structure
  • FIG. 1 (b) shows a longitudinal section.
  • the first semiconductor pressure sensor includes a barrier film 1, an electrode film 2, for example, a Schottky noria diode element 10 made of an n-type semiconductor substrate 3 and a pedestal 4.
  • a Schottky junction generated by contact between a metal and a semiconductor is used as a pressure detection means with a completely new configuration.
  • the Schottky noria diode element 10 when the noria film 1 made of metal is brought into contact with the n-type semiconductor substrate 3, a depletion layer is formed on the contact surface on the n-type semiconductor substrate 3 side, and the Schottky barrier Occurs.
  • This Schottky junction partial force is included in diaphragm portion 5 (shaded portion in the figure) in n-type semiconductor substrate 3 and serves as a pressure sensing region.
  • the NORA film 1 has a work function that is larger than the work function of the n-type semiconductor substrate 3. It is necessary to select materials for the film 1 and the n-type semiconductor substrate 3.
  • the barrier film 1 is used a composite film of a metal such as Noriametaru and A1 such P t, the n-type semiconductor substrate 3 such as a silicon substrate with an n-type non-pure product doped is used.
  • Pt there are Ti, Mo, W, Al, V, Pd, Au, etc. as materials for the barrier metal.
  • the pedestal 4 is made of a silicon substrate or the like, and is pierced in a taper shape around the position where the Schottky junction between the barrier film 1 and the n-type semiconductor substrate 3 is arranged to form the opening 6.
  • the pedestal 4 and the Schottky noria diode element 10 are joined.
  • the shape of the opening 6 is a square shape in accordance with the shape of the noria film 1.
  • the electrode film 2 as a force sword electrode and the noria film 1 as an anode electrode are electrically connected, and a forward current is supplied from a constant current source to extract a forward voltage.
  • the diaphragm 5 of the Schottky barrier diode element 10 When pressure is introduced from the opening 6 in the pedestal 4, the diaphragm 5 of the Schottky barrier diode element 10 is distorted, and a Schottky junction between the noria film 1 and the n-type semiconductor substrate 3. Since distortion also occurs, the resistance of the n-type semiconductor substrate 3 changes and the forward voltage changes, and the relationship between the introduced pressure and the change of the forward voltage can be detected.
  • the dimensions of the semiconductor pressure sensor in Fig. 1 are, for example, W1 is 1.7 mm, W2 is 3.4 mm, W3 force is 0 ⁇ m, and W4 is 260 ⁇ m. Can be formed on the sensor. Further, as the Schottky Noria diode element 10, a p-type semiconductor substrate may be used instead of the n-type semiconductor substrate 3. In this case, the work function force of the p-type semiconductor substrate is larger than the work function of the S barrier film. The material is selected so that a Schottky junction is formed.
  • the method for forming the Schottky Noria diode element 10 is described.
  • the thickness is 3.33 to 4.07 ⁇ m, and the resistivity is 0.63 to 0.77.
  • An epitaxial layer of ⁇ 'cm is grown, and a thermal oxide film is grown at 9500 A.
  • the thermal oxide film is selectively removed by photoresist technology and hydrofluoric acid etching, and PoCl diffusion is performed at 1050 ° C for 120 minutes to form a force sword region electrode.
  • Phosphorus can be supplied by implanting phosphorus ions in addition to PoCl.
  • a CVD film containing phosphorus appropriate for gettering mobile ions is deposited, and 1000 Flatten by heat treatment at ° C for 30 minutes. Of course, phosphorus may not be included.
  • the CVD and thermal oxide films are selectively removed again by the photoresist technique and etching with hydrofluoric acid.
  • Pt, Ti, Mo, W, Al, V, Pd, Au, etc. which are Schottky barrier metals, are deposited by sputtering or vapor deposition and heat-treated at an appropriate temperature to form silicide.
  • an appropriate metal layer serving as a diffusion layer is disposed on the barrier metal, and an A1 layer having a top thickness of 24 to 26 kA is provided to form the noria film 1 serving as an anode electrode.
  • the force sword electrode film 2 is also formed of the same metal as the anode barrier film 1 in the same manner as described above. However, since the force sword region has a very high impurity concentration, no Schottky barrier is formed and an ohmic contact is formed.
  • a 8000A silicon nitride film is deposited thereon under reduced pressure at all times or with a plasma CVD machine, and the regions of the barrier film 1 and the electrode film 2 and the periphery of the device are selectively removed by photolithography and dry etching. Polishing from the back while protecting the surface with tape, etc., so as not to damage the surface. Finishing was 2000.
  • the semiconductor pressure sensor of FIG. Complete may be a high-strength adhesive or bonding using SOI technology.
  • FIG. 2 shows a structural example of a second semiconductor pressure sensor according to the present invention
  • FIG. 2 (a) shows a planar structure
  • FIG. 2 (b) shows a longitudinal section
  • a barrier film 11 as an anode electrode is formed on the n-type semiconductor substrate 13 in the center portion
  • an electrode film 12 as a force sword electrode is provided so as to surround the noria film 11.
  • the diaphragm portion 15 in the n-type semiconductor substrate 13 corresponds to a region where the n-type semiconductor substrate 13 and the barrier film 11 are in a Schottky junction, as indicated by the oblique lines in the figure.
  • n-type semiconductor substrate 13 2 mm square both vertically and horizontally, and the thickness of the n-type semiconductor substrate 13 and the height of the pedestal 14 are 50 ⁇ m and 260 ⁇ m, respectively, similar to W3 and W4 in FIG. can do.
  • the operation and manufacturing method are the same as those of the semiconductor pressure sensor of FIG.
  • the sensor area becomes large and the shape becomes rectangular, which will be described later. When packaged, it cannot fit in a compact.
  • the electrode film 12 by forming the electrode film 12 so as to surround the noria film 11, the sensor area can be made smaller than in FIG. 1, and the diaphragm portion 15 can be provided in the central portion.
  • the sensor shape can be formed in a square shape.
  • the four sides can be evenly expanded, and the area of the opening 16 is also a region close to the area of the n-type semiconductor substrate 13. Therefore, even if the area is smaller than that of the semiconductor pressure sensor of FIG. 1, a semiconductor pressure sensor having the same accuracy and sensitivity can be configured, and the size can be reduced. Further, when the sensor has a square shape and the diaphragm portion 15 is provided in the central portion, the pressure introduced from the opening portion 16 is equally applied to the diaphragm portion 15 and the accuracy of pressure measurement is improved.
  • FIG. 3 shows the characteristics of forward current and forward output voltage in the semiconductor pressure sensor of the present invention.
  • the Noria film a composite metal film in which Pt was used as a Schottky barrier metal and an A1 film was formed thereon was used.
  • the solid line indicates the case where the element temperature of the semiconductor pressure sensor is 25 ° C
  • the broken line indicates the case where the temperature is 25 ° C
  • the alternate long and short dash line indicates the case where the temperature is 75 ° C.
  • the forward current IF is increased, the output voltage VF also increases.At the first rise, the characteristics are different.
  • the forward current IF is around 1000 mA. Draw different traces!
  • the temperature dependence in the high current density region is very small.
  • accurate measurements can be performed regardless of temperature changes.
  • the forward current IF value with the smallest change rate of the output voltage VF was the reference value.
  • the operating point is the intersection point with the curve with a device temperature of 25 ° C
  • the operating range that can be used as a sensor is the range of approximately ⁇ 5 mV (shaded area) around this operating point.
  • FIG. 4 shows changes in output voltage with respect to changes in pressure when pressure is actually introduced.
  • the change in output voltage when pressure is applied to the diaphragm (Schottky junction) of the semiconductor pressure sensor of the present invention and the pressure is changed.
  • Forward current in high-density current region IF 100 OmA
  • constant forward current is constant with a constant current source
  • output voltage change AVF under pressure when the output voltage under atmospheric pressure is the standard. Shown in Even if the element temperature changes to 25 ° C, 25 ° C, and 75 ° C, there is no significant difference in the AVF-pressure curve.
  • FIG. 5 shows the forward current and the forward output voltage in the semiconductor pressure sensor when the same barrier metal Pt as in FIG. 3 is used and the junction area between the noria metal and the n-type semiconductor substrate 3 is smaller than that in FIG. The characteristics are shown.
  • As the barrier film a composite metal film in which an A1 film was formed on a Schottky barrier metal Pt was used.
  • the solid line shows the case where the element temperature of the semiconductor pressure sensor is 0 ° C
  • the broken line shows the case at 25 ° C
  • the alternate long and short dash line shows the case at 40 ° C.
  • the output voltage VF As the forward current IF increases, the output voltage VF also increases.At the first rise, the characteristics are different, but the curves are almost the same when the forward current IF is around 2 mA. Draws almost the same trajectory even at different temperatures.
  • the range of approximately ⁇ 5mV (shaded area) that can be used as a sensor is centered on this operating point. It becomes an area.
  • FIG. 6 shows a change in output voltage with respect to a change in pressure when pressure is actually introduced into the semiconductor pressure sensor having the characteristics shown in FIG.
  • the forward current is constant with a constant current source
  • the output voltage change AVF under pressure when the output voltage under atmospheric pressure is the standard.
  • Shown in Element temperature is 0. Even when changing to C, 25 ° C and 40 ° C, there is no significant difference in the AVF-pressure curve.
  • two curves for each element temperature of 0 ° C, 25 ° C, and 40 ° C are drawn, indicating the range of variation at each temperature.
  • FIG. 7 shows the forward current and forward output in the semiconductor pressure sensor when Ti is used for the barrier metal under the same conditions as in FIG. 5 where the junction area between the barrier metal and the n-type semiconductor substrate 3 is the same as in FIG. The voltage characteristics are shown.
  • As the barrier film a composite metal film in which an A1 film was formed on Schottky barrier metal Ti was used.
  • the solid line shows the case where the element temperature of the semiconductor pressure sensor is 0 ° C
  • the broken line shows the case of 25 ° C
  • the alternate long and short dash line shows the case of 40 ° C.
  • the operating point is the point at which the rate of change of the output voltage VF is the smallest when the element temperature changes to 0 ° C, 25 ° C, and 40 ° C.
  • FIG. 8 shows changes in output voltage with respect to changes in pressure when pressure is actually introduced into the semiconductor pressure sensor having the characteristics shown in FIG.
  • the forward current is constant with a constant current source
  • the output voltage change AVF under pressure when the output voltage under atmospheric pressure is the standard.
  • Shown in Element temperature is 0. Even when changing to C, 25 ° C and 40 ° C, there is no significant difference in the AVF-pressure curve.
  • Two curves for each element temperature of 0 ° C, 25 ° C, and 40 ° C are drawn at each temperature. The range of variation is shown.
  • FIG. 9 shows a pressure sensor unit of the can type using the first semiconductor pressure sensor of FIG.
  • a first semiconductor pressure sensor is attached to a pressure introduction pipe 31 through which a pressure is introduced via a support base 32.
  • the support base 32 is made of silicon, glass, or the like in order to improve the adhesion with the first semiconductor pressure sensor.
  • the pressure introduction hole 35 of the support base 32 is formed to be substantially the same as the size of the diaphragm portion 5 of the first semiconductor pressure sensor, and converts the diameter of the pressure introduction hole 34 of the pressure introduction pipe 31. Have a role. Fix it to the base or board with the lead bin 33.
  • FIG. 10 shows a structure in which the base 4 of the first semiconductor pressure sensor is removed and the Schottky barrier diode element 10 is directly attached to the support base 32, which is higher than the unit of FIG. The height can be lowered.
  • the diaphragm portion 5 of the semiconductor pressure sensor in Fig. 1 is biased to one side connecting to the central portion of the element, and the element shape is rectangular.
  • the placement position is biased from the center to one side, and it cannot be made compact.
  • FIG. 11 shows a pressure sensor unit of a mold type using the second semiconductor pressure sensor of FIG.
  • a second semiconductor pressure sensor is mounted on a support base 42 made of glass or the like, which is formed in a pressure introduction pipe 41 into which pressure is introduced.
  • the second semiconductor pressure sensor has a square shape and is provided with a diaphragm portion 15 as a pressure sensing portion in the center portion.
  • the size of the opening 16 can be appropriately formed, it can be formed compactly with good consistency with the pressure introducing hole 43 of the pressure introducing pipe 41.
  • the second semiconductor pressure sensor and the support base 42 are covered with a resin mold 44 except for the hollow portion 46, and are fixed to the base and the substrate by lead pins 45.
  • FIG. 12 shows that the Schottky noria diode element 20 is directly attached on the support base 42 by anodic bonding without forming the base portion 14 of the second semiconductor pressure sensor, and the hollow portion is formed by the resin mold 44. Covered except for 46. As a result, the size can be made smaller than the type shown in FIG.
  • FIG. 13 and 14 show the structure of a third semiconductor pressure sensor according to the present invention, FIG. 13 shows a plan view, and FIG. 14 shows a side view.
  • the third semiconductor pressure sensor is formed by dispersing a plurality of Schottky noria diodes on an n-type or p-type semiconductor substrate 77.
  • Dl, D2, D3, and D4 indicate Schottky noria diodes, and each Schottky noria diode includes a barrier film, an electrode, and a semiconductor substrate.
  • the Schottky Noria diode D1 includes the Noria film 61, the electrode 62, and the semiconductor substrate 77
  • the Schottky Noria diode D2 includes the Noria film 63, the electrode 64, and the semiconductor substrate 77
  • the Schottky barrier diode D3 is
  • the Schottky barrier diode D4 includes the noria film 67, the electrode 68, and the semiconductor substrate 77.
  • the Schottky barrier diode D4 includes the noria film 65, the electrode 66, and the semiconductor substrate 77.
  • each electrode 62, 64, 66, 68 is formed in a semicircular shape so as to surround the noria film.
  • each Schottky noria diode when the barrier films 61, 63, 65, 67 made of metal and the semiconductor substrate 77 are brought into contact with each other, a depletion layer is formed on the contact surface on the semiconductor substrate 77 side, and a Schottky barrier is generated. To do.
  • each Schottky junction formed by contacting each of the barrier films 61, 63, 65, 67 and the semiconductor substrate 77 is a diaphragm region 78 in the semiconductor substrate 77 (indicated by a dotted line in the figure). It is included in the (enclosed area) and becomes an area for sensing pressure.
  • a portion other than the diaphragm region 78 may be provided with a pedestal as shown in FIG. 24, for example. Further, without forming the pedestal portion, it may be directly joined to the pressure introducing pipe 91 having an inner diameter suitable for the diaphragm region 78 as shown in FIG.
  • each barrier film 61, 63, 65, 67 is the work function of the n-type semiconductor substrate 77.
  • the barrier film is a composite film of a noria metal such as Pt and a metal such as A1
  • the n-type semiconductor substrate 77 is a silicon substrate doped with an n-type impurity.
  • each barrier film is on the anode (positive electrode) side, and each of the electrodes 62, 64, 66, and 68 is on the force sword (negative electrode) side.
  • a p-type semiconductor substrate may be used instead of the n-type semiconductor substrate as the semiconductor substrate 77.
  • the material is made larger than the work function of the work function force barrier film of the p-type semiconductor substrate.
  • each noria membrane is on the force sword (negative electrode) side, and each electrode is on the anode (positive electrode) side.
  • Each electrode 62, 64, 66, 68 is manufactured by forming an n + diffusion layer or a P + diffusion layer having a very high impurity concentration on the semiconductor substrate 77.
  • the electrodes 62, 64, 66, and 68 are formed of n + diffusion layers.
  • the electrodes 62, 64, 66, and 68 are configured by n + diffusion layers.
  • the electrodes 62, 64, 66, 68 as the force sword electrodes and the barrier films 61, 63, 65, 67 as the corresponding anode electrodes are electrically connected to allow a forward current to flow.
  • Pad electrodes 73 and 75 are provided as input terminals for connecting a constant current source or the like in order to flow a forward current to each of the Schottky barrier diodes D1 to D4.
  • the node electrode 73 is connected to the noria films 61 and 65 by the wiring 69.
  • the pad electrode 75 is connected to the electrodes 64 and 68 by the wiring 71.
  • pad electrodes 74 and 76 are provided as output terminals so that forward voltage changes can be taken out when a forward current is passed through each Schottky noria diode.
  • the nod electrode 74 is connected to the electrode 62 and the barrier film 63 by the wiring 70.
  • the pad electrode 76 is connected to the electrode 66 and the barrier film 67 by the wiring 72.
  • the selfish wires 69, 70, 71, 72 and the nod electrodes 73, 74, 75, 76 are each formed of A1 (anoromium).
  • the size of the semiconductor pressure sensor configured as described above can be, for example, a square shape having a length L of 1.5 mm, and can be formed into a relatively small pressure sensor.
  • the diaphragm region 78 When pressure is applied to the diaphragm region 78, the diaphragm region 78 is distorted. This distortion causes distortion at each Schottky junction between each barrier film 61, 63, 65, 67 and the n-type semiconductor substrate 77, so that the resistance of each Schottky junction changes and the forward current is changed. The pressure changes, and the pressure can be detected from the relationship between the introduced pressure and the forward voltage change.
  • the semiconductor pressure sensor of the present invention has a configuration in which a plurality of the Schottky junctions are arranged in the diaphragm region 78 in a distributed manner. By doing so, as described later, the sensitivity can be made larger than that of a semiconductor pressure sensor having one Schottky junction.
  • FIG. 17 schematically shows a state in which a Schottky Noria diode force is formed corresponding to the configuration of FIG. 13, and when the pressure is introduced, the diaphragm is distorted.
  • Tensile stress acts on the Schottky junction diodes corresponding to the Schottky diodes D2 and D3 formed near the center of the diaphragm, and the Schottky noria diodes D1 and D4 formed around the diaphragm Compressive stress acts on the corresponding Schottky joint.
  • FIG. 18 A relationship as shown in FIG. 18 exists between the forward current IF and the forward output voltage VF of the Schottky barrier diode.
  • the magnitudes of the compressive stress and the tensile stress are almost the same.
  • the initial characteristics indicated by the solid line initial
  • VF is smaller by AVF than the initial value.
  • the wafer semiconductor substrate 77
  • the wafer semiconductor substrate 77
  • the diaphragm composed of the semiconductor substrate 77 is broken, or if the pressure is measured many times, the diaphragm may be fatigued.
  • the thickness of the semiconductor substrate 77 is increased in order to prevent the diaphragm from being cracked or chipped, there is a problem that the sensitivity is lowered.
  • the sensitivity is lowered.
  • the sensitivity can be maintained high, and the occurrence of diaphragm cracks and chipping can be suppressed.
  • the semiconductor pressure sensor shown in FIG. 13 is obtained by increasing the number of Schottky junctions to be distributed and arranging four Schottky junctions in a diaphragm.
  • the force represented by D1 to D4 for each of the four Schottky barrier diodes having a Schottky junction is equivalent to the circuit of FIG. 15 if expressed as an electric circuit.
  • the power supply voltage (operating current) is input with the pad electrode 73 serving as the input terminal as the positive electrode and the pad electrode 75 serving as the negative electrode, and the output voltage is taken out between the pad electrode 74 and the pad electrode 76 serving as the output terminals.
  • D1 to D4 form a Wheatstone bridge circuit. If the internal resistances of the Schottky barrier diodes D1 to D4 are represented by R1 to R4, they are equivalent to the circuit of FIG. become.
  • R1 to R4 When a forward operating current is applied between the input terminals IN 1 (pad electrode 73) and IN2 (pad electrode 75), if the Schottky junction of the Schottky noria diode is distorted, R1 ⁇ Force that changes R4 The voltage difference generated by the change of R1 to R4 is taken out from the output terminal, that is, between OUT2 (pad electrode 74) and OUT1 (pad electrode 76).
  • tensile stress is applied to D2 and D3 formed at the center of the diaphragm region 78, and compressive stress is applied to Dl and D4 formed at the peripheral portion of the diaphragm region 78. Therefore, if the strain caused by the compressive stress and the strain caused by the tensile stress are the same, a voltage difference S of 2 ⁇ VF is generated at the connection point of the two Schottky barrier diodes as shown in Fig. 18. Therefore, OUT1 in Figure 16 has a maximum voltage fluctuation of 2 AVF, while OUT2 has a maximum voltage fluctuation of +2 AVF, so the maximum voltage difference between the output terminals OUT1 and OUT2 is 4 AVF.
  • the sensitivity is up to 4 times that of sensing pressure with a key barrier diode.
  • FIG. 19 shows characteristics of forward current density (10 5 AZm 2 ) and forward output voltage (mV) of one Schottky noria diode in the semiconductor pressure sensor of the present invention.
  • the barrier film Pt was used as a Schottky barrier metal, and a composite metal film with an A1 film formed thereon was used.
  • the curves for the semiconductor pressure sensor element temperature of -25 ° C, 25 ° C, and 75 ° C are shown.
  • the forward current iF increases, the output voltage VF also increases. At the first rise, the force has different characteristics.
  • the forward current density iF is 1.35 ⁇ : L 4 (10 5 AZm Near the middle point of 2 ), the curves are almost the same, and even if the element temperatures are different, the traces are almost the same. When the element temperature is changed, the VF-iF curves intersect and the matching area is called the zero cross point.
  • the zero cross point is a high current density region with very little temperature dependence.
  • FIG. 20 shows a conventional diffusion resistance type semiconductor pressure sensor and a Schottky junction type semiconductor. The comparison of the output voltage fluctuation by the temperature change with a pressure sensor is shown.
  • the graph of Fig. 19 shows the fluctuation of the output voltage per 1 ° C with reference to the output voltage VF at the element temperature of 25 ° C.
  • the output voltage variation per 1 ° C is about 0.25% on average regardless of where the operating current is changed, whereas with the Schottky junction type, If the operating current is set near the zero cross point shown in the figure, the output voltage fluctuation per 1 ° C can be suppressed to 0.03% or less, and a semiconductor pressure sensor with extremely low temperature dependence must be formed. Can do. Therefore, there is no need to add a temperature correction circuit or the like as in the prior art.
  • FIG. 22 shows the relationship between the diaphragm thickness m) of the semiconductor pressure sensor and the magnitude of the output voltage.
  • a semiconductor pressure sensor consisting of four Schottky barrier diodes and a Wheatstone bridge circuit is denoted by X2
  • a comparative semiconductor pressure sensor consisting of one Schottky barrier diode is XI.
  • the comparative semiconductor pressure sensor shown in FIG. 21 uses the same material as that shown in FIG. 13 and forms only one Schottky barrier diode 80 to form a pedestal 81.
  • the sensitivity difference between X2 and XI varies depending on the diaphragm thickness. When the diaphragm thickness is about 50 ⁇ m or less, the sensitivity of X2 is about 4 times the sensitivity of XI. I can read that I'm talking.
  • Figure 23 shows the change in output voltage with respect to the change in pressure when pressure is actually introduced.
  • the vertical axis indicates the change in output voltage ⁇ under pressure when the output voltage under atmospheric pressure is used as a reference.
  • the forward current at the zero cross point is set as the operating current, the forward current is made constant by the constant current source, Pt is used as the Schottky barrier metal as the NORA film, On top of this, a composite metal film in which an A1 film was formed was used.
  • the third semiconductor pressure sensor using four Schottky diodes of the present invention is represented by the Y3 curve
  • the comparative semiconductor pressure sensor using one Schottky barrier diode is represented by the Y2 curve.
  • the semiconductor pressure sensor is shown by the Y 1 curve.
  • Y3 has a diaphragm thickness of 50 ⁇ m
  • Y2 has a diaphragm thickness of 50 ⁇ m
  • Y1 has a diaphragm thickness of 20 / zm.
  • the linearity of Y3 was ⁇ 0.35% FS
  • Y2 was ⁇ 0.59% FS
  • Y3 force S ⁇ 0.6% FS.
  • a pedestal 82 is often provided as shown in FIG. 24, but without providing a pedestal as shown in FIG.
  • a structure in which a semiconductor pressure sensor is mounted on the pressure introducing pipe can be employed.
  • the height of the element can be made lower than when a pedestal is provided.
  • the pedestal portion 82 uses a silicon substrate or the like to form a tapered cut-out opening, and the pedestal portion 82 and the third semiconductor pressure sensor include a thermosetting resin or the like. It is joined by a joining layer 83 which also has a force.
  • a joining layer 83 which also has a force.
  • the structure has the pedestal portion 82, it is necessary to bond the semiconductor pressure sensor to the semiconductor pressure sensor via the bonding layer 83 after forming the pedestal portion. There was a drawback of increasing. However, if the pedestal is not provided as shown in FIG. 25 and is directly joined onto the pressure introducing pipe 91 as shown in FIG. 27, the above problem is solved.
  • the force pedestal portion 82 that improves the sensitivity as the thickness of the semiconductor substrate 77 is reduced is not formed, so that the pressure introduction side is not formed.
  • the surface of the semiconductor substrate 77 can be prevented from being covered with the bonding layer 83, and the sensitivity can be prevented from being deteriorated even a little.
  • FIG. 27 shows an example in which a semiconductor pressure sensor not provided with a pedestal portion is provided on the pressure introduction pipe 91.
  • a third semiconductor pressure sensor is mounted on the upper end of the pressure introducing pipe 91 into which pressure is introduced.
  • the semiconductor pressure sensor is covered with a resin mold 93 except for the hollow portion 94, and is fixed to a base or a substrate by a lid bin 97.
  • the reason why the hollow portion 94 is provided is that if the sensor is entirely filled with the resin mold 93, the diaphragm region of the semiconductor pressure sensor will not be elastically deformed and pressure measurement will not be possible. Because.
  • FIG. 26 compares the sensitivity of a semiconductor pressure sensor having a pedestal portion and the sensitivity of a semiconductor pressure sensor having a pedestal portion.
  • the structure of Fig. 27 is used, and the semiconductor pressure sensor having the structure of Fig. 24 is used, and the area of the diaphragm area to which pressure is applied is Configured to be equal.
  • the sensitivity characteristics with or without the pedestal were equal to or better than those with the pedestal.
  • a method for manufacturing the semiconductor pressure sensor shown in FIGS. 13, 14, and 25 of the present invention will be described below.
  • a method for forming Schottky Noria diodes D1 to D4 in a semiconductor pressure sensor is described. For example, a thickness of 3.33 to 4.07 ⁇ m, on an n-type semiconductor substrate (first conductivity type semiconductor substrate) 77, Grow an epitaxial layer with a resistivity of 0.63 to 0.77 ⁇ 'cm and grow a thermal oxide film at 9500 A.
  • the thermal oxide film is selectively removed by photoresist technology and etching with hydrofluoric acid, PoCl diffusion is performed at 1050 ° C for 120 minutes, and each electrode 62, 64, 66, 68 as a force sword region is formed on a semiconductor substrate Form inside 77.
  • Phosphorus can be supplied by implanting phosphorus ions in addition to PoCl.
  • a CVD film containing phosphorus appropriate for gettering mobile ions is deposited and flattened by heat treatment at 1000 ° C. for 30 minutes.
  • phosphorus may not be included.
  • the CVD and thermal oxide films are selectively removed again by the photoresist technique and etching with hydrofluoric acid.
  • Pt, Ti, Mo, W, Al, V, Pd, Au, etc. which are Schottky barrier metals, are deposited by sputtering or vapor deposition and heat-treated at an appropriate temperature to form silicide.
  • Barrier films 61, 63, 65, 67 that serve as anode electrodes by providing several layers of appropriate metal layers that serve as diffusion layers on the barrier metal, and an A1 layer having a top thickness of 24 to 26 kA. Form.
  • each electrode 62, 64, 66, 68 wirings 69 to 72 by A1 are patterned, but the force sword region becomes an n + diffusion layer with a very high impurity concentration. Therefore, a Schottky barrier is not formed at the junction with the wirings 69 to 72, and an ohmic contact is made. Then, pad electrodes 73 to 76 are formed by A1 at corresponding portions of the wirings 69 to 72.
  • a 8000A silicon nitride film is deposited thereon under reduced pressure at all times or by a plasma CVD machine, and barrier films 61, 63, 65, 67 and electrodes 62, 64, 66, 68 are formed by photolithography and dry etching. The region and the element periphery are selectively removed. Tape etc. so as not to damage the surface Polish from the back while protecting with a thickness of 20-120 ⁇ m. Finishing was 2000 finish.
  • an n-type impurity such as Sb A silicon nitride film of 8000A is deposited on the (100) plane silicon wafer, and a region corresponding to the upper area of the opening is selectively removed by photolithography and dry etching. Protect the surface pattern with tape, etc., and polish it from the back surface to a thickness of 200 to 300 ⁇ m. Immerse in 24wt% KOH aqueous solution and etch until an opening is formed.
  • the bonding layer 83 may be a high-strength adhesive or a bonding layer using SOI technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

It is possible to provide a low-cost semiconductor pressure sensor of a simple structure capable of easily controlling, for example, the thickness of its diaphragm portion, and having a high yield, a low dependence on temperature, and a high sensitivity. The semiconductor pressure sensor comprises a Schottky barrier diode (10) consisting of a barrier film (1), an electrode film (2), and an n-type semiconductor substrate (3), and a base (4). In the Schottky barrier diode (10), the barrier film (1) formed of a metal is brought into contact with the n-type semiconductor substrate (3), so that a depletion layer is formed in the contact area on the side of the n-type semiconductor substrate (3) and a Schottky barrier is generated. This Schottky junction portion is included in the diaphragm portion (5) in the n-type semiconductor substrate (3) and functions as a pressure sensing area.

Description

明 細 書  Specification
半導体圧力センサ 技術分野  Semiconductor pressure sensor technology
[0001] 本発明は、圧力を感知するために用いられる半導体圧力センサに関する。  [0001] The present invention relates to a semiconductor pressure sensor used for sensing pressure.
背景技術  Background art
[0002] 近年、半導体集積回路の製作に用いられる半導体微細加工技術を生かして、物理 的な動きをする超小型の機械 (マイクロマシン)を製作する、マイクロマシユングと呼ば れる技術が脚光を浴びており、このマイクロマシユングを生力して半導体圧力センサ 等の半導体センサの開発が進んでいる。半導体圧力センサは、自動車、家庭電化製 品、工業計測機器等に広範囲に使用されている。  [0002] In recent years, a technology called micromachining, which produces ultra-small machines (micromachines) that physically move by taking advantage of the semiconductor microfabrication technology used in the manufacture of semiconductor integrated circuits, has attracted attention. The development of semiconductor sensors such as semiconductor pressure sensors is advancing using this micromachining. Semiconductor pressure sensors are widely used in automobiles, home appliances, industrial measuring instruments, and so on.
[0003] 半導体圧力センサでは、主にシリコンダイヤフラム型圧力センサが用いられている。  In the semiconductor pressure sensor, a silicon diaphragm type pressure sensor is mainly used.
この圧力センサでは、シリコンにホウ素を選択的に拡散させ、拡散抵抗体を形成し、 拡散抵抗体のピエゾ抵抗効果を利用して圧力を検出している。図 28は、従来のピエ ゾ抵抗効果型の半導体圧力センサの構造を示すものであり、(a)は縦断面構造、(b) は平面構造を示す (例えば、特許文献 1、 2参照)。  In this pressure sensor, boron is selectively diffused into silicon to form a diffusion resistor, and the pressure is detected using the piezoresistance effect of the diffusion resistor. FIG. 28 shows the structure of a conventional piezoresistive effect type semiconductor pressure sensor, in which (a) shows a longitudinal sectional structure and (b) shows a planar structure (see, for example, Patent Documents 1 and 2).
[0004] 図 28の半導体チップ 50は、シリコン(Si)からなり、略平板状の形状を有する。半導 体チップ 50は、台座 52を残して、テーパー部 53が形成されるように中央部に円錐台 形状の開口穴が作成され、半導体チップ 50の中央部分には、薄肉化した直径 Wの ダイヤフラム部(弾性部) 54が形成されている。ダイヤフラム部 54の上面には、ピエゾ 効果を有する拡散抵抗体 51が形成されている。  [0004] The semiconductor chip 50 in FIG. 28 is made of silicon (Si) and has a substantially flat plate shape. The semiconductor chip 50 is formed with a truncated cone-shaped opening hole in the center so that the taper 53 is formed, leaving the pedestal 52, and the semiconductor chip 50 has a thinned diameter W in the center. A diaphragm portion (elastic portion) 54 is formed. A diffusion resistor 51 having a piezo effect is formed on the upper surface of the diaphragm portion 54.
[0005] この半導体圧力センサで圧力を検出する際には、半導体チップ 50の下部からダイ ャフラム部 54に向けて圧力を導入する。この圧力により、ダイヤフラム部 54に凹凸変 形が生じ、この凹凸変形により拡散抵抗体 51が伸縮し (歪み)、シリコン結晶の原子 間距離が変化して拡散抵抗体 51の抵抗値が変わるという、いわゆるピエゾ効果を利 用して抵抗値の変化力も圧力を検出している。  When the pressure is detected by this semiconductor pressure sensor, the pressure is introduced from the lower part of the semiconductor chip 50 toward the diaphragm portion 54. Due to this pressure, uneven deformation occurs in the diaphragm portion 54, and the diffusion resistor 51 expands and contracts (distorts) due to the uneven deformation, and the interatomic distance of the silicon crystal changes, and the resistance value of the diffusion resistor 51 changes. The so-called piezo effect is used to detect the pressure of the resistance changing force.
特許文献 1 :特開平 6— 163941号公報  Patent Document 1: JP-A-6-163941
特許文献 2:特開平 5 - 340828号公報 発明の開示 Patent Document 2: JP-A-5-340828 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 上記従来の半導体圧力センサでは、ピエゾ抵抗効果は微小であるのに対し、シリコ ンは温度変化による抵抗変化も大きいため、 4つの拡散抵抗体 51をブリッジ結合して 信号を取り出す方式を用いている。また、ダイヤフラム部 54の厚さ tは、上下の圧力 差により敏感に凹凸変形するように、通常約 20 m以下の薄膜としており、このダイ ャフラム部 54を形成するためにアルカリエッチング等を行うが、一定の精度に制御す ることが難しいので、歩留まりが悪ぐコストも力かっていた。  [0006] In the above conventional semiconductor pressure sensor, the piezoresistive effect is small, but the resistance change due to temperature change is also large in silicon. Therefore, a system is adopted in which four diffusion resistors 51 are bridge-coupled to extract signals. Used. In addition, the thickness t of the diaphragm portion 54 is usually a thin film of about 20 m or less so as to be sensitively unevenly deformed by the pressure difference between the upper and lower sides, and alkali etching or the like is performed to form the diaphragm portion 54. Because it is difficult to control to a certain degree of accuracy, the yield is low and the cost is high.
[0007] さらに、温度変化による零点のずれ補償や出力感知のずれ補償、ダイヤフラム部の 厚さのバラツキ力も生ずる出力感度の差異調整を行うために、外付け抵抗を設ける 必要があった。以上の理由により、製造工程数が増え、リードタイムやコストが増大し ていた。  [0007] Furthermore, it is necessary to provide an external resistor in order to compensate for the deviation of the zero point due to the temperature change, the compensation of the deviation of the output sensing, and the adjustment of the difference in the output sensitivity that causes the variation in the thickness of the diaphragm portion. For these reasons, the number of manufacturing processes has increased, leading to increased lead times and costs.
[0008] ところで、半導体圧力センサの感度 Sは、 S=AX (WZt) 2と表される。ここで、 Aは 比例定数である。したがって、感度 Sを向上させるためには、ダイヤフラム部 54の厚さ tはできるだけ薄ぐダイヤフラム部 54の直径 Wは、できるだけ大きくする必要がある。 Meanwhile, the sensitivity S of the semiconductor pressure sensor is expressed as S = AX (WZt) 2 . Where A is a proportionality constant. Therefore, in order to improve the sensitivity S, the thickness t of the diaphragm portion 54 is made as thin as possible, and the diameter W of the diaphragm portion 54 needs to be made as large as possible.
[0009] しかし、ダイヤフラム部 54の厚さ tを一層薄くする場合には、上述したように、一定の 精度に制御することがより困難になり、薄くするのにも限界が発生する。また、近年、 半導体圧力センサへの小型化の要請は強ぐ直径 Wを大きくすることは実質的に不 可能である。以上のように半導体圧力センサの感度を向上させることが容易ではなか つた o  However, when the thickness t of the diaphragm portion 54 is further reduced, as described above, it becomes more difficult to control to a certain accuracy, and there is a limit to reducing the thickness. In recent years, the demand for miniaturization of semiconductor pressure sensors has become stronger, and it is virtually impossible to increase the diameter W. As described above, it is not easy to improve the sensitivity of semiconductor pressure sensors.
[0010] 本発明は、上述した課題を解決するために創案されたものであり、簡単な構成、ダ ィャフラム部の厚さの制御等も容易で、高歩留まり、低コスト、かつ温度依存性が低く 、高感度の半導体圧力センサを提供することを目的としている。  [0010] The present invention was created to solve the above-described problems, and has a simple configuration, easy control of the thickness of the diaphragm portion, etc., high yield, low cost, and temperature dependence. It aims to provide a low and high sensitivity semiconductor pressure sensor.
課題を解決するための手段  Means for solving the problem
[0011] 上記目的を達成するために、請求項 1記載の発明(第 1の構成による半導体圧力セ ンサ)では、ダイヤフラムの歪みにより圧力を検出する半導体圧力センサであって、前 記ダイヤフラムにはショットキー接合部が含まれていることを特徴とする半導体圧力セ ンサである。 [0012] また、請求項 2記載の発明は、前記ショットキー接合部は、半導体にバリア膜を接触 させて形成していることを特徴とする請求項 1記載の半導体圧力センサである。 [0011] In order to achieve the above object, the invention according to claim 1 (semiconductor pressure sensor according to the first configuration) is a semiconductor pressure sensor that detects a pressure by distortion of a diaphragm, and the diaphragm includes A semiconductor pressure sensor including a Schottky junction. [0012] The invention according to claim 2 is the semiconductor pressure sensor according to claim 1, wherein the Schottky junction is formed by bringing a barrier film into contact with a semiconductor.
[0013] また、請求項 3記載の発明は、前記半導体に形成された電極と、前記バリア膜と、 前記半導体とでショットキーノリアダイオードを構成していることを特徴とする請求項 2 記載の半導体圧力センサである。 [0013] Further, in the invention of claim 3, the electrode formed on the semiconductor, the barrier film, and the semiconductor constitute a Schottky noria diode. It is a semiconductor pressure sensor.
[0014] また、請求項 4記載の発明は、前記電極とバリア膜との間に順方向電流を流し、前 記ショットキー接合部の抵抗値の変化により圧力を検出することを特徴とする請求項[0014] The invention according to claim 4 is characterized in that a forward current is passed between the electrode and the barrier film, and the pressure is detected by a change in the resistance value of the Schottky junction. Term
3記載の半導体圧力センサである。 3. The semiconductor pressure sensor according to 3.
[0015] また、請求項 5記載の発明は、前記バリア膜の周囲を囲むように前記電極が形成さ れていることを特徴とする請求項 3又は請求項 4のいずれか 1項に記載の半導体圧 力センサである。 [0015] The invention according to claim 5 is characterized in that the electrode is formed so as to surround the periphery of the barrier film. This is a semiconductor pressure sensor.
[0016] また、請求項 6記載の発明は、前記バリア膜は、前記半導体の中央部に形成されて いることを特徴とする請求項 5記載の半導体圧力センサである。  [0016] The invention according to claim 6 is the semiconductor pressure sensor according to claim 5, wherein the barrier film is formed in a central portion of the semiconductor.
[0017] また、請求項 7記載の発明(第 2の構成による半導体圧力センサ)では、前記ショット キー接合部は、複数分散配置されていることを特徴とする請求項 1〜請求項 4のいず れカ 1項に記載の半導体圧力センサ。 [0017] Further, in the invention according to claim 7 (semiconductor pressure sensor according to the second configuration), a plurality of the Schottky junctions are arranged in a distributed manner. A semiconductor pressure sensor according to item 1.
[0018] また、請求項 8記載の発明は、前記ショットキー接合部は、ホイートストンブリッジ回 路を構成していることを特徴とする請求項 7記載の半導体圧力センサである。 [0018] The invention according to claim 8 is the semiconductor pressure sensor according to claim 7, wherein the Schottky junction portion constitutes a Wheatstone bridge circuit.
[0019] また、請求項 9記載の発明は、前記ショットキーノリアダイオードのアノード側又は力 ソード側と接続されるパッド電極を備えたことを特徴とする請求項 7又は請求項 8のい ずれ力 1項に記載の半導体圧力センサである。 [0019] Further, the invention according to claim 9 includes a pad electrode connected to the anode side or the force sword side of the Schottky noria diode, and the force according to claim 7 or claim 8, The semiconductor pressure sensor according to item 1.
発明の効果  The invention's effect
[0020] 本発明の第 1の構成による半導体圧力センサでは、圧力の検出に、従来技術のよう にピエゾ効果を有する拡散抵抗体を用いるのではなぐ全く新しい構成、すなわち金 属と半導体との接触によって生じるショットキー接合を用いているので、高感度とする ことができる。また、圧力の検出に上記ショットキー接合を有するショットキーノリアダ ィオードの順方向特性を用いて 、るため、温度依存性が低 、センサとすることができ る。また、半導体圧力センサの構成として台座を設ける場合は、圧力を導入する穴が 形成された台座と、弾性変形できるように薄く研磨されたダイヤフラムとを接合するよ うにしているので、ダイヤフラムの厚さをエッチングにより制御する必要がなぐさらに 、拡散抵抗によるブリッジ回路、温度補償回路、感度補償回路等を設ける必要もない ので、高歩留まり、低コストで製造することができるとともに、高精度のセンサを構成す ることがでさる。 [0020] In the semiconductor pressure sensor according to the first configuration of the present invention, a completely new configuration, that is, contact between a metal and a semiconductor, is not used for detecting pressure, unlike the prior art using a diffusion resistor having a piezo effect. Since the Schottky junction generated by the above is used, high sensitivity can be achieved. Further, since the forward characteristics of the Schottky noria diode having the Schottky junction are used for pressure detection, the temperature dependence is low, and a sensor can be obtained. In addition, when a pedestal is provided as a configuration of the semiconductor pressure sensor, there is a hole for introducing pressure. The formed pedestal is joined to a thinly polished diaphragm so that it can be elastically deformed. Therefore, it is not necessary to control the thickness of the diaphragm by etching. In addition, since it is not necessary to provide a sensitivity compensation circuit or the like, it can be manufactured at a high yield and at a low cost, and a highly accurate sensor can be configured.
[0021] また、本発明の第 2の構成による半導体圧力センサでは、圧力の感知部分にショッ トキ一接合を用いるとともに、複数のショットキー接合部がダイヤフラムに分散して形 成されて!/、るので、ダイヤフラムのたわみのムラによって発生する応力分布の非対称 性の影響を低減することができる。さらに、ショットキー接合部を複数用いることで、 1 つのショットキー接合部を用いるよりもさらに感度を向上させることができ、ダイヤフラ ムの厚さを厚くしても高感度を保つことができる。  [0021] Further, in the semiconductor pressure sensor according to the second configuration of the present invention, a shot junction is used for the pressure sensing portion, and a plurality of Schottky junctions are formed dispersed in the diaphragm! /, Therefore, it is possible to reduce the influence of the asymmetry of the stress distribution caused by the uneven deflection of the diaphragm. Furthermore, by using a plurality of Schottky junctions, the sensitivity can be further improved as compared with the case of using a single Schottky junction, and high sensitivity can be maintained even if the thickness of the diaphragm is increased.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]図 1は、本発明の第 1の半導体圧力センサの構造を示す図である。 FIG. 1 is a diagram showing a structure of a first semiconductor pressure sensor of the present invention.
[図 2]図 2は、本発明の第 2の半導体圧力センサの構造を示す図である。  FIG. 2 is a view showing a structure of a second semiconductor pressure sensor of the present invention.
[図 3]図 3は、半導体圧力センサの素子温度別の順方向電流一順方向電圧特性を示 す図である。  [FIG. 3] FIG. 3 is a graph showing the forward current vs. forward voltage characteristics for each element temperature of the semiconductor pressure sensor.
[図 4]図 4は、半導体圧力センサの圧力一出力電圧変化特性を示す図である。  FIG. 4 is a graph showing a pressure-output voltage change characteristic of a semiconductor pressure sensor.
[図 5]図 5は、半導体圧力センサの素子温度別の順方向電流一順方向電圧特性を示 す図である。  [FIG. 5] FIG. 5 is a graph showing forward current vs. forward voltage characteristics for each element temperature of a semiconductor pressure sensor.
[図 6]図 6は、半導体圧力センサの圧力一出力電圧変化特性を示す図である。  FIG. 6 is a graph showing a pressure-output voltage change characteristic of a semiconductor pressure sensor.
[図 7]図 7は、半導体圧力センサの素子温度別の順方向電流一順方向電圧特性を示 す図である。  [FIG. 7] FIG. 7 is a diagram showing a forward current vs. forward voltage characteristic for each element temperature of a semiconductor pressure sensor.
[図 8]図 8は、半導体圧力センサの圧力一出力電圧変化特性を示す図である。  FIG. 8 is a graph showing a pressure-output voltage change characteristic of a semiconductor pressure sensor.
[図 9]図 9は、第 1の半導体圧力センサを用いたキャンタイプの圧力センサの構造を 示す図である。  FIG. 9 is a diagram showing the structure of a can-type pressure sensor using the first semiconductor pressure sensor.
[図 10]図 10は、第 1の半導体圧力センサのショットキーノリアダイオード素子部分を 用いたキャンタイプの圧力センサの構造を示す図である。  FIG. 10 is a diagram showing a structure of a can-type pressure sensor using a Schottky noria diode element portion of the first semiconductor pressure sensor.
[図 11]図 11は、第 2の半導体圧力センサを用 、たキャンタイプの圧力センサの構造 を示す図である。 [Fig. 11] Fig. 11 shows the structure of a can type pressure sensor using a second semiconductor pressure sensor. FIG.
[図 12]図 12は、第 2の半導体圧力センサのショットキーノリアダイオード素子部分を 用いたキャンタイプの圧力センサの構造を示す図である。  FIG. 12 is a diagram showing a structure of a can type pressure sensor using a Schottky noria diode element portion of a second semiconductor pressure sensor.
[図 13]図 13は、本発明の第 3の半導体圧力センサの構造を示す平面図である。 FIG. 13 is a plan view showing the structure of a third semiconductor pressure sensor of the present invention.
[図 14]図 14は、本発明の第 3の半導体圧力センサの構造を示す側面図である。 FIG. 14 is a side view showing the structure of a third semiconductor pressure sensor of the present invention.
[図 15]図 15は、第 3の半導体圧力センサにおけるショットキーノリアダイオードの接 続構成を示す図である。 FIG. 15 is a diagram showing a connection configuration of Schottky noria diodes in a third semiconductor pressure sensor.
[図 16]図 16は、図 15のショットキーノリアダイオードを内部抵抗の値で置き換えた接 続構成を示す図である。  FIG. 16 is a diagram showing a connection configuration in which the Schottky noria diode in FIG. 15 is replaced with the value of the internal resistance.
[図 17]図 17は、第 3の半導体圧力センサ上のショットキーノリアダイオードに作用す る応力の種類を示す図である。  FIG. 17 is a diagram showing the types of stress acting on the Schottky noria diode on the third semiconductor pressure sensor.
[図 18]図 18は、 1つのショットキーバリアダイオードの順方向電流一順方向電圧特性 を示す図である。  FIG. 18 is a diagram showing forward current vs. forward voltage characteristics of one Schottky barrier diode.
[図 19]図 19は、ショットキーノリアダイオードの温度別の順方向電流-順方向電圧特 性を示す図である。  FIG. 19 is a diagram showing forward current-forward voltage characteristics according to temperature of a Schottky noria diode.
[図 20]図 20は、半導体圧力センサの順方向電流カー温度バラツキ特性を示す図で ある。  FIG. 20 is a diagram showing forward current Kerr temperature variation characteristics of a semiconductor pressure sensor.
[図 21]図 21は、 1つのショットキーバリアダイオードを用いた半導体圧力センサの構 造を示す図である。  FIG. 21 is a diagram showing a structure of a semiconductor pressure sensor using one Schottky barrier diode.
[図 22]図 22は、半導体圧力センサのダイヤフラム厚と出力電圧との特性を示す図で ある。  FIG. 22 is a diagram showing the characteristics of the diaphragm thickness and output voltage of a semiconductor pressure sensor.
[図 23]図 23は、半導体圧力センサの圧力 出力電圧変化特性を示す図である。  FIG. 23 is a graph showing the pressure output voltage change characteristic of the semiconductor pressure sensor.
[図 24]図 24は、台座部を有する第 3の半導体圧力センサの構造を示す図である。 FIG. 24 is a diagram showing a structure of a third semiconductor pressure sensor having a pedestal portion.
[図 25]図 25は、台座部が無い第 3の半導体圧力センサの構造を示す図である。 FIG. 25 is a view showing a structure of a third semiconductor pressure sensor having no pedestal portion.
[図 26]図 26は、台座部が無い第 3の半導体圧力センサと台座部を有する第 3の半導 体圧力センサの感度を比較する図である。 FIG. 26 is a diagram comparing the sensitivities of a third semiconductor pressure sensor having no pedestal portion and a third semiconductor pressure sensor having a pedestal portion.
[図 27]図 27は、台座部が無い第 3の半導体圧力センサを用いたモールドタイプ構造 の圧力センサを示す図である。 [図 28]図 28は、従来の拡散抵抗型の半導体圧力センサを示す図である, 符号の説明 FIG. 27 is a view showing a pressure sensor of a mold type structure using a third semiconductor pressure sensor having no pedestal portion. FIG. 28 is a diagram showing a conventional diffusion resistance type semiconductor pressure sensor, explanation of reference numerals
1 バリア膜  1 Barrier film
2 電極膜  2 Electrode membrane
3 n型半導体基板  3 n-type semiconductor substrate
4 台座部  4 pedestal
5 ダイヤフラム部  5 Diaphragm part
6 開口部  6 opening
10 ショットキーバリアダイォ -ド素子  10 Schottky barrier diode
11 バリア膜  11 Barrier film
12 電極膜  12 Electrode membrane
13 n型半導体基板  13 n-type semiconductor substrate
14 台座部  14 pedestal
15 ダイヤフラム部  15 Diaphragm part
16 開口部  16 opening
20 ショットキーバリアダイォ -ド素子  20 Schottky barrier diode
32、 42 支持台  32, 42 Support base
33、 45 リードピン  33, 45 Lead pin
31、 41 圧力導入管  31, 41 Pressure inlet pipe
34、 35、 43 圧力導入孔  34, 35, 43 Pressure inlet
44 樹脂モールド  44 Resin mold
46 中空部  46 Hollow part
61 バリア膜  61 Barrier film
62  62
63 バリア膜  63 Barrier film
64 亀  64 Turtle
65 バリア膜 67 バリア膜 65 Barrier film 67 Barrier film
68 電極  68 electrodes
69' -72 配線  69 '-72 wiring
73' -76 パッド電極  73 '-76 pad electrode
77 半導体基板  77 Semiconductor substrate
78 ダイヤフラム領域  78 Diaphragm area
80 ショットキーバリアダイオード  80 Schottky barrier diode
81 台座部  81 pedestal
82 台座部  82 pedestal
83 接合層  83 Bonding layer
91 圧力導入管  91 Pressure inlet pipe
92 圧力導入孔  92 Pressure inlet
93 樹脂モールド  93 Resin mold
94 中空部  94 Hollow part
96 リード線  96 lead wire
97 リードピン  97 Lead pin
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、図面を参照して本発明の一実施形態を説明する。図 1は本発明による第 1の 半導体圧力センサの構造を示し、図 l (a)は平面構造を、図 1 (b)は縦断面を示す。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of a first semiconductor pressure sensor according to the present invention, FIG. 1 ( a ) shows a planar structure, and FIG. 1 (b) shows a longitudinal section.
[0025] 第 1の半導体圧力センサは、バリア膜 1、電極膜 2、例えば n型の半導体基板 3から なるショツキーノリアダイオード素子 10と台座部 4とで構成されている。本発明では、 従来技術とは異なり、全く新しい構成による圧力検出手段として、金属と半導体との 接触によって生じるショットキー接合を用いる。ショットキーノリアダイオード素子 10に おいて、金属で構成されるノリア膜 1と n型半導体基板 3とを接触させることで、 n型半 導体基板 3側の接触面に空乏層が生じ、ショットキー障壁が発生する。  The first semiconductor pressure sensor includes a barrier film 1, an electrode film 2, for example, a Schottky noria diode element 10 made of an n-type semiconductor substrate 3 and a pedestal 4. In the present invention, unlike the prior art, a Schottky junction generated by contact between a metal and a semiconductor is used as a pressure detection means with a completely new configuration. In the Schottky noria diode element 10, when the noria film 1 made of metal is brought into contact with the n-type semiconductor substrate 3, a depletion layer is formed on the contact surface on the n-type semiconductor substrate 3 side, and the Schottky barrier Occurs.
[0026] このショットキー接合部分力 n型半導体基板 3におけるダイヤフラム部 5 (図の斜線 部)に含まれており、圧力を感知する領域となる。ショットキー接合を生じさせるために は、ノリア膜 1の仕事関数が n型半導体基板 3の仕事関数よりも大きくなるように、ノ リ ァ膜 1、 n型半導体基板 3の材料を選ぶようにする必要がある。例えば、バリア膜 1は、 Pt等のノリアメタルと A1等の金属の複合膜が用いられ、 n型半導体基板 3には n型不 純物がドープされたシリコン基板等が用いられる。なお、バリアメタルとなる材料として は、 Pt以外に、 Ti、 Mo、 W、 Al、 V、 Pd、 Au等がある。 This Schottky junction partial force is included in diaphragm portion 5 (shaded portion in the figure) in n-type semiconductor substrate 3 and serves as a pressure sensing region. In order to generate a Schottky junction, the NORA film 1 has a work function that is larger than the work function of the n-type semiconductor substrate 3. It is necessary to select materials for the film 1 and the n-type semiconductor substrate 3. For example, the barrier film 1 is used a composite film of a metal such as Noriametaru and A1 such P t, the n-type semiconductor substrate 3 such as a silicon substrate with an n-type non-pure product doped is used. In addition to Pt, there are Ti, Mo, W, Al, V, Pd, Au, etc. as materials for the barrier metal.
[0027] 台座部 4はシリコン基板等を用い、バリア膜 1と n型半導体基板 3とのショットキー接 合部が配置される位置を中心としてテーパー状にくり貫かれて開口部 6を形成してお り、台座部 4とショツキーノリアダイオード素子 10とは接合されている。開口部 6の形 状は、ノリア膜 1の形状に合わせて正方形状としている。力ソード電極としての電極膜 2と、アノード電極としてのノリア膜 1との間を導通させて定電流源により順方向電流 を流し、順方向電圧を取り出すようにしている。  [0027] The pedestal 4 is made of a silicon substrate or the like, and is pierced in a taper shape around the position where the Schottky junction between the barrier film 1 and the n-type semiconductor substrate 3 is arranged to form the opening 6. The pedestal 4 and the Schottky noria diode element 10 are joined. The shape of the opening 6 is a square shape in accordance with the shape of the noria film 1. The electrode film 2 as a force sword electrode and the noria film 1 as an anode electrode are electrically connected, and a forward current is supplied from a constant current source to extract a forward voltage.
[0028] 台座部 4における開口部 6から圧力が導入されると、ショツキ一バリアダイオード素 子 10のダイヤフラム部 5に歪みが生じて、ノリア膜 1と n型半導体基板 3とのショットキ 一接合部にも歪みが生じるので、 n型半導体基板 3の抵抗が変化して順方向電圧が 変化し、導入された圧力と順方向電圧の変化との関係力 圧力を検知することができ る。  When pressure is introduced from the opening 6 in the pedestal 4, the diaphragm 5 of the Schottky barrier diode element 10 is distorted, and a Schottky junction between the noria film 1 and the n-type semiconductor substrate 3. Since distortion also occurs, the resistance of the n-type semiconductor substrate 3 changes and the forward voltage changes, and the relationship between the introduced pressure and the change of the forward voltage can be detected.
[0029] 図 1の半導体圧力センサの寸法は、例えば、 W1が 1. 7mm、 W2が 3. 4mm、 W3 力 0 μ m、 W4が 260 μ mとすることができ、比較的薄型で小さい圧力センサに形成 することができる。また、ショツキーノリアダイオード素子 10としては、 n型半導体基板 3の替りに p型半導体基板を用いても良ぐこの場合には p型半導体基板の仕事関数 力 Sバリア膜の仕事関数よりも大きくなるように材料を選んでショットキー接合を形成す るようにする。  [0029] The dimensions of the semiconductor pressure sensor in Fig. 1 are, for example, W1 is 1.7 mm, W2 is 3.4 mm, W3 force is 0 μm, and W4 is 260 μm. Can be formed on the sensor. Further, as the Schottky Noria diode element 10, a p-type semiconductor substrate may be used instead of the n-type semiconductor substrate 3. In this case, the work function force of the p-type semiconductor substrate is larger than the work function of the S barrier film. The material is selected so that a Schottky junction is formed.
[0030] 次に上記半導体圧力センサの製造方法を以下に説明する。まず、ショツキーノリア ダイオード素子 10の形成方法を説明すると、 n型半導体基板 (第 1導電型半導体基 板) 3上に厚さ 3. 33〜4. 07 ^ m,抵抗率 0. 63〜0. 77 Ω 'cmのェピタキシャル層 を成長させ、熱酸ィ匕膜を 9500 A成長させる。フォトレジスト技術とフッ酸によるエッチ ングにより選択的に熱酸化膜を除去し、 PoCl拡散を 1050°Cで 120分行い、力ソード 領域電極を形成する。リンの供給は PoCl以外にリンイオン注入で行ってもょ 、。  Next, a method for manufacturing the semiconductor pressure sensor will be described below. First, the method for forming the Schottky Noria diode element 10 is described. On the n-type semiconductor substrate (first conductive semiconductor substrate) 3, the thickness is 3.33 to 4.07 ^ m, and the resistivity is 0.63 to 0.77. An epitaxial layer of Ω'cm is grown, and a thermal oxide film is grown at 9500 A. The thermal oxide film is selectively removed by photoresist technology and hydrofluoric acid etching, and PoCl diffusion is performed at 1050 ° C for 120 minutes to form a force sword region electrode. Phosphorus can be supplied by implanting phosphorus ions in addition to PoCl.
[0031] 次に可動イオンをゲッタリングするのに適度なリンを含む CVD膜を堆積させ、 1000 °C、 30分熱処理して平坦化させる。もちろんリンを含まなくても良い。再びフォトレジ スト技術とフッ酸によるエッチングにより選択的に CVD及び、熱酸化膜を除去する。 ショットキーのバリアメタルとなる、 Pt、 Ti、 Mo、 W、 Al、 V、 Pd、 Au等をスパッタまた は蒸着により堆積させ適当な温度で熱処理し、シリサイドを形成する。バリアメタルの 上に互いの拡散ノ《リアとなる適当なメタル層を何層力設け、最上部厚さ 24〜26kA の A1の層を設けてアノード電極となるノリア膜 1を形成する。力ソード電極膜 2もァノ ードバリア膜 1と同じメタルで上記同様に形成されるが、力ソード領域は不純物濃度を 非常に高くしているので、ショットキー障壁は形成されずォーミック接触となる。 Next, a CVD film containing phosphorus appropriate for gettering mobile ions is deposited, and 1000 Flatten by heat treatment at ° C for 30 minutes. Of course, phosphorus may not be included. The CVD and thermal oxide films are selectively removed again by the photoresist technique and etching with hydrofluoric acid. Pt, Ti, Mo, W, Al, V, Pd, Au, etc., which are Schottky barrier metals, are deposited by sputtering or vapor deposition and heat-treated at an appropriate temperature to form silicide. On the barrier metal, an appropriate metal layer serving as a diffusion layer is disposed on the barrier metal, and an A1 layer having a top thickness of 24 to 26 kA is provided to form the noria film 1 serving as an anode electrode. The force sword electrode film 2 is also formed of the same metal as the anode barrier film 1 in the same manner as described above. However, since the force sword region has a very high impurity concentration, no Schottky barrier is formed and an ohmic contact is formed.
[0032] その上に 8000Aの窒化シリコン膜を減圧、常時またはプラズマ CVD機で堆積させ 、フォトリソグラフィ一とドライエッチヤーでバリア膜 1及び電極膜 2の領域と素子周辺 を選択的に除去する。表面を傷つけない様にテープ等で保護しながら裏面から研磨 し、厚さ20〜120 111にする。仕上げは 2000番仕上げとした。  [0032] A 8000A silicon nitride film is deposited thereon under reduced pressure at all times or with a plasma CVD machine, and the regions of the barrier film 1 and the electrode film 2 and the periphery of the device are selectively removed by photolithography and dry etching. Polishing from the back while protecting the surface with tape, etc., so as not to damage the surface. Finishing was 2000.
[0033] 次に台座部 4の形成方法を説明すると、 1 X 1018cm_3以下の B、 P、 As、 Sb等の n 型不純物を含む(100)面のシリコンウェハーに 8000 Aの窒化シリコン膜を堆積し、 フォトリソグラフィ一とドライエッチングによって開口部 6の上側面積に相当する領域を 選択的に除去する。表面パターンをテープ等で保護し、裏面から研磨して、厚さ 200 〜300 mにする。 24wt%KOH水溶液に浸し、開口部 6が形成されるまでエツチン グする。 [0033] Next will be described the method of forming the base portion 4, 1 X 10 18 cm_ 3 below B, P, As, 8000 A silicon nitride to silicon wafer (100) plane containing the n-type impurity such as Sb A film is deposited, and a region corresponding to the upper area of the opening 6 is selectively removed by photolithography and dry etching. The surface pattern is protected with tape or the like and polished from the back surface to a thickness of 200 to 300 m. Immerse in a 24wt% KOH aqueous solution and etch until opening 6 is formed.
[0034] 最後に、上記ショツキーノリアダイオード素子 10と台座部 4を熱硬化性高弹性テ一 プを用い、 180〜200°Cの熱をカ卩えて接合すると、図 1の半導体圧力センサが完成 する。なお、接合は高強度の接着剤や、 SOI技術を応用した接合であっても構わな い。  [0034] Finally, when the Schottky noria diode element 10 and the pedestal 4 are joined using a thermosetting high-strength tape and heated at 180 to 200 ° C, the semiconductor pressure sensor of FIG. Complete. The bonding may be a high-strength adhesive or bonding using SOI technology.
[0035] 図 2は、本発明による第 2の半導体圧力センサの構造例を示し、図 2 (a)は平面構 造を、図 2 (b)は縦断面を示す。 n型半導体基板 13上にアノード電極としてのバリア 膜 11が中央部分に形成されており、このノリア膜 11を囲むようにして力ソード電極と しての電極膜 12が設けられて 、る。 n型半導体基板 13におけるダイヤフラム部 15は 、図の斜線で示すように、 n型半導体基板 13とバリア膜 11とがショットキー接合してい る領域が相当する。図 2の半導体圧力センサの大きさとしては、例えば、 n型半導体 基板 13の大きさを縦横ともに、 1. 6mmの正方形とし、 n型半導体基板 13の厚さや 台座部 14の高さは、図 1の W3、 W4と同様、各々 50 μ m、 260 μ mとすることができ る。動作や製造方法については、図 1の半導体圧力センサの場合と同様である。 FIG. 2 shows a structural example of a second semiconductor pressure sensor according to the present invention, FIG. 2 (a) shows a planar structure, and FIG. 2 (b) shows a longitudinal section. A barrier film 11 as an anode electrode is formed on the n-type semiconductor substrate 13 in the center portion, and an electrode film 12 as a force sword electrode is provided so as to surround the noria film 11. The diaphragm portion 15 in the n-type semiconductor substrate 13 corresponds to a region where the n-type semiconductor substrate 13 and the barrier film 11 are in a Schottky junction, as indicated by the oblique lines in the figure. As the size of the semiconductor pressure sensor in FIG. 2, for example, an n-type semiconductor The size of the substrate 13 is 1.6 mm square both vertically and horizontally, and the thickness of the n-type semiconductor substrate 13 and the height of the pedestal 14 are 50 μm and 260 μm, respectively, similar to W3 and W4 in FIG. can do. The operation and manufacturing method are the same as those of the semiconductor pressure sensor of FIG.
[0036] 図 1の半導体圧力センサの場合、バリア膜 1と電極膜 2を並べて n型半導体基板 3 上に設けているために、センサ面積が大きくなり、形状も長方形となってしまい、後述 するパッケージ化する場合に、コンパクトに収めることができない。一方、図 2のように 、 ノリア膜 11を囲むようにして電極膜 12を形成することで、図 1よりもセンサ面積を小 さくすることができるとともに、ダイヤフラム部 15を中央部に設けることができ、センサ 形状を正方形状に形成することができる。  In the case of the semiconductor pressure sensor of FIG. 1, since the barrier film 1 and the electrode film 2 are provided side by side on the n-type semiconductor substrate 3, the sensor area becomes large and the shape becomes rectangular, which will be described later. When packaged, it cannot fit in a compact. On the other hand, as shown in FIG. 2, by forming the electrode film 12 so as to surround the noria film 11, the sensor area can be made smaller than in FIG. 1, and the diaphragm portion 15 can be provided in the central portion. The sensor shape can be formed in a square shape.
[0037] また、センサの感度を上げるために、ダイヤフラム部 15の面積を広げる場合でも、 四方を均等に広げることができ、開口部 16の面積も、 n型半導体基板 13の面積に近 い領域まで広げることができるので、図 1の半導体圧力センサよりも面積が小さくても 、同等の精度、感度を有する半導体圧力センサを構成することができ、小型化するこ とができる。さらに、センサの形状を正方形にして、中央部にダイヤフラム部 15を設け た場合には、開口部 16から導入された圧力が均等にダイヤフラム部 15に加わり、圧 力測定の精度が向上する。  [0037] Further, in order to increase the sensitivity of the sensor, even when the area of the diaphragm 15 is increased, the four sides can be evenly expanded, and the area of the opening 16 is also a region close to the area of the n-type semiconductor substrate 13. Therefore, even if the area is smaller than that of the semiconductor pressure sensor of FIG. 1, a semiconductor pressure sensor having the same accuracy and sensitivity can be configured, and the size can be reduced. Further, when the sensor has a square shape and the diaphragm portion 15 is provided in the central portion, the pressure introduced from the opening portion 16 is equally applied to the diaphragm portion 15 and the accuracy of pressure measurement is improved.
[0038] 図 3は、本発明の半導体圧力センサにおける順方向電流と順方向出力電圧の特性 を示す。  FIG. 3 shows the characteristics of forward current and forward output voltage in the semiconductor pressure sensor of the present invention.
[0039] ノリア膜としては、ショットキーのバリアメタルとして Ptを用い、この上に A1の膜を形 成した複合金属膜を用いた。実線は半導体圧力センサの素子温度が 25°Cの場合 、破線は 25°Cの場合、一点鎖線は 75°Cの場合を示す。順方向電流 IFを増加させて いくと、出力電圧 VFも増加していき、最初の立ち上がり部分では、特性は異なってい る力 順方向電流 IFが 1000mAの前後で、曲線はほぼ一致し、素子温度が異なつ て!、てもほぼ一致した軌跡を描く。  [0039] As the Noria film, a composite metal film in which Pt was used as a Schottky barrier metal and an A1 film was formed thereon was used. The solid line indicates the case where the element temperature of the semiconductor pressure sensor is 25 ° C, the broken line indicates the case where the temperature is 25 ° C, and the alternate long and short dash line indicates the case where the temperature is 75 ° C. As the forward current IF is increased, the output voltage VF also increases.At the first rise, the characteristics are different.The forward current IF is around 1000 mA. Draw different traces!
[0040] このように高電流密度域での温度依存性が非常に小さいことがわかる。高電流密 度域で半導体圧力センサを動作させることで、温度の変化にかかわらず、精度の良 い測定を行うことができる。例えば、順方向電流 IF= 1000mAにおける素子温度 25 °Cの出力電圧 VF (752mV)を基準として、同じ順方向電流値での変動を測定した 結果、—25°Cで変化率 +0. 6% (VF= 756. 2mV)、 75°Cで—0. 5% (VF= 748 . 2mV)という非常に温度依存性が少ない結果を得た。素子温度が— 25°C、 25°C、 75°Cと変化した場合に、出力電圧 VFの変化率が最も小さい順方向電流 IFの値、図 3の例では IF = 1000mAと基準となった素子温度 25°Cの曲線との交点を動作点と すると、この動作点を中心として約 ± 5mVの範囲 (斜線部分)がセンサとして使用可 能な動作領域となる。 Thus, it can be seen that the temperature dependence in the high current density region is very small. By operating the semiconductor pressure sensor in the high current density region, accurate measurements can be performed regardless of temperature changes. For example, the fluctuation at the same forward current value was measured with reference to the output voltage VF (752mV) at an element temperature of 25 ° C when the forward current IF = 1000mA. As a result, the rate of change was + 0.6% at -25 ° C (VF = 756.2mV), and at 0.5 ° C, it was -0.5% (VF = 748.2mV). . When the element temperature changed to -25 ° C, 25 ° C, and 75 ° C, the forward current IF value with the smallest change rate of the output voltage VF was the reference value. In the example of Fig. 3, the reference was IF = 1000mA. Assuming that the operating point is the intersection point with the curve with a device temperature of 25 ° C, the operating range that can be used as a sensor is the range of approximately ± 5 mV (shaded area) around this operating point.
[0041] 図 4は、実際に圧力を導入したときの圧力の変化に対する出力電圧の変化を示す 。図 3に示す温度依存性が非常に小さい高電流密度域において、本発明の半導体 圧力センサのダイヤフラム部(ショットキー接合部分)に圧力を加え、その圧力を変化 させた場合の出力電圧の変化を示す。高密度電流域における順方向電流 IF= 100 OmAとし、定電流源でこの順方向電流を一定にし、大気圧下における出力電圧を基 準とした場合の加圧下における出力電圧変化量 AVFを縦軸に示す。素子温度が 25°C、 25°C、 75°Cと変化しても、 AVF—圧力の曲線に大きな違いは見られない。  [0041] FIG. 4 shows changes in output voltage with respect to changes in pressure when pressure is actually introduced. In the high current density region shown in Fig. 3 where the temperature dependence is very small, the change in output voltage when pressure is applied to the diaphragm (Schottky junction) of the semiconductor pressure sensor of the present invention and the pressure is changed. Show. Forward current in high-density current region IF = 100 OmA, constant forward current is constant with a constant current source, and output voltage change AVF under pressure when the output voltage under atmospheric pressure is the standard. Shown in Even if the element temperature changes to 25 ° C, 25 ° C, and 75 ° C, there is no significant difference in the AVF-pressure curve.
[0042] ところで、バリア膜 1のバリアメタルと n型半導体基板 3との接合面積を小さくすること で順方向出力電圧の温度依存性が小さ!/、領域を順方向電流の小さ!、領域にシフト することができる。実用的な駆動順方向定電流は、 10mA以下の場合が多い。  By the way, by reducing the junction area between the barrier metal of the barrier film 1 and the n-type semiconductor substrate 3, the temperature dependence of the forward output voltage is small! / The region has a small forward current! Can be shifted. Practical drive forward constant current is often less than 10mA.
[0043] 図 5は、図 3と同じバリアメタル Ptを用い、ノリアメタルと n型半導体基板 3との接合 面積を図 3よりも小さくした場合の半導体圧力センサにおける順方向電流と順方向出 力電圧の特性を示す。バリア膜としては、ショットキーのバリアメタル Ptの上に A1の膜 を形成した複合金属膜を用いた。実線は半導体圧力センサの素子温度が 0°Cの場 合、破線は 25°Cの場合、一点鎖線は 40°Cの場合を示す。順方向電流 IFを増加させ ていくと、出力電圧 VFも増加していき、最初の立ち上がり部分では、特性は異なって いるが、順方向電流 IFが 2mAの前後で、曲線はほぼ一致し、素子温度が異なって いてもほぼ一致した軌跡を描く。動作点は、順方向電流 IF = 2mAと基準となる素子 温度 25°Cの曲線との交点であり、この動作点を中心として約 ± 5mVの範囲 (斜線部 分)がセンサとして使用可能な動作領域となる。 IF= 2mAにおける素子温度 25°Cの 出力電圧 VF (686mV)を基準として、同じ順方向電流値での変動を測定した結果、 0°Cで変ィ匕率 +0. 58% (VF = 690mV)、 40°Cで一 0. 87% (VF = 680mV)という 非常に温度依存性が少な!ヽ結果を得た。 FIG. 5 shows the forward current and the forward output voltage in the semiconductor pressure sensor when the same barrier metal Pt as in FIG. 3 is used and the junction area between the noria metal and the n-type semiconductor substrate 3 is smaller than that in FIG. The characteristics are shown. As the barrier film, a composite metal film in which an A1 film was formed on a Schottky barrier metal Pt was used. The solid line shows the case where the element temperature of the semiconductor pressure sensor is 0 ° C, the broken line shows the case at 25 ° C, and the alternate long and short dash line shows the case at 40 ° C. As the forward current IF increases, the output voltage VF also increases.At the first rise, the characteristics are different, but the curves are almost the same when the forward current IF is around 2 mA. Draws almost the same trajectory even at different temperatures. The operating point is the intersection of the forward current IF = 2mA and the curve with the reference element temperature of 25 ° C. The range of approximately ± 5mV (shaded area) that can be used as a sensor is centered on this operating point. It becomes an area. Based on the output voltage VF (686mV) at an element temperature of 25 ° C at IF = 2mA, the variation in the same forward current was measured, and the change rate at 0 ° C was + 0.5% (VF = 690mV ), 0.88% at 40 ° C (VF = 680mV) Very low temperature dependence!
[0044] 図 6は、図 5の特性を示す半導体圧力センサに、実際に圧力を導入したときの圧力 の変化に対する出力電圧の変化を示す。高密度電流域における順方向電流 IF = 2 mAとし、定電流源でこの順方向電流を一定にし、大気圧下における出力電圧を基 準とした場合の加圧下における出力電圧変化量 AVFを縦軸に示す。素子温度が 0 。C、 25°C、 40°Cと変ィ匕しても、 AVF—圧力の曲線に大きな違いは見られない。また 、 0°C、 25°C、 40°Cの各素子温度に対する曲線が 2本描かれているのは、各温度で のバラツキの範囲を示す。  FIG. 6 shows a change in output voltage with respect to a change in pressure when pressure is actually introduced into the semiconductor pressure sensor having the characteristics shown in FIG. The forward current in the high-density current region is IF = 2 mA, the forward current is constant with a constant current source, and the output voltage change AVF under pressure when the output voltage under atmospheric pressure is the standard. Shown in Element temperature is 0. Even when changing to C, 25 ° C and 40 ° C, there is no significant difference in the AVF-pressure curve. In addition, two curves for each element temperature of 0 ° C, 25 ° C, and 40 ° C are drawn, indicating the range of variation at each temperature.
[0045] 図 7は、バリアメタルと n型半導体基板 3との接合面積を図 5と同じ条件にしてバリア メタルに Tiを用 Vヽた場合の半導体圧力センサにおける順方向電流と順方向出カ電 圧の特性を示す。バリア膜としては、ショットキーのバリアメタル Tiの上に A1の膜を形 成した複合金属膜を用いた。図 5と同様に、実線は半導体圧力センサの素子温度が 0°Cの場合、破線は 25°Cの場合、一点鎖線は 40°Cの場合を示す。順方向電流 IFを 増加させていくと、出力電圧 VFも増加していき、最初の立ち上がり部分では、特性は 異なっているが、順方向電流 IFが 2mAの前後で、曲線はほぼ一致し、素子温度が 異なっていてもほぼ一致した軌跡を描く。動作点は、順方向電流 IF = 2mAと基準と なる素子温度 25°Cの曲線との交点であり、この動作点を中心として約 ± 5mVの範囲 (斜線部分)がセンサとして使用可能な動作領域となる。動作点は、素子温度が 0°C、 25°C、 40°Cと変化した場合に、出力電圧 VFの変化率が最も小さい点である力 IF = 2mAにおける素子温度 25°Cの出力電圧 VF (633mV)を基準として、同じ順方向 電流値での変動を測定した結果、 0°Cで変化率 +0. 32% (VF=635mV) , 40°C で— 0. 32% (VF = 631mV)という非常に温度依存性が少ない結果を得た。  [0045] FIG. 7 shows the forward current and forward output in the semiconductor pressure sensor when Ti is used for the barrier metal under the same conditions as in FIG. 5 where the junction area between the barrier metal and the n-type semiconductor substrate 3 is the same as in FIG. The voltage characteristics are shown. As the barrier film, a composite metal film in which an A1 film was formed on Schottky barrier metal Ti was used. As in Fig. 5, the solid line shows the case where the element temperature of the semiconductor pressure sensor is 0 ° C, the broken line shows the case of 25 ° C, and the alternate long and short dash line shows the case of 40 ° C. As the forward current IF is increased, the output voltage VF also increases.At the first rise, the characteristics are different, but the curves are almost the same when the forward current IF is around 2 mA. Draws almost the same trajectory even at different temperatures. The operating point is the intersection of the forward current IF = 2 mA and the reference element temperature 25 ° C curve, and the operating range in which approximately ± 5 mV centered around this operating point (shaded area) can be used as a sensor. It becomes. The operating point is the point at which the rate of change of the output voltage VF is the smallest when the element temperature changes to 0 ° C, 25 ° C, and 40 ° C. The output voltage VF at an element temperature of 25 ° C at IF = 2mA Based on (633mV) as a reference, the variation in the same forward current value was measured. As a result, the rate of change was + 0.32% (VF = 635mV) at 0 ° C, and 0.32% (VF = 631mV at 40 ° C). ) Was obtained with very little temperature dependence.
[0046] 図 8は、図 7の特性を示す半導体圧力センサに、実際に圧力を導入したときの圧力 の変化に対する出力電圧の変化を示す。高密度電流域における順方向電流 IF = 2 mAとし、定電流源でこの順方向電流を一定にし、大気圧下における出力電圧を基 準とした場合の加圧下における出力電圧変化量 AVFを縦軸に示す。素子温度が 0 。C、 25°C、 40°Cと変ィ匕しても、 AVF—圧力の曲線に大きな違いは見られない。また 、 0°C、 25°C、 40°Cの各素子温度に対する曲線が 2本描かれているのは、各温度で のバラツキの範囲を示す。 FIG. 8 shows changes in output voltage with respect to changes in pressure when pressure is actually introduced into the semiconductor pressure sensor having the characteristics shown in FIG. The forward current in the high-density current region is IF = 2 mA, the forward current is constant with a constant current source, and the output voltage change AVF under pressure when the output voltage under atmospheric pressure is the standard. Shown in Element temperature is 0. Even when changing to C, 25 ° C and 40 ° C, there is no significant difference in the AVF-pressure curve. Two curves for each element temperature of 0 ° C, 25 ° C, and 40 ° C are drawn at each temperature. The range of variation is shown.
[0047] 以上のように、半導体圧力センサに用いるノリアメタルの種類や、ノリアメタルと半 導体との接合面積を変化させることで、使用したい温度範囲や駆動順方向定電流、 検出圧力範囲等に適合させることができる。  [0047] As described above, by changing the type of noria metal used in the semiconductor pressure sensor and the junction area between the noria metal and the semiconductor, it is adapted to the temperature range, driving forward constant current, detection pressure range, etc. to be used. be able to.
[0048] 次に、図 1の第 1の半導体圧力センサを用いてキャンタイプとした圧力センサュ-ッ トを図 9に示す。圧力が導入される圧力導入管 31の上に支持台 32を介して第 1の半 導体圧力センサが取り付けられている。支持台 32は第 1の半導体圧力センサとの接 着性を良くするために、シリコンやガラス等で構成されている。また、支持台 32の圧 力導入孔 35は、第 1の半導体圧力センサのダイヤフラム部 5の大きさとほぼ同じにな るように形成され、圧力導入管 31の圧力導入孔 34の径を変換する役割を有する。リ 一ドビン 33で基台や基板に固定する。  Next, FIG. 9 shows a pressure sensor unit of the can type using the first semiconductor pressure sensor of FIG. A first semiconductor pressure sensor is attached to a pressure introduction pipe 31 through which a pressure is introduced via a support base 32. The support base 32 is made of silicon, glass, or the like in order to improve the adhesion with the first semiconductor pressure sensor. Further, the pressure introduction hole 35 of the support base 32 is formed to be substantially the same as the size of the diaphragm portion 5 of the first semiconductor pressure sensor, and converts the diameter of the pressure introduction hole 34 of the pressure introduction pipe 31. Have a role. Fix it to the base or board with the lead bin 33.
[0049] 図 10は、第 1の半導体圧力センサの台座部 4を取り除いてショットキーバリアダイォ ード素子 10を直接支持台 32に取り付けた構造となっており、図 9のユニットよりも高さ を低くすることができる。  FIG. 10 shows a structure in which the base 4 of the first semiconductor pressure sensor is removed and the Schottky barrier diode element 10 is directly attached to the support base 32, which is higher than the unit of FIG. The height can be lowered.
[0050] 上記、図 9、 10のいずれの場合にも、図 1の半導体圧力センサのダイヤフラム部 5 が素子の中央部分になぐ片側に偏っており、また、素子形状が長方形となっている ので、ノ ッケージとする場合に、配置位置が中央から片側に偏ったり、コンパクトな形 にすることができない。  [0050] In any of the cases shown in Figs. 9 and 10, the diaphragm portion 5 of the semiconductor pressure sensor in Fig. 1 is biased to one side connecting to the central portion of the element, and the element shape is rectangular. In the case of a knocker, the placement position is biased from the center to one side, and it cannot be made compact.
[0051] そこで、図 2の第 2の半導体圧力センサを用いたモールドタイプとした圧力センサュ ニットを図 11に示す。圧力が導入される圧力導入管 41に形成されて 、るガラス等の 支持台 42の上に第 2の半導体圧力センサが取り付けられている。第 2の半導体圧力 センサは正方形状で中央部分に圧力感知部であるダイヤフラム部 15が設けられて いるので、ァライメントしゃすい。また、開口部 16の大きさも適切に形成できるので、 圧力導入管 41の圧力導入孔 43との整合性が良ぐコンパクトに形成することができ る。第 2の半導体圧力センサや支持台 42は中空部 46を除いて榭脂モールド 44で覆 われており、リードピン 45により基台や基板に固定される。中空部 46を設けているの は、仮にセンサ内部がすべて榭脂モールド 44で充填されているとすると、ダイヤフラ ム部 15の弾性変形が発生しなくなり、圧力測定ができなくなってしまうからである。 [0052] 図 12は、第 2の半導体圧力センサの台座部 14を形成せずに、ショットキーノリアダ ィオード素子 20を直接支持台 42の上に陽極接合により取り付けて榭脂モールド 44 で中空部 46を除いて覆うようにしたものである。これにより、図 11のタイプよりもより小 型ィ匕することができる。 [0051] FIG. 11 shows a pressure sensor unit of a mold type using the second semiconductor pressure sensor of FIG. A second semiconductor pressure sensor is mounted on a support base 42 made of glass or the like, which is formed in a pressure introduction pipe 41 into which pressure is introduced. The second semiconductor pressure sensor has a square shape and is provided with a diaphragm portion 15 as a pressure sensing portion in the center portion. In addition, since the size of the opening 16 can be appropriately formed, it can be formed compactly with good consistency with the pressure introducing hole 43 of the pressure introducing pipe 41. The second semiconductor pressure sensor and the support base 42 are covered with a resin mold 44 except for the hollow portion 46, and are fixed to the base and the substrate by lead pins 45. The reason why the hollow portion 46 is provided is that if the entire sensor interior is filled with the resin mold 44, the diaphragm portion 15 will not be elastically deformed and pressure measurement will not be possible. [0052] FIG. 12 shows that the Schottky noria diode element 20 is directly attached on the support base 42 by anodic bonding without forming the base portion 14 of the second semiconductor pressure sensor, and the hollow portion is formed by the resin mold 44. Covered except for 46. As a result, the size can be made smaller than the type shown in FIG.
[0053] 次に、本発明の第 3の半導体圧力センサについて説明する。図 13、 14は本発明に よる第 3の半導体圧力センサの構造を示し、図 13は平面図を、図 14は側面図を示す  [0053] Next, a third semiconductor pressure sensor of the present invention will be described. 13 and 14 show the structure of a third semiconductor pressure sensor according to the present invention, FIG. 13 shows a plan view, and FIG. 14 shows a side view.
[0054] 第 3の半導体圧力センサは、複数のショットキーノリアダイオードが n型又は p型の 半導体基板 77に、分散して形成されている。 Dl、 D2、 D3、 D4はショットキーノリア ダイオードを示し、各ショットキーノリアダイオードは、バリア膜、電極、半導体基板で 構成されている。 The third semiconductor pressure sensor is formed by dispersing a plurality of Schottky noria diodes on an n-type or p-type semiconductor substrate 77. Dl, D2, D3, and D4 indicate Schottky noria diodes, and each Schottky noria diode includes a barrier film, an electrode, and a semiconductor substrate.
[0055] ショットキーノリアダイオード D1は、ノリア膜 61と電極 62と半導体基板 77とで、ショ ットキーノリアダイオード D2は、ノリア膜 63と電極 64と半導体基板 77とで、ショットキ 一バリアダイオード D3は、ノリア膜 65と電極 66と半導体基板 77とで、ショットキーバ リアダイオード D4は、ノリア膜 67と電極 68と半導体基板 77とで構成されている。図 からわかるように、各電極 62、 64、 66、 68は、ノリア膜を囲むようにして、半円形状 に形成されている。各ショットキーノリアダイオードにおいて、金属で構成されるバリア 膜 61、 63、 65、 67と半導体基板 77とを接触させることで、半導体基板 77側の接触 面に空乏層が生じ、ショットキー障壁が発生する。  [0055] The Schottky Noria diode D1 includes the Noria film 61, the electrode 62, and the semiconductor substrate 77, and the Schottky Noria diode D2 includes the Noria film 63, the electrode 64, and the semiconductor substrate 77, and the Schottky barrier diode D3 is The Schottky barrier diode D4 includes the noria film 67, the electrode 68, and the semiconductor substrate 77. The Schottky barrier diode D4 includes the noria film 65, the electrode 66, and the semiconductor substrate 77. As can be seen from the figure, each electrode 62, 64, 66, 68 is formed in a semicircular shape so as to surround the noria film. In each Schottky noria diode, when the barrier films 61, 63, 65, 67 made of metal and the semiconductor substrate 77 are brought into contact with each other, a depletion layer is formed on the contact surface on the semiconductor substrate 77 side, and a Schottky barrier is generated. To do.
[0056] 上記のように各バリア膜 61、 63、 65、 67と半導体基板 77とが接触して形成されて いる各ショットキー接合部分が、半導体基板 77におけるダイヤフラム領域 78 (図の点 線で囲まれた領域)に含まれており、圧力を感知する領域となる。ダイヤフラム領域 7 8以外の部分は、後述するように、例えば図 24のように台座部を設けるようにしても良 い。また、台座部を形成せずに、図 27のようにダイヤフラム領域 78に適合する内径を 有する圧力導入管 91に直接接合するようにしても良い。  [0056] As described above, each Schottky junction formed by contacting each of the barrier films 61, 63, 65, 67 and the semiconductor substrate 77 is a diaphragm region 78 in the semiconductor substrate 77 (indicated by a dotted line in the figure). It is included in the (enclosed area) and becomes an area for sensing pressure. As will be described later, a portion other than the diaphragm region 78 may be provided with a pedestal as shown in FIG. 24, for example. Further, without forming the pedestal portion, it may be directly joined to the pressure introducing pipe 91 having an inner diameter suitable for the diaphragm region 78 as shown in FIG.
[0057] ショットキー接合を生じさせるためには、半導体基板 77に n型半導体基板を用いる 場合には、各バリア膜 61、 63、 65、 67の仕事関数が n型の半導体基板 77の仕事関 数よりも大きくなるように、各ノリア膜と n型の半導体基板 77の材料を選ぶようにする 必要がある。例えば、バリア膜は、 Pt等のノリアメタルと A1等の金属の複合膜が用い られ、 n型の半導体基板 77には n型不純物がドープされたシリコン基板等が用いられ る。なお、ノリアメタルとなる材料としては、 Pt以外に、 Ti、 Mo、 W、 Al、 V、 Pd、 Au 等がある。この場合、各バリア膜はアノード (正電極)側になり、電極 62、 64、 66、 68 の各電極は力ソード (負電極)側となる。 [0057] In order to generate a Schottky junction, when an n-type semiconductor substrate is used as the semiconductor substrate 77, the work function of each barrier film 61, 63, 65, 67 is the work function of the n-type semiconductor substrate 77. Choose a material for each noria film and n-type semiconductor substrate 77 so that it is larger than the number. There is a need. For example, the barrier film is a composite film of a noria metal such as Pt and a metal such as A1, and the n-type semiconductor substrate 77 is a silicon substrate doped with an n-type impurity. In addition to Pt, there are Ti, Mo, W, Al, V, Pd, Au, etc. as materials for forming noria metal. In this case, each barrier film is on the anode (positive electrode) side, and each of the electrodes 62, 64, 66, and 68 is on the force sword (negative electrode) side.
[0058] 一方、半導体基板 77として n型半導体基板の替りに p型半導体基板を用いても良く 、この場合には p型半導体基板の仕事関数力バリア膜の仕事関数よりも大きくなるよう に材料を選んでショットキー接合を形成するようにする。この場合は、各ノリア膜は力 ソード (負電極)側となり、各電極はアノード (正電極)側となる。  [0058] On the other hand, a p-type semiconductor substrate may be used instead of the n-type semiconductor substrate as the semiconductor substrate 77. In this case, the material is made larger than the work function of the work function force barrier film of the p-type semiconductor substrate. To form a Schottky junction. In this case, each noria membrane is on the force sword (negative electrode) side, and each electrode is on the anode (positive electrode) side.
[0059] 各電極 62、 64、 66、 68は、半導体基板 77に不純物濃度を非常に高めた n+拡散 層又は P +拡散層を形成することにより作製される。 n型の半導体基板 77を用いる場 合には、電極 62、 64、 66、 68は、 n+拡散層で構成される。  Each electrode 62, 64, 66, 68 is manufactured by forming an n + diffusion layer or a P + diffusion layer having a very high impurity concentration on the semiconductor substrate 77. When the n-type semiconductor substrate 77 is used, the electrodes 62, 64, 66, and 68 are formed of n + diffusion layers.
[0060] 本実施例では、 n型の半導体基板 77とし、電極 62、 64、 66、 68は、 n+拡散層で 構成されたものとして説明する。この場合、力ソード電極としての電極 62、 64、 66、 6 8と、対応するアノード電極としてのバリア膜 61、 63、 65、 67との間を導通させて順 方向電流を流す。  In this example, it is assumed that the n-type semiconductor substrate 77 is used, and the electrodes 62, 64, 66, and 68 are configured by n + diffusion layers. In this case, the electrodes 62, 64, 66, 68 as the force sword electrodes and the barrier films 61, 63, 65, 67 as the corresponding anode electrodes are electrically connected to allow a forward current to flow.
[0061] D1〜D4の各ショットキーバリアダイオードに順方向電流を流すために、定電流源 等を接続する入力端子としてパッド電極 73、 75が設けられている。ノ¾ド電極 73は 配線 69によってノリア膜 61、 65と接続されている。パッド電極 75は配線 71によって 電極 64、 68と接続されている。また、各ショットキーノリアダイオードに順方向電流を 流したときに、順方向電圧変化を取り出せるように、出力端子としてパッド電極 74、 7 6が設けられている。ノッド電極 74は配線 70によって電極 62とバリア膜 63に接続さ れて 、る。パッド電極 76は配線 72によって電極 66とバリア膜 67とに接続されて 、る 。なお、酉己線 69、 70、 71、 72とノッド電極 73、 74、 75、 76は各々 A1 (ァノレミ-ゥム) で形成されている。  [0061] Pad electrodes 73 and 75 are provided as input terminals for connecting a constant current source or the like in order to flow a forward current to each of the Schottky barrier diodes D1 to D4. The node electrode 73 is connected to the noria films 61 and 65 by the wiring 69. The pad electrode 75 is connected to the electrodes 64 and 68 by the wiring 71. In addition, pad electrodes 74 and 76 are provided as output terminals so that forward voltage changes can be taken out when a forward current is passed through each Schottky noria diode. The nod electrode 74 is connected to the electrode 62 and the barrier film 63 by the wiring 70. The pad electrode 76 is connected to the electrode 66 and the barrier film 67 by the wiring 72. The selfish wires 69, 70, 71, 72 and the nod electrodes 73, 74, 75, 76 are each formed of A1 (anoromium).
[0062] 以上のように構成された半導体圧力センサの大きさは、例えば、長さ Lが 1. 5mm の正方形状とすることができ、比較的小さい圧力センサに形成することができる。  The size of the semiconductor pressure sensor configured as described above can be, for example, a square shape having a length L of 1.5 mm, and can be formed into a relatively small pressure sensor.
[0063] ダイヤフラム領域 78に圧力が導入されると、ダイヤフラム領域 78に歪みが生じるが 、この歪みは、各バリア膜 61、 63、 65、 67と n型の半導体基板 77との各ショットキー 接合部に歪みを生じさせるので、各ショットキー接合部の抵抗が変化して順方向電 圧が変化し、導入された圧力と順方向電圧の変化との関係から圧力を検知すること ができる。 [0063] When pressure is applied to the diaphragm region 78, the diaphragm region 78 is distorted. This distortion causes distortion at each Schottky junction between each barrier film 61, 63, 65, 67 and the n-type semiconductor substrate 77, so that the resistance of each Schottky junction changes and the forward current is changed. The pressure changes, and the pressure can be detected from the relationship between the introduced pressure and the forward voltage change.
[0064] ところで、本発明の半導体圧力センサは、ダイヤフラム領域 78にショットキー接合部 を 1つだけではなぐ複数分散配置させた構成となっている。このようにすることで、後 述するように、 1つのショットキー接合部を備えた半導体圧力センサよりも感度を大き くすることがでさる。  By the way, the semiconductor pressure sensor of the present invention has a configuration in which a plurality of the Schottky junctions are arranged in the diaphragm region 78 in a distributed manner. By doing so, as described later, the sensitivity can be made larger than that of a semiconductor pressure sensor having one Schottky junction.
[0065] 例えば、図 17は、図 13の構成に対応させてショットキーノリアダイオード力 つ形 成されている状態を模式的に示したものである力 圧力が導入されてダイヤフラムに 歪みが発生すると、ダイヤフラムの中央部付近に形成されているショットキーノリアダ ィオード D2、 D3に対応するショットキー接合部には引張応力が働き、ダイヤフラムの 周辺部に形成されているショットキーノリアダイオード D1、D4に対応するショットキー 接合部には圧縮応力が働く。  For example, FIG. 17 schematically shows a state in which a Schottky Noria diode force is formed corresponding to the configuration of FIG. 13, and when the pressure is introduced, the diaphragm is distorted. Tensile stress acts on the Schottky junction diodes corresponding to the Schottky diodes D2 and D3 formed near the center of the diaphragm, and the Schottky noria diodes D1 and D4 formed around the diaphragm Compressive stress acts on the corresponding Schottky joint.
[0066] ショットキーバリアダイオードの順方向電流 IFと順方向出力電圧 VFとの間には図 1 8に示すような関係が存在する。ここで、圧縮応力と引張応力の力の大きさはほぼ同 じであるとする。圧力がかからずに、ショットキー接合部に歪みが生じていない時点で は、実線で記載された初期特性 (イニシャル)を示すが、ショットキー接合部が圧縮応 力の作用で縮んだ場合には、破線で表す特性を示し、所定の順方向電流で比較す ると、 VFはイニシャル時の値よりも AVFだけ小さくなる。  A relationship as shown in FIG. 18 exists between the forward current IF and the forward output voltage VF of the Schottky barrier diode. Here, it is assumed that the magnitudes of the compressive stress and the tensile stress are almost the same. When the pressure is not applied and the Schottky junction is not distorted, the initial characteristics indicated by the solid line (initial) are shown, but when the Schottky junction shrinks due to the compressive stress. Indicates the characteristic indicated by the broken line. When compared with the specified forward current, VF is smaller by AVF than the initial value.
[0067] 一方、ショットキー接合部が引張応力の作用で伸びた場合には、一点鎖線で表す 特性を示し、圧縮応力の場合と同じ順方向電流で比較すると、 VFはイニシャル時の 値よりも AVFだけ大きくなる。そして、この 2つのショットキーノ リアダイオードを順方 向に直列に接続すれば、その接続点では 2 Δνの変動幅を得ることができる。  [0067] On the other hand, when the Schottky joint is stretched by the action of tensile stress, it shows the characteristics represented by the alternate long and short dash line, and when compared with the same forward current as in the case of compressive stress, VF is higher than the initial value. AVF only grows. If these two Schottky diodes are connected in series in the forward direction, a fluctuation range of 2 Δν can be obtained at the connection point.
[0068] したがって、 2つのショットキーバリアダイオードをダイヤフラムに形成した場合、一 方を引張応力が働く範隨こ、他方を圧縮応力が働く範囲に分散配置することにより、 感度を最大 2倍にすることができる。また、ダイヤフラムの橈みは一様ではなぐムラが 発生するが、ショットキー接合部を分散配置することにより、そのムラの影響を小さくす ることができ、安定した出力特性を得ることができる。以上の原理を応用して、分散配 置するショットキー接合部の数を増やしていけば、さらに感度を高め、応力のムラの 影響を少なくすることができる。 [0068] Therefore, when two Schottky barrier diodes are formed in a diaphragm, the sensitivity is doubled by disposing one in the range where tensile stress works and the other in the range where compressive stress works. be able to. In addition, the diaphragm stagnation is not uniform and uneven, but the effect of the unevenness can be reduced by distributing the Schottky junctions. And stable output characteristics can be obtained. By applying the above principle and increasing the number of Schottky junctions to be distributed, sensitivity can be further increased and the effect of stress unevenness can be reduced.
[0069] 一方、ショットキーノリアダイオードを用いた半導体圧力センサでは、ウェハ(半導 体基板 77)の厚さを通常のダイオード素子よりも薄く研削するために、半導体基板 77 に割れや欠けが発生する確率が高い。例えば、半導体圧力センサの搬送中や設置 時に半導体基板 77で構成されるダイヤフラムが割れたり、圧力の測定回数が多いと ダイヤフラムに疲労破壊が生じたりする。  [0069] On the other hand, in a semiconductor pressure sensor using a Schottky noria diode, the wafer (semiconductor substrate 77) is ground to a thickness smaller than that of a normal diode element, so that the semiconductor substrate 77 is cracked or chipped. The probability of doing is high. For example, when the semiconductor pressure sensor is being transported or installed, the diaphragm composed of the semiconductor substrate 77 is broken, or if the pressure is measured many times, the diaphragm may be fatigued.
[0070] ところが、ダイヤフラムの割れや欠けを防ぐために、半導体基板 77の厚さを厚くする と感度が低下してしまうという問題があった。しかし、本発明のように、ショットキー接合 部をダイヤフラムに分散配置することで、 1つのショットキー接合部を備えた半導体圧 力センサよりも感度を 2倍以上に高めることが可能になるので、半導体基板 77の厚さ を厚くしても、感度を高く維持することができ、ダイヤフラムの割れや欠けの発生を抑 ff¾することができる。  However, when the thickness of the semiconductor substrate 77 is increased in order to prevent the diaphragm from being cracked or chipped, there is a problem that the sensitivity is lowered. However, as in the present invention, by distributing the Schottky junctions in the diaphragm, it becomes possible to increase the sensitivity more than twice as much as the semiconductor pressure sensor with one Schottky junction. Even if the thickness of the semiconductor substrate 77 is increased, the sensitivity can be maintained high, and the occurrence of diaphragm cracks and chipping can be suppressed.
[0071] 図 13に示す半導体圧力センサは、分散配置するショットキー接合部の数を増やし て、 4個のショットキー接合部をダイヤフラムに分散配置したものである。  The semiconductor pressure sensor shown in FIG. 13 is obtained by increasing the number of Schottky junctions to be distributed and arranging four Schottky junctions in a diaphragm.
[0072] 図 13ではショットキー接合部を有する 4個の各ショットキーバリアダイオードを Dl〜 D4で表している力 これを電気回路として表せば、図 15の回路と等価になる。入力 端子であるパッド電極 73を正極、パッド電極 75を負極にして、電源電圧 (動作電流) を入力し、出力端子であるパッド電極 74とパッド電極 76との間から出力電圧を取り出 す。  In FIG. 13, the force represented by D1 to D4 for each of the four Schottky barrier diodes having a Schottky junction is equivalent to the circuit of FIG. 15 if expressed as an electric circuit. The power supply voltage (operating current) is input with the pad electrode 73 serving as the input terminal as the positive electrode and the pad electrode 75 serving as the negative electrode, and the output voltage is taken out between the pad electrode 74 and the pad electrode 76 serving as the output terminals.
[0073] 図 15に示されるように、 D1〜D4はホイートストンブリッジ回路を形成しており、ショ ットキーバリアダイオード D1〜D4の各内部抵抗を R1〜R4で表せば、図 16の回路と 等価になる。入力端子 IN 1 (パッド電極 73)と IN2 (パッド電極 75)との間に順方向の 動作電流が加えられて 、る場合、ショットキーノリアダイオードのショットキー接合部 に歪みが生じると、 R1〜R4が変化する力 この R1〜R4の変化によって発生する電 圧差を出力端子、すなわち OUT2 (パッド電極 74)と OUT1 (パッド電極 76)との間か ら取り出す。 [0074] 例えば、ショットキーバリアダイオード D1〜D4に、同じ構成のものを用いて、 Rl = R2=R3=R4=Rとすべての内部抵抗を等しくしておく。ショットキー接合部に歪み が発生していない状態、すなわち初期状態では、ホイートストンブリッジ回路の OUT 1と OUT2との間の電圧差は 0で平衡状態となる。次に、半導体基板 77のダイヤフラ ム領域 78に圧力が加わり橈みが生じると、 R1〜R4の抵抗値は変化する。 [0073] As shown in FIG. 15, D1 to D4 form a Wheatstone bridge circuit. If the internal resistances of the Schottky barrier diodes D1 to D4 are represented by R1 to R4, they are equivalent to the circuit of FIG. become. When a forward operating current is applied between the input terminals IN 1 (pad electrode 73) and IN2 (pad electrode 75), if the Schottky junction of the Schottky noria diode is distorted, R1 ~ Force that changes R4 The voltage difference generated by the change of R1 to R4 is taken out from the output terminal, that is, between OUT2 (pad electrode 74) and OUT1 (pad electrode 76). For example, Schottky barrier diodes D1 to D4 having the same configuration are used, and Rl = R2 = R3 = R4 = R and all internal resistances are made equal. In the state where the Schottky junction is not distorted, that is, in the initial state, the voltage difference between OUT 1 and OUT 2 of the Wheatstone bridge circuit is 0 and the equilibrium state is obtained. Next, when pressure is applied to the diaphragm region 78 of the semiconductor substrate 77 to cause stagnation, the resistance values of R1 to R4 change.
[0075] 図 17に示したように、ダイヤフラム領域 78の中央部に形成されている D2、 D3には 引張応力が、ダイヤフラム領域 78の周辺部に形成されている Dl、 D4には圧縮応力 が作用するので、圧縮応力による歪みと引張応力による歪みとが同じ程度であれば、 図 18に示すように 2つのショットキーバリアダイオードでの接続点で 2 Δ VFの電圧差 力 S生じる。したがって、図 16の OUT1では最大 2 AVFの電圧変動となり、一方 O UT2では、最大 + 2 AVFの電圧変動となるので、出力端子 OUTl、 OUT2間の電 圧差は最大で 4 AVFとなり、 1つのショットキーバリアダイオードによって圧力を感知 する場合と比較して最大で 4倍の感度となる。  As shown in FIG. 17, tensile stress is applied to D2 and D3 formed at the center of the diaphragm region 78, and compressive stress is applied to Dl and D4 formed at the peripheral portion of the diaphragm region 78. Therefore, if the strain caused by the compressive stress and the strain caused by the tensile stress are the same, a voltage difference S of 2 ΔVF is generated at the connection point of the two Schottky barrier diodes as shown in Fig. 18. Therefore, OUT1 in Figure 16 has a maximum voltage fluctuation of 2 AVF, while OUT2 has a maximum voltage fluctuation of +2 AVF, so the maximum voltage difference between the output terminals OUT1 and OUT2 is 4 AVF. The sensitivity is up to 4 times that of sensing pressure with a key barrier diode.
[0076] 図 19は、本発明の半導体圧力センサにおける 1つのショットキーノリアダイオードの 順方向電流密度(105AZm2)と順方向出力電圧 (mV)の特性を示す。バリア膜とし ては、ショットキーのバリアメタルとして Ptを用い、この上に A1の膜を形成した複合金 属膜を用いた。半導体圧力センサの素子温度が— 25°Cの場合、 25°Cの場合、 75 °Cの場合の各曲線が示されている。順方向電流 iFを増加させていくと、出力電圧 VF も増加していき、最初の立ち上がり部分では、特性は異なっている力 順方向電流密 度 iFが 1. 35〜: L 4 (105AZm2)の中間点付近で、曲線はほぼ一致し、素子温度が 異なっていてもほぼ一致した軌跡を描く。素子温度を変化させた場合に、 VF— iF曲 線が交わり、一致する領域をゼロクロスポイントと呼ぶ。 FIG. 19 shows characteristics of forward current density (10 5 AZm 2 ) and forward output voltage (mV) of one Schottky noria diode in the semiconductor pressure sensor of the present invention. As the barrier film, Pt was used as a Schottky barrier metal, and a composite metal film with an A1 film formed thereon was used. The curves for the semiconductor pressure sensor element temperature of -25 ° C, 25 ° C, and 75 ° C are shown. As the forward current iF increases, the output voltage VF also increases. At the first rise, the force has different characteristics. The forward current density iF is 1.35 ~: L 4 (10 5 AZm Near the middle point of 2 ), the curves are almost the same, and even if the element temperatures are different, the traces are almost the same. When the element temperature is changed, the VF-iF curves intersect and the matching area is called the zero cross point.
[0077] ゼロクロスポイントは、温度依存性が非常に小さい高電流密度域であることがわかる 。高電流密度域で半導体圧力センサを動作させることで、温度の変化にかかわらず 、精度の良い測定を行うことができる。ゼロクロスポイント付近を動作点として動作電 流を決定し、定電流源により動作電流を流すようにすれば、温度変化の影響を受け ることなく、センサとして正確に動作する。  It can be seen that the zero cross point is a high current density region with very little temperature dependence. By operating the semiconductor pressure sensor in a high current density region, it is possible to perform accurate measurement regardless of temperature changes. If the operating current is determined with the vicinity of the zero cross point as the operating point, and the operating current is supplied by a constant current source, the sensor operates accurately without being affected by temperature changes.
[0078] 図 20は、従来の拡散抵抗型の半導体圧力センサと、ショットキー接合型の半導体 圧力センサとの温度変化による出力電圧変動の比較を示す。図 19のグラフにおける 素子温度 25°Cの出力電圧 VFを基準として、 1°C当たりの出力電圧の変動を示して いる。従来の拡散抵抗型であると、動作電流をどこに変化させても、 1°C当たりの出力 電圧のバラツキは平均して 0. 25%程度あるのに対して、ショットキー接合型であると 、動作電流を図に示すゼロクロスポイント近辺に設定すると、 1°C当たりの出力電圧の ノ ラツキは 0. 03%以下に抑えることができ、非常に温度依存性の小さい半導体圧 力センサを形成することができる。したがって、従来のように温度補正用の回路等を 付加する必要がない。 FIG. 20 shows a conventional diffusion resistance type semiconductor pressure sensor and a Schottky junction type semiconductor. The comparison of the output voltage fluctuation by the temperature change with a pressure sensor is shown. The graph of Fig. 19 shows the fluctuation of the output voltage per 1 ° C with reference to the output voltage VF at the element temperature of 25 ° C. With the conventional diffused resistor type, the output voltage variation per 1 ° C is about 0.25% on average regardless of where the operating current is changed, whereas with the Schottky junction type, If the operating current is set near the zero cross point shown in the figure, the output voltage fluctuation per 1 ° C can be suppressed to 0.03% or less, and a semiconductor pressure sensor with extremely low temperature dependence must be formed. Can do. Therefore, there is no need to add a temperature correction circuit or the like as in the prior art.
[0079] 図 22は、半導体圧力センサのダイヤフラム厚 m)と出力電圧の大きさとの関係を 示す。図 13のように、 4つのショットキーバリアダイオードでホイートストンブリッジ回路 を構成した半導体圧力センサを X2で表し、図 21のように 1つのショットキーバリアダイ オードで構成された比較用半導体圧力センサを XIで表す。図 21の比較用半導体 圧力センサは、図 13と同じ材料を用いて、ショットキーバリアダイオード 80を 1つだけ 形成して台座部 81を形成した。図 22からもわ力るように、 X2と XIとの感度差は、ダイ ャフラム厚によって異なる力 ダイヤフラム厚が約 50 μ m以下になれば、 X2の感度 は、 XIの感度の約 4倍になって ヽることが読み取れる。  FIG. 22 shows the relationship between the diaphragm thickness m) of the semiconductor pressure sensor and the magnitude of the output voltage. As shown in Fig. 13, a semiconductor pressure sensor consisting of four Schottky barrier diodes and a Wheatstone bridge circuit is denoted by X2, and as shown in Fig. 21, a comparative semiconductor pressure sensor consisting of one Schottky barrier diode is XI. Represented by The comparative semiconductor pressure sensor shown in FIG. 21 uses the same material as that shown in FIG. 13 and forms only one Schottky barrier diode 80 to form a pedestal 81. As can be seen from Fig. 22, the sensitivity difference between X2 and XI varies depending on the diaphragm thickness. When the diaphragm thickness is about 50 μm or less, the sensitivity of X2 is about 4 times the sensitivity of XI. I can read that I'm talking.
[0080] 図 23は、実際に圧力を導入したときの圧力の変化に対する出力電圧の変化を示 す。大気圧下における出力電圧を基準とした場合の加圧下における出力電圧変化 量 Δνを縦軸に示す。ショットキー接合型の半導体圧力センサでは、上記ゼロクロス ポイントにおける順方向電流を動作電流とし、定電流源でこの順方向電流を一定に し、ノ リア膜として、ショットキーのバリアメタルとして Ptを用い、この上に A1の膜を形 成した複合金属膜を用いた。本発明の 4つのショットキーノ リアダイオードを用いた第 3の半導体圧力センサを Y3の曲線で、 1つのショットキーバリアダイオードを用いた比 較用半導体圧力センサを Y2の曲線で、従来の拡散抵抗型の半導体圧力センサを Y 1の曲線で示す。 Y3はダイヤフラム厚 50 μ m、 Y2はダイヤフラム厚 50 μ m、 Y1はダ ィャフラム厚 20 /z mのものが用いられている。また、直線性は Y3が ±0. 35%FS、 Y 2が ±0. 59%FS、 Y3力 S ±0. 6%FSとなった。このように、ダイヤフラム厚を 50 m としても、本発明の Y3の半導体圧力センサが最も高い感度を示し、直線性も最も良 いものとなっている。 [0080] Figure 23 shows the change in output voltage with respect to the change in pressure when pressure is actually introduced. The vertical axis indicates the change in output voltage Δν under pressure when the output voltage under atmospheric pressure is used as a reference. In the Schottky junction type semiconductor pressure sensor, the forward current at the zero cross point is set as the operating current, the forward current is made constant by the constant current source, Pt is used as the Schottky barrier metal as the NORA film, On top of this, a composite metal film in which an A1 film was formed was used. The third semiconductor pressure sensor using four Schottky diodes of the present invention is represented by the Y3 curve, and the comparative semiconductor pressure sensor using one Schottky barrier diode is represented by the Y2 curve. The semiconductor pressure sensor is shown by the Y 1 curve. Y3 has a diaphragm thickness of 50 μm, Y2 has a diaphragm thickness of 50 μm, and Y1 has a diaphragm thickness of 20 / zm. The linearity of Y3 was ± 0.35% FS, Y2 was ± 0.59% FS, and Y3 force S ± 0.6% FS. Thus, even when the diaphragm thickness is 50 m, the Y3 semiconductor pressure sensor of the present invention shows the highest sensitivity and the best linearity. It has become a thing.
[0081] 次に、第 3の半導体圧力センサのダイヤフラムに圧力をカ卩える場合に、図 24のよう に台座部 82を設けることが多いが、図 25のように台座部を設けずに、半導体圧力セ ンサを圧力導入管上に取り付けた構造とすることができる。台座部を設けた場合より も素子の高さを低くすることができる。  [0081] Next, when pressure is applied to the diaphragm of the third semiconductor pressure sensor, a pedestal 82 is often provided as shown in FIG. 24, but without providing a pedestal as shown in FIG. A structure in which a semiconductor pressure sensor is mounted on the pressure introducing pipe can be employed. The height of the element can be made lower than when a pedestal is provided.
[0082] 通常、台座部 82はシリコン基板等を用いて、テーパ—状にくり貫かれた開口部を形 成しており、台座部 82と第 3の半導体圧力センサとは熱硬化榭脂等力もなる接合層 8 3で接合されている。し力しながら、台座部 82を有する構造であると、台座部を形成し た後、半導体圧力センサに接合層 83を介して貼り合せを行う必要があるために、チッ プコスト上昇、リードタイムが増加するという欠点があった。しかし、図 25のように、台 座部を設けず、図 27のように、圧力導入管 91上に直接接合すると、以上の問題が解 消される。  [0082] Normally, the pedestal portion 82 uses a silicon substrate or the like to form a tapered cut-out opening, and the pedestal portion 82 and the third semiconductor pressure sensor include a thermosetting resin or the like. It is joined by a joining layer 83 which also has a force. However, if the structure has the pedestal portion 82, it is necessary to bond the semiconductor pressure sensor to the semiconductor pressure sensor via the bonding layer 83 after forming the pedestal portion. There was a drawback of increasing. However, if the pedestal is not provided as shown in FIG. 25 and is directly joined onto the pressure introducing pipe 91 as shown in FIG. 27, the above problem is solved.
[0083] また、ダイヤフラム領域、すなわち半導体圧力センサを形成して!/ヽる半導体基板 77 の厚さが薄いほど感度が向上する力 台座部 82を形成しないでおくことで、圧力導 入側の半導体基板 77の面が接合層 83で覆われることを避けることができ、少しでも 感度が劣化することを防止することができる。  [0083] In addition, by forming the diaphragm region, that is, the semiconductor pressure sensor, the force pedestal portion 82 that improves the sensitivity as the thickness of the semiconductor substrate 77 is reduced is not formed, so that the pressure introduction side is not formed. The surface of the semiconductor substrate 77 can be prevented from being covered with the bonding layer 83, and the sensitivity can be prevented from being deteriorated even a little.
[0084] 図 27は、台座部を設けていない半導体圧力センサを圧力導入管 91上に設けた例 を示す。圧力が導入される圧力導入管 91の上端の上に第 3の半導体圧力センサが 取り付けられている。圧力導入管 91に形成された圧力導入孔 92から圧力が導入さ れると、第 3の半導体圧力センサにおける半導体基板が橈み、出力電圧が変化する ので、その電圧変化をリード線 96を介してリードピン 97から取り出す。  FIG. 27 shows an example in which a semiconductor pressure sensor not provided with a pedestal portion is provided on the pressure introduction pipe 91. A third semiconductor pressure sensor is mounted on the upper end of the pressure introducing pipe 91 into which pressure is introduced. When pressure is introduced from the pressure introduction hole 92 formed in the pressure introduction pipe 91, the semiconductor substrate in the third semiconductor pressure sensor stagnates and the output voltage changes. Remove from lead pin 97.
[0085] また、半導体圧力センサは中空部 94を除いて榭脂モールド 93で覆われており、リ 一ドビン 97により基台や基板に固定される。中空部 94を設けているのは、仮にセン サ内部がすべて榭脂モールド 93で充填されているとすると、半導体圧力センサのダ ィャフラム領域の弾性変形が発生しなくなり、圧力測定ができなくなってしまうからで ある。  In addition, the semiconductor pressure sensor is covered with a resin mold 93 except for the hollow portion 94, and is fixed to a base or a substrate by a lid bin 97. The reason why the hollow portion 94 is provided is that if the sensor is entirely filled with the resin mold 93, the diaphragm region of the semiconductor pressure sensor will not be elastically deformed and pressure measurement will not be possible. Because.
[0086] ところで、台座部を有する半導体圧力センサの感度と、台座部を備えて 、な ヽ半導 体圧力センサの感度を比較したのが図 26である。図 27のように台座無しの場合は、 圧力導入管 91上に直接半導体圧力センサを配置した構造とし、台座有りの場合は、 図 27の構成で、半導体圧力センサに図 24の構造のものを用い、圧力が加わるダイ ャフラム領域の面積は等しくなるように構成した。その結果、図 26に示すように、台座 無しの場合の方が、台座有りの場合と同等ないしは、それ以上の感度特性を得ること ができた。 By the way, FIG. 26 compares the sensitivity of a semiconductor pressure sensor having a pedestal portion and the sensitivity of a semiconductor pressure sensor having a pedestal portion. When there is no pedestal as shown in Fig. 27, When the semiconductor pressure sensor is arranged directly on the pressure introduction pipe 91 and there is a pedestal, the structure of Fig. 27 is used, and the semiconductor pressure sensor having the structure of Fig. 24 is used, and the area of the diaphragm area to which pressure is applied is Configured to be equal. As a result, as shown in Fig. 26, the sensitivity characteristics with or without the pedestal were equal to or better than those with the pedestal.
[0087] 次に、本発明の図 13、 14、 25に示された半導体圧力センサの製造方法を以下に 説明する。まず、半導体圧力センサにおけるショットキーノリアダイオード D1〜D4の 形成方法を説明すると、例えば、 n型の半導体基板 (第 1導電型半導体基板) 77上に 厚さ 3. 33〜4. 07 ^ m,抵抗率 0. 63〜0. 77 Ω 'cmのェピタキシャノレ層を成長さ せ、熱酸ィ匕膜を 9500 A成長させる。フォトレジスト技術とフッ酸によるエッチングによ り選択的に熱酸化膜を除去し、 PoCl拡散を 1050°Cで 120分行い、力ソード領域とし ての各電極 62、 64、 66、 68を半導体基板 77の内部に形成する。リンの供給は PoCl 以外にリンイオン注入で行ってもよ 、。  Next, a method for manufacturing the semiconductor pressure sensor shown in FIGS. 13, 14, and 25 of the present invention will be described below. First, a method for forming Schottky Noria diodes D1 to D4 in a semiconductor pressure sensor is described. For example, a thickness of 3.33 to 4.07 ^ m, on an n-type semiconductor substrate (first conductivity type semiconductor substrate) 77, Grow an epitaxial layer with a resistivity of 0.63 to 0.77 Ω'cm and grow a thermal oxide film at 9500 A. The thermal oxide film is selectively removed by photoresist technology and etching with hydrofluoric acid, PoCl diffusion is performed at 1050 ° C for 120 minutes, and each electrode 62, 64, 66, 68 as a force sword region is formed on a semiconductor substrate Form inside 77. Phosphorus can be supplied by implanting phosphorus ions in addition to PoCl.
[0088] 次に可動イオンをゲッタリングするのに適度なリンを含む CVD膜を堆積させ、 1000 °C、 30分熱処理して平坦化させる。もちろんリンを含まなくても良い。再びフォトレジ スト技術とフッ酸によるエッチングにより選択的に CVD及び、熱酸化膜を除去する。 ショットキーのバリアメタルとなる、 Pt、 Ti、 Mo、 W、 Al、 V、 Pd、 Au等をスパッタまた は蒸着により堆積させ適当な温度で熱処理し、シリサイドを形成する。バリアメタルの 上に互いの拡散ノ《リアとなる適当なメタル層を何層力設け、最上部厚さ 24〜26kA の A1の層を設けてアノード電極となるバリア膜 61、 63、 65、 67を形成する。  Next, a CVD film containing phosphorus appropriate for gettering mobile ions is deposited and flattened by heat treatment at 1000 ° C. for 30 minutes. Of course, phosphorus may not be included. The CVD and thermal oxide films are selectively removed again by the photoresist technique and etching with hydrofluoric acid. Pt, Ti, Mo, W, Al, V, Pd, Au, etc., which are Schottky barrier metals, are deposited by sputtering or vapor deposition and heat-treated at an appropriate temperature to form silicide. Barrier films 61, 63, 65, 67 that serve as anode electrodes by providing several layers of appropriate metal layers that serve as diffusion layers on the barrier metal, and an A1 layer having a top thickness of 24 to 26 kA. Form.
[0089] 各電極 62、 64、 66、 68の力ソード領域の上には、 A1による配線 69〜72がパター ユングされるが、力ソード領域は不純物濃度を非常に高くした n+拡散層となっている ので、配線 69〜72との接合部分にはショットキー障壁は形成されずォーミック接触と なる。そして、配線 69〜72の対応する箇所にパッド電極 73〜76を A1により形成する  [0089] On the force sword region of each electrode 62, 64, 66, 68, wirings 69 to 72 by A1 are patterned, but the force sword region becomes an n + diffusion layer with a very high impurity concentration. Therefore, a Schottky barrier is not formed at the junction with the wirings 69 to 72, and an ohmic contact is made. Then, pad electrodes 73 to 76 are formed by A1 at corresponding portions of the wirings 69 to 72.
[0090] その上に 8000Aの窒化シリコン膜を減圧、常時またはプラズマ CVD機で堆積させ 、フォトリソグラフィ一とドライエッチヤーでバリア膜 61、 63、 65、 67及び電極 62、 64 、 66、 68の領域と素子周辺を選択的に除去する。表面を傷つけない様にテープ等 で保護しながら裏面から研磨し、厚さ 20〜120 μ mにする。仕上げは 2000番仕上 げとした。 [0090] A 8000A silicon nitride film is deposited thereon under reduced pressure at all times or by a plasma CVD machine, and barrier films 61, 63, 65, 67 and electrodes 62, 64, 66, 68 are formed by photolithography and dry etching. The region and the element periphery are selectively removed. Tape etc. so as not to damage the surface Polish from the back while protecting with a thickness of 20-120 μm. Finishing was 2000 finish.
[0091] 次に、図 24のように台座部 82を有する場合における台座部の形成方法を説明する と、 1 X 1018cm_3以下の B、 P、 As、 Sb等の n型不純物を含む(100)面のシリコンゥ ェハーに 8000Aの窒化シリコン膜を堆積し、フォトリソグラフィ一とドライエッチングに よって開口部の上側面積に相当する領域を選択的に除去する。表面パターンをテー プ等で保護し、裏面から研磨して、厚さ 200〜300 μ mにする。 24wt%KOH水溶 液に浸し、開孔部が形成されるまでエッチングする。 [0091] Next, including the method of forming the base portion is described in a case having a base portion 82 as shown in FIG. 24, 1 X 10 18 cm_ 3 below B, P, As, an n-type impurity such as Sb A silicon nitride film of 8000A is deposited on the (100) plane silicon wafer, and a region corresponding to the upper area of the opening is selectively removed by photolithography and dry etching. Protect the surface pattern with tape, etc., and polish it from the back surface to a thickness of 200 to 300 μm. Immerse in 24wt% KOH aqueous solution and etch until an opening is formed.
[0092] 上記ショットキーノ リアダイオード D1〜D4が形成された半導体基板 77と台座部 82 を熱硬化性榭脂からなる接合層 83を用い、 180〜200°Cの熱を加えて接合すると、 図 24の半導体圧力センサが完成する。なお、接合層 83は高強度の接着剤や、 SOI 技術を応用した接合層であっても構わな ヽ。  [0092] When the semiconductor substrate 77 on which the Schottky diodes D1 to D4 are formed and the pedestal portion 82 are joined by applying a heat of 180 to 200 ° C using the joining layer 83 made of thermosetting resin, 24 semiconductor pressure sensors are completed. The bonding layer 83 may be a high-strength adhesive or a bonding layer using SOI technology.

Claims

請求の範囲 The scope of the claims
[1] ダイヤフラムの歪みにより圧力を検出する半導体圧力センサであって、  [1] A semiconductor pressure sensor that detects pressure based on diaphragm distortion,
前記ダイヤフラムにはショットキー接合部が含まれていることを特徴とする半導体圧 力センサ。  A semiconductor pressure sensor, wherein the diaphragm includes a Schottky junction.
[2] 前記ショットキー接合部は、半導体にノリア膜を接触させて形成して 、ることを特徴 とする請求項 1記載の半導体圧力センサ。  [2] The semiconductor pressure sensor according to [1], wherein the Schottky junction is formed by bringing a Noria film into contact with a semiconductor.
[3] 前記半導体に形成された電極と、前記バリア膜と、前記半導体とでショットキーバリ ァダイオードを構成していることを特徴とする請求項 2記載の半導体圧力センサ。 3. The semiconductor pressure sensor according to claim 2, wherein the electrode formed on the semiconductor, the barrier film, and the semiconductor constitute a Schottky barrier diode.
[4] 前記電極とバリア膜との間に順方向電流を流し、前記ショットキー接合部の抵抗値 の変化により圧力を検出することを特徴とする請求項 3記載の半導体圧力センサ。 4. The semiconductor pressure sensor according to claim 3, wherein a forward current is passed between the electrode and the barrier film, and the pressure is detected by a change in resistance value of the Schottky junction.
[5] 前記ノリア膜の周囲を囲むように前記電極が形成されて 、ることを特徴とする請求 項 3又は請求項 4のいずれか 1項に記載の半導体圧力センサ。 [5] The semiconductor pressure sensor according to any one of [3] and [4], wherein the electrode is formed so as to surround the periphery of the noria film.
[6] 前記バリア膜は、前記半導体の中央部に形成されていることを特徴とする請求項 5 記載の半導体圧力センサ。 6. The semiconductor pressure sensor according to claim 5, wherein the barrier film is formed at a central portion of the semiconductor.
[7] 前記ショットキー接合部は、複数分散配置されていることを特徴とする請求項 1〜請 求項 4の 、ずれか 1項に記載の半導体圧力センサ。 [7] The semiconductor pressure sensor according to any one of claims 1 to 4, wherein a plurality of Schottky junctions are dispersedly arranged.
[8] 前記ショットキー接合部は、ホイートストンブリッジ回路を構成していることを特徴と する請求項 7記載の半導体圧力センサ。 8. The semiconductor pressure sensor according to claim 7, wherein the Schottky junction constitutes a Wheatstone bridge circuit.
[9] 前記ショットキーノリアダイオードのアノード側又は力ソード側と接続されるパッド電 極を備えたことを特徴とする請求項 7又は請求項 8のいずれか 1項に記載の半導体 圧力センサ。 9. The semiconductor pressure sensor according to claim 7, further comprising a pad electrode connected to the anode side or the force sword side of the Schottky noria diode.
PCT/JP2006/322127 2005-11-07 2006-11-07 Semiconductor pressure sensor WO2007052800A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-322752 2005-11-07
JP2005322752A JP2009047423A (en) 2005-11-07 2005-11-07 Semiconductor pressure sensor
JP2006-210149 2006-08-01
JP2006210149A JP2009049026A (en) 2006-08-01 2006-08-01 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
WO2007052800A1 true WO2007052800A1 (en) 2007-05-10

Family

ID=38005951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322127 WO2007052800A1 (en) 2005-11-07 2006-11-07 Semiconductor pressure sensor

Country Status (2)

Country Link
TW (1) TW200732642A (en)
WO (1) WO2007052800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008167A (en) * 2008-06-25 2010-01-14 Toyota Motor Corp Strain detector and strain detecting method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812675B1 (en) * 1969-07-03 1973-04-21
JPS5563877A (en) * 1978-11-08 1980-05-14 Toshiba Corp Pressure-sensitive semiconductor device
JPS60124878A (en) * 1983-12-08 1985-07-03 Sumitomo Electric Ind Ltd Strain sensor
JPH033370A (en) * 1989-05-31 1991-01-09 Honda Motor Co Ltd Semiconductor sensor
JPH04209575A (en) * 1990-12-07 1992-07-30 Toyota Motor Corp Compound semiconductor sensor unit
JPH05172672A (en) * 1991-12-26 1993-07-09 Showa Denko Kk Semiconductor piezo-electric element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812675B1 (en) * 1969-07-03 1973-04-21
JPS5563877A (en) * 1978-11-08 1980-05-14 Toshiba Corp Pressure-sensitive semiconductor device
JPS60124878A (en) * 1983-12-08 1985-07-03 Sumitomo Electric Ind Ltd Strain sensor
JPH033370A (en) * 1989-05-31 1991-01-09 Honda Motor Co Ltd Semiconductor sensor
JPH04209575A (en) * 1990-12-07 1992-07-30 Toyota Motor Corp Compound semiconductor sensor unit
JPH05172672A (en) * 1991-12-26 1993-07-09 Showa Denko Kk Semiconductor piezo-electric element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008167A (en) * 2008-06-25 2010-01-14 Toyota Motor Corp Strain detector and strain detecting method

Also Published As

Publication number Publication date
TW200732642A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
US10775248B2 (en) MEMS strain gauge sensor and manufacturing method
CN102472678B (en) Semiconductor pressure sensor, pressure sensor device, electronic apparatus, and method for manufacturing semiconductor pressure sensor
US8186226B2 (en) Pressure sensor with on-board compensation
JP5412682B2 (en) Pressure sensor with resistance strain gauge
US20050274193A1 (en) Monolithic multi-functional integrated sensor and method for fabricating the same
JPH02132866A (en) Mechanical sensor for high-temperature environment
JPH07103837A (en) Sensor for detecting physical amount
US6860154B2 (en) Pressure sensor and manufacturing method thereof
Kumar et al. Effect of piezoresistor configuration on output characteristics of piezoresistive pressure sensor: an experimental study
CN106946211A (en) A kind of pressure sensor for micro electro-mechanical system chip of Liang Mo mechanisms and preparation method thereof
US5412993A (en) Pressure detection gage for semiconductor pressure sensor
CN206828092U (en) A kind of pressure sensor for micro electro-mechanical system chip of Liang Mo mechanisms
WO2013020275A1 (en) Manufacturing method of mems piezoresistive pressure chip and sensor
CN114061797A (en) MEMS piezoresistive pressure sensor with double bridge structures and preparation method thereof
US6635910B1 (en) Silicon strain gage having a thin layer of highly conductive silicon
KR20080098990A (en) Method for fabricating pressure sensor and structure of the same
WO2007052800A1 (en) Semiconductor pressure sensor
US20040055390A1 (en) Force sensing element
JP2895262B2 (en) Composite sensor
JP2009049026A (en) Semiconductor pressure sensor
JPH10239345A (en) Semiconductor sensor
JPH0230188A (en) Manufacture of semiconductor pressure sensor
JP3596199B2 (en) Semiconductor type pressure sensor
JP4019876B2 (en) Force sensing element
JPH0875581A (en) Semiconductor pressure converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP