WO2007045389A2 - Verfahren zur auffindung von inhibitoren des epstein-barr-virus-induzierten gens 3 (ebi3) und deren verwendungen bei der behandlung von metastasierenden tumoren und allergischem asthma - Google Patents

Verfahren zur auffindung von inhibitoren des epstein-barr-virus-induzierten gens 3 (ebi3) und deren verwendungen bei der behandlung von metastasierenden tumoren und allergischem asthma Download PDF

Info

Publication number
WO2007045389A2
WO2007045389A2 PCT/EP2006/009833 EP2006009833W WO2007045389A2 WO 2007045389 A2 WO2007045389 A2 WO 2007045389A2 EP 2006009833 W EP2006009833 W EP 2006009833W WO 2007045389 A2 WO2007045389 A2 WO 2007045389A2
Authority
WO
WIPO (PCT)
Prior art keywords
ebi3
inhibitor
cells
derivative
biologically active
Prior art date
Application number
PCT/EP2006/009833
Other languages
English (en)
French (fr)
Other versions
WO2007045389A3 (de
Inventor
Susetta Finotto
Original Assignee
Johannes Gutenberg-Universität Mainz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johannes Gutenberg-Universität Mainz filed Critical Johannes Gutenberg-Universität Mainz
Priority to EP06828809A priority Critical patent/EP1942927A2/de
Priority to US12/083,706 priority patent/US20090220498A1/en
Publication of WO2007045389A2 publication Critical patent/WO2007045389A2/de
Publication of WO2007045389A3 publication Critical patent/WO2007045389A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/162Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • G01N33/6869Interleukin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to a method for the detection of inhibitors of the Epstein-Barr virus-induced gene 3 (EBB), a process for the preparation of a pharmaceutical composition comprising an inhibitor, a corresponding pharmaceutical composition and a method for the treatment of a metastatic cancer or of allergic asthma, comprising administering an effective amount of an inhibitor of EBD.
  • EBB Epstein-Barr virus-induced gene 3
  • Epstein-Barr virus (EBV) infection results in the expression of various antigens, such as the Epstein-Barr virus-induced gene (EBI) 3 on infected B cells.
  • EBI3 may associate with p28 to form IL-27 or be present as a mono / homodimer.
  • the gene encodes a soluble type 1 cytokine receptor homologous to the p40 subunit of interleukin 12.
  • EBI3 was found to associate with a novel IL-12 p35-related subunit, designated p28, to be a noncovalently bridged heterodimeric cytokine (EBI3 / p28), called IL-27, to form [I].
  • IL-27 (EBI3 / p28) is known to be an early product of activated antigen-presenting cells produced after TLR ligation. It controls the rapid clonal expansion of naive, but not memory, CD4 + T cells, and is synergistic with IL-12 to trigger IFN-gamma production via T-bet of naive CD4 + T cells [1-3]. , however, the biological function (s) of EBI3 as such or of EBI3 / EBI3 homodimers still remain unclear.
  • Lung melanoma is a disorder known for excess Th2 responses and diminished ThI responses.
  • a possible explanation for the diminished ThI responses in the case of lung melanoma may be altered IL-12 production and IL-12 signal transduction [4].
  • the release of IL-12 (p40 / p35) from antigen-presenting cells controls the differentiation of T cells into ThI cells with high-regulation of IFN-gamma transcription and secretion [6,7].
  • IL-12 has a protective role in lung melanoma, as it has the cytotoxic ability Activate lymphocytes, stimulate natural killer cells, induce the production of IFN-gamma and be synergistic with IL-2.
  • EBD is expressed by monocytes and macrophages, as is IL-12 [10].
  • the EBI3 protein is expressed in vivo by dendritic cells (DCs) of lymphoid tissues and to a very high degree by placental syncytiotrophoblasts [10-12].
  • DCs dendritic cells
  • IL-27 acts in synergy with IL-12 and triggers a rapid and clonal expansion of antigen-specific human and murine naive, but not memory CD4 + T cells. Its principal function is to limit the intensity and duration of unborn and adaptive immune responses [12].
  • the IL-27 receptor is the orphan receptor WSX-1 / TCCR associated with gpl30 [13].
  • WSX-1 / TCCR deficiency leads to impaired IFN-gamma production and ThI differentiation and increased susceptibility to infection with intracellular pathogens [14,15].
  • WSX-I is a novel class I cytokine receptor with homology to the IL-12 receptor and is highly expressed in lymphoid tissue [16]. It has been suggested that STAT-I is activated by interaction with the tyrosine residue in the cytoplasmic domain of WSX-I. Furthermore, IL-27 in wild-type naive CD4 + T cells induces expression of T-bet and IL-12Rbeta2 by WSX-I, indicating that IL-27 / WSX-1 signal transduction for initial fixation on ThI responses important is [17].
  • IL-12 can stimulate both cytotoxic lymphocytes and natural killer cell activity and the production of INF gamma, thus inhibiting the development of various experimental tumors.
  • Treatment of melanoma in mice with IL-12 (300 ng / day) was found to inhibit the development of primary melanoma tumors in 40% of the mice.
  • IL-12 may be synergistic with IL-2.
  • Chiyo et al. [25] describe that IL-27 is composed of p28 and EBI3.
  • the authors investigated whether murine colon 26 colon carcinoma cells transduced retrovirally with the p28-linked EBI3 gene (colon 26 / IL-27) could elicit antitumor effects in inoculated mice. Syngeneic BALB / c mice rejected inoculated Colon 26 / IL-27 tumors.
  • Allergic asthma can be triggered by environmental allergen exposure in people with allergic reactions. The consequences are seizure-like phases of respiratory distress. Often allergic asthma is preceded by agonizing persistent cough or allergic persistent cold. Triggers for allergic asthma attacks are exogenous substances from the environment, such as mold spores, house dust, animal dander, animal hair, bee pollen or flour dust. Inhaled, the immune system on the bronchi responds to the allergens. Allergic asthma patients often have inherited systems for excessive IgE allergen-specific antibody production. Increased secretion of histamine causes the mucous membranes to swell up and clog mucus. In the case of allergic asthma, physical and mental stress as well as viruses can cause seizures. Allergic asthma is a potentially life-threatening disease. With conventional medicines (glucocorticoids often as dosing spray) the immune system is attenuated in the respiratory tract or the respiratory tract is widened for treatment.
  • One of these objects of the present invention is in a first aspect of this invention by a method for the discovery of inhibitors of the Epstein-Barr virus-induced gene 3 (EBB) solved.
  • the method comprises the steps of a) providing a test system comprising EBB or a biologically active fragment or derivative thereof, b) contacting the test system with one or more compounds suspected of inhibiting EBB, and c) detecting inhibition of EBB by the one or more compounds.
  • Preferred according to the invention is a method further comprising the steps of d) identifying the inhibitor of EBB or a biologically active fragment or derivative thereof, and, optionally, e) chemical derivatization of the inhibitor selected in step d).
  • Another of the objects of the present invention is achieved in a second aspect thereof by a process for preparing a pharmaceutical composition
  • a process for preparing a pharmaceutical composition comprising a) identifying an inhibitor of EBB or a biologically active fragment or derivative thereof as defined above, and b) mixing the inhibitor with a suitable pharmaceutical carrier and / or other suitable pharmaceutical excipients and additives.
  • Another of the objects of the present invention is achieved in a third aspect of this by a pharmaceutical composition prepared according to the present invention and an inhibitor of EBB identified by a method according to the present invention.
  • yet a further object of the present invention in a fourth aspect thereof is achieved by a method of treating a metastatic cancer or allergic asthma, comprising administering to a patient an effective amount of an inhibitor of EBB or a biologically active fragment or derivative thereof.
  • IL-27 has been shown to positively regulate ThI signaling pathways. Furthermore, the inventors have previously shown that EBB deficiency is associated with decreased Th2 cytokine production by invariant CDI-restricted T cells and protection from colitis [18] and asthma. Thus, the inventors wanted to better understand the role of IL-27 and EBB in lung melanomas by analyzing EBB-deficient mice. Similar to In previous studies with Th2-associated colitis [18], the inventors observed that the directed deletion of EBD protects against allergic asthma.
  • the present invention is based on the finding that the Epstein-Barr virus (EBV) is a highly antigenic virus, resulting in the expression of viral antigens, such as the Epstein-Barr virus-induced gene 3 on the surface of infected B Cells, reasonably lies.
  • the EBD gene encodes a soluble type 1 cytokine receptor homologous to the p40 subunit of interleukin (IL) -12.
  • IL interleukin
  • EBD was also found to be associated with a novel IL-12 p35-related subunit, termed p28, to form IL-27 or with the p35 subunit to form IL-12.
  • EBD-deficient mice are protected from the development of lung melanomas induced by intravenous injection of B16 / F10 cells.
  • CD4 + T cells from EBD-deficient mice have an IL-4-dependent defect in T helper cell (Th) 2 development because they overexpress CTLA-4.
  • Th T helper cell
  • BMDCs bone marrow-derived, EBD-deficient dendritic cells did not release locally from the lungs an increased amount of IL-12 after CpG and LPS stimulation.
  • BMDC bone marrow-derived dendritic cells
  • This activation pathway also induces the processed antigen transfer from BMDCs to lung DCs'.
  • EBB Epstein-Barr virus-induced gene 3
  • the identification of the role of EBB in tumorous diseases provides the possibility of using EBB as a "target” for a method for the discovery of substances that bind to and inhibit EBB.
  • Methods for routinely carrying out such "screenings” are well known to those skilled in the art of pharmacy
  • suitable substance libraries can be searched These libraries and their search are known to those skilled in the art and easily adapted to the circumstances of the present invention
  • US 6,821,737 describes methods and kits for screening transcription factor modulators, and those skilled in the art will readily be able to adapt the method described in US 6,821,737 to the present situation.
  • test system is selected from purified EBB, a biologically active fragment or derivative thereof; an EBB, a biologically active fragment or derivative thereof expressing cell; an in vitro test system; and / or mice comprising an experimental tumor model.
  • the person skilled in the corresponding test systems are known; These include analysis of the expression of the gene products to be analyzed by DNA or RNA analysis, chip-based analyzes, RT-PCR, ELISA or other antibody-based detection methods.
  • biologically active fragment or derivative thereof in the context of the present invention means polypeptides which are functionally related to the EBD, ie have structural features of this polypeptide.
  • polypeptides which have a sequence homology, in particular a sequence identity, of about 70%, preferably about 80%, in particular about 90%, especially about 95% to the polypeptide having the amino acid sequence of EBI3.
  • sequence homology in particular a sequence identity
  • polypeptide having the amino acid sequence of EBI3 include additions, inversions, substitutions, deletions, insertions or chemical / physical modifications and / or substitutions or parts of the polypeptide in the range of about 1-60, preferably about 1-30, especially about 1-15, especially of about 1-5 amino acids
  • the first amino acid methionine may be absent without significantly altering the biological function of the polypeptide.
  • the term "inhibitor” means, on the one hand, compounds and / or molecules which bind to EBI3 and have a negative influence on the biological function of the polypeptide, ie completely or partially prevent it.
  • the inhibitor can bind directly to the active site of EBI3 or to a position that sterically influences this active site.
  • the inhibitor may bind in combination with a cofactor, such as a second chemical group, a peptide, protein, or the like.
  • An “inhibitor” for the purposes of the present invention may further inhibit the expression of the gene for EBI3 (for example as a deletion construct) or prevent the translation of EBI3 in the cells.
  • the inhibitor of EBI3 or a biologically active fragment or derivative thereof is selected from low molecular weight chemical compounds, peptides, proteins, nucleic acids, antisense oligonucleotides and antibodies.
  • the inhibitor of EBI3 or a biologically active fragment or derivative thereof is selected from modified p28, modified p35, recombinant antibody fragments and respirable antisense oligonucleotides against the expression of the EBI3 protein.
  • modified p28, modified p35, recombinant antibody fragments and respirable antisense oligonucleotides against the expression of the EBI3 protein are also described in detail in the literature [27-33].
  • a further preferred method of the present invention relates to a method for the discovery of substances, further comprising a computer-aided structural pre-selection of the one or more compounds which is suspected to be a Represents inhibitor of EBB or a biologically active fragment or derivative thereof.
  • a further preferred embodiment of the method of the present invention further comprises a computer-aided structural pre-selection of the one or more compounds suspected of inhibiting EBB.
  • Corresponding computer-assisted methods are known to the person skilled in the art.
  • Another aspect of the present invention relates to a method of the invention as above, further comprising the steps of d) identifying the inhibitor of EBB or a biologically active fragment or derivative thereof, and, optionally, e) chemical derivatization of the inhibitor selected in step d) , If such an inhibitor can be found with the aid of the test according to the invention, this compound is according to the invention a lead compound for further commercial drug development. It will then u.a. used in subsequent, especially living test systems and further developed.
  • a further preferred embodiment of the process of the present invention further comprises the step of chemically derivatizing the compounds as selected above.
  • a "derivative” is to be understood as meaning a compound derived from the compound identified according to the invention, which is substituted, for example, by various residual groups, and mixtures of various of these compounds, for example based on the particular disease to be treated and / or or the patient can be processed into a "personalized” drug based on diagnostic data or data on the success or course of the treatment.
  • a “chemical derivatization” is to be understood as the process for a corresponding chemical change, ie, for example, the substitution of various residual groups.
  • a “derivative” should also be understood to mean a “precursor” of a substance which is changed in the course of its administration by the conditions in the body (for example pH in the stomach or the like) or else by the body after ingestion is metabolized so that form as active substance the compound of the invention or its derivatives.
  • Another aspect of the present invention then relates to a process for the preparation of a pharmaceutical composition
  • a process for the preparation of a pharmaceutical composition comprising a) identifying an inhibitor of EBB or a biologically active fragment or derivative thereof by a method as above, and b) mixing the inhibitor with a suitable pharmaceutical carrier and or other suitable pharmaceutical excipients and additives, for example a suitable pharmaceutical carrier.
  • compositions e.g. in the form of medicaments containing the inhibitor according to the invention or its use in the use according to the invention is carried out in a customary manner by means of common pharmaceutical-technological processes.
  • the inhibitors are processed with suitable, pharmaceutically acceptable excipients and carriers to the dosage forms suitable for the various indications and application sites.
  • the drugs can be prepared in such a way that the respectively desired release rate, e.g. a rapid flooding and / or a sustained release or depot effect can be achieved.
  • a medicament may be an ointment, gel, patch, emulsion, lotion, foam, cream or mixed-phase or amphiphilic emulsion systems (oil / water-water / oil mixed phase), liposome, transfersome, paste or powder.
  • excipient means according to the invention any non-toxic, solid or liquid filling, diluting or packaging material, as long as it does not unduly adversely react with an inhibitor or the patient
  • Liquid galenic adjuvants include, for example, sterile water, physiological saline, sugar solutions , Ethanol and / or oils
  • Galenic adjuvants for the production of tablets and capsules may, for example, contain binders and fillers.
  • an inhibitor according to the invention can be used in the form of systemically used medicaments.
  • parenterals which include injectables and infusions.
  • Injectables are either in the form of ampoules or as so-called ready-to-use Injektabilia, eg as pre-filled syringes or disposable syringes, besides also in vials for multiple removal ago.
  • the administration of the Injectables may take the form of subcutaneous (sc), intramuscular (im), intravenous (iv) or intracutaneous (ie) administration.
  • the respectively suitable injection forms can be produced as crystal suspensions, solutions, nanoparticulate or colloidally disperse systems, for example hydrosols.
  • the injectable preparations may also be prepared as concentrates which are dissolved or dispersed with aqueous isotonic diluents.
  • the infusions can also be prepared in the form of isotonic solutions, fat emulsions, liposome preparations, microemulsions.
  • infusion preparations may also be prepared in the form of concentrates for dilution.
  • the injectable preparations may also be in the form of continuous infusions in both inpatient and outpatient therapy, e.g. in the form of mini pumps.
  • the inhibitor according to the invention may be bound in the parenteral to microcarriers or nanoparticles, for example to finely divided particles based on poly (meth) acrylates, polylactates, polyglycolates, polyamic acids or polyetherurethanes.
  • the parenteral preparations may also be modified as depot preparations, e.g. based on the "multiple unit principle", if an inhibitor according to the invention is incorporated in very finely divided or dispersed, suspended form or as a crystal suspension or based on the "single unit principle", if an inhibitor according to the invention is included in a dosage form, e.g. a tablet or a rod, which is then implanted.
  • these implants or depot medicines in single unit and multiple unit medicines are made of so-called biodegradable polymers, such as e.g. Polyesters of lactic and glycolic acid, polyether urethanes, polyamino acids, poly (meth) acrylates or polysaccharides.
  • biodegradable polymers such as e.g. Polyesters of lactic and glycolic acid, polyether urethanes, polyamino acids, poly (meth) acrylates or polysaccharides.
  • Aqua sterilisata pH-affecting substances such as organic and inorganic acids and bases and their salts, buffer substances for adjusting the pH, isotonizing agents such as sodium chloride, sodium bicarbonate, glucose and fructose, surfactants and emulsifiers, such as partial fatty acid esters of polyoxyethylene sorbitan (Tween®) or, for example, fatty acid esters of polyoxyethylene (Cremophor®), fatty oils, such as peanut oil, soybean oil and castor oil, synthetic Fatty acid esters, such as ethyl oleate, isopropyl myristate and neutral oil (Miglyol®), and polymeric auxiliaries, such as gelatin, dextran, polyvinylpyrrolidone, the solubility-increasing organic solvent additives, such as propylene glycol, ethanol, N 5 N-dimethylacetamide, propylene glycol, or
  • Active substance complexes can also be obtained with various polymers, for example with polyethylene glycols, polystyrene, carboxymethyl cellulose, Pluronics® or polyethylene glycol sorbitol fatty acid esters.
  • scaffold formers e.g. Mannitol, dextran, sucrose, human albumin, lactose, PVP or gelatin varieties.
  • the respectively suitable dosage forms can be prepared in accordance with recipe formulas and procedures based on pharmaceutical-physical principles known to the person skilled in the art.
  • compositions may be characterized in that the compound is in the form of a depot substance or as a precursor together with a suitable, pharmaceutically acceptable diluting solution or vehicle.
  • chemotherapeutic agents may include any chemotherapeutic agents commonly used in the art for cancer therapy (eg taxol).
  • the abovementioned pharmaceutical composition may be in the form of tablets, dragees, capsules, drop solutions, suppositories, injection or infusion preparations for peroral, rectal or parenteral use. Such dosage forms and their preparation are known in the art.
  • a composition for administering a respirable antisense oligonucleotide against the expression of EBO protein are also described in detail in the literature ([20], [31] - [33]) and can be adapted accordingly.
  • a still further aspect of the present invention relates to a compound which has been identified (selected) by means of a method according to the invention mentioned above.
  • this compound can be derived from a (commercially available) natural and / or artificial substance library, such "compound libraries" are well known to those skilled in the art.
  • Preferred is a library of short peptides. More preferably, this compound is selected from modified p28, modified p35, recombinant antibody fragments and respirable antisense oligonucleotides (see above).
  • oligonucleotide that specifically hybridizes to the nucleic acid sequence of EBI3.
  • Oligonucleotides are important therapeutics in the e.g.
  • the oligonucleotides according to the invention may be in the form of nucleic acids comprising DNA, dsDNA, RNA, mRNA, siRNA, PNA and / or CNA.
  • the oligonucleotides are preferably present as "antisense" oligonucleotides.
  • the upper limit for oligonucleotides is determined by the particular practical use, usually with a maximum length of 50-200 nucleotides being preferred.
  • oligonucleotides are degraded rapidly by endo- or exonucleases, in particular by DNases and RNases occurring in the cell. Therefore, it is advantageous to modify the nucleic acid to stabilize it against degradation so that a high concentration of the nucleic acid in the cell is maintained over a long period of time ([34], [35], WO 95/11910, WO 98) / 37240, WO 97/29116, Dudycz 1995, Macadam et al., 1998). Typically, such stabilization may be obtained by the introduction of one or more internucleotide phosphate groups or by the introduction of one or more non-phosphorus internucleotides.
  • Suitable modified internucleotides are summarized in Uhlmann and Peymann, 1990 ([36]) (see also [34], [35], WO 95/11910, WO 98/37240, WO 97/29116, Dudycz 1995, Macadam et al., 1998) ).
  • Modified internucleotide phosphate residues and / or Non-phosphorous ester linkages in a nucleic acid that can be used in any of the uses of the invention include, for example, methylphosphonate, phosphorothioate, phosphoramidate, phosphorodithioate, phosphate esters, while non-phosphorus internucleotide analogs, for example, siloxane bridges, carbonate bridges, carboxymethyl esters, acetamidate bridges, and / or Thiobrück included. It is also intended that this modification improves the shelf life of a pharmaceutical composition which can be used in any of the uses of the invention.
  • antisense oligonucleotides expression of the corresponding gene of EBB in cells can be reduced both in vivo and in vitro.
  • single stranded DNA or RNA is preferred.
  • the nucleic acid can be present as a plasmid, as part of a viral or non-viral vector.
  • Suitable viral vectors are in particular: retroviruses, baculoviruses, vaccinia viruses, adenoviruses, adeno-associated viruses and herpesviruses.
  • Suitable non-viral vectors are in particular: virosomes, liposomes, cationic lipids, or polylysine-conjugated DNA.
  • gene therapeutically active vectors are virus vectors, for example adenovirus vectors or retroviral vectors ([37] and [38]).
  • Another object of the present invention is an inhibitor in the form of a polyclonal or monoclonal antibody or an EBI3-binding fragment thereof, preferably a monoclonal antibody.
  • the term antibody also means genetically engineered and optionally modified antibodies or antigen-binding parts thereof, such as chimeric antibodies, humanized antibodies, multifunctional antibodies, bi- or oligo-specific antibodies, single-stranded antibodies, F (ab) - or F (ab) 2 fragments (see, for example, EP-Bl-0 368 684, US 4,816,567, US 4,816,397, WO 88/01649, WO 93/06213, WO 98/24884).
  • Another aspect relates to the administration of the inhibitors of the invention as oligonucleotides in gene therapy by means of conventional transfection systems, such as liposomes or particle gun techniques.
  • Another important aspect of the present invention relates to the use of an inhibitor of EBB or a biologically active fragment or derivative thereof according to the invention, as defined above, for the treatment of metastatic cancers or allergic asthma.
  • the inhibitor is a pharmaceutical composition as above or a compound as above.
  • the metastatic cancer is a primary melanoma.
  • Another important aspect of the present invention relates to a method of treating metastatic cancers and allergic asthma, comprising inhibiting the expression of EBB by administering to a patient an effective amount of an inhibitor of EBB or a biologically active fragment or derivative thereof.
  • the invention relates to the correlation of the (inter alia transcriptional) expression level of EBB with metastasis and allergic asthma and the remote metastasis probability of, inter alia, colon carcinomas.
  • an influence for the treatment of tumorous diseases and allergic asthma may include the administration of a pharmaceutical composition according to the invention as indicated above.
  • Another particular aspect of the present invention is thus a method for the treatment of tumorous diseases wherein the tumorous disease is metastatic lung or colon cancer or allergic asthma.
  • Another aspect of the present invention relates to immunotherapy with dendritic cells deficient for EBI3 or knockout cells for EBD.
  • EBI3-deficient dendritic cells or dendritic EBB-knockout cells are preferably used for the treatment of diseases, in particular metastasizing cancers or allergic asthma.
  • EBI3-deficient dendritic cells or dendritic EBI3 knockout cells are thereby used for the production of a medicament for the treatment of diseases, in particular metastasizing cancers or allergic asthma.
  • metastatic cancer is a primary melanoma. It is further preferred that a method of treating metastatic or allergic asthma comprises administering EBI3-deficient dendritic cells or dendritic EBI3 knockout cells to a patient.
  • the medicament used according to the present invention is administered by various routes, for example, orally, parenterally, subcutaneously, intramuscularly, intravenously or intracerebrally.
  • the preferred route of administration would be parenteral at a daily dose of the compound for an adult of about 0.01-5000 mg, preferably 1-1500 mg per day.
  • the medicament is administered at a dosage of between 30 mg / day and 2000 mg / day, preferably between 100 mg / day and 1600 mg / day, most preferably between 300 to 800 mg / day.
  • the appropriate dose may be presented as a single dose or as divided doses, at appropriate intervals, for example as two, three, four or more sub-doses per day.
  • Appropriate doses may be readily obtained by one skilled in the art through routine experimentation and based on factors such as the concentration of the active ingredient, the body weight and age of the patient, and other patient or active ingredient related factors.
  • compositions are generally administered in an amount effective for the treatment or prophylaxis of a specific condition or conditions.
  • the initial dosage in humans is accompanied by clinical monitoring of symptoms, the symptoms of the selected condition.
  • the Administered compositions in an amount of active agent of at least about 100 ⁇ g / kg of body weight.
  • they are administered in one or more doses in an amount not in excess of about 20 mg / kg of body weight per day.
  • the dose is from about 100 ⁇ g / kg to about 5 mg / kg of body weight daily.
  • B16 / F10 cells can be recognized because they are loaded with melanin, a brown pigment.
  • B16 / F10 cells are seen in histological sections from the lungs, which have left the blood vessels and entered the adjacent lymphatic vessels.
  • EBI3-deficient mice are protected from metastatic melanoma cells in the lung.
  • Intravenously injected B16 / F10 cells induce metastatic pulmonary melanomas in C57 / BL6 wild-type mice. This tumor develops and progresses in size from melanotic colonies beginning on day 5 to day 21 following intravenous B16 / F10 cell injection (A-D).
  • A-D intravenous B16 / F10 cell injection
  • EBB (- / -) mice are protected from pulmonary melanoma in this model (E-H).
  • FIG. 21 shows a quantification analysis of the lung colonies 10, 14 and 21 days after intravenous injection in wild-type and EBI3-deficient mice, respectively.
  • EBI3-deficient mice carry a significantly reduced number of colonies / surface area compared to wild-type littermates under the same experimental conditions.
  • Figure 3. Increased number of activated memory CD4 + T cells and NKDX5 + cells in the lungs of EBI3-deficient mice 5 days after injection of B16 / F10 cells. Detection of immunologically competent cells in lungs of wild-type and EBB-deficient mice infiltrated on the indicated days after intravenous injection of B16 / F10 cells.
  • CD4 + CD44 + CD69 + cells On day 5, a significant increase was observed in CD4 + CD44 + CD69 + cells in the lung of EBB-deficient mice bearing tumor, compared to wild-type littermates (AB).
  • CD4 4 NK + DX5 + increased in the lungs of EBB-deficient mice compared to the wild-type littermates (CD).
  • FIG. 4 Increased IFN-gamma release in the airways of melanoma-bearing lungs from EBB-deficient mice. Bronchoalveolar lavage fluid was obtained from the lungs of wild-type and EBB-deficient tumor-bearing mice. Interferon gamma analysis was performed by ELISA as described in Materials and Methods. Compared with the wild-type littermates, the figure shows that, ten days after injection of B16 / F10 cells in EBB-deficient mice bearing tumor 6, interferon-gamma is up-regulated.
  • Co-stimulatory challenge with anti-CD28 antibodies and IL-4 or IL-2 induces IFN-gamma production by CD4 + T cells in EBB-deficient mice.
  • CD4 + spleen T cells isolated from EBB-deficient mice timed an increased amount of IFN-gamma after co-stimulatory challenge with anti-CD28 antibodies, 2 (A) and 6 (B) days after onset of cell culture free.
  • Ectopically-added IL-4 and IL-2 on day 2 did not contribute on day 6 to increased IFN-gamma production by CD4 + T cells lacking EBB.
  • T-bet transcripts from CD4 + spleen T cells after indicated confrontation and allergen challenge with OVA in both wild-type and EBB-deficient mice.
  • the highest expression of T-bet was found in CD4 + T cells from EBB-deficient mice after co-stimulatory challenge with anti-CD28 antibodies, indicating T-bet driven INF gamma production in CD4 + T cells who lack EBB after antigen exposure.
  • Figure 6. Increased IL-2 production and CTLA-4 expression by CD4 + lung T cells
  • CTLA-4 CTLA-4 + T cells isolated from the lung of EBI3-deficient mice released increased IL-2 compared to the wild-type littermates, such as
  • mice indicating a negative regulation of Th2 immune responses in these mice (B).
  • lung DCs from EBI3-deficient mice released lower levels of IL-12, even under co-stimulatory challenge (B).
  • BMDCs release an increased amount of IL-12 in the absence of EBI3, that these cells take up the antigen in the periphery and transfer the processed peptide to resident DCs in the lung, which in turn converts the CD4 + T cell Control answers.
  • the inventors loaded BMDCs from both wild-type and EBI3-deficient mice with Texas red-labeled ovalbumin and co-cultured them in the presence of CFSE-labeled lung DCs to see if the peptide (red) too the CFSE-labeled lung DCs would be transferred. In this case, the green cells would have yellow intra-cytoplasmic spots (green plus red), indicating that OVA is being passed between the two DC populations.
  • induced antigen presentation occurs spontaneously involving CpG and LPS or both, and induces IL-12 production.
  • mice C57 / BL6 mice were obtained from Charles River Laboratories. EBI3 (- / -) mice were maintained as previously described [29, 36, 48].
  • Purified combinant mouse-specific IL-4 (10ng / ml, Peprotech, Rocky Hill, NJ), anti-CD3 (5mg / ml, BD PharMingen, Heidelberg, Germany), anti-CD28 (2mg / ml, BD PharMingen, Heidelberg , Germany), IL-27 (Rand D, Wiesbaden, Germany, LPS (Invivogen, San Diego, CA), and CpG (MWG Biotech, Heidelberg, Germany) with the sequence
  • Metastatic lungs were photographed under the stereomicroscope Stemi 200-C with AxioCam MRc.
  • the metastases were on the front and the back of the lung by Axiovision 4.2. marked by Carl Zeiss Vision GmbH. The marked areas were summed up and compared with the size of the whole lung. The results are shown in percent.
  • Bronchoalveolar lavage fluid (BALF) from the right lung was obtained by intratracheal injection of 0.75 ml saline (4X).
  • BALF was collected and an aliquot of cells stained with trypan blue solution for viability testing using a Neubauer chamber. The samples were centrifuged at 1500 rpm for 5 min and cell pellets were resuspended in 1 ml PBS. Cytospins were performed by centrifugation at 500 rpm for 5 min. Eosinophils were determined by staining according to Diff Quick (Dade Behring, Marburg, Germany). The cytospins were analyzed with a Zeiss microscope using a 4x optical objective. The supernatants were frozen and then analyzed by ELISA.
  • Spleen and lung mononuclear cells were isolated from freshly obtained samples of healthy C57 / BL6 mice (6-8 weeks old). The lungs were removed, transported on ice at Roswell Park Memorial Institute (RPMI) medium (Biochrom, Berlin, Germany). Tissue pieces were plated in Dulbecco's PBS containing 300 U / ml collagenase type II (Worthington, Lakewood, NJ) and 0.001% DNase (Roche, Basel, Switzerland). The lung and spleen cells were isolated as previously described [20]. Briefly, lung digestion was filtered, centrifuged, and erythrocytes were removed by hypotonic lysis in ammonium chloride and potassium chloride (ACK) buffer before cell suspension.
  • RPMI Roswell Park Memorial Institute
  • Lung and spleen CD4 + T cells were purified by the use of anti-CD4 beads from Miltenyi (L3T4 beads, Miltenyi, Bergisch-Gladbach, Germany).
  • Lung CD4 + T cells were incubated in RPMI medium in wells coated with anti-CD3 antibodies (5mg / ml; BD PharMingen, Heidelberg, Germany) in the presence of anti-CD28 antibodies (2mg / ml; BD PharMingen; Heidelberg, Germany) with and without IL-4 (10 ng / ml; Peprotech, Rocky Hill, NJ) for two days at a density of 10 6 cells / ml.
  • the supernatants were frozen and the cells were incubated for four more days as indicated above in the presence or absence of IL-4 (day 6).
  • the supernatants were frozen and later analyzed by ELISA for cytokine production.
  • Spleen and lung mononuclear cells were isolated from freshly obtained samples of healthy C57 / BL6 mice (6-8 weeks old) as previously described (21).
  • Murine bone marrow-derived DCs were generated as previously described [22]. Bone marrow cells were isolated from femurs of 6-10 week old mice and incubated in serum-free X-vivo-15 medium (Cambrex, East Rutherford, NJ) supplemented with 10 ng / ml murine GM-CSF (Peprotech, Rocky Hill, NJ). , cultivated. Total RNA was isolated using the Trifast reagent (Peqlab, Er Weg, Germany), followed by further purification with the RNeasy MinElute Cleanup Kit (Qiagen, Hilden, Germany) including DNase I digestion. 1 to 5 ⁇ g RNA were used for cDNA synthesis with Superscript II (Invitrogen, Heidelberg, Germany).
  • mRNA detection was performed by PCR analysis with the previously described primers TI # TI [29]. Differentiated BMDCs were then used for TLR ligation and IL-27 stimulation as described below and the supernatants frozen at 48 hours. Lung dendritic cells were isolated following lung dissociation using Miltenyi anti-CD1c beads (L3T4 beads; Miltenyi, Bergisch-Gladbach, Germany) as described by the manufacturer.
  • RNA from lung CD4 + T cells and BMDCs Isolation of RNA from lung CD4 + T cells and BMDCs and RT-PCR. Assorted and cultured lung CD4 + T cells and BMDC cells were harvested to RNA
  • Template used for the PCR For the T-bet analysis, the inventors used the following primers: antisense 5 'TGC CCC GCT TCC TCT CCA ACC AA 3' (SEQ ID No. 2), sense 5 'TGC CTG CAG TGC TTC TAA CA 3' (SEQ ID No. 3) or
  • T-bet forward primer 5'-TGC CTG CAG TGC TTC TAA CA 3 '(SEQ ID No. 7),
  • Reverse primer 5 'TGC CCC GCT TCC TCT CCA ACC AA-3' (SEQ ID No. 8).
  • the primers for actin were:
  • the PCR program was as follows: 93 ° C 3 min: 32 cycles of 93 ° C each 30 sec: 60 ° C 30 sec,
  • CD4 + lung T cells from OVA-sensitized and -confronted mice were incubated overnight in the presence of plate-bound anti-CD3 antibodies and soluble anti-CD28 antibodies.
  • the supernatants were analyzed fluorescence-cytometrically using a bead cytometric array (CBA; mouse Thl / Th2 kit obtained from BD Bioscience Pharmingen, San Diego, CA), following the manufacturer's instructions were followed and as previously described (21). Following flow cytometric acquisition, the sample results were generated in graphic and tabular formats using the BD CBA analysis software (BD PharMingen, Heidelberg, Germany).
  • Murine IL-5 was detected using a specific sandwich ELISA (OptEIA TM, standard range of 15.6 to 1000 pg / ml, BD PharMingen, Heidelberg, Germany), murine IL-4 using a specific sandwich ELISA (OptEIA TM; from 7.8 to 500 pg / ml; BD PharMingen, Heidelberg, Germany).
  • IL-13 was detected in the bronchoalveolar lavage fluid using a mouse-specific ELISA kit (duo set IL-13, standard range 40 to 2500 pg / ml, R & D Systems, Wiesbaden, Germany).
  • IFN-gamma ELISAs were performed on BAL and cell supernatants using a sandwich ELISA (OptEIA TM, standard range of 31.3 to 2000 pg / ml, BD PharMingen, Heidelberg, Germany).
  • IL-12p70 was detected in the dendritic cell supernatants using a mouse specific ELISA kit (OptEIA TM, standard range 62.5 to 4000 pg / ml, BD PharMingen, Heidelberg, Germany).
  • EBI3-deficient mice are protected from lung melanoma.
  • the inventors and others (18) reported disrupted Th2 immune responses in EBI3-deficient mice.
  • the inventors analyzed whether EBI3 deficiency would protect against pulmonary melanoma.
  • Figure 2 AD intravenous injection of B16 / F10 cell line cells into wild-type littermates resulted in the development of lung metastases in a time-dependent manner.
  • lungs from wild-type mice carrying tumors had lung metastases on day 5 to day 21 post cell injection. At the latest time, day 21, about 10-20% of the mice died.
  • the inventors dissociated lung bearing tumors from wild-type and EBI3-deficient mice and performed FACS analysis. As shown in Figure 3A-B, five days after intravenous injection of 2 ⁇ 10 5 B16 / F10 cells into EBI3-deficient mice, an increased number of CD4 + CD44 + CD69 + cells migrated into the lungs compared to wild-type - littermates.
  • IFN-gamma is known to possess anti-tumor properties and induce CTL responses.
  • the inventors therefore analyzed the IFN-gamma release in the lungs of mice carrying melanomas and found that six and ten days after intravenous B16 / F10 Cell Injection EBI3-deficient mice released an increased amount of IFN-gamma into the respiratory tract (bronchoalveolar lavage fluid) compared to wild-type mice at the indicated time points.
  • EBB is produced by dendritic cells after TLR ligation, but there has been no evidence of EBI3 release by CD4 + T cells.
  • the inventors therefore analyzed whether EBI3 deficiency in DCs would affect cytokine production in CD4 + T cells isolated from EBI3-deficient mice.
  • CD4 + T cells from EBD-deficient mice exposed an increased amount of IFN-gamma 2 and 6 days after co-stimulation with anti-CD28 antibodies and in the presence of either IL-2 or IL-4 or both free (FIGS. 5A and 5B, respectively on day 2 and day 6).
  • IFN-gamma production was accompanied by increased expression of the signature THl transcription factor T-bet (Figure 5C).
  • CD4 + T cells from lungs of EBI3-deficient mice release an increased amount of IL-2 and express increased levels of the inhibitory costimulatory molecule CTLA-4.
  • CTLA-4 is a costimulatory molecule associated with the T cell receptor that negatively regulates Th2 but not ThI differentiation.
  • the inventors therefore analyzed CTLA-4 expression in lung CD4 + T cells isolated from EBI3-deficient and wild-type littermates. As shown in Figure 6A, CTLA-4 was found to be up-regulated in lung CD4 + T cells isolated from EBI3-deficient mice. Along with this finding, the inventors found that CD4 + T cells isolated from EBI3-deficient mice released increased levels of IL-2 as shown by CBA analysis in Figure 6A.
  • CpG synergizes with LPS to enhance IL-12 production by bone marrow-derived DCs (BMDCs') lacking EBI-3 and to pass the antigen on to resident lung dendritic cells.
  • BMDCs' bone marrow-derived DCs
  • BMDCs are produced by LPS or CpG or can be synergistically induced by both to produce more IL-12 [19].
  • the inventors therefore investigated whether EBD-deficient BMDCs can compensate for the defect in IL-27 production by overproduction of IL-12 in the absence of EBD. Consistent with previous reports, the inventors have found that BMDCs synergistically release increased amounts of IL-12 after LPS and CpG stimuli ( Figure 7A).
  • BMDCs derived from EBI3-deficient mice released significantly more IL-12 compared to those isolated from wild-type mice when both TLR signaling pathways (TLR2 / 4 and 9) were activated (Figure 7A).
  • lung DCs isolated from EBI3-deficient mice do not release as much IL-12, even in the presence of Toll-like receptor stimulation ( Figure 7B).
  • the inventors conclude that BMDCs release increased amounts of IL-12 in the absence of EBI3, that these cells ingest the peripheral antigen, process it, and transfer it to resident DCs in the lung, which in turn deliver the CD4 + T cells. Control answers.
  • the inventors loaded BMDCs from both wild-type and EBI3-deficient mice with Texas Red-labeled OVA and co-cultured them in the presence of CFSE-labeled lung DCs to see if the peptides (red) to the CFSE-labeled lung DCs were passed.
  • the green cells would have yellow intracytoplasmic spots (green plus red), indicating an OV A spread between the two DC populations.
  • the propagated antigen presentation occurs spontaneously and is induced by stimuli that induce IL-12 production, namely CpG and LPS or both.
  • Intravenous transfer of in vivo lung DC-EBI-3 (- / -) -primed lung CD8 + EBI-3 (- / -) T cells was found to be able to heal melanomas in reconstituted wild-type mice, the lung melanomas carried.
  • Neonatal interleukin-12 capacity is associated with variations in allergen-specific Immune responses in the neonatal and postnatal periods. Clin. Exp. Allergy 3, 566-572. 9. Busse, WW, and Lemanske, RF Jr. (2001). Asthma. N Engl J Med. 24, 1643-1644.
  • the IL-27R (WSX-I) is required to suppress T cell hyperactivity during infection. Immunity 19, 645-655.
  • BMDCs Bone Marrow Dendritic Cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Auffindung von Inhibitoren des Epstein-Barr-Virus-induzierten Gens 3 (EBI3), ein Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung, umfassend einen Inhibitor, eine entsprechende pharmazeutische Zusammensetzung und ein Verfahren zur Behandlung einer metastasierenden Krebserkrankung oder von allergischem Asthma, umfassend Verabreichen einer effektiven Menge eines Inhibitors von EBI3.

Description

Verfahren zur Auffindung von Inhibitoren des Epstein-Barr-Virus-induzierten Gens 3 (EBI3) und deren Verwendungen bei der Behandlung von metastasierenden Tumoren und allergischem Asthma
Die vorliegende Erfindung betrifft ein Verfahren zur Auffindung von Inhibitoren des Epstein- Barr-Virus-induzierten Gens 3 (EBB), ein Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung, umfassend einen Inhibitor, eine entsprechende pharmazeutische Zusammensetzung und ein Verfahren zur Behandlung einer metastasierenden Krebserkrankung oder von allergischem Asthma, umfassend Verabreichen einer effektiven Menge eines Inhibitors von EBD.
Eine Epstein-Barr- Virus (EBV)-Infektion führt zur Expression von verschiedenen Antigenen, wie zum Beispiel dem Epstein-Barr-Virus-induzierten Gen (EBI) 3 auf infizierten B Zellen. EBI3 kann mit p28 assoziieren, um IL-27 zu bilden oder als Mono-/Homodimer vorhanden zu sein. Das Gen kodiert für einen löslichen Typ 1 Cytokinrezeptor, homolog zu der p40 Untereinheit von Interleukin 12. Kürzlich wurde von EBI3 gefunden, dass es mit einer neuen IL- 12 p35 -verwandten Untereinheit, bezeichnet als p28, assoziiert, um ein nicht-kovalent verbrücktes heterodimeres Cytokin (EBI3/p28), genannt IL-27, zu bilden [I]. IL-27 (EBI3/p28) ist als ein frühes Produkt von aktivierten Antigen-präsentierenden Zellen bekannt, das nach TLR-Ligation produziert wird. Es steuert die schnelle klonale Expansion von naiven, jedoch nicht von Gedächtnis CD4+ T-Zellen, und ist mit IL- 12 synergistisch, um die IFN- gamma Produktion über T-bet von naiven CD4+ T-Zellen auszulösen [1-3]. Die biologische(n) Funktion(en) von EBI3 als solches oder von EBI3/EBI3-Homodimeren bleiben jedoch immer noch unklar.
Experimentelles Lungenmelanom ist eine Erkrankung, die für überschiessende Th2- Antworten und verminderte ThI -Antworten bekannt ist. Eine mögliche Erklärung für die verminderten ThI -Antworten im Falle des Lungenmelanoms kann eine veränderte IL- 12 Produktion und IL- 12 Signaltransduktion sein [4]. Die Freisetzung von IL- 12 (p40/p35) aus Antigen-präsentierenden Zellen steuert die Differenzierung von T-Zellen in ThI -Zellen mit Hoch-Regulation von IFN-gamma-Transkription und -Sekretion [6,7]. Zusätzlich hat IL- 12 eine protektive Rolle beim Lungenmelanom, da es die Fähigkeit hat, cytotoxische Lymphozyten zu aktivieren, natürliche Killerzellen zu stimulieren, die Produktion von IFN- gamma zu induzieren und synergistisch mit IL-2 zu sein.
EBD wird durch Monocyten und Makrophagen exprimiert, genau wie IL- 12 [10]. Im Menschen wird das EBI3 -Protein in vivo durch dendritische Zellen (DCs) von lymphoiden Geweben und in sehr hohem Maße durch plazentale Syncytiotrophoblasten exprimiert [10- 12]. IL-27 fungiert in Synergie mit IL- 12 und löst eine schnelle und klonale Expansion von Antigen-spezifϊschen menschlichen und murinen naiven, jedoch nicht Gedächtnis CD4+ T- Zellen aus. Seine prinzipielle Funktion ist, die Intensität und Dauer von ungeborener und adaptiver Immunantwort zu begrenzen [12]. Der IL-27-Rezeptor ist der Orphan-Rezeptor WSX-1/TCCR, assoziiert mit gpl30 [13]. WSX-1/TCCR-Defizienz fuhrt zu einer beeinträchtigten IFN-gamma-Produktion und ThI -Differenzierung und erhöhten Empfindlichkeit gegen Infektion mit intrazellulären Pathogenen [14,15]. WSX-I ist ein neuer Klasse I Cytokinrezeptor mit Homologie zu dem IL-12-Rezeptor und ist in lymphoidem Gewebe stark exprimiert [16]. Es wurde vorgeschlagen, dass STAT-I durch die Interaktion mit dem Tyrosinrest in der cytoplasmatischen Domäne von WSX-I aktiviert wird. Weiterhin induziert IL-27 in Wildtyp naiven CD4+ T-Zellen die Expression von T-bet und IL-12Rbeta2 durch WSX-I, was anzeigt, dass die IL-27/WSX-l-Signaltransduktion für die anfängliche Festlegung auf ThI -Antworten wichtig ist [17].
Shrayer et al. [23] beschreiben, dass IL- 12 sowohl cytotoxische Lymphocyten als auch natürliche Killerzellenaktivität und die Produktion von INF-Gamma stimulieren und somit die Entwicklung von verschiedenen experimentellen Tumoren inhibieren kann. Es wurde gefunden, dass die Behandlung von Melanomen in Mäusen mit IL- 12 (300 ng/Tag) die Entwicklung von primären Melanomtumoren in 40% der Mäuse inhibierte.
Weiter beschreiben Shrayer et al. [24], dass IL- 12 synergistisch mit IL-2 sein kann. Chiyo et al. [25] beschreiben, dass sich IL-27 aus p28 und EBI3 zusammengesetzt. Die Autoren untersuchten, ob murine Kolon 26-Kolonkarzinom-Zellen, die retroviral mit dem p28- verbundenen EBI3-Gen transduziert waren (Colon 26/IL-27), Antitumor-Effekte in inokulierten Mäusen hervorrufen konnten. Syngene BALB/c Mäuse stießen beimpfte Colon 26/IL-27-Tumore ab. Jedoch beschreiben die Autoren, dass syngene Mäuse, die entweder mit Colon 26/p28 oder Colon 26/EBI3 transduziert waren, Tumore entwickelten, und dass das Überleben der Mäuse mit denen der mit Ausgangs-Tumorzellen beimpften identisch war. Die Autoren schlagen konsequenterweise vor, dass lediglich exprimiertes IL-27 in Tumoren einen T-Zell-abhängigen bzw. -unabhängigen Anti-Tumor-Effekt hervorruft und eine mögliche therapeutische Strategie für Krebs ist.
Allergisches Asthma kann durch Umweltallergenexposition bei allergisch reagierenden Menschen ausgelöst werden. Die Folgen sind anfallsartige Phasen der Atemnot. Häufig geht allergischem Asthma ein quälender Dauerhusten oder allergischer Dauerschnupfen voraus. Auslöser für allergische Asthmaanfälle sind körperfremde Stoffe aus der Umwelt, wie Schimmelpilzsporen, Hausstaub, Tierhautschuppen, Tierhaare, Blütenpollen oder Mehlstaub. Eingeatmet reagiert das Immunsystem an den Bronchien auf die Allergene. Bei den allergischen Asthmapatienten finden sich häufig die vererbten Anlagen für überschießende IgE-allergen spezifische Antikörperproduktionen. Durch vermehrte Ausschüttung von Histamin schwellen die Schleimhäute an und sondern zähen Schleim ab. Anfallsauslösend können beim allergischen Asthma aber auch körperliche und geistige Belastungen sowie Viren sein. Allergisches Asthma ist eine unter Umständen lebensgefährliche Krankheit. Mit herkömmlichen Medikamenten (Glukocortikoide oft als Dosierspray) wird zur Behandlung das Immunsystem im Bereich der Atemwege gedämpft oder die Atemwege werden erweitert.
Hausding et al. [26] beschreiben eine IL-27 unabhängige Rolle von EBI3 bei Asthma. EBI3- defiziente Mäuse wurden vor der Entwicklung von Atemwegs-Hyperantworten nach Acethylcholin- oder Methacholin-Inhalation und Eosinophilie nach Allergensensitivierung und -Aerosolisierung geschützt. Diese Ergebnisse zeigen ebenfalls, dass die EBI3 -Expression per se immunologische Antworten in der Lunge hervorrufen kann (wie die Experimente in EBI3-transgenen Mäusen zeigen), und daher erlaubt die Inhibierung von EBI3 auch eine entsprechende Therapie im Falle dieser Indikation.
Es ist somit eine Aufgabe der vorliegenden Erfindung, eine verbesserte Behandlung von metastatischen Krebserkrankungen und allergischem Asthma auf der Basis von Inhibitoren von EBI3 zur Verfügung zu stellen. Es ist eine weitere Aufgabe der vorliegenden Erfindung, geeignete Inhibitoren von EBI3 zu identifizieren und einer solchen Therapie zugänglich zu machen.
Eine dieser Aufgaben der vorliegenden Erfindung wird in einem ersten Aspekt dieser durch ein Verfahren zur Auffindung von Inhibitoren des Epstein-Barr-Virus-induzierten Gens 3 (EBB) gelöst. Dabei umfaßt das Verfahren die Schritte von a) Zur Verfügung stellen eines Testsystems, umfassend EBB oder ein biologisch aktives Fragment oder Derivat davon, b) In Kontakt bringen des Testsystems mit einer oder mehreren Verbindungen, von denen vermutet wird, dass sie EBB inhibieren, und c) Nachweisen einer Inhibierung von EBB durch die eine oder mehreren Verbindungen.
Erfindungsgemäß bevorzugt ist ein Verfahren, das weiterhin die Schritte umfaßt von d) Identifizierung des Inhibitors von EBB oder einem biologisch aktiven Fragment oder Derivat davon, und, gegebenenfalls, e) Chemische Derivatisierung des in Schritt d) ausgewählten Inhibitors.
Eine weitere der Aufgaben der vorliegenden Erfindung wird in einem zweiten Aspekt dieser durch ein Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung gelöst, umfassend a) Identifizieren eines Inhibitors von EBB oder einem biologisch aktiven Fragment oder Derivat davon wie oben definiert, und b) Mischen des Inhibitors mit einem geeigneten pharmazeutischen Träger und/oder anderen geeigneten pharmazeutischen Hilfsund Zusatzstoffen.
Eine weitere der Aufgaben der vorliegenden Erfindung wird in einem dritten Aspekt dieser durch eine pharmazeutische Zusammensetzung, hergestellt gemäß der vorliegenden Erfindung und eines mittels eines Verfahrens gemäß der vorliegenden Erfindung identifizierten Inhibitors von EBB gelöst.
Schließlich wird noch eine weitere Aufgabe der vorliegenden Erfindung in einem vierten Aspekt dieser durch ein Verfahren zur Behandlung einer metastasierenden Krebserkrankung oder allergischem Asthma, umfassend Verabreichen einer effektiven Menge eines Inhibitors von EBB oder einem biologisch aktiven Fragment oder Derivat davon an einen Patienten, gelöst.
Von IL-27 wurde gezeigt, dass es ThI -Signalwege positiv reguliert. Weiterhin haben die Erfinder früher gezeigt, dass eine EBB-Defizienz mit verringerter Th2-Cytokinproduktion durch invariante CDl -restringierte T-Zellen und Schutz vor Colitis [18] und Asthma assoziiert ist. So wollten die Erfinder die Rolle von IL-27 und EBB in Lungemelanomen durch die Analyse von EBB-defizienten Mäusen besser verstehen. Ähnlich zu vorhergehenden Studien mit einer Th2-assoziierten Colitis [18], beobachteten die Erfinder, dass die gerichtete Deletion von EBD vor allergischem Asthma schützt.
Die vorliegende Erfindung beruht auf der Erkenntnis, dass das Epstein-Barr-Virus (EBV) ein hoch antigenes Virus ist, was in der Expression von viralen Antigenen, wie zum Beispiel dem Epstein-Barr-Virus induzierten Gen 3 auf der Oberfläche von infizierten B Zellen, begründet liegt. Das EBD -Gen kodiert für einen löslichen Typ 1 Cytokinrezeptor, homolog zu der p40- Untereinheit von Interleukin (IL)-12. Von EBD wurde auch als mit einer neuen IL-12 p35- verwandten Untereinheit, bezeichnet als p28, assoziiert gefunden, um IL-27 zu bilden, oder mit der p35 -Untereinheit, um IL- 12 zu bilden. Im Rahmen der Versuche für die vorliegende Erfindung fanden die Erfinder eine IL-27 unabhängige Rolle von EBD in metastatischen Krebserkrankungen und allergischem Asthma und insbesondere bei Lungenmelanomen. In der Tat sind EBD-defiziente Mäuse vor der Entwicklung von Lungenmelanomen, induziert durch intravenöse Injektion von B16/F10-Zellen geschützt. Konsistenterweise haben CD4+ T- Zellen aus EBD-defizienten Mäusen einen IL-4-abhängigen Defekt in der T-Helferzell- (Th) 2 Entwicklung, da sie CTLA-4 überexprimieren. Interessanterweise setzten nicht lokal aus der Lunge sondern Knochenmark-abgeleitete, EBD-defiziente dendritische Zellen (BMDC)'s, eine erhöhte Menge an IL- 12 nach CpG- und LPS-Stimulation frei. Diese Ergebnisse zeigen, dass ein Abzielen auf die EBD -Expression und -Funktion im allgemeinen und spezifisch in BMDCs immunologische Antworten über IL- 12 in der Lunge antreiben kann, und haben daher wichtige Konsequenzen für den Aufbau von neuen Krebstherapien im allgemeinen und speziell für Lungenkrebs und Lungenmetastasen.
Wichtigerweise haben die Erfinder gefunden, dass Knochenmark-abgeleitete dendritische Zellen (BMDC), denen EBD fehlt, erhöhte Mengen von IL- 12 und IFN-gamma aufgrund synergistischer TLR-Ligation ausschütten können. Dieser Aktivierungssignalweg induziert auch den prozessierten Antigentransfer von BMDCs zu den Lungen-DCs'. Erhöhtes IFN- gamma, jedoch nicht IL- 12 von Lungen-DCs, kombiniert mit einem Defekt in der IL-4- Produktion war für die finale Blockade der Entwicklung von Th2-Zellen in der Lunge verantwortlich. Diese Ergebnisse zeigen, daß, verglichen mit IL-27, die EBD -Expression per se in BMDCs gegensätzliche immunologische Antworten in der Lunge bewirken kann. Diese Ergebnisse zeigen, dass ein Abzielen auf die EBD -Expression und -Funktion in Tumor- und metastatischen Erkrankungen, wie etwa Lungenmelanomen, vorteilhaft für diese Erkrankungen im Menschen ist. Gemäß dem erfindungsgemäßen Verfahren zur Auffindung von Inhibitoren des Epstein-Barr- Virus-induzierten Gens 3 (EBB) wird ein Testsystem, umfassend EBB oder ein biologisch aktives Fragment oder Derivat davon, dazu verwendet, um nach in Kontakt bringen des Testsystems mit einer oder mehreren Verbindungen, von denen vermutet wird, dass sie EBB inhibieren, eine Inhibierung von EBB durch die eine oder mehreren Verbindungen nachzuweisen.
In einem bevorzugten Verfahren der vorliegenden Erfindung wird eine Inhibierung der Expression und/oder eine Inhibierung der biologischen Aktivität von EBB oder einem biologisch aktiven Fragment oder Derivat davon nachgewiesen.
Die Identifizierung der Rolle von EBB bei tumorösen Erkrankungen stellt in dem ersten Aspekt der vorliegenden Erfindung die Möglichkeit der Verwendung von EBB als ein "Target" für ein Verfahren zur Auffindung von Substanzen zur Verfügung, die an EBB binden und dieses inhibieren. Verfahren zur routinemäßigen Durchführung solcher „Screenings" sind dem Fachmann im Stand der Technik der Pharmazie gut bekannt. Mittels "High-Throughput-Technologien" können geeignete Substanzbibliotheken durchsucht werden. Diese Bibliotheken und ihre Durchsuchung sind dem Fachmann bekannt und leicht an die Gegebenheiten der vorliegenden Erfindung anzupassen, ohne dabei erfinderisch tätig sein zu müssen. Zum Beispiel beschreibt US 6,821,737 Verfahren und Kits zum Screening auf Transkriptionsfaktor-Modulatoren. Der Fachmann wird ohne weiteres in der Lage sein, das in der US 6,821,737 beschriebene Verfahren entsprechend auf die vorliegende Situation anzupassen.
Erfindungsgemäß bevorzugt ist ein Verfahren, wobei das Testsystem ausgewählt ist aus gereinigtem EBB, einem biologisch aktiven Fragment oder Derivat davon; einer EBB-, ein biologisch aktives Fragment oder Derivat davon exprimierenden Zelle; einem in vitro Testsystem; und/oder Mäuse, umfassend ein experimentelles Tumormodell. Dem Fachmann sind entsprechende Testsysteme bekannt; diese umfassen unter anderem die Analyse der Expression der zu analysierenden Genprodukte mittels DNA oder RNA-Analyse, Chipbasierte Analysen, RT-PCR, ELISA oder andere Antikörper-gestützte Nachweisverfahren. Unter dem Begriff "biologisch aktives Fragment oder Derivat davon" im Sinne der vorliegenden Erfindung versteht man Polypeptide, die funktionell mit dem EBD verwandt sind, d. h. Strukturmerkmale dieses Polypeptides aufweisen. Beispiele von „Derivaten" sind Polypeptide, die eine Sequenzhomologie, insbesondere eine Sequenzidentität, von ca. 70%, vorzugsweise ca. 80%, insbesondere ca. 90%, vor allem ca. 95% zu dem Polypeptid mit der Aminosäuresequenz von EBI3 aufweisen. Darunter zählen auch Additionen, Inversionen, Substitutionen, Deletionen, Insertionen oder chemische/physikalische Modifikationen und/oder Austausche oder Teile des Polypeptids im Bereich von ca. 1-60, vorzugsweise von ca. 1-30, insbesondere von ca. 1-15, vor allem von ca. 1-5 Aminosäuren. Beispielsweise kann die erste Aminosäure Methionin fehlen, ohne dass die biologische Funktion des Polypeptids wesentlich verändert wird.
Unter dem Begriff "Inhibitor" im Sinne der vorliegenden Erfindung versteht man zum einen Verbindungen und/oder Moleküle, die an EBI3 binden und die biologische Funktion des Polypeptids negativ beeinflussen, also ganz oder teilweise unterbinden. Der Inhibitor kann dabei direkt an das aktive Zentrum von EBI3 binden oder an eine Position, die dieses aktive Zentrum sterisch beeinflusst. Weiterhin kann der Inhibitor in Kombination mit einem Kofaktor binden, wie zum Beispiel einer zweiten chemischen Gruppe, einem Peptid, Protein, oder ähnlichem. Ein "Inhibitor" im Sinne der vorliegenden Erfindung kann weiterhin die Expression des Gens für EBI3 unterbinden (z.B. als Deletionskonstrukt) oder die Translation des EBI3 in den Zellen verhindern. Bevorzugt ist der Inhibitor von EBI3 oder einem biologisch aktiven Fragment oder Derivat davon ausgewählt aus chemischen Verbindungen niederen Molekulargewichts, Peptiden, Proteinen, Nukleinsäuren, antisense-Oligonukleotiden und Antikörpern.
Weiter bevorzugt ist der Inhibitor von EBI3 oder einem biologisch aktiven Fragment oder Derivat davon ausgewählt aus modifiziertem p28, modifiziertem p35, rekombinanten Antikörperfragmenten und respirablen antisense-Oligonukleotiden gegen die Expression des EBI3-Proteins. Entsprechende Ansätze, insbesondere inhalierbare Oligonukleotide, sind in der Literatur ebenfalls ausführlich beschrieben [27-33] .
Ein weiter bevorzugtes Verfahren der vorliegenden Erfindung betrifft ein Verfahren zur Auffindung von Substanzen, weiterhin umfassend eine computergestützte strukturelle Vorauswahl der einen oder mehreren Verbindungen, von der vermutet wird, dass sie ein Inhibitor von EBB oder einem biologisch aktiven Fragment oder Derivat davon darstellt. Durch virtuelles Screenen können Substanzen selektioniert werden, die potentiell EBB inhibieren sollten. Diese Substanzen werden daraufhin getestet, ob sie den funktionierenden Test inhibieren können. Eine weiter bevorzugte Ausführungsform des Verfahrens der vorliegenden Erfindung umfaßt weiterhin eine computergestützte strukturelle Vorauswahl der einen oder mehreren Verbindungen, von denen vermutet wird, dass sie EBB inhibieren. Entsprechende computergestützte Verfahren sind dem Fachmann bekannt.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein erfindungsgemäßes Verfahren wie oben, das weiterhin die Schritte umfaßt von d) Identifizierung des Inhibitors von EBB oder einem biologisch aktiven Fragment oder Derivat davon, und, gegebenenfalls, e) Chemische Derivatisierung des in Schritt d) ausgewählten Inhibitors. Kann mit Hilfe des erfindungsgemäßen Tests ein solcher Inhibitor gefunden werden, ist diese Verbindung erfindungsgemäß eine Leitsubstanz ("lead-compound") für die weitere kommerzielle Arzneimittel-Entwicklung. Sie wird dann u.a. in folgenden, insbesondere lebenden Testsystemen angewendet und weiter entwickelt.
Eine weiter bevorzugte Ausführungsform des Verfahrens der vorliegenden Erfindung umfaßt weiterhin den Schritt der chemischen Derivatisierung der wie oben ausgewählten Verbindungen. Wie hierin verwendet, soll im Rahmen der vorliegenden Erfindung unter einem "Derivat" eine von der erfindungsgemäß identifizierten Verbindung abgeleitete Verbindung verstanden werden, die z.B. durch verschiedene Restgruppen substituiert ist, sowie Gemische verschiedener dieser Verbindungen, die z.B. auf die jeweils zu therapierende Erkrankung und/oder den Patienten auf Basis von diagnostischen Daten oder Daten über den Behandlungserfolg oder -verlauf abgestimmt zu einem "personalisierten" Medikament verarbeitet werden können. Im Rahmen der vorliegenden Erfindung soll unter einer "chemischen Derivatisierung" das Verfahren zu einer entsprechenden chemischen Veränderung verstanden werden, also z.B. die Substitution verschiedener Restgruppen. Bevorzugterweise wird eine chemische Derivatisierung zum Zwecke des Erreichens einer besseren Bioverfügbarkeit oder der Verringerung von möglichen Nebenwirkungen durchgeführt. Unter einem "Derivat" soll im Rahmen der vorliegenden Erfindung auch ein "Vorläufer" einer Substanz verstanden werden, die im Laufe ihrer Verabreichung zur Behandlung durch die Bedingungen im Körper (z.B. pH im Magen, oder ähnliches) so verändert wird oder aber durch den Körper nach Aufnahme so metabolisiert wird, dass sich als wirksame Substanz die erfindungsgemäße Verbindung oder deren Derivate bilden.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft dann ein Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung, umfassend a) Identifizieren eines Inhibitors von EBB oder einem biologisch aktiven Fragment oder Derivat davon mittels eines Verfahrens wie oben, und b) Mischen des Inhibitors mit einem geeigneten pharmazeutischen Träger und/oder anderen geeigneten pharmazeutischen Hilfs- und Zusatzstoffen, zum Beispiel einem geeigneten pharmazeutischen Träger.
Die Herstellung von pharmazeutischen Zusammensetzungen, z.B. in Form von Arzneimitteln mit einem Gehalt an erfindungsgemäßem Inhibitor bzw. dessen Einsatz bei der erfindungsgemäßen Verwendung erfolgt in üblicher Weise anhand geläufiger pharmazeutisch-technologischer Verfahren. Hierzu werden die Inhibitoren mit geeigneten, pharmazeutisch annehmbaren Hilfs- und Trägerstoffen zu den für die verschiedenen Indikationen und Applikationsorten geeigneten Arzneiformen verarbeitet.
Dabei können die Arzneimittel in der Weise hergestellt werden, dass die jeweils erwünschte Freisetzungsrate, z.B. eine rasche Anflutung und/oder ein Retard- bzw. Depoteffekt erzielt werden. Ein Medikament kann dabei eine Salbe, Gel, Pflaster, Emulsion, Lotion, Schaum, Creme oder mischphasige oder amphiphile Emulsionssysteme (Öl/Wasser-Wasser/Öl- Mischphase), Liposom, Transfersom, Paste oder Puder sein.
Der Begriff "Hilfsstoff ' bedeutet erfindungsgemäß jedes, nicht-toxische, feste oder flüssige Füll-, Verdünnungs- oder Verpackungsmaterial, solange es nicht ungebührend nachteilhaft mit einem Inhibitor oder dem Patienten reagiert. Flüssige galenische Hilfsstoffe sind zum Beispiel steriles Wasser, physiologische Kochsalzlösung, Zuckerlösungen, Ethanol und/oder Öle. Galenische Hilfsstoffe zur Herstellung von Tabletten und Kapseln können zum Beispiel Bindemittel und Füllmaterial enthalten.
Weiterhin kann ein erfindungsgemäßer Inhibitor in Form von systemisch eingesetzten Arzneimitteln verwendet werden. Dazu gehören die Parenteralia, zu denen die Injektabilia und Infusionen gehören. Injektabilia werden entweder in Form von Ampullen oder auch als sog. gebrauchsfertige Injektabilia, z.B. als Fertigspritzen oder Einmalspritzen, daneben auch in Durchstechflaschen zur mehrmaligen Entnahme hergereichtet. Die Verabreichung der Injektabilia kann in Form der subkutanen (s.c), intramuskulären (i.m.), intravenösen (i.v.) oder intrakutanen (i.e.) Applikation erfolgen. Insbesondere können die jeweils zweckmäßigen Injektionsformen als Kristallsuspensionen, Lösungen, nanopartikuläre oder kolloiddisperse Systeme, wie z.B. Hydrosole, hergestellt werden.
Die injizierbaren Zubereitungen können ferner als Konzentrate hergestellt werden, die mit wässrigen isotonischen Verdünnungsmitteln aufgelöst oder dispergiert werden. Die Infusionen lassen sich ebenfalls in Form von isotonischen Lösungen, Fettemulsionen, Liposomenzubereitungen, Mikroemulsionen zubereiten. Wie Injektabilia können auch Infusionszubereitungen in Form von Konzentraten zum Verdünnen zubereitet werden. Die injizierbaren Zubereitungen können auch in Form von Dauerinfusionen sowohl in der stationären als auch in der ambulanten Therapie, z.B. in Form von Minipumpen, appliziert werden.
Der erfindungsgemäße Inhibitor kann in den Parenteralia an Microcarrier oder Nanopartikel gebunden sein, beispielsweise an feinstverteilte Partikel auf Basis von Poly(meth)acrylaten, Polylactaten, Polyglycolaten, Polyaminsäuren oder Polyetherurethanen. Die parenteralen Zubereitungen können auch als Depotpräparate modifiziert sein, z.B. aufbauend auf dem "Multiple Unit Prinzip", wenn ein erfindungsgemäßer Inhibitor in feinstverteilter bzw. dispergierter, suspendierter Form oder als Kristallsuspension eingearbeitet ist, oder aufbauend auf dem "Single Unit Prinzip", wenn ein erfindungsgemäßer Inhibitor eingeschlossen ist in einer Arzneiform, z.B. einer Tablette oder einem Stäbchen, das anschließend implantiert wird. Häufig bestehen diese Implantate oder Depotarzneimittel bei „Single Unit"- und „Multiple Unit"-Arzneiformen aus so genannten bioabbaubaren Polymeren, wie z.B. Polyester der Milch- und Glykolsäure, Polyetherurethanen, Polyaminosäuren, Poly(meth)acrylaten oder Polysacchariden.
Als Hilfs- und Trägerstoffe bei der Herstellung von Parenteralia kommen Aqua sterilisata, den pH- Wert beeinflussende Substanzen, wie z.B. organische und anorganische Säuren und Basen sowie deren Salze, Puffersubstanzen zur Einstellung des pH- Wertes, Isotonisierungsmittel, wie z.B. Natriumchlorid, Natriumhydrogencarbonat, Glucose und Fructose, Tenside bzw. oberflächenaktive Substanzen und Emulgatoren, wie z.B. Partialfettsäureester des Polyoxyethylensorbitans (Tween®) oder z.B. Fettsäureester des Polyoxyethylens (Cremophor®), fette Öle, wie z.B. Erdnußöl, Sojabohnenöl und Rizinusöl, synthetische Fettsäureester, wie z.B. Ethyloleat, Isopropylmyristat und Neutralöl (Miglyol®), sowie polymere Hilfsstoffe, wie z.B. Gelatine, Dextran, Polyvinylpyrrolidon, die Löslichkeit erhöhende Zusätzen organischer Lösungsmittel, wie z.B. Propylenglycol, Ethanol, N5N- Dimethylacetamid, Propylenglycol, oder komplexbildender Stoffe, wie z.B. Citrate und Harnstoff, Konservierungsmittel, wie z.B. Benzoesäurehydroxypropyl- und -methylester, Benzylalkohol, Antioxidantien, wie z.B. Natriumsulfit und Stabilisatoren, wie z.B. EDTA, in Betracht.
Bei Suspensionen erfolgt ein Zusatz von Verdickungsmitteln zum Verhindern des Absetzens von erfindungsgemäßen Inhibitoren von Tensiden und Peptisatoren, um die Aufschüttelbarkeit des Sediments zu sichern, oder von Komplexbildnern, wie EDTA. Es lassen sich auch mit verschiedenen Polymeren Wirkstoffkomplexe erzielen, beispielsweise mit Polyethylenglykolen, Polystyrol, Carboxymethylzellulose, Pluronics® oder Polyethylenglykolsorbitfettsäureestern. Zur Herstellung von Lyophilisaten werden Gerüstbildner, wie z.B. Mannit, Dextran, Saccharose, Humanalbumin, Lactose, PVP oder Gelatinesorten verwendet.
Die jeweils geeigneten Arzneiformen lassen sich in Einklang mit dem Fachmann bekannten Rezepturvorschriften und Verfahrensweisen auf der Basis pharmazeutisch-physikalischer Grundlagen herstellen.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft dann die entsprechend hergestellte erfindungsgemäße pharmazeutische Zusammensetzung. Diese pharmazeutische Zusammensetzung kann dadurch gekennzeichnet sein, dass die Verbindung in Form einer Depotsubstanz oder als Vorläufer zusammen mit einer geeigneten, pharmazeutisch verträglichen Verdünnungslösung oder Trägersubstanz vorliegt.
Bevorzugt ist eine pharmazeutische Zusammensetzung gemäß der vorliegenden Erfindung, die weitere Chemotherapeutika enthält. Diese Chemotherapeutika können alle für den Fachmann üblichen Chemotherapeutika im Rahmen einer Krebstherapie umfassen (z.B. Taxol). Erfindungsgemäß kann die oben genannte pharmazeutische Zusammensetzung in Form von Tabletten, Dragees, Kapseln, Tropflösungen, Suppositorien, Injektions- oder Infusionszubereitungen zur peroralen, rektalen oder parenteralen Verwendung vorliegen. Solche Darreichungsformen und deren Herstellung sind dem Fachmann bekannt. Besonders bevorzugt ist eine Zusammensetzung zur Verabreichung eines respirablen antisense- Oligonukleotids gegen die Expression von EBO -Protein. Entsprechende Ansätze, insbesondere inhalierbare Oligonukleotide, sind in der Literatur ebenfalls ausführlich beschrieben ([20], [31]-[33]) und können entsprechend angepasst werden.
Ein noch weiterer Aspekt der vorliegenden Erfindung betrifft dann eine Verbindung, die mittels eines oben genannten erfindungsgemäßen Verfahrens identifiziert (ausgewählt) wurde. Diese Verbindung kann zum Beispiel aus einer (käuflich erhältlichen) natürlichen und oder künstlichen Substanzbibliothek entstammen, solche "Compound libraries" sind dem Fachmann bestens bekannt. Bevorzugt ist eine Bibliothek von kurzen Peptiden. Besonders bevorzugt ist diese Verbindung ausgewählt aus modifiziertem p28, modifiziertem p35, rekombinanten Antikörperfragmenten und respirablen antisense-Oligonukleotiden (siehe oben).
Ein weiterer Aspekt der Erfindung betrifft ein Oligonukleotid, das spezifisch an die Nukleinsäuresequenz von EBI3 hybridisiert. Oligonukleotide stellen wichtige Therapeutika in der z.B. Gentherapie dar. Die erfindungsgemäßen Oligonukleotide können in Form von Nukleinsäuren umfassend DNA, dsDNA, RNA, mRNA, siRNA, PNA und/oder CNA vorliegen. Die Oligonukleotide liegen bevorzugt als "antisense"-Oligonukleotide vor. Die Obergrenze für Oligonukleotide wird durch die jeweilige praktische Verwendung bestimmt, wobei üblicherweise eine maximale Länge von 50-200 Nukleotiden bevorzugt wird.
Oligonukleotide werden in der Regel schnell durch Endo- oder Exonukleasen, insbesondere durch in der Zelle vorkommende DNasen und RNasen, abgebaut. Deshalb ist es vorteilhaft, die Nukleinsäure zu modifizieren, um sie gegen den Abbau zu stabilisieren, so dass über einen langen Zeitraum eine hohe Konzentration der Nukleinsäure in der Zelle beibehalten wird ([34], [35], WO 95/11910, WO 98/37240; WO 97/29116, Dudycz 1995, Macadam et al. 1998). Typischerweise kann eine solche Stabilisierung durch die Einführung einer oder mehrerer Internukleotid-Phosphatgruppen oder durch die Einführung einer oder mehrerer Nicht-Phosphor-Internukleotide erhalten werden.
Geeignete modifizierte Internukleotide sind in Uhlmann und Peymann, 1990 ([36]) zusammengefasst (siehe auch [34], [35], WO 95/11910, WO 98/37240; WO 97/29116, Dudycz 1995, Macadam et al. 1998). Modifizierte Internukleotid-Phosphatreste und/oder Nicht-Phosphoresterbindungen in einer Nukleinsäure, die bei einer der erfindungsgemäßen Verwendungen eingesetzt werden können, enthalten zum Beispiel Methylphosphonat, Phosphorothioat, Phosphoramidat, Phosphorodithioat, Phosphatester, während Nicht- Phosphor-Internukleotid-Analoge, beispielsweise Siloxanbrücken, Carbonatbrücken, Carboxymethylester, Acetamidatbrücken und/oder Thiobrücken enthalten. Es ist auch beabsichtigt, dass diese Modifizierung die Haltbarkeit einer pharmazeutischen Zusammensetzung, die bei einer der erfindungsgemäßen Verwendungen eingesetzt werden kann, verbessert.
Mit "antisense"-Oligonukleotiden kann die Expression des entsprechenden Gens von EBB in Zellen sowohl in vivo als auch in vitro verringert werden. Für die Verwendung als "antisense"-Oligonukleotid ist eine einzelsträngige DNA oder RNA bevorzugt.
Um die Einfuhrung von erfindungsgemäßen Nukleinsäuren als Inhibitoren in die EBI3- exprimierende Zelle durch Transfektion, Transformation oder Infektion zu ermöglichen, kann die Nukleinsäure als Plasmid, als Teil eines viralen oder nicht-viralen Vektors vorliegen. Als virale Vektoren eignen sich hierbei besonders: Retroviren, Baculoviren, Vakziniaviren, Adenoviren, adenoassoziierte Viren und Herpesviren. Als nicht-virale Vektoren eignen sich hierbei besonders: Virosomen, Liposomen, kationische Lipide, oder Polylysin konjugierte DNA.
Beispiele von gentherapeutisch wirksamen Vektoren sind Virusvektoren, beispielsweise Adenovirusvektoren oder retrovirale Vektoren ([37] und [38]).
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Inhibitor in Form eines polyklonalen oder monoklonalen Antikörpers oder ein EBI3 -bindendes Fragment davon, bevorzugt ist ein monoklonaler Antikörper. Unter dem Begriff Antikörper versteht man gemäß der vorliegenden Erfindung auch gentechnisch hergestellte und gegebenenfalls modifizierte Antikörper bzw. antigenbindende Teile davon, wie z.B. chimäre Antikörper, humanisierte Antikörper, multifunktionelle Antikörper, bi- oder oligo-spezifische Antikörper, einzelsträngige Antikörper, F(ab)- oder F(ab)2-Fragmente (siehe z.B. EP-Bl-O 368 684, US 4,816,567, US 4,816,397, WO 88/01649, WO 93/06213, WO 98/24884). Ein weiterer Aspekt betrifft die Verabreichung der erfindungsgemäßen Inhibitoren als Oligonukleotide bei der Gentherapie mittels herkömmlicher Transfektionssysteme, wie zum Beispiel Liposomen oder "particle gun"-Techniken.
Ausgehend von aufgefundenen Strukturen lassen sich in einer bevorzugten Ausführungsform des Verfahrens der vorliegenden Erfindung strukturell ähnliche Substanzen (Derivate) herstellen, die im Rahmen eines "molekularen Mimicry" spezifisch an das Target EBB des vorliegenden Pathomechanismus binden.
Ein weiterer wichtiger Aspekt der vorliegenden Erfindung betrifft dann die Verwendung eines erfindungsgemäßen Inhibitors von EBB oder eines biologisch aktiven Fragments oder Derivats davon, wie oben definiert, zur Behandlung von metastasierenden Krebserkrankungen oder allergischem Asthma. Bevorzugt ist eine Verwendung gemäß der Erfindung, wobei der Inhibitor eine pharmazeutische Zusammensetzung, wie oben, oder eine Verbindung, wie oben, ist. Bevorzugt ist eine erfindungsgemäße Verwendung, wobei die metastasierende Krebserkrankung ein primäres Melanom ist.
Ein weiterer wichtiger Aspekt der vorliegenden Erfindung betrifft ein Verfahren zur Behandlung von metastasierenden Krebserkrankungen und allergischem Asthma, umfassend eine Inhibierung der Expression von EBB durch Verabreichen einer effektiven Menge eines Inhibitors von EBB oder eines biologisch aktiven Fragments oder Derivats davon an einen Patienten. Die Erfindung betrifft die Korrelation der (u.a. transkriptionellen) Expressionshöhe von EBB mit der Metastasierung und allergischem Asthma sowie der Fernmetastasierungs- Wahrscheinlichkeit von u.a. Kolonkarzinomen. Damit ist die potentielle Nutzung dieses neuen Gens als Therapietarget als Interventionstarget auch für Tumortherapie zur Beeinflussung (Verhinderung) der Fernmetastasierung beim u.a. Lungenkarzinom gegeben. Erfindungsgemäß kann eine Beeinflussung zur Behandlung von tumorösen Erkrankungen und allergischem Asthma die Verabreichung einer erfindungsgemäßen, wie oben angegebenen pharmazeutischen Zusammensetzung umfassen. Ein weiterer besonderer Aspekt der vorliegenden Erfindung ist somit ein Verfahren zur Behandlung von tumorösen Erkrankungen, wobei die tumoröse Erkrankung metastasierender Lungen- oder Kolonkrebs oder allergisches Asthma ist. Ein weiterer Aspekt der vorliegenden Erfindung betrifft eine Immuntherapie mit dendritischen Zellen, die defizient für EBI3 oder Knockout-Zellen für EBD sind. Bevorzugterweise werden dabei EBI3-defiziente dendritische Zellen oder dendritische EBB- knockout Zellen zur Behandlung von Erkrankungen, insbesondere metastasierenden Krebserkrankungen oder allergischem Asthma, verwendet. Bevorzugterweise werden dabei EBI3-defiziente dendritische Zellen oder dendritische EBI3 -knockout Zellen zur Herstellung eines Medikaments zur Behandlung von Erkrankungen, insbesondere metastasierenden Krebserkrankungen oder allergischem Asthma, verwendet. Bevorzugt ist weiterhin eine erfindungsgemäße Verwendung, wobei die metastasierende Krebserkrankung ein primäres Melanom ist. Es wird weiterhin bevorzugt, daß ein Verfahren zur Behandlung einer metastasierenden Krebserkrankung oder von allergischem Asthma das Verabreichen von EBI3-defizienten dendritischen Zellen oder dendritischen EBI3 -knockout Zellen an einen Patienten umfasst.
In einer weiteren Ausführungsform der vorliegenden Erfindung wird das Medikament, dass gemäß der vorliegenden Erfindung verwendet wird, durch verschiede Routen verabreicht, zum Beispiel oral, parenteral, subkutan, intramuskulär, intravenös oder intracerebral. Die bevorzugte Route der Verabreichung wäre parenteral bei einer täglichen Dosis der Verbindung für einen Erwachsenen von ungefähr 0,01-5000 mg, bevorzugt 1-1500 mg pro Tag. Bevorzugterweise wird das Medikament in einer Dosierung von zwischen 30 mg/Tagund 2000 mg/Tag, bevorzugt zwischen 100 mg/Tag und 1600 mg/Tag, am meisten bevorzugt zwischen 300 to 800 mg/Tag. Die geeignete Dosis kann als eine einzelne Dosis oder als geteilte Dosen, in geeigneten Intervallen, zum Beispiel als zwei, drei, vier oder mehr Subdosen pro Tag, präsentiert werden.
Geeignete Dosen können leicht durch einen Fachmann durch Routineexperimente erhalten und auf Faktoren basiert werden, wie zum Beispiel die Konzentration des aktiven Inhaltsstoff, das Körpergewicht und Alter des Patienten und andere Patienten- oder aktive Inhaltsstoff- zusammenhängende Faktoren.
Pharmazeutische Zusammensetzungen werden im allgemeinen in einer Menge verabreicht, die zur Behandlung oder Prophylaxe eines spezifischen Zustands oder Zustände effektiv ist. Die anfängliche Dosierung im Menschen wird durch klinische Überwachung von Symptomen begleitet, den Symptomen des ausgewählten Zustands. Im allgemeinen werden die Zusammensetzungen in einer Menge an aktivem Mittel von mindestens ungefähr 100 μg/kg Körpergewicht verabreicht. In den meisten Fällen werden sie in einer oder mehreren Dosen in einer Menge nicht im Überschuss von ungefähr 20 mg/kg Körpergewicht pro Tag verabreicht. Bevorzugt ist in den meisten Fällen die Dosis von ungefähr 100 μg/kg bis ungefähr 5 mg/kg Körpergewicht täglich.
Besondere Ausfuhrungsformen der vorliegenden Erfindung werden mit Hilfe der Abbildungen, des Sequenzprotokolls und der Beispiele verdeutlicht, ohne dadurch beschränkt zu werden.
Im Sequenzprotokoll zeigen SEQ ID No. 1 bis 8 Oligonukleotide, die im Rahmen der vorliegenden Erfindung verwendet wurden.
Figur 1. Intravenöse Injektion von BI6/F10-Zellen induziert Lungenmelanome in einem Mausmodell.
A. 2xl05 B16/F10-Zellen wurden in die laterale Schwanzvene jeder Maus injiziert.
B. Histologisch können B16/F10-Zellen erkannt werden, da sie mit Melanin, einem braunen Pigment, beladen sind. In B sind B16/F10-Zellen in histologischen Schnitten von der Lunge zu sehen, die die Blutgefäße verlassen haben und in die angrenzenden lymphatischen Gefäße eingetreten sind.
In C und D sind zwei verschiedene Vergrößerungen von Lungenschnitten zu sehen, die andere B16/F10-Zellen zeigen, die zur Pleura der Lunge gewandern sind, um dort makroskopisch sichtbare Kolonien zu bilden.
Figur 2. EBI3-defiziente Mäuse werden vor metastasier enden Melanomzellen in der Lunge geschützt. Intravenös injizierte B16/F10-Zellen induzieren metastatische Lungenmelanome in C57/BL6-Wildtyp-Mäusen. Dieser Tumor entwickelt sich und schreitet in der Größe von melanotischen Kolonien fort, beginnend an Tag 5 bis Tag 21 nach der intravenösen B16/F10- Zellinjektion (A-D). Verglichen mit den Wildtyp-Wurfgeschwistern sind EBB (-/-)-Mäuse in diesem Modell vor Lungenmelanomen geschützt (E-H).
Figur 21. zeigt eine Quantifϊkationsanalyse der Lungenkolonien 10, 14 und 21 Tage nach intravenöser Injektion in Wildtyp- bzw. EBI3-defizienten Mäusen. EBI3-defiziente Mäuse tragen eine signifikant reduzierte Zahl von Kolonien/Oberfläche, verglichen mit den Wildtyp- Wurfgeschwistern unter denselben experimentellen Bedingungen. Figur 3. Erhöhte Zahl von aktivierten Gedächtnis CD4+ T-Zellen und NKDX5+ -Zellen in der Lunge von EBI3-defιzienten Mäusen 5 Tage nach Injektion von B16/F10-Zellen. Nachweis von immunologisch kompetenten Zellen in Lungen von Wildtyp- und EBB- defizienten Mäusen, die zu den angegebenen Tagen nach intravenöser Injektion von B16/F10- Zellen infiltriert waren. An Tag 5 wurde eine signifikante Zunahme in CD4+CD44+CD69+- Zellen in der Lunge von Tumor-tragenden EBB -defizienten Mäusen beobachtet, verglichen mit den Wildtyp-Wurfgeschwistern (A-B). Zusätzlich erhöhte sich die Zahl von CD44NK+DX5+ in den Lungen von EBB -defizienten Mäusen, im Vergleich zu den Wildtyp- Wurfgeschwistern (C-D).
Figur 4. Erhöhte IFN-gamma Freisetzung in den Luftwegen von Melanom-tragenden Lungen von EBB -defizienten Mäusen. Bronchoalveolare Lavageflüssigkeit wurde aus der Lunge von Wildtyp- und EBB -defizienten Tumor-tragenden Mäusen erhalten. Die Interferon-gamma- Analyse wurde mittels ELISA, wie in den Materialien und Methoden beschrieben, durchgeführt. Verglichen mit den Wildtyp- Wurfgeschwistern zeigt die Abbildung, dass, zehn Tage nach der Injektion von B16/F10-Zellen in EBB -defizienten Mäusen, die Tumor 6 tragen, Interferon-gamma hochreguliert wird.
Figur 5. Ko-stimulatorische Konfrontation mit anti-CD28-Antikörpern und IL-4 oder IL-2 induziert IFN-gamma-Produktion durch CD4+ T-Zellen in EBB -defizienten Mäusen. CD4+ Milz-T-Zellen, isoliert aus EBB -defizienten Mäusen, setzten zeitabhängig eine erhöhte Menge von IFN-gamma nach ko-stimulatorischer Konfrontation mit anti-CD28-Antikörpern, 2 (A) und 6 (B) Tage nach Beginn der Zellkultur frei. Ectopisch hinzugeführtes IL-4 und IL-2 trug an Tag 2 jedoch nicht an Tag 6 zu der verstärkten IFN-gamma-Produktion durch CD4+ T-Zellen bei, denen EBB fehlt.
C zeigt RT-PCR-Analysen von T-bet-Transkripten aus CD4+ Milz-T-Zellen nach angezeigter Konfrontation und Allergen-Konfrontation mit OVA sowohl in Wildtyp- als auch in EBB- defizienten Mäusen. Die höchste Expression von T-bet wurde in CD4+ T-Zellen aus EBB- defizienten Mäusen nach ko-stimulatorischer Konfrontation mit anti-CD28-Antikörpern gefunden, was eine T-bet getriebene INF-gamma-Produktion in CD4+ T-Zellen anzeigt, denen EBB nach der Antigen-Aussetzung fehlt. Figur 6. Erhöhte IL-2 -Produktion und CTLA-4-Expression durch CD4+ Lungen-T -Zellen aus
EBI3-deßzienten Mäusen.
Die gezielte Deletion von CTLA-4 in Mäusen führt zu einer verringerten Produktion von IL-2 aus Lymphknoten. Im Gegensatz dazu setzten aus der Lunge von EBI3-defizienten Mäusen isolierte CD4+ T-Zellen erhöht IL-2 frei, verglichen mit den Wildtyp- Wurfgeschwistern, wie
CBA—Dotblot und Histogramm-Analyse zeigen (A).
Darüber hinaus wurden hohe CD4+ CTLA-4-Zellen in der Lunge von EBI3-defizienten
Mäusen gefunden, was eine negative Regulation der Th2-Immunantworten in diesen Mäusen anzeigt (B).
Figur 7. CpG verstärkt synergistisch mit LPS die IL-12-Produktion in EBI3-deßzienten Knochenmark-abgeleiteten DCs und bewirkt die Antigenpräsentation für residente Lungen- dendritische Zellen.
BMDCs, denen EBD fehlt und die in der Anwesenheit von TNF-alpha und Stimulation mit TLR-9 und TLR-2/4 differenziert wurden, setzten erhöhte Mengen an IL- 12 frei, verglichen zu DCs, die aus Wildtyp- Wurfgeschwistern isoliert wurden (A).
Im Gegensatz dazu, setzten Lungen DCs' aus EBI3-defizienten Mäusen niedrigere Mengen an IL- 12 frei, sogar unter ko-stimulatorischer Konfrontation (B).
Die Erfinder schließen daraus, dass BMDCs eine erhöhte Menge an IL- 12 in Abwesenheit von EBI3 freisetzen, dass diese Zellen das Antigen in der Peripherie aufnehmen und das prozessierte Peptid zu residenten DCs in der Lunge transferieren, die im Gegenzug die CD4+ T-Zell-Antworten steuern. Um dies zu verdeutlichen, beluden die Erfinder BMDCs sowohl aus Wildtyp- und EBI3-defizienten Mäusen mit Texasrot-markiertem-Ovalbumin und ko- kultivierten diese in Anwesenheit von CFSE-markierten Lungen-DC's, um zu sehen, ob das Peptid (rot) zu den CFSE-markierten Lungen-DC's transferiert würde. In diesem Fall würden die grünen Zellen gelbe intra-cytoplasmatische Flecken aufweisen (grün plus rot), was anzeigt, dass OVA zwischen den zwei DC-Populationen weitergegeben wird. Wie die Figuren 7 C-H zeigen, tritt eine induzierte Antigenpräsentation spontan unter Beteiligung von CpG und LPS oder beidem auf und induziert die IL- 12 Produktion.
Beispiele
Materialien und Methoden Mäuse, Cytokine und Antikörper C57/BL6-Mäuse wurden von Charles River Laboratories erhalten. EBI3(-/-)-Mäuse wurden, wie vorher beschrieben, gehalten [29,36,48]. Gereinigtes r combinantes Maus-spezifisches IL-4 (10ng/ml; Peprotech, Rocky Hill, NJ), anti-CD3 (5mg/ml; BD PharMingen, Heidelberg, Deutschland), anti-CD28 (2mg/ml; BD PharMingen, Heidelberg, Deutschland), IL-27 (Rand D, Wiesbaden, Deutschland, LPS (Invivogen, San Diego, CA), und CpG (MWG Biotech, Heidelberg, Deutschland) mit der Sequenz
(5I-t(phosphothioniert;PTO)CCATGACGTTCCTGACGt(PTO)t(PTO)-3l) (SEQ ID No. 1) oder 5' (Phosphothionat T CC ATG ACG TTC CTG ACG T (Phosphothionat)T (Phisphothionate) 3' (SEQ ID No. 6) wurden für die in vitro Studien verwendet.
Quantifizierung der Lungenmetastasen
Metastatische Lungen wurden unter dem Stereomikroskop Stemi 200-C mit AxioCam MRc photographiert. Die Metastasen wurden auf der Vorderseite und der Rückseite der Lunge durch Axiovision 4.2. von Carl Zeiss Vision GmbH markiert. Die markierten Bereiche wurden aufsummiert und mit der Größe der gesamten Lunge verglichen. Die Ergebnisse sind in Prozent gezeigt.
Sammlung und Analyse der BAL
Bronchoalveolare Lavageflüssigkeit (BALF) aus der rechten Lunge wurde durch intratracheales Injizieren von 0,75 ml Kochsalzlösung (4 x) erhalten. BALF wurde gesammelt und ein Aliquot von Zellen wurde mit Trypanblau-Lösung für die Testung auf Lebensfähigkeit unter der Verwendung einer Neubauer-Kammer gefärbt. Die Proben wurden bei 1500 U/min für 5 Min zentrifugiert und Zellpellets wurden in 1 ml PBS resuspendiert. Cytospins wurden durch Zentrifugation bei 500 U/min für 5 Min durchgeführt. Eosinophile wurden durch Färben gemäß Diff Quick (Dade Behring, Marburg, Deutschland) bestimmt. Die Cytospins wurden mit einem Zeissmikroskop unter der Verwendung eines 4Ox Objektivs analysiert. Die Überstände wurden eingefroren und anschließend durch ELISA analysiert.
Isolierung und Reinigung von Milz- und Lungen-CD4+ Zellen
Milz- und Lungen-mononukleäre Zellen wurden aus frisch erhaltenen Proben von gesunden C57/BL6-Mäusen (6-8 Wochen alt) isoliert. Die Lungen wurden entfernt, auf Eis in Roswell Park Memorial Institute (RPMI)-Medium (Biochrom, Berlin, Germany) transportiert. Gewebestücke wurden in Dulbecco's PBS, enthaltend 300 U/ml Collagenase Type II (Worthington, Lakewood, NJ) und 0,001% DNase (Roche, Basel, Schweiz), suspendiert. Die Lungen- und Milzzellen wurden, wie vorher beschrieben [20], isoliert. Kurz beschrieben wurde der Lungenverdau filtriert, zentrifugiert und vor der Zellsuspension die Erythrocyten durch hypotonische Lyse in Ammoniumchlorid- und Kaliumchlorid(ACK)-Puffer entfernt. Lungen- und Milz-CD4+ T-Zellen wurden durch die Verwendung von anti-CD4-Perlen von Miltenyi (L3T4 Perlen; Miltenyi, Bergisch-Gladbach, Deutschland) gereinigt. Lungen-CD4+ T-Zellen wurden in RPMI-Medium in mit anti-CD3 -Antikörpern (5mg/ml; BD PharMingen, Heidelberg, Deutschland) beschichteten Wells in der Anwesenheit von anti-CD28- Antikörpern (2mg/ml; BD PharMingen, Heidelberg, Deutschland) mit und ohne IL-4 (10ng/ml; Peprotech, Rocky Hill, NJ) für zwei Tage bei einer Dichte von 106 Zellen/ml kultiviert. Zu diesem Zeitpunkt wurden die Überstände eingefroren und die Zellen wurden für vier weitere Tage, wie oben angegeben, in der Anwesenheit oder Abwesenheit von IL-4 (Tag 6) inkubiert. Zu diesem Zeitpunkt wurden die Überstände eingefroren und später durch ELISA auf die Cytokinproduktion hin analysiert.
Milz- und Lungen-mononukleare Zellen wurden aus frisch erhaltenen Proben von gesunden C57/BL6 Mäusen (6-8 Wochen alt), wie vorher beschrieben (21), isoliert.
Differentiation von Knochenmark-abgeleiteten DCs und RNA-Extraktion
Murine Knochenmark-abgeleitete DCs (BMDC) wurden, wie vorher beschrieben, erzeugt [22]. Knochenmarkzellen wurden aus Femuren von 6- bis 10- Wochen alten Mäusen isoliert und in serumfreiem X-Vivo-15 Medium (Cambrex, East Rutherford, NJ), ergänzt mit 10 ng/ml murinem GM-CSF (Peprotech, Rocky Hill, NJ), kultiviert. Gesamt-RNA wurde unter der Verwendung des Trifast-Reagenz (Peqlab, Erlangen, Deutschland) isoliert, gefolgt von weiterer Reinigung mit dem RNeasy MinElute Cleanup Kit (Qiagen, Hilden, Deutschland) einschließlich DNase I. -Verdau. 1 bis 5 μg RNA wurden für die cDNA Synthese mit Superscript II (Invitrogen, Heidelberg, Deutschland) verwendet. Der spezifische mRNA- Nachweis wurde durch PCR-Analyse mit den vorher beschriebenen Primern TI#TI durchgeführt [29]. Differenzierte BMDCs wurden dann für die TLR-Ligation und IL-27- Stimulierung, wie unten beschrieben, verwendet und die Überstände nach 48 Stunden eingefroren. Lungen-dendritische Zellen wurden nach Lungendissoziation unter der Verwendung von anti-CD l lc-Perlen von Miltenyi (L3T4 Perlen; Miltenyi, Bergisch- Gladbach, Deutschland), wie vom Hersteller beschrieben, isoliert.
Isolierung von RNA aus Lungen CD4+ T-Zellen und BMDCs und RT-PCR. Sortierte und kultivierte Lungen-CD4+ T-Zellen und BMDC-Zellen wurden bis zur RNA-
Isolierung sofort nach der Zellkultur eingefroren, wobei die Anweisungen des Herstellers befolgt wurden (RNeasy Micro Kit; Qiagen, Hilden, Deutschland), und wie vorher beschrieben (21).
6 μl Gesamt-RNA aus CD4+ T-Zellen wurden unter der Verwendung des RevertAid™ lst
Strang cDNA Synthesekits für RT-PCR (M-MuLV reverse Transkriptase; MBI-Fermentas
GMBH, St.Leon-Rot, Deutschland) revers transkribiert. Die sich ergebende cDNA wurde als
Templat für die PCR verwendet. Für die T-bet-Analyse verwendeten die Erfinder die folgenden Primer: antisense 5' TGC CCC GCT TCC TCT CCA ACC AA 3' (SEQ ID No. 2), sense 5' TGC CTG CAG TGC TTC TAA CA 3' (SEQ ID No. 3) oder
T-bet vorwärts Primer: 5'-TGC CTG CAG TGC TTC TAA CA 3' (SEQ ID No. 7),
Reverser Primer: 5' TGC CCC GCT TCC TCT CCA ACC AA-3' (SEQ ID No. 8).
Die Primer für Aktin waren:
5'- TGACGGGGTCACCCACACTGTGCCCATCTA -3' (SEQ ID No. 4) und
5'- CTAGAAGCATTTGCGGTGGACGATGGAGGG -3' (SEQ ID No. 5).
Das PCR-Programm war wie folgt: 93°C 3 min: 32 Zyklen von je 93°C 30 sec: 60°C 30 sec,
72°C 1 min und finale Verlängerung 10 min bei 72°C. Die PCR-Produkte wurden auf l,5%igen Agarosegelen analysiert.
FACS Analyse und cytometrischer Perlen-Array (CBA)
Um die Reinheit der isolierten CD4+ T-Zellen sicherzustellen wurden routinemäßig 5 x 105 Zellen mit 1 ml PBS gewaschen und dann für 30min in 100 μl PBS, enthaltend 5 μg/ml an anti-CD4-AK-FITC (BD PharMingen, Heidelberg, Deutschland), inkubiert. Die Zellen wurden mit 1 ml PBS gewaschen und anschließend in 1 ml 2%iger PFA/PBS (Sigma, Deisenhofen, Deutschland)-Lösung fixiert und analysiert. Die sich ergebenden Zellsuspensionen wurden durch FACS-Calibur gemessen und unter der Verwendung von Cell-Quest Pro Version 4.02 (BD PharMingen, Heidelberg, Deutschland) analysiert. CD4+ T-Zellen aus der Lunge von OVA-sensibilisierten und -konfrontierten Mäuse wurden über Nacht in Anwesenheit von Platten-gebundenen anti-CD3 -Antikörpern und löslichen anti- CD28-Antikörpern inkubiert. Die Überstände wurden Fluoreszenz-cytometrisch unter Verwendung eines cytometrischen Perlen-Array (CBA; Maus Thl/Th2 Kit erhalten von BD Bioscience Pharmingen, San Diego, CA) analysiert, wobei die Anweisungen des Herstellers befolgt wurden, und wie vorher beschrieben (21). Im Anschluss an die flußcytometrische Akquisition wurden die Probenergebnisse in graphischen und Tabellenformaten, unter Verwendung der BD CBA Analyse-Software (BD PharMingen, Heidelberg, Deutschland) erzeugt.
ELISA.
Murines IL-5 wurde unter Verwendung eines spezifischen Sandwich ELISAs (OptEIA™; Standardbereich von 15,6 bis 1000 pg/ml; BD PharMingen, Heidelberg, Deutschland) nachgewiesen, murines IL-4 unter Verwendung eines spezifischen Sandwich ELISAs (OptEIA™; Standardbereich von 7,8 bis 500 pg/ml; BD PharMingen, Heidelberg, Deutschland). IL- 13 wurde unter Verwendung eines Maus-spezifischen ELISA Kits (Duo set- IL- 13; Standardbereich von 40 bis 2500 pg/ml, R&D Systems, Wiesbaden, Germany) in der bronchoalveolaren Lavageflüssigkeit nachgewiesen. IFN-gamma-ELISAs wurde von BAL und Zeilüberständen unter Verwendung eines Sandwich ELISAs (OptEIA™, Standardbereich von 31.3 bis 2000 pg/ml, BD PharMingen, Heidelberg, Deutschland) durchgeführt. IL-12p70 wurde unter Verwendung eines Maus-spezifischen ELISA Kits (OptEIA™, Standardbereich von 62.5 bis 4000 pg/ml, BD PharMingen, Heidelberg, Deutschland) in den dendritischen Zeilüberständen nachgewiesen.
Histologische Analyse.
Für die histologische Analyse wurde ein signifikantes Stück der Lunge präpariert und in 10% gepuffertes Formalin eingetaucht, bis es in Übereinstimmung mit Standardprotokollen in der pathologischen Abteilung der Universität in Paraffin eingebettet wurde. Histologische Lungenbilder wurden (4Ox; Bildbreite: jeweils 320μm) in Photoshop (Adobe Systems Inc. Version 7.0, San Jose, CA) importiert, wie vorher beschrieben (48).
Statistische Analyse.
Die Unterschiede wurden durch den zweiseitigen Studenten-t-Test auf Signifikanz (P < 0.05) von unabhängigen Ereignissen (Excel, PC) evaluiert. Der Korrelationskoeffizient wurde unter der Verwendung der statistischen Analyse des Excel-Programms berechnet. Daten sind als Mittelwerte ± SD angegeben.
Ergebnisse
EBI3-defiziente Mäuse sind vor Lungenmelanomen geschützt. Die Erfinder und andere (18) berichteten über gestörte Th2-Immunantworten in EBI3- defizienten Mäusen. In dieser Erfindung analysierten die Erfinder in einem experimentellen Modell, ob eine EBI3-Defizienz vor Lungenmelanomen schützen würde. Wie in Figur 2 A-D gezeigt, führte die intravenöse Injektion von Zellen der B16/F10-Zelllinie in Wildtyp- Wurfgeschwistern zur Entwicklung von Lungenmetastasen auf zeitabhängige Art und Weise. In der Tat wiesen Lungen von Wildtyp-Mäusen, die Tumore trugen, an Tag 5 bis Tag 21 nach der Zellinjektion Lungenmetastasen auf. Am spätesten Zeitpunkt, Tag 21, starben ungefähr 10-20% der Mäuse.
Im Gegensatz dazu schützte die intravenöse Injektion der B16/F10-Zellen in EBI3-defiziente Mäuse diese Mäuse vor Lungemetastasen, wie in Figur 2E-H gezeigt. Die quantitative Analyse zeigte, dass 10, 14 und 21 Tage nach intravenöser Injektion von B16/F10-Zellen, EBI3-defϊziente Mäuse vor Lungemetastasen geschützt sind, was durch den durch metastatische schwarze Kolonien besetzten Bereich gezeigt ist (Figur 21).
Erhöhte Zahl von aktivierten Gedächtnis-CD4+ T-Zellen und NKDX5+-Zellen in der Lunge von EBI3-defizienten Mäuse fünf Tage nach der Injektion von B16/F10- Lungenmelanom-Zellen.
Um die immunologischen Mechanismen zu verstehen, die dem Tumor-Entkommen in EBI3- defizienten Mäusen zugrunde liegen, dissoziierten die Erfinder Lungen, die Tumore trugen, von Wildtyp- und EBI3-defizienten Mäusen und führten eine FACS-Analyse durch. Wie in Figur 3A-B gezeigt, wanderten fünf Tage nach der intravenösen Injektion von 2 x 105 B16/F10-Zellen in EBI3-defiziente Mäuse eine erhöhte Zahl von CD4+CD44+CD69+-Zellen in die Lunge ein, verglichen mit Wildtyp- Wurfgeschwistern. Zu diesem Zeitpunkt wurde auch eine erhöhte Zahl von CD4+NK+DX5+-Zellen aus der Lunge von EBI3-defizienten Mäusen festgestellt, verglichen mit Wildtyp-Wurfgeschwistern (Figur 3C-D), was eine erhöhte Immunantwort in der Lunge von EBI3-defizienten Mäusen anzeigt, verglichen mit Wildtyp- Wurfgeschwistern nach Injektion von B16/F10-Zellen.
Erhöhte IFN-gamma-Produktion in der Lunge von EBI3-defizienten Mäusen sechs und zehn Tage nach intravenöser Injektion von B16/F10-Zellen.
Von IFN-gamma ist bekannt, dass es Antitumor Eigenschaften besitzt und CTL-Antworten induziert. Die Erfinder analysierten daher die IFN-gamma-Freisetzung in der Lunge von Mäusen, die Melanome trugen, und fanden, dass sechs und zehn Tage nach intravenöser B16/F10-Zelleninjektion EBI3-defiziente Mäuse eine erhöhte Menge an IFN-gamma in die Atemwege (bronchoalveolare Lavageflüssigkeit) freisetzten, verglichen zu Wildtyp-Mäusen zu den angegebenen Zeitpunkten.
Milz-CD4+ T-Zellen, denen EBB fehlt, setzen erhöhtes IFN-gamma nach T-bet-Hoch- Regulation und Kostimulation frei.
EBB wird durch dendritische Zellen nach TLR-Ligation produziert, für eine EBI3- Freisetzung durch CD4+ T-Zellen gab es bisher keine Hinweise. Die Erfinder analysierten daher, ob die EBI3-Defizienz in DCs die Cytokinproduktion in CD4+ T-Zellen, die aus EBI3- defizienten Mäusen isoliert wurden, beeinflussen würden. Wie in Figur 5 gezeigt, setzten CD4+ T-Zellen aus EBD-defϊzienten Mäusen eine erhöhte Menge an IFN-gamma 2 und 6 Tage nach Kostimulation mit anti-CD28-Antikörpern und in der Anwesenheit von entweder IL-2 oder IL-4 oder beiden frei (Figur 5A und 5B, jeweils an Tag 2 und Tag 6). Die IFN- gamma-Produktion wurde durch die erhöhte Expression des Signatur-THl- Transkriptionsfaktors T-bet (Figur 5C) begleitet.
CD4+ T-Zellen aus Lungen von EBI3-defizienten Mäusen setzen eine erhöhte Menge an IL-2 frei und exprimieren erhöhte Mengen des inhibierenden kostimulatorischen Moleküls CTLA-4.
CTLA-4 ist ein mit dem T-Zellrezeptor assoziertes, kostimulatorisches Molekül, das negativ die Th2- jedoch nicht die ThI -Differenzierung reguliert. Die Erfinder analysierten daher die CTLA-4 Expression in Lungen-CD4+ T-Zellen, isoliert aus EBI3-defizienten und Wildtyp- Wurfgeschwistern. Wie in Figur 6A gezeigt, wurde von CTLA-4 gefunden, das es in Lungen CD4+ T-Zellen, isoliert aus EBI3-defizienten Mäusen, hoch-reguliert ist. Zusammen mit diesem Ergebnis haben die Erfinder gefunden, dass CD4+ T-Zellen, isoliert aus EBI3- defizienten Mäusen erhöhte Mengen von IL-2 freisetzten, wie durch CBA-Analyse in Figur 6A gezeigt.
CpG verstärkt synergistisch mit LPS die IL-12-Produktion durch Knochenmarkabgeleitete DCs (BMDCs'), denen EBI-3 fehlt, und gibt das Antigen an residente Lungen-dendritische Zellen weiter.
Die Erfinder fragten als nächstes, ob DCs, isoliert aus verschiedenen immunologisch relevanten Stellen, verschieden auf die TLR-Ligation antworten würden. In diesem Zusammenhang wurde erst kürzlich beschrieben, dass BMDCs durch LPS oder CpG oder synergistisch durch beide induziert werden können, vermehrt IL- 12 zu produzieren [19]. Die Erfinder untersuchten daher, ob EBD-defiziente BMDCs den Defekt in der IL-27 Produktion durch Überproduktion von IL- 12 in der Abwesenheit von EBD kompensieren können. In Übereinstimmung mit vorherigen Berichten haben die Erfinder gefunden, dass BMDCs synergistisch nach LPS- und CpG-Stimuli erhöhte Mengen an IL- 12 (Figur 7A) freisetzen. Interessanterweise setzten BMDCs abgeleitet aus EBI3-defizienten Mäusen signifikant mehr IL- 12 frei, verglichen mit denen, isoliert aus Wildtyp Mäusen, wenn beide TLR-Signalwege (TLR2/4 und 9) aktiviert wurden (Figur 7A). Außerdem setzen Lungen-DCs, isoliert aus EBI3-defizienten Mäusen, nicht so viel IL- 12 frei, sogar in der Anwesenheit von Tollähnlicher Rezeptorstimulation (Figur 7B). Die Erfinder schließen daraus, dass BMDCs erhöhte Mengen von IL- 12 in Abwesenheit von EBI3 freisetzen, dass diese Zellen das Antigen in der Peripherie aufnehmen, prozessieren und es zu residenten DCs in der Lunge transferieren, die im Gegenzug die CD4+ T-ZeIl- Antworten steuern. Um diesen Punkt zu belegen, beluden die Erfinder BMDCs von sowohl Wildtyp- als auch EBI3-defizienten Mäusen mit Texasrot-markiertem OVA und ko-kultivierten diese in Anwesenheit von CFSE- markierten Lungen-DCs, um zu sehen, ob die Peptide (rot) zu den CFSE-markierten Lungen DCs passiert wurden. In diesem Fall würden die grünen Zellen gelbe intracytoplasmatische Flecken (grün plus rot) aufweisen, was eine OV A- Weitergabe zwischen den zwei DC- Populationen anzeigen würde. Wie in den Figuren 7C-H gesehen werden kann, tritt die weitergegebene- Antigenpräsentation spontan auf und wird durch Stimuli induziert, die IL- 12 Produktion induzieren, nämlich durch CpG und LPS oder beide.
Es wurde gefunden, dass der intravenöse Transfer von in vivo Lungen DC-EBI-3 (-/-) geprimten Lungen CD8+ EBI-3 (-/-) T Zellen in der Lage war, Melanome in rekonstituierten Wildtyp Mäusen zu heilen, die Lungenmelanome trugen.
Es sollte verstanden werden, dass die Merkmale der Erfindung, wie hier beschrieben und offenbart, nicht nur in der jeweiligen angegebenen Kombination, sondern auch auf eine einzelne Weise verwirklicht werden können, ohne sich vom vorgesehenen Bereich der vorliegenden Erfindung zu entfernen.
Zitierte Literatur 1. Pflanz, S., Timans, J.C., Cheng, J., Rosales, R., Kanzler, H., Gilbert, J., Hibbert, L., Churakova, T., Travis, M., Vaisberg, E., Blumenschein, W.M., Mattson, J.D., Wagner, J. L., To, W., Zurawski, S., McClanahan, T.K., Gorman, D.M., Bazan, J.F., de Waal Malefyt, R., Rennick, D., and Kastelein, R.A. (2002). IL-27, a heterodimeric cytokine composed of EBB und p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779-790.
2. Devergne, O., Hummel, M., Koeppen, H., Le Beau, M.M., Nathanson, E. C, Kieff, E., and Birkenbach, M. (1996). A novel interleukin-12 p40-related protein induced by latent Epstein- Barr virus infection in B lymphocytes. J. Virol. 70, 1143-1153.
3. Devergne, O., Birkenbach, M., and Kieff, E. (1997) Epstein-Barr virus-induziert gene 3 und the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc. Natl. Acad. Sei. U S A. 94, 12041-12046.
4. Wright, E.D., Christodoulopoulos, P., Frenkiel, S., and Hamid, Q. (1999) Expression of interleukin (IL)- 12 (p40) and IL- 12 (beta 2) reeeptors in allergic rhinitis und chronic Sinusitis. Clin. Exp. Allergy 29, 1320-1325.
5. Bryan S.A., O'Connor B.J., Matti S., Leckie M.J., Kanabar V., Khan J., Warrington S.J., Renzetti L., Rames A., Bock J.A., Boyce M.J., Hansel T.T., Holgate S.T. Barnes PJ. (2000). Effects of recombinant human interleukin- 12 on eosinophils, airway hyper-responsiveness, and the late asthmatic process. Lancet 356, 2149-2153.
6. Rogge, L., Barberis-Maino, L., Biffi, M., Passini, N., Presky, D.H., Gubler, U., and Sinigaglia, F. (1997) Selective expression of an interleukin- 12 reeeptor component by human T helper 1 cells. J. Exp. Med. 185, 825-831.
7. Shevach, E.M., Chang, J.T., and Segal, B.M. (1999) The critical role of IL-12 and the IL- 12R beta 2 subunit in the generation of pathogenic autoreactive ThI cells. Springer Semin. Immunopathol. 21, 249-262. Review.
8. Prescott, S. L., Taylor, A., King, B., Dunstan, J., Upham, J. W., Thornton, CA., and Holt, P. G. (2003) Neonatal interleukin- 12 capacity is associated with variations in allergen-specific immune responses in the neonatal und postnatal periods. Clin. Exp. Allergy 3, 566-572. 9. Busse, W.W., and Lemanske, R.F. Jr. (2001). Asthma. N Engl J Med. 24, 1643-1644.
10. Devergne, O., Coulomb-LΗermine, A., Capel, F., Moussa, M., and Capron, F. (2001). Expression of Epstein-Barr virus-induced gene 3, an interleukin-12 p40-related molecule, throughout human pregnancy: involvement of syncytiotrophoblasts and extravillous trophoblasts. Am. J. Pathol. 159, 1763-1776.
11. Hashimoto, S.I., Suzuki, T., Nagai, S., Yamashita, T., Toyoda, N., and Matsushima, K. (2000) Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression. Blood 96, 2206-2214.
12. Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nature Reviews-Immunology 5, 521-531.
13. Pflanz, S., Hibbert, L., Mattson, J., Rosales, R., Vaisberg, E., Bazan, J.F., Phillips, J.H., McClanahan, T.K., de Waal Malefyt, R., and Kastelein, R.A. (2004) WSX-I and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 772, 2225-2231
14. Villarino, A., Hibbert, L., Lieberman, L., Wilson, E., Mak, T., Yoshida, H., Kastelein, R.A., Saris, C, and Hunter, CA. (2003) The IL-27R (WSX-I) is required to suppress T cell hyperactivity during infection. Immunity 19, 645-655.
15. Yoshida, H., Hamano, S., Senaldi, G., Covey, T., Faggioni, R., Mu, S., Xia, M., Wakeham, A.C., Nishina, H., Potter, J., Saris, CJ., and Mak, T.W. (2001) WSX-I is required for the initiation of ThI responses and resistance to L. major infection. Immunity 15, 569-578.
16. Brombacher, F., Kastelein, R.A., and Alber, G. (2003) Novel IL-12 family members shed light on the orchestration of ThI responses. Trends Immunol. 24, 207-212. Review.
17. Takeda, A., Hamano, S., Yamanaka, A., Hanada, T., Ishibashi, T., Mak, T. W., Yoshimura, A., and Yoshida, H. (2003) Cutting edge: role of IL-27/WSX-1 signalling for induction of T-bet through activation of STATl during initial ThI commitment. J. Immunol. 770, 4886-4890. 18. Nieuwenhuis, E.E., Neurath, M.F., Corazza, N., Iijima, H., Trgovcic, J., Wirtz, S., Glickman, J., Bailey, D., Yoshida, M., Galle, P. R., Kronenberg, M., Birkenbach, M., Blumberg, R.S. (2002) Disruption of T helper2-immune responses in Epstein-Barr virus induced gene 3-deficient mice. Proc. Natl. Acad. Sei. USA 99, 16951-16956.
19. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F., and Lanzavecchia, A. (2005) Selected Toll-like reeeptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6, 769-776.
20. Finotto, S., Hausding, M., Doganci, A., Maxeiner, J.H., Lehr, H.A., Luft, C, Galle, P.R., Glimcher, L. H. (2005) Asthmatic changes in mice lacking T-bet are mediated by IL-13. Int. Immunol. 77, 993-1007.
21. Doganci, A., Eigenbrod, T., Krug, N., De Sanctis, G.T., Hausding, M., Erpenbeck, V.J., Haddad, E-B., Lehr, H.A., Schmitt, E., Bopp, T., Kallen, K.J., Herz, U., Schmitt, S., Luft, C, Hecht, O., Hohlfeld, J.M., Ito, H., Nishimoto, N., Yoshizaki, K., Kishimoto, T., Rose-John, S., Renz, H., Neurath, M.F., Galle, P.R., and Finotto, S. (2005) The IL-6R alpha chain controls lung CD4+CD25+ Treg development and funetion during allergic airway inflammation in vivo. J. Clin. Invest. 115, 313-325.
22. Wirtz, S., Becker, C, Fantini, M.C., Nieuwenhuis, E.E., Tubbe, L, Galle, P.R., Schild, HJ., Birkenbach, M., Blumberg, R.S., and Neurath, M.F. (2005) EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation. J. Immunol. 174, 2814-2824.
23. Shrayer DP, CoIe B, Hearing VJ, Wolf SF, Wanebo HJ. (1999) Immunotherapy of Mice with an irradiated melanoma Vaccine coupled with interleukin-12. Clin Exp Metastasis. 17(l):63-70.
24. Shrayer DP, Bogaars H, CoIe B, WoIf SF, Wanebo HJ. (2002) Capacity of murine IL-12 to inhibit the development of primary melanoma tumors and to prevent lung metastases in the melanoma-challenged mice. J Exp Ther Oncol 2(2):93-9. 25. Chiyo M, Shimozato O, Yu L, Kawamura K, Iizasa T, Fujisawa T, Tagawa M. (2005) Expression of IL-27 in murine Carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animals. Int J Cancer. 115(3):437-42.)
26. Hausding M, Wirtz S, Karwot R, Maxeiner J, Lehr HA, Wegmann M, Doganci A, Sternemann K, Renz H, Galle PR, Birkenbach M, Neurath MF, Blumberg RS, Finotto S Antigen presentation by Bone Marrow Dendritic Cells (BMDCs) protects EBI3 (-/-) mice from allergic asthma via activation of T-bet, zur Publikation eingereicht.
27. Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR, Renz H, Neurath MF. Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GAT A-3 expression Exp Med. 2001 Jun 4; 193(11): 1247-60.
28. Finotto S, Buerke M, Lingnau K, Schmitt E, Galle PR, Neurath MF. Local administration of antisense phosphorothioate oligonucleotides to the c-kit ligand, stem cell factor, suppresses airway inflammation and IL-4 production in a murine model of asthma. J Allergy Clin Immunol. 2001 Feb;107(2):279-86.
29. Nesterova M, Cho-Chung YS. Killing the messenger: antisense DNA und siRNA. Curr Drug Targets. 2004 Nov;5(8):683-9.
30. Pierce TL, White AR, Tregear GW, Sexton PM. Peptide-oligonucleotide hybrids in antisense therapy. Mini Rev Med Chem. 2005 Jan;5(l):41-55.
31. Sandrasagra A, Leonard SA, Tang L, Teng K, Li Y, Ball HA, Mannion JC, Nyce JW. Discovery und Entwicklung of respirable antisense therapeutics for asthma. Antisense Nucleic Acid Drug Dev. 2002 Jun;12(3):177-81.
32. Sandrasagra A, Tang L, Leonard SA, Teng K, Li Y, Mannion JC, Nyce JW. RASONs: a novel antisense oligonucleotide therapeutic approach for asthma. Expert Opin Biol Ther. 2001 Nov;l(6):979-83. 33. Ball HA, Van Scott MR, Robinson CB. Clin Rev Allergy Immunol. 2004 Dec;27(3):207- 17Sense und antisense: therapeutic potential of oligonucleotides und interference RNA in asthma und allergic disorders.
34. Beigelman L, Matulic-Adamic J, Haeberli P, Usman N, Dong B, Silverman RH, Khamnei S, Torrence PF. Nucleic Acids Res. 1995 Oct l l;23(19):3989-94: Synthesis and biological activities of a phosphorodithioate analog of 2',5'-oligoadenylate.
35. Reese CB, Song Q. Nucleic Acids Symp Ser. 1997;(37):l-2: A new approach to oligonucleotide synthesis in Solution.
36. Uhlmann E. and Peymann,A. (1990) Antisense oligonucleotides: a new therapeutic principle. Chem. Rev., 90, 544-584.
37. Lindemann D, Patriquin E, Feng S, Mulligan RC. Versatile retrovirus vector Systems for regulated gene expression in vitro and in vivo. Mol Med. 1997 Jul;3(7):466-76.
38. Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell. 1998 Nov;2(5):549-58.

Claims

Patentansprüche
1. Verfahren zur Auffindung von Inhibitoren des Epstein-Barr-Virus-induzierten Gens 3 (EBI3), umfassend die Schritte von: a) Zur Verfügung stellen eines Testsystems, umfassend EBI3 oder ein biologisch aktives Fragment oder Derivat davon, b) In Kontakt bringen des Testsystems mit einer oder mehreren Verbindungen, von denen vermutet wird, dass sie EBI3 inhibieren, und c) Nachweisen einer Inhibierung von EBI3 durch die eine oder mehreren Verbindungen.
2. Verfahren nach Anspruch 1, wobei das Testsystem ausgewählt ist aus gereinigtem EBI3, einem biologisch aktiven Fragment oder Derivat davon; einer EBI3, ein biologisch aktives Fragment oder Derivat davon exprimierenden Zelle; einem in vitro Testsystem; und/oder Mäusen, umfassend ein experimentelles Tumormodell.
3. Verfahren nach Anspruch 1 oder 2, wobei die Inhibierung der Expression und/oder die Inhibierung der biologischen Aktivität von EBI3 oder einem biologisch aktiven Fragment oder Derivat davon nachgewiesen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Inhibitor von EBI3 oder einem biologisch aktiven Fragment oder Derivat davon ausgewählt ist aus chemischen Verbindungen niederen Molekulargewichts, Peptiden, Proteinen, Nukleinsäuren, antisense-Oligonukleotiden und Antikörpern.
5. Verfahren nach Anspruch 4, wobei der Inhibitor von EBI3 oder einem biologisch aktiven Fragment oder Derivat davon ausgewählt ist aus modifiziertem p28, modifiziertem p35, rekombinanten Antikörperfragmenten und respirablen antisense- Oligonukleotiden.
6. Verfahren nach einem der Ansprüche 1 bis 5, weiterhin umfassend eine computergestützte strukturelle Vorauswahl der einen oder mehreren Verbindungen, von der vermutet wird, dass sie ein Inhibitor von EBD oder einem biologisch aktiven Fragment oder Derivat davon darstellt.
7. Verfahren nach einem der Ansprüche 1 bis 6, weiterhin umfassend die Schritte von d) Identifizierung des Inhibitors von EBB oder einem biologisch aktiven Fragment oder Derivat davon, und, gegebenenfalls, e) Chemische Derivatisierung des in Schritt d) ausgewählten Inhibitors.
8. Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung, umfassend a) Identifizieren eines Inhibitors von EBI3 oder einem biologisch aktiven Fragment oder Derivat davon nach einem der Ansprüche 1 bis 7, und b) Mischen des Inhibitors mit einem geeigneten pharmazeutischen Träger und/oder anderen geeigneten pharmazeutischen Hilfs- und Zusatzstoffen.
9. Pharmazeutische Zusammensetzung, hergestellt nach Anspruch 8.
10. Verbindung, identifiziert mittels eines Verfahrens nach einem der Ansprüche 1 bis 7.
11. Verbindung nach Anspruch 10, ausgewählt aus modifiziertem p28, modifiziertem p35, rekombinanten Antikörperfragmenten und respirablen antisense-Oligonukleotiden.
12. Verwendung eines Inhibitors von EBI3 oder einem biologisch aktiven Fragment oder Derivat davon zur Behandlung von metastasierenden Krebserkrankungen oder allergischem Asthma.
13. Verwendung nach Anspruch 12, wobei der Inhibitor eine pharmazeutische Zusammensetzung nach Anspruch 9 oder eine Verbindung nach Anspruch 10 oder 11 ist.
14. Verwendung von EBI3-defizienten dendritischen Zellen oder dendritischen EBI3- knockout Zellen zur Behandlung von metastasierenden Krebserkrankungen oder allergischem Asthma.
15. Verwendung nach Anspruch 13 oder 14, wobei die metastasierende Krebserkrankung ein primäres Melanom ist.
16. Verfahren zur Behandlung einer metastasierenden Krebserkrankung oder von allergischem Asthma, umfassend ein Verabreichen einer effektiven Menge eines Inhibitors von EBI3 oder einem biologisch aktiven Fragment oder Derivat davon an einen Patienten.
PCT/EP2006/009833 2005-10-18 2006-10-11 Verfahren zur auffindung von inhibitoren des epstein-barr-virus-induzierten gens 3 (ebi3) und deren verwendungen bei der behandlung von metastasierenden tumoren und allergischem asthma WO2007045389A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06828809A EP1942927A2 (de) 2005-10-18 2006-10-11 Verfahren zur auffindung von inhibitoren des epstein-barr-virus-induzierten gens 3 (ebi3) und deren verwendungen bei der behandlung von metastasierenden tumoren und allergischem asthma
US12/083,706 US20090220498A1 (en) 2005-10-18 2006-10-11 Method for Discovering Inhibitors of the Epstein-Barr Virus-Induced Gene 3 (EBI3) and Derivatives Thereof for the Treatment of Metastasizing Tumors and Allergic Asthma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005049800.0 2005-10-18
DE102005049800A DE102005049800B4 (de) 2005-10-18 2005-10-18 Verfahren zur Auffindung von Inhibitoren des Epstein-Barr-Virus-induzierten Gens 3 (EBI 3) und deren Verwendungen bei der Behandlung von metastasierenden Tumoren und allergischem Asthma

Publications (2)

Publication Number Publication Date
WO2007045389A2 true WO2007045389A2 (de) 2007-04-26
WO2007045389A3 WO2007045389A3 (de) 2007-10-04

Family

ID=37781838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/009833 WO2007045389A2 (de) 2005-10-18 2006-10-11 Verfahren zur auffindung von inhibitoren des epstein-barr-virus-induzierten gens 3 (ebi3) und deren verwendungen bei der behandlung von metastasierenden tumoren und allergischem asthma

Country Status (4)

Country Link
US (1) US20090220498A1 (de)
EP (1) EP1942927A2 (de)
DE (1) DE102005049800B4 (de)
WO (1) WO2007045389A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036973A2 (en) * 2006-09-22 2008-03-27 St. Jude Children's Research Hospital Modulating regulatory t cell activity via interleukin 35
WO2009028580A1 (en) * 2007-08-24 2009-03-05 Oncotherapy Science, Inc. Ebi3, dlx5, nptx1 and cdkn3 for target genes of lung cancer therapy and diagnosis
US10392431B2 (en) 2009-11-20 2019-08-27 St. Jude Children's Research Hospital Polynucleotide encoding IL-35 receptor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190104313A (ko) * 2017-01-10 2019-09-09 내셔널 양-밍 유니버시티 암 전이를 치료하는 방법 및 그 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072038A2 (en) * 2002-02-21 2003-09-04 University Of Utah Research Foundation COMPOSITIONS AND METHODS FOR INHIBITING NF-κB MEDIATED TUMORIGENICITY AND ADHESION-DEPENDENT SURVIVAL OF CANCER CELLS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874252A (en) * 1997-07-29 1999-02-23 Smithkline Beecham Corporation Splicing variant of the Epstein-Barr virus-induced G-protein coupled receptor
CA2511838C (en) * 2002-12-31 2014-05-06 Schering Corporation Uses of mammalian cytokine; related reagents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072038A2 (en) * 2002-02-21 2003-09-04 University Of Utah Research Foundation COMPOSITIONS AND METHODS FOR INHIBITING NF-κB MEDIATED TUMORIGENICITY AND ADHESION-DEPENDENT SURVIVAL OF CANCER CELLS

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BROMBACHER F ET AL: "Novel IL-12 family members shed light on the orchestration of Th1 responses" TRENDS IN IMMUNOLOGY, ELSEVIER, RAHWAY, NJ, US, Bd. 24, Nr. 4, April 2003 (2003-04), Seiten 207-212, XP004419772 ISSN: 1471-4906 in der Anmeldung erwähnt *
NIEUWENHUIS EDWARD E S ET AL: "Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene 3-deficient mice." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Bd. 99, Nr. 26, 24. Dezember 2002 (2002-12-24), Seiten 16951-16956, XP002437690 ISSN: 0027-8424 in der Anmeldung erwähnt *
PFLANZ S ET AL: "IL-27 a heterodimetric cytokine composed of EB13 and p28 protein, induces proliferation of native CD4+ T cells" IMMUNITY, CELL PRESS, US, Bd. 16, Juni 2002 (2002-06), Seiten 779-790, XP002982845 ISSN: 1074-7613 in der Anmeldung erwähnt *
WIRTZ STEFAN ET AL: "EBV-Induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappaB activation" JOURNAL OF IMMUNOLOGY, Bd. 174, Nr. 5, 1. März 2005 (2005-03-01), Seiten 2814-2824, XP002423846 ISSN: 0022-1767 in der Anmeldung erwähnt *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036973A2 (en) * 2006-09-22 2008-03-27 St. Jude Children's Research Hospital Modulating regulatory t cell activity via interleukin 35
WO2008036973A3 (en) * 2006-09-22 2008-06-19 St Jude Childrens Res Hospital Modulating regulatory t cell activity via interleukin 35
US8784807B2 (en) 2006-09-22 2014-07-22 St. Jude Children's Research Hospital Method of inhibiting regulatory T-cell activity by administering an antibody that inhibits interleukin 35
US9217135B2 (en) 2006-09-22 2015-12-22 St. Jude Children's Research Hospital T effector cells modulated via interleukin 35 and methods of culturing same
US9518113B2 (en) 2006-09-22 2016-12-13 St. Jude Children's Research Hospital Monoclonal antibodies to interleukin 35 and methods of use thereof to inhibit regulatory T cell function
WO2009028580A1 (en) * 2007-08-24 2009-03-05 Oncotherapy Science, Inc. Ebi3, dlx5, nptx1 and cdkn3 for target genes of lung cancer therapy and diagnosis
EP2198021A1 (de) * 2007-08-24 2010-06-23 Oncotherapy Science, Inc. Ebi3, dlx5, nptx1 und cdkn3 für zielgene der lungenkrebstherapie und -diagnose
JP2010536366A (ja) * 2007-08-24 2010-12-02 オンコセラピー・サイエンス株式会社 肺癌の治療及び診断の標的遺伝子のためのebi3、dlx5、nptx1、及びcdkn3
EP2198021A4 (de) * 2007-08-24 2011-01-19 Oncotherapy Science Inc Ebi3, dlx5, nptx1 und cdkn3 für zielgene der lungenkrebstherapie und -diagnose
US10392431B2 (en) 2009-11-20 2019-08-27 St. Jude Children's Research Hospital Polynucleotide encoding IL-35 receptor

Also Published As

Publication number Publication date
WO2007045389A3 (de) 2007-10-04
DE102005049800A1 (de) 2007-04-26
DE102005049800B4 (de) 2009-09-17
EP1942927A2 (de) 2008-07-16
US20090220498A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
Murakami et al. Innate immune response in retinal homeostasis and inflammatory disorders
DE69332518T2 (de) Unterdrückung von autoimmunkrankheiten durch antigene in wartestellung
DE69831971T2 (de) Unterdrückung von veränderungen in zusammenhang mit beta-amyloid bei alzheimer
KR101215808B1 (ko) 조절성 세포 리간드를 리포좀에 함유시켜 이루어지는 의약
Wu et al. Improved regeneration after spinal cord injury in mice lacking functional T-and B-lymphocytes
Mizukawa et al. Fixed drug eruption: a prototypic disorder mediated by effector memory T cells
WO2006040076A2 (de) Impf-adjuvanzien pam3cys, poly (i:c), imiquimod, loxoribine, r-848 und cpg-dna zusammen mit mhc i oder mhc ii epitopen
Begum-Haque et al. Downregulation of IL-17 and IL-6 in the central nervous system by glatiramer acetate in experimental autoimmune encephalomyelitis
RU2299731C2 (ru) Агонисты никотиновых рецепторов для лечения воспалительных заболеваний
US11571460B2 (en) Composition including melittin for removing M2-type tumor-associated macrophage
WO2021178514A1 (en) Cardiosphere-derived cells, exosomes derived therefrom, and methods of using same to treat volumetric muscle loss
Huang et al. Lack of protective effect of local administration of triamcinolone or systemic treatment with methylprednisolone against damages caused by optic nerve crush in rats
EP2679239A1 (de) Pharmazeutische Zusammensetzung zur Behandlung der durch Sauerstoffarmut und verringerten Luftdruck vermittelten pulmonalen Form der Höhenkrankheit
DE102005049800B4 (de) Verfahren zur Auffindung von Inhibitoren des Epstein-Barr-Virus-induzierten Gens 3 (EBI 3) und deren Verwendungen bei der Behandlung von metastasierenden Tumoren und allergischem Asthma
Aizman et al. The combined treatment of Copaxone and Salirasib attenuates experimental autoimmune encephalomyelitis (EAE) in mice
Newman et al. Vasoactive intestinal peptide impairs leucocyte migration but fails to modify experimental murine colitis
Amo-Aparicio et al. Extracellular and nuclear roles of IL-37 after spinal cord injury
WO2020245126A1 (de) Hla-tumorantigenpeptiden der klasse i und ii zur behandlung von mamma-/brustkarzinomen
CN109789187A (zh) Il-12作为替代免疫治疗剂的用途
JP2022523680A (ja) B細胞免疫療法
DE60024967T2 (de) Chaperonin 10 und beta-interferon therapie für multiple sklerose
Jørgensen et al. Meteorin reverses hypersensitivity in rat models of neuropathic pain
AT412145B (de) Verfahren zur herstellung eines zellulären immuntherapeutikums auf basis von il-12-freisetzenden dendritischen zellen
WO2021011874A1 (en) Ghrh antagonists for use in a method of treating sarcoidosis
EP0950065B1 (de) Peptide als diagnostikum und therapeutikum für autoimmunerkrankungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006828809

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006828809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12083706

Country of ref document: US