WO2007046526A1 - Pm浄化装置およびその製造方法 - Google Patents

Pm浄化装置およびその製造方法 Download PDF

Info

Publication number
WO2007046526A1
WO2007046526A1 PCT/JP2006/321013 JP2006321013W WO2007046526A1 WO 2007046526 A1 WO2007046526 A1 WO 2007046526A1 JP 2006321013 W JP2006321013 W JP 2006321013W WO 2007046526 A1 WO2007046526 A1 WO 2007046526A1
Authority
WO
WIPO (PCT)
Prior art keywords
active oxygen
particles
base material
filter base
catalyst
Prior art date
Application number
PCT/JP2006/321013
Other languages
English (en)
French (fr)
Inventor
Shinichi Takeshima
Kotaro Hayashi
Kohei Yoshida
Atsushi Hayashi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06822034A priority Critical patent/EP1938887B1/en
Priority to CN2006800389259A priority patent/CN101291719B/zh
Priority to US12/083,915 priority patent/US8252374B2/en
Publication of WO2007046526A1 publication Critical patent/WO2007046526A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49345Catalytic device making

Definitions

  • the present invention relates to an apparatus including a catalyst for purifying combustion exhaust gas such as a diesel engine and a method for producing the same, and in particular, PM particles (particulate matter: particularly soot-like carbon contained in the exhaust gas).
  • the present invention relates to a catalyst that removes particles) and a method for producing the same.
  • a filter for removing exhaust gas power PM particles released into the atmosphere.
  • a wall flow type exhaust gas purification filter is described in Japanese Patent Application Laid-Open No. 994443. This is a catalyst that collects PM particles inside the pores when the exhaust gas passes through the pores formed in the filter base material, and supports them inside the pores. It is configured to oxidize PM particles.
  • Japanese Patent Publication No. 7-106290 discloses a mixture of a white metal and an alkaline earth metal oxide.
  • the catalyst mixture is supported on the filter element wall by a deposition method.
  • an exhaust gas purifying apparatus in which a catalyst which is supported on a catalyst contains an active oxygen release agent.
  • a filter for removing PM particles is basically used to filter PM particles contained in exhaust gas when the exhaust gas passes through a porous filter wall (or filter base material). It is comprised so that it may adhere to the outer surface of a wall, and the inner surface of a pore, and may collect.
  • the collected PM particles are positively oxidized (burned) through the catalyst and removed.
  • the oxidation reaction is described in Japanese Patent Application Laid-Open No. 9-94434 or Japanese Patent Publication No. 7-106290 in which active oxygen is generated in the presence of the catalyst, or in Japanese Patent Application Laid-Open No. 2001-271634. From the active oxygen release agent contained in the catalyst. This occurs due to the active oxygen released in the atmosphere, but its activity is limited to the range of several tens of nanometers at which the active oxygen is generated.
  • a catalyst is supported on the filter base material by various methods such as the deposition method described in Japanese Patent Publication No. 7-106290, for example, but the catalyst is a particulate substance.
  • the surface of the filter base material 3 is not necessarily supported between the catalyst particles 1 together.
  • the exposed part (uncoated part) 4 is generated.
  • the uncoated portion 4 has a diameter of several ⁇ m to 100 ⁇ m, the PM particles 5 are attached (collected) to the uncoated portion 4 and are subjected to an oxidative action by active oxygen. Instead, it may be deposited as is.
  • the surface of the PM particles 5 deposited in this way should be equipped with a catalyst, and of course, because the distance from the surrounding catalyst particles 1 is large, the same as the uncoated portion 4 described above. Therefore, the subsequent PM particles 5 adhere and accumulate without being subjected to acidification.
  • the state in which such a deposition action has progressed is schematically shown in FIG. 5 (A) .
  • the PM particles 5 deposited on the uncoated part 4 gradually grow in a bridge girder shape.
  • the upper ends of adjacent bridge girder portions are connected to each other, and a porous film 6 made of PM particles 5 is formed on the outer surface side of the filter base material 3.
  • the force considered to be the presence of an uncoated portion in which no catalyst is present also on the inner surface of the pore 7 of the filter base material 3 The above-described deposition phenomenon is not particularly recognized. This is due to the complexity of the space inside the narrow hole 7, the high flow rate of the exhaust gas, and the flow of the exhaust gas so that it moves along the inner surface of the pore 7 with respect to PM particles 5. This is probably due to the movement of the PM particles 5 and the action of acidity due to the force acting.
  • the present invention has been made paying attention to the above-mentioned technical problem, and a PM cleaning device capable of preventing excessive PM particles from accumulating on the outer surface of a filter base material and its It is an object of the present invention to provide a method for manufacturing an apparatus.
  • the present invention provides a catalyst component supported on a porous filter base material through which exhaust gas passes, and collects PM particles contained in the exhaust gas and collects the collected PM.
  • active oxygen-generating fine particles are supported between the catalyst components on the surface of the filter base material. .
  • an active oxygen generating fine particle layer made of the active oxygen generating fine particles and a catalyst supporting layer made of the catalyst component are formed in order on the filter base material. It is a PM cleansing device that is characterized by being able to speak.
  • an oxide layer different from the filter base material and the catalyst component is formed on the filter base material in consideration of the above configuration, A PM purifier having the active oxygen-generating fine particles or the active oxygen-generating fine particle layer.
  • a catalyst component is supported on a porous filter base material through which exhaust gas passes, and PM particles contained in the exhaust gas are collected and the collected PM particles are oxidized and removed.
  • the filter base material is coated with active oxygen-generating fine particles in a state where a solution having a lipophilic group is adsorbed thereon, and the catalyst component including an oxidation catalyst is supported. It is the method characterized by doing.
  • a catalyst component is supported on a porous filter base material through which exhaust gas passes, and PM particles contained in the exhaust gas are collected and the collected PM particles are oxidized and removed.
  • active oxygen is formed on the oxide layer. The method is characterized in that the fine particles are coated and the catalyst component including an oxidation catalyst is supported.
  • the active oxygen generating fine particles in the present invention are oxide particles or composite oxide particles that generate active oxygen in a reducing atmosphere.
  • fine particles of ceria zirconium oxide complex oxide can be used.
  • the oxide layer in the present invention can be composed of any one of alumina, silica, and zircoure, or a composite oxide containing these oxides.
  • the filter base material can be formed of a porous material composed of any one of cordierite, carbonized carbide, non-woven ceramic, and wire mesh
  • the catalyst component includes: It can include any one of platinum, rhodium, rhodium, barium, and ceria.
  • the active oxygen generating fine particles are supported between the catalyst components on the surface of the filter base material, the PM particles adhering between the catalyst components generate the active oxygen.
  • the PM particles are oxidized and removed, and there is a certain state that PM particles damaged by active oxygen are easily oxidized. Progress and be removed. That is, even if there is a portion where the catalyst component does not exist on the surface of the filter base material, excessive deposition due to adhesion / growth of PM particles can be avoided or suppressed.
  • the active oxygen generating fine particle layer is formed below the catalyst supporting layer. Since a part of the active oxygen generating fine particle layer is exposed to the uncoated portion, it is avoided or suppressed that the surface of the filter base material is directly exposed to the uncoated portion. can do. Therefore, even if there is a portion where the catalyst component does not exist on the surface of the filter base material, excessive deposition due to adhesion / growth of PM particles can be avoided or suppressed.
  • uniform active oxygen generating fine particles or active oxygen generating fine particle layers can be formed. That is, an oxide such as cordierite is used as the filter base material. For this reason, for example, the MgO and MgOH parts and the SiO part
  • the formation of the oxide layer corrects such a difference in local polarity. Therefore, the active oxygen-generating fine particles are uniformly adhered to form uniform active oxygen-generating fine particles or active particles.
  • An oxygen-producing fine particle layer can be formed.
  • the pretreatment for the operation of supporting the active oxygen-generating fine particles is performed by adsorbing the solution having the lipophilic group to the filter base material. That is, the solution has a high affinity for the filter base material and positively charges the surface.
  • the metal element of the active oxygen generating fine particles oxygen particles or composite oxide particles
  • the ions or complex ions are adsorbed on the positively charged filter base material, as a result, active oxygen-generating fine particles can be adsorbed uniformly, or a uniform active oxygen-generating fine particle layer can be formed, thereby preventing a part where the surface of the filter base material is directly exposed between the catalyst components. It can be suppressed.
  • the polarity is relatively small !, and the portion (SiO portion in cordierite)
  • a non-polar solvent solution adheres and is dried and baked in a later process
  • metal oxide such as alumina is deposited on the part, while hydrolytic decomposition of the hydrophilic metal alkoxide occurs in the hydrophilic part (MgO part or MgOH part in cordierite).
  • a metal oxide such as alumina is deposited on the substrate. In this way, a uniform metal oxide layer such as alumina is formed on the entire surface. Therefore, the active oxygen generating fine particles or the active oxygen generating fine particle layer can be provided uniformly through the metal oxide layer.
  • FIG. 1 is a diagram schematically showing a part of a PM catalyst used in a PM purifier according to the present invention.
  • FIG. 2 CO concentration and temperature when exhaust gas purification is performed with the PM purification device according to the present invention.
  • FIG. 3 is a diagram showing the results of analyzing the morphology of PM particles by Raman analysis.
  • FIG. 4 is a diagram schematically showing a part of an example in which an oxide layer is formed as a base of an active oxygen generating fine particle layer with a PM catalyst used in a PM purification apparatus according to the present invention.
  • FIG. 5 (A) and (B) are diagrams schematically showing a state in which a PM film is grown in a bridge girder and a porous film is formed.
  • the PM purifier of the present invention includes a filter base material 10 for collecting particulate matter (PM particles) contained in exhaust gas generated by a heat engine such as a diesel engine. A partial enlarged view of this is schematically shown in Fig. 1.
  • This filter base material 10 is also composed of a porous ceramic force in the same manner as the base material in conventional DPF (Diesel Particulat Filter) and DPNR (Diesel Particulate—NOx Reduction).
  • DPF Diesel Particulat Filter
  • DPNR Diesel Particulate—NOx Reduction
  • silicon carbide (SiC) non-woven ceramic
  • wire mesh wire mesh
  • the catalyst component 11 is supported on the filter base material 10.
  • the catalyst component 11 is selected according to the purpose of exhaust gas purification, such as noble metals, NOx occlusion materials, oxygen occlusion materials, and specifically, platinum (Pt) and palladium (Pd) as noble metals.
  • platinum (Pt) and palladium (Pd) as noble metals.
  • rhodium (Rh) or the like is supported, norlium (Ba) is supported as an example of a NOx storage material, and ceria (CeO) is supported as an example of an oxygen storage material.
  • a slurry method in which a slurry having such a catalyst component force is attached to the filter substrate 10 and then dried and sintered, or the above catalyst component is used. It is possible to employ a dipping method in which the filter base material 10 is dipped in a solution containing it, and then dried and sintered.
  • the catalyst component 11 is dispersed and supported on the filter base material 10 as particles of several tens / zm in order to increase its activity and increase the surface area.
  • the catalyst components 11 are separated from each other due to differences in local conditions such as uneven concentration of the catalyst component 11 at the time of loading, and several / zm on the surface of the filter base material 10: L00 In the range of m, the catalyst component 11 is supported, and a portion is generated. This is the portion corresponding to the uncoated portion 4 described above.
  • the active oxygen generating fine particles 12 are held in the portion corresponding to the uncoated portion 4. These active oxygen generating fine particles 12 generate active oxygen (O-) in a reducing atmosphere.
  • Fine particles of oxide or composite oxide to be formed such as magnesium oxide (MgO), ceria (CeO) or ceria zirconium oxide composite oxide (CeZrOx).
  • the particle size of the active oxygen generating fine particles 12 be as small as possible. It is adjusted to about 1m to 10m.
  • the active oxygen generating fine particles 12 are selectively supported on the portion corresponding to the uncoated portion 4 between the catalyst components 11, and the active oxygen generating fine particles 12 are activated on the surface of the filter base material 10.
  • the active oxygen generating fine particle layer 13 is formed by dispersing and supporting the oxygen generating fine particles 12 as uniformly as possible.
  • a catalyst support layer 14 is formed thereon by supporting the catalyst component 11.
  • the active oxygen generating fine particles 12 are adsorbed and ionized or complex ionized with a solution having a lipophilic group such as a phenol group.
  • a method of adsorbing 12 and then drying and firing can be employed. According to such a method, since the active oxygen generating fine particles 12 are dispersed by electric force, they can be uniformly supported on the filter base material 10.
  • the solution having a lipophilic group salt benzalkonium-pyramellitic acid, fumaric acid, or organic acid base can be used.
  • the filter base material 10 carrying the catalyst component 11 and the active oxygen generating fine particles 12 is configured as, for example, a wall-through type PM purification device, and therefore, PM particles are contained like exhaust gas from a diesel engine.
  • the PM particles are collected by permeating the exhaust gas.
  • the collection location may be either on the catalyst component 11 or on the catalyst component 11.
  • the active oxygen-generating fine particles 12 described above are exposed at locations where the catalyst component 11 is removed, and therefore the PM particles collected in this portion are not directly subjected to the oxidative action by the catalyst component 11. In some cases, it adheres to the active oxygen-generating fine particles 12, and therefore, when active oxygen is generated due to a reducing atmosphere or the like, it is subjected to an acid action by the active oxygen.
  • the filter base material 10 according to the present invention carrying the active oxygen generating fine particles 12 and the catalyst component 11 is circulated through the diesel engine combustion exhaust gas containing PM particles, and the temperature is increased by 10 ° CZ.
  • the relationship between the generated CO concentration and temperature was investigated. Air volume is 21% The The result is shown in figure 2.
  • active oxygen was generated from the active oxygen generating fine particles 12 in a reducing atmosphere, and this acted on the adhered PM particles to promote the oxidation of the PM particles.
  • soot particles adhering to and collected on the catalyst component 11 are oxidized and removed by an oxidizing action via the catalyst. Therefore, in the apparatus according to the present invention, the oxidation of the soot particles collected at the place where the oxidizing action by the catalyst component 11 does not reach is promoted by the active oxygen generated from the active oxygen generating fine particles 12, and the temperature is relatively low. It can be removed by oxidation. For this reason, it is possible to prevent or avoid situations such as excessive accumulation of soot particles, or rapid combustion at high temperatures, resulting in damage to the filter base material 10 and the cleaning equipment.
  • active particles such as ceria, magnesia, ceria zircoyua and the like can be deposited on a filter base material, and a catalyst layer can be coated thereon, so that the activity of the catalyst layer can be increased. Can reduce the amount of hydrocarbon (HC) emissions. In addition, the activity at a low temperature can be improved. Furthermore, since the correlation between exhaust gas pressure loss and PM particle accumulation is established, it is possible to know the PM particle accumulation by detecting the exhaust gas pressure, and the rich snoj The timing can be controlled properly.
  • the active oxygen generating fine particles 12 are supported between the catalyst components 11, it is preferable to support the active oxygen generating fine particles 12 as uniformly as possible.
  • the intermediate layer is for correcting the variation in affinity for the active oxygen generating fine particles 12 on the surface of the filter base material 10 and includes an oxide such as alumina, silica, zirconia or the like.
  • the oxide layer 15 is made of an oxide or composite oxide different from the filter base material 10 and the active oxygen generating fine particles 12. An example of this is shown schematically in Fig. 4.
  • the filter base material 10 that has power such as cordierite, has a hydrophilic part and an oleophilic part, so a nonpolar solvent and an organometallic compound are mixed and the filter base material 10 is immersed.
  • the nonpolar solvent solvents such as hexane, cyclohexane, toluene, 1-butanol and 1-hexanol can be used, and in particular, a low polarity solvent having a relative dielectric constant of 20 or less can be used. it can.
  • a metal alkoxide such as aluminum alkoxide can be used.
  • the hydrophilic metal alkoxide is hydrolyzed at the hydrophilic portion on the filter base material 10 (for example, MgO portion in cordierite), and the metal oxide is precipitated.
  • the wettability of the nonpolar solvent with respect to the portion having no hydrophilic group is good, a large amount of metal oxide precipitates as it is dried and fired by adhering more to this portion.
  • the metal oxide is supported in accordance with the two different properties existing in the filter substrate 10, a uniform oxide layer can be formed as a whole.
  • CeZrO particles were adsorbed as active oxygen-generating fine particles on the cordierite base material on which alumina was precipitated on the surface.
  • the complex ion adsorption method is used as the method.
  • the cordierite base material on which each of the above complex ions was adsorbed was coated with a carrier, and a noble metal and a NOx storage material were supported to form a DPNR catalyst.
  • the coating of these carriers and the loading of the noble metal and NOx occlusion material were performed by a conventionally known method. Specifically, a slurry containing alumina and alumina sol was impregnated in a cordierite base material, and then dried and fired to form a coat layer. Next, a cordierite base material was impregnated with a predetermined amount of barium acetate having a predetermined concentration, and this was heated to carry norium (Ba).
  • ammonium bicarbonate was used to convert the supported barium to carbonate.
  • platinum was supported using a dinitrodiammine platinum nitric acid aqueous solution, and rhodium was further supported using a nitric acid nitrate aqueous solution.
  • a cordierite base material was coated with a carrier, a noble metal was supported, and a NOx storage material was supported to form a DPNR catalyst.
  • the amount of PM particles deposited was measured.
  • the PM particles enter the pores formed in the filter base material, so a predetermined relationship is established between the amount of deposition and the pressure loss.
  • the pressure loss can also determine the amount of PM particles deposited.
  • PM particles are deposited on the outer surface of the filter base material and grow like a bridge girder, this is connected to form a porous film of PM particles.
  • PM particles are trapped by the porous membrane and do not enter the pores, so there is no relationship between the amount deposited and the pressure loss. Therefore, the DPNRs of Example 1 and Comparative Example above were evaluated by directly oxidizing the PM particles deposited on the filter to CO and analyzing them.
  • the coat layer for precious metal or NOx occlusion material is directly exposed. Since PM particles attached or collected on this part are not easily affected by acidification, the explanation will be given with reference to FIG. As described above, it grows like a bridge girder and finally forms a porous membrane on the outer surface side of the filter base material. As a result, the probability of PM particles flowing into the catalyst layer in the filter base material decreases, and PM particle deposition further proceeds.
  • PM particles adhering to or collected in a part where the catalyst component does not exist on the outer surface of the filter base material are generated by active oxygen generation fine particles present in that part. Oxidized by active oxygen and easily oxidized. This hinders the growth of PM particles into a bridge girder or porous membrane, and PM particles contained in the exhaust gas sequentially flow into the catalyst layer in the filter base material and are oxidized and removed to progress the deposition. Shina.
  • Example 1 in order to form a uniform active oxygen generating fine particle layer, an oxide layer is formed as an intermediate layer between the filter base material (cordierite base material), and the oxide layer thereof. Is estimated to function as follows.
  • the surface of the cordierite substrate has two parts with different properties, and the properties of the reaction liquid are uniform due to the presence of both hydrophilic aluminum alkoxide and lipophilic nonpolar solvent. This makes it possible to deposit alumina. Since the active oxygen generating fine particle layer is formed on the uniform oxide layer thus formed, the active oxygen generating fine particle layer is also made uniform.
  • the active oxygen generating fine particle layer can be directly formed on a strong filter base material such as cordierite.
  • a strong filter base material such as cordierite.
  • An example is shown as Example 2.
  • a solution was prepared by dissolving 136 g of salted benzalco-rum in 4 liters of distilled water.
  • the solution A filter base material made of cordierite was immersed in and left for about 30 minutes.
  • CeZrO particles functioning as active oxygen-generating fine particles are placed on a filter base material.
  • the active oxygen generating fine particles are exposed in the portion.
  • the collected PM particles are damaged by the active oxygen and become in an acidic state, so that the PM particles are promoted to be oxidized to prevent or suppress the accumulation amount.
  • the function of forming a uniform active oxygen-generating fine particle layer in this way is due to the function of a salty benzalcum solution having a lipophilic group. That is, since salt benzalcohol has a lipophilic group, it has a high affinity for a filter base material made of cordierite. The surface force is also adsorbed to the filter base material, thereby charging the surface positively. On the other hand, since each complex ion described above is negatively charged, a strong electrical interaction occurs and the complex ion is adsorbed. In addition, complex ions are adsorbed on almost all of the positively charged parts on the filter base material. As a result, an active oxygen generating fine particle layer is formed. Since each complex ion force to be dispersed is uniformly dispersed and adsorbed on one filter base material, a uniform active oxygen generating fine particle layer can be formed.
  • the effect of improving the PM acidification rate was confirmed by bench evaluation.
  • the engine was a turbo diesel engine with a displacement of 2 liters, and a DPNR catalyst with a volume of 2 liters was placed immediately after the turbo.
  • the engine conditions were steady operation at 2400 rpm and 60 Nm, and a rich spike caused by low-temperature combustion was inserted for 3 seconds at intervals of 40 seconds. Under these conditions, the exhaust temperature was approximately 310 ° C.
  • the DPNR catalyst was removed and reacted with air in the circulating electric furnace to determine the amount of PM (carbon) deposited in the filter as well as the amount of CO emitted.
  • the (deposition amount) was about 1Z3, and the PM oxidation rate was clearly improved.
  • the catalyst specifications of Examples 1 and 2 and Comparative Example are the same, and only the presence or absence of the active oxygen generation fine particle layer on the filter base material is different. Therefore, the difference in the oxidation rate was attached to the filter base material. This can be regarded as the effect of active oxygen-generating fine particles, which are deposited on the filter and come into direct contact with the catalyst, suggesting that the amount of PM has decreased.
  • the present invention can be used in industries related to the manufacture of a device for generating power by burning fuel or manufacturing a device for purifying combustion exhaust gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

 フィルターでのPM粒子の過剰な堆積を防止することのできるPM浄化装置を提供する。  排ガスが通過する多孔質のフィルター基材10に触媒成分11が担持され、前記排ガスに含まれるPM粒子を捕集するとともにその捕集したPM粒子を酸化除去するPM浄化装置において、活性酸素生成微粒子12が、前記フィルター基材10の表面で前記触媒成分11同士の間に担持されている。したがってPM粒子は、活性酸素生成微粒子12で生成された活性酸素によって一部酸化されて欠陥が生じ、酸化されやすくなり、その結果、PM粒子の酸化が促進されてその堆積が防止もしくは抑制される。

Description

明 細 書
PM浄化装置およびその製造方法
技術分野
[0001] この発明は、ディーゼルエンジンなどの燃焼排ガスを浄ィ匕するための触媒を含む装 置およびその製造方法に関し、特にその排ガス中に含まれる PM粒子(Particulate M atter:特にすす状の炭素質粒子)を除去する触媒およびその製造方法に関するもの である。
背景技術
[0002] 従来、大気中に放出される排ガス力 PM粒子を除去するためにフィルターが知れ ており、その一例としてウォールフロー型排ガス浄化用フィルターが特開平 9 9443 4号公報に記載されている。これは、フィルタ一基材に形成されている細孔の内部を 排ガスが通過する際に、その細孔の内部で PM粒子を捕集し、かつその細孔の内部 に担持させた触媒で、 PM粒子を酸化させるように構成されている。
[0003] この種のフィルターに用いられる触媒として、特公平 7— 106290号公報には、白 金族金属およびアルカリ土金属酸化物の混合物が記載されている。そして、この特 公平 7— 106290号公報の発明では、その触媒混合物を沈着法によってフィルター エレメント壁に担持させることとしている。さら〖こ、特開 2001— 271634号公報〖こは、 担持されて!ヽる触媒が、活性酸素放出剤を含んで!/ヽる排ガス浄ィ匕装置が記載されて いる。
[0004] PM粒子を除去するためのフィルタ一は、基本的には、排ガスが多孔構造のフィル ター壁 (もしくはフィルタ一基材)を通過する際に、排ガスに含まれる PM粒子を、フィ ルター壁の外表面および細孔の内面に付着させて捕集するように構成されている。 そして、上記の各特許文献に記載された発明では、その捕集された PM粒子を、触 媒を介して積極的に酸化 (燃焼)させて除去するように構成されて ヽる。
[0005] その酸化反応は、特開平 9— 94434号公報あるいは特公平 7— 106290号公報に 記載されている触媒が存在することにより発生する活性酸素、あるいは特開 2001— 271634号公報に記載されている前記触媒に含まれる活性酸素放出剤から還元雰 囲気で放出される活性酸素により生じるが、その活性は、活性酸素が発生した位置 力 数十 nm程度の範囲に限られる。
[0006] 一方、フィルタ一基材には、例えば特公平 7— 106290号公報に記載されている沈 着法などの各種の方法によって触媒が担持されるが、触媒は粒子状の物質であるこ とと相まって、必ずしもフィルタ一基材の表面に完全に密に担持されることはなぐ例 えば図 5の(B)に示すように、触媒粒子 1同士の間に、フィルタ一基材 3の表面が露 出して 、る部分 (未コート部) 4が生じる。この未コート部 4が直径数 μ m〜100 μ mの 大きさでの場合、 PM粒子 5がその未コート部 4に付着 (捕集)されるとともに、活性酸 素による酸ィ匕作用を受けずに、そのまま堆積することがある。
[0007] このようにして堆積した PM粒子 5の表面は、触媒を備えて ヽな 、ことはもちろんの こと、周辺の触媒粒子 1からの距離が大きいから、前述した未コート部 4と同様の部分 となっており、そのため、後続の PM粒子 5が付着するとともに酸ィ匕作用を受けずに堆 積する。このような堆積作用が進行した状態を図 5の (A)に模式的に示してあり、未コ ート部 4に付着'堆積した PM粒子 5は、次第に橋桁状に成長し、ついには、隣接する 橋桁状部分の上端部が互いに繋がり、 PM粒子 5による多孔質膜 6が、フィルタ一基 材 3の外表面側に形成されてしまう。
[0008] このような状態になると、排ガスが多孔質膜 6を通過する際に、その排ガスに含まれ る PM粒子 5が多孔質膜 6によって捕集されてしまい、触媒を担持しているフィルター 基材 3にまで PM粒子 5が到達しなくなる。すなわち、 PM粒子 5を捕集できるものの、 その酸ィ匕による除去を行うことができなくなるので、捕集した PM粒子 5の量が過剰に なってしまう可能性がある。
[0009] なお、フィルタ一基材 3の細孔 7の内面にも触媒の存在しない未コート部が存在して いるものと考えられる力 上述した堆積現象は特には認められていない。これは、細 孔 7の内部の空間形状が複雑になっていること、排ガスの流速が速いこと、 PM粒子 5 に対してこれを細孔 7の内面に沿って移動させるように排ガスの流動による力が作用 しゃすいことなどから、 PM粒子 5が移動して酸ィ匕作用を受けることによるものと思わ れる。
発明の開示 [0010] この発明は上述した技術的課題に着目してなされたものであり、フィルタ一基材の 外表面に PM粒子が過剰に堆積することを防止することのできる PM浄ィ匕装置および その装置の製造方法を提供することを目的とするものである。
[0011] 上記の目的を達成するために、この発明は、排ガスが通過する多孔質のフィルター 基材に触媒成分が担持され、前記排ガスに含まれる PM粒子を捕集するとともにその 捕集した PM粒子を酸ィ匕除去する PM浄ィ匕装置にぉ ヽて、活性酸素生成微粒子が、 前記フィルタ一基材の表面で前記触媒成分同士の間に担持されていることを特徴と するものである。
[0012] また、この発明は、上記の発明において、前記フィルタ一基材上に、前記活性酸素 生成微粒子からなる活性酸素生成微粒子層と、前記触媒成分からなる触媒担持層と 力 順に形成されて ヽることを特徴とする PM浄ィ匕装置である。
[0013] さらに、この発明は、上記の構成にカ卩えて、前記フィルタ一基材上に、該フィルター 基材および前記触媒成分とは異なる酸化物層が形成され、その酸化物層上に、前 記活性酸素生成微粒子もしくは活性酸素生成微粒子層が設けられていることを特徴 とする PM浄ィ匕装置である。
[0014] 一方、この発明は、排ガスが通過する多孔質のフィルタ一基材に触媒成分が担持 され、前記排ガスに含まれる PM粒子を捕集するとともにその捕集した PM粒子を酸 化除去する PM浄ィ匕装置の製造方法において、前記フィルタ一基材に、親油基を持 つ溶液を吸着させた状態で、活性酸素生成微粒子をコートし、さらに酸化触媒を含 む前記触媒成分を担持することを特徴とする方法である。
[0015] さらに、この発明は、排ガスが通過する多孔質のフィルタ一基材に触媒成分が担持 され、前記排ガスに含まれる PM粒子を捕集するとともにその捕集した PM粒子を酸 化除去する PM浄ィ匕装置の製造方法において、前記フィルタ一基材に、無極性溶媒 と金属アルコキシド溶液とを用いて前記金属の酸ィ匕物層を形成した後、その酸化物 層の上に活性酸素生成微粒子をコートし、さらに酸化触媒を含む前記触媒成分を担 持することを特徴とする方法である。
[0016] この発明における活性酸素生成微粒子は、還元雰囲気で活性酸素を生成する酸 化物粒子もしくは複合酸ィ匕物粒子であり、具体的には、酸ィ匕マグネシウムゃセリアあ るいはセリアジルコユア複合酸ィ匕物の微粒子を用いることができる。
[0017] また、この発明における酸化物層は、アルミナ、シリカ、ジルコユアのいずれ力、ある いはこれらの酸化物を含む複合酸化物から構成することができる。
[0018] さらに、この発明では、フィルタ一基材は、コージエライト、炭化ケィ素、不織布状の セラミック、ワイヤメッシュのいずれかからなる多孔質材で形成することができ、また前 記触媒成分は、白金、ノ《ラジウム、ロジウムの少なくともいずれか一つと、バリウムと、 セリアとの 、ずれかを含むことができる。
[0019] この発明によれば、フィルタ一基材の表面で触媒成分同士の間に、活性酸素生成 微粒子が担持されているから、触媒成分同士の間に付着した PM粒子は、その活性 酸素生成微粒子によって生じた活性酸素による酸化作用を受け、その結果、 PM粒 子が酸化除去され、ある!ヽは活性酸素で傷つけられた PM粒子が酸化されやす ヽ状 態となつてその酸ィ匕が進行し、除去される。すなわち、フィルタ一基材の表面に触媒 成分の存在しない箇所があっても、 PM粒子の付着 ·成長による過剰な堆積を回避も しくは抑制することができる。
[0020] また、この発明によれば、触媒成分同士が互いに離隔してそれらの間に触媒成分 の未コート部が生じても、触媒担持層の下側に活性酸素生成微粒子層が形成されて いて、その活性酸素生成微粒子層の一部が未コート部に露出するから、フィルター 基材の表面が未コート部に直接露出することを回避もしくは抑制され、したがって上 記の発明と同様の構造とすることができる。そのため、フィルタ一基材の表面に触媒 成分の存在しない箇所があっても、 PM粒子の付着 ·成長による過剰な堆積を回避も しくは抑制することができる。
[0021] さらに、この発明によれば、均一な活性酸素生成微粒子もしくは活性酸素生成微粒 子層を形成することができる。すなわち、フィルタ一基材としてはコージエライトなどの 酸化物が使用され、そのため、例えば MgOおよび MgOHの部分と SiOの部分との
2 ように、部分的な極性の相違がある。この発明では、酸化物層が形成されることにより 、そのような局部的な極性の相違を是正することになるので、活性酸素生成微粒子を 均一に付着させて、均一な活性酸素生成微粒子もしくは活性酸素生成微粒子層を 形成することができる。 [0022] 一方、この発明によれば、フィルタ一基材に親油基を持つ溶液を吸着させることに より、活性酸素生成微粒子を担持させる操作に対する前処理が行われたことになる。 すなわち、前記溶液は、フィルタ一基材に対する親和性が高ぐまた表面をプラスに 帯電させる。ここに活性酸素生成微粒子 (酸化物粒子もしくは複合酸化物粒子)の金 属元素をイオンもしくは錯イオンの溶液を接触させると、プラスに帯電したフィルター 基材に前記イオンもしくは錯イオンが吸着し、その結果、均一に活性酸素生成微粒 子を吸着させ、あるいは均一な活性酸素生成微粒子層を形成でき、それに伴い触媒 成分同士の間に、フィルタ一基材の表面が直接露出した部分が生じることを防止もし くは抑制することができる。
[0023] そして、この発明によれば、アルミニウムアルコキシドなどの金属アルコキシド溶液と 無極性溶媒溶液とをフィルタ一基材に吸着させると、極性の比較的小さ!、部分 (コー ジヱライトでは SiO部分)に無極性溶媒の溶液が付着し、後工程で乾燥'焼成した場
2
合にその部分にアルミナなどの金属酸ィ匕物が析出し、一方、親水性の部分 (コージェ ライトでは MgOの部分あるいは MgOHの部分)では親水的な金属アルコキシドの加 水分解が起こり、その部分にアルミナなどの金属酸ィ匕物が析出する。こうして、全体 に均一なアルミナなどの金属酸ィ匕物層が形成され、そのため、その金属酸化物層を 介して均一に活性酸素生成微粒子もしくは活性酸素生成微粒子層を設けることがで きる。
図面の簡単な説明
[0024] [図 1]この発明に係る PM浄ィ匕装置で用いられる PM触媒の一部を模式的に示す図 である。
[図 2]この発明に係る PM浄ィ匕装置で排ガスの浄ィ匕を行った場合の CO濃度と温度と
2
の関係の測定結果を示す図である。
[図 3]PM粒子の形態をラマン分析で分析した結果を示す図である。
[図 4]この発明に係る PM浄ィ匕装置で用いられる PM触媒で活性酸素生成微粒子層 の下地として酸ィ匕物層を形成した例の一部を模式的に示す図である。
[図 5] (A)および (B)は PM粒子が橋桁状に成長して多孔質膜が形成された状態を 模式的に示す図である。 発明を実施するための最良の形態
[0025] この発明の PM浄ィ匕装置は、ディーゼルエンジンなどの熱機関で発生した排ガスに 含まれる粒状物質 (PM粒子)を捕集するために、フィルタ一基材 10を備えている。そ の部分拡大図を図 1に模式的に示してある。このフィルタ一基材 10は、従来の DPF ( Diesel Particulat Filter)や DPNR (Diesel Particulate— NOx Reduction)における基材 と同様に、多孔質のセラミック力も構成され、具体的には、コージエライト(2MgO ' 2A 1 O - 5SiO )や炭化ケィ素(SiC)、あるいは不織布状のセラミック、ワイヤメッシュな
2 3 2
どが使用される。
[0026] このフィルタ一基材 10上に触媒成分 11が担持されている。その触媒成分 11は、貴 金属、 NOx吸蔵材、酸素吸蔵材など、排ガスの浄化の目的に応じて選択されたもの であり、具体的には、貴金属として、白金 (Pt)やパラジウム (Pd)あるいはロジウム (R h)などが担持され、また NOx吸蔵材の一例としてノリウム (Ba)が担持され、酸素吸 蔵材の一例としてセリア (CeO )が担持される。これらの触媒成分 11を担持させる方
2
法は、従来知られている方法でよぐ例えばこれらの触媒成分力 なるスラリーをフィ ルター基材 10に付着させ、その後、乾燥および焼結させるスラリー法 (含浸法)や、 上記の触媒成分を含む溶液にフィルタ一基材 10を浸漬し、その後、乾燥および焼結 する浸漬法などを採用できる。
[0027] 触媒成分 11は、その活性を高くし、また表面積を広くするために、数十/ z mの粒子 として、フィルタ一基材 10上に分散させられて担持されている。そして、担持させる際 の触媒成分 11の濃度の偏りなどの局部的な条件の相違などが原因となって、触媒 成分 11同士が離隔し、フィルタ一基材 10の表面に数/ z m〜: L00 mの範囲で触媒 成分 11の担持されて 、な 、箇所が生じて 、る。これが前述した未コート部 4に相当 する部分である。
[0028] この発明では、その未コート部 4に相当する部分に、活性酸素生成微粒子 12が担 持されている。この活性酸素生成微粒子 12は、還元雰囲気で活性酸素 (O―)を生
2 成する酸化物あるいは複合酸化物の微粒子であり、具体的には、酸化マグネシウム( MgO)ゃセリア(CeO )あるいはセリアジルコユア複合酸化物(CeZrOx)などである。
2
この活性酸素生成微粒子 12の粒径は、可及的に小さいことが好ましぐ具体的には 、 1 m〜 10 m程度に調整されている。
[0029] また、活性酸素生成微粒子 12を、触媒成分 11同士の間である上記の未コート部 4 に相当する部分に選択的に担持させることに替えて、フィルタ一基材 10の表面に活 性酸素生成微粒子 12を可及的に均一に分散させて担持させることにより活性酸素 生成微粒子層 13を、先ず、形成する。その上に、触媒成分 11を担持させて触媒担 持層 14を形成する。こうすること〖こより、触媒成分 11同士の間に隙間が生じると、そ の部分に活性酸素生成微粒子層 13を形成している活性酸素生成微粒子 12が露出 し、触媒成分 11同士の間に活性酸素生成微粒子 12を配置した構成となる。
[0030] 活性酸素生成微粒子 12をフィルタ一基材 10上に直接担持する場合、フエ-ル基 などの親油基を持った溶液を吸着させ、これにイオン化もしくは錯イオンィ匕した活性 酸素生成微粒子 12を吸着させ、その後、乾燥 ·焼成する方法を採用することができる 。このような方法によれば、活性酸素生成微粒子 12が電気的な力によって分散させ られるから、フィルタ一基材 10に対し均一に担持することができる。なお、親油基を持 つた溶液としては、塩ィ匕ベンザルコ-ゥムゃピロメリト酸、フマル酸、有機酸塩基を使 用することができる。
[0031] 上記のように触媒成分 11および活性酸素生成微粒子 12を担持したフィルタ一基 材 10は、例えばウォールスルー型の PM浄化装置として構成され、したがってディー ゼルエンジンの排ガスのように PM粒子を含む排ガスを透過させることにより、その P M粒子を捕集する。その捕集箇所は、触媒成分 11上の場合と、触媒成分 11を外れ た箇所の場合とのいずれの場合もある。触媒成分 11を外れた箇所には、上述した活 性酸素生成微粒子 12が露出しており、したがつてこの部分に捕集された PM粒子は 、触媒成分 11による酸ィ匕作用を直接受けない場合があるが、活性酸素生成微粒子 1 2の上に付着するので、還元雰囲気になるなどのことによって活性酸素が発生した場 合に、その活性酸素による酸ィ匕作用を受ける。
[0032] その酸ィ匕の形態について検討したところ、以下のことが認められた。先ず、活性酸 素生成微粒子 12および触媒成分 11を担持したこの発明に係るフィルタ一基材 10〖こ 、 PM粒子を含むディーゼルエンジン燃焼排ガスを流通させ、 10°CZ分で温度を上 昇させつつ、発生する CO濃度と温度との関係を調べた。なお、空気量は 21%であ る。結果を図 2に示す。
[0033] 空燃比 (AZF)をリーン状態力 一時的にストィキもしくはリッチにするリーン'リッチ パルスを実行すると、 400°Cを超えた程度の低温で CO濃度が最大となった。これに
2
対して空燃比をリーンに維持するリーン定常の場合には、 600°C程度の高温に達し た時点で CO濃度が高くなつた。このことから、空燃比を一時的に増大することによる
2
還元雰囲気で、活性酸素生成微粒子 12から活性酸素が発生し、これが付着してい る PM粒子に作用して PM粒子の酸ィ匕を促進したものと考えられる。
[0034] 一方、空燃比を一時的にリッチ側に変化させるリッチスパイクに伴う PM粒子の形態 の変化を、ラマン分析によって調べた。結果は、図 3に示すようになった。すなわち、 PM粒子はダイアモンド結合とグラフアイト結合とのいずれにもなつていることが認めら れるが、リーン定常の場合に比較してリッチスパイクを実行した場合には、ダイアモン ド結合およびグラフアイト結合の 、ずれも酸ィ匕されて少なくなつて 、る。
[0035] したがって図 2および図 3に示す結果から、一般に酸ィ匕されにくいグラフアイト結合と なっている PM粒子が、比較的低温で酸化されることが認められた。その酸化の機構 は、以下のように推定される。すなわち、捕集された PM粒子は逐次酸化'除去される わけではなぐ集合してグラフアイト結合をも構成するが、還元雰囲気で活性酸素生 成微粒子 12から発生する活性酸素をグラフアイト π電子に吸着する。これが要因とな つてグラフアイト構造に欠陥が生じ、そのために他の部分が酸ィ匕されやすくなつて、 全体が急速に酸化'除去されるものと思われる。
[0036] なお、触媒成分 11の上に付着して捕集された ΡΜ粒子は触媒を介した酸化作用に よって酸化されて除去される。したがって、この発明に係る装置では、触媒成分 11に よる酸化作用が及ばない箇所に捕集された ΡΜ粒子の酸化を、活性酸素生成微粒 子 12から生じる活性酸素によって促進させ、相対的に低温度で酸化させて除去でき る。そのため、 ΡΜ粒子が過剰に堆積したり、それが高温で急激に燃焼してフィルタ 一基材 10や ΡΜ浄ィ匕装置が損傷するなどの事態を未然に防止もしくは回避できる。
[0037] また、この発明では、セリア、マグネシア、セリアジルコユアなどの活性粒子をフィル ター基材上に付着させ、その上に触媒層をコートした構成とすることができ、そのため に触媒層の活性を向上させることができるので、炭化水素 (HC)の排出量を少なくで き、また低温での活性を向上させることができる。さらに、排ガスの圧損と PM粒子の 堆積量との相互関係が成立するので、排ガスの圧力を検出することにより PM粒子の 堆積量を知ることができ、またその酸ィ匕除去のためのリッチスノイクのタイミングを適 正に制御できる。
[0038] 上述したように、この発明では、触媒成分 11同士の間に活性酸素生成微粒子 12を 担持した構成とするから、活性酸素生成微粒子 12を可及的に均一に担持することが 好ましい。そのためには、フィルタ一基材 10上の活性酸素生成微粒子 12を直接担 持させることに替えて、中間層を設け、その上に活性酸素生成微粒子層 13を形成す ることが好ましい。その中間層は、フィルタ一基材 10の表面における活性酸素生成 微粒子 12に対する 、わゆる親和性のばらつきを是正するためのものであり、アルミナ 、シリカ、ジルコユアなどの酸ィ匕物あるいはそれらを含む複合酸ィ匕物力もなる酸ィ匕物 層 15である。すなわち、フィルタ一基材 10および活性酸素生成微粒子 12とは異なる 酸ィ匕物もしくは複合酸ィ匕物を素材とした酸ィ匕物層 15である。その例を図 4に模式的 に示してある。
[0039] この酸ィ匕物層 15を形成する方法としては以下の方法を採用することができる。コー ジ ライトなど力もなるフィルタ一基材 10には、親水的な部分と親油的な部分とがある ので、無極性溶媒と、有機金属化合物とを混合し、フィルタ一基材 10を浸漬する。こ こで、無極性溶媒としては、へキサン、シクロへキサン、トルエン、 1—ブタノール、 1— へキサノールなどの溶媒を使用でき、特に比誘電率が 20以下の極性の小さい溶媒 を用いることができる。また、金属化合物としては、アルミニウムアルコキシドなどの金 属アルコキシドを使用することができる。上記の溶液にフィルタ一基材 10を接触させ た後、乾燥および焼成を行う。
[0040] その結果、フィルタ一基材 10上の親水性の部分 (例えばコージエライトでは MgOの 部分)で、親水的な金属アルコキシドの加水分解が生じ、金属酸化物が析出する。一 方、親水基のない部分に対する無極性溶媒の濡れ性が良いから、この部分に多く付 着することによって、乾燥'焼成に伴い多くの金属酸化物が析出する。このようにフィ ルター基材 10に存在している二つの異なる性質に合わせて金属酸ィ匕物が担持され るので、全体として均一な酸化物層を形成することができる。 [0041] このようにして形成した酸化物層に前述した活性酸素生成微粒子 12を付着させる 場合にも、錯イオン化した活性酸素生成微粒子 12を吸着させる錯イオン吸着法を採 用することもできる。錯イオンの生成のためには、コハク酸、りんご酸、酒石酸、クェン 酸などの有機酸を用いることができる。
[0042] つぎにこの発明の実施例を比較例と併せて説明する。
実施例 1
[0043] 無極性溶媒のシクロへキサン 4リットルに、金属アルコキシドとしてアルミニウムアル コキシド (アルミニウムトリ sec—ブドキシド(以下、 ASBDと略す)) 70gを溶力した溶液 中に、 2リットルのフィルター用コージエライト基材を浸漬し、ついでこれを引き上げた 後、余分な溶液を吹き払い、さらに乾燥後、焼成した。その結果、コージヱライト基材 上にアルミナが均一に生成した。
[0044] つぎに、表面にアルミナが析出している上記のコージエライト基材上に、活性酸素 生成微粒子として CeZrO粒子を吸着した。その方法として、錯イオン吸着法を採用
4
した。すなわち、ォキシ硝酸ジルコニウムと硝酸セリウムとをそれぞれ 0. 05モル採取 し、これを 4リットルの蒸留水に溶解した。次ぎにクェン酸二水素アンモ-ゥム 118gと クェン酸三アンモ-ゥム 6 lgとを添カ卩して、ジルコニウムとセリウムとの混合液の錯ィ オン溶液を作った。
[0045] アルミナを付着させた上記のコージエライト基材を、この錯イオン溶液に浸漬し、錯 イオンをコージエライト基材に吸着させた。溶液の拡散を促すためにコージエライト基 材を上下に動力しながら、 1時間吸着を続けた。その結果、溶液中のジルコニウム錯 イオンおよびセリウム錯イオンはほぼ完全にコージヱライト基材に吸着された。
[0046] さらに、上記の各錯イオンを吸着させたコージヱライト基材に、担体をコートするとと もに、貴金属および NOx吸蔵材を担持して、 DPNR触媒とした。これらの担体のコー トおよび貴金属と NOx吸蔵材の担持とは、従来知られている方法によって行った。具 体的には、アルミナおよびアルミナゾルを含有するスラリーをコージエライト基材に含 浸させた後、乾燥および焼成してコート層を形成した。次ぎに、所定の濃度の酢酸バ リウムを所定量、コージヱライト基材に含浸させ、これを加熱してノ リウム (Ba)を担持 した。その後、重炭酸アンモ-ゥムを使用して、担持しているバリウムを炭酸塩とした。 [0047] そして、ジニトロジァミン白金硝酸水溶液を用いて白金を担持するとともに、硝酸口 ジゥム水溶液を用 、てロジウムを更に担持した。
比較例
[0048] 上記の実施例 1における CeZrO粒子を吸着させる処理を行わずに、従来の定法
4
により、コージエライト基材に担体をコートするとともに、貴金属を担持し、かつ NOx吸 蔵材を担持して DPNR触媒とした。
[0049] (評価)
PM粒子の堆積量を測定した。フィルターが正常に機能している場合には、フィルタ 一基材に形成されている細孔の内部に PM粒子が入り込むので、その堆積量と圧損 との間に所定の関係が成立し、したがって排ガスの圧力を検出することにより、圧損 力も PM粒子の堆積量を求めることができる。しかしながら、図 5を参照して説明したよ うに、 PM粒子がフィルタ一基材の外表面に堆積して橋桁状に成長し、これが繋がつ て PM粒子による多孔質膜が形成された場合には、 PM粒子がその多孔質膜によつ て捕集され、細孔の内部に入り込まないので、堆積量と圧損との間に関係がなくなる 。そこで、上記の実施例 1および比較例の DPNRについては、フィルター上に堆積し た PM粒子を直接的に酸化させて COとし、これを分析することにより評価した。
2
[0050] 具体的には、直列 4気筒、 2リットル直噴ディーゼルエンジンに上記の各 DPNR触 媒(2リットル)を装着した車両を使用し、最高速度 120km/hの耐久走行を 200km行 い、その後に PM粒子の堆積量を測定した。なお、走行中に、 2秒のリッチスパイクを 20秒間隔で実施した。比較例による DPNRでは、 PM粒子の堆積量が 4. 5gZLで あつたのに対して、実施例 1による DPNRでは、 0. 9gZLであり、この発明に係る装 置では、 PM粒子の堆積量が大幅に減少した。これは、 PM粒子の酸ィ匕能力が向上 したこと〖こよるちのである。
[0051] その理由は、以下のように推定される。すなわち、比較例では、 CeZrO粒子などの
4 活性酸素生成微粒子を担持させる前処理を行って 、な 、ので、フィルタ一基材の外 表面に触媒成分の担持されて ヽな ヽ箇所では、フィルタ一基材の表面が直接露出し
、もしくは貴金属や NOx吸蔵材のためのコート層が直接露出している。この部分に付 着もしくは捕集された PM粒子は酸ィ匕作用を受けにくいので、図 5を参照して説明し たように、橋桁状に成長して、ついには多孔質膜をフィルタ一基材の外表面側に形 成する。その結果、フィルタ一基材内の触媒層に PM粒子が流入する確率が低下し 、 PM粒子の堆積が更に進行する。これに対して実施例 1による DPNRでは、フィル ター基材の外表面で触媒成分が存在しな ヽ箇所に付着もしくは捕集された PM粒子 は、その部分に存在する活性酸素生成微粒子で発生する活性酸素の酸化作用を受 けて酸化されやすくなる。そのため、 PM粒子が橋桁状あるいは多孔質膜に成長する ことが阻害され、排ガスに含まれる PM粒子が順次、フィルタ一基材内の触媒層に流 入して酸化 ·除去されてその堆積が進行しな 、。
[0052] なお、実施例 1の DPNR触媒による PM酸ィ匕能の向上効果は、活性酸素生成微粒 子が均一に担持されていること、換言すれば、均一な活性酸素生成微粒子層が形成 されていることが要因の一つとなっている。実施例 1では、均一な活性酸素生成微粒 子層を形成するために、フィルタ一基材 (コージエライト基材)との間の中間層として 酸化物層を形成しており、その酸ィ匕物層は、以下のように機能しているものと推定さ れる。
[0053] すなわち、第一に、コージヱライト基材上には、少量の水酸基 (親水性)の部分が存 在し、その部分において、親水的な ASBDの加水分解が起こり、その部分にアルミナ が析出する。第二に、コージヱライト基材上の親水基のない部分は、極性の少ないシ クロへキサン溶液の濡れ性が良ぐこの部分に、アルミニウムアルコキシドと混合され ているシクロへキサン溶液が多く付着し、したがつてこれを乾燥'焼成することにより、 この部分で多くのアルミナが析出する。このようにコージエライト基材の表面には二つ の異なる性質を持つ部分があり、反応させる液の特性も、親水的なアルミニウムアル コキシドと親油的な無極性溶媒との両方があることによって均一なアルミナの析出が 可能になる。こうして形成された均一な酸ィ匕物層の上に活性酸素生成微粒子層を形 成するので、その活性酸素生成微粒子層も均一化される。
[0054] なお、この発明では、活性酸素生成微粒子層をコージエライトなど力 なるフィルタ 一基材上に直接形成することもできる。その例を実施例 2として示す。
実施例 2
[0055] 蒸留水 4リットルに塩ィ匕ベンザルコ -ゥム 136gを溶かして溶液を作った。その溶液 にコージエライトからなるフィルタ一基材を浸漬し、約 30分放置した。
[0056] これとは別に、ォキシ硝酸ジルコニウムと硝酸セリウムとをそれぞれ 0. 05モル採取 し、これを 4リットルの蒸留水に溶解した。次ぎにクェン酸二水素アンモ-ゥム 118gと クェン酸三アンモ-ゥム 6 lgとを添カ卩して、ジルコニウムとセリウムとの混合液の錯ィ オン溶液を作った。
[0057] 上記の塩ィ匕ベンザルコ -ゥムに浸漬したフィルタ一基材を取り出して余分な溶液を 吹き払った後に、ォキシ硝酸ジルコニウムと硝酸セリウムとの溶液に浸漬した錯イオン を吸着した。溶液の拡散を促すためにフィルタ一基材を上下に動かしながら、 1時間 吸着を続けた。その結果、溶液中のジルコニウム錯イオンおよびセリウム錯イオンは ほぼ完全にフィルタ一基材に吸着された。
[0058] そして、実施例 1と同様に、従来知られている定法で、担体のコート、および貴金属 ならびに NOx吸蔵材の担持を行って、 DPNR触媒とした。
[0059] こうして得られた DPNR触媒を、前述した実施例 1についての評価を行ったのと同 様にして耐久走行に供したところ、実施例 1による DPNR触媒と同様の結果が得られ た。
[0060] すなわち、活性酸素生成微粒子として機能する CeZrO粒子をフィルタ一基材上に
4
均一に分散させて吸着させることができ、その結果、触媒成分同士が離隔して触媒 成分が存在しない部分が生じても、その部分に活性酸素生成微粒子が露出している ので、ここに付着もしくは捕集された PM粒子が活性酸素によって傷つけられて酸ィ匕 しゃすい状態となり、そのために PM粒子の酸ィヒが促進されてその堆積量が過剰に なることが防止もしくは抑制される。
[0061] このように均一な活性酸素生成微粒子層を形成する機能は、親油基を有する塩ィ匕 ベンザルコ -ゥム溶液の機能によるものである。すなわち、塩ィ匕ベンザルコ-ゥムは 親油基を有して 、るので、コージヱライトからなるフィルタ一基材に対する親和性が高 い。し力も、フィルタ一基材に吸着されることにより、その表面をプラスに帯電させる。 一方、上述した各錯イオンはマイナスに帯電しているので、電気的な強い相互作用 が生じて錯イオンの吸着が起こる。し力も、フィルタ一基材上のプラスに帯電している 部分のほぼ全てに錯イオンが吸着される。その結果、活性酸素生成微粒子層を形成 することになる各錯イオン力 フィルタ一基材上に均一に分散させられて吸着される ので、均一な活性酸素生成微粒子層を形成することができる。
[0062] 上述した実施例 1, 2および比較例の DPNR触媒について PM酸ィ匕速度の向上効 果を台上評価で確認した。エンジンは排気量 2リットルのターボディーゼルエンジン、 DPNR触媒の容積は 2リットルのものをターボ直後に配置して行った。エンジン条件 は 2400rpm、 60Nmにおける定常運転で 40秒間隔で低温燃焼によるリッチスパイク を 3秒入れた。この条件で排気温度はおおよそ 310°Cとなった。
[0063] この条件で 30分運転した後、 DPNR触媒をはずし、流通電気炉内で空気と反応し て、排出される CO量力もフィルタ中に堆積した PM (カーボン)量を求めた。
2
[0064] その結果,表 1に示すようにこの発明の実施例 1, 2では比較例に対して PM残存量
(堆積量)が 1Z3程度になり,明らかな PM酸ィ匕速度の向上が見られた。これら実施 例 1, 2および比較例の触媒諸元は同一で、フィルタ一基材における活性酸素生成 微粒子層の有無のみが異なることから,酸化速度の相違は、フィルタ一基材に付着さ せた活性酸素生成微粒子の効果と見なすことができ、フィルター上へ堆積し、触媒に 直接接触して ヽな 、PMの量が減少したことを示唆させる。
[0065] [表 1] 運転後の D P N Rへの P M堆積量
Figure imgf000016_0001
産業上の利用可能性
この発明は、燃料を燃焼させて動力を発生させる装置の製造に関係する産業や、 燃焼排ガスの浄ィ匕のための装置を製造する産業で利用できる。

Claims

請求の範囲
[1] 排ガスが通過する多孔質のフィルタ一基材に触媒成分が担持され、前記排ガスに 含まれる PM粒子を捕集するとともにその捕集した PM粒子を酸ィ匕除去する PM浄ィ匕 装置において、
活性酸素生成微粒子が、前記フィルタ一基材の表面で前記触媒成分同士の間に 担持されて!ヽることを特徴とする PM浄化装置。
[2] 前記フィルタ一基材上に、前記活性酸素生成微粒子カゝらなる活性酸素生成微粒子 層と、前記触媒からなる触媒担持層とが、順に形成されていることを特徴とする請求 項 1に記載の PM浄化装置。
[3] 前記フィルタ一基材上に、該フィルタ一基材および前記触媒とは異なる酸ィ匕物層が 形成され、その酸化物層上に、前記活性酸素生成微粒子もしくは活性酸素生成微 粒子層が設けられていることを特徴とする請求項 1または 2に記載の PM浄ィ匕装置。
[4] 前記活性酸素生成微粒子は、還元雰囲気で活性酸素を生成する酸化物微粒子も しくは複合酸化物微粒子を含むことを特徴とする請求項 1な ヽし 3の ヽずれかに記載 の PM浄化装置。
[5] 前記活性酸素生成微粒子は、酸ィ匕マグネシウムゃセリアあるいはセリアジルコユア 複合酸ィ匕物の微粒子力 なることを特徴とする請求項 1な 、し 4の 、ずれかに記載の PM浄化装置。
[6] 前記酸化物層は、アルミナ、シリカ、ジルコユアのいずれか、あるいはこれらの酸ィ匕 物を含む複合酸化物から構成されて 、ることを特徴とする請求項 3な 、し 5の 、ずれ かに記載の PM浄化装置。
[7] 前記フィルタ一基材は、コージエライト、炭化ケィ素、不織布状のセラミック、ワイヤメ ッシュの 、ずれかからなる多孔質材であり、
前記触媒成分は、白金、パラジウム、ロジウムの少なくともいずれか一つと、バリウム と、セリアとの 、ずれかを含むことを特徴とする請求項 1な!、し 6の 、ずれかに記載の
PM浄化装置。
[8] 排ガスが通過する多孔質のフィルタ一基材に触媒成分が担持され、前記排ガスに 含まれる PM粒子を捕集するとともにその捕集した PM粒子を酸ィ匕除去する PM浄ィ匕 装置の製造方法において、
前記フィルタ一基材に、親油基を持つ溶液を吸着させた状態で、活性酸素生成微 粒子をコートし、さらに酸化触媒を含む前記触媒成分を担持することを特徴とする p
M浄化装置の製造方法。
[9] 排ガスが通過する多孔質のフィルタ一基材に触媒成分が担持され、前記排ガスに 含まれる PM粒子を捕集するとともにその捕集した PM粒子を酸ィ匕除去する PM浄ィ匕 装置の製造方法において、
前記フィルタ一基材に、無極性溶媒と金属アルコキシド溶液とを用いて前記金属の 酸化物層を形成した後、その酸ィ匕物層の上に活性酸素生成微粒子をコートし、さら に酸化触媒を含む前記触媒成分を担持することを特徴とする PM浄化装置の製造方 法。
[10] 前記活性酸素生成微粒子は、還元雰囲気で活性酸素を生成する酸化物微粒子も しくは複合酸ィ匕物微粒子を含むことを特徴とする請求項 8または 9に記載の PM浄ィ匕 装置の製造方法。
[11] 前記活性酸素生成微粒子は、酸ィ匕マグネシウムゃセリアあるいはセリアジルコユア 複合酸ィ匕物の微粒子力もなることを特徴とする請求項 8な 、し 10の 、ずれかに記載 の PM浄化装置の製造方法。
[12] 前記酸化物層は、アルミナ、シリカ、ジルコユアあるいはこれらの酸ィ匕物を含む複合 酸化物から構成されて 、ることを特徴とする請求項 9な 、し 11の 、ずれかに記載の P
M浄化装置の製造方法。
[13] 前記フィルタ一基材は、コージエライト、炭化ケィ素、不織布状のセラミック、ワイヤメ ッシュの 、ずれかからなる多孔質材であり、
前記触媒成分は、白金、パラジウム、ロジウムの少なくともいずれか一つと、バリウム と、セリアとの 、ずれかを含むことを特徴とする請求項 8な 、し 12の 、ずれかに記載 の PM浄化装置。
PCT/JP2006/321013 2005-10-21 2006-10-23 Pm浄化装置およびその製造方法 WO2007046526A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06822034A EP1938887B1 (en) 2005-10-21 2006-10-23 Method for manufacturing a particulate matter clean-up system
CN2006800389259A CN101291719B (zh) 2005-10-21 2006-10-23 粒状物质净化装置及其制造方法
US12/083,915 US8252374B2 (en) 2005-10-21 2006-10-23 Particulate matter purifying device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-307473 2005-10-21
JP2005307473A JP4839773B2 (ja) 2005-10-21 2005-10-21 Pm浄化装置の製造方法

Publications (1)

Publication Number Publication Date
WO2007046526A1 true WO2007046526A1 (ja) 2007-04-26

Family

ID=37962613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321013 WO2007046526A1 (ja) 2005-10-21 2006-10-23 Pm浄化装置およびその製造方法

Country Status (5)

Country Link
US (1) US8252374B2 (ja)
EP (2) EP1938887B1 (ja)
JP (1) JP4839773B2 (ja)
CN (1) CN101291719B (ja)
WO (1) WO2007046526A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0908461B1 (pt) 2008-02-05 2020-06-16 Basf Corporation Sistema de tratamento de emissão adequado para o tratamento de um sistema de descarga a jusante de um motor a gasolina de injeção direta
JP2009233587A (ja) * 2008-03-27 2009-10-15 Ngk Insulators Ltd 触媒付きディーゼルパティキュレートフィルタ及びその製造方法
US20110083259A1 (en) * 2009-10-08 2011-04-14 Wright Victor S Cough and sneeze arrestor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365927A (ja) * 1986-09-05 1988-03-24 Cataler Kogyo Kk パテイキユレ−ト除去用触媒フイルタ
US6294140B1 (en) 1999-04-23 2001-09-25 Degussa Ag Layered noble metal-containing exhaust gas catalyst and its preparation
JP2002371824A (ja) * 2001-06-13 2002-12-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003190793A (ja) * 2001-12-21 2003-07-08 Toyota Motor Corp ディーゼル排ガス浄化用フィルタ型触媒
WO2005037405A1 (ja) * 2003-10-20 2005-04-28 Ibiden Co., Ltd. ハニカム構造体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109715A (en) * 1960-08-01 1963-11-05 Minnesota Mining & Mfg Catalytic afterburner
US5100632A (en) * 1984-04-23 1992-03-31 Engelhard Corporation Catalyzed diesel exhaust particulate filter
CA2124441A1 (en) * 1991-11-26 1993-06-10 Robert J. Farrauto Ceria-alumina oxidation catalyst and method of use
ATE190240T1 (de) * 1991-11-26 2000-03-15 Engelhard Corp Oxidationskatalysator und verfahren zur anwendung
JPH07106290A (ja) 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd 電子部品用異物除去装置
JP3387290B2 (ja) 1995-10-02 2003-03-17 トヨタ自動車株式会社 排ガス浄化用フィルター
JP2000167402A (ja) * 1998-12-09 2000-06-20 Daihatsu Motor Co Ltd 排気ガス浄化用触媒
AU1520200A (en) * 1998-11-13 2000-06-05 Engelhard Corporation Catalyst and method for reducing exhaust gas emissions
JP2002530175A (ja) * 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
DK1135581T3 (da) * 1998-12-05 2003-01-27 Johnson Matthey Plc Forbedringer ved partikelkontrol
EP1046423B8 (en) * 1999-04-23 2007-11-21 Umicore AG & Co. KG Layered noble metal-containing exhaust gas catalyst and its preparation
US6464946B1 (en) * 1999-05-07 2002-10-15 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6881384B1 (en) * 1999-08-30 2005-04-19 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
JP3494114B2 (ja) 2000-03-28 2004-02-03 トヨタ自動車株式会社 排気ガス浄化方法および排気ガス浄化装置
JP4548968B2 (ja) * 2000-06-05 2010-09-22 株式会社日本自動車部品総合研究所 セラミック担体およびセラミック触媒体
EP1403231B1 (en) * 2001-05-31 2012-11-21 Ibiden Co., Ltd. Method of producing a porous ceramic sintered body
ATE385281T1 (de) * 2002-03-04 2008-02-15 Ibiden Co Ltd Wabenfilter zur abgasreinigung und abgasreinigungsvorrichtung
US7517510B2 (en) * 2006-08-21 2009-04-14 Basf Catalysts Llc Layered catalyst composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365927A (ja) * 1986-09-05 1988-03-24 Cataler Kogyo Kk パテイキユレ−ト除去用触媒フイルタ
US6294140B1 (en) 1999-04-23 2001-09-25 Degussa Ag Layered noble metal-containing exhaust gas catalyst and its preparation
JP2002371824A (ja) * 2001-06-13 2002-12-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003190793A (ja) * 2001-12-21 2003-07-08 Toyota Motor Corp ディーゼル排ガス浄化用フィルタ型触媒
WO2005037405A1 (ja) * 2003-10-20 2005-04-28 Ibiden Co., Ltd. ハニカム構造体

Also Published As

Publication number Publication date
US20090241524A1 (en) 2009-10-01
EP2329876B1 (en) 2012-03-21
EP2329876A1 (en) 2011-06-08
JP2007111660A (ja) 2007-05-10
CN101291719A (zh) 2008-10-22
CN101291719B (zh) 2011-12-21
JP4839773B2 (ja) 2011-12-21
EP1938887A1 (en) 2008-07-02
EP1938887A4 (en) 2008-11-05
US8252374B2 (en) 2012-08-28
EP1938887B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5460597B2 (ja) 主に化学量論的混合気で運転される内燃機関の排ガスからの粒子の除去
KR101273228B1 (ko) 촉매로 피복된 입자 필터, 이의 제조방법 및 이의 용도
JP4564645B2 (ja) 排ガス浄化用触媒
JP4439910B2 (ja) 粒子状物質を燃焼させるための排気機構を備えたガソリンエンジン
RU2022643C1 (ru) Катализатор для окислительной очистки выхлопных газов дизельных моторов
KR101114167B1 (ko) 배기 가스 정화용 촉매의 재생 장치 및 재생 방법
JP2009082915A (ja) 主として化学量論的空気/燃料混合物により運転される内燃機関エンジンの排ガスからの粒子の除去
US20060142153A1 (en) Filter catalyst for exhaust gas purification of a diesel engine and its method of production
JP2008188542A (ja) 排ガス処理用触媒、その製造方法および排ガス処理方法
US20200055039A1 (en) Exhaust gas purifying filter and production method thereof
JPH0838897A (ja) 排気ガス浄化用触媒の製造方法
JPH08266865A (ja) ディーゼルエンジン用排ガス浄化触媒
WO2007046526A1 (ja) Pm浄化装置およびその製造方法
JP2017185467A (ja) 排ガス浄化用触媒
JP4730947B2 (ja) 排ガス浄化用触媒の再生方法
JPH09108570A (ja) 排ガス浄化用酸化触媒及びその製造方法
JP4298071B2 (ja) 排ガス浄化材及びその製造方法
JP2015009212A (ja) 排ガス浄化フィルタ
JP3316879B2 (ja) ディーゼルエンジン用排ガス浄化触媒
JP6263991B2 (ja) 触媒材の製造方法、並びにそれを用いた触媒付パティキュレートフィルタの製造方法及びガソリンエンジン用三元触媒の製造方法。
JP2008155198A (ja) 繊維状触媒
JPH09103679A (ja) ディーゼルエンジン用排ガス浄化触媒
JPH09173841A (ja) ディーゼルエンジン排ガス浄化用触媒
JPH10202103A (ja) ディーゼル用酸化触媒及びその製造方法
JP3695654B2 (ja) 排気ガス浄化用触媒の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038925.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006822034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12083915

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE