WO2007049991A2 - Procede de fabrication d'un dispositif de frottement - Google Patents

Procede de fabrication d'un dispositif de frottement Download PDF

Info

Publication number
WO2007049991A2
WO2007049991A2 PCT/RU2006/000555 RU2006000555W WO2007049991A2 WO 2007049991 A2 WO2007049991 A2 WO 2007049991A2 RU 2006000555 W RU2006000555 W RU 2006000555W WO 2007049991 A2 WO2007049991 A2 WO 2007049991A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
temperature
pitch
product
article
Prior art date
Application number
PCT/RU2006/000555
Other languages
English (en)
French (fr)
Other versions
WO2007049991A3 (fr
Inventor
Valeriy Vasilyevich Kulakov
Ievgeniy Ivanovich Kramarenko
Original Assignee
Valeriy Vasilyevich Kulakov
Ievgeniy Ivanovich Kramarenko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeriy Vasilyevich Kulakov, Ievgeniy Ivanovich Kramarenko filed Critical Valeriy Vasilyevich Kulakov
Priority to CN2006800396799A priority Critical patent/CN101297014B/zh
Publication of WO2007049991A2 publication Critical patent/WO2007049991A2/ru
Publication of WO2007049991A3 publication Critical patent/WO2007049991A3/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure

Definitions

  • the invention relates to chemistry and metallurgy, to means for the manufacture of abrasive and frictional products.
  • a disadvantage of the known manufacturing methods is the formation of a friction surface with an unstable coefficient of friction during thermal exposure during operation.
  • a more perfect and closest analogue to the claimed is a method of manufacturing a friction product, including stapling carbon fiber, mechanical mixing of the stapled carbon fiber with a pitch powder by turbulent flow of the agent, the subsequent deposition of the mixture on the filter element by the action of the flow of the transporting agent with the formation of a press bag having the structure with different orientation of the fiber filaments throughout the volume, forming the workpiece by volume compression of the press bag at a temperature below the softening temperature of the pitch, molding the product by pressing the blank with simultaneous pressure and heat at a temperature higher than the softening temperature of the pitch and stabilizing heat treatment of the product (RU 2194057 2001-02-12 C08J5 / 14).
  • the implementation of the aforementioned method provides for the complete separation of the initial carbon graphite bundles to elementary filament fibers using relatively low-density carbonized fibers (with a density of not more than 1, 75 g / cm3).
  • the aforementioned practically excludes the possibility of using graphitized carbon fibers as feedstock, since the latter, without the use of special techniques, are excessively crushed at the stages of forming and pressing blanks, which ultimately leads to either the destruction of the friction product during operation or limits the production of the friction product with the required characteristics.
  • high-modulus (E> 400 GPa) and high-density (more than 1, 9 g / cm3) graphite fibers as a feedstock for the production of carbon-carbon friction products has several advantages, and namely: it allows to provide a density of at least 1, 85 g / cm3 on a sealed friction product for a shorter production cycle, reduce the oxidizability of the composite and provide the required anisotropy of thermal conductivity.
  • the most important factor when using graphitized fiber is that there are more opportunities to achieve the required values of the coefficient of friction without increasing wear.
  • the technical result achieved by the claimed method is to prevent the destruction of graphitized fibers at the technological stages of production of the brake disc.
  • a method of manufacturing a friction product including carbon fiber stapling, mechanical mixing of a stapled carbon fiber with a pitch powder by a turbulent flow of the carrier agent, subsequent deposition of the mixture on the filter element by the action of the conveying agent stream to form a press bag having a structure with different orientations of fiber filaments according to the entire volume, molding the workpiece by means of volumetric compaction of the press bag at temperature below the softening temperature of the pitch, molding the product by pressing the workpiece with simultaneous pressure and heat at a temperature higher than the softening temperature of the pitch and stabilizing the heat treatment of the product, due to the fact that the carbon fiber in the form of continuous bundles is sintered with a coke-forming polymer, formed into skeins from continuous bundles, and graphitized to a temperature of 2850-3250 ° C with tight packing skein.
  • oxidized carbon fiber is used as the carbon fiber.
  • the claimed technical result is achieved using any polyacrylonitrile fiber (PAN).
  • PAN polyacrylonitrile fiber
  • carbonized or oxidized carbon fiber can be used.
  • oxidized fiber in the production of carbon-carbon composite materials complicates the production process due to the need
  • the initial carbon fiber in the form of continuous bundles is sacked with a coke-forming polymer (sizing, for example, an epoxy aliphatic composition, polyvinyl alcohol, polyacrylamide or phenol-formaldehyde resin) and is formed into skeins (bundles) that are tightly packed (for example, in a graphite container) and graphitized to a temperature of 2850- 3250 0 C.
  • a coke-forming polymer sizing, for example, an epoxy aliphatic composition, polyvinyl alcohol, polyacrylamide or phenol-formaldehyde resin
  • the sizing content was either too high (for phenol-formaldehyde resin more than 60% of unseparated filaments), or very small - 5% ⁇ 10% of unseparated filaments.
  • an optimal amount of coke-forming polymer for example, an epoxy-aliphatic composition, 2% ⁇ 4%, (the ratio of epoxy to aliphatic polymer is 1: 10)
  • the content of graphite tow fragments that are not separated up to filaments (5-20 thousand fibers 0 10 ⁇ m) into carbon - the carbon composite is at least 20-30% and its strength reaches the values required to ensure the performance of the composite, for example, in aircraft brakes.
  • partial controlled sintering of filaments occurs (for example, with a filament diameter of 10 ⁇ m, the number of filaments in the bundle can be up to 350 thousand filaments).
  • the degree of sintering during graphitization is determined by the type and amount of coke-forming polymer.
  • the bundles in the skeins processed in the aforementioned manner disintegrate, but not to individual filaments, as in the known method, but to the formation of bundle fragments containing from 2 to 20 thousand filaments, which determine their preservation in subsequent technological stages.
  • the number of sintered filaments in the flagellum is regulated by the selection of the polymer concentration and its type. The value of linear wear does not exceed 1 ⁇ m for braking with a fairly stable coefficient of friction (see table).
  • the carbon fiber thus formed by the action of a turbulent flow of a transporting agent, where carbon dioxide, nitrogen, etc. can be used as the mentioned agent, however, as the cheapest and most affordable
  • an air agent is selected, it is subjected to mechanical mixing with pitch powder (for example, coal tar pitch according to GOST 10200-83) and the mixture is deposited on the filter element in the forming chamber to form a press bag having a structure saturated with pitch powder and with different orientations of fiber filaments throughout volume.
  • the blank of the product is molded from the press bag by volumetric compaction to a predetermined strain at a temperature below the softening temperature of the pitch.
  • preform has the strength necessary for subsequent transformation without breaking the structure and excessive grinding of carbon fiber filaments.
  • the workpiece is heated to a temperature above the softening temperature of the pitch (160 ... 200 0 C), pressed to a predetermined size with a holding time (for example, 5 minutes per 1 mm of the product thickness), and to stabilize the structure and give it solid properties bodies with the necessary frictional parameters are subjected to stabilizing heat treatment (for example, in the mode of carbonization and graphitization).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Braking Arrangements (AREA)
  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

СПОСОБ ИЗГОТОВЛЕНИЯ ФРИКЦИОННОГО ИЗДЕЛИЯ
Изобретение относится к химии и металлургии, к средствам изготовления изделий абразивного и фрикционного назначения.
Известны способы изготовления фрикционного изделия посредством смешения волокна со связующим полимерным материалом, формования заготовки изделия из смеси посредством объемного уплотнения смеси и формования изделия посредством прессования заготовки с химико-термическим воздействием в режиме полимеризации связующего материала (см., например, SU 1114340, С 08 J 5/14, 1984 г.).
Недостатком известных способов изготовления является образование фрикционной поверхности с нестабильным коэффициентом трения при тепловом воздействии в режиме эксплуатации.
Более совершенным и наиболее близким аналогом заявляемому является способ изготовления фрикционного изделия, включающий штапелирование углеродного, волокна, механическое смешивание турбулентным потоком транспортирующего агента штапелированного углеродного волокна с порошком пека, последующее осаждение смеси на фильтрующем элементе действием потока транспортирующего агента с образованием пресс-пакета, имеющего структуру с различной ориентацией филаментов волокна по всему объему, формование заготовки изделия посредством объемного уплотнения пресс-пакета при температуре ниже температуры размягчения пека, формование изделия посредством прессования заготовки с одновременным воздействием давления и тепла при температуре более температуры размягчения пека и стабилизирующую термообработку изделия (RU 2194057 2001-02-12 C08J5/14).
Однако реализация упомянутого способа предусматривает полное разделение исходных углеродных графитированных жгутов до элементарных волокон-филаментов при использовании относительно низкоплотных карбонизованных волокон (плотностью не более 1 ,75 г/смЗ). Упомянутое практически исключает возможность применения в качестве исходного сырья графитированных углеродных волокон, т.к. последние без применения специальных приемов чрезмерно измельчаются на стадиях формования и прессования заготовок, что, в конечном счете, приводит либо к разрушению фрикционного изделия при эксплуатации либо ограничивает производство фрикционного изделия с требуемыми характеристиками.
Вместе с тем, использование высокомодульных (E > 400 ГПа) и высокоплотных (более 1 ,9 г/смЗ) графитированных волокон в качестве исходного сырья для производства углерод-углеродных фрикционных изделий имеет ряд преимуществ, а именно: позволяет обеспечить на уплотненном фрикционном изделии плотность не менее 1 ,85 г/смЗ за более короткий технологический цикл, снизить окисляемость композита и обеспечить требуемую анизотропию теплопроводности. Наиболее важным фактором при использовании графитированного волокна является то, что имеются более широкие возможности для достижения требуемых значений коэффициента трения без увеличения износа.
Техническим результатом, достигаемым заявляемым способом, является предотвращение разрушений графитированных волокон на технологических переделах производства тормозного диска.
Указанный результат достигается способом изготовления фрикционного изделия, включающим штапелирование углеродного волокна, механическое смешивание турбулентным потоком транспортирующего агента штапелированного углеродного волокна с порошком пека, последующее осаждение смеси на фильтрующем элементе действием потока транспортирующего агента с образованием пресс-пакета, имеющего структуру с различной ориентацией филаментов волокна по всему объему, формование заготовки изделия посредством объемного уплотнения пресс-пакета при температуре ниже температуры размягчения пека, формование изделия посредством прессования заготовки с одновременным воздействием давления и тепла при температуре более температуры размягчения пека и стабилизирующую термообработку изделия, за счет того, что перед штапелированием углеродное волокно в виде непрерывных жгутов аппретируется коксообразующим полимером, формируется в пасмы из непрерывных жгутов, и графитируется до температуры 2850- 3250°C при плотной упаковке пасм.
А также тем, что в качестве углеродного волокна используют карбонизованное углеродное волокно.
А также тем, что в качестве углеродного волокна используют окисленное углеродное волокно.
Количественная характеристика состояний компонентов изделия в процессе технологического передела иллюстрируется данными таблицы.
Реализация заявляемого способа осуществляется следующим образом.
Заявляемый технический результат достигается при использовании любого полиакрилнитрильного волокна (ПАН). В качестве исходного волокна может быть использовано карбонизованное или окисленное углеродное волокно. Однако применение окисленного волокна в производстве углерод-углеродных композиционных материалов приводит к усложнению производственного процесса из-за необходимости
lаменяюшии лист применения дополнительного дорогостоящего оборудования для улавливания и обезвреживания ядовитых летучих соединений (цианидов), что в конечном счете сказывается на стоимости продукции,
Исходное углеродное волокно в виде непрерывных жгутов аппретируется коксообразующим полимером (аппретом, например, эпоксидноалифатическая композиция, поливиниловый спирт, полиакриламид или фенолформальдегидная смола) и формируется в пасмы (мотки), которые плотно упаковываются (например, в графитовый контейнер) и графитируются до температуры 2850-32500C. Опытным путем подобрано оптимальное количество коксообразующего полимера, например, эпоксидно-алифатической композиции, 2%÷4%, в которой соотношение эпоксидной смолы к алифатическому полимеру (полиакриламиду) составляет 1 :10. В тоже время, для остальных указанных полимеров содержание аппрета оказалось либо слишком большим (для фенолформальдегидной смолы больше 60% неразделенных филаментов), либо очень малым - 5%÷10% неразделенных филаментов. При оптимальном количестве коксообразующего полимера, например, эпоксидно- алифатической композиции, 2%÷4%, (соотношение эпоксидной смолы к алифатическому полимеру 1 :10) содержание неразделенных до филаментов графитированных фрагментов жгута (5-20 тыс. волокон 0 10 мкм) в углерод- углеродном композите составляет не менее 20- 30 % и его прочность достигает значений, требуемых для обеспечения работоспособности композита, например, в тормозах самолетов. В процессе графитации углеродного волокна, пропитанного полимером заданной концентрации и уложенного в виде пасм в графитовый контейнер, происходит частичное регулируемое спекание филаментов (например, при диаметре филамента - 10 мкм количество филаментов в жгуте может составлять до 350 тыс. филаментов). В данном случае степень спекания при графитации определяется типом и количеством коксообразующего полимера. При последующем штапелировании жгуты в обработанных упомянутым образом пасмах распадается, но не до отдельных филаментов, как в известном способе, а до образования фрагментов жгута, содержащих от 2 до 20 тыс. филаментов, предопределяющих их сохранение на последующих технологических переделах. Количество спеченных филаментов в жгутике регулируется подбором концентрации полимера и его видом. Величина линейного износа не превышает 1 мкм на торможение при достаточно стабильном коэффициенте трения (см. таблицу).
Сформированное таким образом углеродное волокно действием турбулентного потока транспортирующего агента, где в качестве упомянутого агента может быть использован углекислый газ, азот и др., однако как самый дешевый и доступный в
аменяющий лист применении выбран воздушный агент, подвергается механическому смешиванию с порошком пека (например, каменноугольный пек по ГОСТ 10200-83) и осаждению смеси на фильтрующем элементе в камере формирования с образованием пресс-пакета, имеющего структуру насыщенную порошком пека и с различной ориентацией филаментов волокна по всему объему. Из пресс-пакета формуют заготовку изделия посредством объемного уплотнения до заданной величины деформации при температуре ниже температуры размягчения пека. В этом технологическом переделе как результат описанного процесса филаменты легко измельчаются, а фрагменты жгутов сохраняются.
Полученная таким образом заготовка обладает прочностью, необходимой для последующей трансформации без нарушения структуры и чрезмерного измельчения филаментов углеродного волокна. Для получения фрикционного изделия заготовку подвергают нагреву до температуры выше температуры размягчения пека (160...2000C), прессуют до заданных размеров с выдержкой (например, 5 минут на 1 мм толщины изделия), а для стабилизации структуры и придания ей свойств твердого тела с необходимыми фрикционными параметрами подвергают стабилизирующей термообработке (например, в режиме карбонизации и графитации).
В результате обеспечивается требуемая прочность фрикционного изделия и другие эксплуатационные свойства.
ш
CD
<г>
Figure imgf000007_0001

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ изготовления фрикционного изделия, включающий штапелирование углеродного волокна, механическое смешивание турбулентным потоком транспортирующего агента штапелированного углеродного волокна с порошком пека, последующее осаждение смеси на фильтрующем элементе действием потока транспортирующего агента с образованием пресс-пакета, имеющего структуру с различной ориентацией филаментов волокна по всему объему, формование заготовки изделия посредством объемного уплотнения пресс-пакета при температуре ниже температуры размягчения пека, формование изделия посредством прессования заготовки с одновременным воздействием давления и тепла при температуре более температуры размягчения пека и стабилизирующую термообработку изделия, отличающийся тем, что перед штапелированием углеродное волокно в виде непрерывных жгутов аппретируется коксообразующим полимером, формируется в пасмы из непрерывных жгутов, и графитируется до температуры 2850-32500C при плотной упаковке пасм.
2. Способ по п.1 , отличающийся тем, что в качестве углеродного волокна используют карбонизованное углеродное волокно.
3. Способ по п.1 , отличающийся тем, что в качестве углеродного волокна используют окисленное углеродное волокно.
lаменяющии лист
PCT/RU2006/000555 2005-10-24 2006-10-24 Procede de fabrication d'un dispositif de frottement WO2007049991A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800396799A CN101297014B (zh) 2005-10-24 2006-10-24 摩擦制品的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2005132646/04A RU2294942C1 (ru) 2005-10-24 2005-10-24 Способ изготовления фрикционного изделия
RU2005132646 2005-10-24

Publications (2)

Publication Number Publication Date
WO2007049991A2 true WO2007049991A2 (fr) 2007-05-03
WO2007049991A3 WO2007049991A3 (fr) 2007-06-21

Family

ID=37968240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000555 WO2007049991A2 (fr) 2005-10-24 2006-10-24 Procede de fabrication d'un dispositif de frottement

Country Status (3)

Country Link
CN (1) CN101297014B (ru)
RU (1) RU2294942C1 (ru)
WO (1) WO2007049991A2 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350498B (zh) * 2011-09-22 2013-04-03 山东金麒麟股份有限公司 一种c/c复合材料刹车片及其制备方法
RU2510387C1 (ru) * 2012-11-22 2014-03-27 Открытое акционерное общество "Авиационная корпорация "Рубин" (ОАО "АК "Рубин") Способ получения фрикционного композиционного углерод-углеродного материала и материал
CN107474798A (zh) * 2017-08-17 2017-12-15 苏州曼里尼斯金属科技有限公司 一种用废旧刹车片制备摩擦材料的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256801A (en) * 1979-12-14 1981-03-17 Raybestos-Manhattan, Incorporated Carbon fiber/flame-resistant organic fiber sheet as a friction material
SU952887A1 (ru) * 1977-06-06 1982-08-23 Предприятие П/Я М-5409 Способ получени углеродного фрикционного издели
RU2002763C1 (ru) * 1991-08-15 1993-11-15 Государственный научно-исследовательский институт конструкционных материалов на основе графита Способ получени фрикционных изделий из углерод-углеродных материалов
RU2194057C2 (ru) * 2001-02-12 2002-12-10 Общество с ограниченной ответственностью "Термар" Способ изготовления фрикционного изделия
RU2199553C1 (ru) * 2001-07-04 2003-02-27 Закрытое акционерное общество Научно-производственный центр "Ланта-Карбон" Фрикционное изделие и способ его изготовления
CN1580100A (zh) * 2004-05-14 2005-02-16 武汉理工大学 汽车钢制同步器齿环碳纤维摩擦材料及用法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU952887A1 (ru) * 1977-06-06 1982-08-23 Предприятие П/Я М-5409 Способ получени углеродного фрикционного издели
US4256801A (en) * 1979-12-14 1981-03-17 Raybestos-Manhattan, Incorporated Carbon fiber/flame-resistant organic fiber sheet as a friction material
RU2002763C1 (ru) * 1991-08-15 1993-11-15 Государственный научно-исследовательский институт конструкционных материалов на основе графита Способ получени фрикционных изделий из углерод-углеродных материалов
RU2194057C2 (ru) * 2001-02-12 2002-12-10 Общество с ограниченной ответственностью "Термар" Способ изготовления фрикционного изделия
RU2199553C1 (ru) * 2001-07-04 2003-02-27 Закрытое акционерное общество Научно-производственный центр "Ланта-Карбон" Фрикционное изделие и способ его изготовления
CN1580100A (zh) * 2004-05-14 2005-02-16 武汉理工大学 汽车钢制同步器齿环碳纤维摩擦材料及用法

Also Published As

Publication number Publication date
WO2007049991A3 (fr) 2007-06-21
CN101297014B (zh) 2011-10-05
RU2294942C1 (ru) 2007-03-10
CN101297014A (zh) 2008-10-29

Similar Documents

Publication Publication Date Title
US7575799B2 (en) Carbon fiber containing ceramic particles
US3084394A (en) Method of making carbon articles
US20060261504A1 (en) Carbon-carbon composite preform made with carbon fiber and pitch binder
EP0714869B1 (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
FR2460350A1 (fr) Procede de production de produits composites carbone-fibres de carbone destines a etre utilises comme disques de freins d&#39;aeronefs
EP0554024B1 (en) Process for preparing carbon/carbon composite preform and carbon/carbon composite
DE60010845T3 (de) Geformtes Verbundmaterial für Bremsen und Verfahren zu seiner Herstellung
EP0601808B1 (en) Process for producing carbon preform
WO2007049991A2 (fr) Procede de fabrication d&#39;un dispositif de frottement
EP1930619A2 (de) Frikionsbelastbare Scheiben aus faserverstärkter Keramik
RU2510387C1 (ru) Способ получения фрикционного композиционного углерод-углеродного материала и материал
MXPA04012730A (es) Materiales a base de betun isotropo para aislamiento termico.
GB2069988A (en) Method of producing filter pads
RU2194057C2 (ru) Способ изготовления фрикционного изделия
US3993738A (en) High strength graphite and method for preparing same
JPH06183835A (ja) 短繊維強化c/cコンポジット用プリフォーム体の製造方法および該方法で製造されたプリフォーム体
JPS6385116A (ja) 炭素繊維断熱材
RU2135854C1 (ru) Фрикционный композиционный материал и способ его получения
RU2199553C1 (ru) Фрикционное изделие и способ его изготовления
JPH0768064B2 (ja) 炭素繊維強化複合材料
RU2781577C1 (ru) Тормозное устройство и способ изготовления его элементов
RU2784696C1 (ru) Тормозное устройство из композиционного материала и способ изготовления его элементов силицированием углеродсодержащего материала
RU2488569C1 (ru) Пресс-пакет для производства фрикционных углерод-углеродных композиционных материалов и способ его получения
RU2484035C1 (ru) Связующее для производства фрикционных композиционных углерод-углеродных материалов, способ получения материала и материал
RU2778489C1 (ru) Элемент тормозного устройства и способ его изготовления

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039679.9

Country of ref document: CN

NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06824455

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 06824455

Country of ref document: EP

Kind code of ref document: A2