WO2007052617A1 - 潤滑油組成物および燃料油組成物 - Google Patents

潤滑油組成物および燃料油組成物 Download PDF

Info

Publication number
WO2007052617A1
WO2007052617A1 PCT/JP2006/321680 JP2006321680W WO2007052617A1 WO 2007052617 A1 WO2007052617 A1 WO 2007052617A1 JP 2006321680 W JP2006321680 W JP 2006321680W WO 2007052617 A1 WO2007052617 A1 WO 2007052617A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber structure
carbon
oil composition
fuel oil
Prior art date
Application number
PCT/JP2006/321680
Other languages
English (en)
French (fr)
Inventor
Koichi Handa
Subiantoro
Takayuki Tsukada
Tsuyoshi Okubo
Jiayi Shan
Akira Yamauchi
Manabu Nagashima
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Publication of WO2007052617A1 publication Critical patent/WO2007052617A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1208Inorganic compounds elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1276Aromatics, e.g. toluene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/063Fibrous forms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/28Anti-static
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to a novel lubricating oil composition and fuel oil, and more specifically, the present invention improves the lubricating oil composition having excellent slidability and a reduced friction coefficient, and combustion efficiency.
  • the present invention relates to a fuel oil composition.
  • lubricating oil is used for driving system equipment such as an internal combustion engine, an automatic transmission, a shock absorber, and a power steering, a gear, and the like for smooth operation of the sliding portion.
  • organic friction compounds containing sulfur such as molybdenum dithiocarbamate and molybdenum dithiophosphate have been preferably used as friction reducers to be blended in lubricating oils because of their excellent friction reducing effect.
  • a general method is to use a sulfur-containing compound such as zinc dithiophosphate together in a large amount to form a molybdenum disulfide film on the sliding surface. Has been done.
  • Patent Document 1 discloses that carbon nanotubes are used as fuel and lubricant oils for the purpose of improving the combustion speed of fuel and lubricant, preventing static charge and improving Z or viscosity, respectively. It has been proposed to add 0% and 0.01-20.0% by weight.
  • Patent Document 1 US Patent No. 6828282 (B2)
  • an object of the present invention is to provide a novel lubricating oil composition that exhibits excellent slidability stably for a long period of time and has a reduced coefficient of friction.
  • Another object of the present invention is to provide a fuel oil composition having improved combustion efficiency and improved electrostatic stability.
  • the present inventors can uniformly and stably finely disperse in the lubricating oil and the fuel oil when added to the lubricating oil and the fuel oil.
  • carbon fiber has as fine a diameter as possible and has as few defects as possible.
  • carbon fibers are tightly bonded to each other without being separated and a sparse structure is blended with lubricating oil or fuel oil, these are highly dispersible and stable. It has been found that the oil can be retained and that various properties of the lubricating oil or fuel oil can be effectively improved, and the present invention has been achieved.
  • the present invention for solving the above-mentioned problems is a three-dimensional network-like carbon fiber structure in which a lubricating base oil also has a carbon fiber force with an outer diameter of 15 to LOONm, and the carbon fiber In the fiber structure, a plurality of the carbon fibers extend, and the carbon fibers are bonded to each other.
  • the granular part contains a carbon fiber structure formed in the process of growing the carbon fiber at a ratio of 0.1 to 5% by mass of the whole. It is a lubricating oil composition characterized by being formed.
  • the present invention also provides that the carbon fiber structure is measured by Raman spectroscopy.
  • 0.2 represents a lubricating oil composition characterized by being 2 or less.
  • the present invention further shows a lubricating oil composition in which the carbon fiber structure is produced using at least two or more carbon compounds having different decomposition temperatures as a carbon source. .
  • the present invention for solving the above problem is also a three-dimensional network-like carbon fiber structure composed of carbon oil having an outer diameter of 15 to LOONm in the fuel oil, wherein the carbon fiber structure includes: A carbon fiber that has a granular part that binds the carbon fibers to each other in a form in which a plurality of the carbon fibers extend, and the granular part is formed during the growth process of the carbon fiber.
  • a fuel oil composition comprising a structure in a proportion of 0.01 to 1% by mass of the whole.
  • the carbon fiber structure is measured by Raman spectroscopy.
  • 0.2 represents a fuel oil composition characterized by being 2 or less.
  • the present invention further shows a fuel oil composition in which the carbon fiber structure is produced using at least two carbon compounds having different decomposition temperatures as a carbon source. .
  • the carbon fiber structure is made of carbon fibers having fine diameters arranged in a three-dimensional network as described above, and each of the carbon fiber structures is solidified by the granular portions formed in the carbon fiber growth process.
  • the carbon fiber structure In the lubricating oil or fuel oil, the carbon fiber structure has a high dispersibility while leaving a sparse structure. Can be dispersed and blended in lubricating oil or fuel oil.
  • the carbon fiber structure as a carbonaceous material exhibits structurally moderate elasticity as well as material slidability, when the lubricating oil composition is supplied to the sliding part, it exhibits a good friction reducing effect. And because it is carbon fiber, it is thermally stable.
  • the anti-knocking action can be exerted by the free radical scavenging ability of the carbon fiber structure, the octane number can be improved, and the cetane number of the diesel fuel can be improved, thereby improving the combustion efficiency and the cleanliness of combustion. Can be increased.
  • a carbon fiber structure as a conductor it is possible to increase the stability of fuel and lubricating oil against static electricity, as well as other characteristics such as metal and metal ion sequestration, thermal stability, etc. Improvements can be achieved.
  • FIG. 1 is a SEM photograph of an intermediate of a carbon fiber structure used in the lubricating oil or fuel oil composition of the present invention.
  • FIG. 2 is a TEM photograph of an intermediate of a carbon fiber structure used in the lubricating oil or fuel oil composition of the present invention.
  • FIG. 3 is an SEM photograph of a carbon fiber structure used in the lubricating oil or fuel oil composition of the present invention.
  • FIG. 4B is a TEM photograph of the carbon fiber structure used in the lubricating oil or fuel oil composition of the present invention.
  • FIG. 5 is an SEM photograph of a carbon fiber structure used in the lubricating oil or fuel oil composition of the present invention.
  • FIG. 6 is an X-ray diffraction chart of a carbon fiber structure used in the lubricating oil or fuel oil composition of the present invention and an intermediate of the carbon fiber structure.
  • FIG. 7 is a Raman spectroscopic analysis chart of a carbon fiber structure used in the lubricating oil or fuel oil composition of the present invention and an intermediate of the carbon fiber structure.
  • FIG. 8 is a drawing showing a schematic configuration of a production furnace used for producing a carbon fiber structure in an example of the present invention.
  • the lubricating oil composition and the fuel oil composition of the present invention comprise a three-dimensional network-like carbon fiber structure having a predetermined structure as described later, in an amount of 0.01 to 5% by mass, or 0.01 to It is characterized by containing at a ratio of 1% by mass.
  • the carbon fiber structure used in the present invention also has a carbon fiber force having an outer diameter of 15 to 100 nm as shown in the SEM photograph shown in FIG. 3 or the TEM pictures shown in FIGS. 4A and 4B.
  • the carbon fiber constituting the carbon fiber structure has an outer diameter in the range of 15 to: LOOnm.
  • the outer diameter is less than 15 nm, the carbon fiber has a polygonal cross section as described later.
  • the smaller the diameter of the carbon fiber the greater the number per unit amount, and the longer the length of the carbon fiber in the axial direction and the higher the electrical conductivity, so that the outer diameter exceeding lOOnm can be obtained.
  • the outer diameter of the carbon fiber is particularly desirable because it is in the range of 20 to 70 nm. This outer diameter range is a cylindrical group.
  • a laminated sheet of rough sheets in a direction perpendicular to the axis that is, a multilayered sheet, is given elasticity that is difficult to bend, that is, a property of returning to its original shape even after deformation, so that the carbon fiber structure is temporarily compressed. After that, it becomes easy to adopt a sparse structure after being distributed to the lubricating oil and fuel oil.
  • the fine carbon fiber has an outer diameter that changes along the axial direction. If the outer diameter of the carbon fiber is constant and changes along the axial direction in this way, it is considered that a kind of anchor effect is produced in the carbon fiber in a matrix such as greaves. As a result, the dispersion stability increases.
  • fine carbon fibers having such a predetermined outer diameter exist in a three-dimensional network, and these carbon fibers are grown on the carbon fibers.
  • the granular portions formed in this manner are bonded to each other, and a plurality of the carbon fibers extend from the granular portions.
  • the fine carbon fibers are simply entangled with each other, and are firmly bonded to each other in the granular part, which is not what is to be provided. Therefore, the fine carbon fibers are arranged in the lubricating oil and the fuel oil.
  • the structure can be dispersed in the lubricating oil and the fuel oil without being dispersed as a carbon fiber alone.
  • the granular part is formed in the growth process of the carbon fiber as described above, the carbon-carbon bond in the granular part is sufficiently developed, and it is not clear exactly. Appears to contain a mixed state of sp 2 and sp 3 bonds. After generation (intermediate and first intermediate described later), the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces having carbon atomic force are bonded together, and thereafter After the high-temperature heat treatment, the granular parts are formed as shown in Figs.4A and 4B. At least a part of the graphene layer is continuous with the graphene layer constituting the fine carbon fiber extending from the granular portion.
  • the graphene layer constituting the granular portion as described above is continuous with the graphene layer constituting the fine carbon fiber. Symbolized by the carbon crystal structure bond (at least a part of the bond is formed, thereby forming a strong bond between the granular portion and the fine carbon fiber. It is what.
  • the term “extending” the carbon fiber from the granular part means that the granular part and the carbon fiber are merely apparently formed by another binder (including a carbonaceous material). It is not meant to indicate a connected state, but mainly means a state of being connected by a carbon crystal structural bond as described above!
  • the granular part is formed in the carbon fiber growth process.
  • at least one catalyst particle, or the catalyst particle is subjected to a subsequent heat treatment in the granular part.
  • These pores (or catalyst particles) are essentially independent of the hollow portion formed inside each fine carbon fiber extending from the granular portion (note that only a small part is incidental) Some of them are connected to the hollow part;).
  • the number of catalyst particles or pores is not particularly limited, but there are about 1 to about LOOO, more preferably about 3 to 500 per granular part. By forming the granular portion in the presence of such a number of catalyst particles, it is possible to obtain a granular portion having a desired size as described later.
  • each catalyst particle or hole existing in the granular part is, for example, 1 to: LOOnm, more preferably 2 to 40 nm, and further preferably 3 to 15 nm. .
  • the particle diameter of the granular portion is larger than the outer diameter of the fine carbon fiber as shown in FIG.
  • the outer diameter of the fine carbon fiber is 1.3 to 250 times, more preferably 1.5 to: LOO times, and further preferably 2.0 to 25 times.
  • the said value is an average value. In this way, if the particle size of the granular part, which is the bonding point between the carbon fibers, is sufficiently large such that the outer diameter of the fine carbon fiber is 1.3 times or more, it is higher than the carbon fiber extending from the granular part.
  • a binding force is provided, Even when a certain amount of elasticity is applied when the carbon fiber structure is arranged in the fuel oil, it can be dispersed in the lubricating oil and fuel oil while maintaining the three-dimensional network structure.
  • the size of the granular part is extremely large exceeding 250 times the outer diameter of the fine carbon fiber, the fibrous properties of the carbon fiber structure may be impaired. It is not desirable because it may not be suitable as an additive or compounding agent in fuel oil.
  • the “particle size of the granular part” in the present specification is a value measured by regarding the granular part, which is a bonding point between carbon fibers, as one particle.
  • the specific particle size of the granular portion is a force that depends on the size of the carbon fiber structure and the outer diameter of the fine carbon fibers in the carbon fiber structure.
  • the average value is 20 to 5000 nm. It is preferably 25 to 2000 nm, more preferably about 30 to 500 nm.
  • the granular portion is formed in the carbon fiber growth process as described above, it has a relatively spherical shape, and its circularity is 0.2 on average.
  • the granular portion is formed in the growth process of the carbon fiber as described above.
  • the carbonaceous material is formed after the carbon fiber is synthesized at the junction between the fine carbon fibers.
  • the bonding between the carbon fibers in the granular portion is very strong compared to a structure or the like attached by the carbide, and the carbon fiber breaks in the carbon fiber structure. Even below, this granular part (joint part) is kept stable.
  • the carbon fiber structure is dispersed in a liquid medium, and an ultrasonic wave with a predetermined output and a predetermined frequency is applied to the carbon fiber structure, so that the average length of the carbon fibers is almost halved. Even under such a load condition, the change rate of the average particle diameter of the granular part is less than 10%, more preferably less than 5%, and the granular part, that is, the bonded part of the fibers is stably held. It is what.
  • the carbon fiber structure used in the present invention desirably has an area-based circle-equivalent mean diameter of 50-100 ⁇ m, more preferably about 60-90 ⁇ m.
  • the area-based circle-equivalent mean diameter means that the outer shape of the carbon fiber structure is photographed using an electron microscope or the like, and the contour of each carbon fiber structure is represented by appropriate image analysis software in this photographed image. For example, using WinRoof (trade name, manufactured by Mitani Shoji Co., Ltd.) The area is obtained, the equivalent circle diameter of each fiber structure is calculated, and this is averaged.
  • the carbon fiber structure according to the present invention includes a carbon fiber structure according to the present invention in which carbon fibers existing in a three-dimensional network are bonded to each other in a granular portion, Participation force
  • the carbon fiber has a plurality of extending shapes.
  • a single carbon fiber structure has a plurality of granular parts that combine the carbon fibers to form a three-dimensional network.
  • the average distance between adjacent granular portions is, for example, 0.5 / ⁇ ⁇ to 300 m, more preferably 0.5 to LOO m, and more preferably about 1 to 50 m.
  • the distance between the adjacent granular parts is a distance measured from the central part of one granular body to the central part of the granular part adjacent thereto. If the average distance between the granular materials is less than 0., the carbon fiber does not fully develop into a three-dimensional network, so it is good when dispersed and blended in, for example, lubricating oil and fuel oil. On the other hand, if the average distance exceeds 300 m, it becomes a factor to increase the viscosity when dispersed in lubricating oil and fuel oil. This is because the dispersibility of the carbon fiber structure in the lubricating oil and fuel oil may be reduced.
  • the carbon fibers existing in a three-dimensional network are bonded to each other in the granular part, and the carbon part is described above.
  • the carbon fiber has a shape in which a plurality of carbon fibers are extended, and thus the structure has a bulky structure in which carbon fibers are sparsely present.
  • the bulk density is 0.0001 to 0.001. It is desirable that it is 05 g / cm 3 , more preferably 0.001-0.02 g / cm 3 . This is because if the bulk density exceeds 0.05 gZcm 3 , it becomes difficult to improve the physical properties of the lubricating oil composition and the fuel oil composition by adding a small amount.
  • the carbon fibers existing in a three-dimensional network form are bonded to each other in the granular portion formed in the growth process. Therefore, as described above, the electrical characteristics of the structure itself are very excellent.
  • the powder resistance value force measured at a constant compression density of 0.8 g / cm 3 is 0.02 ⁇ 'cm or less. More desirably, it is preferably 0.001-0.010 ⁇ 'cm.
  • the carbon fiber structure used in the present invention has high strength and electrical conductivity, and that there are few defects in the graph sheet constituting the carbon fiber. For example, measured by Raman spectroscopy I
  • the D ⁇ G ratio is 0.2 or less, more preferably 0.1 or less.
  • G band a peak around 1580 cm _1 appears in large single crystal graphite.
  • D band a peak around 1580 cm _1 appears in large single crystal graphite.
  • the carbon fiber structure according to the present invention preferably has a combustion start temperature in air of 750 ° C or higher, more preferably 800 to 900 ° C. As described above, since the carbon fiber structure has few defects and the carbon fiber has an intended outer diameter, the carbon fiber structure has such a high thermal stability.
  • the carbon fiber structure having the desired shape as described above is not particularly limited, and can be prepared, for example, as follows.
  • an organic compound such as a hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), which is further heat-treated.
  • the starting organic compound hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used.
  • hydrocarbons such as benzene, toluene and xylene
  • alcohols such as carbon monoxide (CO) and ethanol
  • CO carbon monoxide
  • the “at least two or more carbon compounds” described in this specification are not necessarily organic organic compounds.
  • the decomposition temperature of each carbon compound is not limited to the type of carbon compound. Therefore, by adjusting the composition ratio of two or more carbon compounds in the raw material gas, a relatively large number of combinations are used as the carbon compounds. be able to.
  • alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, Alkenes or cycloolefins such as propylene, butylenes, pentenes, heptenes, cyclopentene, etc., especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; benzene, tolylene Aromatic or heteroaromatic hydrocarbons such as styrene, xylene, naphthalene, methenolenaphthalene, indene and phenanthrene, especially aromatic or heteroaromatic hydrocarbons having about 6 to 18 carbon
  • the molar ratio of methane / benzene is> 1 to 600, more preferably 1.1 to 200, More preferably, it is 3 to: L00.
  • This value is the gas composition ratio at the inlet of the reactor.
  • toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor and methane and benzene are 1 : 1 in raw In consideration of stagnation, a short supply of methane may be supplied separately.
  • methane to be added to toluene is not limited to the method of preparing fresh methane separately, but unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.
  • composition ratio within such a range, it is possible to obtain a carbon fiber structure having a structure in which both the carbon fiber portion and the granular portion are sufficiently developed.
  • an inert gas such as argon, helium, xenon, or hydrogen can be used.
  • transition metals such as iron, cobalt and molybdenum, transition metal compounds such as phencene and metal acetate, and sulfur or compounds such as thiophene and iron sulfide is used.
  • the synthesis of the intermediate is performed by using a commonly used CVD method for hydrocarbons, etc., by evaporating the mixture of hydrocarbon and catalyst as raw materials, and introducing hydrogen gas or the like into the reactor as a carrier gas. And pyrolyze at a temperature of 800-1300 ° C.
  • a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure in which the fibers having an outer diameter of 15 to: LOOnm are joined together by granular materials grown using the catalyst particles as nuclei. Synthesize an aggregate from cm to several tens of centimeters.
  • the thermal decomposition reaction of the hydrocarbon as a raw material is mainly produced on the surface of granular particles that are grown using the catalyst particles as a nucleus, and the recrystallization of carbon generated by the decomposition is caused by the catalyst particles or granular materials. By proceeding in a certain direction, it grows in a fibrous form.
  • the tolerance between the thermal decomposition rate and the growth rate is intentionally changed, for example, as described above, the decomposition temperature as a carbon source.
  • the carbon material is grown three-dimensionally around the granular material that does not grow the carbon material only in one-dimensional direction.
  • the growth of such three-dimensional carbon fibers is not dependent only on the balance between the pyrolysis rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, It is also affected by the temperature distribution, etc.
  • the growth rate is faster than the thermal decomposition rate as described above, carbon is not only affected by the type of carbon source as described above but also the reaction temperature and gas temperature.
  • the material grows in the form of fibers.
  • the pyrolysis rate is faster than the growth rate, the carbon material grows in the circumferential direction of the catalyst particles.
  • the growth direction of the carbon material as described above is made to be a multi-direction under control without making the growth direction constant.
  • Such a three-dimensional structure can be formed.
  • the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas It is desirable to optimize the temperature and the like.
  • a reactor other than the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimal mixing ratio is used.
  • One approach is to generate turbulent flow in the vicinity of the supply port of the source gas supplied to the tank.
  • the turbulent flow here is a turbulent flow that is a vortex and a flow that rushes.
  • metal catalyst fine particles are formed by decomposition of the transition metal compound as a catalyst in the raw material mixed gas immediately after the raw material gas is introduced into the reaction furnace from the supply port. This is brought about through the following steps. That is, the transition metal compound is first decomposed into metal atoms, and then, cluster formation occurs by collision of a plurality of, for example, about 100 atoms. At the stage of this generated cluster, it does not act as a catalyst for fine carbon fibers, and the generated clusters further gather together by collision, resulting in about 3 ⁇ ! It grows to crystalline particles of about lOnm and is used as metal catalyst fine particles for the production of fine carbon fibers.
  • each metal catalyst fine particle of the aggregate is radially formed as a nucleus.
  • the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, the carbon material also grows in the circumferential direction of the catalyst particles, A granular portion is formed around the aggregate to efficiently form a carbon fiber structure having an intended three-dimensional structure.
  • the aggregate of metal catalyst fine particles may include catalyst fine particles that are less active than other catalyst fine particles or that have been deactivated during the reaction.
  • This carbon material layer is considered to form the granular part of the carbon fiber structure according to the present invention by being present at the peripheral position of the aggregate.
  • the specific means for generating turbulent flow in the raw material gas flow is not particularly limited.
  • a means such as providing some kind of collision part at a position where it can interfere with the flow of the raw material gas led out to.
  • the shape of the collision part is not limited in any way as long as a sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part.
  • various shapes of baffle plates If one or more paddles, taper tubes, umbrellas, etc. are used alone or in combination, a plurality of forms can be adopted.
  • the intermediate obtained by heating the catalyst and hydrocarbon mixed gas at a constant temperature in the range of 800 to 1300 ° C is pasted with patch-like sheet pieces that also contain carbon nuclear power. It has a combined (incomplete, burnt-in) structure, and when it is analyzed by Raman spectroscopy, there are many defects that are very large. Further, the produced intermediate contains unreacted raw materials, non-fibrous carbides, tar content and catalytic metal.
  • this intermediate is heated at 800 to 1200 ° C, so After removing the volatile components such as the above, the desired structure is prepared by annealing at a high temperature of 2400 to 3000 ° C, and at the same time, the catalyst metal contained in the fibers is evaporated and removed. At this time, in order to protect the material structure, a reducing gas or a trace amount of carbon monoxide or carbon dioxide may be added to the inert gas atmosphere.
  • the intermediate is annealed at a temperature in the range of 2400 to 3000 ° C, the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graph-ensheet-like layers.
  • a step of crushing the circle-equivalent mean diameter of the carbon fiber structure to several centimeters, and a circle-equivalent mean diameter of the crushed carbon fiber structure Through a process of pulverizing to 50 m: LOO m to obtain a carbon fiber structure having a desired circle equivalent average diameter.
  • annealing is further performed in a state where the bulk density is low (a state in which fibers are stretched as much as possible and a porosity is large). Effective for imparting conductivity to fat.
  • the fine carbon fiber structure used in the present invention is the fine carbon fiber structure used in the present invention.
  • the lubricating oil composition according to the present invention is obtained by blending the fine carbon fiber structure as described above in a lubricating base oil.
  • a base oil for lubricating oil it can be used for the lubricating base oil of the present invention regardless of whether it is mineral or synthetic.
  • Usable mineral oil base oils that can be used include, for example, lubricating oil fractions obtained by subjecting crude oil to atmospheric distillation and vacuum distillation, and solvent removal, solvent extraction, hydrocracking, and solvent dewaxing.
  • oils such as paraffinic, naphthenic, or mixed hydrocarbon oils refined by appropriately combining catalytic dewaxing, hydrorefining, sulfuric acid washing, refining treatment such as clay treatment, and the like can be mentioned.
  • polyesters such as poly (a-olefin), diesters, polyol esters, trimellitic esters, phosphate esters, alkylbenzenes and alkylnaphthalenes, and polyoxyalkylene glycols.
  • Silicone oil fluorine oil, alkylphenyl ether oil, alkyl biphenyl oil, and polyether ether oil.
  • Preferred olefin oligomers include, for example, polybutene, a-olefin oligomer, ethylene 'a-olefin oligomer, 1-octene oligomer, 1-decene oligomer and the like.
  • polybutene for example, those obtained by copolymerizing a monomer mixture of butene-1 and butene-2 mainly containing isobutene are preferable.
  • a-olefin oligomer a copolymer obtained by copolymerizing an ⁇ -olefin mixture having 6 to 12 carbon atoms obtained by thermal decomposition of hydrocarbon or 3 to 6 amounts of lower polyolefin is used. Can be used. Also preferred are oligomers such as decene that can provide a single monomer power.
  • the olefin oligomer can be produced using a Friedel-Craft-type catalyst such as aluminum chloride and boron fluoride, a Ziegler catalyst, an oxide catalyst such as chromium oxide, and the like. Hydrogenation of olefin oligomers can be performed by removing the catalyst from the reaction product and then contacting with a hydrogenation catalyst such as nickel molybdenum ⁇ -alumina under heating and pressure. You can do more than that.
  • a Friedel-Craft-type catalyst such as aluminum chloride and boron fluoride, a Ziegler catalyst, an oxide catalyst such as chromium oxide, and the like.
  • Hydrogenation of olefin oligomers can be performed by removing the catalyst from the reaction product and then contacting with a hydrogenation catalyst such as nickel molybdenum ⁇ -alumina under heating and pressure. You can do more than that.
  • diester ester examples include those obtained by reacting an aliphatic dibasic acid having 414 carbon atoms or an aromatic dibasic acid with an aliphatic alcohol having 414 carbon atoms.
  • diesters include dioctyl adipate, di (1-ethylpropyl) adipate, di- (3 methylbutyl) adipate, di- (1,3 dimethylbutyl) adipate, di (2-ethylbutyl) adipate, (2-ethylhexyl) adipate, di (isooctyl) adipate, di (isonoel) adipate, di (3, 5, 5 trimethylhexyl) adipate, di- (isodecyl) adipate, di- ( Undecyl) adipate, Gee (tridecyl) adipate, Gee (isotetradecyl) adipate, Gee (
  • polyol ester examples include neopentyl polyol having 5 to 9 carbon atoms such as neopentyl glycol (NPG), trimethylolpropane (TMP) or pentaerythritol (PE), and an organic acid having 4 to 18 carbon atoms. Made by synthesis.
  • polyol ester examples include NPG 'Gee (heptanoate), NPG' Gee (2-ethylbutyrate), NPG 'Gee (cyclohexanoate), NPG' Gee (heptanoate), NPG ' (Isoheptanoate), NPG 'di- (Otanoate), NPG' Di- (2-ethinole hexanoate), NPG 'Gee (iso-otatanoate), NPG' Gee (isononanoate), N PG (Isodecanoate), NPG ⁇ Gee ⁇ mixed (hexanoate, heptanoate) ⁇ , NPG-di- ⁇ mixed (hexanoate, otanoate) ⁇ , NPG-di- ⁇ mixed (hexanoate, nonanoate) NPG-di ⁇ Mixed (Heptanoate, Otanoate
  • neopentyl polyols other than NPG, TMP and PE such as 2-methyl-2-propylpropane 1,3 diol, 2,2 jetylpropane diol, trimethylol ethane and trimethylol hexane, and an organic acid alone or mixed
  • polyol esters and the like such as 2-methyl-2-propylpropane 1,3 diol, 2,2 jetylpropane diol, trimethylol ethane and trimethylol hexane, and an organic acid alone or mixed
  • polyol esters and the like such as 2-methyl-2-propylpropane 1,3 diol, 2,2 jetylpropane diol, trimethylol ethane and trimethylol hexane, and an organic acid alone or mixed
  • polyol esters and the like such as 2-methyl-2-propylpropane 1,3 diol, 2,2 jetylpropane diol, trimethylol e
  • Phosphate esters include tricresyl phosphate, cresyl diphenyl phosphate, propyl phenol phosphate, dipropyl phenyl phosphate, tripropyl phosphate, dibutyl phenol Examples thereof include phosphate, butyl phosphate diphosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, trialkyl phosphate, alkyl phenol phosphate and the like.
  • Alkylbenzene or alkylnaphthalene is obtained by alkylating a branched or straight chain at-olefin and aromatic hydrocarbons such as benzene, toluene or naphthalene using a catalyst such as hydrogen fluoride, sulfuric acid or aluminum chloride. It is an oil mainly containing a dialkyl aromatic hydrocarbon. Alkyl groups mainly include those of C12, which are linear or branched.
  • the polyoxyalkylene glycol is a linear or branched alkylene oxide ring-opening polymer having 2 to 5, preferably 2 to 3, carbon atoms of an alkylene group.
  • alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, and the like. These mixtures, preferably propylene oxide, preferably include polyethylene glycol and polypropylene glycol, and those having a molecular weight range of 100 to 2000, preferably 200 to 1000. It includes alkyl groups at both ends of the molecule, alkyl groups at one end and card end xyl groups at one end, and hydroxyl groups at both ends. This alkyl group is usually in the range of C1 to C18.
  • the lubricating base oil may be a mixture of two or more mineral base oils or synthetic base oils and may be a mixture of mineral base oil and synthetic base oil. There is no problem.
  • the mixing ratio of two or more base oils in the above mixture can be arbitrarily selected.
  • the lubricating base oil used in the present invention has no particular limitation on the viscosity. For example, it is desirable that the kinematic viscosity at 40 ° C. is in the range of 1 to: L000 mm 2 Zs.
  • the lubricating oil composition of the present invention contains an effective amount of the above-described carbon fiber structure together with the lubricating base oil as described above.
  • the amount is about 0.1 to 5% depending on the use of the lubricating oil composition, the type of the lubricating base oil, and the like. If it is less than 1%, the lubricating oil composition may not be sufficiently improved, such as a decrease in friction coefficient. On the other hand, if it exceeds 5%, the viscosity characteristics of the lubricating oil composition may be increased more than necessary.
  • additives can be included in the lubricating oil composition according to the present invention as long as the purpose is not impaired.
  • Additives that can be added include other friction modifiers, antioxidants, metallic detergents, ashless dispersants, anti-tacking agents, corrosion inhibitors, viscosity index improvers, pour point depressants, rubber swelling agents, antifoaming agents Examples thereof include coloring agents and coloring agents. These can be used alone or in combination of several kinds.
  • Examples of other friction modifiers include extreme pressure agents, antiwear agents, and oil agents.
  • Examples of the extreme pressure agent and the antiwear agent include sulfur compounds and phosphorus compounds.
  • sulfur compounds include disulfides, olefin sulfides, sulfurized fats and oils
  • examples of phosphorus compounds include phosphoric monoesters, phosphoric diesters, phosphoric triesters, and phosphorous acid. Examples thereof include monoesters, phosphorous acid diesters, phosphorous acid triesters, and salts of these esters with amines and alkanolamines.
  • oily agent examples include aliphatic monocarboxylic acids, for example, powerful prillic acid, lauric acid, myristic acid, normitic acid, stearic acid, oleic acid and the like, and examples of the aliphatic dicarboxylic acid include adipic acid and pimelic acid. , Suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, other c-c aliphatic dicar
  • Examples thereof include boronic acid and esters of these aliphatic (di) carboxylic acids, aliphatic alcohols, aliphatic amines, aliphatic amine salts, fatty acid amides, and the like. These can be used alone or in combination of several kinds.
  • any of those generally used in lubricating oils such as phenolic compounds and amine compounds can be used.
  • 2, 6- alkylphenols such as di-tert-butyl 4-methyl phenol
  • bisphenols such as methylene 4,4-bis (2, 6-di tert- butyl-4-methyl phenol)
  • Hue - Lou a - Nafuchiruamin such as Nafuchiruamin
  • zinc dialkyldithiophosphates such as zinc 2-ethylhexyldithiophosphate, phenothiazines and the like.
  • Examples of the metal detergent include alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, alkaline earth metal phosphonates, and the like.
  • Examples of the ashless dispersant include alkenyl succinimides, benzylamines, alkyl polyamines, modified products of these boron compounds and sulfur compounds, alkenyl succinates, and the like.
  • anti-tacking agent examples include alk- succinic acid, alk- succinic acid ester, polyhydric alcohol ester, petroleum sulfonate, di-nornaphthalene sulfonate, and the like.
  • Examples of the corrosion inhibitor include benzotriazole, thiadiazole, and imidazole compounds.
  • a non-dispersed viscosity index improver or a dispersed viscosity index improver can be used.
  • polymetatalylates ethylene propylene copolymers
  • poly Examples thereof include olefin copolymers such as isobutylene, polystyrene, and styrene copolymer.
  • pour point depressant for example, a polymetatalate polymer suitable for the lubricating base oil to be used can be used.
  • silicones such as dimethyl silicone and fluorosilicone can be used.
  • the amount of these additives to be added is arbitrary.
  • the content of the antifoaming agent is 0.0005 to 1% by mass
  • the content of the viscosity index improver is 1 to 5% based on the total amount of the lubricating oil composition.
  • the content of 30% by mass, the corrosion inhibitor is 0.001 to 1% by mass, and the content of other additives is about 0.1 to 15% by mass, respectively.
  • the lubricating oil composition of the present invention is, for example, a lubricating oil for gasoline engines, diesel engines, gas engines for automobiles such as motorcycles and four-wheeled vehicles, power generation and ships, automobiles, construction machinery, and agricultural machinery.
  • a lubricating oil for gasoline engines, diesel engines, gas engines for automobiles such as motorcycles and four-wheeled vehicles, power generation and ships, automobiles, construction machinery, and agricultural machinery.
  • the fuel oil composition according to the present invention is a force obtained by blending the fine carbon fiber structure as described above in the fuel oil.
  • the fuel oil used in the present invention is a liquid carbonization mainly for the purpose of combustion. It means hydrogen fuel oil, and usually has a boiling point of about 30 to 700 ° C, preferably about 40 to 600 ° C.
  • Various types of liquid hydrocarbon fuel oil can be used and are not particularly limited. Specifically, for example, any liquid hydrocarbon fuel oil that is force-induced, such as petroleum, waste, oil 'Sierra, oil' sand, coal, and biomass can be used. Of these, it is particularly preferable to use a crude oil or petroleum fraction.
  • any crude oil such as paraffin-based crude oil, naphthene-based crude oil, mixed base crude oil, special crude oil, or a mixture thereof can be used.
  • the petroleum fraction that can be used as the liquid hydrocarbon fuel oil of the present invention refers to the above-mentioned crude oil or a mixture thereof, such as distillation, cracking, reforming and other This refers to a fraction or residue obtained by appropriately performing a refining treatment. More specifically, for example, gasoline fractions such as gasoline for automobile engines, gasoline for agricultural internal combustion engines, and gasoline for forestry.
  • Naphtha fractions typified by naphtha for fuel (light naphtha, heavy naphtha, whole range naphtha, etc.); jet fuel fractions typified by jet fuel, aviation gasoline, etc .
  • heavy oil for boilers, heavy oil for building heating marine diesel Heavy oil fraction represented by heavy oil for engines, heavy oil for ceramics, etc. (1 type (A heavy oil), 2 types (B heavy oil), 3 types (including C heavy oil, etc.) specified by JIS K 2205 “Heavy oil”) ;and Mixtures of these and the like.
  • liquid hydrocarbon fuel oil derived from waste power include those derived from the decomposition, refining, and other treatments of municipal waste, industrial waste, waste oil, and the like.
  • fuel oil in the present invention any liquid hydrocarbon fuel oil as described above and a mixture thereof can be used.
  • the fuel oil composition of the present invention contains an effective amount of the above-described carbon fiber structure together with the fuel oil as described above.
  • the amount varies depending on the use of the fuel oil composition, the type of fuel oil, and the like, and is about 0.01 to 1%. If it is less than 01%, there is a possibility that the fuel oil composition may not be sufficiently improved in combustion rate and combustion efficiency, cleanliness of combustion, stability against static electricity, and sequestering of metals and metal ions. is there. On the other hand, if it exceeds 1%, the viscosity characteristics of the fuel oil composition may be increased more than necessary.
  • additives can be included in the fuel oil composition according to the present invention as long as the purpose is not impaired.
  • additives that can be added include alcohols such as methanol and ethanol, ethers such as isopropyl ether, methyl tertiary butyl ether and methyl tertiary amyl ether, and octane number improvers represented by aromatic amines; Cetane number improvers represented by acid compounds, etc .; Surface ignition inhibitors represented by organophosphates and halogenated organophosphates; Metal deactivators represented by salicylidene derivatives, etc.
  • Metal detergents typified by metal sulfonates, metal phenates, metal salicylates, etc .; ashless detergent dispersants typified by alk-alksuccinimides, alkyl polyamines, polyether polyamines, etc .; typified by glycols, glycerin, glycol ethers, etc. Anti-icing agent; Microbicidal agent represented by glycol ether, boron compound, etc .; Auxiliary agent represented by metal naphthenate, metal sulfonate, sulfate alcohol ester, etc .; Ethylene acetate butyl copolymer, alkenyl succinic acid amide, etc.
  • Low temperature fluidity improvers such as aliphatic amines and alkenyl succinates
  • Corrosion inhibitors such as aliphatic amines and alkenyl succinates
  • Antistatic agents such as cation-based, cationic and amphoteric surfactants
  • Coloring agents such as azo dyes And so on.
  • the power at which these additives are added is also optional.
  • the individual additive amounts of the additives are usually 0.5% by mass or less, preferably 0.2% by mass or less, based on the total amount of the composition.
  • the fuel oil composition of the present invention can be widely used, for example, according to various uses as described above of the base fuel oil.
  • TG-DTA Mac Science TG-DTA
  • the temperature was increased at a rate of 10 ° CZ while flowing air at a flow rate of 0.1 liters Z, and the combustion behavior was measured.
  • TG shows a weight loss
  • DTA shows an exothermic peak, so the top position of the exothermic peak was defined as the combustion start temperature.
  • the carbon fiber structure after annealing was examined using a powder X-ray diffractometer CiDX3532, manufactured by JEOL Ltd.). ⁇ ⁇ -rays generated at 40 kV and 30 mA in a Cu tube are used, and the surface spacing is measured in accordance with the Gakushin method (latest carbon materials experimental technology (analysis and analysis), carbon materials society edition). Was used as an internal standard.
  • CNT powder lg is weighed, filled and compressed into a resin die (inner dimensions L 40mm, W 10mm, H 80mm), and the displacement and load are read.
  • the voltage at that time was measured, and when the density was measured to 0.9 gZcm 3 , the pressure was released and the density after restoration was measured.
  • the resistance when compressed to 0.5, 0.8 and 0.9 g / cm 3 shall be measured.
  • the area within the contour was obtained, and the equivalent circle diameter of each granular part was calculated and averaged to obtain the average particle diameter of the granular part.
  • the circularity (R) is calculated based on the following equation from the area (A) in the contour measured using the image analysis software and the measured contour length (L) of each granular portion. The degree was obtained and averaged.
  • the outer diameter of the fine carbon fiber in each of the targeted carbon fiber structures is obtained, and from this and the equivalent circle diameter of the granular part of each of the carbon fiber structures, the granular part in each carbon fiber structure was determined as a ratio to the fine carbon fiber and averaged.
  • a carbon fiber structure was added to 100 ml of toluene placed in a vial with a lid at a rate of 30 gZml to prepare a dispersion sample of the carbon fiber structure.
  • an ultrasonic cleaner having a transmission frequency of 38 kHz and an output of 150 w (trade name: USK-3, manufactured by SENUDY Co., Ltd.) Ultrasonic waves were irradiated, and changes in the carbon fiber structure in the dispersion sample were observed over time.
  • the 50 50 average diameter was determined in the same manner as described above.
  • the calculated D average length of fine carbon fibers is about half of the initial average fiber length.
  • the D average diameter of the granular portion at the time was compared with the initial average diameter, and the fluctuation ratio (%) was examined.
  • a carbon fiber structure was synthesized using toluene as a raw material by the CVD method.
  • a catalyst a mixture of phlocene and thiophene was used, and the reaction was performed in a hydrogen gas reducing atmosphere. Toluene and catalyst were heated together with hydrogen gas to 380 ° C, supplied to the production furnace, and pyrolyzed at 1250 ° C to obtain a carbon fiber structure (first intermediate).
  • Fig. 8 shows a schematic configuration of a generating furnace used when manufacturing this carbon fiber structure (first intermediate).
  • the production furnace 1 has a power having an introduction nozzle 2 for introducing a raw material mixed gas composed of toluene, a catalyst and hydrogen gas as described above into the production furnace 1 at the upper end thereof.
  • a cylindrical collision portion 3 is provided outside the introduction nozzle 2. The collision part 3 can interfere with the flow of the raw material gas introduced into the reactor through the raw material gas supply port 4 located at the lower end of the introduction nozzle 2.
  • the inner diameter a of the introduction nozzle 2 the inner diameter b of the production furnace 1, the cylinder C, the distance from the top end of the production furnace 1 to the raw material mixed gas inlet 4 and the distance e from the raw material mixed gas inlet 4 to the lower end of the collision part 3, the raw material mixed gas introduction
  • Figures 1 and 2 show SEM and TEM photographs of this first intermediate dispersed in toluene and observed after preparation of an electron microscope sample.
  • this second intermediate was heat treated at 2600 ° C in argon at a high temperature, and the resulting aggregate of carbon fiber structures was pulverized with an airflow pulverizer, and used in the present invention. A structure was obtained.
  • FIGS. 3, 4A, and 4B SEM and TEM photographs of the obtained carbon fiber structure dispersed in toluene with ultrasonic waves and observed after preparation of a sample for an electron microscope are shown in FIGS. 3, 4A, and 4B.
  • FIG. 5 shows an SEM photograph of the obtained carbon fiber structure placed on an electron microscope sample holder as it is, and Table 1 shows the particle size distribution.
  • the obtained carbon fiber structure had a circle-equivalent mean diameter of 72.8 m, a bulk density of 0.003 2 g / cm 3 , a Raman ID / IG ratio value of 0.090, and a TG combustion temperature of 786 ° C, spacing is 3. 383 angstroms, powder resistance is 0.0084 ⁇ 'cm, and density after restoration is 0.25 gZcm 3 .
  • the average particle size of the granular portion in the carbon fiber structure was 443 nm (SD207 nm), which was 7.38 times the outer diameter of the fine carbon fiber in the carbon fiber structure.
  • the circularity of the granular part was 0.67 (SD 0.14) on average.
  • the average fiber length (D) of 6.7 m is almost half of 6.7 m. It was shown that many cuts occurred in the fine carbon fibers.
  • the average diameter (D) of the granular part 500 minutes after application of ultrasonic waves was compared with the initial initial average diameter (D) 30 minutes after application of ultrasonic waves.
  • Fine carbon fibers are synthesized by CVD using a part of the exhaust gas from the generator furnace as a circulating gas and using a carbon compound such as methane contained in this circulating gas as a carbon source together with fresh toluene. did.
  • the synthesis uses a mixture of phlocene and thiophene as a catalyst and reduces hydrogen gas. I went in the atmosphere. As fresh raw material gas, toluene and catalyst were heated to 380 ° C in a preheating furnace together with hydrogen gas. On the other hand, a part of the exhaust gas taken out from the lower end of the production furnace is used as a circulating gas, and its temperature is adjusted to 380 ° C, and then mixed in the supply path of the above-mentioned fresh raw material gas. Supplied.
  • composition ratio of the circulating gas used was CH 7.5% in terms of volume-based molar ratio, C
  • the final raw material gas is included in the circulating gas to be mixed! /, C, H, C
  • the amount was very small and practically negligible as a carbon source.
  • the first intermediate synthesized as described above was calcined at 900 ° C in argon to separate hydrocarbons such as tar and obtain a second intermediate.
  • the R value of this second intermediate measured by Raman spectroscopy was 0.83.
  • the SEM and TEM photographs were almost the same as those in Synthesis Example 1 shown in FIGS.
  • this second intermediate was heat-treated at 2600 ° C in argon at high temperature, and the resulting carbon fiber structure aggregate was pulverized with an airflow pulverizer to obtain the carbon fiber structure according to the present invention. It was.
  • the obtained carbon fiber structure had an average equivalent circle diameter of 75.8 m, a bulk density of 0.004 g / cm 3 , a Raman I / 1 ratio of 0.086, and a TG combustion temperature of 807 ° C, spacing is 3.386 on
  • the dust resistance and the powder resistance value were 0.0075 ⁇ -cm, and the density after restoration was 0.26 gZcm 3 .
  • the average particle size of the granular portion in the carbon fiber structure is 349.5 nm (SD180. In m), which is 5.8 times the outer diameter of the fine carbon fiber in the carbon fiber structure. It was. The circularity of the granular part was 0.69 (SD 0.15) on average.
  • the average fiber length (D) of 6.3 m is almost half the length of 6.3 m.
  • the average diameter (D) of the granular part 500 minutes after application of ultrasonic waves was compared with the initial initial average diameter (D) 30 minutes after application of ultrasonic waves.
  • a lubricating oil composition was produced in the same manner as in Example 1 except that the carbon fiber structure obtained in Example 2 was used in place of the carbon fiber structure obtained in Synthesis Example 1.
  • the fuel oil composition in which the carbon fiber structure was dispersed was manufactured by adding 0.05 part by mass of the fiber structure and performing dispersion treatment using bead meal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)

Abstract

 潤滑油基油あるいは燃料油に、外径15~100nmの炭素繊維から構成される3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものである炭素繊維構造体を、所定量配合してなることを特徴とする潤滑油組成物および燃料油組成物である。長期間安定して優れた摺動性を発揮し、摩擦係数を低下させてなる潤滑油組成物、および燃焼効率を向上させ静電気的安定性を高めてなる燃料油組成物を提供できる。

Description

明 細 書
潤滑油組成物および燃料油組成物
技術分野
[0001] 本発明は、新規な潤滑油組成物および燃料油に関するものであり、詳しく述べると 本発明は、摺動性に優れ、摩擦係数を低下させた潤滑油組成物および燃焼効率を 向上させた燃料油組成物に関するものである。
背景技術
[0002] 一般に、内燃機関、自動変速機、緩衝器、パワーステアリングなどの駆動系機器や 、ギヤなどには、その摺動部における作動を円滑にするために潤滑油が用いられて いる。
[0003] 近年、これらの内燃機関や自動変速機の高性能化、高出力化、運転条件の過酷 化などに伴い、高度な性能が要求されている。
[0004] 例えば、内燃機関における燃費の改善は、重要な技術課題であり、潤滑油による 省燃費対策としては、例えば、流体潤滑下における摩擦損失の低減を意図した低粘 度化、および混合潤滑下および境界潤滑下における摩擦損失の低減を意図した摩 擦低減剤の添加等が試みられて 、る。
[0005] 従来、潤滑油に配合される摩擦低減剤としては、モリブデンジチォカーバメートや モリブデンジチォホスフェートなどの硫黄を含有する有機モリブデンィ匕合物が優れた 摩擦低減効果を示すことから好ましく用いられてきたが、その摩擦低減効果を発揮さ せるためには、ジチォリン酸亜鉛などの硫黄含有ィ匕合物をある程度多量に併用し、 摺動面に二硫ィ匕モリブデン皮膜を形成させる手法が一般的に行われてきた。
[0006] しかしながら、近年環境問題の観点から、排気ガス中に含まれる硫黄分や金属含 有量を低減することが求められており、潤滑油中にお 、てもこれらの成分の低減ィ匕が 必要とされているが、これらの成分の低減ィ匕によって潤滑油がその本来の性能を充 分発揮できなくなることが懸念されており、その解決が望まれているが、抜本的な改 善は未だなされていない。また、潤滑油は一般に長期間過酷な熱条件下に曝される
1S 上記したような有機モリブデンィ匕合物においては、その熱的安定性の面でも問題 の残るものであった。
[0007] 一方、特許文献 1には、燃料および潤滑油の燃焼速度向上、帯電防止および Zま たは粘度向上を目的として、カーボンナノチューブを、燃料および潤滑油にそれぞれ 、 0. 01-30. 0重量%および 0. 01-20. 0重量%配合することが提案されている。
[0008] し力しながら、特許文献 1において使用されるようなカーボンナノチューブは、一般 に、その生成時点で既に塊になってしまい、これをそのまま使用すると、潤滑油中に お 、て均一分散が進まず、また分散安定性の面にぉ 、ても十分なものではな!/、ため 、長期保存等において潤滑油より沈降分離し、性能不良をきたすおそれがあった。 特許文献 1:米国特許第 6828282 (B2)号公報
発明の開示
発明が解決しょうとする課題
[0009] 従って、本発明は、長期間安定して優れた摺動性を発揮し、摩擦係数を低下させ てなる新規な潤滑油組成物を提供することを課題とするものである。本発明はまた、 燃焼効率を向上させ静電気的安定性を高めてなる燃料油組成物を提供することを 課題とするものである。
課題を解決するための手段
[0010] 上記課題を解決するために、本発明者らは、潤滑油および燃料油に配合した際、 これらの潤滑油および燃料油中で均一かつ安定に微分散することができ、かつその 添加量が少なくても十分な改質効果を発揮することのできる添加剤につき鋭意検討 を行った結果、炭素繊維として可能な限り微細な径を有しかつ極力欠陥の少な 、も のとし、さらにこれら炭素繊維が一本一本ばらばらになることなく互いに強固に結合し 、疎な構造体としたものを、潤滑油ないし燃料油に配合すると、これらは非常に分散 性高くかつ安定に潤滑油ないし燃料油保持されるものであり、潤滑油ないし燃料油 の種々の特性を有効に改質できるものであることを見出し、本発明に到達したもので ある。
[0011] すなわち、上記課題を解決する本発明は、潤滑油基油に、外径 15〜: LOOnmの炭 素繊維力も構成される 3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊 維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合す る粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程にお 、て形成 されてなるものである炭素繊維構造体を、全体の 0. 1〜5質量%の割合で含有して なることを特徴とする潤滑油組成物である。
[0012] 本発明はまた、前記炭素繊維構造体は、ラマン分光分析法で測定される I
D Λ力 G
0. 2以下であることを特徴とする潤滑油組成物を示すものである。
[0013] 本発明はさらに、前記炭素繊維構造体は、炭素源として、分解温度の異なる少なく とも 2つ以上の炭素化合物を用いて、生成されたものである潤滑油組成物を示すもの である。
[0014] 上記課題を解決する本発明はまた、燃料油に、外径 15〜: LOOnmの炭素繊維から 構成される 3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体 は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部 を有しており、かつ当該粒状部は前記炭素繊維の成長過程にお 、て形成されてなる ものである炭素繊維構造体を、全体の 0. 01〜1質量%の割合で含有してなることを 特徴とする燃料油組成物である。
[0015] 本発明はまた、前記炭素繊維構造体は、ラマン分光分析法で測定される I
D Λ G力
0. 2以下であることを特徴とする燃料油組成物を示すものである。
[0016] 本発明はさらに、前記炭素繊維構造体は、炭素源として、分解温度の異なる少なく とも 2つ以上の炭素化合物を用いて、生成されたものである燃料油組成物を示すもの である。
発明の効果
[0017] 本発明においては、炭素繊維構造体が、上記したように 3次元ネットワーク状に配さ れた微細径の炭素繊維が、前記炭素繊維の成長過程において形成された粒状部に よって互いに強固に結合され、該粒状部から前記炭素繊維が複数延出する形状を 有するものであるために、潤滑油ないし燃料油中において、当該炭素繊維構造体は 、疎な構造を残したまま高い分散性をもってかつ安定に、潤滑油ないし燃料油中に 分散配合できる。
[0018] このように、本発明に係る潤滑油組成物および燃料油組成物にぉ ヽては、上述の 炭素繊維構造体が均一に分散分布されているため、潤滑油組成物においては、炭 素繊維構造体が炭素質体として材料的な摺動性と共に構造的に適度な弾性を発揮 するため、当該潤滑油組成物が摺動部に供給された際、良好な摩擦低減作用を発 揮することができ、かつ炭素繊維であるために熱的にも安定したものとなる。また燃料 油組成物においては、炭素繊維構造体のフリーラジカル捕捉能によってアンチノツキ ング作用を発揮しオクタン価を向上させ得、また、ディーゼル燃料のセタン価も向上 させ得、燃焼効率、燃焼のクリーンィ匕を高めることができる。さらに、導体である炭素 繊維構造体を添加することによって、燃料な 、し潤滑油の静電気に対する安定性を 高めることができ、さらに、金属および金属イオン封鎖作用、熱的安定性等のその他 の特性についても向上が図れることとなるものである。
図面の簡単な説明
[図 1]本発明の潤滑油ないし燃料油組成物に用いる炭素繊維構造体の中間体の SE M写真である。
[図 2]本発明の潤滑油ないし燃料油組成物に用いる炭素繊維構造体の中間体の TE M写真である。
[図 3]本発明の潤滑油ないし燃料油組成物に用いる炭素繊維構造体の SEM写真で ある。
圆 4A]、
[図 4B]は、それぞれ本発明の潤滑油ないし燃料油組成物に用いる炭素繊維構造体 の TEM写真である。
[図 5]本発明の潤滑油ないし燃料油組成物に用いる炭素繊維構造体の SEM写真で ある。
[図 6]本発明の潤滑油ないし燃料油組成物に用いる炭素繊維構造体および該炭素 繊維構造体の中間体の X線回折チャートである。
[図 7]本発明の潤滑油ないし燃料油組成物に用いる炭素繊維構造体および該炭素 繊維構造体の中間体のラマン分光分析チャートである。
[図 8]本発明の実施例において炭素繊維構造体の製造に用いた生成炉の概略構成 を示す図面である。
符号の説明 [0020] 1 生成炉
2 導入ノズル
3 衝突部
4 原料ガス供給口
a 導入ノズルの内径
b 生成炉の内径
c 衝突部の内径
d 生成炉の上端から原料混合ガス導入口までの距離
e 原料混合ガス導入ロカ 衝突部の下端までの距離
f 原料混合ガス導入口から生成炉の下端までの距離
発明を実施するための最良の形態
[0021] 以下、本発明を好ましい実施形態に基づき詳細に説明する。
本発明の潤滑油組成物および燃料油組成物は、後述するような所定構造を有する 3次元ネットワーク状の炭素繊維構造体を、全体の 0. 01〜5質量%、あるいは全体 の 0. 01〜1質量%の割合でそれぞれ含有することを特徴するものである。
[0022] ( mmm^m
本発明において用いられる炭素繊維構造体は、例えば、図 3に示す SEM写真また は図 4Aおよび図 4Bに示す TEM写真に見られるように、外径 15〜100nmの炭素繊 維力も構成される 3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構 造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒 状部を有することを特徴とする炭素繊維構造体である。
[0023] 炭素繊維構造体を構成する炭素繊維の外径を、 15〜: LOOnmの範囲のものとする のは、外径が 15nm未満であると、後述するように炭素繊維の断面が多角形状となら ず、一方、炭素繊維の物性上直径が小さいほど単位量あたりの本数が増えるとともに 、炭素繊維の軸方向への長さも長くなり、高い導電性が得られるため、 lOOnmを越 える外径を有することは、潤滑油および燃料油に対する改質剤、添加剤として配され る炭素繊維構造体として適当でないためである。なお、炭素繊維の外径としては特に 、 20〜70nmの範囲内にあること力 より望ましい。この外径範囲のもので、筒状のグ ラフヱンシートが軸直角方向に積層したもの、すなわち多層であるものは、曲がりにく ぐ弾性、すなわち変形後も元の形状に戻ろうとする性質が付与されるため、炭素繊 維構造体が一旦圧縮された後においても、潤滑油および燃料油に配された後にお いて、疎な構造を採りやすくなる。
[0024] なお、 2400°C以上でァニール処理すると、積層したグラフエンシートの面間隔が狭 まり真密度が 1. 89g/cm3から 2. lg/cm3に増加するとともに、炭素繊維の軸直交 断面が多角形状となり、この構造の炭素繊維は、積層方向および炭素繊維を構成す る筒状のグラフエンシートの面方向の両方において緻密で欠陥の少ないものとなるた め、曲げ剛性 (EI)が向上する。
[0025] カロえて、該微細炭素繊維は、その外径が軸方向に沿って変化するものであることが 望ましい。このように炭素繊維の外径が軸方向に沿って一定でなぐ変化するもので あると、榭脂等のマトリックス中において当該炭素繊維に一種のアンカー効果が生じ るものと思われ、マトリックス中における移動が生じに《分散安定性が高まるものとな る。
[0026] そして本発明に係る炭素繊維構造体にぉ 、ては、このような所定外径を有する微 細炭素繊維が 3次元ネットワーク状に存在するが、これら炭素繊維は、当該炭素繊維 の成長過程にお 、て形成された粒状部にぉ 、て互いに結合され、該粒状部から前 記炭素繊維が複数延出する形状を呈しているものである。このように、微細炭素繊維 同士が単に絡合して 、るものではなぐ粒状部にぉ 、て相互に強固に結合されて!ヽ るものであることから、潤滑油および燃料油中に配した場合に当該構造体が炭素繊 維単体として分散されることなぐ嵩高な構造体のまま潤滑油および燃料油中に分散 酉己合されることができる。
[0027] 当該粒状部は、上述するように炭素繊維の成長過程において形成されるものであ るため、当該粒状部における炭素間結合は十分に発達したものとなり、正確には明ら かではないが、 sp2結合および sp3結合の混合状態を含むと思われる。そして、生成 後 (後述する中間体および第一中間体)においては、粒状部と繊維部とが、炭素原 子力もなるパッチ状のシート片を貼り合せたような構造をもって連続しており、その後 の高温熱処理後においては、図 4Aおよび図 4Bに示されるように、粒状部を構成す るグラフェン層の少なくとも一部は、当該粒状部より延出する微細炭素繊維を構成す るグラフェン層に連続するものとなる。本発明に係る炭素繊維構造体において、粒状 部と微細炭素繊維との間は、上記したような粒状部を構成するグラフ ン層が微細炭 素繊維を構成するグラフ ン層と連続していることに象徴されるように、炭素結晶構造 的な結合によって (少なくともその一部カ 繋がっているものであって、これによつて粒 状部と微細炭素繊維との間の強固な結合が形成されているものである。
[0028] なお、本願明細書において、粒状部から炭素繊維が「延出する」するとは、粒状部 と炭素繊維とが他の結着剤 (炭素質のものを含む)によって、単に見かけ上で繋がつ ているような状態をさすものではなぐ上記したように炭素結晶構造的な結合によって 繋がって!/、る状態を主として意味するものである。
[0029] また、当該粒状部は、上述するように炭素繊維の成長過程において形成されるが、 その痕跡として粒状部の内部には、少なくとも 1つの触媒粒子、あるいはその触媒粒 子がその後の熱処理工程にぉ 、て揮発除去されて生じる空孔を有して 、る。この空 孔 (ないし触媒粒子)は、粒状部より延出している各微細炭素繊維の内部に形成され る中空部とは、本質的に独立したものである(なお、ごく一部に、偶発的に中空部と連 続してしまったものも観察される。;)。
[0030] この触媒粒子ないし空孔の数としては特に限定されるものではないが、粒状部 1つ 当りに 1〜: LOOO個程度、より望ましくは 3〜500個程度存在する。このような範囲の数 の触媒粒子の存在下で粒状部が形成されたことによって、後述するような所望の大き さの粒状部とすることができる。
[0031] また、この粒状部中に存在する触媒粒子ないし空孔の 1つ当りの大きさとしては、例 えば、 1〜: LOOnm、より好ましくは 2〜40nm、さらに好ましくは 3〜15nmである。
[0032] さらに、特に限定されるわけではないが、この粒状部の粒径は、図 2に示すように、 前記微細炭素繊維の外径よりも大きいことが望ましい。具体的には、例えば、前記微 細炭素繊維の外径の 1. 3〜250倍、より好ましくは 1. 5〜: LOO倍、さらに好ましくは 2 . 0〜25倍である。なお、前記値は平均値である。このように炭素繊維相互の結合点 である粒状部の粒径が微細炭素繊維外径の 1. 3倍以上と十分に大きなものであると 、当該粒状部より延出する炭素繊維に対して高い結合力がもたらされ、潤滑油およ び燃料油中に当該炭素繊維構造体を配した場合に、ある程度のせん弾力を加えた 場合であっても、 3次元ネットワーク構造を保持したまま潤滑油および燃料油に分散 させることができる。一方、粒状部の大きさが微細炭素繊維の外径の 250倍を超える 極端に大きなものとなると、炭素繊維構造体の繊維状の特性が損なわれる虞れがあ り、例えば、各種潤滑油および燃料油中への添加剤、配合剤として適当なものとなら ない虞れがあるために望ましくない。なお、本明細書でいう「粒状部の粒径」とは、炭 素繊維相互の結合点である粒状部を 1つの粒子とみなして測定した値である。
[0033] その粒状部の具体的な粒径は、炭素繊維構造体の大きさ、炭素繊維構造体中の 微細炭素繊維の外径にも左右される力 例えば、平均値で 20〜5000nm、より好ま しくは 25〜2000nm、さらに好ましくは 30〜500nm程度である。
[0034] さらにこの粒状部は、前記したように炭素繊維の成長過程において形成されるもの であるため、比較的球状に近い形状を有しており、その円形度は、平均値で 0. 2〜 < 1、好ましく ίま 0. 5〜0. 99、より好ましく ίま 0. 7〜0. 98程度である。
[0035] カロえて、この粒状部は、前記したように炭素繊維の成長過程にお 、て形成されるも のであって、例えば、微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質 物質ないしその炭化物によって付着させてなる構造体等と比較して、当該粒状部に おける、炭素繊維同士の結合は非常に強固なものであり、炭素繊維構造体における 炭素繊維の破断が生じるような条件下においても、この粒状部 (結合部)は安定に保 持される。具体的には例えば、後述する実施例において示すように、当該炭素繊維 構造体を液状媒体中に分散させ、これに一定出力で所定周波数の超音波をかけて 、炭素繊維の平均長がほぼ半減する程度の負荷条件としても、該粒状部の平均粒 径の変化率は、 10%未満、より好ましくは 5%未満であって、粒状部、すなわち、繊維 同士の結合部は、安定に保持されているものである。
[0036] また、本発明において用いられる炭素繊維構造体は、面積基準の円相当平均径が 50-100 μ m、より好ましくは 60〜90 μ m程度程度であることが望ましい。ここで面 積基準の円相当平均径とは、炭素繊維構造体の外形を電子顕微鏡などを用いて撮 影し、この撮影画像において、各炭素繊維構造体の輪郭を、適当な画像解析ソフト ウェア、例えば WinRoof (商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の 面積を求め、各繊維構造体の円相当径を計算し、これを平均化したものである。
[0037] 複合ィ匕される潤滑油および燃料油の種類によっても左右されるため、全ての場合 において適用されるわけではないが、この円相当平均径は、潤滑油および燃料油中 に配合された場合における当該炭素繊維構造体の最長の長さを決める要因となるも のであり、概して、円相当平均径が 50 m未満であると、導電性が十分に発揮され ないおそれがあり、一方、 100 mを越えるものであると、例えば、潤滑油および燃料 油中へ混合等によって配合する際に大きな粘度上昇が起こり混合分散が困難となる 虞れがあるためである。
[0038] また本発明に係る炭素繊維構造体は、上記したように、本発明に係る炭素繊維構 造体は、 3次元ネットワーク状に存在する炭素繊維が粒状部において互いに結合さ れ、該粒状部力 前記炭素繊維が複数延出する形状を呈しているが、 1つの炭素繊 維構造体にぉ 、て、炭素繊維を結合する粒状部が複数個存在して 3次元ネットヮー クを形成している場合、隣接する粒状部間の平均距離は、例えば、 0. 5 /ζ πι〜300 m、より好ましくは 0. 5〜: LOO m、さら〖こ好ましくは 1〜50 m程度となる。なお、 この隣接する粒状部間の距離は、 1つの粒状体の中心部からこれに隣接する粒状部 の中心部までの距離を測定したものである。粒状体間の平均距離が、 0. 未満 であると、炭素繊維が 3次元ネットワーク状に十分に発展した形態とならないため、例 えば、潤滑油および燃料油中に分散配合された場合に、良好な導電パスを形成し得 ないものとなる虞れがあり、一方、平均距離が 300 mを越えるものであると、潤滑油 および燃料油中に分散配合させる際に、粘性を高くさせる要因となり、炭素繊維構造 体の潤滑油および燃料油に対する分散性が低下する虞れがあるためである。
[0039] さらに、本発明において用いられる炭素繊維構造体は、上記したように、 3次元ネッ トワーク状に存在する炭素繊維が粒状部にお 、て互 ヽに結合され、該粒状部から前 記炭素繊維が複数延出する形状を呈しており、このため当該構造体は炭素繊維が 疎に存在した嵩高な構造を有するが、具体的には、例えば、その嵩密度が 0. 0001 〜0. 05g/cm3、より好ましくは 0. 001-0. 02g/cm3であることが望ましい。嵩密 度が 0. 05gZcm3を超えるものであると、少量添加によって、潤滑油組成物および 燃料油組成物の物性を改善することが難しくなるためである。 [0040] また、本発明に係る炭素繊維構造体は、 3次元ネットワーク状に存在する炭素繊維 がその成長過程にお 、て形成された粒状部にお 、て互 、に結合されて 、ることから 、上記したように構造体自体の電気的特性等も非常に優れたものであるが、例えば、 一定圧縮密度 0. 8g/cm3において測定した粉体抵抗値力 0. 02 Ω 'cm以下、より 望ましくは、 0. 001-0. 010 Ω 'cmであることが好ましい。
[0041] また、本発明において用いられる炭素繊維構造体は、高い強度および導電性を有 する上から、炭素繊維を構成するグラフエンシート中における欠陥が少な 、ことが望 ましぐ具体的には、例えば、ラマン分光分析法で測定される I
D Λ G比が、 0. 2以下、 より好ましくは 0. 1以下であることが望ましい。ここで、ラマン分光分析では、大きな単 結晶の黒鉛では 1580cm_1付近のピーク (Gバンド)しか現れない。結晶が有限の微 小サイズであることや格子欠陥により、 1360cm_1付近にピーク (Dバンド)が出現す る。このため、 Dバンドと Gバンドの強度比 (R=I /\ =I ZI )が上記したよう
1360 1580 D G
に所定値以下であると、グラフエンシート中における欠陥量が少ないことが認められる ためである。
[0042] 本発明に係る前記炭素繊維構造体はまた、空気中での燃焼開始温度が 750°C以 上、より好ましくは 800〜900°Cであることが望ましい。前記したように炭素繊維構造 体が欠陥が少なぐかつ炭素繊維が所期の外径を有するものであることから、このよう な高 、熱的安定性を有するものとなる。
[0043] 上記したような所期の形状を有する炭素繊維構造体は、特に限定されるものではな いが、例えば、次のようにして調製することができる。
[0044] 基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物を CVD法 で化学熱分解して繊維構造体 (以下、中間体という)を得、これをさらに高温熱処理 する。
[0045] 原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭 素(CO)、エタノール等のアルコール類などが使用できる。特に限定されるわけでは ないが、本発明に係る繊維構造体を得る上においては、炭素源として、分解温度の 異なる少なくとも 2つ以上の炭素化合物を用いることが好ましい。なお、本明細書に おいて述べる「少なくとも 2つ以上の炭素化合物」とは、必ずしも原料有機化合物とし て 2種以上のものを使用するというものではなぐ原料有機化合物としては 1種のもの を使用した場合であっても、繊維構造体の合成反応過程において、例えば、トルエン ゃキシレンの水素脱アルキル化(hydrodealkylation)などのような反応を生じて、その 後の熱分解反応系にお 、ては分解温度の異なる 2つ以上の炭素化合物となって 、る ような態様も含むものである。
[0046] なお、熱分解反応系にお 、て炭素源としてこのように 2種以上の炭素化合物を存在 させた場合、それぞれの炭素化合物の分解温度は、炭素化合物の種類のみでなぐ 原料ガス中の各炭素化合物のガス分圧ないしモル比によっても変動するものである ため、原料ガス中における 2種以上の炭素化合物の組成比を調整することにより、炭 素化合物として比較的多くの組み合わせを用いることができる。
[0047] 例えば、メタン、ェタン、プロパン類、ブタン類、ペンタン類、へキサン類、ヘプタン 類、シクロプロパン、シクロへキサンなどといったアルカンないしシクロアルカン、特に 炭素数 1〜7程度のアルカン;エチレン、プロピレン、ブチレン類、ペンテン類、ヘプテ ン類、シクロペンテンなどといったアルケンないしシクロォレフイン、特に炭素数 1〜7 程度のアルケン;アセチレン、プロピン等のアルキン、特に炭素数 1〜7程度のアルキ ン;ベンゼン、トノレェン、スチレン、キシレン、ナフタレン、メチノレナフタレン、インデン、 フ ナントレン等の芳香族ないし複素芳香族炭化水素、特に炭素数 6〜18程度の芳 香族ないし複素芳香族炭化水素、メタノール、エタノール等のアルコール類、特に炭 素数 1〜7程度のアルコール類;その他、一酸化炭素、ケトン類、エーテル類等の中 力も選択した 2種以上の炭素化合物を、所期の熱分解反応温度域にぉ 、て異なる分 解温度を発揮できるようにガス分圧を調整し、組み合わせて用いること、および Zま たは、所定の温度領域における滞留時間を調整することで可能であり、その混合比 を最適化することで効率よく本発明に係る炭素繊維構造体を製造することができる。
[0048] このような 2種以上の炭素化合物の組み合わせのうち、例えば、メタンとベンゼンと の組み合わせにおいては、メタン/ベンゼンのモル比が、 > 1〜600、より好ましくは 1. 1〜200、さらに好ましくは 3〜: L00とすることが望ましい。なお、この値は、反応炉 の入り口におけるガス組成比であり、例えば、炭素源の 1つとしてトルエンを使用する 場合には、反応炉内でトルエンが 100%分解して、メタンおよびベンゼンが 1: 1で生 じることを考慮して、不足分のメタンを別途供給するようにすれば良い。例えば、メタ ン Zベンゼンのモル比を 3とする場合には、トルエン 1モルに対し、メタン 2モルを添 加すれば良い。なお、このようなトルエンに対して添加するメタンとしては、必ずしも新 鮮なメタンを別途用意する方法のみならず、当該反応炉より排出される排ガス中に含 まれる未反応のメタンを循環使用することにより用いることも可能である。
[0049] このような範囲内の組成比とすることで、炭素繊維部および粒状部のいずれもが十 分を発達した構造を有する炭素繊維構造体を得ることが可能となる。
[0050] なお、雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用い ることがでさる。
[0051] また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフエ口セン、 酢酸金属塩などの遷移金属化合物と硫黄あるいはチォフェン、硫化鉄などの硫黄化 合物の混合物を使用する。
[0052] 中間体の合成は、通常行われている炭化水素等の CVD法を用い、原料となる炭 化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に 導入し、 800〜1300°Cの温度で熱分解する。これにより、外径が 15〜: LOOnmの繊 維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元 構造を有する炭素繊維構造体(中間体)が複数集まった数 cmから数十センチの大き さの集合体を合成する。
[0053] 原料となる炭化水素の熱分解反応は、主として触媒粒子な 、しこれを核として成長 した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒 子ないし粒状体より一定方向に進むことで、繊維状に成長する。し力しながら、本発 明に係る炭素繊維構造体を得る上においては、このような熱分解速度と成長速度と のノ ランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異 なる少なくとも 2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質 を成長させることなぐ粒状体を中心として三次元的に炭素物質を成長させる。もちろ ん、このような三次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスに のみ依存するものではなぐ触媒粒子の結晶面選択性、反応炉内における滞留時間 、炉内温度分布等によっても影響を受け、また、前記熱分解反応と成長速度とのバラ ンスは、上記したような炭素源の種類のみならず、反応温度およびガス温度等によつ ても影響受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、 炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素 物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバラン スを意図的に変化させることで、上記したような炭素物質の成長方向を一定方向とす ることなく、制御下に多方向として、本発明に係るような三次元構造を形成することが できるものである。なお、生成する中間体において、繊維相互が粒状体により結合さ れた前記したような三次元構造を容易に形成する上では、触媒等の組成、反応炉内 における滞留時間、反応温度、およびガス温度等を最適化することが望ましい。
[0054] なお、本発明に係る炭素繊維構造体を効率良く製造する方法としては、上記したよ うな分解温度の異なる 2つ以上の炭素化合物を最適な混合比にて用いるアプローチ 以外に、反応炉に供給される原料ガスに、その供給口近傍において乱流を生じさせ るアプローチを挙げることができる。ここでいう乱流とは、激しく乱れた流れであり、渦 卷、ヽて流れるような流れを ヽぅ。
[0055] 反応炉においては、原料ガスが、その供給口より反応炉内へ導入された直後にお いて、原料混合ガス中の触媒としての遷移金属化合物の分解により金属触媒微粒子 が形成されるが、これは、次のような段階を経てもたらされる。すなわち、まず、遷移 金属化合物が分解され金属原子となり、次いで、複数個、例えば、約 100原子程度 の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では 、微細炭素繊維の触媒として作用せず、生成したクラスター同士が衝突により更に集 合し、約 3ηπ!〜 lOnm程度の金属の結晶性粒子に成長して、微細炭素繊維の製造 用の金属触媒微粒子として利用されることとなる。
[0056] この触媒形成過程において、上記したように激しい乱流による渦流が存在すると、 ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可 能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高 収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイ ズの揃った金属触媒微粒子を得ることができる。さらに、金属触媒微粒子が形成され る過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒 微粒子の集合体を形成する。このようにして金属触媒微粒子が速やかに生成される ため、炭素化合物の分解が促進されて、十分な炭素物質が供給されることになり、前 記集合体の各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長し、一 方で、前記したように一部の炭素化合物の熱分解速度が炭素物質の成長速度よりも 速いと、炭素物質は触媒粒子の周面方向にも成長し、前記集合体の周りに粒状部を 形成し、所期の三次元構造を有する炭素繊維構造体を効率よく形成する。なお、前 記金属触媒微粒子の集合体中には、他の触媒微粒子よりも活性の低 ヽな ヽしは反 応途中で失活してしまった触媒微粒子も一部に含まれていることも考えられ、集合体 として凝集するより以前にこのような触媒微粒子の表面に成長していた、あるいは集 合体となった後にこのような触媒微粒子を核として成長した非繊維状ないしはごく短 い繊維状の炭素物質層が、集合体の周縁位置に存在することで、本発明に係る炭 素繊維構造体の粒状部を形成しているものとも思われる。
[0057] 反応炉の原料ガス供給口近傍にお!、て、原料ガスの流れに乱流を生じさせる具体 的手段としては、特に限定されるものではなぐ例えば、原料ガス供給口より反応炉 内に導出される原料ガスの流れに干渉し得る位置に、何らかの衝突部を設ける等の 手段を採ることができる。前記衝突部の形状としては、何ら限定されるものではなぐ 衝突部を起点として発生した渦流によって十分な乱流が反応炉内に形成されるもの であれば良いが、例えば、各種形状の邪魔板、パドル、テーパ管、傘状体等を単独 であるいは複数組み合わせて 1な 、し複数個配置すると 、つた形態を採択することが できる。
[0058] このようにして、触媒および炭化水素の混合ガスを 800〜1300°Cの範囲の一定温 度で加熱生成して得られた中間体は、炭素原子力もなるパッチ状のシート片を貼り合 わせたような (生焼け状態の、不完全な)構造を有し、ラマン分光分析をすると、 ンドが非常に大きぐ欠陥が多い。また、生成した中間体は、未反応原料、非繊維状 炭化物、タール分および触媒金属を含んでいる。
[0059] 従って、このような中間体力 これら残留物を除去し、欠陥が少ない所期の炭素繊 維構造体を得るために、適切な方法で 2400〜3000°Cの高温熱処理する。
[0060] すなわち、例えば、この中間体を 800〜1200°Cで加熱して未反応原料やタール分 などの揮発分を除去した後、 2400〜3000°Cの高温でァニール処理することによつ て所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。 なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガスや微量の 一酸ィ匕炭素ガスを添加してもよ ヽ。
[0061] 前記中間体を 2400〜3000°Cの範囲の温度でァニール処理すると、炭素原子か らなるパッチ状のシート片は、それぞれ結合して複数のグラフエンシート状の層を形 成する。
[0062] また、このような高温熱処理前もしくは処理後において、炭素繊維構造体の円相当 平均径を数 cmに解砕処理する工程と、解砕処理された炭素繊維構造体の円相当 平均径を 50〜: LOO mに粉砕処理する工程とを経ることで、所望の円相当平均径を 有する炭素繊維構造体を得る。なお、解砕処理を経ることなぐ粉砕処理を行っても 良い。また、本発明に係る炭素繊維構造体を複数有する集合体を、使いやすい形、 大きさ、嵩密度に造粒する処理を行っても良い。さら〖こ好ましくは、反応時に形成さ れた上記構造を有効に活用するために、嵩密度が低い状態 (極力繊維が伸びきつた 状態でかつ空隙率が大きい状態)で、ァニール処理するとさらに榭脂への導電性付 与に効果的である。
[0063] 本発明にお 、て用いられる微細炭素繊維構造体は、
A)嵩密度が低い、
B)榭脂等のマトリックスに対する分散性が良い、
C)導電性が高い、
D)熱伝導性が高い、
E)摺動性が良い、
F)化学的安定性が良い、
G)熱的安定性が高い、
などの特'性がある。
0064] m i
本発明に係る潤滑油組成物は、上記したような微細炭素繊維構造体を潤滑油基油 中に配合してなるものであるが、本発明において用いられる潤滑油基油としては、特 に限定されるものではなぐ潤滑油の基油として通常使用されているものであれば、 鉱油系、合成系を問わず本発明の潤滑油基油に使用できる。
[0065] 使用可能な鉱油系潤滑油基油としては、例えば、原油を常圧蒸留および減圧蒸留 して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触 脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理等を適宜組み合わせて精 製したパラフィン系、ナフテン系、又はこれらの混合系炭化水素油等の油が挙げられ る。
[0066] また、使用可能な合成系潤滑油基油としては、例えば、ポリ aーォレフイン、ジエス テル、ポリオールエステル、トリメリット酸エステル等のポリエステル、リン酸エステル、 アルキルベンゼン及びアルキルナフタレン、ポリオキシアルキレングリコール、シリコ ーン油、フッ素油、アルキルフエ-ルエーテル油、アルキルビフエ-ル油、ポリフエ- ルエーテル油等が挙げられる。
[0067] 前記ポリ α—ォレフインとしては、炭素数 2〜14、好ましくは 4〜12の範囲の分岐を 有する、或いは有しないォレフィン炭化水素から選択された任意の 1種の単独重合 体又は 2種以上の共重合により得られるものであり、平均分子量 100〜約 2000、好 ましくは 200〜約 1000の生成物力も選択される力 特に水素化によって不飽和結合 を除去したものが好ましい。好ましいォレフィンオリゴマーとしては、例えばポリブテン 、 aーォレフインオリゴマー、エチレン' aーォレフインオリゴマー、 1 オタテンオリゴ マー、 1—デセンオリゴマー等である。ポリブテンとしては、例えばイソブテンを主体と し、ブテン— 1、及びブテン— 2の単量体混合物を共重合させて得られるものが好ま しい。また、 a—ォレフインオリゴマーとしては、炭化水素の熱分解又は低級ォレフィ ンの 3量ィ匕〜 6量ィ匕により得られる炭素数 6〜12の α—ォレフイン混合物を共重合し たものを使用することができる。また、デセンのごとき単独モノマー力も得られるオリゴ マーも好適である。
[0068] ォレフィンオリゴマーは、塩ィ匕アルミニウム、フッ化硼素等のフリーデルクラフト型触 媒、チーグラー触媒及び酸化クロム等の酸化物触媒等を使用して製造することがで きる。又ォレフインオリゴマーの水素化は反応生成物から触媒を除去した後、加温、 加圧下において、例えばニッケル モリブデン ζアルミナのような水素化触媒と接触 させること〖こより行うことができる。
前記ジエステルエステルとしては、炭素数 4 14の脂肪族二塩基酸あるいは芳香 族二塩基酸と炭素数 4 14の脂肪族アルコールとを反応させて得られるものがある。 このようなジエステルとしては、例えばジォクチルアジペート、ジー(1 ェチルプロピ ル)アジペート、ジ—( 3 メチルブチル)アジペート、ジ—( 1 , 3 ジメチルブチル)ァ ジペート、ジー(2—ェチルブチル)アジペート、ジー(2—ェチルへキシル)アジぺー ト、ジ一(イソォクチル)アジペート、ジ一(イソノエル)アジペート、ジ一(3, 5, 5トリメチ ルへキシル)アジペート、ジ—(イソデシル)アジペート、ジ—(ゥンデシル)アジペート 、ジー(トリデシル)アジペート、ジー(イソテトラデシル)アジペート、ジー(2 2 4ート リメチルペンチル)アジペート、ジー〔混合(2—ェチルへキシル、イソノエル)〕アジべ ート、ジー(1 ェチルプロピル)ァゼレート、ジー(2—ェチルブチル)ァゼレート、ジ - (2—ェチルへキシル)ァゼレート、ジ一(イソォクチル)ァゼレート、ジ一(イソノ-ル )ァゼレート、ジ一(3, 5, 5トリメチルへキシル)ァゼレート、ジ一(イソデシル)ァゼレ ート、ジー(トリデシル)ァゼレート、ジー〔混合(2—ェチルへキシル、イソノエル)〕ァゼ レート、ジー〔混合(2—ェチルへキシル、デシル)〕ァゼレート、ジー〔混合(2—ェチ ルへキシル、イソデシル)〕ァゼレート、ジー〔混合(2—ェチルへキシル、 2—プロピル へプチル)〕ァゼレート、ジー〔混合(2—ェチルへキシル、デシル)〕ァゼレート、ジー( n—ブチル)セバケート、ジー(イソブチル)セバケート、ジー(1 ェチルプロピル)セ バケート、ジー(3—メチルブチル)セバケート、ジー(1, 3 ジメチルブチル)セバケ ート、ジー(2—ェチルブチル)セバケート、ジー(2—ェチルへキシル)セバケート、ジ 2— (2' ェチルブトキシ)ェチル〕セバケート、ジー(2, 2, 4 トリメチルペンチ ル)セバケート、ジ一(イソノエル)セバケート、ジ一(3, 5, 5トリメチルへキシル)セバ ケート、ジ—(イソデシル)セバケート、ジ—(イソゥンデシル)セバケート、ジ—(トリデ シル)セバケート、ジー(イソテトラデシル)セバケート、ジー〔混合(2—ェチルへキシ ル、イソノエル)〕セバケート、ジ一(2—ェチルへキシル)グルタレート、ジ一(イソゥン デシル)グルタレート及びジ一(イソテトラデシル)グルタレート、ジ一 n—ブチルフタレ ート、ジー n キシルフタレート、ジー n プチルフタレート、ジー n—ォクチルフ タレート、ジ 2—ェチルへキシルフタレート、ジイソノ-ルフタレート、ォクチルデシ ルフタレート、ジイソデシルフタレート、ジトリデシルフタレート等が挙げられる。
前記ポリオールエステルとしては、炭素数 5〜9のネオペンチルポリオール、例えば ネオペンチルグリコール(NPG)、トリメチロールプロパン(TMP)又はペンタエリスリト ール (PE)等と炭素数 4〜18の有機酸との合成によって作られる。このようなポリオ一 ルエステルの具体例としては、 NPG'ジー(ヘプタノエート)、 NPG'ジー(2—ェチル ブチレート)、 NPG'ジー(シクロへキサノエート)、 NPG'ジー(ヘプタノエート)、 NP G 'ジ一(イソヘプタノエート)、 NPG'ジ一(オタタノエート)、 NPG 'ジ一(2—ェチノレ へキサノエート)、 NPG'ジー(イソオタタノエート)、 NPG'ジー(イソノナノエート)、 N PG ·ジー(イソデカノエート)、 NPG ·ジー {混合(へキサノエート,ヘプタノエート) }、 NPG-ジ— {混合(へキサノエート,オタタノエート) }、 NPG-ジ— {混合(へキサノエ ート,ノナノエート) NPG-ジ一 {混合(ヘプタノエート,オタタノエート) }、 NPG'ジ {混合(ヘプタノエート,ノナノエート) }、 NPG'ジー {混合(ヘプタノエート,イソオタ タノエート) }、 NPG 'ジー {混合(ヘプタノエート,イソノナノエート) }、 NPG 'ジー {混 合 (イソオタタノエート,イソノナノエート) }、NPG'ジ一 {混合 (ブタノエート,トリデカノ エート) }、NPG'ジ一 {混合 (ブタノエート,テトラデカノエート) }、NPG'ジ一 {混合( ブタノエート,へキサデカノエート) }、NPG'ジー {混合(ブタノエート,ォクタデカノエ ート) }、NPG'ジー {混合 (へキサノエート,イソオタタノエート,イソノナノエート) }、N PG-ジ一 {混合(へキサノエート,イソオタタノエート,イソデカノエート) }、 NPG'ジ一 {混合 (ヘプタノエート,イソオタタノエート,イソノナノエート) }、NPG'ジー {混合 (へ プタノエート,イソオタタノエート,イソデカノエート) }、 NPG'ジー {混合 (オタタノエー ト,イソノナノエート,イソデカノエート) }、 TMP ·トリ - (ペンタノエート)、 TMP 'トリ一( へキサノエート)、 TMP ·トリ (ヘプタノエート)、 TMP ·トリ (オタタノエート)、 TMP .トリ (ノナノエート)、 TMP ·トリ (イソペンタノエート)、 TMP ·トリ一(2—ェチルブ チレート)、 TMP ·トリ (イソペンタノエート)、 ΤΜΡ·トリ (イソオタタノエート)、 TM Ρ·トリ—(2—ェチルへキサノエ一ト)、 ΤΜΡ·トリ—(イソノナノエート)、 ΤΜΡ·トリ— ( イソデカノエート)、 ΤΜΡ ·トリ -〔混合 (ブチレート、ォクタデカノエート)〕、 ΤΜΡ ·トリ -〔混合 (へキサノエート、へキサデカノエート)〕、 ΤΜΡ·トリ一〔混合 (ヘプタノエート 、トリデカノエート)〕、 ΤΜΡ ·トリ -〔混合 (オタタノエート、デカノエート)〕、 ΤΜΡ ·トリ - 〔混合 (オタタノエート、ノナノエート)〕ゝ ΤΜΡ·トリー〔混合 (プチレート、ヘプタノエー ト、ォクタデカノエート)〕、 ΤΜΡ·トリー〔混合(ペンタノエート、ヘプタノエート、トリデカ ノエート)〕、 TMP ·トリ 〔混合(へキサノエート、ヘプタノエート、オタタノエート)〕、 T MP ·トリノナノエート、 TMP ·トリ 〔混合(ヘプタノエート、ノナノエート)〕、 TMP ·トリ 〔混合 (ヘプタノエート、オタタノエート、ノナノエート)〕、又、 ΡΕ·テトラ(ペンタノエ 一ト)、 ΡΕ·テトラ (へキサノエ一ト)、 ΡΕ·テトラ (イソペンタノエート)、 ΡΕ·テトラ(2— ェチルブチレート)、 ΡΕ·テトラ(ヘプタノエート)、 ΡΕ·テトラ(イソヘプタノエート)、 ΡΕ 'テトラ (イソオタタノエート)、 ΡΕ·テトラ(2—ェチルへキサノエ一ト)、 ΡΕ·テトラ (ノナ ノエ一ト)、 ΡΕ·テトラ (イソノナノエート)及び ΡΕと炭素数 4〜9の直鎖状又は分岐状 カルボン酸の混合物とのエステル等である。
[0071] また、 NPG、 TMP及び PE以外のネオペンチルポリオール、例えば 2—メチルー 2 プロピルプロパン 1, 3 ジオール、 2, 2 ジェチルプロパンジオール、トリメチロ ールェタン及びトリメチロールへキサンと有機酸単独、又は混合したポリオールエス テル等も挙げられる。
[0072] リン酸エステルとしては、トリクレジルフォスフェート、クレジルジフエ-ルフォスフエ一 ト、プロピルフエ-ルジフエ-ルフォスフェート、ジプロピルフエニルフエニルフォスフエ ート、トリプロピルフォスフェート、ジブチルフエ-ルフエ-ルフォスフェート、ブチルフ ェ -ルジフエ-ルフォスフェート、トリブチルフエ-ルフォスフェート、トリ(2—ェチルへ キシル)フォスフェート、トリアルキルフエ-ルフォスフェート、アルキルフエ-ルフエ- ルフォスフェート等が挙げられる。
[0073] アルキルベンゼン又はアルキルナフタレンは、分岐又は直鎖の atーォレフインとベ ンゼン、トルエン又はナフタレン等の芳香族炭化水素をフッ化水素、硫酸、塩化アル ミニゥム等の触媒を用いてアルキルィ匕して得られ、主としてジアルキルィ匕芳香族炭化 水素を含む油である。アルキル基としては、主として C12のもので直鎖又は分岐のい ずれのものもこれに属する。
[0074] ポリオキシアルキレングリコールとしては、アルキレン基の炭素数が 2〜5、好ましく は 2〜3の直鎖状又は分岐状アルキレンォキシドの開環重合体である。アルキレンォ キシドとしては、エチレンォキシド、プロピレンォキシド、ブチレンォキシド、或いはそ れらの混合物、好ましくはプロピレンォキシドであり、好ましくはポリエチレングリコー ル、ポリプロピレングリコールを挙げることができ、分子量範囲 100〜2000のもの、好 ましくは 200〜1000のものである。分子の両端がアルキル基のもの、片端がアルキ ル基で片端カ^ド口キシル基のもの、両端ともヒドロキシル基のものが含まれる。このァ ルキル基は通常 C1〜C18の範囲のものである。
[0075] 本発明において潤滑油基油は、 2種以上の鉱油系基油又は合成油系基油の混合 物であって差し支えなぐ鉱油系基油と合成油系基油の混合物であっても差し支え ない。そして、上記混合物における 2種以上の基油の混合比は、任意に選ぶことがで きる。本発明で使用する潤滑油基油には、粘度に関して特別な限定条件はないが、 例えば、 40°Cにおける動粘度が 1〜: L000mm2Zsの範囲程度のものが望ましい。
[0076] 本発明の潤滑油組成物は、前記のような潤滑油基油と共に、前述の炭素繊維構造 体を有効量含む。
[0077] その量は、潤滑油組成物の用途や潤滑油基油の種類等によって異なる力 凡そ 0 . 1〜5%である。 0. 1%未満では、潤滑油組成物における摩擦係数の低下等の改 質が十分なものとならない虞れがある。一方、 5%より多くなると、潤滑油組成物の粘 度特性を必要以上に上げてしまう虞れがある。
[0078] 本発明に係る潤滑油組成物中には、炭素繊維構造体以外に、その目的を阻害し ない範囲で公知の種々の添加剤をカ卩えることができる。添加できる添加剤としては、 他の摩擦調整剤、酸化防止剤、金属系清浄剤、無灰分散剤、鲭止め剤、腐食防止 剤、粘度指数向上剤、流動点降下剤、ゴム膨潤剤、消泡剤、着色剤等が例示できる 。これらは単独で、あるいは数種類組合わせて用いることができる。
[0079] 他の摩擦調整剤としては、例えば、極圧剤、摩耗防止剤、油性剤が挙げられる。
[0080] 前記極圧剤及び磨耗防止剤としては、例えば、硫黄系化合物やリン系化合物等が 挙げられる。硫黄系化合物としては、例えば、ジスルフイド類、硫化ォレフィン類、硫 化油脂類力 またリン系化合物としては、例えば、リン酸モノエステル類、リン酸ジエス テル類、リン酸トリエステル類、亜リン酸モノエステル類、亜リン酸ジエステル類、亜リ ン酸トリエステル類、及びこれらのエステル類とアミン類、アルカノールァミン類との塩 等が挙げられる。また上記の硫黄系、ジチォリン酸亜鉛系、リン系化合物等は単独で 使用してもょ 、が、二種以上組み合わせて添加してもよ 、。
[0081] 油性剤としては、脂肪族モノカルボン酸、例えば力プリル酸、ラウリン酸、ミリスチン 酸、ノルミチン酸、ステアリン酸、ォレイン酸等が挙げられ、また脂肪族ジカルボン酸 としてはアジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セバシン酸、ゥンデカン二 酸、ドデカン二酸、ブラシル酸、テトラデカン二酸、その他 c 〜c の脂肪族ジカル
15 30
ボン酸、及びこれら脂肪族 (ジ)カルボン酸のエステル、脂肪族アルコール、脂肪族ァ ミン、脂肪族ァミン塩、脂肪酸アミド等が挙げられる。これらは単独で、あるいは数種 類組合わせて用いることができる。
[0082] 酸ィ匕防止剤としては、フ ノール系化合物ゃァミン系化合物など、潤滑油に一般的 に使用されているものであればいずれのものでも用いることができ、例えば、 2, 6 - ジ tert ブチル 4 メチルフエノールなどのアルキルフエノール類、メチレン 4 , 4 ビス(2, 6 ジ tert—ブチルー 4 メチルフエノール)などのビスフエノール類 、フエ-ルー a—ナフチルァミンなどのナフチルァミン類、ジアルキルジフエニルアミ ン類、ジー 2—ェチルへキシルジチオリン酸亜鉛などのジアルキルジチオリン酸亜鉛 類、フエノチアジン類等が挙げられる。
[0083] 金属系清浄剤としては、例えば、アルカリ土類金属スルフォネート、アルカリ土類金 属フエネート、アルカリ土類金属サリチレート、アルカリ土類金属ホスフォネート等が挙 げられる。
[0084] 無灰分散剤としては、例えば、ァルケ-ルコハク酸イミド、ベンジルァミン、アルキル ポリアミン、又はそのこれらのホウ素化合物や硫黄ィ匕合物による変性品、ァルケ-ル コハク酸エステル等が挙げられる。
[0085] 前記鲭止め剤としては、例えば、ァルケ-ルコハク酸、ァルケ-ルコハク酸エステル 、多価アルコールエステル、石油スルフォネート、ジノ-ルナフタレンスルフォネート 等が挙げられる。
[0086] 腐食防止剤としては、例えば、ベンゾトリアゾール系、チアジアゾール系、イミダゾー ル系の化合物等が挙げられる。
[0087] 粘度指数向上剤としては、非分散型粘度指数向上剤や分散型粘度指数向上剤が 使用でき、具体的には、ポリメタタリレート類や、エチレン プロピレン共重合体、ポリ イソブチレン、ポリスチレン、スチレン ジェン共重合体等のォレフィンコポリマー類 等が挙げられる。
[0088] 流動点降下剤としては、例えば、使用する潤滑油基油に適合するポリメタタリレート 系のポリマーなどが使用できる。
[0089] 消泡剤としては、例えば、ジメチルシリコーンやフルォロシリコーンなどのシリコーン 類が使用可能である。
[0090] これらの添加剤の添加量は任意である力 通常、潤滑油組成物全量基準で、消泡 剤の含有量は 0. 0005〜1質量%、粘度指数向上剤の含有量は 1〜30質量%、腐 食防止剤の含有量は 0. 005〜1質量%、その他の添加剤の含有量は、それぞれ 0. 1〜 15質量%程度である。
[0091] 本発明の潤滑油組成物は、例えば、二輪車、四輪車等の自動車用、発電用、舶用 等のガソリンエンジン、ディーゼルエンジン、ガスエンジン用の潤滑油、自動車、建設 機械、農業機械等のギヤ一油、自動変速機用あるいは手動変速機用の潤滑油、そ の他、繊維用潤滑油、圧延用潤滑油、ルームエアコン、カーエアコン、電気冷蔵庫な どの冷凍機用潤滑油などの用途に広く用いることができる。
[0092] 燃料油鉬.成物
本発明に係る燃料油組成物は、上記したような微細炭素繊維構造体を燃料油中に 配合してなるものである力 本発明において用いられる燃料油とは、主として燃焼を 目的とした液状炭化水素燃料油を意味しており、通常、沸点が 30〜700°C程度、好 ましくは 40〜600°C程度のものである。液状炭化水素燃料油としては種々の種類の ものが使用でき、特に制限されるものではない。具体的には例えば、石油、廃棄物、 オイル'シエール、オイル'サンド、石炭、ノィォマスなど力 誘導される任意の液状 炭化水素燃料油が使用可能である。このうち特に、原油または石油留分を主成分と するものを用いることが好まし 、。
[0093] 本発明の液状炭化水素燃料油として用いることができる原油としては、パラフィン基 原油、ナフテン基原油、混合基原油、特殊原油、またはこれらの混合物など、任意の 原油が使用可能である。また、本発明の液状炭化水素燃料油として用いることができ る石油留分とは、上記の原油またはこれらの混合物を蒸留、分解、改質やその他の 精製処理などを適宜行うことによって得られる留分または残渣を意味しており、より具 体的には例えば、自動車エンジン用ガソリン、農業用内燃機関用ガソリン、林業用内 燃ガソリンなどのガソリン留分;燃料用ナフサなどに代表されるナフサ留分 (軽質ナフ サ、重質ナフサ、ホールレンジナフサなど);ジェット燃料、航空ガソリンなどに代表さ れるジ ット燃料留分;冷暖房用灯油、厨房用灯油、石油発動機用灯油、工業燃料 用灯油などに代表される灯油留分;自動車ディーゼルエンジン用軽油、加熱燃料用 軽油に代表される軽油留分;ボイラー用重油、ビル暖房用重油、船舶ディーゼルェ ンジン用重油、窯業用重油などに代表される重油留分 (JIS K 2205「重油」で規定 される 1種 (A重油)、 2種 (B重油)や 3種 (C重油などを含む);およびこれらの混合物 等が挙げられる。
[0094] 廃棄物力 誘導される液状炭化水素燃料油としては、具体的には都市廃棄物、産 業廃棄物、廃油などの分解、精製その他の処理によって誘導されるものが挙げられ る。本発明における燃料油としては、上記したような任意の液状炭化水素燃料油およ びそれらの混合物が使用可能である。
[0095] 本発明の燃料油組成物は、前記のような燃料油と共に、前述の炭素繊維構造体を 有効量含む。
[0096] その量は、燃料油組成物の用途や燃料油の種類等によって異なる力 凡そ 0. 01 〜1%である。 0. 01%未満では、燃料油組成物における燃焼速度および燃焼効率 の向上、燃焼のクリーン化、静電気に対する安定性、金属および金属イオン封鎖作 用等の改質が十分なものとならない虞れがある。一方、 1%より多くなると、燃料油組 成物の粘度特性を必要以上に上げてしまう虞れがある。
[0097] 本発明に係る燃料油組成物中には、炭素繊維構造体以外に、その目的を阻害し ない範囲で公知の種々の添加剤をカ卩えることができる。添加できる添加剤としては、 例えば、メタノール、エタノールなどのアルコール、イソプロピルエーテル、メチルター シャリーブチルエーテル、メチルターシャリーアミルエーテルなどのエーテル、芳香族 アミン類などに代表されるオクタン価向上剤;硝酸エステルや有機過酸ィ匕物などに代 表されるセタン価向上剤;有機リン酸エステル、ハロゲンィ匕有機リン酸エステルなどに 代表される表面着火防止剤;サリチリデン誘導体などに代表される金属不活性化剤; 金属スルフォネート、金属フエネート、金属サリシレートなどに代表される金属清浄剤 ;ァルケ-ルコハク酸イミド、アルキルポリアミン、ポリエーテルポリアミンなどに代表さ れる無灰清浄分散剤;グリコール、グリセリン、グリコールエーテルなどに代表される 氷結防止剤;グリコールエーテル、ホウ素化合物などに代表される微生物殺菌剤;金 属ナフテネート、金属スルフォネート、硫酸アルコールエステルなどに代表される助 燃剤;エチレン 酢酸ビュル共重合体、アルケニルコハク酸アミドなどに代表される 低温流動性向上剤;脂肪族ァミン、アルケニルコハク酸エステルなどの腐食防止剤; ァ-オン系、カチオン系、両性系界面活性剤などの帯電防止剤;ァゾ染料などの着 色剤などを挙げることができる。これらは単独で、あるいは数種類組合わせて用いる ことができる。
[0098] これら添加剤を添加する際の添加量も任意である力 通常添加剤の個々の添加量 は組成物全量基準で 0. 5質量%以下、望ましくは 0. 2質量%以下である。
[0099] 本発明の燃料油組成物は、例えば、ベースとなる燃料油の上記したような各種用途 に応じて広く用いることができる。
実施例
[0100] 以下、実施例により本発明を更に詳しく説明するが、本発明は下記の実施例に何 ら限定されるものではない。
なお、以下において、各物'性値は次のようにして測定した。
[0101] <面積基準の円相当平均径>
まず、粉砕品の写真を SEMで撮影する。得られた SEM写真において、炭素繊維 構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなも のは輪郭が不明瞭であるために対象としな力つた。 1視野で対象とできる炭素繊維構 造体 (60〜80個程度)はすべて用い、 3視野で約 200個の炭素繊維構造体を対象と した。対象とされた各炭素繊維構造体の輪郭を、画像解析ソフトウェア WinRoof ( 商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造 体の円相当径を計算し、これを平均化した。
[0102] <嵩密度の測定 >
内径 70mmで分散板付透明円筒に lg粉体を充填し、圧力 0. IMpa、容量 1. 3リツ トルの空気を分散板下部力 送り粉体を吹出し、自然沈降させる。 5回吹出した時点 で沈降後の粉体層の高さを測定する。このとき測定箇所は 6箇所とることとし、 6箇所 の平均を求めた後、嵩密度を算出した。
[0103] <ラマン分光分析 >
堀場ジョバンイボン製 LabRam800を用い、アルゴンレーザーの 514nmの波長を 用いて測定した。
[0104] <TG燃焼温度 >
マックサイエンス製 TG— DTAを用い、空気を 0. 1リットル Z分の流速で流通させ ながら、 10°CZ分の速度で昇温し、燃焼挙動を測定した。燃焼時に TGは減量を示 し、 DTAは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義し た。
[0105] <X線回折 >
粉末 X線回折装置 CiDX3532、 日本電子製)を用いて、ァニール処理後の炭素繊 維構造体を調べた。 Cu管球で 40kV、 30mAで発生させた Κ α線を用いることとし、 面間隔の測定は学振法 (最新の炭素材料実験技術 (分析 ·解析編)、炭素材料学会 編)に従い、シリコン粉末を内部標準として用いた。
[0106] <粉体抵抗および復元性 >
CNT粉体 lgを秤取り、榭脂製ダイス(内寸 L 40mm, W 10mm, H 80mm) に充填圧縮し、変位および荷重を読み取る。 4端子法で定電流を流して、そのときの 電圧を測定し、 0. 9gZcm3の密度まで測定したら、圧力を解除し復元後の密度を測 定した。粉体抵抗については、 0. 5、 0. 8および 0. 9g/cm3に圧縮したときの抵抗 を測定することとする。
[0107] <粒状部の平均粒径、円形度、微細炭素繊維との比 >
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。 [0108] 対象とされた各炭素繊維構造体にお!、て、炭素繊維相互の結合点である粒状部を 1つの粒子とみなして、その輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷 商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計 算し、これを平均化して粒状部の平均粒径とした。また、円形度 (R)は、前記画像解 析ソフトウェアを用いて測定した輪郭内の面積 (A)と、各粒状部の実測の輪郭長さ (L) より、次式により各粒状部の円形度を求めこれを平均化した。
[0109] [数 1]
R=A*4 π /L2
[0110] さらに、対象とされた各炭素繊維構造体における微細炭素繊維の外径を求め、これ と前記各炭素繊維構造体の粒状部の円相当径から、各炭素繊維構造体における粒 状部の大きさを微細炭素繊維との比として求め、これを平均化した。
[0111] <粒状部の間の平均距離 >
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。
[0112] 対象とされた各炭素繊維構造体において、粒状部が微細炭素繊維によって結ばれ ている箇所を全て探し出し、このように微細炭素繊維によって結ばれる隣接する粒状 部間の距離 (一端の粒状体の中心部力 他端の粒状体の中心部までを含めた微細 炭素繊維の長さ)をそれぞれ測定し、これを平均化した。
[0113] <炭素繊維構造体の破壊試験 >
蓋付バイアル瓶中に入れられたトルエン 100mlに、 30 gZmlの割合で炭素繊維 構造体を添加し、炭素繊維構造体の分散液試料を調製した。
[0114] このようにして得られた炭素繊維構造体の分散液試料に対し、発信周波数 38kHz 、出力 150wの超音波洗浄器((株)エスェヌディ製、商品名: USK-3)を用いて、超音 波を照射し、分散液試料中の炭素繊維構造体の変化を経時的に観察した。
[0115] まず超音波を照射し、 30分経過後において、瓶中から一定量 2mlの分散液試料を 抜き取り、この分散液中の炭素繊維構造体の写真を SEMで撮影する。得られた SE M写真の炭素繊維構造体中における微細炭素繊維 (少なくとも一端部が粒状部に 結合している微細炭素繊維)をランダムに 200本を選出し、選出された各微細炭素繊 維の長さを測定し、 D 平均値を求め、これを初期平均繊維長とした。
50
[0116] 一方、得られた SEM写真の炭素繊維構造体中における炭素繊維相互の結合点で ある粒状部をランダムに 200個を選出し、選出された各粒状部をそれぞれ 1つの粒子 とみなしてその輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷商事株式会 社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計算し、この D
5 平均値を求めた。そして得られた D 平均値を粒状部の初期平均径とした。
0 50
[0117] その後、一定時間毎に、前記と同様に瓶中から一定量 2mlの分散液試料を抜き取 り、この分散液中の炭素繊維構造体の写真を SEMで撮影し、この得られた SEM写 真の炭素繊維構造体中における微細炭素繊維の D 平均長さおよび粒状部の D
50 50 平均径を前記と同様にして求めた。
[0118] そして、算出される微細炭素繊維の D 平均長さが、初期平均繊維長の約半分とな
50
つた時点 (本実施例においては超音波を照射し、 500分経過後)における、粒状部の D 平均径を、初期平均径と対比しその変動割合 (%)を調べた。
50
[0119] 合成例 1
CVD法によって、トルエンを原料として炭素繊維構造体を合成した。
[0120] 触媒としてフエ口セン及びチォフェンの混合物を使用し、水素ガスの還元雰囲気で 行った。トルエン、触媒を水素ガスとともに 380°Cに加熱し、生成炉に供給し、 1250 °Cで熱分解して、炭素繊維構造体 (第一中間体)を得た。
[0121] なお、この炭素繊維構造体 (第一中間体)を製造する際に用いられた生成炉の概 略構成を図 8に示す。図 8に示すように、生成炉 1は、その上端部に、上記したような トルエン、触媒および水素ガスからなる原料混合ガスを生成炉 1内へ導入する導入ノ ズル 2を有している力 さらにこの導入ノズル 2の外側方には、円筒状の衝突部 3が設 けられている。この衝突部 3は、導入ノズル 2の下端に位置する原料ガス供給口 4より 反応炉内に導出される原料ガスの流れに干渉し得るものとされている。なお、この実 施例において用いられた生成炉 1では、導入ノズル 2の内径 a、生成炉 1の内径 b、筒 状の衝突部 3の内径 c、生成炉 1の上端カゝら原料混合ガス導入口 4までの距離 d、原 料混合ガス導入口 4から衝突部 3の下端までの距離 e、原料混合ガス導入口 4から生 成炉 1の下端までの距離を fとすると、各々の寸法比は、おおよそ a :b : c : d: e :f=l . 0
: 3. 6 : 1. 8 : 3. 2 : 2. 0 : 21. 0に形成されていた。また、反応炉への原料ガス導入速 度は、 1850NLZmin、圧力は 1. 03atmとした。
[0122] 上記のようにして合成された中間体を窒素中で 900°Cで焼成して、タールなどの炭 化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定の R値は 0.
98であった。また、この第一中間体をトルエン中に分散して電子顕微鏡用試料調製 後に観察した SEMおよび TEM写真を図 1、 2に示す。
[0123] さらにこの第二中間体をアルゴン中で 2600°Cで高温熱処理し、得られた炭素繊維 構造体の集合体を気流粉砕機にて粉砕し、本発明にお ヽて用いられる炭素繊維構 造体を得た。
得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調 製後に観察した SEMおよび TEM写真を図 3、図 4Aおよび図 4Bに示す。
[0124] また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して 観察した SEM写真を図 5に、またその粒度分布を表 1に示した。
[0125] さらに高温熱処理前後において、炭素繊維構造体の X線回折およびラマン分光分 析を行い、その変化を調べた。結果を図 6および 7に示す。
[0126] また、得られた炭素繊維構造体の円相当平均径は、 72. 8 m、嵩密度は 0. 003 2g/cm3、ラマン ID/IG比値は 0. 090、 TG燃焼温度は 786°C、面間隔は 3. 383 オングストローム、粉体抵抗値は 0. 0083 Ω 'cm、復元後の密度は 0. 25gZcm3で めつに。
さらに炭素繊維構造体における粒状部の粒径は平均で、 443nm (SD207nm)で あり、炭素繊維構造体における微細炭素繊維の外径の 7. 38倍となる大きさであった 。また粒状部の円形度は、平均値で 0. 67(SD0. 14)であった。
[0127] また、前記した手順によって炭素繊維構造体の破壊試験を行ったところ、超音波印 加 30分後の初期平均繊維長(D )は、 12. 8 mであったが、超音波印加 500分後
50
の平均繊維長(D )は、6. 7 mとほぼ半分の長さとなり、炭素繊維構造体において 微細炭素繊維に多くの切断が生じたことが示された。し力しながら、超音波印加 500 分後の粒状部の平均径 (D )を、超音波印加 30分後の初期初期平均径 (D )と対
50 50 比したところ、その変動 (減少)割合は、わずか 4. 8%であり、測定誤差等を考慮する と、微細炭素繊維に多くの切断が生じた負荷条件下でも、切断粒状部自体はほとん ど破壊されることなぐ繊維相互の結合点として機能していることが明らかとなった。
[0128] なお、合成例 1で測定した各種物性値を、表 2にまとめた。
[0129] [表 1]
Figure imgf000031_0001
[0130] [表 2]
Figure imgf000031_0002
[0131] 合成例 2
生成炉カ の排ガスの一部を循環ガスとして使用し、この循環ガス中に含まれるメタ ン等の炭素化合物を、新鮮なトルエンと共に、炭素源として使用して、 CVD法により 微細炭素繊維を合成した。
[0132] 合成は、触媒としてフエ口セン及びチォフェンの混合物を使用し、水素ガスの還元 雰囲気で行った。新鮮な原料ガスとして、トルエン、触媒を水素ガスとともに予熱炉に て 380°Cに加熱した。一方、生成炉の下端より取り出された排ガスの一部を循環ガス とし、その温度を 380°Cに調整した上で、前記した新鮮な原料ガスの供給路途中に て混合して、生成炉に供給した。
[0133] なお、使用した循環ガスにおける組成比は、体積基準のモル比で CH 7. 5%、 C
4
H 0. 3%、 C H 0. 7%、 C H 0. 1%、 CO 0. 3%、 N 3. 5%、 H 87. 6
6 6 2 2 2 6 2 2
%であり、新鮮な原料ガスとの混合によって、生成炉へ供給される原料ガス中におけ るメタンとベンゼンとの混合モル比 CH /C H (なお、新鮮な原料ガス中のトルエン
4 6 6
は予熱炉での加熱によって、 CH: C H = 1 : 1に 100%分解したものとして考慮した
4 6 6
。;)が、 3. 44となるように、混合流量を調整された。
[0134] なお、最終的な原料ガス中には、混合される循環ガス中に含まれて!/、た、 C H、 C
2 2
Hおよび COも炭素化合物として当然に含まれている力 これらの成分は、いずれも
2 6
ごく微量であり、実質的に炭素源としては無視できるものであった。
[0135] そして、合成例 1と同様に、生成炉において、 1250°Cで熱分解して、炭素繊維構 造体 (第一中間体)を得た。
[0136] なお、この炭素繊維構造体 (第一中間体)を製造する際に用いられた生成炉の構 成は、円筒状の衝突部 3がない以外は、図 8に示す構成と同様のものであり、また反 応炉への原料ガス導入速度は、合成例 1と同様に、 1850NLZmin、圧力は 1. 03a tmとした。
[0137] 上記のようにして合成された第一中間体をアルゴン中で 900°Cで焼成して、タール などの炭化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定の R値は 0. 83であった。また、第一中間体をトルエン中に分散して電子顕微鏡用試料 調製後に観察したところ、その SEMおよび TEM写真は図 1、 2に示す合成例 1のも のとほぼ同様のものであった。
[0138] さらにこの第二中間体をアルゴン中で 2600°Cで高温熱処理し、得られた炭素繊維 構造体の集合体を気流粉砕機にて粉砕し、本発明に係る炭素繊維構造体を得た。
[0139] 得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調製 後に観察した SEMおよび TEM写真は、図 3、図 4Aおよび図 4Bに示す合成例 1の ものとほぼ同様のものであった。
[0140] また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して 観察し粒度分布を調べた。得られた結果を表 3に示す。
[0141] さらに高温熱処理前後において、炭素繊維構造体の X線回折およびラマン分光分 析を行い、その変化を調べたところ、図 6および 7に示す合成例 1の結果とほぼ同様 のものであった。
[0142] また、得られた炭素繊維構造体の円相当平均径は、 75. 8 m、嵩密度は 0. 004 g/cm3,ラマン I /1比値は 0. 086、 TG燃焼温度は 807°C、面間隔は 3. 386オン
D G
ダストローム、粉体抵抗値は 0. 0077 Ω - cm,復元後の密度は 0. 26gZcm3であつ た。
[0143] さらに炭素繊維構造体における粒状部の粒径は平均で、 349. 5nm (SD180. In m)であり、炭素繊維構造体における微細炭素繊維の外径の 5. 8倍となる大きさであ つた。また粒状部の円形度は、平均値で 0. 69(SD0. 15)であった。
[0144] また、前記した手順によって炭素繊維構造体の破壊試験を行ったところ、超音波印 加 30分後の初期平均繊維長(D )は、 12. 4 mであったが、超音波印加 500分後
50
の平均繊維長(D )は、 6. 3 mとほぼ半分の長さとなり、炭素繊維構造体において
50
微細炭素繊維に多くの切断が生じたことが示された。し力しながら、超音波印加 500 分後の粒状部の平均径 (D )を、超音波印加 30分後の初期初期平均径 (D )と対
50 50 比したところ、その変動 (減少)割合は、わずか 4. 2%であり、測定誤差等を考慮する と、微細炭素繊維に多くの切断が生じた負荷条件下でも、切断粒状部自体はほとん ど破壊されることなぐ繊維相互の結合点として機能していることが明らかとなった。
[0145] なお、合成例 2で測定した各種物性値を、表 4にまとめた。
[0146] [表 3]
Figure imgf000034_0001
表 4] 合成例 2
F¾ft当平均铵 75. 8 im
0.004 g/cm3
I D/ I 〇 . 08 6
TG撚焼溫虔 807V
(002) 面間隔 3. 386 A
粉 ί本抵抗 fit (a 0.5g/cmS) 0. 01 6 1 £S * cm
粉偉抵抗 fit (at0.8g/cms) 0. 0089 Ω * cm
粉慨讓 (at0.9g/cmS) 0. 00772 * cm
復元後の密度 0. 2 6 g/ cm3
[0148] 実施例 1
市販の鉱物油系潤滑油 (製品名:アポロイル.プロメンテ、出光興産 (株)製) 100質 量部に、上記合成例 1で得られた炭素繊維構造体を 0.5質量部で添加し、ビーズミ ールを用いて、分散処理することにより、炭素繊維構造体を分散させた潤滑油組成 物を製造した。
この潤滑油組成物を 120時間静置した後観察したところ、炭素繊維構造体は潤滑 油中に均一に微分散しており、沈殿等は生じて 、なかった。
[0149] 実施例 2
合成例 1で得られた炭素繊維構造体に代えて、実施例 2で得られた炭素繊維構造 体を用いる以外は、実施例 1と同様にして潤滑油組成物を製造した。
[0150] 実施例 3
市販の無鉛ガソリン (オクタン価 98) 100質量部に、上記合成例 1で得られた炭素 繊維構造体を 0. 05質量部で添加し、ビーズミールを用いて、分散処理することによ り、炭素繊維構造体を分散させた燃料油組成物を製造した。
この燃料油組成物を 120時間静置した後観察したところ、炭素繊維構造体は燃料 油中に均一に微分散しており、沈殿等は生じて!/、なかった。

Claims

請求の範囲
[1] 潤滑油基油に、外径 15〜: LOOnmの炭素繊維力も構成される 3次元ネットワーク状 の炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出す る態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は 前記炭素繊維の成長過程にお 、て形成されてなるものである炭素繊維構造体を、全 体の 0. 1〜5質量%の割合で含有してなることを特徴とする潤滑油組成物。
[2] 前記炭素繊維構造体は、ラマン分光分析法で測定される I
D Λ G力 0. 2以下であ ることを特徴とする請求項 1に記載の潤滑油組成物。
[3] 前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも 2つ以上の炭 素化合物を用いて、生成されたものである請求項 1または 2に記載の潤滑油組成物。
[4] 燃料油に、外径 15〜: LOOnmの炭素繊維力も構成される 3次元ネットワーク状の炭 素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態 様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記 炭素繊維の成長過程にお ヽて形成されてなるものである炭素繊維構造体を、全体の 0. 01〜1質量%の割合で含有してなることを特徴とする燃料油組成物。
[5] 前記炭素繊維構造体は、ラマン分光分析法で測定される I であ
D Λ力 0. 2以下
G
ることを特徴とする請求項 4に記載の燃料油組成物。
[6] 前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも 2つ以上の炭 素化合物を用いて、生成されたものである請求項 4または 5に記載の燃料油組成物。
PCT/JP2006/321680 2005-10-31 2006-10-30 潤滑油組成物および燃料油組成物 WO2007052617A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005317263A JP2007119694A (ja) 2005-10-31 2005-10-31 潤滑油組成物および燃料油組成物
JP2005-317263 2005-10-31

Publications (1)

Publication Number Publication Date
WO2007052617A1 true WO2007052617A1 (ja) 2007-05-10

Family

ID=38005770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321680 WO2007052617A1 (ja) 2005-10-31 2006-10-30 潤滑油組成物および燃料油組成物

Country Status (2)

Country Link
JP (1) JP2007119694A (ja)
WO (1) WO2007052617A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041885B2 (ja) * 2007-06-11 2012-10-03 Jx日鉱日石エネルギー株式会社 内燃機関摩擦損失低減方法
KR102067720B1 (ko) * 2018-04-27 2020-02-11 주식회사 만유켐텍 고체 연료용 첨가제 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070915A1 (en) * 2000-03-17 2001-09-27 Hyperion Catalysis International, Inc. Carbon nanotubes in fuels and lubricants
WO2005095687A1 (ja) * 2004-03-31 2005-10-13 Bussan Nanotech Research Institute Inc. 多様な構造を持つ微細な炭素繊維
WO2006025141A1 (ja) * 2004-08-31 2006-03-09 Bussan Nanotech Research Institute Inc. 炭素繊維構造体
JP2006083228A (ja) * 2004-09-14 2006-03-30 Kyodo Yushi Co Ltd 潤滑剤組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070915A1 (en) * 2000-03-17 2001-09-27 Hyperion Catalysis International, Inc. Carbon nanotubes in fuels and lubricants
WO2005095687A1 (ja) * 2004-03-31 2005-10-13 Bussan Nanotech Research Institute Inc. 多様な構造を持つ微細な炭素繊維
WO2006025141A1 (ja) * 2004-08-31 2006-03-09 Bussan Nanotech Research Institute Inc. 炭素繊維構造体
JP2006083228A (ja) * 2004-09-14 2006-03-30 Kyodo Yushi Co Ltd 潤滑剤組成物

Also Published As

Publication number Publication date
JP2007119694A (ja) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4573436B2 (ja) 脱ロウ処理を含まない合成潤滑剤および潤滑剤基油の製造方法
US6828282B2 (en) Lubricants containing carbon nanotubes
CN1304657C (zh) 碳纳米管在液体中的稳定分散体的制备
CN101090960B (zh) 润滑油基础油、内燃机用润滑油组合物和驱动传递装置用润滑油组合物
EP2633009B1 (en) Non-aqueous lubricant and fuel compositions comprising fatty acid esters of hydroxy- carboxylic acids, and uses thereof
US20090298725A1 (en) Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube
WO2003106600A1 (en) Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube
CA2341607A1 (en) Wide-cut synthetic isoparaffinic lubricating oils
JP4847106B2 (ja) 炭素繊維構造体
CN105647612A (zh) 一种含有纳米碳材料的润滑脂及其制备方法
EP2489637A1 (en) Cerium oxide nanoparticle additives and lubricant formulations containing the nanoparticle additives
BRPI0617637A2 (pt) óleo de motor a gasolina de dois tempos, método para reduzir a fumaça observável emitida de um motor a gasolina de dois tempos, e, uso de um lubrificante
JP2007239148A (ja) 微細炭素繊維構造体
KR20060060658A (ko) 탄소 섬유 구조체
WO2007052617A1 (ja) 潤滑油組成物および燃料油組成物
JP3719821B2 (ja) エンジン潤滑油及び潤滑方法
KR20080014789A (ko) 질화 붕소를 포함하는 고온 생물학적 윤활제 조성물
JP2016199616A (ja) エンジン油組成物
JP6072605B2 (ja) 内燃機関用潤滑油組成物
WO2019040576A1 (en) ASH-FREE LUBRICANTS FOR ENGINES FOR HIGH TEMPERATURE APPLICATIONS
JP2007124789A (ja) パンタグラフ用すり板
Zhang et al. Macroscale Superlubricity with High Pressure Enabled by Partially Oxidized Violet Phosphorus for Engineering Steel
JP2020041055A (ja) 潤滑油組成物
JP4613265B2 (ja) ローラーフォロワ型動弁系エンジン用潤滑油組成物
US20090047428A1 (en) Method for manufacturing carbon fibrous structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822609

Country of ref document: EP

Kind code of ref document: A1