JPS60124878A - Strain sensor - Google Patents

Strain sensor

Info

Publication number
JPS60124878A
JPS60124878A JP23249983A JP23249983A JPS60124878A JP S60124878 A JPS60124878 A JP S60124878A JP 23249983 A JP23249983 A JP 23249983A JP 23249983 A JP23249983 A JP 23249983A JP S60124878 A JPS60124878 A JP S60124878A
Authority
JP
Japan
Prior art keywords
strain
layer
multilayer thin
thin film
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23249983A
Other languages
Japanese (ja)
Other versions
JPH0447763B2 (en
Inventor
Masahiro Kume
昌宏 粂
Koji Takada
高田 皓司
Nobuhiko Fujita
藤田 順彦
Akira Doi
陽 土居
Akira Otsuka
昭 大塚
Hajime Ichiyanagi
一柳 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23249983A priority Critical patent/JPS60124878A/en
Publication of JPS60124878A publication Critical patent/JPS60124878A/en
Publication of JPH0447763B2 publication Critical patent/JPH0447763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To use the titled sensor repeatedly even under environment at an extremely high temperature or a cryogenic temperature by forming multilayer thin- films so that a diode is constituted between an electrode and a strain-receiving structure member. CONSTITUTION:An outermost layer 17a in multilayer thin-film layers 17 consists of an n type or p type semiconductor strain-sensing resistor, the resistance value of the layer 17a changes when strain from a strain-receiving structure member 14 is transmitted, and the change of the resistance value is extracted from lead wires 16a, 16b through electrodes 21a, 21b. A diode is formed among the electrodes 21a, 21b and the strain-receiving structure member 14 because the multilayer thin-film layers 17 are shaped by laminating semiconductor thin-films 17a- 17c having a conduction type of n-i-p or p-i-n in order from the outermost layer. Accordingly, electrical insulating properties between the semiconductor layer 17a of the outermost layer as the strain-sensing resistor and the strain-receiving structure member 14 can be made higher than the rectifying properties of the diode.

Description

【発明の詳細な説明】 発明の分野 この発明は、たとえば4A3iit物などに発生した歪
を電気ri号に変換して取出り形式の歪センサの構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure of a strain sensor that converts strain generated in, for example, a 4A3IIT product into an electric number and extracts it.

先行技術の説明 従来より、たとえば構造物などに生じた歪を検出する手
段として、歪ゲージが広範に使用さ1tている。第1因
は、従来の歪ゲージの一団用例を示す略図的断面図であ
る。歪ゲージ1は、たとえばポリエステルなどからなる
プラスチック基板2上に、たとえば金属艦やフィラメン
ト状の金属細線からなる感歪抵抗体3を固定した構造を
1し、プラスチックile&2を介して伝達された歪に
より金属箔や金属細線からなる感歪抵抗体3の電気抵抗
が変化することを利用して、歪を電気信号として検出り
るものである。第1図に示しIC桐渭で1j1歪ゲージ
1は、検出対象部材4上に接着剤5ににすIB製・固定
されTおり、したがつ−C検出対象部材4にあいで発生
した歪は接着剤5、プラスチック基板2を介して感歪抵
抗体3に伝達される。感歪抵抗体3が歪むことにより、
その電気抵抗値が変化し、これがリード線6a、6bl
、二より取出されるJ−うに二4?を成されている。
Description of the Prior Art Conventionally, strain gauges have been widely used as means for detecting strain occurring in, for example, structures. The first factor is a schematic cross-sectional view showing an example of a group of conventional strain gauges. The strain gauge 1 has a structure in which a strain-sensitive resistor 3 made of, for example, a metal carrier or a thin metal wire in the form of a filament is fixed on a plastic substrate 2 made of, for example, polyester. Strain is detected as an electrical signal by utilizing changes in the electrical resistance of the strain-sensitive resistor 3 made of metal foil or thin metal wire. The strain gauge 1 shown in FIG. is transmitted to the strain-sensitive resistor 3 via the adhesive 5 and the plastic substrate 2. When the strain-sensitive resistor 3 is distorted,
The electrical resistance value changes, and this leads to the lead wires 6a and 6bl.
, J-Uni 24 taken out from 2? has been achieved.

とごろで、上述のように従来の歪ゲージ1は、接着剤5
を用いて検出対象部材41.二接着されて使用されるし
のであるため、■検出対象部材4が頻繁に振動を繰返す
場合、あるいは■外部から振動・W*などが加わった場
合、接着剤5が劣化し、接着力の低下により歪ゲージ1
が検出対象部材4から剥#IIするという問題があった
。また、80℃以Eの高温の環境の下で・使用した場合
には、接着剤5が軟化するため、検出対象部材4に歪が
発生したとしても正確にその歪を検出し得ないという欠
点もあった。
As mentioned above, the conventional strain gauge 1 uses adhesive 5.
Detection target member 41. Since the adhesive 5 is used by bonding two parts together, if the detection target member 4 vibrates frequently, or if external vibrations, W*, etc. are applied, the adhesive 5 will deteriorate and the adhesive force will decrease. Strain gauge 1
There was a problem that #II peeled off from the detection target member 4. Furthermore, when used in a high-temperature environment of 80°C or higher, the adhesive 5 softens, making it difficult to accurately detect distortion even if it occurs in the detection target member 4. There was also.

また、従来の歪ゲージ1では、接着剤5により検出対象
部材4に接着・固定されるため、正確な歪検出を行なう
には、接着剤5を均一にむらなく塗布することが必要で
あるが、この作業にはかなりの熟練を要するという問題
もあった。
Furthermore, since the conventional strain gauge 1 is bonded and fixed to the detection target member 4 with the adhesive 5, it is necessary to apply the adhesive 5 evenly and evenly in order to perform accurate strain detection. Another problem was that this work required considerable skill.

発明の目的 この発明の目的は、上述の諸問題に鑑み、極めて高温あ
るいは極低温のTs1境の下でも繰返し使用でき、かつ
信頼性に優れた歪センサを提供することにある。
OBJECTS OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a highly reliable strain sensor that can be used repeatedly even under the Ts1 boundary of extremely high or extremely low temperatures.

発明の構成 この発明は、要約すれば、受歪構造部材と、該受歪構造
部材上に形成されており、かつ最外層が感歪抵抗薄膜層
どなる多maI!1層と、該多lii薄膜層の最外層上
に形成された複数個の電極とを備え、電極と受歪構造部
材との間にダイオードが構成されるように、前記多層薄
膜層が形成されている、歪センサである。すなわちこの
発明は、電極と受歪構造部材との間にダイオードを形成
し、ダイオードの持つ整流作用を利用して、電極層と受
歪構造部材との間に高電気絶縁層を形成せしめ、それに
よって感歪抵抗体となる多層薄膜最外層による歪検出の
信頼性を向上させ、かつ多ll薄躾層を受歪構造部材上
に接着剤を用いずに形成するこにより、従来の歪ゲージ
の諸問題を解決するものである。
Structure of the Invention To summarize, the present invention includes a strain-receiving structural member and a multi-maI! layer formed on the strain-receiving structural member, the outermost layer of which is a strain-sensitive resistive thin film layer. and a plurality of electrodes formed on the outermost layer of the multilayer thin film layer, and the multilayer thin film layer is formed such that a diode is configured between the electrode and the strain receiving structure member. It is a strain sensor. That is, the present invention forms a diode between an electrode and a strain-receiving structural member, utilizes the rectifying effect of the diode to form a highly electrically insulating layer between the electrode layer and the strain-receiving structural member, and By improving the reliability of strain detection using the outermost layer of a multilayer thin film that serves as a strain-sensitive resistor, and by forming multiple thin layers on a strain-sensitive structural member without using an adhesive, this technology is superior to conventional strain gauges. It solves various problems.

この発明のその他の特徴は、以下の実施例の説明により
明らかとなろう。
Other features of the invention will become clear from the following description of the embodiments.

実施例の説明 第2図は、この発明の一実施例を説明するための正面断
面図である。この実施例は、金属製の検出対象部材14
の歪を測定でるものであるが、ここでは検出対象部材1
4自身が受歪構造部材となる。すなわち、受歪構造部材
としての検出対象部材14上に、アモルフ7・スシリコ
ンからなる多層薄側[7が、たとえば化学蒸着および物
理蒸着などの蒸着法およびその他の薄膜形成手段により
密着形成されている。
DESCRIPTION OF EMBODIMENTS FIG. 2 is a front sectional view for explaining an embodiment of the present invention. In this embodiment, a detection target member 14 made of metal is used.
Here, the strain of the detection target member 1 can be measured.
4 itself becomes a strain receiving structural member. That is, a multilayer thin layer [7 made of amorphous silicon] is formed in close contact with the detection target member 14 as a strain-receiving structural member by vapor deposition methods such as chemical vapor deposition and physical vapor deposition, and other thin film forming means. There is.

多層薄側「7は、最外層から順にn −i −p5− の導電形式の半導体層1’7a 、 17b 、 17
にが積層された構成を有する。なお多層wI躾1117
は、最外層から順に、p−1−nの導電形式の半導体層
を積層しで構成してもよい。多WI薄膜層17の最外1
117a上には、リード線16a、16bを接続するた
めの取出電極21a、211)が形成されている。なお
、防湿のために合成樹脂層で電極21a、21bJ3よ
び最外層17aを覆っ”Cもよい。
Multilayer thin side "7" is a semiconductor layer 1'7a, 17b, 17 of n-i-p5- conductivity type in order from the outermost layer.
It has a laminated structure. Furthermore, multi-layer wI discipline 1117
may be constructed by stacking p-1-n conductivity type semiconductor layers in order from the outermost layer. Outermost 1 of multi-WI thin film layer 17
Extracting electrodes 21a, 211) for connecting lead wires 16a, 16b are formed on 117a. Note that it is also possible to cover the electrodes 21a, 21bJ3 and the outermost layer 17a with a synthetic resin layer for moisture proofing.

この実施例の歪センサでは、多m +Ilt +14層
17の最外1117aが、n型またはp型の半導体感歪
抵抗体となり、受歪構造部材14よりの歪が伝達される
と、その抵抗値が変化し、この抵抗値の変化が電極21
a 、21bを介してリートl1116a。
In the strain sensor of this embodiment, the outermost layer 1117a of the multi-m+Ilt+14 layer 17 becomes an n-type or p-type semiconductor strain-sensitive resistor, and when the strain from the strain-receiving structural member 14 is transmitted, its resistance value changes, and this change in resistance value causes the electrode 21
Reet l1116a via a, 21b.

16bより取出される。ところで、多m薄膜層17は、
上述のように、最外層から順にn−i −pまたはp 
−1−nの導電形式の半導体薄膜1i117a、17b
、17Cを積層してなるものであるため、電極21a、
21bと受歪構造部材14との間にはダイオードが形成
されている。したがって、=6− 感歪抵抗体となる最りIIIの!I′S体1117aと
受歪構造部材14との間の電気絶縁性を、ダイオードの
5rAt性より大幅に八めることができ、したがって信
頼性に優れた歪検出を行なうことができる。
16b. By the way, the multi-m thin film layer 17 is
As mentioned above, from the outermost layer n-i-p or p
-1-n conductive type semiconductor thin film 1i117a, 17b
, 17C, the electrodes 21a,
A diode is formed between 21b and the strain receiving structure member 14. Therefore, = 6 - the last III that becomes a strain-sensitive resistor! The electrical insulation between the I'S body 1117a and the strain-receiving structure member 14 can be made much higher than the 5rAt property of the diode, and therefore highly reliable strain detection can be performed.

これを、第2凶の実施例の略図的等時回路である第3図
および使用状態を示す回路図である第4図を参照して説
明する。なお第3図および第4図においては、第2回の
電極21a、21bおよび受歪溝Ti部材14の抵抗は
Oと近fl’J L、、図面上省略しである。
This will be explained with reference to FIG. 3, which is a schematic isochronous circuit of the second worst embodiment, and FIG. 4, which is a circuit diagram showing the state of use. In FIGS. 3 and 4, the resistances of the second electrodes 21a, 21b and the strain-receiving groove Ti member 14 are approximately O and fl'JL, and are omitted in the drawings.

第3図において、Rは電極218.21b間の感歪抵抗
体17aの抵抗を示し、a、bはリード纏18a、18
bを、22.23は、それぞれ、電極21a、21bと
受歪Is造部材14との開に形成されたダイオードを示
す。第3図に示した回路構成となるこの実施例の歪セン
サを使用するに際しては、第4図に承りように外部型!
IEの一側を受歪構造部材14と同電位にする。したが
って、第4図から明らかなJ:うに、ダイオード22に
は逆方向に電圧が印加されるため8端どダイA7フラム
との間には極めて高い抵抗値の抵抗が接続されたのと同
様になり、またb端は受歪構造部材14と短絡されるが
、抵抗Rは受歪構造部材14の影智な受けず、外部型1
1Eに対して良好な抵抗作用を示し、感歪抵抗体として
の信頼性が優れていることがわかる。
In FIG. 3, R represents the resistance of the strain-sensitive resistor 17a between the electrodes 218, 21b, and a and b represent the lead bands 18a, 18.
22 and 23 indicate diodes formed between the electrodes 21a and 21b and the strain-receiving member 14, respectively. When using the strain sensor of this embodiment, which has the circuit configuration shown in FIG. 3, an external type sensor as shown in FIG. 4 is used.
One side of the IE is set at the same potential as the strain receiving structural member 14. Therefore, as is clear from Figure 4, since a voltage is applied to the diode 22 in the opposite direction, a resistor with an extremely high resistance value is connected between the 8th end and the die A7 flam. In addition, the b end is short-circuited with the strain receiving structural member 14, but the resistance R is not affected by the strain receiving structural member 14 and is connected to the external mold 1.
It can be seen that it shows a good resistance effect against 1E and has excellent reliability as a strain-sensitive resistor.

本願発明者達の実験によれば、感歪抵抗体となる最外1
117aの電気抵抗率がlX10’ΩC−以下のとき、
歪−抵抗唆化の感度が極めて高く、感歪抵抗体をなす最
外層17aから電気信号を外部に取出す場合、抵抗値を
低くしかつノイズを抑制した高感度の歪センサを得るこ
とがわかっている。
According to experiments conducted by the inventors of the present application, the outermost 1
When the electrical resistivity of 117a is less than lX10'ΩC-,
It has been found that the sensitivity of strain-resistance stimulation is extremely high, and when an electric signal is extracted to the outside from the outermost layer 17a forming a strain-sensitive resistor, a highly sensitive strain sensor with a low resistance value and suppressed noise can be obtained. There is.

また、多層薄膜層17を、■プラズマcvo@によりド
ープして厚み500AのP型シリコン廟170を形成し
、■次いで同−設備で不純物をドープせずに電気抵抗率
2X10”ΩC1の1型シリコン1117bを0.5μ
の厚みに形成し、■さらにリンをドープして電気抵抗率
3X10−’ΩC−のn型シリコン1117aを1μの
厚みに形成することにより、作成し、021膳の間隔を
隔てて2×2−一の電極21a、21bを形成したとこ
ろ、電極間抵抗は3.2にΩであった。この値は、最外
層17aの抵抗値とほぼ同一であり、電極21a。
In addition, the multilayer thin film layer 17 is doped with plasma cvo@ to form a P-type silicon layer 170 with a thickness of 500A, and then, in the same equipment, 1-type silicon with an electrical resistivity of 2×10”ΩC1 is formed without doping with impurities. 1117b to 0.5μ
(1) Further doped with phosphorus to form n-type silicon 1117a with an electrical resistivity of 3X10'ΩC- to a thickness of 1μ. When the first electrodes 21a and 21b were formed, the interelectrode resistance was 3.2Ω. This value is almost the same as the resistance value of the outermost layer 17a, and the resistance value of the electrode 21a.

2Ib間の他の部祠の抵抗を無視し得ることがわかる。It can be seen that the resistance of other shrines between 2Ib can be ignored.

ところで、第2図に示した実施例では、受歪構造部材1
4上に形成される多ii薄lK1117は、n−1−n
型またはp−1−n型のシリコン1i17a、17b、
17cを積1i1 ”6 ルi:l トニJ: j) 
4f4成されているため、同一主成分(Si)系材利を
用いることができ、同一のFll膜形成設備内で連続的
に成膜することが可能であり、かつ蒸着等の薄膜形成手
段により形成されるため膜質の均一性も確保することが
できる。したがって、個体差の少ない安価な歪センサを
実現することができる。また、受歪構造部材14上に直
接形成されるため、第1図に示した従来の歪ゲージ1の
ように接着剤5を用いる必要はなく、接着剤5の使用に
基づく種々の問題、特に高温下での使用における問題を
効果的に解消することも可能であり、広範な温度範囲9
− にわたり使用可能な歪センサを得ることができる。
By the way, in the embodiment shown in FIG.
Multi-thin lK1117 formed on 4 is n-1-n
type or p-1-n type silicon 1i17a, 17b,
Multiply 17c 1i1 ”6 Rui:l Tony J: j)
Because it is made of 4F4, it is possible to use the same main component (Si) material, it is possible to form films continuously in the same FLL film formation equipment, and it is possible to use thin film formation methods such as vapor deposition. Since the film is formed, uniformity in film quality can also be ensured. Therefore, it is possible to realize an inexpensive strain sensor with little individual difference. In addition, since it is formed directly on the strain-receiving structural member 14, there is no need to use the adhesive 5 as in the conventional strain gauge 1 shown in FIG. It is also possible to effectively eliminate the problem of use under high temperature, and can be used in a wide temperature range 9
− It is possible to obtain a strain sensor that can be used for a wide range of purposes.

なお、第2図に示した実施例では、多層薄膜層17は、
最外層から順にn −1−n型またはp−1−n型の導
電形式のシリコン層を積層することにより構成されてい
たが、ダイオードを構成し得る限り他の導電形式の層を
積層してもよく、あるいは池の材料により多層薄膜11
17を構成してもよい。たとえば最外層から順にn−1
型のシリコン層を積層してもよく、この場合には受歪構
造部材上に直接l型のシリコン層を、次いでn型のシリ
コン層を密着形成し、電極21a 、21bと受歪構造
部材14間にショットキバリヤ・ダイオードを形成して
もよく、あるいは受歪構造部材14上にAl120. 
、St O□あるいは絶縁質のカーボンのような薄膜絶
縁層を密着形成し、この薄膜絶縁層上に1型、次いでn
型のシリコン層を順次密着形成しM I S (M e
tal −1n5ulater−3emlcOnduc
tor )構造とし、電極21a 、21bと受歪構造
部材14との間にダイオードを形成することも可能であ
る。
In addition, in the embodiment shown in FIG. 2, the multilayer thin film layer 17 is
It was constructed by laminating silicon layers of n-1-n type or p-1-n type conductivity in order from the outermost layer, but layers of other conductivity types were laminated as long as they could form a diode. Or, depending on the material of the pond, a multilayer thin film 11
17 may be configured. For example, starting from the outermost layer, n-1
In this case, an L-type silicon layer is directly formed on the strain-receiving structure member, and then an N-type silicon layer is closely formed on the strain-receiving structure member, and the electrodes 21a, 21b and the strain-receiving structure member 14 are laminated. A Schottky barrier diode may be formed in between, or an Al120.
, StO□ or insulating carbon, and on this thin film insulating layer, type 1, then n
The silicon layers of the mold are successively formed in close contact with each other, and M I S (M e
tal-1n5ulater-3emlcOnduc
It is also possible to form a diode between the electrodes 21a, 21b and the strain receiving structure member 14.

10− また、多層薄膜層17を構成する各層の材料についてb
1シリコンに限らず、たとえばゲルマニウム、炭素(ダ
イ17モンド)、ガリウムーヒ素、ガリウム−リンなど
の様々のト導体材料を使用ツることができる。
10- Also, regarding the material of each layer constituting the multilayer thin film layer 17, b
It is possible to use various conductive materials such as germanium, carbon (diamond), gallium-arsenide, gallium-phosphide, etc., without being limited to silicon.

なお、第2図に示した実施例では受歪構造部(Aとして
の検出対象部材14が導電性材料から構成されていたが
、受歪構造部材14が絶縁材料から構成されていCもよ
く、その場合にはダイオードの整流作用を利用ザるまで
bなく、多層ltI膜舖17の最外層に存在する感歪抵
抗体ににり企を正確に検出し得ることtよUうまでしな
い。
In addition, in the embodiment shown in FIG. 2, the detection target member 14 as the strain-receiving structure (A) was made of a conductive material, but the strain-receiving structure member 14 may also be made of an insulating material. In that case, unless the rectifying action of the diode is used, it is not possible to accurately detect the distortion caused by the strain-sensitive resistor present in the outermost layer of the multilayer LTI film 17.

第5図は、第2図に示し1.:実施例を応用した圧力セ
ンサを示!il断面図である。圧力センサ31は、圧力
を検出すべき流体が取り込まれる導入孔32を有する円
筒部材33と、円筒部材33が螺着された本体34とを
備え、本体34には、流体の圧力による歪み得るダイヤ
フラムずなわち金属製受歪構造部材35が設けられてい
る。この受歪構造部材35上に上)ホした多層薄膜層1
7が直接蒸着により形成されており、多m薄帽「7上に
は電極218.2111が形成c51’L−Cいる。電
極218.21bの上方には合成樹脂からなる防1li
i層25が形成されてJ5す、防湿m 25から上方に
引出されたリード線16a、i6bは、支持体36の内
面に固定された円板37の開口38、樹脂モールド11
39、主12ツノ40の開口、41を1して、圧力セン
サ31外へ引出されている。したがって、リード線16
a、16bに外力が加わったとしても、樹脂モールド層
39においで固定されているため、この外力は樹脂モー
ルド層39で受■められ、歪センサ部分には影1を及ぼ
さない。
5 is shown in FIG. 2.1. : Showing a pressure sensor applying an example! FIG. The pressure sensor 31 includes a cylindrical member 33 having an introduction hole 32 into which a fluid whose pressure is to be detected is taken in, and a main body 34 to which the cylindrical member 33 is screwed. That is, a metal strain receiving structure member 35 is provided. A multilayer thin film layer 1 is formed on this strain receiving structural member 35.
7 is formed by direct vapor deposition, and an electrode 218.2111 is formed on the multi-thin cap 7. Above the electrode 218.21b, an electrode 1li made of synthetic resin is formed.
After the i-layer 25 is formed, the lead wires 16a and i6b drawn upward from the moisture-proof m25 are connected to the opening 38 of the disc 37 fixed to the inner surface of the support 36, and the resin mold 11.
39, the opening of the main 12 horn 40, 41 is opened, and the pressure sensor 31 is drawn out. Therefore, lead wire 16
Even if an external force is applied to a and 16b, since they are fixed in the resin mold layer 39, this external force will be received by the resin mold layer 39 and will not cast a shadow 1 on the strain sensor portion.

第5図に示した圧力セン+t31では、流体の圧力が、
受歪構造部材35を介し、て多11111Q[17に伝
達された歪に基づき、リード線16a、16bより電気
抵抗の疫化として検出される。このように、第2図に示
した実施例は、圧力レン(l−31のように専用のセン
サどして構成した場合、特に有利である。受歪構造部材
35上に予め蒸着等の薄膜形成手段により多@薄m層1
7を形成し得るからである。
At the pressure sensor +t31 shown in FIG. 5, the pressure of the fluid is
Based on the strain transmitted to the terminal 11111Q[17 via the strain-receiving structural member 35, it is detected as an increase in electrical resistance from the lead wires 16a and 16b. As described above, the embodiment shown in FIG. Multilayer @ thin m layer 1 depending on the formation method
7 can be formed.

なお、第2図に示した実施例では、複数の電極として2
個の電1i21a 、21bを設けていたが、これに限
らず、31以上の任意の電極を形成し、各W1極と受歪
構造部材どの間にダイオードを構成してもよい。たとえ
ば第6図に略図的回路図で示すように、4個の電極を形
成し、ブリッジを形成し、これに外部電源Eを接続して
もよい。第6図にJ3いて、61.62.63.64は
感歪抵抗体となる多層薄膜の最外層を示し、65.66
.67.68は各電極と受歪構造部材との間に形成され
たダイオードを示す。第6図から明らかなように、ダイ
オー−ドロ5・・・68は、逆方向に電圧が印加される
ので、c、d、e端は受歪構造部材との間に高抵抗が接
続された状態となり、f端は短絡されるが、抵抗61.
62.63.64は受歪構造部材の影響を受けず、外部
N源Eに対【〕て良好な抵抗作用を示し、信頼性に優れ
た感歪抵抗体として機能することがわかる。
In the embodiment shown in FIG. 2, two electrodes are used as the plurality of electrodes.
Although the number of electrodes 1i21a and 21b is provided, the present invention is not limited to this, and any number of 31 or more electrodes may be formed, and a diode may be configured between each W1 pole and the strain receiving structure member. For example, as shown in the schematic circuit diagram in FIG. 6, four electrodes may be formed to form a bridge, to which an external power source E may be connected. In Fig. 6, J3 shows 61.62.63.64 the outermost layer of the multilayer thin film that becomes the strain-sensitive resistor, and 65.66
.. 67 and 68 indicate diodes formed between each electrode and the strain receiving structure member. As is clear from Fig. 6, since voltage is applied in the opposite direction to the diode rods 5...68, a high resistance is connected between the c, d, and e ends of the diode rods 5...68 and the strain-receiving structural member. state, and the f end is short-circuited, but the resistor 61.
It can be seen that 62, 63, and 64 are not affected by the strain-sensitive structural members, exhibit good resistance against the external N source E, and function as highly reliable strain-sensitive resistors.

発明の効果 一13= 以上のように、この発明によれば、受歪構造部材と、該
受歪構造部材上に形成されており、かつ最外層が感歪抵
抗ij膜層となる多m薄膜層ど、該多li薄膜層の最外
層上に形成された複数個の電極とを備え、電極と受歪構
造部材との間にダイオードが構成されるように、多[1
11層が形成されているため、従来のように軟化・弯形
等の問題を生じ易い接着剤を用いずども、高温あるいは
極低温下においても歪を正確に検出Jることが可能な、
信頼性に侵れた歪センサを得ることができる。
Effect of the invention 13 = As described above, according to the present invention, there is provided a strain-receiving structural member and a multi-m thin film formed on the strain-receiving structural member, the outermost layer of which is a strain-sensitive resistor ij film layer. The layer includes a plurality of electrodes formed on the outermost layer of the multi-Li thin film layer, and the multi-[1]
Because 11 layers are formed, it is possible to accurately detect strain even at high temperatures or extremely low temperatures, without using adhesives that tend to cause problems such as softening and curving as in the past.
A strain sensor with poor reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の企ゲージの一使用例を示す略図的断面
図である。第2図は、この発明の一実施例を示す略図的
断面図である。第3図は、第2図に示した実施例の等価
回路図である。第4図は、第2図に示した実施例を外部
電源に接続した状態を示す等価回路図である。第5図は
、第2図に示した実施例を応用した圧力センりの具体的
li造を示す縦断面図である。第6図は、この発明のさ
らに他の実施例の等価回路図である。 14− 図において、14.35.51は受歪構造部材、17は
多層M1mN、17a 、61,62.63゜64は多
Iii薄l!J剰の最外層となる感歪抵抗薄側L21a
、21bは電極、22.23.65.66゜67.68
はダイオード。 特許出願人 住友電気T粟株式会着 15− ′)″) さ 癲 ゞφ 惨 悩1 第1頁の続き 0発 明 者 大 塚 昭 伊丹市昆陽」[製作所内 0発 明 者 −柳 肇 伊丹市昆陽′:IE製作所内 338−
FIG. 1 is a schematic cross-sectional view showing an example of the use of a conventional target gauge. FIG. 2 is a schematic cross-sectional view showing one embodiment of the present invention. FIG. 3 is an equivalent circuit diagram of the embodiment shown in FIG. 2. FIG. 4 is an equivalent circuit diagram showing the embodiment shown in FIG. 2 connected to an external power source. FIG. 5 is a vertical sectional view showing a specific structure of a pressure sensor to which the embodiment shown in FIG. 2 is applied. FIG. 6 is an equivalent circuit diagram of still another embodiment of the present invention. 14- In the figure, 14.35.51 is a strain-receiving structural member, 17 is a multilayer M1mN, 17a, 61, 62.63°64 is a multilayer thin l! Strain-sensitive resistor thin side L21a which is the outermost layer of J remainder
, 21b is an electrode, 22.23.65.66°67.68
is a diode. Patent Applicant: Sumitomo Electric T-Awa Co., Ltd. 15-')'' City Konyo': 338- in IE factory

Claims (5)

【特許請求の範囲】[Claims] (1) 受歪構造部材と、該受歪構造部材上に形成され
ており、かつ最外層が感企抵抗ssi層となる多層薄膜
層と、該多層薄膜層の最外層上に形成された複数個の電
極とを備え、 前記電極と受歪構造部材との間にダイオードが構成され
るように、前記多層薄膜層が形成されている、歪センサ
(1) A strain-receiving structural member, a multilayer thin film layer formed on the strain-receiving structural member and whose outermost layer is a sensitizing resistance SSI layer, and a plurality of thin film layers formed on the outermost layer of the multilayer thin film layer. a strain sensor, wherein the multilayer thin film layer is formed such that a diode is configured between the electrode and the strain-receiving structural member.
(2) 前記多層薄膜層は、n −1−p型半導体多層
薄膜層である、特許請求の範囲第1項記載の歪センサ。
(2) The strain sensor according to claim 1, wherein the multilayer thin film layer is an n-1-p type semiconductor multilayer thin film layer.
(3) 前記多層薄膜層は、p −1−n型半導体多層
薄膜層である、特許請求の範囲第1項記載の歪センサ。
(3) The strain sensor according to claim 1, wherein the multilayer thin film layer is a p-1-n type semiconductor multilayer thin film layer.
(4) 前記多層薄I!層は、n−i型半導体層であり
、前記電極と受歪構造部材との間でショットキバリア・
ダイオードを形成している、特許請求の範囲第1項記載
の歪センサ。
(4) The multilayer thin I! The layer is an n-i type semiconductor layer, and has a Schottky barrier between the electrode and the strain-receiving structure member.
2. A strain sensor according to claim 1, which forms a diode.
(5) 前記多m5ta層は、n−1型半導体多WwI
膜層からなり、かつ該多層薄膜層のi型半導体層が簿膜
絶縁層を介して前記受歪構造部材に密着形成されている
、特許請求の範囲第11J!l記載の歪センサ。
(5) The multi-m5ta layer is an n-1 type semiconductor multi-WwI
Claim 11J! consists of a film layer, and the i-type semiconductor layer of the multilayer thin film layer is formed in close contact with the strain-receiving structural member via a film insulating layer. The strain sensor described in l.
JP23249983A 1983-12-08 1983-12-08 Strain sensor Granted JPS60124878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23249983A JPS60124878A (en) 1983-12-08 1983-12-08 Strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23249983A JPS60124878A (en) 1983-12-08 1983-12-08 Strain sensor

Publications (2)

Publication Number Publication Date
JPS60124878A true JPS60124878A (en) 1985-07-03
JPH0447763B2 JPH0447763B2 (en) 1992-08-04

Family

ID=16940280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23249983A Granted JPS60124878A (en) 1983-12-08 1983-12-08 Strain sensor

Country Status (1)

Country Link
JP (1) JPS60124878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242901A (en) * 1988-03-25 1989-09-27 Ishida Scales Mfg Co Ltd Strain gauge structure for load detection
WO2007052800A1 (en) * 2005-11-07 2007-05-10 Rohm Co., Ltd. Semiconductor pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113381A (en) * 1979-02-23 1980-09-01 Hitachi Ltd Semiconductor displacement transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113381A (en) * 1979-02-23 1980-09-01 Hitachi Ltd Semiconductor displacement transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242901A (en) * 1988-03-25 1989-09-27 Ishida Scales Mfg Co Ltd Strain gauge structure for load detection
WO2007052800A1 (en) * 2005-11-07 2007-05-10 Rohm Co., Ltd. Semiconductor pressure sensor

Also Published As

Publication number Publication date
JPH0447763B2 (en) 1992-08-04

Similar Documents

Publication Publication Date Title
US5248345A (en) Integrated photovoltaic device
US4627138A (en) Method of making piezoelectric/pyroelectric elements
EP0168313B1 (en) Piezoelectric transducer and pressure sensor using such a transducer
US4258260A (en) Pyroelectric infrared detector
US5518951A (en) Method for making thin film piezoresistive sensor
US11469365B2 (en) Sensing film and method of making same and electronic device using sensing film
US20140321507A1 (en) Capacitive temperature sensor comprising two capacitors as a voltage divider bridge
FR2989485A1 (en) TOUCH SENSOR AND METHOD FOR MANUFACTURING SUCH SENSOR
JPS62151733A (en) Sensor with flexible piezoelectric film as measuring elementand manufacture thereof
AU2021103686A4 (en) A flexible temperature sensor based on graphene nanowall
KR100254611B1 (en) Manufacturing method and structure of thin-film infrared sensor
JPS60124878A (en) Strain sensor
US2933665A (en) Directly strained, capacitance strain gage
US3622712A (en) Device employing selenium-semiconductor heterojunction
CN110793562B (en) Detector module packaging structure and method for diamond sensor test
US3624465A (en) Heterojunction semiconductor transducer having a region which is piezoelectric
CN110459672B (en) Piezoelectric ceramic sensor and preparation method thereof
JPS5837907A (en) Method of producing anodic oxidized aluminum humidity sensitive film
JP6338438B2 (en) Pressure sensitive polymer device
FR3090209B1 (en) METHOD OF MANUFACTURING A DEVICE INCLUDING A MATERIAL ACQUIRING ELECTRICAL PROPERTY AFTER HAVING BEEN SUBJECT TO ELECTRIC POLARIZATION
JPH0447762B2 (en)
JP7464056B2 (en) Piezoelectric Sensor
JPH0781975B2 (en) Moisture sensitive element
CN220606157U (en) Thin film type T-shaped thermocouple
JPH0158672B2 (en)