WO2007049714A1 - エンジン制御装置 - Google Patents

エンジン制御装置 Download PDF

Info

Publication number
WO2007049714A1
WO2007049714A1 PCT/JP2006/321406 JP2006321406W WO2007049714A1 WO 2007049714 A1 WO2007049714 A1 WO 2007049714A1 JP 2006321406 W JP2006321406 W JP 2006321406W WO 2007049714 A1 WO2007049714 A1 WO 2007049714A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
engine
limit value
pto
fuel injection
Prior art date
Application number
PCT/JP2006/321406
Other languages
English (en)
French (fr)
Inventor
Shisei Kai
Masao Okada
Original Assignee
Isuzu Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Limited filed Critical Isuzu Motors Limited
Priority to US12/091,377 priority Critical patent/US7797098B2/en
Publication of WO2007049714A1 publication Critical patent/WO2007049714A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control device for controlling the fuel injection amount of a vehicle engine to which a PTO device (power take-off device) is connected when the PTO device is operated.
  • a PTO device power take-off device
  • a PTO device is connected to a vehicle engine in order to provide power to a bodywork device such as a pump.
  • the PTO device is switched to the non-operating side when the vehicle is running to provide power to the drive system of the vehicle, and is switched to the operating side when the vehicle is stopped and the bodywork device is working (during PTO work). They are designed to provide power to the bodywork equipment.
  • Patent Document 1 a control pattern showing the relationship between the engine speed and the fuel supply amount (injection amount) is prepared separately for when the vehicle travels and when the bodywork device is operated.
  • a fuel supply amount control device has been proposed that switches between fuel supply control based on a work control pattern (for PTO operation) and fuel supply control based on a travel control pattern in accordance with switching between device operation and non-operation.
  • the control device of Patent Document 1 has a fuel injection map for vehicle travel and a fuel injection map for PTO operation as engine control during PTO operation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-80934
  • the fuel injection map for PTO operation is fixed to the maximum value, that is, the fuel injection amount force when the accelerator opening is 100%. It is possible to consume more fuel than necessary during PTO operation. There was performance.
  • an object of the present invention is to provide an engine control device that can solve the above-described problems and prevent the fuel from being consumed more than necessary when the PTO device is operated.
  • the present invention provides an engine control device for controlling a fuel injection amount of the vehicle engine when the PTO device is connected to the vehicle engine and operating the PTO device.
  • the fuel injection amount of the vehicle engine is set in advance when the PTO switching means for switching the operation of the PTO apparatus is switched to the operating side by the PTO switching means.
  • PTO fuel limiting means for limiting to below the prescribed fuel limit value.
  • the PTO fuel restriction means is connected to restriction selection means for selecting operation or non-operation of the PTO fuel restriction means.
  • the PTO fuel limiting unit has a storage unit for storing the fuel limit value, and a limit value setting device for inputting the fuel limit value is connected to the storage unit. It's a life.
  • the PTO fuel limiting means is configured to correct the fuel limit value based on a cooling water temperature of the vehicle engine.
  • the storage means stores a plurality of fuel limit values corresponding to the engine speed.
  • the PTO fuel limiting means is configured to perform fuel injection when the predetermined fuel limit value set in advance is smaller than a fuel injection amount necessary to maintain idle rotation of the vehicle engine.
  • the amount is not limited.
  • the PTO fuel limiting means is connected to output a control signal to the fuel injection device of the vehicle engine, and when the PTO device is in operation, the fuel injection is performed.
  • the fuel injection amount supplied to the device is calculated based on the control conditions of the PTO device and the operating state of the vehicle engine.
  • the correction based on the cooling water temperature is performed such that when the cooling water temperature of the vehicle engine is lower than a predetermined temperature, the fuel limit value is increased as the cooling water temperature is lower, and when the temperature is equal to or higher than the predetermined temperature. It may not be.
  • FIG. 1 shows a system diagram of an engine control apparatus according to an embodiment of the present invention.
  • FIG. 2 is an example of a graph showing the relationship between engine speed and fuel limit value.
  • FIG. 3 is an example of a graph showing the relationship between the water temperature correction coefficient of the fuel limit value and the cooling water temperature.
  • FIG. 4 is a flow chart of fuel injection amount control when the PTO device is operated by the engine control device of the present embodiment.
  • the engine control device of the present embodiment controls a vehicle engine of a specially equipped vehicle such as a dump truck or a fire truck, and targets, for example, a diesel engine.
  • a vehicular engine (hereinafter referred to as an engine) 1 supplies fuel.
  • an engine control module (hereinafter referred to as ECM) 3 for controlling the fuel injection device 2 and the like.
  • the fuel injection device 2 includes an injector 21 provided for each cylinder, and these radiators 21 are connected to a common rail 22. Fuel that has been pressurized by the high-pressure pump 23 is stored in the common rail 22. The high-pressure pump 23 is connected to a fuel tank (not shown) and the supply amount of the fuel tank power is adjusted by the SCV valve 24.
  • the engine 1 is provided with a supercharger 4 having a compressor 41 and a turbine 42.
  • the intake air introduced through the air cleaner 43 is compressed by the compressor 41, cooled in the intercooler 44, and supplied to the combustion chamber 11 of the engine 1.
  • the exhaust from the combustion chamber 11 is converted to the turbine 42. After being driven, it is discharged through a post-processing device (not shown).
  • the engine 1 of the present embodiment is connected to a PTO device 12 for taking out power and transmitting it to a bodywork device (not shown).
  • a PTO device 12 for taking out power and transmitting it to a bodywork device (not shown).
  • the vehicle engine 1 An engine control device 5 for controlling the fuel injection amount is provided in the vehicle.
  • the PTO device 12 of the present embodiment is provided in the transmission 14.
  • the PTO device 12 has, for example, a PTO clutch (not shown) provided between the output side of the transmission 14 and the input side of the bodywork device, and is activated when the PTO clutch is connected. The engine power is transmitted to the bodywork device. On the other hand, when the PTO clutch is disengaged, the PTO device 12 is deactivated and engine power is provided to the vehicle drive system.
  • the PTO device 12 is not limited to this, and various devices can be considered.
  • the engine control device 5 includes a PTO switch 51 serving as a PTO switching means for switching the operation and non-operation of the PTO device 12, and when the PTO device 51 is switched to the operation side by the PTO switch 51. And a PTO fuel limiting means for limiting the fuel injection amount of the engine 1 to be less than a predetermined fuel limit value set in advance.
  • the ECM3 serves as a PTO fuel limiting means.
  • the PTO switch 51 When the PTO switch 51 is On, the PTO clutch is connected and the PTO device 12 is activated. When the PTO switch 51 is Off, the PTO clutch is disconnected and the PTO device 12 is not Activated. The PTO switch 51 is connected to the ECM 3 so that the operation 'non-operation state of the PTO device 12 is detected by the ECM 3.
  • the ECM3 is connected with various sensors such as a coolant temperature sensor 15, an engine speed crank sensor 16, a cam angle sensor 17, a fuel temperature sensor 25, a common rail pressure sensor 26, and an accelerator opening sensor 31. Detection signals from sensors 15-17, 25, 26, 31 are input.
  • the coolant temperature sensor 15 of this embodiment is attached to the cylinder head 111 and detects the temperature of the cooling water flowing through the cooling water passage of the cylinder head 111.
  • the ECM 3 is connected to the ignition switch 32 in order to obtain a start / stop signal of the engine 1.
  • ECM3 is connected to the knotter 33 for power supply.
  • the ECM 3 is connected to the fuel injection device 2 so as to output a control signal.
  • the fuel injection amount of the engine 1 is controlled.
  • ECM3 is basically the engine speed detected by the engine speed crank sensor 16 and the accelerator position detected by the accelerator position sensor 31.
  • the engine 1 is controlled by reading the operation state of the engine 1 and calculating the fuel injection amount to be supplied to the fuel injection device 2 based on the operation state.
  • the ECM 3 calculates the target fuel injection amount to be supplied to the fuel injection device 2 based on the control conditions of the PTO device 12 and the operating state of the engine 1, and the engine 1
  • the actual fuel injection amount is determined by determining whether the target fuel injection amount is less than a predetermined fuel limit value set in advance.
  • the operating state of the engine 1 when the PTO device 12 is activated is read by the ECM3 from the engine speed, the accelerator opening of the accelerator opening sensor 31 or the accelerator opening of the operating lever (not shown) of the bodywork device. .
  • the ECM 3 is connected to a fuel limit switch 52 that serves as a limit selection means for selecting whether the PTO fuel limit means is activated or not.
  • the fuel limit switch 52 is selected to be either On or Off.
  • ECM3 basically operates as described above when both PTO switch 51 and fuel limit switch 52 are on. The limited fuel injection amount is executed.
  • the ECM3 also turns off the fuel limit lamp 53 when the fuel limit switch 52 is on, and turns it off when the fuel limit switch 52 is off. It is designed to inform the state of switch 52.
  • the ECM 3 has a storage means for storing a predetermined fuel limit value set in advance, and a limit value setting device for inputting the fuel limit value is connected to the storage means.
  • a memory 54 serving as a storage means is provided in the ECM3, and the memory 54 is connected to an external communication device (for example, a PC, etc.) that forms a limit value setting device via an external communication terminal of the ECM3. ) Connected to 55.
  • an external communication device for example, a PC, etc.
  • a plurality of fuel limit values corresponding to the engine speed are input by the external communication device 55 and stored in the memory 54.
  • the memory 54 is a known storage device, and various devices such as a flash memory can be considered.
  • the fuel limit value (upper limit value) of the fuel injection amount when the PTO device 12 is operated is stored in advance in the memory 54 of the ECM 3.
  • the fuel limit value is set appropriately according to the required output of the bodywork device, for example.
  • the PTO device 12 is activated, the actual fuel injection amount is limited to less than the fuel limit value stored in the memory 54. This prevents the fuel from being injected beyond the fuel limit and prevents the fuel from being consumed more than necessary.
  • the ECM 3 of the present embodiment basically limits the fuel injection amount when the PTO switch 51 is On and the fuel limit switch 52 is On, but a predetermined fuel limit value set in advance. If (the fuel limit value stored in the memory 54) is smaller than the fuel injection amount required to maintain the idling speed of the vehicle engine 1 (hereinafter referred to as the minimum idle injection amount ⁇ ⁇ ⁇ ⁇ )! Do not limit the fuel injection amount.
  • the ECM 3 corrects the fuel limit value stored in the memory 54 based on the coolant temperature of the vehicle engine 1 detected by the coolant temperature sensor 15.
  • the graph in Fig. 3 shows the relationship between the water temperature correction factor and the cooling water temperature.
  • the horizontal axis indicates the cooling water temperature, and the vertical axis indicates the water temperature correction coefficient.
  • the water temperature correction coefficient set on the vertical axis is added to the fuel limit value. Correct the fuel limit value. In the region where the cooling water temperature is less than 60 degrees, the water temperature correction factor is set so that it becomes higher as the cooling water temperature becomes lower. If the cooling water temperature is 60 ° C or higher, 1 is added to the fuel limit value as the water temperature correction coefficient, and no correction is made.
  • the fuel injection amount can be appropriately limited, and the fuel injection amount can be limited by the fuel limit value. Can be optimally applied.
  • the ECM 3 limits the fuel injection amount based on a plurality of fuel limit values corresponding to the engine speed.
  • it is stored in the memory 54 of the ECM 3 as a relationship map (or table) between the engine speed and the fuel limit value as shown in the graph of FIG.
  • the ECM 3 detects the engine speed by the engine speed crank sensor 16 when the PTO device 12 is operated, and reads the fuel limit value from the map based on the engine speed.
  • the map stored in the memory 54 of the ECM 3 can be changed as appropriate by the external communication device 55 described above. That is, as shown in FIG. 2, the fuel limit value varies depending on the engine speed, but the fuel limit value can be arbitrarily set according to the engine speed.
  • an ECM3 etc. is provided with an operation switch for arbitrarily operating the fuel limit value, and the fuel limit value is raised or lowered by the operation switch.
  • the fuel limit value from 1500 to 3000 rpm is uniformly 80 mm 3.
  • the fuel limit value can be set to 70 mm 3. Become.
  • step S 1 it is determined whether or not the PTO switch 51 is on and the fuel injection restriction switch is on. If it is determined in step S1 that both the PTO switch 51 and the fuel limit switch 52 are on, the process proceeds to step S2 and the engine speed is read. on the other hand, If it is determined in step S 1 that at least one of the PTO switch 51 and the fuel limit switch 52 is Off, the fuel injection amount is not limited, and the fuel is injected at the calculated fuel injection amount.
  • step S3 the fuel limit value (Qlimit) is read from the map of FIG. 2 described above based on the engine speed read in step S2.
  • the fuel limit value (the maximum value of the fuel injection amount) is read from the fuel limit table data of the RPM shaft stored in the memory 54 of the ECM3.
  • step S4 the fuel limit value read in step S3 is corrected based on the cooling temperature. Specifically, based on the coolant temperature detected by the coolant temperature sensor 15, the water temperature correction value is read from the correction map (see FIG. 3) stored in the memory 54 of the ECM 3. Then, the water temperature correction value is added to the fuel limit value obtained in step S3 to correct the fuel limit value.
  • a target fuel injection amount is calculated based on the accelerator operation amount (accelerator opening) detected by the accelerator opening sensor 31.
  • the target fuel injection amount may be calculated based on the operation amount of the operating means for the PTO operation (for example, the accelerator opening of the operating lever of the bodywork device) in addition to the accelerator operation amount.
  • step S6 it is determined whether or not the target fuel injection amount calculated in step S5 exceeds the fuel limit value corrected in step S3.
  • step S8 the fuel limit value is less than the minimum idle injection amount (for example, the target fuel injection amount at idling). Judge whether there is. If it is determined that the fuel limit value is less than the minimum idle injection amount, the fuel limit value is set to the actual fuel injection amount (hereinafter referred to as the actual fuel injection amount (Qinj)) in step S9. On the other hand, the fuel limit is less than the minimum idle injection amount! If it is determined to be ⁇ , in step S10, the minimum idle injection amount is set to the actual fuel injection amount.
  • the minimum idle injection amount for example, the target fuel injection amount at idling.
  • step S6 determines whether the target fuel injection amount does not exceed the fuel limit value. If it is determined in step S6 that the target fuel injection amount does not exceed the fuel limit value, the target fuel injection amount is set to the actual fuel injection amount in step S7.
  • the actual fuel injection amount is set in step S7, step S9, or step S10. After that, fuel is injected by the fuel injection device 2 with the set actual fuel injection amount.
  • the fuel injection amount is limited to less than the fuel limit value, so that it is possible to prevent the fuel from being consumed more than necessary.
  • the fuel limit value using the external communication device 55, etc., it is possible to limit the fuel injection amount during operation of the PTO device 12 to an arbitrary fixed value or less according to the customer's request. Therefore, no more fuel than necessary is consumed when the PTO device 12 is activated.
  • the fuel limit value based on the coolant temperature
  • the temperature of the engine 1 or the PTO device 12 is different, such as after the engine is warmed up at low temperatures, the fuel is adjusted according to the friction.
  • the limit value can be adjusted optimally.
  • the fuel limit value can be arbitrarily set, for example, the fuel limit value can be optimally set according to the rotational characteristics of the PTO device 12.
  • the fuel limit value is smaller than the fuel injection amount necessary for maintaining the idling rotation of the engine 1, the fuel injection amount is not limited, so that the minimum engine rotation is guaranteed and an error occurs. Even if the fuel limit value is set smaller than necessary, problems such as engine stall can be prevented.
  • the storage means may be configured as an external memory from which ECM force can be removed.
  • an external switch or the like for arbitrarily operating the fuel / fuel limit value may be provided in the external memory, and the fuel / fuel limit value may be increased or decreased by the external switch.
  • the storage device and limit value setting device may be integrally formed and attached to or removed from the ECM3!

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 PTO装置の作動時に燃料が必要以上に消費されることを防止できるエンジン制御装置を提供する。  車両用エンジン1にPTO装置12が接続され、そのPTO装置12の作動時に、上記車両用エンジン1の燃料噴射量を制御するためのエンジン制御装置5において、上記PTO装置12の作動・非作動を切り替えるためのPTO切替手段と、そのPTO切替手段により上記PTO装置12が作動側に切り替えられた場合に、上記車両用エンジン1の燃料噴射量を、予め設定される所定の燃料制限値未満に制限するためのPTO燃料制限手段3とを備えたものである。

Description

明 細 書
エンジン制御装置
技術分野
[0001] 本発明は、 PTO装置 (動力取出し装置)が接続された車両用エンジンの燃料噴射 量を、その PTO装置の作動時に制御するためのエンジン制御装置に関するものであ る。
背景技術
[0002] 従来、ダンプカー、消防車などの特装車において、ポンプなどの架装装置に動力 を供するために、車両のエンジンに PTO装置を接続したものがある。例えば、 PTO 装置は、車両の走行時には非作動側に切り替えられて車両の駆動系に動力を供し、 車両を停車して架装装置の作業を行う場合 (PTO作業時)には作動側に切り替えら れ架装装置に動力を供するようになっている。
[0003] ところで、車両走行時と架装装置の作業時とでは、必要とされる動力特性が異なる ので、エンジンの制御パターンを切り替えることが望まし 、。
[0004] 例えば、特許文献 1には、エンジン回転数と燃料供給量 (噴射量)との関係が示さ れた制御パターンを、車両走行時と架装装置の作業時とで別に用意し、 PTO装置の 作動,非作動の切替にあわせて、作業用(PTO作動時用)制御パターンによる燃料 供給制御と、走行用制御パターンによる燃料供給制御とを切り替える燃料供給量制 御装置が提案されている。その特許文献 1の制御装置は、車両走行用の燃料噴射マ ップと、 PTO作動時におけるエンジン制御として PTO作動時用の燃料噴射マップと を、各々有している。
[0005] 特許文献 1 :特開 2000— 80934号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、従来の制御装置では、 PTO作動時用の燃料噴射マップは、最大値 すなわちアクセル開度 100%時の燃料噴射量力 車両走行用の燃料噴射マップに 対して、固定されているものであって、 PTO作動時に必要以上に燃料を消費する可 能性があった。
[0007] 例えば、大型車両に比較的小型の装置を架装する場合など、車両走行時に必要 な出力に比べて架装装置作業時に必要とされる出力が小さな場合に、架装装置作 業時 (PTO作動時)にアクセルを全開にすると車両用エンジンに燃料が過度に供給 されることとなり、燃料が無駄に消費されてしまうという問題がある。
[0008] そこで、本発明の目的は、上記課題を解決し、 PTO装置の作動時に燃料が必要以 上に消費されることを防止できるエンジン制御装置を提供することにある。
課題を解決するための手段
[0009] 上記目的を達成するために本発明は、車両用エンジンに PTO装置が接続され、そ の PTO装置の作動時に、上記車両用エンジンの燃料噴射量を制御するためのェン ジン制御装置において、上記 PTO装置の作動 '非作動を切り替えるための PTO切 替手段と、その PTO切替手段により上記 PTO装置が作動側に切り替えられた場合 に、上記車両用エンジンの燃料噴射量を、予め設定される所定の燃料制限値未満 に制限するための PTO燃料制限手段とを備えたものである。
[0010] 好ましくは、上記 PTO燃料制限手段に、その PTO燃料制限手段の作動,非作動を 選択するための制限選択手段が接続されるものである。
[0011] 好ましくは、上記 PTO燃料制限手段は、上記燃料制限値を記憶するための記憶手 段を有し、その記憶手段に上記燃料制限値を入力するための制限値設定装置が接 続されるちのである。
[0012] 好ましくは、上記 PTO燃料制限手段は、上記燃料制限値を上記車両用エンジンの 冷却水温に基づいて補正するように構成されたものである。
[0013] 好ましくは、上記記憶手段には、エンジン回転数に応じた複数の燃料制限値が記 憶されるものである。
[0014] 好ましくは、上記 PTO燃料制限手段は、上記予め設定される所定の燃料制限値が 上記車両用エンジンのアイドル回転を維持するのに必要な燃料噴射量よりも小さい 場合には、燃料噴射量の制限を行わないものである。
[0015] 好ましくは、上記 PTO燃料制限手段は、上記車両用エンジンの燃料噴射装置に制 御信号を出力すべく接続されると共に、上記 PTO装置の作動時に、上記燃料噴射 装置に供給される燃料噴射量を、上記 PTO装置の制御条件および上記車両用ェン ジンの運転状態に基づき算出するものである。
[0016] 上記冷却水温に基づいた補正は、上記車両用エンジンの冷却水温力 所定温度 未満のとき、冷却水温が低いほど燃料制限値が高くなるよう行われ、上記所定温度 以上のとき、行われないものでもよい。
発明の効果
[0017] 本発明によれば、 PTO装置の作動時に燃料が必要以上に消費されることを防止で きると!、う優れた効果を発揮するものである。
図面の簡単な説明
[0018] [図 1]図 1は、本発明の一実施形態に係るエンジン制御装置のシステム図を示す。
[図 2]図 2は、エンジン回転数と燃料制限値との関係を示すグラフの一例である。
[図 3]図 3は、燃料制限値の水温補正係数と冷却水温との関係を示すグラフの一例で ある。
[図 4]図 4は、本実施形態のエンジン制御装置による PTO装置作動時の燃料噴射量 制御のフロー図である。
符号の説明
[0019] 1 車両用エンジン
3 ECM (PTO燃料制限手段)
5 エンジン制御装置
12 PTO装置
51 PTOスィッチ(PTO切替手段)
発明を実施するための最良の形態
[0020] 以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。本実施形態 のエンジン制御装置は、ダンプカー、消防車などの特装車の車両用エンジンを制御 するものであり、例えば、ディーゼルエンジンを対象とする。
[0021] まず、図 1に基づき本実施形態のエンジン制御装置を説明する。
[0022] 図 1に示すように、車両用エンジン (以下、エンジンという) 1は、燃料を供給するた めの燃料噴射装置 2と、その燃料噴射装置 2などを制御するエンジン制御モジュール (以下、 ECMという) 3とを備える。
[0023] 燃料噴射装置 2は、各気筒毎に設けられたインジェクタ 21を備え、それらインジエタ タ 21はコモンレール 22に接続される。コモンレール 22には高圧ポンプ 23により加圧 された燃料が貯留される。高圧ポンプ 23は、燃料タンク(図示せず)などに接続され、 その燃料タンク力もの供給量が SCV弁 24により調整される。
[0024] エンジン 1には、コンプレッサ 41とタービン 42とを有する過給機 4が設けられる。ェ ァクリーナ 43を通って導入された吸気は、コンプレッサ 41により圧縮された後、インタ クーラ 44において冷却されて、エンジン 1の燃焼室 11に供給され、その燃焼室 11か らの排気は、タービン 42を駆動した後、図示しない後処理装置等を通って排出され るようになっている。
[0025] 本実施形態のエンジン 1には、動力を取出して架装装置(図示せず)に伝達するた めの PTO装置 12が接続され、その PTO装置 12の作動時に、上記車両用エンジン 1 の燃料噴射量を制御するためのエンジン制御装置 5が、車両に設けられる。
[0026] 本実施形態の PTO装置 12は、変速機 14に設けられる。 PTO装置 12は、例えば、 変速機 14の出力側と架装装置の入力側との間に設けられた PTOクラッチ(図示せず )を有しており、その PTOクラッチが接続されると作動状態となりエンジン動力を架装 装置に伝達するようになっている。一方、 PTOクラッチが切断される場合、 PTO装置 12は非作動状態となりエンジン動力は車両駆動系に供される。なお、 PTO装置 12 は、これに限定されず、様々なものが考えられる。
[0027] エンジン制御装置 5は、上記 PTO装置 12の作動.非作動を切り替えるための PTO 切替手段をなす PTOスィッチ 51と、その PTOスィッチ 51により上記 PTO装置 12が 作動側に切り替えられた場合に、上記エンジン 1の燃料噴射量を、予め設定される所 定の燃料制限値未満に制限するための PTO燃料制限手段とを備える。詳しくは後 述するが、本実施形態では、上記 ECM3が PTO燃料制限手段をなす。
[0028] PTOスィッチ 51は、 Onまたは Offのいずれか一方が選択されるようになっている。
PTOスィッチ 51が Onの場合には PTOクラッチが接続され PTO装置 12が作動状態 となり、 PTOスィッチ 51が Offの場合には PTOクラッチが切断され PTO装置 12は非 作動状態となる。その PTOスィッチ 51は、 ECM3に接続されており、 PTO装置 12の 作動 '非作動状態が ECM3により検出されるようになっている。
[0029] ECM3には、クーラント温度センサ 15、エンジン回転数クランクセンサ 16、カム角 センサ 17、燃料温度センサ 25およびコモンレール圧力センサ 26やアクセル開度セ ンサ 31などの各種センサが接続され、それら各種センサ 15〜 17、 25、 26、 31から の検出信号が入力される。本実施形態のクーラント温度センサ 15は、シリンダヘッド 111に取り付けられ、シリンダヘッド 111の冷却水路を流通する冷却水の温度を検出 する。
[0030] また、 ECM3はエンジン 1の始動 ·停止信号を取得すべくィグニッシヨンスィッチ 32 に接続される。 ECM3は電力供給用のノ ッテリー 33に接続される。
[0031] ECM3は、上記燃料噴射装置 2に制御信号を出力すべく接続され、車両走行時( PTO装置 12の非作動時)および架装装置の作業時 (PTO装置 12の作動時)に、上 記エンジン 1の燃料噴射量を制御する。
[0032] ECM3は、 PTO装置 12の非作動時(車両走行時)、基本的には、エンジン回転数 クランクセンサ 16で検出されるエンジン回転数やアクセル開度センサ 31で検出され るアクセル開度など力 エンジン 1の運転状態を読み取り、その運転状態に基づき、 燃料噴射装置 2に供給すべき燃料噴射量などを算出して、エンジン 1を制御する。
[0033] 一方、 ECM3は、 PTO装置 12の作動時には、 PTO装置 12の制御条件およびェ ンジン 1の運転状態に基づき、燃料噴射装置 2に供給すべき目標燃料噴射量を算出 し、そのエンジン 1の目標燃料噴射量が、予め設定される所定の燃料制限値未満で あるカゝ否かを判断して、実際の燃料噴射量を決定するようにしている。 PTO装置 12 の作動時のエンジン 1の運転状態は、 ECM3が、エンジン回転数、アクセル開度セン サ 31のアクセル開度または架装装置の操作レバー(図示せず)のアクセル開度など から読み取る。
[0034] 本実施形態では、 ECM3に、 PTO燃料制限手段の作動 '非作動を選択するため の制限選択手段をなす燃料制限スィッチ 52が接続される。その燃料制限スィッチ 52 は、 Onまたは Offのいずれか一方が選択されるようになっている。 ECM3は、 PTOス イッチ 51および燃料制限スィッチ 52がいずれも Onの場合には、基本的には、上述 した燃料噴射量の制限を実行する。また、 ECM3は、燃料制限ランプ 53を、燃料制 限スィッチ 52が On場合には点灯、燃料制限スィッチ 52が Off場合には消灯させるこ とで、ドライバーや架装装置の作業者などに燃料制限スィッチ 52の状態を知らせるよ うになつている。
[0035] また、 ECM3は、予め設定される所定の燃料制限値を記憶するための記憶手段を 有し、その記憶手段に上記燃料制限値を入力するための制限値設定装置が接続さ れる。具体的には、 ECM3内に、記憶手段をなすメモリー 54が設けられ、そのメモリ 一 54が、 ECM3の外部通信端子などを介して、制限値設定装置をなす外部通信装 置 (例えば、 PCなど) 55に接続される。本実施形態では、エンジン回転数に応じた複 数の燃料制限値が、上記外部通信装置 55により入力されて、メモリー 54内に記憶さ れる。なお、メモリー 54は、公知の記憶装置であって、例えばフラッシュメモリなど様 々なものが考えられる。
[0036] 次に本実施形態のエンジン制御装置 5による PTO装置 12の作動時の燃料噴射量 制御を説明する。
[0037] 本実施形態では、まず、予め ECM3のメモリー 54内に、 PTO装置 12の作動時の 燃料噴射量の燃料制限値 (上限値)を記憶させておく。その燃料制限値は、例えば、 架装装置の必要出力などに応じて適切に設定する。次に、 PTO装置 12が作動する 時に、実際の燃料噴射量を、メモリー 54内に記憶された燃料制限値未満に制限する 。これにより、燃料が燃料制限値を超えて噴射されなくなり、必要以上に燃料が消費 されることが防止される。
[0038] 本実施形態の ECM3は、基本的に、 PTOスィッチ 51が Onでかつ燃料制限スイツ チ 52が Onの場合には燃料噴射量の制限を行うが、予め設定される所定の燃料制限 値 (メモリー 54に記憶された燃料制限値)が上記車両用エンジン 1のアイドル回転を 維持するのに必要な燃料噴射量 (以下、最低アイドル噴射量と ヽぅ)よりも小さ!ヽ場合 には、燃料噴射量の制限を行わない。
[0039] また、 ECM3は、メモリー 54に記憶された燃料制限値を、クーラント温度センサ 15 により検出された上記車両用エンジン 1の冷却水温に基づいて補正する。
[0040] この点を図 3に基づき説明する。図 3のグラフは、水温補正係数と冷却水温の関係 を示すものであり、横軸が冷却水温を示し、縦軸が水温補正係数を示す。
[0041] 図 3に示すように、本実施形態では、冷却水温が所定温度(図例では、 60度)未満 であれば縦軸に設定されている水温補正係数を燃料制限値に積算して燃料制限値 に補正をかける。冷却水温が 60度未満の領域では、水温補正係数は、冷却水温が 低温なほど高くなるように設定される。また、冷却水温が 60度以上であれば、燃料制 限値に水温補正係数として 1を積算して、実質的に補正はかけない。以上により冷却 水温が低いとき、例えば、低外気温時ゃ暖機前などのエンジン 1の回転が安定しな いときに、燃料噴射量を適切に制限でき、燃料制限値による燃料噴射量の制限を最 適に適用することが可能となる。
[0042] また、 ECM3は、エンジン回転数に応じた複数の燃料制限値に基づいて、燃料噴 射量の制限を行う。本実施形態では、 ECM3のメモリー 54内に、図 2のグラフで示さ れるようなエンジン回転数と燃料制限値との関係力 マップ (またはテーブル)として 記憶される。 ECM3は、 PTO装置 12の作動時に、エンジン回転数クランクセンサ 16 でエンジン回転数を検出すると共に、そのエンジン回転数を基に、上記マップから燃 料制限値を読み取る。
[0043] この ECM3のメモリー 54に記憶されるマップは、上述した外部通信装置 55などに より、適宜変更することができる。つまり、図 2に示すように、エンジン回転数によって 燃料制限値が変化するが、このエンジン回転数に応じた燃料制限値を任意に設定 可能としてある。例えば、 ECM3などに、燃料制限値を任意に操作する操作スィッチ などを設けておき、その操作スィッチにより燃料制限値を上下させる。例えば、図 2に おいて、 1500から 3000rpmまでの燃料制限値は一律 80mm3である力 上記操作 スィッチにより燃料制限値を操作することによって、燃料制限値を 70mm3にしたりす ることが可能となる。
[0044] 次に、図 4に基づき本実施形態のエンジン制御装置 5による PTO装置 12の作動時 の燃料噴射量制御フローの一例を説明する。
[0045] ステップ S 1では、 PTOスィッチ 51が Onかつ燃料噴射制限スィッチが Onであるか 否かを判断する。ステップ S1で、 PTOスィッチ 51および燃料制限スィッチ 52が共に Onであると判断された場合、ステップ S 2に進みエンジン回転数を読み込む。一方、 ステップ S 1で、 PTOスィッチ 51および燃料制限スィッチ 52の少なくとも一方が Offで あると判断された場合は、燃料噴射量の制限を行わず、算出される燃料噴射量で噴 射する。
[0046] ステップ S3では、ステップ S2で読み込んだエンジン回転数を基に、上述した図 2の マップから燃料制限値 (Qlimit)を読み込む。つまり、 ECM3のメモリー 54に記憶さ れて 、る RPM軸の燃料制限テーブルデータから、燃料制限値 (燃料噴射量の最大 値)を読み出す。
[0047] ステップ S4では、ステップ S3で読み込んだ燃料制限値を冷却温度に基づき補正 する。具体的には、クーラント温度センサ 15により検出された冷却水温を基に、 ECM 3のメモリー 54内に格納された補正マップ(図 3参照)から、水温補正値を読み込む。 その後、その水温補正値をステップ S3で求めた燃料制限値に積算して、燃料制限 値を補正する。
[0048] ステップ S5では、アクセル開度センサ 31により検出されたアクセル操作量(ァクセ ル開度)に基づいて目標燃料噴射量を算出する。なお、 目標燃料噴射量は、ァクセ ル操作量以外にも PTO操作のための操作手段の操作量 (例えば、架装装置の操作 レバーのアクセル開度)に基づいて算出してもよい。
[0049] ステップ S6では、ステップ S5で算出された目標燃料噴射量が、ステップ S3で補正 した燃料制限値を超えるカゝ否かを判断する。
[0050] ステップ S6で目標燃料噴射量が燃料制限値を超えると判断された場合、さらに、ス テツプ S8で、燃料制限値が最低アイドル噴射量 (例えば、アイドリング時の目標燃料 噴射量)未満であるか否かを判断する。燃料制限値が最低アイドル噴射量未満であ ると判断された場合は、ステップ S9で燃料制限値を実際に噴射する燃料噴射量 (以 下、実燃料噴射量という (Qinj) )に設定し、一方、燃料制限値が最低アイドル噴射量 未満でな!ヽと判断された場合は、ステップ S 10で最低アイドル噴射量を実燃料噴射 量に設定する。
[0051] 一方、ステップ S6で目標燃料噴射量が燃料制限値を超えないと判断された場合、 ステップ S7で目標燃料噴射量を実燃料噴射量に設定する。
[0052] 以上のように、ステップ S7、ステップ S9またはステップ S 10で実燃料噴射量を設定 した後は、その設定された実燃料噴射量で燃料噴射装置 2により燃料を噴射させる。
[0053] このように本実施形態では、 PTO装置 12の作動時に、燃料噴射量を燃料制限値 未満に制限することで、必要以上に燃料が消費されることを防止することができる。ま た、その燃料制限値を、外部通信装置 55などにより設定することで、カスタマ一の要 求に応じて、 PTO装置 12作動中の燃料噴射量を任意の一定値以下に制限すること が可能となり、 PTO装置 12作動時に必要以上の燃料を消費することがなくなる。
[0054] それに加えて、燃料制限値を冷却水温に基づき補正することで、低温条件ゃ暖機 後などエンジン 1や PTO装置 12のフリクションの大きさが異なる場合に、そのフリクシ ヨンに応じて燃料制限値を最適に調整することができる。
[0055] また、燃料制限値を任意に設定できるので、例えば、 PTO装置 12の回転特性に応 じて最適に燃料制限値を設定することができる。
[0056] また、燃料制限値がエンジン 1のアイドル回転を維持するのに必要な燃料噴射量よ りも小さい場合には燃料噴射量の制限を行わないので、最低エンジン回転が保証さ れ、誤って燃料制限値を必要以上に小さく設定した場合でも、エンジンストール等の 不具合を防止できる。
[0057] なお、本発明は上述の実施形態に限定されず、様々な変形例や応用例が考えら れるものである。
[0058] 例えば、記憶手段を ECM力 取り外し可能な外部メモリーとして構成するようにし てもよい。さらに、その外部メモリーに燃料燃料制限値を任意に操作するための外部 スィッチなどを設けておき、その外部スィッチで燃料燃料制限値を上下させるようにし てもよい。すなわち、記憶装置と制限値設定装置とを一体で形成して ECM3に取付 け ·取外しするようにしてもよ!、。

Claims

請求の範囲
[1] 車両用エンジンに PTO装置が接続され、その ΡΤΟ装置の作動時に、上記車両用 エンジンの燃料噴射量を制御するためのエンジン制御装置において、
上記 ΡΤΟ装置の作動 '非作動を切り替えるための ΡΤΟ切替手段と、
その ΡΤΟ切替手段により上記 ΡΤΟ装置が作動側に切り替えられた場合に、上記 車両用エンジンの燃料噴射量を、予め設定される所定の燃料制限値未満に制限す るための ΡΤΟ燃料制限手段とを備えたことを特徴とするエンジン制御装置。
[2] 上記 ΡΤΟ燃料制限手段に、その ΡΤΟ燃料制限手段の作動,非作動を選択するた めの制限選択手段が接続される請求項 1記載のエンジン制御装置。
[3] 上記 ΡΤΟ燃料制限手段は、上記燃料制限値を記憶するための記憶手段を有し、 その記憶手段に上記燃料制限値を入力するための制限値設定装置が接続される請 求項 1または 2記載のエンジン制御装置。
[4] 上記 ΡΤΟ燃料制限手段は、上記燃料制限値を上記車両用エンジンの冷却水温に 基づ 、て補正するように構成された請求項 1から 3 、ずれかに記載のエンジン制御装 置。
[5] 上記記憶手段に、エンジン回転数に応じた複数の燃料制限値が記憶される請求項 3記載のエンジン制御装置。
[6] 上記 ΡΤΟ燃料制限手段は、上記予め設定される所定の燃料制限値が上記車両用 エンジンのアイドル回転を維持するのに必要な燃料噴射量よりも小さ 1、場合には、燃 料噴射量の制限を行わな 、請求項 1から 5 、ずれかに記載のエンジン制御装置。
[7] 上記 ΡΤΟ燃料制限手段は、上記車両用エンジンの燃料噴射装置に制御信号を出 力すべく接続されると共に、上記 ΡΤΟ装置の作動時に、上記燃料噴射装置に供給 される燃料噴射量を、上記 ΡΤΟ装置の制御条件および上記車両用エンジンの運転 状態に基づき算出する請求項 1から 6いずれかに記載のエンジン制御装置。
[8] 上記冷却水温に基づいた補正は、上記車両用エンジンの冷却水温力 所定温度 未満のとき、冷却水温が低いほど燃料制限値が高くなるよう行われ、上記所定温度 以上のとき、行われな 、請求項 4記載のエンジン制御装置。
PCT/JP2006/321406 2005-10-28 2006-10-26 エンジン制御装置 WO2007049714A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/091,377 US7797098B2 (en) 2005-10-28 2006-10-26 Engine control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-314469 2005-10-28
JP2005314469A JP3976057B2 (ja) 2005-10-28 2005-10-28 エンジン制御装置

Publications (1)

Publication Number Publication Date
WO2007049714A1 true WO2007049714A1 (ja) 2007-05-03

Family

ID=37967824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321406 WO2007049714A1 (ja) 2005-10-28 2006-10-26 エンジン制御装置

Country Status (3)

Country Link
US (1) US7797098B2 (ja)
JP (1) JP3976057B2 (ja)
WO (1) WO2007049714A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058498B1 (en) * 2007-11-09 2013-07-10 Continental Automotive GmbH Method to determine the fuel temperature in a common rail injection system
EP2479411A4 (en) * 2009-09-18 2015-10-21 Yanmar Co Ltd MOTOR CONTROL DEVICE
JP5541912B2 (ja) * 2009-12-21 2014-07-09 株式会社クボタ トラクタ
US9567934B2 (en) 2013-06-19 2017-02-14 Enviro Fuel Technology, Lp Controllers and methods for a fuel injected internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080934A (ja) * 1998-09-04 2000-03-21 Hino Motors Ltd 燃料供給量制御装置
WO2004029438A1 (en) * 2002-09-24 2004-04-08 Engine Control Technology, Llc Methods and apparatus for operation of multiple fuel engines
JP2006046249A (ja) * 2004-08-06 2006-02-16 Nissan Diesel Motor Co Ltd エンジンの制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740044A (en) * 1995-06-16 1998-04-14 Caterpillar Inc. Torque limiting power take off control and method of operating same
US6021754A (en) * 1997-12-19 2000-02-08 Caterpillar Inc. Method and apparatus for dynamically calibrating a fuel injector
US5971888A (en) * 1998-03-02 1999-10-26 Cummins Engine Company, Inc. Method and apparatus for controlling engine speed during power take-off operation
EP1172248A3 (en) * 2000-07-12 2006-10-04 Deere & Company Work vehicle with operator selected load control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080934A (ja) * 1998-09-04 2000-03-21 Hino Motors Ltd 燃料供給量制御装置
WO2004029438A1 (en) * 2002-09-24 2004-04-08 Engine Control Technology, Llc Methods and apparatus for operation of multiple fuel engines
JP2006046249A (ja) * 2004-08-06 2006-02-16 Nissan Diesel Motor Co Ltd エンジンの制御装置

Also Published As

Publication number Publication date
US20090287395A1 (en) 2009-11-19
JP2007120420A (ja) 2007-05-17
US7797098B2 (en) 2010-09-14
JP3976057B2 (ja) 2007-09-12

Similar Documents

Publication Publication Date Title
US7377103B2 (en) System and method for controlling an engine having a power take off output device
EP1515027A1 (en) Exhaust gas purification device and regeneration method thereof
JP4835537B2 (ja) エンジンの自動停止装置
RU2727942C2 (ru) Способ разгрузки давления в топливной рампе непосредственного впрыска (варианты) и топливная система
KR20030022002A (ko) 디젤엔진
JP2001510261A (ja) ターボチャージャーを制御するシステム及び方法
US7716915B2 (en) Exhaust purification catalyst warm-up system of an internal combustion engine and method of the same
KR20090063161A (ko) 정지/시동 동작에서의 내연 기관 제어 방법 및 장치
US7280910B2 (en) Engine protection method and apparatus, and engine power control method and apparatus for cargo handling vehicle
JP4525793B2 (ja) 燃料システムの異常診断装置および異常診断方法
CN101922374B (zh) 控制发动机hcci与si模式间过渡切换的系统和方法
US10308103B2 (en) Vehicle
WO2007049714A1 (ja) エンジン制御装置
KR101580309B1 (ko) 전자 제어식 디젤 엔진
JP5109752B2 (ja) ディーゼルエンジンの自動停止装置
JP4978523B2 (ja) ディーゼルエンジンの自動停止装置
JP3577979B2 (ja) 内燃機関の停止制御装置
JP2009008060A (ja) ディーゼルエンジン
US20130024095A1 (en) Engine control method
AU2012358130A1 (en) Method and device for controlling the fuel supply of an internal combustion engine operated with liquefied gas
JP3656777B2 (ja) 内燃機関のアイドル運転制御装置
JP4924310B2 (ja) ディーゼルエンジンの制御装置
JP2007231861A (ja) 内燃機関の油温推定装置
WO2002077431A1 (fr) Procede et appareil de regulation de l'alimentation en carburant au ralenti
JP4479524B2 (ja) 圧縮着火内燃機関の発進制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12091377

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822375

Country of ref document: EP

Kind code of ref document: A1