JPH01242901A - Strain gauge structure for load detection - Google Patents

Strain gauge structure for load detection

Info

Publication number
JPH01242901A
JPH01242901A JP63069282A JP6928288A JPH01242901A JP H01242901 A JPH01242901 A JP H01242901A JP 63069282 A JP63069282 A JP 63069282A JP 6928288 A JP6928288 A JP 6928288A JP H01242901 A JPH01242901 A JP H01242901A
Authority
JP
Japan
Prior art keywords
strain
layer
layers
strain gauge
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63069282A
Other languages
Japanese (ja)
Other versions
JP2673138B2 (en
Inventor
Michito Utsunomiya
宇都宮 道人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Scales Manufacturing Co Ltd
Original Assignee
Ishida Scales Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Scales Manufacturing Co Ltd filed Critical Ishida Scales Manufacturing Co Ltd
Priority to JP63069282A priority Critical patent/JP2673138B2/en
Publication of JPH01242901A publication Critical patent/JPH01242901A/en
Application granted granted Critical
Publication of JP2673138B2 publication Critical patent/JP2673138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To increase the gauge rate and to reduce the cost by forming three layers on a conductive substrate by a plasma CVD method and using the deposited hydrogenation amorphous silicon semiconductor as a strain gauge main body. CONSTITUTION:Strain gauges 1 are stuck on strain induction parts 14 and 14 of the aluminum-made strain inducer of the Roberval's parallel motion mechanism of the load cell are stuck and joined on the reverse surfaces of their conductive substrates 2 and when strain is generated as shown by an arrow, interfaces among the p, n, and i layers 4-6 of the hydrogenation amorphous silicon thin film 3 are strained mechanically. Then the strain quantities based on the dependence of currents flowing through the interfaces between the p and n layers 4 and 5 and the interface between the n and i layers 5 and 6 upon the strain are outputted and then converted to generate output signals through electric signal lines 9 and 10. Those signals are detected and amplified by a DC ammeter 11 to detect a load such as the weight of a body to be metered which is put in a hopper, etc., thereby sending a signal for the opening operation of a lid body, etc., to a proper controller.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、物体の重量や印加された荷重等の力を測定
する場合に使用される荷重検出器のひずみゲージの@造
の技術分野に属する。
[Detailed Description of the Invention] <Industrial Application Field> The disclosed technology is applicable to the technical field of strain gauges for load detectors used to measure force such as the weight of an object or applied load. belong to

〈要旨の概要〉 而して、この発明はロードセル等の荷重検出用のアルミ
製のロバ−パル機構の起歪体の歪発生部に添設されて歪
量を電気的に増幅回路を介し制御装置に接続している信
号線を有する電極が装備されているアモルファス半導体
ひずみゲージ構造に関する発明であり、特に、一方の電
極を接続している導電性基板上にプラズマCVD法を用
いて水素化アモルファスシリコン薄膜のp層とn層が1
層を間にして薄膜の三層に堆積積属されて形成され、最
上層の薄膜に金−アンチモン合金製等の信号線を接続す
る電極が設けられている荷重検出用ひずみゲージ構造に
係る発明である。
<Summary of the gist> This invention is attached to the strain generating part of a strain-generating body of an aluminum donkey pal mechanism for detecting a load in a load cell, etc., and electrically controls the amount of strain through an amplifier circuit. The invention relates to an amorphous semiconductor strain gauge structure equipped with electrodes having signal lines connected to the device, and in particular, hydrogenated amorphous strain gauges are formed using a plasma CVD method on a conductive substrate connecting one of the electrodes. P layer and n layer of silicon thin film are 1
An invention relating to a strain gauge structure for load detection, which is formed by depositing three layers of thin films with a layer in between, and the top layer of the thin film is provided with electrodes for connecting signal lines such as those made of gold-antimony alloy. It is.

〈従来技術〉 一般に、重量変化に起因する起歪体の比例変形範囲内の
撓み量に基づき、該起歪体に付設したひずみゲージを介
して重量変化量を測定するロードセル等の荷重検出器が
様々な分野で広く使用されている。
<Prior art> Generally, a load detector such as a load cell measures the amount of weight change via a strain gauge attached to the strain body based on the amount of deflection within the proportional deformation range of the strain body due to weight change. Widely used in various fields.

即ち、荷重検出器は、計量装置の!a溝中心部として使
用される場合が多く、例えば、被検出体としてのlFx
ホッパの重量変化を比例変化範囲での起歪体の撓み量に
変換し、該起歪体に付設されたひずみゲージの撓み変化
による電気抵抗変化を利用して計量ホッパに導入された
被測定材料重量を計量し、制御装置によってモータ等を
稼動させて、該計量ホッパの蓋体等を開放する一連の作
動の中でも該荷重検出器は重要な位置を占めている。
In other words, the load detector is a weighing device! It is often used as the center of the a-groove, for example, IFx as the detected object.
The material to be measured is introduced into the weighing hopper by converting the weight change of the hopper into the amount of deflection of the flexure element within a proportional change range, and using the electrical resistance change due to the change in deflection of the strain gauge attached to the flexure element. The load detector occupies an important position in a series of operations such as measuring weight, operating a motor etc. by a control device, and opening a lid etc. of the weighing hopper.

ところで、従来より、上記荷重検出器はアルミ合金製等
の起歪体を所定の形状に成形し、該起歪体の上下両面に
、ひずみゲージを適宜の接着手段によって貼り付け、起
歪体の上下面に各々2枚貼 。
By the way, conventionally, the above-mentioned load detector is made by forming a strain-generating body made of aluminum alloy or the like into a predetermined shape, and pasting strain gauges on both the upper and lower surfaces of the strain-generating body using appropriate adhesive means. Paste 2 sheets each on the top and bottom surfaces.

り付けられたひずみゲージによってホイートストンブリ
ッジ回路を形成させた構成としているものである。
The structure is such that a Wheatstone bridge circuit is formed by the attached strain gauges.

〈発明が解決しようとする問題点〉 さりながら、上述従来の荷重検出器においては、接着手
段を介してひずみゲージを起歪体に貼り付ける際に、気
泡が混入する等してひずみゲージが起歪体に一体化され
ず、測定時に起歪体が撓んだ場合に、ひずみゲージが起
歪体に対して正確に追従動作せず、精度が低下する虞が
ある欠点があった。
<Problems to be Solved by the Invention> However, in the above-mentioned conventional load detector, when the strain gauge is attached to the strain-generating body via adhesive means, air bubbles may be mixed in, causing the strain gauge to become distorted. If the strain gauge is not integrated with the strain body and the strain body is bent during measurement, the strain gauge may not be able to accurately follow the strain body, which may lead to a decrease in accuracy.

更に、ひずみゲージを起歪体に接着する作業に相当な熟
練と複雑な工程を要することに加えて、抵抗値、及び、
感度を向上させる理由から加工が難しいのにもかかわら
ず、金属細線等を反復蛇行させて長さを稼ぐことで形成
したひずみゲージを起歪体の歪発生部の上下面に付設し
て、圧縮側と引張側の両方から測定しなければならず、
製造コストが高くなるという不利点もおった。
Furthermore, in addition to requiring considerable skill and complicated processes to bond the strain gauge to the strain-generating body, the resistance value and
Although it is difficult to process for the purpose of improving sensitivity, strain gauges formed by repeatedly meandering a thin metal wire to increase the length are attached to the upper and lower surfaces of the strain generating part of the strain body, and the compression must be measured from both the side and the tension side,
It also had the disadvantage of increased manufacturing costs.

勿論、上述の如きロードセル等の荷重検出を高精度に行
うためには高感度のひずみゲージが必要でおる。
Of course, a highly sensitive strain gauge is required in order to detect the load using a load cell or the like as described above with high precision.

而して、電気抵抗型のひずみゲージにあって在来の金属
箔のひずみゲージではゲージ率において歪感度は2程度
と低く、それに対し、近時開発された水素化アモルファ
スシリコン薄膜のnllやp層の薄膜単体のひずみゲー
ジではゲージ率の歪感度は最大でも4層程度であり、し
たがって、着しく高感度とは言えないきらいがあった。
Among electrical resistance strain gauges, conventional metal foil strain gauges have a low strain sensitivity of about 2 in terms of gauge factor, whereas recently developed hydrogenated amorphous silicon thin films such as NLL and P In the case of a strain gauge made of a single layered thin film, the strain sensitivity of the gauge factor is about four layers at most, and therefore it cannot be said to be highly sensitive.

〈発明の目的〉 この発明の目的は上述従来技術に基づくロードセル等の
荷重検出装置の起歪体の歪発生部に添設されて歪量を電
気信号に変えて増幅回路に出力するひずみゲージの問題
点を解決すべき技術的課題とし、ゲージ率の感度を著し
く高くし、製造も容易で低コストで製作出来、耐久性も
向上するようにして各種産業における荷重測定技術利用
分野に益する優れた荷重検出用ひずみゲージ構造を提供
せんとするものである。
<Object of the Invention> The object of the invention is to provide a strain gauge which is attached to the strain generating part of the strain body of a load detection device such as a load cell based on the above-mentioned prior art and which converts the amount of strain into an electrical signal and outputs it to an amplifier circuit. The problem is considered a technical problem to be solved, and the sensitivity of the gauge factor is significantly increased, manufacturing is easy and low cost, and durability is improved. The present invention aims to provide a strain gauge structure for load detection.

〈問題点を解決するための手段・作用〉上述目的に沿い
先述特許請求の範囲を要旨とするこの発明の構成は前述
問題点を解決するために、ステンレス製等の導電性基板
に対し、プラズマCVD法によりグロー放電を介し当該
シランガスを分解し、更に、ジボランガス導入によりド
ーピングを行い0層薄膜を、又、シランガスのみにより
i層を、更にホスフィンガス導入によりドーピングを行
って0層薄膜を該i層を介して堆積し、三層の水素化ア
モルファスシリコン薄膜を積層させ、最上部の薄膜と導
電性基板に電極を形成させて銅−ニッケル合金製等の電
気信号線を接続させ、ゲージ率の歪感度は100〜12
0もの高感度になし、順方向バイアスや逆方向バイアス
の特性を選択的に用いて種々の測定が行えるようにした
技術的手段を講じたものである。
<Means/effects for solving the problems> In order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims, is based on the above-mentioned purpose. The silane gas is decomposed through glow discharge using the CVD method, and the 0-layer thin film is formed by doping by introducing diborane gas, the i-layer is formed only by silane gas, and the 0-layer thin film is formed by doping by introducing phosphine gas. Three layers of hydrogenated amorphous silicon thin films are stacked, electrodes are formed between the top thin film and the conductive substrate, and electrical signal lines made of copper-nickel alloy are connected to determine the gauge factor. Distortion sensitivity is 100-12
This technique employs technical means to selectively use forward bias and reverse bias characteristics to perform various measurements without having a sensitivity as high as 0.

〈実施例−構成〉 次に、この発明の1実施例を図面を参照して説明すれば
以下の通りである。
<Embodiment - Configuration> Next, one embodiment of the present invention will be described below with reference to the drawings.

第1図に示す態様において1はこの発明の一旨の中心を
成す荷重検出用ひずみゲージでおり、例えば、重量測定
用のロードセル等に用いられ、ステンレス&rA製の導
電性基板2の上面に次述詳説する如く、三層の水素化ア
モルファスシリコンIIH3がプラズマCVD法により
積層堆積して形成されており、導電性基板2の上面に対
してはp層が、その上部には1層を介してn層が、それ
ぞれ0.05マイクロメートル、0.8マイクロメート
ル、0057198メートルの所定の薄さ厚みに形成し
て積層されており、最上部の0層6の上部には金−アン
ヂモン合金の上部電極7が0.15マイクロメートル等
の薄膜状に蒸着形成されており、該上部電極7と導電性
基板2に対しては周公知の適宜の導電性接着剤8.8を
介して電気信号線9.10が接続され、出力表示用の直
流電流計11を介し直流電圧電源12に順方向バイアス
状態で接続されており、当該ひずみゲージ1は第8図に
示す様にロードセルのロバ−パル機構のアミル製等の起
歪体13の歪発生部14.14・・・にエポキシ系接着
剤等を介して導電性基板2の裏面が接合一体止されるよ
うにされている。
In the embodiment shown in FIG. 1, reference numeral 1 denotes a strain gauge for load detection, which is the central point of the invention, and is used, for example, in a load cell for weight measurement, and is attached to the top surface of a conductive substrate 2 made of stainless steel and rA. As will be explained in detail, three layers of hydrogenated amorphous silicon IIH3 are formed by stacking and depositing them by plasma CVD. N layers are formed and laminated to predetermined thicknesses of 0.05 micrometers, 0.8 micrometers, and 0.057198 meters, respectively, and an upper layer of gold-andimony alloy is formed on top of the top layer 6. An electrode 7 is formed in the form of a thin film of 0.15 micrometers, etc., and an electric signal line is connected to the upper electrode 7 and the conductive substrate 2 via a well-known appropriate conductive adhesive 8.8. 9.10 is connected to the DC voltage power source 12 in a forward bias state via a DC ammeter 11 for output display, and the strain gauge 1 is connected to the donkey pal mechanism of the load cell as shown in FIG. The back surface of the conductive substrate 2 is integrally bonded to the strain-generating portions 14, 14, etc. of the strain-generating body 13 made of aluminum or the like via an epoxy adhesive or the like.

尚、第8図に示す態様では4つの歪発生部14.14・
・・の表面に4枚のひずみゲージ1.1.1.1が添着
されているが、この発明においては前述した如く、ゲー
ジ率が最大で100〜120と著しく高感度であるため
に、−5側表面にのみ2枚のひずみゲージ1.1を添着
するだけでも充分な実用性があるものである。
In addition, in the embodiment shown in FIG. 8, four strain generating parts 14, 14,
Four strain gauges 1.1.1.1 are attached to the surface of ..., but in this invention, as mentioned above, since the gauge factor is extremely high with a maximum of 100 to 120, - It is sufficiently practical to attach two strain gauges 1.1 only to the surface of the 5th side.

而して、プラズマCVD法による薄膜三層の水素化アモ
ルファスシリコン3の歪感度特性については、第9.1
0図に示す様に、印加電圧を・:0.1ボルト、O:O
12ボルト、ム:0,3ボルト、■:0.4ポルト、ロ
:0,6ボルトであるようにし、バイアスを横軸、感度
としての電流変化/初期電流(電流変化率、即ち、感度
)%を縦軸にとると、第9図に示すp層をプラス電位側
に、n層をマイナス電位側にした順方向バイアス状態で
は歪感度が電源電圧によって変化することが分り、した
がって、電源電圧を操作することにより所望の歪感度を
得ることが分り、又、逆にp層側をマイナス電位に、又
、n層側をプラス電位にした逆方向バイアス状態では第
10図に示す様に、歪感度は電源電圧に依存しない一定
特性となるので、電源電圧が変動するような条件の悪い
測定でも安定した測定をすることが出来る特性が得られ
、したかって、順方向バイアス、逆方向バイアス特性を
使い分けして用いることにより種々の用途の測定が行え
るものである。
Regarding the strain sensitivity characteristics of the three-layer hydrogenated amorphous silicon 3 formed by the plasma CVD method, see Section 9.1.
As shown in figure 0, the applied voltage is 0.1 volt, O:O
12 volts, M: 0.3 volts, ■: 0.4 volts, B: 0.6 volts, bias on the horizontal axis, current change as sensitivity/initial current (current change rate, i.e. sensitivity) % on the vertical axis, it can be seen that the strain sensitivity changes depending on the power supply voltage in the forward bias state shown in Figure 9, where the p layer is at a positive potential and the n layer is at a negative potential. It has been found that the desired strain sensitivity can be obtained by manipulating , and conversely, in a reverse bias state where the p-layer side is set to a negative potential and the n-layer side is set to a positive potential, as shown in Figure 10, Since the distortion sensitivity is a constant characteristic that does not depend on the power supply voltage, stable measurements can be obtained even under poor conditions where the power supply voltage fluctuates, and therefore forward bias and reverse bias characteristics can be obtained. By selectively using these, measurements for various purposes can be performed.

而して、上述第1図に示した荷重検出用ひずみゲージ1
の製造について第2〜7図により略説すると、まず、第
2図に示す様に、例えば、(厚さo、5mm等の)ステ
ンレス鋼製等の導電性基板2を真空容器15内の一方の
電極16に所定にセットし、併せて該真空容器15内に
5iHa(シラン)ガスを導入し、電源により真空容器
15内部を電極16.16′を介してグロー放電し該シ
ランガスを分解する。
Therefore, the load detection strain gauge 1 shown in FIG.
The manufacturing process will be briefly explained with reference to FIGS. 2 to 7. First, as shown in FIG. It is set in a predetermined position on the electrode 16, 5iHa (silane) gas is introduced into the vacuum vessel 15, and a glow discharge is caused inside the vacuum vessel 15 via the electrodes 16 and 16' by a power source to decompose the silane gas.

そして、導電性基板2の上面に周公知のプラズマCVD
法により水素化アモルファスシリコン薄膜を形成するに
あたっては、第3図に示す様に、まずp層を形成するぺ
<5iHa(シラン)ガスと共に82H6(ジポラン)
ガスを導入し、ドーピング処理により形成されるp層に
於いてはSi(ケイ素)原子中にB(ホウ素)原子が組
み込まれて水素化アモルファスシリコンの厚さ0.05
マイクロメートルのpHの薄膜半導体4が形成される。
Then, the well-known plasma CVD process is applied to the upper surface of the conductive substrate 2.
In forming a hydrogenated amorphous silicon thin film by the method, as shown in Fig. 3, 82H6 (diporan) is first mixed with P<5iHa (silane) gas to form the p layer.
In the p layer formed by introducing gas and doping treatment, B (boron) atoms are incorporated into Si (silicon) atoms, resulting in a hydrogenated amorphous silicon with a thickness of 0.05 mm.
A thin film semiconductor 4 with a pH of micrometers is formed.

次いで、第4図に示す様に5it−(a(シラン)ガス
のみの導入状態でグロー放電を行わせてドーピング処理
をせずi層を厚さ0.8マイクロメートルの厚さの所定
の薄膜の1層5に形成し、続いて、第5図に示す様にS
iH4(シラン)ガスと共にPH3(ホスフィン)ガス
を併せて導入しドーピング処理を行い、Si (ケイ素
)原子中にP(リン)原子が組み込まれて厚2k 0.
05マイクロメートルの所定薄膜の0層6が形成される
Next, as shown in FIG. 4, glow discharge is performed with only 5it-(a (silane) gas introduced) to form the i-layer into a predetermined thin film with a thickness of 0.8 micrometers without any doping treatment. 5, and then, as shown in FIG.
Doping treatment is performed by introducing iH4 (silane) gas and PH3 (phosphine) gas together, and P (phosphorus) atoms are incorporated into Si (silicon) atoms, resulting in a thickness of 2k0.
A predetermined thin layer 6 of 0.05 micrometers is formed.

尚、真空容器15内に導入する各S!H4(シラン)ガ
ス、B2H6(ジボラン)ガス、PH3(ホスフィン)
ガスについては、真空状態を破ることなく適宜にバルフ
切り換え等を行って導電性基板2の上にp層−1層−n
層を順に積層堆積させる。
In addition, each S! introduced into the vacuum container 15! H4 (silane) gas, B2H6 (diborane) gas, PH3 (phosphine)
Regarding the gas, the valves are switched as appropriate without breaking the vacuum state, and the p layer-1 layer-n layer is formed on the conductive substrate 2.
The layers are deposited in sequence.

尚、かかる水素化アモルファス半導体3の形成に際して
はp層−1層−n層の三層の接合構造が、即ら、1層が
p層とn層の間に介装されておく構造にする必要がある
Incidentally, when forming such a hydrogenated amorphous semiconductor 3, a three-layer junction structure of p layer-1 layer-n layer is used, that is, a structure in which one layer is interposed between the p layer and the n layer. There is a need.

このようにして、水素化アモルファスシリコン半導体の
薄膜3が導電性基板2の上部に所定厚さの薄膜に形成さ
れると、真空容器15内の真空状態を開放して積層体の
試料を取り出し、第6図に示す様に仙の真空蓋@装置1
6内にセットし、1%のアンチモンを含有する金−アン
チモン合金を周公知の真空蒸着法により水素化アモルフ
ァスシリコン半導体3の0層6の上部に所定厚さの薄膜
状に一体化蒸着により接合堆積する。
In this way, when the thin film 3 of hydrogenated amorphous silicon semiconductor is formed to a predetermined thickness on the top of the conductive substrate 2, the vacuum condition in the vacuum container 15 is released and a sample of the laminate is taken out. As shown in Figure 6, Sen's vacuum lid @ device 1
6, and a gold-antimony alloy containing 1% antimony is bonded to the top of the 0 layer 6 of the hydrogenated amorphous silicon semiconductor 3 by integral vapor deposition to a predetermined thickness using a well-known vacuum evaporation method. accumulate.

その後、真空蒸着装置16から取り出した資料に、第7
図に示す様に金−アンチモン合金の上部電極7の上面と
導電性基板2の所定部位の上面に、例えば、銀ペースト
等の導電性接着剤8.8を用いて銅−ニッケル合金線の
電気信号線9.10を接合して接続延出させ、荷重検出
用ひずみゲージ1を存る。
After that, the seventh
As shown in the figure, a conductive adhesive 8.8 such as silver paste is applied to the upper surface of the upper electrode 7 made of gold-antimony alloy and the upper surface of a predetermined portion of the conductive substrate 2, so that the copper-nickel alloy wire is electrically connected. Signal lines 9 and 10 are connected and extended to form a load detection strain gauge 1.

このようにして、プラズマCVD法により真空容器15
内で導電性基板2上に薄膜の0層4.1層5.0層6の
アモルファス半導体薄膜3を三層に積層堆積させる。
In this way, the vacuum container 15 is
Three layers of amorphous semiconductor thin film 3 are deposited on a conductive substrate 2 in the following manner: 0 layers, 4 layers, 1 layers, 5 layers, and 6 layers.

尚、上述態様においては、導電性基板2の上に最初にp
層を、次いでi層を、更にn層を積層堆積したが、これ
とは逆に最初にn層を、次いでi層を、最後にp層を堆
積積層することも可能であるが、p層についてはステン
レス鋼と、又、n層は金−アンチモン合金と電気的にオ
ーム性接触をするという組合せの問題があるので、n層
−1@−p層のIIFtで堆積積層する場合には、下部
電極、及び、上部電極としてステンレス鋼、金−アンチ
モン合金が適当な材料組合せであるかどうか、即ち、オ
ーム性接触になるかどうか検討して調査後に行うことが
好ましい。
Note that in the above embodiment, p is first placed on the conductive substrate 2.
In this example, we deposited a layer, then an i layer, and then an n layer, but it is also possible to stack the n layer first, then the i layer, and finally the p layer, but the p layer Since there is a problem with the combination of stainless steel and the n-layer making electrical ohmic contact with the gold-antimony alloy, when stacking the n-layer-1@-p layer with IIFt, It is preferable to carry out this process after investigating whether stainless steel and gold-antimony alloy are an appropriate material combination for the lower electrode and the upper electrode, that is, whether ohmic contact will occur.

そして、不適当な場合は、他の適当な化4豆材料を用い
る必要がある。
If it is not suitable, it is necessary to use another suitable chemical compound material.

〈実施例−作用〉 上述構成において、第8図に示す様に、ロードセルのロ
バ−パル機構のアルミ製の起歪体13の歪発生部14.
14(・・・)にエポキシ系接着剤によりひずみゲージ
1をその導電性基板2の裏面をして貼り付は接合し、第
1固自矢印に示す様な歪が発生した場合には、水素化ア
モルファスシリコン薄膜3の名簿II! 4.5.6の
境界面に機械的な歪が印加されることになり、0層4.
1層5の境界面、及び、i層5と0層6の境界面を通っ
て流れる電流の歪に対する依存性から、歪量が出力され
た後に変換されて電気信号線9.10を介し出力信号が
発生する。
<Embodiment - Effect> In the above configuration, as shown in FIG. 8, the strain generating portion 14 of the aluminum strain body 13 of the donkey pal mechanism of the load cell.
14 (...), the strain gauge 1 is attached to the back side of the conductive substrate 2 using epoxy adhesive, and if a strain as shown in the first solid arrow occurs, the hydrogen List of amorphous silicon thin films 3 II! Mechanical strain will be applied to the interface of 0 layer 4.5.6.
Due to the dependence of the current flowing through the interface between layer 1 5 and interface between layer i 5 and layer 0 6 on strain, the amount of strain is output, converted, and output via electrical signal line 9.10. A signal is generated.

そして、その出力信号は直流電流計11により検出され
、在来態様同様、例えば、ホイートストンブリッジ等に
よって検出されてその出力が増幅されて、例えば、先述
した如くホッパ等に投入される被計量物の重量等の荷重
が検出され、蓋体の開放動作等への信号を適宜の制御装
置に送信することが出来る。
Then, the output signal is detected by the DC ammeter 11, and similarly to the conventional method, it is detected by, for example, a Wheatstone bridge, and the output is amplified. A load such as weight is detected, and a signal for opening the lid can be sent to an appropriate control device.

尚、この発明の実施態様は上述実施例に限るものでない
ことは勿論であり、例えば、ロバ−パル機構を成ず起歪
体の歪発生部分にひずみゲージを添設する場合に、起歪
体自体を下部電極とする場合にはひずみゲージ以外の部
分をマスクしてp層−1ll−n層(上部電極)順で形
成したり、起歪体を下部電極としない場合であって当該
起歪体が、例えば、ジエラルミン等の金属等の場合は予
め絶縁膜をコーティングした後に、ひずみゲージ以外の
部分をマスクしてp層(下部電極)−1層−n層(上部
電極)順で積層堆積したり、起歪体が、例えば、ガラス
等の非金属の場合には、ひずみゲージ部分に直接n層(
下部電極)−1層=n層(上部電極)の順に形成してい
く等種々の態様が採用可能でおる。
It goes without saying that the embodiments of the present invention are not limited to the above-mentioned embodiments. For example, when a strain gauge is attached to the strain-generating portion of the strain-generating body without forming a donkey-pal mechanism, the strain-generating body When the strain gauge itself is used as the lower electrode, parts other than the strain gauge are masked and formed in the order of p layer - 1ll - n layer (upper electrode), or when the strain body is not used as the lower electrode, the strain gauge If the body is made of a metal such as dielarmine, it is coated with an insulating film in advance, and then the parts other than the strain gauge are masked and stacked in the order of p layer (lower electrode) - layer 1 - layer n (upper electrode). Or, if the strain body is made of a non-metal such as glass, an n-layer (
Various embodiments can be adopted, such as forming the layer in the order of (lower electrode) - 1 layer=n layer (upper electrode).

又、ひずみゲージに対する歪の印加態様は様々な態様が
おるが、上述実施例の態様が最も簡単で、且つ、安定し
て再現性が良いものと思料されるものである。
Furthermore, although there are various modes of applying strain to the strain gauge, the mode of the above-mentioned embodiment is considered to be the simplest, stable, and highly reproducible.

〈発明の効果〉 以上、この発明によれば、導電性基板上にプラズマCV
D法によるp層とn層をi層を介して薄膜状に積層堆積
させた水素化アモルファスシリコン半導体のひずみゲー
ジ本体としたことにより、ゲージ率の歪感度は最大で1
00〜120とも極めて高感度になり、著しく高精度の
荷重検出が行えるという優れた効果が奏される。
<Effects of the Invention> As described above, according to the present invention, plasma CV
By using a hydrogenated amorphous silicon semiconductor strain gauge body in which the p-layer and n-layer are laminated in a thin film form via the i-layer using the D method, the strain sensitivity of the gauge factor can be increased to 1.
00 to 120, the sensitivity is extremely high, and an excellent effect is achieved in that load detection can be performed with extremely high accuracy.

而して、第9.10図に示す様な順方向バイアス、逆方
向バイアスの状態を選択的に採用することにより、電源
電圧を操作したりすることにより、又、電源電圧が変動
するような悪条件においても安定した測定を行うことが
出来る等電気的な順逆方向の特性を選択的に使い分ける
ことにより、測定用途が弾力的に選択出来るという効果
が奏される。
Therefore, by selectively adopting the forward bias and reverse bias states as shown in Figure 9.10, by manipulating the power supply voltage, and by controlling the power supply voltage to fluctuate. By selectively using electrical forward and reverse characteristics that enable stable measurements even under adverse conditions, it is possible to flexibly select measurement applications.

而して、ひずみゲージ本体にはプラズマCVD法による
水素化アモルファスシリコン半導体を薄膜状に形成する
ことにより、在来態様の結晶半導体ひずみゲージに比し
て製造コストが安く出来、その製作が容易であり、耐久
性が良いという効果がおる。
By forming a thin film of hydrogenated amorphous silicon semiconductor on the strain gauge body by plasma CVD, the manufacturing cost can be lowered and it is easier to manufacture than conventional crystalline semiconductor strain gauges. It has the effect of being durable.

又、電極と起歪体を共用することが出来る設計か採用出
来るので、電気信号線の取り出しもし易いという効果が
奏される。
Further, since a design can be adopted in which the electrode and the strain body can be used in common, the effect that the electric signal line can be easily taken out is achieved.

そして、歪感度が著しく高いために当該歪感度の制御も
し易く、そのため、用途に応じた歪測定を選択すること
が出来るという弾力性のある効果もおる。
Furthermore, since the strain sensitivity is extremely high, it is easy to control the strain sensitivity, and therefore, there is also a flexible effect in that strain measurement can be selected depending on the application.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の1実施例の説明図でおり、第1図は全
体構造概略斜視図、第2〜7図はひずみゲージのプラズ
マCVD法による堆積積層のプロ」Zス模式側面図、第
8図は起歪体に対するひずみゲージの取合い概略斜視図
、第9.10図は順方向バイアスと逆方向バイアスによ
る歪に対する電流変化率の特性グラフ図でおる。 13・・・起歪体、 14・・・歪発生部、9.10・
・・信号線、 3・・・p−1−n接合、  1・・・ひずみゲージ、
4.5.6・・・水素化アモルファスシリコン薄膜、4
・・・0層、  6・・・n層、  5・・・1@、7
・・・電極、  2・・・導電性基板第2図 第4図 1516゛ 第6図 第3図 第5図 第7図 囚 ■ 藩
The drawings are explanatory diagrams of one embodiment of the present invention, in which Fig. 1 is a schematic perspective view of the overall structure, Figs. The figure is a schematic perspective view of how a strain gauge is attached to a strain-generating body, and Figures 9 and 10 are characteristic graphs of current change rate with respect to strain due to forward bias and reverse bias. 13... Strain body, 14... Strain generation part, 9.10.
...Signal line, 3...p-1-n junction, 1...strain gauge,
4.5.6...Hydrogenated amorphous silicon thin film, 4
...0 layer, 6...n layer, 5...1@, 7
... Electrode, 2... Conductive substrate Fig. 2 Fig. 4 1516゛ Fig. 6 Fig. 3 Fig. 5 Fig. 7 Prisoner ■ Clan

Claims (1)

【特許請求の範囲】[Claims] (1)荷重検出用起歪体の歪発生部に添設され信号線を
接続する電極を有しているアモルファス半導体ひずみゲ
ージ構造において、電極を有する導電性基板上に水素化
アモルファスシリコン薄膜のp層とn層とがi層を介し
て薄膜の三層に積層して形成されその最上層の薄膜上に
信号線を接続する電極が付設されていることを特徴とす
る荷重検出用ひずみゲージ構造。
(1) In an amorphous semiconductor strain gauge structure that has an electrode attached to the strain generating part of a strain-generating body for load detection and that connects a signal line, a hydrogenated amorphous silicon thin film is formed on a conductive substrate that has an electrode. A strain gauge structure for load detection, characterized in that a layer and an n layer are laminated into three thin film layers via an i layer, and an electrode for connecting a signal line is provided on the top layer of the thin film. .
JP63069282A 1988-03-25 1988-03-25 Strain gauge structure for load detection Expired - Fee Related JP2673138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069282A JP2673138B2 (en) 1988-03-25 1988-03-25 Strain gauge structure for load detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069282A JP2673138B2 (en) 1988-03-25 1988-03-25 Strain gauge structure for load detection

Publications (2)

Publication Number Publication Date
JPH01242901A true JPH01242901A (en) 1989-09-27
JP2673138B2 JP2673138B2 (en) 1997-11-05

Family

ID=13398115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069282A Expired - Fee Related JP2673138B2 (en) 1988-03-25 1988-03-25 Strain gauge structure for load detection

Country Status (1)

Country Link
JP (1) JP2673138B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282267A (en) * 2005-04-05 2006-10-19 Ishida Engineering:Kk Continuous small bag cutting device
CN111076641A (en) * 2019-12-25 2020-04-28 浙江水利水电学院 Detection method for external convex part of inducer blank body with high cavitation resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124878A (en) * 1983-12-08 1985-07-03 Sumitomo Electric Ind Ltd Strain sensor
JPS60195403A (en) * 1984-03-16 1985-10-03 Fuji Electric Corp Res & Dev Ltd Distortion distribution sensor
JPS60214204A (en) * 1984-04-10 1985-10-26 Sharp Corp Strain gage sensor
JPS6134402A (en) * 1984-07-26 1986-02-18 Sumitomo Electric Ind Ltd Strain sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124878A (en) * 1983-12-08 1985-07-03 Sumitomo Electric Ind Ltd Strain sensor
JPS60195403A (en) * 1984-03-16 1985-10-03 Fuji Electric Corp Res & Dev Ltd Distortion distribution sensor
JPS60214204A (en) * 1984-04-10 1985-10-26 Sharp Corp Strain gage sensor
JPS6134402A (en) * 1984-07-26 1986-02-18 Sumitomo Electric Ind Ltd Strain sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282267A (en) * 2005-04-05 2006-10-19 Ishida Engineering:Kk Continuous small bag cutting device
CN111076641A (en) * 2019-12-25 2020-04-28 浙江水利水电学院 Detection method for external convex part of inducer blank body with high cavitation resistance

Also Published As

Publication number Publication date
JP2673138B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US5477738A (en) Multi-function differential pressure sensor with thin stationary base
CN101738280B (en) Mems pressure sensor and manufacturing method thereof
JP2656566B2 (en) Semiconductor pressure transducer
US9835508B2 (en) Pressure sensor having strain gauges disposed on a diaphragm
US7082838B2 (en) Extraordinary piezoconductance in inhomogeneous semiconductors
KR100186938B1 (en) Semiconductor differential pressure measuring device
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
CN109883315A (en) A kind of two-sided resistance strain and strain measurement method
EP0579226A2 (en) Force transducer and pressure detecting circuit using the same
US4395915A (en) Pressure measuring apparatus
US20100199775A1 (en) Method for temperature compensation of a piezoresistive gaged metal diaphragm
CN117268600A (en) MEMS pressure sensor chip and preparation method thereof
US4422063A (en) Semiconductor strain gauge
JPH01242901A (en) Strain gauge structure for load detection
US4418326A (en) Measuring device using a strain gauge
JP2004045140A (en) Load converting metal diaphragm pressure sensor
JP2003083820A (en) Bearing pressure sensor
GB2090417A (en) Pressure measuring transducers
JPS63196081A (en) Semiconductor-type pressure detector
JP2803796B2 (en) Load sensor
JPH02168133A (en) Stress sensor for manufacture thereof
JP2611330B2 (en) Semiconductor pressure sensor
JPS6243529A (en) Semiconductive pressure converting element and fluid pressure detector
JP2024127310A (en) Strain Measurement System
CN118687731A (en) Metal film pressure core body and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees