JP2611330B2 - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JP2611330B2
JP2611330B2 JP63117690A JP11769088A JP2611330B2 JP 2611330 B2 JP2611330 B2 JP 2611330B2 JP 63117690 A JP63117690 A JP 63117690A JP 11769088 A JP11769088 A JP 11769088A JP 2611330 B2 JP2611330 B2 JP 2611330B2
Authority
JP
Japan
Prior art keywords
pressure
thin plate
semiconductor
sensitive thin
receiving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63117690A
Other languages
Japanese (ja)
Other versions
JPH01287437A (en
Inventor
之啓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP63117690A priority Critical patent/JP2611330B2/en
Publication of JPH01287437A publication Critical patent/JPH01287437A/en
Application granted granted Critical
Publication of JP2611330B2 publication Critical patent/JP2611330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高い圧力の検出が可能な半導体圧力センサに
関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor pressure sensor capable of detecting a high pressure.

[従来の技術] 半導体歪み素子を使用する圧力センサとして特公昭51
−49420号公報記載のものが知られている。この半導体
圧力センサは、半導体歪み素子が形成された感圧性隔膜
と、感圧性隔膜をその周縁部で支持する円筒状の支持体
とからなる。この半導体圧力センサは、感圧性隔膜の両
主面に作用する圧力の差により発生する感圧性隔膜のた
わみを、半導体歪み素子の抵抗変化として検出するもの
である。
[Prior art] Japanese Patent Publication No. 51 as a pressure sensor using a semiconductor strain element
One described in -49420 is known. This semiconductor pressure sensor comprises a pressure-sensitive diaphragm on which a semiconductor strain element is formed, and a cylindrical support for supporting the pressure-sensitive diaphragm at a peripheral portion thereof. This semiconductor pressure sensor detects a deflection of a pressure-sensitive diaphragm caused by a difference between pressures acting on both main surfaces of the pressure-sensitive diaphragm as a resistance change of a semiconductor strain element.

また、銅やニッケルなどの金属抵抗層を起歪板上に蒸
着などで形成した圧力センサもある。この圧力センサも
同じく、起歪板の両主面に作用する圧力の差により発生
する起歪板のたわみを、金属抵抗層の抵抗変化として検
出するものである。
There is also a pressure sensor in which a metal resistance layer such as copper or nickel is formed on a strain plate by vapor deposition or the like. This pressure sensor also detects the deflection of the strain-generating plate caused by the difference in pressure acting on both principal surfaces of the strain-generating plate as a change in resistance of the metal resistance layer.

[発明が解決しようとする課題] ところが前記した従来の圧力センサでは、感圧性隔膜
や支持体が差圧を受けるので、差圧が大きいと感圧性隔
膜や支持体がたわみにより損傷する可能性があった。ま
た、感圧性隔膜は感度増加のために薄く形成する必要が
あり、その破壊を防止するために、感圧性隔膜の両主面
の圧力差を大きくしないようにする必要があった。
[Problems to be Solved by the Invention] However, in the above-described conventional pressure sensor, since the pressure-sensitive diaphragm and the support receive a differential pressure, if the pressure difference is large, the pressure-sensitive diaphragm and the support may be damaged by bending. there were. Further, the pressure-sensitive diaphragm needs to be formed thin in order to increase the sensitivity, and in order to prevent its destruction, it is necessary not to increase the pressure difference between both main surfaces of the pressure-sensitive diaphragm.

前記した金属抵抗層を起歪板上に形成した圧力センサ
もまた、圧力差による起歪板のたわみを利用しているの
で、圧力差を大きくできないという問題があった。
The above-described pressure sensor in which the metal resistance layer is formed on the strain plate also utilizes the deflection of the strain plate due to the pressure difference, and thus has a problem that the pressure difference cannot be increased.

また前記した差圧検出型の半導体圧力センサでは、2
種類の被測定圧力の差を検出する場合には好都合である
が、ただ一種類の被測定圧力の絶対圧を検出する場合に
は、基準圧力のガスを密閉した基準圧力室を設ける必要
があり、特に被測定圧力が高い場合には構造が複雑とな
る問題があった。
In the differential pressure detection type semiconductor pressure sensor described above, 2
It is convenient when detecting the difference between the types of measured pressures, but when detecting the absolute pressure of only one type of measured pressure, it is necessary to provide a reference pressure chamber that seals the gas at the reference pressure. In particular, when the pressure to be measured is high, the structure becomes complicated.

本発明は前記問題点に鑑みなされたものであって、高
い圧力を測定できるようにした半導体圧力センサを提供
することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a semiconductor pressure sensor capable of measuring a high pressure.

[課題を解決するための手段] 本発明の半導体圧力センサは、多方向から圧縮変形を
受けるブロック状の受圧体と、この受圧体と圧縮弾性率
の異なる物質からなり、前記受圧体の一部表面に一体的
に形成され、多方向から圧縮変形を受けたときの前記受
圧体の圧縮変形量に応じた圧縮変形を受ける感圧薄板
と、この感圧薄板に形成された半導体歪み素子とを備え
ることを特徴とする。
[Means for Solving the Problems] A semiconductor pressure sensor according to the present invention is composed of a block-shaped pressure receiving body that undergoes compression deformation from multiple directions, and a material having a different compression elastic modulus from the pressure receiving body. A pressure-sensitive thin plate integrally formed on the surface and subjected to compression deformation according to the amount of compressive deformation of the pressure-receiving body when subjected to compressive deformation from multiple directions, and a semiconductor strain element formed on the pressure-sensitive thin plate. It is characterized by having.

[作用] 本発明の半導体圧力センサにおいて、受圧体および感
圧薄板は流体の被測定圧力を受けてそれぞれ圧縮変形す
る。そして感圧薄板はそれと接する受圧体の圧縮変形量
に応じた圧縮変形を受ける。半導体歪み素子は感圧薄板
の圧縮方向の変形に応じてその抵抗率を変化させ、電圧
の印加により被測定圧力を電気的に出力する。
[Operation] In the semiconductor pressure sensor according to the present invention, the pressure receiving body and the pressure-sensitive thin plate are each compressed and deformed by receiving the measured pressure of the fluid. Then, the pressure-sensitive thin plate undergoes compression deformation in accordance with the amount of compression deformation of the pressure receiving body in contact therewith. The semiconductor strain element changes its resistivity in accordance with the deformation of the pressure-sensitive thin plate in the compression direction, and electrically outputs a measured pressure by applying a voltage.

なお本発明の半導体圧力センサにおいて、前記したよ
うに、感圧薄板はそれ自身が受ける被測定圧力により圧
縮変形する。しかしながらこの場合でも感圧薄板は受圧
体の表面に一体的に形成されかつ受圧体よりも薄いの
で、感圧薄板の各部はそれぞれ接する受圧体の各部の圧
縮変形量に応じた圧縮変形を受ける。
In the semiconductor pressure sensor of the present invention, as described above, the pressure-sensitive thin plate is compressed and deformed by the measured pressure received by itself. However, even in this case, since the pressure-sensitive thin plate is integrally formed on the surface of the pressure-receiving body and is thinner than the pressure-receiving body, each part of the pressure-sensitive thin plate undergoes compression deformation in accordance with the amount of compressive deformation of each part of the pressure-receiving body that is in contact therewith.

特に、受圧体の圧縮弾性率を感圧薄板の圧縮弾性率よ
りも小さく設定した場合には、感圧薄板の圧縮変形量は
それ自身のみで受圧して圧縮変形する場合よりも大きく
なり、半導体歪み素子は高感度となる。
In particular, when the compression elastic modulus of the pressure receiving body is set to be smaller than the compression elastic modulus of the pressure-sensitive thin plate, the amount of compressive deformation of the pressure-sensitive thin plate becomes larger than when the pressure-sensitive thin plate receives pressure by itself and undergoes compressive deformation. The strain element has high sensitivity.

また、受圧体の圧縮弾性率と感圧薄板の圧縮弾性率と
を異なるように設定しかつ受圧体の周縁部及び中央部に
近接してそれぞれ半導体歪み素子を形成した場合には、
受圧体の周縁部に近接する半導体歪み素子は、受圧体の
中央部に近接する半導体歪み素子と比較して、異なる大
きさの圧縮応力を受ける。その結果、各半導体歪み素子
は異なる抵抗率となる。このため複数の半導体歪み素子
を用いてブリッジ回路を形成する場合には、好都合であ
る。なお、受圧体の圧縮応力に基因する圧縮歪は受圧体
を構成する材料の結晶方向によっても異なる。結晶方向
に基づく圧縮歪の差異を利用してブリッジ回路を構成す
る複数の素子を設けることもできる。
Further, when the compression elastic modulus of the pressure-receiving body and the compression elastic modulus of the pressure-sensitive thin plate are set to be different from each other and the semiconductor strain elements are formed in the vicinity of the peripheral portion and the central portion of the pressure-receiving body, respectively,
The semiconductor strain element near the periphery of the pressure receiving body receives a different amount of compressive stress as compared with the semiconductor strain element near the center of the pressure receiving body. As a result, each semiconductor strain element has a different resistivity. Therefore, it is convenient to form a bridge circuit using a plurality of semiconductor strain elements. Note that the compressive strain caused by the compressive stress of the pressure receiving body differs depending on the crystal direction of the material forming the pressure receiving body. A plurality of elements constituting a bridge circuit can be provided by utilizing a difference in compression strain based on a crystal direction.

[実施例] 実施例1 本発明の半導体圧力センサの一実施例断面図を第1図
に示し、その模式平面図を第2図、その出力特性を第3
図に示す。
Example 1 FIG. 1 is a sectional view of an example of a semiconductor pressure sensor according to the present invention, FIG. 2 is a schematic plan view thereof, and FIG.
Shown in the figure.

本実施例の半導体圧力センサは、円柱状の受圧体1
と、受圧体1の端面11に陽極接合された円板状の感圧薄
板2と、感圧薄板2の表面21に形成されブリッジ回路を
構成している4個の半導体歪み素子31、32、33、34(第
2図参照)とからなる。
The semiconductor pressure sensor of the present embodiment has a cylindrical pressure receiving member 1.
A disk-shaped pressure-sensitive thin plate 2 anodically bonded to the end face 11 of the pressure-receiving body 1, and four semiconductor strain elements 31, 32 formed on the surface 21 of the pressure-sensitive thin plate 2 and forming a bridge circuit. 33 and 34 (see FIG. 2).

受圧体1は、圧縮弾性率が6400kg/cm2であり、直径が
2mm、高さ(t)が2mmのパイレックス(商品名)製のガ
ラス円柱で構成されている。
The pressure receiving body 1 has a compression modulus of 6400 kg / cm 2 and a diameter of
It is composed of a Pyrex (trade name) glass cylinder having a height of 2 mm and a height (t) of 2 mm.

感圧薄板2は、直径が2mm、厚さが220μm、不純物濃
度が約1015原子/cm3、圧縮弾性率が13000kg/cm2である
N型単結晶シリコンであり、表面21は(110)面となっ
ている。
The pressure-sensitive thin plate 2 is an N-type single crystal silicon having a diameter of 2 mm, a thickness of 220 μm, an impurity concentration of about 10 15 atoms / cm 3 , and a compression modulus of 13000 kg / cm 2. Surface.

半導体歪み素子31〜34は、第2図に示すように、感圧
薄板2の表面21に形成されたP型拡散領域よりなる抵抗
線で構成され、約4μmの幅と約1μmの深さと約1019
原子/cm3の不純物濃度をもつ。これら半導体歪み素子31
〜34はそれぞれ約1kΩの抵抗値をもつ。半導体歪み素子
31は、第2図に示すように、その両端にP型コンタクト
領域41、42をもち、同様に半導体歪み素子32はP型コン
タクト領域43、44を、半導体歪み素子33はP型コンタク
ト領域45、46を、半導体歪み素子34はP型コンタクト領
域47、48をもつ。これらP型コンタクト領域41〜48はそ
れぞれ約1020原子/cm3の不純物濃度をもち、それぞれボ
ンディングワイヤ(図示せず)により、受圧体収納用の
開放容器(図示せず)の出力端子(図示せず)に電気的
に接続されている。
As shown in FIG. 2, each of the semiconductor strain elements 31 to 34 is formed of a resistance wire composed of a P-type diffusion region formed on the surface 21 of the pressure-sensitive thin plate 2 and has a width of about 4 μm, a depth of about 1 μm, and a depth of about 1 μm. 10 19
It has an impurity concentration of atoms / cm 3 . These semiconductor strain elements 31
To 34 each have a resistance of about 1 kΩ. Semiconductor strain element
As shown in FIG. 2, 31 has P-type contact regions 41 and 42 at both ends thereof. Similarly, the semiconductor strain element 32 has P-type contact regions 43 and 44, and the semiconductor strain element 33 has a P-type contact region 45. , 46, and the semiconductor strain element 34 has P-type contact regions 47, 48. Each of these P-type contact regions 41 to 48 has an impurity concentration of about 10 20 atoms / cm 3 , and is connected to an output terminal (not shown) of an open container (not shown) for accommodating a pressure receiving member by a bonding wire (not shown). (Not shown).

また、前記ボンディングワイヤの接続により、半導体
歪み素子33と半導体歪み素子34とを対向する辺とし半導
体歪み素子31と半導体歪み素子32とを対向する辺とする
ビリジ回路が構成されている。
By connecting the bonding wires, a billiard circuit is formed in which the semiconductor strain element 33 and the semiconductor strain element 34 are opposed to each other and the semiconductor strain element 31 and the semiconductor strain element 32 are opposed to each other.

また、感圧薄板2の表面21には2酸化シリコン膜の表
面保護膜(図示せず)が形成されている。
A surface protection film (not shown) of a silicon dioxide film is formed on the surface 21 of the pressure-sensitive thin plate 2.

この半導体圧力センサを圧力流体中に配置して出力特
性を調べた。但し、前記ブリッジ回路には、3.7mAの定
電流を供給した。その結果、この半導体圧力センサは第
3図に示すように、1000kgf/cm2の印加圧力で約9mVの出
力電圧を発生した。
This semiconductor pressure sensor was arranged in a pressure fluid, and the output characteristics were examined. However, a constant current of 3.7 mA was supplied to the bridge circuit. As a result, this semiconductor pressure sensor generated an output voltage of about 9 mV at an applied pressure of 1000 kgf / cm 2 , as shown in FIG.

以下、この半導体圧力センサの作動説明を補足する。 Hereinafter, the operation description of the semiconductor pressure sensor will be supplemented.

この半導体圧力センサを圧力Pの流体中に配置する
と、受圧体1に陽極接合される感圧薄板2の表面22はよ
り小さな圧縮弾性率をもつ受圧体1の縮みの影響によ
り、追加の圧縮力を受け、感圧薄板2の他の表面21より
も余計に縮む。その結果、感圧薄板2の表面21の周縁部
にかかる表面21と平行なX方向の圧縮力は圧力Pよりも
小さくなり、感圧薄板2の表面21の中央部21bにかかる
X方向の圧縮力は圧力Pよりも大きくなる。
When this semiconductor pressure sensor is placed in a fluid at a pressure P, the surface 22 of the pressure-sensitive thin plate 2 that is anodically bonded to the pressure receiver 1 has an additional compressive force due to the shrinkage of the pressure receiver 1 having a smaller compression modulus. As a result, the pressure-sensitive thin plate 2 shrinks more than the other surface 21. As a result, the compressive force in the X direction parallel to the surface 21 of the surface 21 of the pressure-sensitive thin plate 2 becomes smaller than the pressure P, and the compressive force in the X direction applied to the central portion 21b of the surface 21 of the pressure-sensitive thin plate 2 The force is greater than the pressure P.

被測定流体の圧力が1000kgf/cm2であるときに、感圧
薄板2の表面21の各部に発生するX方向の圧縮応力の分
布を第4図に示す。この圧縮応力分布は有限要素(FE
M)法により計算したものであり、感圧薄板2の中心か
らX方向への距離を横軸に、発生するX方向の圧縮応力
を縦軸に示す。
FIG. 4 shows the distribution of the compressive stress in the X direction generated at each part of the surface 21 of the pressure-sensitive thin plate 2 when the pressure of the fluid to be measured is 1000 kgf / cm 2 . This compressive stress distribution is a finite element (FE
The distance from the center of the pressure-sensitive thin plate 2 in the X direction is shown on the horizontal axis, and the generated compressive stress in the X direction is shown on the vertical axis.

感圧薄板2の表面21の中央部21bでは、第4図に示す
ように、被測定圧力(1000kgf/cm2)よりも大きな約120
0kgf/cm2の圧縮応力発生し、感圧薄板2の表面21の周縁
部21aでは被測定圧力(1000kgf/cm2)よりも小さな約80
0kgf/cm2の圧縮応力が発生している。
At the center 21b of the surface 21 of the pressure-sensitive thin plate 2, as shown in FIG. 4, a pressure of approximately 120 kgf / cm 2 which is larger than the pressure to be measured (1000 kgf / cm 2 ).
A compressive stress of 0 kgf / cm 2 is generated, and about 80% smaller than the measured pressure (1000 kgf / cm 2 ) at the peripheral portion 21 a of the surface 21 of the pressure-sensitive thin plate 2.
A compressive stress of 0 kgf / cm 2 is generated.

以上説明したように本実施例の半導体圧力センサは、
受圧体1及び感圧薄板2に結果的に圧縮力だけが加えら
れ、引っ張り力が加えられないので、たとえ被測定圧力
が高くても破壊されにくい利点をもつ。
As described above, the semiconductor pressure sensor of the present embodiment is
As a result, only a compressive force is applied to the pressure-receiving body 1 and the pressure-sensitive thin plate 2, and no tensile force is applied.

また、受圧体1が感圧薄板2より小さいヤング率をも
つので、感圧薄板2の中央部21bに形成された半導体歪
み素子31、32に、被測定圧力よりも大きな圧縮力を加え
ることができる。
Further, since the pressure receiving body 1 has a Young's modulus smaller than that of the pressure-sensitive thin plate 2, it is possible to apply a compressive force larger than the measured pressure to the semiconductor strain elements 31, 32 formed in the central portion 21b of the pressure-sensitive thin plate 2. it can.

また、受圧体1の縮みにより感圧薄板2の外端部21c
が受圧体1の方向に反る影響により、感圧薄板2の表面
21の周縁部21aに形成された半導体歪み素子33、34に、
被測定圧力よりも小さな圧縮力を加えることができる。
Also, the outer end 21c of the pressure-sensitive thin plate 2 is
Of the pressure-sensitive thin plate 2
In the semiconductor strain elements 33 and 34 formed on the peripheral portion 21a of 21,
A compressive force smaller than the measured pressure can be applied.

また、本実施例の半導体圧力センサは、感圧薄板2の
周縁部21aと中央部21bとの圧縮応力の差をブリッジ回路
により検出しているので、温度度補償や抵抗値のばらつ
き補償が可能となり高感度化を図ることができる。
Further, in the semiconductor pressure sensor of the present embodiment, since the difference in the compressive stress between the peripheral portion 21a and the central portion 21b of the pressure-sensitive thin plate 2 is detected by the bridge circuit, it is possible to compensate for the temperature degree and the variation in the resistance value. And high sensitivity can be achieved.

なお本実施例において、受圧体1及び感圧薄板2の形
状は各種変更可能である。感圧薄板2、2aとして、単結
晶シリコンの代わりに多結晶シリコンなどを使用するこ
とができる。受圧体1として、パイレックス(商品名)
以外の材料を使用することができる。
In this embodiment, the shapes of the pressure receiving body 1 and the pressure-sensitive thin plate 2 can be variously changed. As the pressure-sensitive thin plates 2 and 2a, polycrystalline silicon or the like can be used instead of monocrystalline silicon. Pyrex (trade name) as pressure receiver 1
Other materials can be used.

実施例2 本発明の他の実施例の半導体圧力センサを第5図の模
式平面図に示す。
Embodiment 2 A semiconductor pressure sensor according to another embodiment of the present invention is shown in the schematic plan view of FIG.

この半導体圧力センサは、直径が2mm、高さが2mmのパ
イレックス(商品名)製のガラス円柱で構成された受圧
体(図示せず)と、受圧体に陽極接合された感圧薄板2
とからなり、感圧薄板2がその中央部にただ1個の半導
体歪み素子3を形成されている他は実施例1のセンサと
同じである。
This semiconductor pressure sensor is composed of a pressure receiver (not shown) composed of a glass cylinder made of Pyrex (trade name) having a diameter of 2 mm and a height of 2 mm, and a pressure-sensitive thin plate 2 anodically bonded to the pressure receiver.
This is the same as the sensor of the first embodiment except that the pressure-sensitive thin plate 2 has only one semiconductor strain element 3 at the center.

この半導体歪み素子3の両端部にはP型コンタクト領
域4、4が形成されている。
P-type contact regions 4 are formed at both ends of the semiconductor strain element 3.

この半導体歪み素子3の圧力−抵抗特性を第6図に示
す。半導体歪み素子3は、被測定圧力が0(即ち、大気
圧)である場合に約920Ωの抵抗値をもち、被測定圧力
が1000kgf/cm2である場合に約820Ωの抵抗値をもつ。
FIG. 6 shows the pressure-resistance characteristics of the semiconductor strain element 3. The semiconductor strain element 3 has a resistance of about 920Ω when the measured pressure is 0 (that is, atmospheric pressure), and has a resistance of about 820Ω when the measured pressure is 1000 kgf / cm 2 .

[発明の効果] 以上説明したように本発明の半導体圧力センサは、圧
縮変形を受けるブロック状の受圧体と受圧体の表面に一
体的に形成され半導体歪み素子をもつ感圧薄板とから構
成されているので、以下の効果を奏することができる。
[Effects of the Invention] As described above, the semiconductor pressure sensor of the present invention is composed of a block-shaped pressure receiving body that undergoes compressive deformation and a pressure-sensitive thin plate integrally formed on the surface of the pressure receiving body and having a semiconductor strain element. Therefore, the following effects can be obtained.

(a)被測定圧力が高圧であっても、受圧体及び感圧薄
板は結果的に圧縮力だけを受けるので、たとえば500kgf
/cm2以上といった高圧測定に使用しても損傷の恐れが少
ない。
(A) Even if the pressure to be measured is high, the pressure receiving body and the pressure-sensitive thin plate are consequently subjected to only a compressive force.
Even when used for high pressure measurement such as / cm 2 or more, there is little risk of damage.

(b)一種類の被測定圧力の絶対圧を検出する場合に、
基準圧力室を設ける必要がなく、構造が簡単である。
(B) When detecting the absolute pressure of one type of measured pressure,
There is no need to provide a reference pressure chamber, and the structure is simple.

(c)従来の半導体圧力センサに比べてダイヤフラム部
の形成を省略できるので、製造工程を簡単にできる。
(C) Since the formation of the diaphragm portion can be omitted as compared with the conventional semiconductor pressure sensor, the manufacturing process can be simplified.

(d)受圧体のヤング率を感圧薄板のヤング率よりも小
さく設定した場合には、感圧薄板の圧縮変形量はそれ自
身のみで受圧して圧縮変形する場合よりも大きくなり、
半導体歪み素子の感度を高くすることができる。
(D) When the Young's modulus of the pressure-receiving body is set smaller than the Young's modulus of the pressure-sensitive thin plate, the amount of compressive deformation of the pressure-sensitive thin plate becomes larger than the case where the pressure-sensitive thin plate receives pressure alone and undergoes compressive deformation,
The sensitivity of the semiconductor strain element can be increased.

(e)受圧体のヤング率と感圧薄板のヤング率とを異な
るように設定しかつ受圧体の周縁部及び中央部に近接し
てそれぞれ半導体歪み素子を形成した場合には、受圧体
の周縁部に近接する半導体歪み素子は受圧体の中央部に
近接する半導体歪み素子と異なる大きさの圧縮力を受け
て異なる抵抗率となるので、ブリッジ回路を構成するこ
とができ、その結果として、温度変化による出力電圧変
化を低減し、かつ製造工程及びウェハーに起因する各半
導体圧力センサ間の特性のばらつきを低減し、高い出力
感度を得ることができる。
(E) When the Young's modulus of the pressure receiving member and the Young's modulus of the pressure-sensitive thin plate are set to be different from each other, and the semiconductor strain element is formed near the peripheral portion and the central portion of the pressure receiving member, the peripheral portion of the pressure receiving member is formed. The semiconductor strain element near the portion receives a different amount of compressive force than the semiconductor strain element near the center of the pressure-receiving body and has a different resistivity, so that a bridge circuit can be formed. A change in output voltage due to the change is reduced, and a variation in characteristics between semiconductor pressure sensors due to a manufacturing process and a wafer is reduced, so that high output sensitivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半導体圧力センサの一実施例を示す断
面図、第2図は第1図の半導体圧力センサの模式平面
図、第3図はこの半導体圧力センサの出力特性図、第4
図は感圧薄板2の圧縮応力のX方向の分布を表す圧力分
布図である。第5図は本発明の半導体圧力センサの他の
実施例を示す模式平面図である。第6図は第5図の半導
体歪み素子の圧力−抵抗特性図である。 1……受圧体 2……感圧薄板 31〜34……半導体歪み素子
FIG. 1 is a sectional view showing an embodiment of the semiconductor pressure sensor of the present invention, FIG. 2 is a schematic plan view of the semiconductor pressure sensor of FIG. 1, FIG.
The figure is a pressure distribution diagram showing the distribution of the compressive stress of the pressure-sensitive thin plate 2 in the X direction. FIG. 5 is a schematic plan view showing another embodiment of the semiconductor pressure sensor of the present invention. FIG. 6 is a pressure-resistance characteristic diagram of the semiconductor strain element of FIG. 1 ... pressure receiver 2 ... pressure-sensitive thin plate 31-34 ... semiconductor strain element

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多方向から圧縮変形を受けるブロック状の
受圧体と、この受圧体と圧縮弾性率の異なる物質からな
り、前記受圧体の一部表面に一体的に形成され、多方向
から圧縮変形を受けたときの前記受圧体の圧縮変形量に
応じた圧縮変形を受ける感圧薄板と、この感圧薄板に形
成された半導体歪み素子とを備えることを特徴とする半
導体圧力センサ。
1. A pressure-receiving block having a compression modulus different from that of a pressure-receiving block which is subjected to compressive deformation from multiple directions. The pressure-receiving member is integrally formed on a partial surface of the pressure-receiving body and compressed from multiple directions. A semiconductor pressure sensor, comprising: a pressure-sensitive thin plate that undergoes compression deformation in accordance with an amount of compressive deformation of the pressure-receiving body when deformed; and a semiconductor strain element formed on the pressure-sensitive thin plate.
JP63117690A 1988-05-13 1988-05-13 Semiconductor pressure sensor Expired - Lifetime JP2611330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63117690A JP2611330B2 (en) 1988-05-13 1988-05-13 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63117690A JP2611330B2 (en) 1988-05-13 1988-05-13 Semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPH01287437A JPH01287437A (en) 1989-11-20
JP2611330B2 true JP2611330B2 (en) 1997-05-21

Family

ID=14717884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63117690A Expired - Lifetime JP2611330B2 (en) 1988-05-13 1988-05-13 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP2611330B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496942A (en) * 1972-05-08 1974-01-22
JPS5149420A (en) * 1974-10-25 1976-04-28 Hitachi Ltd Sairisutamootano seigyosochi
JPS6312178A (en) * 1986-07-03 1988-01-19 Nippon Soken Inc Pressure detector

Also Published As

Publication number Publication date
JPH01287437A (en) 1989-11-20

Similar Documents

Publication Publication Date Title
US5081867A (en) Semiconductor sensor
US6988412B1 (en) Piezoresistive strain concentrator
US4016644A (en) Methods of fabricating low pressure silicon transducers
US3697918A (en) Silicon diaphragm pressure sensor having improved configuration of integral strain gage elements
US4141253A (en) Force transducing cantilever beam and pressure transducer incorporating it
JP2750303B2 (en) Differential pressure sensor, membrane member and method of manufacturing these
US5483834A (en) Suspended diaphragm pressure sensor
US6704186B2 (en) Capacity type pressure sensor and method of manufacturing the pressure sensor
US3697917A (en) Semiconductor strain gage pressure transducer
US7444879B2 (en) Displacement transducer
US3270554A (en) Diffused layer transducers
US4527428A (en) Semiconductor pressure transducer
JPH0425735A (en) Semicondcutor diaphragm for measuring pressure and differential pressure
US4025942A (en) Low pressure transducers employing large silicon diaphragms having non-critical electrical properties
US3482197A (en) Pressure sensitive device incorporating semiconductor transducer
EP0080186B1 (en) Semiconductor pressure transducer
JP2611330B2 (en) Semiconductor pressure sensor
US4106349A (en) Transducer structures for high pressure application
JPS63196081A (en) Semiconductor-type pressure detector
JPS5983023A (en) Semiconductor pressure difference detector
JP2624311B2 (en) Semiconductor sensor
JPH0875581A (en) Semiconductor pressure converter
JP3120388B2 (en) Semiconductor pressure transducer
JPH0610641B2 (en) Pressure sensor for high temperature fluid
JPS62150131A (en) Pressure detector