WO2007043589A1 - 統合失調症モデル動物 - Google Patents

統合失調症モデル動物 Download PDF

Info

Publication number
WO2007043589A1
WO2007043589A1 PCT/JP2006/320343 JP2006320343W WO2007043589A1 WO 2007043589 A1 WO2007043589 A1 WO 2007043589A1 JP 2006320343 W JP2006320343 W JP 2006320343W WO 2007043589 A1 WO2007043589 A1 WO 2007043589A1
Authority
WO
WIPO (PCT)
Prior art keywords
schizophrenia
human transgenic
transgenic animal
promoter
cognitive impairment
Prior art date
Application number
PCT/JP2006/320343
Other languages
English (en)
French (fr)
Inventor
Mitsuyuki Matsumoto
Shun-Ichiro Matsumoto
Original Assignee
Astellas Pharma Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astellas Pharma Inc. filed Critical Astellas Pharma Inc.
Priority to US11/919,709 priority Critical patent/US20090119786A1/en
Priority to EP06821840A priority patent/EP1935244A4/en
Priority to CA002609116A priority patent/CA2609116A1/en
Priority to JP2007539971A priority patent/JPWO2007043589A1/ja
Publication of WO2007043589A1 publication Critical patent/WO2007043589A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70571Receptors; Cell surface antigens; Cell surface determinants for neuromediators, e.g. serotonin receptor, dopamine receptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/72Receptors; Cell surface antigens; Cell surface determinants for hormones
    • C07K14/723G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH receptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/20Animal model comprising regulated expression system
    • A01K2217/206Animal model comprising tissue-specific expression system, e.g. tissue specific expression of transgene, of Cre recombinase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0356Animal model for processes and diseases of the central nervous system, e.g. stress, learning, schizophrenia, pain, epilepsy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/80Vector systems having a special element relevant for transcription from vertebrates
    • C12N2830/85Vector systems having a special element relevant for transcription from vertebrates mammalian

Definitions

  • the present invention relates to a model animal that is an effective tool for screening a therapeutic agent for schizophrenia, and a novel screening method for a therapeutic agent for schizophrenia using the model animal.
  • Schizophrenia is a chronic and severe brain dysfunction that presents hallucinations and delusions,! / Positive positive symptoms, lack of sociality, negative symptoms such as emotional flattening, and cognitive impairment. It is.
  • the lifetime prevalence of schizophrenia is 1% regardless of race or gender, whereas when one of the identical twins is affected, the prevalence of the other is 40-50% and the parent is If affected, the prevalence of children is 6-17%, and genetic factors are known to be associated with the onset.
  • the incidence of monozygotic twins does not match, so it is considered that the development of schizophrenia is related to environmental factors, developmental factors, etc. in addition to genetic factors (Non-patent Documents) 1).
  • model animals for schizophrenia include a dopamine hypothesis, a dopamine agonist-administered animal according to the glutamate hypothesis, a glutamate neurotransmission blocker-administered animal, and a hippocampal disruption animal based on the developmental disorder hypothesis.
  • a dopamine hypothesis a dopamine agonist-administered animal according to the glutamate hypothesis
  • glutamate neurotransmission blocker-administered animal a hippocampal disruption animal based on the developmental disorder hypothesis.
  • the view that these animal models reflect only some of the phenotypes that are impaired in schizophrenia, especially positive symptoms, rather than reflecting the genetic background that causes schizophrenia. (Non-patent literature 3).
  • Transgenic animals are expected as a method for verifying gene functions in vivo and as model animals for developing disease therapeutic agents. However, it is difficult to create a model that reflects human pathology.
  • SREB2 is disclosed as one of novel G protein-coupled receptor family proteins expressed mainly in the central nervous system and urogenital system (Patent Document 1, Non-Patent Document 4).
  • Patent Document 2 it has been reported that the proportion of specific haplotypes defined in the SNP of SREB2 is higher in patients with schizophrenia than in controls (Patent Document 2).
  • Patent Document 2 SREB2 transgenic animals have not been produced, and SREB2 is also known to cause schizophrenia.
  • Patent Document 1 Pamphlet of International Publication No. 99Z46378
  • Patent Document 2 Pamphlet of International Publication No.02Z086147
  • Non-Patent Document 1 Melissa K. Speaking, “Schizoschizophrenia (Schi zophrenia) ", [online], August 2002, National Institute of Mental Health, [searched July 14, 2005], Internet URL: http: //www.nimh.n ih .gov / admir / NIMHschizoph.pdf>
  • Non-Patent Document 2 “The New Enoffice Journal of Medicine” (USA), 2005, No. 353, p. 1209-1223 3: “Behavioural pharmacology”, (UK), 2000, 11th, p. 223-233
  • Non-Patent Document 4 “Biochemical and Biophysical Research and Communication”, 2000, 272 ⁇ , p. 576-582
  • An object of the present invention is to provide a model animal showing a genetic background that causes the onset of schizophrenia, particularly negative symptoms and cognitive impairment, and an in vivo screening method for a therapeutic agent for schizophrenia. There is to do. Means for solving the problem
  • the present inventor has been able to selectively express a target gene in the brain, particularly the forebrain (cerebral cortex, hippocampus) using a calcium calmodulin-dependent kinase II promoter region.
  • a transgenic mouse that overexpressed SREB2 belonging to the G protein-coupled receptor family was produced, and unexpectedly, a transgenic mouse with schizophrenia was obtained, and overexpression of SREB2 in the brain was integrated. It turned out to be the cause of ataxia.
  • the transgenic mouse will be a schizophrenia model animal that is a screening tool for schizophrenia treatment, and use the improvement of schizophrenia-related disorders in the transgenic mouse as an index.
  • An in vivo screening system for therapeutic agents for schizophrenia was established.
  • SREB2 transgenic animal which is a model animal that is an effective tool for screening schizophrenia treatment, especially negative symptom and cognitive dysfunction treatment agents, and the aforementioned transgene Provided a screening method for therapeutic agents for schizophrenia using animals, and completed the present invention.
  • a non-human transgenic that exhibits a schizophrenic condition by introducing a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 and (2) a polynucleotide containing a promoter. Animals,
  • the mRNA expression level of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 in the forebrain is 1.5 times or more and less than 3 times that of the wild type, [1] to [6]
  • a schizophrenia model animal comprising the non-human transgenic animal according to any one of [1] to [7],
  • test substance is applied to the non-human transgenic animal according to any one of [1] to [7].
  • a method of detecting the therapeutic effect of a test substance on schizophrenia comprising the step of administering and analyzing a schizophrenia-related disorder in an animal to which the test substance is administered,
  • the analyzing process is a process of analyzing the negative symptoms of schizophrenia and the effect of improving Z or cognitive impairment, and the therapeutic effect of schizophrenia is the negative symptoms and the improving effect of z or cognitive impairment. ]
  • the step of analyzing is a step of analyzing the negative symptoms of schizophrenia and the effect of improving Z or cognitive impairment
  • the step of selecting is a substance having the negative symptoms of schizophrenia and the effect of improving Z or cognitive impairment
  • the screening method according to [16] wherein the therapeutic agent for schizophrenia is a negative symptom and a therapeutic agent for Z or cognitive impairment
  • [18] A method for producing a pharmaceutical composition for treating schizophrenia, comprising a step of screening by the method according to [16] or [17] and a step of formulating the substance obtained by the screening.
  • exogenous promoter means a promoter other than the SREB2 gene promoter.
  • Presence of schizophrenia is not limited to this, but particularly means that prepulse inhibition decreases in the startle response analysis described below.
  • the “schizophrenia model animal” is an animal used for detecting the therapeutic effect of a test substance on schizophrenia or for screening for a therapeutic agent for schizophrenia.
  • Negative symptoms are, but are not limited to, in particular, a social behavior disorder in a social behavior test described below, or It means to show immobilization enhancement in the Morris water maze learning task described below.
  • Cognitive dysfunction means, but is not limited to, that it specifically indicates memory learning impairment in the Morris water maze learning task and the Z or fear conditioning test described below.
  • the SREB 2 non-human transgenic animal of the present invention enables the screening of a drug having a true therapeutic effect for schizophrenia in a schizophrenia model that reflects a genetic mutation that causes human onset for the first time. It becomes possible.
  • the SREB2 non-human transgenic animal of the present invention exhibits powerful negative symptoms and cognitive impairment of schizophrenia that could not be expressed in drug-induced schizophrenia models so far. It is a useful model that enables assessment of functional impairment.
  • SREB2 non-human transgenic animals having a transgene as a heterology which is one of the preferred embodiments of the SREB2 non-human transgenic animal of the present invention, have a schizophrenia by having a transgene in the mouth. It is a model animal that is easy to breed compared to other genetically modified animals (especially gene knockout animals) and useful for screening for drugs that have an effect of improving schizophrenia. .
  • FIG. 1 is an explanatory diagram showing a method for performing a prepulse inhibition test.
  • FIG. 2 is a graph showing the results of a pre-inhibition experiment.
  • FIG. 3 A graph showing the results of the Morris water maze learning task (platform arrival time in the acquisition trial).
  • FIG.4 A graph showing the results of the Morris water maze learning task (immobility time in the acquisition trial). is there.
  • receptor refers to “receptor protein” and “SREB2” refers to “SREB 2 protein”.
  • “Introduced polynucleotide” refers to a polynucleotide for producing a transgenic animal and comprising a promoter region and a polynucleotide encoding a receptor.
  • the receptor encoded by the polynucleotide contained in the introduced polynucleotide for producing a transgenic animal of the present invention is a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, and represented by SEQ ID NO: 2.
  • a polypeptide consisting of an amino acid sequence is particularly preferred.
  • the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 is hereinafter referred to as "schizophrenia-related receptor".
  • amino acid sequence represented by SEQ ID NO: 2 is the amino acid sequence of mouse SREB2 (W099 / 46378) belonging to the G protein-coupled receptor family.
  • mouse SREB2, human SREB2, and rat SREB2 are completely identical in amino acid sequence.
  • the polynucleotide encoding the receptor contained in the introduced polynucleotide is not particularly limited as long as it is a polynucleotide encoding a schizophrenia-related receptor.
  • it is a polynucleotide encoding the amino acid sequence represented by SEQ ID NO: 2, and more preferably a polynucleotide having a nucleotide sequence of 7985th to 9094th in the base sequence represented by SEQ ID NO: 1.
  • the introduced polynucleotide includes a promoter sequence for controlling expression of a schizophrenia-related receptor, and can optionally include an enhancer sequence.
  • the receptor can be expressed systemically by selection of the promoter and an enzyme sequence, or can be selectively expressed in a specific tissue.
  • the promoter for producing the schizophrenia model animal of the present invention is not particularly limited, but an exogenous program motor is preferred, for example, a calcium calmodulin-dependent kinase ⁇ dependent kinase II, a -CaM- kinase IIJ
  • Thy-1 gene promoter region 352, 239-241], or Thy-1 gene promoter region [Vidal, M. et al. (1990) E MBO J 9: 833-840], etc. Promoters that can be selectively expressed in the brain are preferred.
  • a The use of the promoter region of the calcium calmodulin-dependent kinase II gene is most preferred.
  • a Calcium calmodulin-dependent kinase II gene is a brain-selective neuron gene that is highly selective for expression, especially in the forebrain.
  • a primer set is used based on the nucleotide sequence information represented by the sequence (Accession No. AJ222796) registered in the gene database GenBank. Can be designed. Polymerase chain reaction (PCR) [Saiki,
  • the genomic DNA can be a commercially available product (Clontech) or can be obtained by using a commercially available genomic DNA extraction kit (Qiagen) using animal blood. Furthermore, by incorporating the obtained DNA into an appropriate vector, A symcalmodulin-dependent kinase II promoter region can be obtained.
  • a polynucleotide encoding a schizophrenia-related receptor contained in the introduced polynucleotide can be obtained according to the method described in W099 / 46378.
  • the SREB2 gene consisting of the 7985th to 9094th nucleotide sequences in the nucleotide sequence represented by SEQ ID NO: 1 synthesizes an oligonucleotide based on the nucleotide sequence of an arbitrary part of a known sequence (W099 / 46378), Using this as a probe to screen a cDNA library or synthesizing oligonucleotides that can be hybridized at both ends of the target cDNA fragment and using them as primers, reverse transcriptase from mRNA isolated from cells It can also be prepared from polymerase chain reaction (RT-PCR).
  • RT-PCR polymerase chain reaction
  • the introduced polynucleotide for producing a transgenic animal of the present invention contains at least an optional promoter region (preferably an exogenous promoter region) and a polynucleotide encoding a schizophrenia-related receptor, and has the promoter activity.
  • the polynucleotide encoding the schizophrenia-related receptor is arranged as in the regulation, the arrangement order of the polynucleotide encoding the promoter and the schizophrenia-related receptor is not particularly limited.
  • an introduced polynucleotide can be prepared by sequentially introducing the promoter region and a schizophrenia-related receptor gene into a multiclonal site of an appropriate vector. Examples of the vector include pUC18 (Toyobo Co., Ltd.).
  • the introduced polynucleotide can be obtained by the method described in Example 1.
  • the introduced polynucleotide include an SREB2 DNA (7985th to 9094th in SEQ ID NO: 1) and an SV40-derived poly A addition signal downstream of the promoter region of the ⁇ -calcium calmodulin-dependent kinase II gene. It is done.
  • Particularly preferred examples of the introduced polynucleotide include a polynucleotide having a base sequence ability represented by SEQ ID NO: 1.
  • the SV40-derived poly A-attached signal can be obtained from, for example, pcDNA3.1 (Invitrogen).
  • the method for producing the introduced polynucleotide is not particularly limited, and examples thereof include a method using PCR.
  • the gene manipulation technique of the present invention Known methods (eg, Maniatis, T. et al., “Molecular
  • the transgenic animal of the present invention is a non-human transgenic animal exhibiting schizophrenia symptoms by introducing a polynucleotide containing a polynucleotide encoding a schizophrenia-related receptor and a promoter (preferably a foreign promoter).
  • a polynucleotide containing a polynucleotide encoding a schizophrenia-related receptor and a promoter preferably a foreign promoter.
  • a promoter preferably a foreign promoter.
  • it can be prepared based on a conventionally known method (for example, Animal Biotechnology, 1,175_84, 1990) except that the aforementioned introduced polynucleotide is used as the introduced polynucleotide. Specifically, for example, it can be produced based on the procedure described in Example 1 described later.
  • transgenic animal means a transgenic animal excluding humans (ie, a non-human transgenic animal), for example, mammals other than humans (eg, rats, mice, Nu, cat, monkey, pig, sushi, hidge, usagi, goat, ilka, or horse), birds (eg, moths or quails), amphibians (eg, power el), reptiles, or insects ( Examples thereof include Drosophila melanogaster.
  • mice or rats As non-human animals, it is technically possible to target all animal species, but a large number of inbred strains have been created, especially those that prefer rodents to mice or rats. Mice that are most equipped with techniques such as cultivation of fertilized eggs and in vitro fertilization are preferred. In the case of a mouse, a fertilized egg or an early embryo can be used as a totipotent cell into which a gene is introduced. In addition, as a method for gene transfer into cultured cells, the DNA physical injection (microinjection) method is preferred when considering the production efficiency of transgenic animals and the efficiency of transgene transfer to the next generation.
  • the DNA physical injection (microinjection) method is preferred when considering the production efficiency of transgenic animals and the efficiency of transgene transfer to the next generation.
  • a vector dissolved in HEPES buffer, phosphate buffer, physiological saline or the like is injected into a fertilized egg with a micropipette, and the egg is treated with hormone [for example, prostaglandin (PG) Fa, Human chorionic gonadotropin (hCG), estradiol, luteinizing formo (LH) etc.] or in small animals, it is transplanted into the uterus of a host animal that has been rendered pseudopregnant by physical stimulation.
  • hormone for example, prostaglandin (PG) Fa, Human chorionic gonadotropin (hCG), estradiol, luteinizing formo (LH) etc.
  • PG prostaglandin
  • hCG Human chorionic gonadotropin
  • LH luteinizing formo
  • a transgenic non-human animal can be obtained by breeding and delivering this host animal.
  • Whether or not a transgenic non-human animal has been obtained can be determined by extracting DNA from a part of the body (eg, the tail tip) and confirming the presence of the introduced polynucleotide by Southern analysis or PCR. Can do. If an individual with a confirmed presence of the introduced polynucleotide is regarded as the founder (Founder), the introduced polynucleotide is transmitted to 50% of its offspring, and it is possible to efficiently produce wild-type or mutant animals. .
  • schizophrenia model animals especially schizophrenia negative symptoms and Z or cognitive impairment model animals, the expression level of schizophrenia-related receptors (especially SREB2) in the forebrain (cerebral cortex, hippocampus) is wild. Compared to type 1.
  • Model animals that are 5 times or more and less than 3 times more preferred 7-week-old schizophrenia-related receptor (especially SREB2) mRNA expression is wild type A model animal (especially a mouse) that is 1.5 times or more and less than 2.5 times the most is most preferable.
  • SR EB2 mRNA expression level can be detected by the method described in Example 3.
  • Transgenic animals produced in this way and their descendants exhibiting schizophrenia symptoms are effective in detecting and integrating schizophrenia treatment effects, particularly negative symptoms and Z or cognitive impairment treatment effects. It is useful for screening schizophrenia, especially negative symptoms and Z or cognitive impairment.
  • the test substance is a transgenic animal, using as an index the inhibitory effect, the improvement effect of social behavior disorder in the social behavior test, the improvement effect of memory learning disorder in the Morris water maze learning task and the Z or fear conditioning test] It is possible to detect whether or not there is an effect of treating (curing or improving) a disorder related to schizophrenia and to detect the therapeutic effect of the test substance on schizophrenia.
  • test substance is transgeneic using the improvement in immobilization enhancement as an index. It is possible to detect whether a substance has an effect of treating (curing or improving) negative symptoms of schizophrenia and to detect the therapeutic effect of schizophrenia negative symptoms of the test substance.
  • the improvement of cognitive impairment in schizophrenia for example, improvement effect of memory learning impairment in the Morris water maze learning task and Z or fear conditioning test
  • the test substance has an effect of treating (curing or improving) schizophrenia cognitive impairment in transgenic animals, and to detect the therapeutic effect of the test substance on schizophrenia cognitive impairment It is.
  • a retaining cylinder with a vibration sensor in a soundproof box and a small animal startle response measuring device which is a part of a speaker for loading a sound stimulus and a control computer, are used. .
  • the animal's startle response to the pulse is measured as an “amplitu de” via a vibration sensor.
  • a 70 dB background noise background white is used to block the sound from the outside world.
  • Vibration coefficient (average of 6 times) when unstimulated [above a)] or when only pre-pulse stimulation is applied [above b)].
  • the experimental apparatus consists of a transparent acrylic platform (diameter: about 1 Ocm, height: about 26.5 cm) that cannot be identified visually, and water (water temperature) up to a height of about 27.5 cm so that the platform is hidden in the water.
  • a circular pool (diameter: approx. 68 cm, height: approx. 32 cm) made of gray vinyl chloride stretched at 17-18 ° C).
  • a black square column is set up on the platform so that the place is powerful.
  • the pool is divided into four quadrants, and a platform is installed in the center of the fourth quadrant (approximately 17cm from the center of the pool), and the space around the pool is red due to the force of space.
  • Set up a triangular pyramid set up a triangular pyramid.
  • the swimming behavior of the mouse is analyzed using a video image behavior analyzer (SMART, Panlab) and further recorded on a DVD-R using a DVD video recorder.
  • the DVD-R is used as reference data, and the results launched from the video image behavior analyzer are used as primary data.
  • the mouse head Insert the mouse head so that it faces the wall of the circular pool, and measure the time (goal latency: seconds) to reach the platform with a stopwatch (measurement time is a maximum of 90 seconds). If the user reaches the platform within 90 seconds and stays on the platform for 30 seconds, it is determined that the platform position is recognized and the measurement is terminated. For a mouse that is able to reach within 90 seconds, the platform arrival time is 90 seconds.
  • the mouse is strong enough to reach the platform on the first day, place it on the platform for 30 seconds after measurement and return it to the cage. On the second to fourth days, the mice that have reached the platform within 90 seconds are returned to their cages. If the mouse reaches the platform during the measurement and enters the pool again, it is assumed that the platform position has not been confirmed and the measurement is continued. Note that the measurement times for the 2nd to 4th days will be the same as possible on the 1st day.
  • the probe trial will be conducted on the morning of the fifth day. Place the mouse so that its head faces the wall of the circular pool, and within the observation time of 0-30 seconds, 30-60 seconds, and 60-90 seconds, the mouse is in the 4th quadrant (the quadrant in which the platform was installed at the time of the acquisition trial). ) (Swimming time in the 4th quadrant: seconds) and the number of times the platform was passed (number of passes through the place in the 4th quadrant).
  • the condition at this time is that the electrical stimulation load of 0.4 mA for 1 second every 15 seconds is 4 minutes.
  • the test substance is administered to the transgenic animal of the present invention, and then the negative symptom and Z or cognitive dysfunction of the animal to which the test substance is administered are analyzed (preferably measured), By selecting a substance having a negative symptom and a therapeutic effect for Z or cognitive dysfunction, a therapeutic agent for negative symptom and Z or cognitive dysfunction can be screened.
  • test substance used in the screening method of the present invention is not particularly limited.
  • commercially available compounds including peptides
  • various known compounds peptides registered in chemical files.
  • a combination group obtained by combinatorial chemistry technology [NKTerrett, M.uardner, DWuordon, RJKobylecki, J. Steele, Tetrahedron, 51, 8135-73 (1995)]
  • Natural ingredients derived from plants and marine organisms, animal tissue extracts, or compounds (including peptides) selected by the screening method of the present invention are chemically or biologically modified Examples include compounds (including peptides).
  • a pharmaceutical can be obtained based on a therapeutic agent for schizophrenia selected by the screening method of the present invention, particularly a therapeutic agent for negative symptoms and Z or cognitive impairment. These drugs are useful for the treatment of schizophrenia, especially for negative symptoms and Z or cognitive impairment.
  • a pharmaceutical preparation containing a therapeutic agent for schizophrenia as an active ingredient uses carriers, excipients, and Z or other additives that are usually used for the preparation of the active ingredient depending on the type of the active ingredient.
  • Administration is, for example, oral administration using tablets, pills, capsules, granules, fine granules, powders, or oral liquids, or injections such as intravenous or intramuscular injection, suppositories, and transdermal administration.
  • Parenteral administration such as an agent or a transmucosal agent. In particular, parenteral administration such as intravenous injection is desirable for peptides digested in the stomach.
  • a solid composition for oral administration according to the present invention comprises one or more active substances and at least one inert diluent such as lactose, mannitol, glucose, microcrystalline cellulose, It can be prepared by mixing with hydroxypropylcellulose, starch, polyvinylpyrrolidone, magnesium aluminate or the like.
  • the solid composition may contain additives other than the inert diluent, for example, a lubricant, a disintegrant, a stabilizer, a solubilizer, or a solubilizing agent, according to a conventional method. Tablets and pills can be coated with a sugar coating or a film of a gastric or enteric substance, if necessary.
  • Liquid compositions for oral use include, for example, emulsions, solutions, suspensions, syrups, or elixirs, and commonly used inert diluents such as purified water or ethanol. Can be included.
  • the liquid composition may contain additive agents other than inert diluents, such as wetting agents, suspending agents, sweetening agents, fragrances, or preservatives.
  • the parenteral injection may include a sterile aqueous or non-aqueous solution, suspension, or emulsion.
  • the water-soluble solution or suspension includes, for example, distilled water for injection or physiological saline as a diluent.
  • diluents for non-aqueous solutions or suspensions include vegetable oils (eg, propylene glycol, polyethylene glycol, or olive oil), alcohols (eg, ethanol), or polysorbate. 80 and so on.
  • the composition may further contain a wetting agent, an emulsifying agent, a dispersing agent, a stabilizing agent, a solubilizing agent, a solubilizing agent, or a preservative.
  • the composition can be sterilized by, for example, filtration through a bacteria-retaining filter, blending with a bactericide, or irradiation.
  • a sterile solid composition can be produced, and can be used by dissolving in sterile water or other sterile injection medium for use.
  • the dosage of the pharmaceutical comprising the therapeutic agent for schizophrenia obtained by the screening method of the present invention as an active ingredient is the intensity of activity of the active ingredient selected by the screening method, the symptom, the age of the administration subject, Or it can determine suitably considering gender etc.
  • SREB2 overexpressing transgenic mice consisting of a gene connecting SREB2 DNA and SV40-derived poly A-linked signal downstream of the promoter region of the calcium calmodulin-dependent kinase II gene Manufactured.
  • a The calcium calmodulin-dependent kinase II promoter region was obtained as two fragments having overlapping portions by PCR using the genomic DNA of C57BL / 6 mice as a cage. Genomic DNA of C57BL / 6 mice was extracted from the blood of the same mice using a genomic DNA extraction kit (QIAamp
  • the SV40-derived poly A addition signal consists of a plasmid pME18S (Maruyama et al., Shinsei Kagaku Kogakusho, 123-133, 1991), a forward primer (SEQ ID NO: 7) and a reverse primer (SEQ ID NO: 8).
  • DNA polymerase Pfo
  • S REB2 is an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 9 as a forward primer, and an oligonucleotide having a base sequence ability represented by SEQ ID NO: 10 as a reverse primer.
  • PCR was performed using DNA polymerase (Pfo Turbo, Strata gene) at 96 ° C (1 minute), then at 96 ° C (15 seconds), 60 ° C (15 seconds), and 75 ° C (8 minutes). A cycle was conducted. Sail recognition sequence is added to the 5 'end of the forward primer, and Xbal recognition sequence is added to the 5' end of the reverse primer. The resulting 4.5 kb fragment was ligated using the SV40-derived poly A addition signal and the Xbal recognition sequence using the promoter region of the above calcium calmodulin-dependent kinase II and the Sail recognition sequence, and AatII and Kpnl.
  • SREB2 excess occurs by cloning into digested plasmid pUC18 (Toyobo Co., Ltd.)
  • a plasmid (named pCM-SREB2) having a polynucleotide (13 kb) for introduction of the present transgenic mouse was obtained.
  • the introduced polynucleotide (13 kb) for producing SREB2-overexpressing transgenic mice was excised from pCM-SREB2 using Aatll and Notl restriction enzymes, and then isolated and purified.
  • the introduced polynucleotide prepared in Example 1 was microinjected into fertilized eggs of F1 hybrid mice of C57BLZ6 and DBA2 mice, and then the fertilized eggs were transplanted into the oviduct of temporary parent ICR mice [Hogan, B.
  • mice Manipulating the mouse emoryo: a laboratory manual, Plainview, New York: Cold Harbor Press]. Pregnant mice were delivered naturally, and 53 transgenic mice were identified as transgenic mice.
  • Transgenic mice were identified by comparing the chromosomal copy number of SREB2 gene in pups. First, a genomic DNA extraction kit (MagExtra ctor
  • Genomic DNA was extracted and purified using -Genome-, Toyobo Co., Ltd.).
  • an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 11 was designed as a forward primer based on the SREB2 DNA sequence
  • real-time quantitative PCR method [ PRISM (registered trademark) 7700 Sequence Detection System, ABI Co., Ltd., fluorescence reagent SYBR Green, Molecular Probes Co.] was used to compare the number of copies of SREB2 gene on the chromosome.
  • SREB2 mRNA The introduced polynucleotide actually functions and SREB2 mRNA is overexpressed.
  • Forebrain and cerebellum were excised from F1 heterotransgenic mice (7 weeks old) and littermate wild type mice obtained in Example 2, and RNA was isolated from each. Each RNA was digested with DNase (DNase, Promega) to prevent genomic DNA contamination.
  • SREB2 mRNA copy number in the obtained RNA was quantified by the real-time PCR method described in Example 2.
  • a single-stranded cDNA synthesized from each RNA with a reverse transcriptase polymerase chain reaction kit (Advantage RT-for-PCR kit, Clontech) was used as a real-time PCR cage.
  • SREB2 mRNA overexpression about 4 times that of the wild type was observed in the forebrain of the F1 heterotransgenic mouse of the YM4 strain.
  • the increase in the expression level in the cerebellum was less than twice.
  • SREB2 in the forebrain is about twice that of the wild type
  • mice To analyze the effects of SREB2 overexpression on brain morphology, the brains of YM2 and YM4 heterotransgenic and littermate wild-type mice were excised, weighed, and observed for morphology.
  • the YM4 system (28%) was correlated with a larger SREB2 expression level than the YM2 system (22%). From morphological observations of brain slices, it was found that ventricular enlargement occurred as brain parenchyma decreased. The decrease in brain parenchyma and enlargement of the ventricles are consistent with the phenotype observed in the brain of schizophrenic patients.
  • YM2 heterotransience was analyzed according to the method described in “[3] Method for Measuring Disorders Related to Schizophrenia and Detection Method for Treatment Effect of Schizophrenia 1) Startle Response Analysis (Prepulse Inhibition Test)”. ⁇ Nick mice showed reduced prepulse inhibition (suppression of startle response by prepulse). These are consistent with the phenotype observed in schizophrenic patients.
  • YM2 heterotransgenic mice were analyzed according to the method described in “[3] Method for measuring disorders related to schizophrenia and detection of therapeutic effects for schizophrenia 1)
  • Startle response analysis (prepulse inhibition test) Tg
  • prepulse inhibition test Sg
  • WT wild type control group
  • FIG. 2 the symbol “3D” on the horizontal axis indicates a result obtained when a pre-pulse of 73 dB (20 ms) + a pulse of 120 dB (40 ms) is loaded.
  • the symbol “6D” indicates the result when 76dB (20ms) prepulse + 120dB (40ms) pulse is applied.
  • Social behavioral disorder is an indicator of negative symptoms of schizophrenia.
  • the analysis was conducted according to the method described in “[3] Method for measuring schizophrenia-related disorder and detection of therapeutic effect for schizophrenia 2) Social behavioral test”.
  • YM2 heterotransgenic mice were wild-type controls. Compared with the group, the number of social search operations was significantly reduced (WT 66.8 ⁇ 4.2, Tg 54.2 ⁇ 3.9, P ⁇ 0.05). From this result, SREB2 overexpressing transgenic mice It was shown to exhibit disturbances in sexual behavior. This phenotype is consistent with the phenotype observed in patients with schizophrenia.
  • Schizophrenia causes cognitive impairment in addition to positive and negative symptoms.
  • the Morris water maze learning task is widely used as a quantitative analysis of cognitive function.
  • YM2 heterotransgenic mouse (Tg) was analyzed according to the method described in “[3] Method for measuring disorders related to schizophrenia and detection method for treatment effect of schizophrenia 3) Morris water maze learning task”.
  • WT wild-type control group
  • Fig. 3 the time to reach the platform in the acquisition trial was significantly extended (Fig. 3).
  • the horizontal axis represents “number of acquisition trials” and the vertical axis represents “platform arrival time (seconds)”.
  • YM2 heterotransgenic mice had a significant increase in immobility during swimming compared to the wild-type control group (WT) (Fig. 4).
  • the horizontal axis represents “number of acquisition trials”, and the vertical axis represents “non-motion time (seconds)”.
  • Prolonged immobility time during swimming ie, increased immobilization has been reported to be associated with negative symptoms of schizophrenia (Noda).
  • the fear conditioning test is known as a quantitative analysis of cognitive function.
  • the analysis was performed according to the method described in “[3] Method for measuring schizophrenia-related disorder and detection method for schizophrenia treatment effect 4) Fear conditioning test”.
  • the immobility time was significantly shortened compared to the measurement time (immobility time during measurement time, WT 17.87 ⁇ 2.88, Tg 8.79 ⁇ 1.34, P ⁇ 0.05). This result showed that SREB2-overexpressing transgenic mice exhibit impaired cognitive function. This phenotype is consistent with the phenotype observed in patients with schizophrenia.
  • SREB2-overexpressing transgenic mouse YM2 causes a behavioral disorder similar to schizophrenia, not just morphological changes in the brain. It turns out to become a disease model animal.
  • SREB2 Transgenic Mouse YM 2 can be used to screen for schizophrenia treatments using the improvement of schizophrenia-related disorders as an index.
  • test substance-administered SREB2 transgenic mice group decreased prepulse inhibition (suppression of startle response by prepulse), improvement of social behavioral disorder, memory learning disorder compared to control 0.5% methylcellulose saline group If there is an improvement, the test substance can be judged to have a therapeutic effect for schizophrenia and can be selected as a therapeutic agent for schizophrenia.
  • the test substance is negative for schizophrenia. It can be selected as a treatment for negative symptoms because it is judged to have a symptomatic treatment effect. If the memory learning impairment is improved following the Morris water maze learning task and the Z or fear conditioning test, the test substance is judged to have a therapeutic effect on cognitive impairment in schizophrenia, and is used as a therapeutic agent for cognitive impairment. You can choose.
  • a substance useful as a therapeutic agent for schizophrenia particularly a negative symptom and a cognitive dysfunction therapeutic agent can be screened in vivo, and a better V or therapeutic agent can be selected.
  • the transgenic animal of the present invention is useful as a schizophrenia model animal that is a therapeutic tool for schizophrenia used for screening for schizophrenia treatment, especially a negative symptom and cognitive dysfunction treatment screening tool.
  • the base sequence represented by SEQ ID NO: 1 in the sequence listing is a sequence for producing a transgenic mouse. Moreover, each base sequence represented by the sequence number 3 to 12 in the sequence listing is an artificially synthesized primer sequence.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Environmental Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Neurosurgery (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Psychiatry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

   脳での過剰発現が統合失調症の原因となるSREB2をコードするポリヌクレオチドとプロモーターを含むポリヌクレオチドが導入され、統合失調症状を呈する非ヒトトランスジェニック動物;並びに、前記動物に被検物質を投与する工程、投与された動物の統合失調症関連障害を測定する工程、及び統合失調症治療効果を有する物質を選択する工程を含む、統合失調症治療剤のスクリーニング法を開示する。本発明によれば、統合失調症の発症原因となる遺伝背景を反映した統合失調症モデル動物及び統合失調症治療剤のインビボスクリーニング法を提供することができる。

Description

明 細 書
統合失調症モデル動物
技術分野
[0001] 本発明は、統合失調症治療剤をスクリーニングするのに有効なツールとなるモデル 動物、そして、前記モデル動物を用いた新規な統合失調症治療剤のスクリーニング 方法に関する。
背景技術
[0002] 統合失調症 (Schizophrenia)は、幻覚及び妄想と!/ヽつた陽性症状、社会性の欠如 及び感情の平板化などの陰性症状、並びに認知障害を呈する慢性かつ重篤な脳機 能障害である。統合失調症の生涯罹患率は人種、性別に関わらず 1%であるのに対 して、一卵性双子の一方が罹患している場合、他方の罹患率が 40〜50%、親が罹 患している場合、子供の罹患率が 6〜17%ということから、遺伝要因がその発症に関 わることが知られている。一方、一卵性双子の罹患率が一致しないということから、統 合失調症の発症には遺伝要因の他に環境要因、発達要因などが関係していると考 えられている (非特許文献 1)。
[0003] これまでの研究から、統合失調症の発症に関して複数の仮説が提唱されている。
統合失調症治療効果を有する薬剤の作用メカニズム解明の過程で、ドーパミンと統 合失調症との関連性が発見された (ドーパミン仮説)。一方、神経伝達物質グルタミン 酸の遮断効果を有する PCP (Phencyclidine ;フェンサイタリジン)等の薬剤の投与によ り幻覚、妄想といった症状が惹起されることから、グルタミン酸神経伝達が統合失調 症の発症に関わっている可能性が示唆された (グルタミン酸仮説)。また、統合失調 症の発症には発達期の神経ネットワーク形成の障害が関与するという仮説も提唱さ れている (発達障害仮説)。
[0004] 統合失調症治療薬は 1950年代から導入された。これまでの治療薬はドーパミンの 神経伝達遮断作用に基づくもので、一般に幻覚及び妄想と!/ヽつた陽性症状の治療 効果を有するが、陰性症状並びに認知障害に対する効果に欠け、またドーパミン神 経伝達の遮断による副作用、特に運動機能障害が引き起こされることが知られている (Lieberman et al, N Engl J Med., 353, 1209—1223, 2005)。現在使用されている薬 剤は全てドーパミン神経伝達の遮断活性を有し、前述の懸念点を払拭できて!ヽな ヽ 。そのため、より効果的で副作用の少ない新しい作用機序に基づいた薬剤が求めら れている (非特許文献 2)。
[0005] 有効な治療効果を示す薬剤を見いだすためには、標的分子に対する効力だけで はなぐ薬剤自体のインビボ (in vivo)での生体内利用率や脳内移行性を考慮に入れ る必要がある。従って、発症メカニズムの解明、発症の予防もしくは病態の改善、治 療のための医療技術及び薬剤の開発等のためには、個体レベルで解析可能なモデ ル動物の存在が不可欠である。
[0006] 統合失調症のモデル動物としては、ドーパミン仮説、グルタミン酸仮説に則りドーパ ミン作動薬投与動物、グルタミン酸神経伝達遮断薬投与動物、また、発達障害仮説 に基づいた海馬破壊動物などが挙げられる。しかし、これらのモデル動物は統合失 調症の発症原因となる遺伝背景を反映したものではなぐ統合失調症で障害されて いる表現型の一部、特に陽性症状を反映するに過ぎないとの見方が強い (非特許文 献 3)。
[0007] トランスジヱニック動物は、遺伝子の機能を生体内で検証する方法として、また疾患 治療剤を開発するためのモデル動物として期待されるものであるが、統合失調症のよ うに発症メカニズムが明らかになって 、な 、ヒトの病態を反映したモデルを作成するこ とは困難である。
[0008] 一方、 SREB2については、中枢神経系、泌尿器生殖器系を中心に発現している 新規な Gタンパク質共役型受容体ファミリータンパク質の 1つとして開示されており( 特許文献 1、非特許文献 4)、また、 SREB2の SNPで規定される特定のハプロタイプ の割合が統合失調症患者で統合失調症でな 、コントロールに比べて多 、ことが報告 されている(特許文献 2)。しかし、 SREB2トランスジエニック動物は作製されておらず 、 SREB2が統合失調症の原因となることも知られていなカゝつた。
[0009] 特許文献 1:国際公開第 99Z46378号パンフレット
特許文献 2 :国際公開第 02Z086147号パンフレット
非特許文献 1 :メリッサ'ケー 'スピーキング (Melissa K. Speaking) , "統合失調症(Schi zophrenia) ", [online], 2002年 8月,米国国立精神衛生研究所(Nationallnstitute of Mental Health) , [2005年 7月 14日検索] ,インターネットく URL:http://www.nimh.n ih.gov/publicat/NIMHschizoph. pdf>
非特許文献 2:「ザ' -ュ一'イングランド ·ジャーナル ·ォブ ·メディスン(The New Engla nd Journal of medicine)」, (米国), 2005年,第 353卷, p. 1209— 1223 非特許文献 3:「ビヘイビアラル ·ファーマコロジー(Behavioural pharmacology)」, (英 国), 2000年,第 11卷, p. 223 - 233
非特許文献 4:「バイオケミカル ·アンド ·バイオフィジカル ·リサーチ ·コミュニケーション ス (Biochemical and Biophysical Researchし ommunications)」 , 、未国) , 2000年, 272卷, p. 576 - 582
発明の開示
発明が解決しょうとする課題
[0010] 本発明の課題は、統合失調症の発症原因となる遺伝背景を反映した統合失調症、 特に陰性症状及び認知障害を示すモデル動物、並びに統合失調症治療剤のインビ ボスクリーニング法を提供することにある。 課題を解決するための手段
[0011] 本発明者は、鋭意研究を重ねた結果、脳、特に前脳(大脳皮質、海馬)に選択的に 目的遺伝子を発現させることができる a カルシウムカルモジュリン依存性キナーゼ I Iプロモーター領域を用いて Gタンパク質共役型受容体ファミリーに属する SREB2を 過剰発現したトランスジエニックマウスを製造したところ、意外にも統合失調症状を呈 するトランスジヱニックマウスが得られ、 SREB2の脳での過剰発現が統合失調症の 原因であることが判明した。前記トランスジエニックマウスが統合失調症治療剤のスク リー-ングツールである統合失調症モデル動物になることを見出し、更に、前記トラン スジ ニックマウスの統合失調症関連障害の改善を指標とすることによる統合失調症 治療剤のインビボスクリーニング系を構築した。また、前記トランスジエニックマウスは 、統合失調症の陰性症状及び認知機能障害を呈することを見出した。統合失調症治 療剤、特に陰性症状及び認知機能障害治療剤をスクリーニングするのに有効なツー ルとなるモデル動物である SREB2トランスジヱニック動物及び前記トランスジヱニック 動物を用いた統合失調症治療剤のスクリーニング方法を提供し、本発明を完成した すなわち、本発明は、
[I] (1)配列番号 2で表されるアミノ酸配列を含むポリペプチドをコードするポリヌクレ ォチドと、(2)プロモーターを含むポリヌクレオチドとが導入され、統合失調症状を呈 する非ヒトトランスジエニック動物、
[2]前記プロモーターが外来性(exogenous)プロモーターである、 [1]に記載の非ヒト トランスジヱニック動物、
[3]前記ポリペプチドが、配列番号 2で表されるアミノ酸配列力 なるポリペプチドで ある、 [1]又は [2]に記載の非ヒトトランスジヱニック動物、
[4]前記プロモーター力 前記ポリペプチドを脳に限定して発現させるプロモーター である、 [1]〜 [3]の 、ずれか 1つに記載の非ヒトトランスジエニック動物、
[5]前記プロモーターが α—カルシウムカルモジュリン依存性キナーゼ IIプロモータ 一である、 [1]〜 [4]の!、ずれ力 1つに記載の非ヒトトランスジエニック動物、
[6]動物がマウスである、 [1]〜 [5]の!、ずれ力 1つに記載の非ヒトトランスジヱニック 動物、
[7]前脳での配列番号 2で表されるアミノ酸配列を含むポリペプチドの mRNA発現 量が野生型と比較して 1. 5倍以上 3倍未満である、 [1]〜[6]のいずれか 1つに記載 の非ヒトトランスジエニック動物、
[8] [ 1 ]〜 [7]の 、ずれか 1つに記載の非ヒトトランスジエニック動物からなる統合失 調症モデル動物、
[9]陰性症状及び Z又は認知障害モデル動物である、 [8]に記載の統合失調症モ デノレ動物、
[10]統合失調症治療効果検出のための [1]〜[7]のいずれか 1つに記載の非ヒトト ランスジエニック動物の使用、
[I I]統合失調症治療効果が、統合失調症の陰性症状及び Z又は認知障害治療効 果である、 [10]に記載の使用、
[ 12] [ 1 ]〜 [7]の 、ずれか 1つに記載の非ヒトトランスジエニック動物に被検物質を 投与する工程、及び、被検物質を投与された動物の統合失調症関連障害を分析す る工程を含む、被検物質の統合失調症治療効果を検出する方法、
[13]分析する工程が、統合失調症の陰性症状及び Z又は認知障害の改善効果を 分析する工程であり、統合失調症治療効果が陰性症状及び z又は認知障害の改善 効果である、 [12]に記載の検出する方法、
[14]統合失調症治療剤のスクリーニングのための [1]〜 [7]の 、ずれか 1つに記載 の非ヒトトランスジエニック動物の使用、
[15]統合失調症治療剤が陰性症状及び Z又は認知障害治療剤である、 [14]に記 載の使用、
[16] [1]〜 [7]のいずれか 1つに記載の非ヒトトランスジエニック動物に被検物質を 投与する工程、被検物質を投与された動物の統合失調症関連障害を分析する工程 、及び統合失調症治療効果を有する物質を選択する工程を含む、統合失調症治療 剤のスクリーニング方法、並びに
[17]分析する工程が、統合失調症の陰性症状及び Z又は認知障害の改善効果を 分析する工程であり、選択する工程が統合失調症の陰性症状及び Z又は認知障害 の改善効果を有する物質を選択する工程であり、統合失調症治療剤が陰性症状及 び Z又は認知障害治療剤である、 [16]に記載のスクリーニング方法、
[18] [16]又は [17]に記載の方法によりスクリーニングする工程、及び、前記スクリ 一-ングにより得られた物質を製剤化する工程を含む、統合失調症治療用医薬組成 物の製造方法
に関する。
本明細書においては、「外来性(exogenous)プロモーター」とは、 SREB2遺伝子プ 口モーター以外のプロモーターを意味する。「統合失調症状を呈する」とは、これに限 定されるものではないが、特には、後述の驚愕反応解析においてプレパルスインヒビ シヨン低下を示すことを意味する。「統合失調症モデル動物」とは、被検物質の統合 失調症治療効果を検出するために、あるいは、統合失調症治療剤のスクリーニング のために用いるための動物である。「陰性症状」とは、これに限定されるものではない 力 特には、後述の社会性行動試験において社会性行動障害を示すこと、あるいは 、後述のモーリスの水迷路学習課題において無動化増強を示すことを意味する。「認 知機能障害」とは、これに限定されるものではないが、特には、後述のモーリスの水 迷路学習課題及び Z又は恐怖条件付け試験において記憶学習障害を示すことを意 味する。
発明の効果
[0014] これまでの統合失調症様行動様式を示すことが報告されているモデル動物は、統 合失調症患者の発症原因となる遺伝背景を反映したものではな!ヽ。本発明の SREB 2非ヒトトランスジヱニック動物により、はじめて、ヒトの発症原因となる遺伝的変異を反 映した統合失調症モデルでの真の統合失調症治療効果を有する薬剤のスクリー- ングが可能となる。 SREB2の SNPで規定される特定のハプロタイプの割合が統合失 調症患者で多いことが確認されている力 具体的に SREB2の発現の亢進、低下な どの機能的側面は記載されておらず (WO02/086147)、 SREB2の過剰発現によりど のような症状を呈するかは不明であった。本発明の SREB2非ヒトトランスジエニック動 物で、その発現亢進が統合失調症の原因となることが初めて明ら力となった。本発明 の SREB2非ヒトトランスジエニック動物は、これまで薬剤誘発統合失調症モデルでは 表現できな力つた統合失調症の陰性症状及び認知機能障害を呈することから、これ まで困難だった陰性症状及び認知機能障害の評価を可能とする有用なモデルとな る。また、本発明の SREB2非ヒトトランスジエニック動物の好適態様の 1つである、導 入遺伝子をへテロで持つ SREB2非ヒトトランスジエニック動物は、導入遺伝子をへテ 口で持つことで統合失調症に関連した表現型を呈することから、他の遺伝子改変動 物 (特に遺伝子ノックアウト動物)と比較して繁殖が容易であり、統合失調症改善効果 を有する薬剤のスクリーニングに有用なモデル動物である。
図面の簡単な説明
[0015] [図 1]プレパルスインヒピション試験の実施方法を示す説明図である。
[図 2]プレノ ルスインヒピション試験の結果を示すグラフである。
[図 3]モーリス水迷路学習課題 (習得試行におけるプラットホーム到達時間)の結果を 示すグラフである。
[図 4]モーリス水迷路学習課題 (習得試行における無動時間)の結果を示すグラフで ある。
発明を実施するための最良の形態
[0016] 本発明で使用される用語につき説明する。
本明細書中で使用される「受容体」は「受容体タンパク質」を、「SREB2」は「SREB 2タンパク質」を表す。
「導入ポリヌクレオチド」は、トランスジヱニック動物作製用であって、プロモーター領 域と受容体をコードするポリヌクレオチドとを含むポリヌクレオチドを表す。
以下、本発明を詳細に説明する。
[0017] [1]導入ポリヌクレオチドに含まれるポリヌクレオチドによりコードされる受容体及びそ のポリヌクレオチド
1)統合失調症関連受容体
本発明のトランスジエニック動物作製用の導入ポリヌクレオチドに含まれるポリヌクレ ォチドによりコードされる受容体は、配列番号 2で表されるアミノ酸配列を含むポリべ プチドであり、配列番号 2で表されるアミノ酸配列からなるポリペプチドが特に好まし い。
[0018] 配列番号 2で表されるアミノ酸配列を含むポリペプチドを、以下、「統合失調症関連 受容体」と称する。
「配列番号 2で表されるアミノ酸配列」は、 Gタンパク質共役型受容体ファミリーに属 するマウス SREB2のアミノ酸配列(W099/46378)である。なお、マウス SREB2、ヒト SREB2、及びラット SREB2は、アミノ酸配列が完全に一致する。
[0019] 2)導入ポリヌクレオチドに含まれるポリヌクレオチド
導入ポリヌクレオチドに含まれる受容体をコードするポリヌクレオチドは、統合失調 症関連受容体をコードするポリヌクレオチドである限り、特に限定されるものではない 。好ましくは、配列番号 2で表されるアミノ酸配列をコードするポリヌクレオチドであり、 更に好ましくは、配列番号 1で表される塩基配列における 7985番目〜9094番目の 塩基力 なる配列のポリヌクレオチドである。
[0020] [2]トランスジ ニック動物の作製方法
1)導入ポリヌクレオチドに含まれるプロモーターの製造 導入ポリヌクレオチドは、統合失調症関連受容体の発現を制御するためのプロモー ター配列を含み、所望によりェンハンサー配列を含むことができる。このプロモーター 、ェンノヽンサ一配列の選択によって、前記受容体を全身性に発現させることもでき、 また、特定の組織で選択的に発現させることもできる。本発明の統合失調症モデル 動物作成のためのプロモーターとしては、特に限定されるものではないが、外来性プ 口モーターが好ましぐ例えば、 a カルシウムカルモジュリン依存性キナーゼ Π (ひ - calcium- calmodulin- dependent kinase II、 a -CaM- kinase IIJ遺伝ナのフロモ ~~タ' ~~ 領域 [Mayford,
M. et al. (1990) Proc. Natl. Acad. Sci. USA 93:13250- 13255]、神経細胞特異的エノ ラーゼのプロモーター領域 [Quon, D.ら(1991) Nature
352, 239— 241]、又は Thy— 1遺伝子のプロモーター領域 [Vidal, M. et al. (1990) E MBO J 9:833-840]などを利用することができ、統合失調症関連受容体を脳選択的 に発現させることができるプロモーターが好ましぐ a カルシウムカルモジュリン依 存性キナーゼ II遺伝子のプロモーター領域の利用が最も好ましい。 a カルシウム カルモジュリン依存性キナーゼ II遺伝子が脳選択的であり、特に前脳に発現選択性 が高い神経細胞遺伝子であることから、前記プロモーター領域を用いることにより脳、 特に前脳(大脳皮質、海馬)に選択的に目的遺伝子を発現させることができ、その結 果、意外にも統合失調症状を呈するトランスジヱニックマウスが得られ、 SREB2の脳 での過剰発現が統合失調症の原因であることが判明した。
a カルシウムカルモジュリン依存性キナーゼ II遺伝子のプロモーター領域の調製 のためには、遺伝子データベース GenBankに登録されている配列(Accession No. AJ222796)で表される塩基配列の情報に基づ 、て、プライマーセットを設計すること ができる。設計した前記プライマーセットと、铸型であるゲノム DNAとを用いてポリメラ ーゼ連鎖反応(PCR) [Saiki,
R. K.ら、 (1988) Science 239、 487-491]を実施することにより、前記導入ポリヌクレオ チドの一部を得ることができる。ゲノム DNAは市販品(クロンテック社)を用いることが でき、また、動物血液を用いて市販のゲノム DNA抽出キット(キアゲン社)により得る こともできる。更に、得られた DNAを適当なベクターに組み込むことにより、 a カル シゥムカルモジュリン依存性キナーゼ IIプロモーター領域を得ることができる。
[0022] 2)統合失調症関連受容体をコードするポリヌクレオチドの製造
導入ポリヌクレオチドに含まれる統合失調症関連受容体をコードするポリヌクレオチ ドは、 W099/46378記載の方法に従って得ることができる。例えば、配列番号 1で表さ れる塩基配列における 7985番目〜9094番目の塩基配列からなる SREB2遺伝子 は、公知の配列 (W099/46378)の任意部分の塩基配列に基づいてオリゴヌクレオチ ドを合成し、これをプローブとして用いて cDNAライブラリーをスクリーニングする方法 や、 目的とする cDNA断片の両末端にノ、イブリダィズするオリゴヌクレオチドを合成し 、これをプライマーとして用いて細胞から単離した mRNAから逆転写酵素 ポリメラ ーゼ連鎖反応 (RT—PCR法)〖こより調製することもできる。
[0023] 3)導入ポリヌクレオチドの製造
本発明のトランスジエニック動物作製用の導入ポリヌクレオチドは、任意のプロモー ター領域 (好ましくは外来性プロモーター領域)と統合失調症関連受容体をコードす るポリヌクレオチドとを少なくとも含み、前記プロモーター活性の調節下にあるように、 統合失調症関連受容体をコードするポリヌクレオチドを配置する限り、プロモーター 及び統合失調症関連受容体をコードするポリヌクレオチドの配置順序は特に限定さ れるものではない。例えば、実施例 1に記載のように、適当なベクターのマルチクロー ニンダサイトに、順次、前記プロモーター領域と統合失調症関連受容体遺伝子を導 入することにより、導入ポリヌクレオチドを調製することができる。前記ベクターとしては 、例えば、 pUC18 (東洋紡績社)を挙げることができる。より具体的には実施例 1に記 載の方法で導入ポリヌクレオチドを得ることができる。導入ポリヌクレオチドとしては、 例えば、 α カルシウムカルモジュリン依存性キナーゼ II遺伝子のプロモーター領域 の下流に SREB2 DNA (配列番号 1の 7985番目〜9094番目)と SV40由来ポリ A 付加シグナルをつな 、だ遺伝子が挙げられる。特に好ま 、導入ポリヌクレオチドの 例としては、配列番号 1で表される塩基配列力 なるポリヌクレオチドが挙げられる。 S V40由来ポリ A付カ卩シグナルは、例えば pcDNA3. 1 (インビトロジェン社)から得るこ とができる。導入ポリヌクレオチドの製造方法は、特に限定されるものではないが、例 えば、 PCRを用いた方法を挙げることができる。また、本発明の遺伝子操作技術は 公知の方法(例えば、 Maniatis, T.ら, "Molecular
し loning— A Laboratory Manual' , Cold bpnng Haroor Laboratory, NY, 1982)に従つ て実施することができる。
[0024] 4)トランスジヱニック動物の製造
本発明のトランスジエニック動物は、統合失調症関連受容体をコードするポリヌクレ ォチド及びプロモーター(好ましくは外来性プロモーター)を含むポリヌクレオチドが 導入され、統合失調症状を呈する非ヒトトランスジエニック動物である限り、特に限定 されるものではない。導入ポリヌクレオチドとして、前述の導入ポリヌクレオチドを使用 すること以外は、従来公知の方法(例えば、 Animal Biotechnology, 1,175_84、 1990) に基づいて作製することができる。具体的には、例えば、後述の実施例 1に記載の手 順に基づいて作製することができる。すなわち、前記導入ポリヌクレオチドを非ヒト動 物の全能性細胞に導入し、この細胞を個体へと発生させ、体細胞のゲノム中に導入 ポリヌクレオチドが組み込まれた個体を選別することによって目的とするトランスジヱ- ック動物を作製することができる。本明細書において「トランスジエニック動物」とは、ヒ トを除くトランスジエニック動物(すなわち、非ヒトトランスジエニック動物)を意味し、例 えば、ヒトを除く哺乳動物(例えば、ラット、マウス、ィヌ、ネコ、サル、ブタ、ゥシ、ヒッジ 、ゥサギ、ャギ、ィルカ、又はゥマ)、鳥類 (例えば、 -ヮトリ又はゥズラ)、両生類 (例え ば、力エル)、爬虫類、又は昆虫(例えば、ショウジヨウバエ)などを挙げることができる 。非ヒト動物としては、技術的にはすべての動物種を対象とすることが可能であるが、 げっ歯類が好ましぐマウス又はラットがより好ましぐ特には近交系が多数作出され ており、し力も受精卵の培養、体外受精等の技術が最も整っているマウスが好ましい 。遺伝子を導入する全能性細胞としては、マウスの場合、受精卵や初期胚を用いるこ とができる。また、培養細胞への遺伝子導入法としては、トランスジエニック動物個体 の産出効率や次代への導入遺伝子の伝達効率を考慮した場合、 DNAの物理的注 入(マイクロインジェクション)法が好まし 、。
[0025] 例えば、 HEPES緩衝液、リン酸緩衝液、生理食塩水等に溶かしたベクターをマイ クロピペットで受精卵に注入し、この卵をホルモン処理 [例えば、プロスタグランジン( PG) F a、ヒト絨毛性性腺刺激ホルモン (hCG)、エストラジオール、黄体形成ホルモ ン (LH)等]又は小動物では物理的刺激により擬妊娠状態にした宿主動物の子宮内 に移植する。この宿主動物を飼育して分娩させることによって遺伝子導入非ヒト動物 が得られる。遺伝子導入非ヒト動物が得られたか否かは、体の一部(例えば、尾部先 端)から DNAを抽出し、サザン解析や PCR法により導入ポリヌクレオチドの存在を確 認すること〖こより知ることができる。導入ポリヌクレオチドの存在が確認された個体を初 代 (Founder)とすれば、導入ポリヌクレオチドはその子孫の 50%に伝達され、野生型 又は変異型の動物を効率よく作出することが可能である。統合失調症モデル動物、 特に統合失調症の陰性症状及び Z又は認知障害モデル動物としては、前脳 (大脳 皮質、海馬)での統合失調症関連受容体 (特には SREB2)の mRNA発現量が野生 型と比較して 1. 5倍以上 3倍未満であるモデル動物(特にはマウス)がより好ましぐ 7 週齢での統合失調症関連受容体 (特には SREB2)の mRNA発現量が野生型と比 較して 1. 5倍以上 2. 5倍未満であるモデル動物(特にはマウス)が最も好ましい。 SR EB2 mRNA発現量は、実施例 3記載の方法で検出することができる。
[0026] このようにして作製したトランスジエニック動物及び統合失調症状を呈するその子孫 であるトランスジヱニック動物は、統合失調症治療効果、特に陰性症状及び Z又は 認知障害治療効果の検出、統合失調症治療剤、特に陰性症状及び Z又は認知障 害治療剤のスクリ一ユングに有用である。
[0027] [3]統合失調症関連障害測定方法及び統合失調症治療効果の検出法
常法である統合失調症関連障害測定方法、例えば、以下の 1)〜4)に記載の方法 により、統合失調症関連障害の改善 [例えば、驚愕反応解析におけるプレパルスイン ヒピション (Prepulse inhibition)低下の抑制効果、社会性行動試験における社会性行 動障害の改善効果、モーリスの水迷路学習課題及び Z又は恐怖条件付け試験にお ける記憶学習障害の改善効果]を指標に、被検物質がトランスジ ニック動物の統合 失調症関連障害を治療 (治癒又は改善)する効果があるかどうかを検出し、被検物質 の統合失調症治療効果の検出が可能である。
また、例えば、以下の 2)及び 3)に記載の方法により、統合失調症の陰性症状の改 善 (例えば、社会性行動試験における社会性行動障害の改善効果、モーリスの水迷 路学習課題における無動化増強の改善)を指標に、被検物質がトランスジヱニック動 物の統合失調症陰性症状を治療 (治癒又は改善)する効果があるかどうかを検出し、 被検物質の統合失調症陰性症状治療効果の検出が可能である。
また、例えば、以下の 3)及び 4)に記載の方法により、統合失調症の認知障害の改 善 (例えば、モーリスの水迷路学習課題及び Z又は恐怖条件付け試験における記憶 学習障害の改善効果)を指標に、被検物質がトランスジ ニック動物の統合失調症認 知障害を治療 (治癒又は改善)する効果があるかどうかを検出し、被検物質の統合失 調症認知障害治療効果の検出が可能である。
[0028] 1)驚愕反応解析 (プレパルスインヒピション試験)
測定装置として、防音箱内に振動センサーの付いた保定シリンダー及び音刺激を 負荷するためのスピーカ一部分と制御用コンピュータ部分力 なる小動物用驚愕反 応測定装置 (SR-LAB、米国サンディエゴ社)を用いる。
パルスに対する動物の驚愕反応を、振動センサーを介して「振動の大きさ」 (amplitu de)として測定する。なお、測定中は外界から音を遮断する目的で 70dBの背景ノィ ス (background white
noise)を常時負荷する。系統別に野生型 (WT)マウスとトランスジエニック (TG)マウ スを測定装置に入れ、 3分間馴化させた後、下記 a)〜; 0の 6刺激を無作為に各 6回( 合計 36回)、試行間隔平均約 15秒にて動物に負荷し、音刺激 65ms後に認められる 保定シリンダーの振動を測定して下記評価を行う。下記 d)〜; 0におけるプレパルス 負荷開始とパルス負荷開始との間隔は、 100msである。記号「P」及び「PP」は、それ ぞれ、パルス及びプレパルスを意味し、縦軸は「振動の大きさ」である。
[0029] a)無刺激 (background white noise): BG
b) 80dB (40ms) (プレパノレスのみ): PP
c) 120dB (40ms) (パノレスのみ): P
d) 73dB (20ms)のプレパノレス + 120dB (40ms)のパノレス: 3D
e) 76dB (20ms)のプレパルス + 120dB (40ms)のパノレス: 6D
D 82dB (20ms)のプレパルス + 120dB (40ms)のパノレス: 12D
[0030] 具体的な測定項目を以下に示す:
i) 120dB単独刺激時 [前記 c) ]の驚愕反応 (振動係数:図 1に示す Aの 6回平均値) ii)プレノ ルス 3条件 [すなわち、前記 d)〜; 0]について、それぞれ 6回平均値を用い て、下記式で規定される PPI (プレパルスインヒピション)を算出する。
PPI (%) = { 1— (B/A) } X 100
[式中、 A及び Bは、それぞれ、図 1に示す A及び Bの値である]
iii)無刺激時 [前記 a) ]又はプレパルス刺激のみ負荷時 [前記 b) ]の振動係数 (6回平 均値)。
プレノ ルスインヒピションが低下した場合、統合失調症状を表して ヽるとみなされる
[0031] 2)社会性行動試験
2匹の社会性行動として、マウス 2匹を新規プラスチックケージ (PC)内で 60分間遭 遇させ、社会的探索動作(social investigation)、追従動作 (following)、休息姿勢 (res ting)の発現頻度及び累積時間を測定する。また、 2匹の行動をビデオカメラで撮影 し DVDレコーダーを用いて DVD— Rに録画する。行動観察は、例えば、午後 9時か ら 12時に、室内灯下で行う。社会的探索動作及び Z又は追従動作の回数低下及び Z又は時間短縮があった場合、社会性行動障害があると判断され、統合失調症の陰 性症状を表して 、るとみなされる。
[0032] 群の社会性行動として、飼育ケージ中の行動をビデオカメラで撮影し、 DVDレコー ダーを用いて DVD— Rに録画する。撮影は、例えば、午後 9時から 12時の間に開始 し、 48時間撮影する。
[0033] 3)モーリスの水迷路学習課題
a)装置の設置
実験装置は、視覚では識別不可能な透明なアクリル製のプラットホーム (直径:約 1 Ocm、高さ:約 26. 5cm)と、プラットホームが水に隠れるように約 27. 5cmの高さまで 水(水温 17〜 18°C)を張った灰色塩化ビニール製の円形プール(直径:約 68cm、 高さ:約 32cm)を使用する。プラットホームには場所がわ力るように黒色の四角柱を たてる。また、プールを 4つの象限に分割し、そのうちの第四象限中央 (プール中央よ り約 17cm)にプラットホームを設置し、プールの周囲には空間的手が力りとして赤い 三角錐を設置する。
マウスの遊泳行動はビデオ画像行動解析装置(SMART、 Panlab社)を用いて解析 し、更に、 DVDビデオレコーダを用いて DVD— Rに記録する。 DVD— Rは参考デ ータとし、ビデオ画像行動解析装置から打ち出した結果を、 1次データとする。
[0034] b)測定方法
(1)習得試行
4日間、午前と午後 (計 8回)に 1匹 1日 2回、習得試行を行う。第 1日目及び第 2日 目はプラットホーム上に黒色の四角柱を立て、第 3日目及び第 4日目は四角柱は立 てないで行う。
マウスの頭が円形プールの壁に向くように投入し、プラットホーム上に到達するまで の時間(goal latency:秒)をストップウォッチで測定 (測定時間は最大 90秒間)する。 9 0秒以内にプラットホームに迪り着き、プラットホーム上に 30秒間滞在した場合は、プ ラットホームの位置を認識していると判断し、測定を終了する。 90秒以内に迪り着け な力つたマウスは、プラットホーム到達時間を 90秒とする。
但し、第 1日目でマウスがプラットホームに迪り着けな力つた場合は、測定後にブラ ットホーム上に 30秒間のせ、飼育ケージに戻す。また、第 2日目〜 4日目で 90秒以 内にプラットホームに迪り着けな力つたマウスは、そのまま飼育ケージに戻す。また、 測定中にマウスがプラットホームに着いた力 もう一度プールに入った場合は、プラッ トホームの位置を確認してないとみなし、そのまま測定を続ける。なお、第 2日目〜 4 日目の測定時刻は第 1日目とできる限り同じ時刻に実施する。
[0035] (2)プローブ試行 (プラットホームを取り外して、その付近にどれだけとどまる力観察: 動物の空間認知及び場所学習の習得の程度確認)
プローブ試行は第 5日目の午前に実施する。マウスを頭が円形プールの壁に向くよ うに入れ、 0〜30秒、 30〜60秒、及び 60〜90秒の観察時間内にマウスが第四象限 (習得試行時にプラットホームが設置されていた象限)に滞在した時間(第四象限の 遊泳時間:秒)及びプラットホームのあった位置の通過回数 (第四象限内のプラットホ ームのあった場所を通過した回数)を測定する。
習得試行でのプラットホームまでの到達時間の延長及び Z又はプローブ試行での 第四象限での遊泳時間短縮及び z又は第四象限通過回数の減少があった場合、 記憶学習障害があると判断され、統合失調症の認知障害を表しているとみなされる。 また、遊泳中の無動時間があった場合、無動化増強があると判断され、統合失調 症の陰性症状を表して 、るとみなされる。
[0036] 4)恐怖条件付け試験
マウスをフィァードコンディション計測装置(Acti Metrics社)の中に入れ、恐怖条件 付けの電気刺激を行う。このときの条件は 15秒毎に 1秒の 0. 4mAの電気刺激負荷 を 4分間とする。
翌日、マウスを再度、フィァードコンディション計測装置実験装置に入れ、電気ショ ック無しの条件で 4分間の無動時間を測定する。
無動時間の短縮があった場合、記憶学習障害があると判断され、統合失調症の認 知障害を表して 、るとみなされる。
[0037] [4]統合失調症治療剤スクリーニング法
本発明のトランスジヱニック動物に被検物質を投与し、次いで被検物質を投与した 動物の統合失調症関連障害を分析 (好ましくは測定)し、統合失調症治療効果を有 する物質を選択することにより、統合失調症治療剤のスクリーニングが可能である。ま た、本発明のトランスジヱニック動物に被検物質を投与し、次いで被検物質を投与し た動物の統合失調症の陰性症状及び Z又は認知機能障害を分析 (好ましくは測定) し、陰性症状及び Z又は認知機能障害治療効果を有する物質を選択することにより 、陰性症状及び Z又は認知機能障害治療剤のスクリーニングが可能である。
[0038] 本発明のスクリーニング法で使用する被検物質としては、特に限定されるものでは ないが、例えば、市販の化合物(ペプチドを含む)、ケミカルファイルに登録されてい る種々の公知化合物(ペプチドを含む)、コンビナトリアル.ケミストリー技術 [N.K.Terr ett, M.uardner, D.W.uordon, R.J.Kobylecki, J. Steele, Tetrahedron, 51, 8135— 73 (1995) ]によって得られたィヒ合物群、微生物の培養上清、植物や海洋生物由来の天 然成分、動物組織抽出物、あるいは、本発明のスクリーニング法により選択されたィ匕 合物 (ペプチドを含む)をィ匕学的又は生物学的に修飾したィ匕合物 (ペプチドを含む) を挙げることができる。 [0039] [5]統合失調治療用医薬組成物の製造方法
本発明のスクリーニング法により選択される統合失調症治療剤、特には陰性症状及 び Z又は認知機能障害治療剤を主成分として、医薬を得ることができる。これらの医 薬は、統合失調症治療、特には陰性症状及び Z又は認知機能障害治療に有用であ る。
[0040] 統合失調症治療剤を有効成分とする医薬製剤は、有効成分のタイプに応じて、そ れらの製剤化に通常用いられる担体、賦形剤、及び Z又はその他の添加剤を用い て調製することができる。投与は、例えば、錠剤、丸剤、カプセル剤、顆粒剤、細粒剤 、散剤、又は経口用液剤などによる経口投与、あるいは、静注若しくは筋注などの注 射剤、坐剤、経皮投与剤、又は経粘膜投与剤などによる非経口投与が挙げられる。 特に胃で消化されるペプチドにあっては静注等の非経口投与が望ま 、。
[0041] 本発明による経口投与のための固体組成物は、一つ又はそれ以上の活性物質と、 少なくとも一つの不活性な希釈剤、例えば、乳糖、マン-トール、ブドウ糖、微結晶セ ルロース、ヒドロキシプロピルセルロース、デンプン、ポリビニルピロリドン、又はメタケ ィ酸アルミン酸マグネシウムなどと混合することにより、調製することができる。前記固 体組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えば、滑沢剤、崩壊 剤、安定化剤、溶解剤、又は溶解補助剤などを含有することができる。錠剤や丸剤は 、必要により糖衣又は胃溶性若しくは腸溶性物質などのフィルムで被覆することがで きる。経口のための液体組成物は、例えば、乳濁剤、溶液剤、懸濁剤、シロップ剤、 又はエリキシル剤を含み、一般的に用いられる不活性な希釈剤、例えば、精製水又 はエタノールを含むことができる。前記液体組成物は、不活性な希釈剤以外の添カロ 剤、例えば、湿潤剤、懸濁剤、甘味剤、芳香剤、又は防腐剤を含有することができる
[0042] 非経口のための注射剤としては、無菌の水性若しくは非水性の溶液剤、懸濁剤、 又は乳濁剤を含むことができる。水溶性の溶液剤や懸濁剤には、希釈剤として、例え ば、注射用蒸留水又は生理用食塩水などが含まれる。非水溶性の溶液剤又は懸濁 剤の希釈剤としては、例えば、植物油(例えば、プロピレングリコール、ポリエチレング リコール、若しくはォリーブ油)、アルコール類(例えば、エタノール)、又はポリソルべ ート 80等を含むことができる。前記組成物は、更に、湿潤剤、乳化剤、分散剤、安定 ィ匕剤、溶解剤、溶解補助剤、又は防腐剤などを含むことができる。前記組成物は、例 えば、バクテリア保留フィルターを通す濾過、殺菌剤の配合、又は照射によって無菌 化することができる。また、無菌の固体組成物を製造し、使用の際に、無菌水又はそ の他の無菌用注射用媒体に溶解し、使用することもできる。
[0043] 本発明のスクリーニング法により得られた統合失調症治療剤を有効成分とする医薬 の投与量は、前記スクリーニング法により選択された有効成分の活性の強さ、症状、 投与対象の年齢、又は性別等を考慮して適宜決定することができる。
実施例
[0044] 以下に実施例により本発明を詳述するが、本発明は下記実施例によって限定され るものではない。なお、特に断りがない場合は、遺伝子操作技術に関しては公知の 方法 (例えば、 Maniatis T. et al. (1982) :「Molecular Cloning- A Laboratory Manual J
Cold Spring Harbor Laboratory, NY)に従って実施可能である。また、市販の試薬や キットを用いる場合には、市販品の指示書に従って実施可能である。
[0045] 《実施例 1: SREB2過剰発現トランスジエニックマウス作製用導入ポリヌクレオチドの構 築》
a カルシウムカルモジュリン依存性キナーゼ II遺伝子のプロモーター領域の下流 に SREB2 DNAと SV40由来ポリ A付カ卩シグナルとをつないだ遺伝子からなる、 SREB2 過剰発現トランスジエニックマウス作製用導入ポリヌクレオチド (配列番号 1)を製造し た。
[0046] a カルシウムカルモジュリン依存性キナーゼ IIのプロモーター領域は、 C57BL/6 マウスのゲノム DNAを铸型とした PCRによって互いにオーバーラップする部分を持つ 2つの断片として取得した。 C57BL/6マウスのゲノム DNAは、同マウスの血液からゲノ ム DNA抽出キット(QIAamp
DNA Blood Midi Kit, QIAGEN社)を用いて精製した。プライマーは遺伝子データべ ース GenBankに登録されて 、る配列(Accession
No. AJ222796)をもとに設計した。フォワードプライマーとして配列番号 3で表される 塩基配列からなるオリゴヌクレオチドを使用し、リバースプライマーとして配列番号 4で 表される塩基配列力 なるオリゴヌクレオチドを用いて 4.6kbの DNA断片を得た。前記 フォワードプライマーの 5 '末端側には Aatll認識配列が付カ卩してある。また、フォヮ一 ドプライマ一として配列番号 5で表される塩基配列力 なるオリゴヌクレオチドを使用 し、リバースプライマーとして配列番号 6で表される塩基配列力もなるオリゴヌクレオチ ドを用いて 3.7kbの DNA断片を得た。前記リバースプライマーの 5 '末端側には Sail認 識配列が付カ卩してある。それぞれの PCRは、 DNAポリメラーゼ(Pfo
Turbo, Stratagene社)を用いて 99°C (1分)の後、 99°C (15秒)、 58°C (15秒)、 75°C (10 分)を 45サイクル、あるいは、 95°C (1分)の後、 95°C (15秒)、 62°C (15秒)、 75°C (8分) を 40サイクル実施した。 4.6kb断片と 3.7kb断片のオーバーラップする部分に存在する 内存性の Xmal認識配列を利用して両断片を結合し、 a—カルシウムカルモジュリン 依存性キナーゼ IIのプロモーター領域を得た。また、 SV40由来ポリ A付加シグナルは 、プラスミド pME18S (丸山ら、新生化学実験講座、 123-133、 1991年)を铸型としてフ ォワードプライマー(配列番号 7)、リバースプライマー(配列番号 8)を用い、 DNAポリ メラーゼ(Pfo
Turbo, Stratagene社)を用いた PCRにより取得した。前記リバースプライマーには Kpn I、 Notl認識配列を付加してある。
SREB2 DNAは、マウス染色体を铸型として PCRにより取得した。フォワードプライマ 一として配列番号 9で表される塩基配列からなるオリゴヌクレオチドを、リバースプライ マーとして配列番号 10で表される塩基配列力もなるオリゴヌクレオチドを、それぞれ S REB2
ORF上流配列と下流配列とから設計した。 PCRは DNAポリメラーゼ(Pfo Turbo, Strata gene社)を用いて 96°C (1分)の後、 96°C (15秒)、 60°C (15秒)、 75°C (8分)を 30サイク ル実施した。前記フォワードプライマーの 5 '末端側には Sail認識配列、リバースプライ マーの 5 '末端側には Xbal認識配列が付加してある。得られた 4.5kb断片を、上記ひ カルシウムカルモジュリン依存性キナーゼ IIのプロモーター領域と Sail認識配列を 利用して、 SV40由来ポリ A付加シグナルと Xbal認識配列を利用して連結し、 AatII、 Kp nlで消化したプラスミド pUC18 (東洋紡績社)にクローユングすることで SREB2過剰発 現トランスジエニックマウス作成用導入ポリヌクレオチド(13kb)を持つプラスミド (pCM- SREB2と命名した)が得られた。 SREB2過剰発現トランスジヱニックマウス作製用導入 ポリヌクレオチド(13kb)は、 pCM- SREB2から Aatll及び Notl制限酵素を用いて切り出 した後、単離精製した。
[0048] 《実施例 2: SREB2過剰発現トランスジヱニックマウスの作製及び同定》
実施例 1で作成した導入ポリヌクレオチドを C57BLZ6と DBA2マウスの F1交雑マウ スの受精卵にマイクロインジェクションした後、前記受精卵を仮親 ICRマウスの卵管に 移植した [Hogan、 B.
et al. (1986). Manipulating the mouse emoryo: a laboratory manual、 Plainview、 New York: Cold Harbor Press]。妊娠マウスを自然分娩させ、得られた仔マウス 53匹につ いてトランスジエニックマウスの同定を行った。
[0049] トランスジエニックマウスの同定は、仔マウスの SREB2遺伝子の染色体上のコピー数 を比較することにより行った。まず、マウスの尻尾からゲノム DNA抽出キット(MagExtra ctor
-Genome -、東洋紡績社)を用いてゲノム DNAを抽出及び精製した。次いで、 SREB2 DNA配列に基づきフォワードプライマーとして配列番号 11で表される塩基配列から なるオリゴヌクレオチド、リバースプライマーとして配列番号 12で表される塩基配列か らなるオリゴヌクレオチドを設計し、リアルタイム定量 PCR法 [PRISM (登録商標) 7700 Sequence Detection System, ABI社、蛍光試薬 SYBR Green, Molecular Probes 社]により SREB2遺伝子の染色体上のコピー数を比較した。その結果、仔マウス 53匹 中 7匹はコピー数が野生型と比較して 2倍以上であり、トランスジヱニックマウス(F0)で あることが同定された。これらトランスジエニックマウス(F0)と C57BLZ6との交配により 生まれた仔マウス (F1)の SREB2遺伝子の染色体上のコピー数を比較することにより ジャームライントランスミッションを検定したところ、 7匹中 2匹で F1マウスへの導入遺伝 子のトランスミッションが確認され、それぞれの系統を YM2、 YM4と命名した。染色体 上に導入された SREB2遺伝子数は、 YM2で約 10コピー、 YM4で約 20コピーであった。
[0050] 《実施例 3 : SREB2 mRNAの定量》
導入されたポリヌクレオチドが実際に機能し SREB2 mRNAが過剰発現して 、ることを 確認するため、トランスジエニックマウスの脳での SREB2 mRNAの発現を解析した。実 施例 2で得られた F1ヘテロトランスジエニックマウス(7週齢)及び同腹野生型マウスか ら前脳と小脳を摘出し、それぞれ RNAを単離した。各 RNAは、ゲノム DNAの混入を防 ぐため、 DNァーゼ(DNase、 Promega社)で消化した。得られた RNA中の SREB2 mRNAコピー数を実施例 2に記載のリアルタイム PCR法により定量した。リアルタイム P CRの铸型として、各 RNAから逆転写酵素 ポリメラーゼ連鎖反応キット (Advantage RT-for-PCR kit,クロンテック社)により合成した一本鎖 cDNAを用いた。
[0051] リアルタイム定量 PCRの結果、 YM4系統の F1ヘテロトランスジエニックマウス前脳で 野生型の約 4倍の SREB2 mRNA過剰発現が認められた。一方、小脳では発現量の増 加は 2倍未満であった。 YM2系統 F1ヘテロトランスジエニックマウスでは野生型の約 2 倍の前脳での SREB2
mRNA過剰発現が認められ、小脳での発現増加は 2倍未満であった。
[0052] 《実施例 4: SREB2過剰発現トランスジエニックマウスの脳の形態学的解析》
SREB2過剰発現の脳の形態に与える作用を解析するため、 YM2、 YM4系統へテロ トランスジエニックマウスと同腹野生型マウスの脳を摘出し、重量を測定後、形態を観
¾πίした。
[0053] 実施例 2と同様に作成した F1を用い、常法により ΥΜ2、 ΥΜ4系 F2ヘテロトランスジェ ニックマウスを作成した。生後 5週齢での比較で、野生型に比べ ΥΜ2、 ΥΜ4系 F2へテ ロトランスジエニックマウスともに脳重量が減少していることが判明した (ΥΜ2
0.36±0.01g, YM4 0.33±0.01g,野生型 0.46±0.01g, N=2〜5)。脳重量の減少率は
、 YM4系(28%)のほうが YM2系(22%)よりも大きぐ SREB2発現量と相関していた。 脳切片の形態学的観察より、脳実質の減少に伴って脳室の拡大が起きていることが 見出された。脳実質の減少及び脳室の拡大は統合失調症患者の脳で観察される表 現型と一致する。
[0054] 以上の結果は、トランスジヱニックマウスでは統合失調症の脳に類似した形態学的 変化が引き起こされていることを示し、 2系統のへテロトランスジエニックマウスで同様 の表現型が観察されたことは、これらの表現型が SREB2の過剰発現によることを示す [0055] 《実施例 5: SREB2過剰発現トランスジエニックマウスの行動学的解析》 以下の行動解析には、脳重量の減少率が低い YM2系統の F3ヘテロトランスジェ- ックマウスを用いた。驚愕反応解析 (プレパルスインヒピション試験)は統合失調症患 者が障害を呈する情報処理機能の定量的解析として汎用されている。「[3]統合失 調症関連障害測定方法及び統合失調症治療効果の検出法 1)驚愕反応解析 (プ レパルスインヒピション試験)」に示した方法に則り解析を行ったところ、 YM2ヘテロトラ ンスジヱニックマウスはプレパルスインヒピション (プレパルスによる驚愕反応抑制)の 低下を示した。これらは統合失調症患者で観察される表現型と一致する。
[0056] また、 10週齢以上の雄性トランスジエニックマウス (Tg) 10匹に対して同腹の雄性野 生型マウス (WT) 10匹を比較対照群とし、以下の試験を行った。
[0057] 1)プレパルスインヒピション試験
「 [3]統合失調症関連障害測定方法及び統合失調症治療効果の検出法 1)驚愕 反応解析 (プレパルスインヒピション試験)」に示した方法に則り解析を行ったところ、 YM2ヘテロトランスジエニックマウス (Tg)は野生型対照群 (WT)と比較して有意にプ レパルスインヒピション (プレパルスによる驚愕反応抑制)が低下して ヽた (図 2)。なお 、図 2において、横軸に記載の記号「3D」は、 73dB (20ms)のプレパルス + 120dB (40 ms)のパルスを負荷した場合の結果であることを示す。記号「6D」は、 76dB (20ms)の プレパルス + 120dB (40ms)のパルスを負荷した場合の結果であることを示す。記号「 12DJは、 82dB (20ms)のプレパルス + 120dB (40ms)のパルスを負荷した場合の結果 であることを示す。また、縦軸は「プレパルスインヒピション(%)」である。この結果から 、SREB2過剰発現トランスジエニックマウスが情報処理機能の障害を呈することが示さ れた。この表現型は統合失調症患者で観察される表現型と一致する。
[0058] 2)补会 験
社会性行動の障害は、統合失調症の陰性症状の指標となっている。「[3]統合失 調症関連障害測定方法及び統合失調症治療効果の検出法 2)社会性行動試験」 に示した方法に則り解析を行ったところ、 YM2ヘテロトランスジエニックマウスは野生 型対照群と比較して社会的探索動作回数が有意に減少していた (WT 66.8±4.2, Tg 54.2 ±3.9, P〈0.05)。この結果から、 SREB2過剰発現トランスジエニックマウスが社会 性行動の障害を呈することが示された。この表現型は統合失調症患者で観察される 表現型と一致する。
[0059] 3)モーリスの水迷路学習誤穎
統合失調症では、陽性症状、陰性症状に加え、認知機能の障害が引き起こされる 。モーリスの水迷路学習課題は、認知機能の定量的解析法として汎用されている。「 [3]統合失調症関連障害測定方法及び統合失調症治療効果の検出法 3)モーリス の水迷路学習課題」に示した方法に則り解析を行ったところ、 YM2ヘテロトランスジェ ニックマウス (Tg)は野生型対照群 (WT)と比較して習得試行でのプラットホーム到達 時間が有意に延長していた(図 3)。なお、図 3において、横軸は「習得試行回数」で あり、縦軸は「プラットホーム到達時間(秒)」である。また、プローブ試行においてブラ ットホームのあった位置(第四象限)での通過回数が有意に減少していた (WT 7.3 ±0.9, Tg 3.1 ±0.9, P〈0.01)。この結果から、 SREB2過剰発現トランスジエニックマ ウスが認知機能の障害を呈することが示された。この表現型は統合失調症患者で観 察される表現型と一致する。
また、本試験において YM2ヘテロトランスジエニックマウス (Tg)は野生型対照群 (W T)と比較して遊泳中の無動時間が有意に延長していた(図 4)。なお、図 4において、 横軸は「習得試行回数」であり、縦軸は「無動時間(秒)」である。遊泳中の無動時間 の延長 (すなわち、無動化増強)は統合失調症の陰性症状と関連すると報告されて いる(Noda
et al. Br J Pharmacol. 116, 2531-2537, 1995)。この結果から、 SREB2過剰発現トラン スジエニックマウスが統合失調症陰性症状に類似した表現型を呈することが示された
[0060] 4)恐怖条件付け試験
恐怖条件付け試験は、認知機能の定量的解析法として知られている。「[3]統合失 調症関連障害測定方法及び統合失調症治療効果の検出法 4)恐怖条件付け試験 」に示した方法に則り解析を行ったところ、 YM2ヘテロトランスジエニックマウスは野生 型対照群と比較して無動時間が有意に短縮していた (測定時間中の無動時間%, W T 17.87±2.88, Tg 8.79 ± 1.34, P〈0.05)。この結果から、 SREB2過剰発現トランスジエニックマウスが 認知機能の障害を呈することが示された。この表現型は統合失調症患者で観察され る表現型と一致する。
[0061] 以上の結果は、 SREB2過剰発現トランスジエニックマウス YM2では脳の形態学的変 化だけでなぐ行動学的にも統合失調症に類似した障害が引き起こされていることを 示し、統合失調症モデル動物になることが分かる。 SREB2トランスジエニックマウス YM 2を用い、統合失調症関連障害の改善を指標に、統合失調症治療剤のスクリーニン グが可能である。
[0062] 《実施例 6 : SREB2トランスジヱニックマウスを用いた統合失調症治療剤、陰性症状治 療剤及び認知機能障害治療剤のインビボスクリーニング》
統合失調症治療剤のインビボスクリーニングを、実施例 5と同様の驚愕反応解析、 社会性行動試験、モーリスの水迷路学習課題、及び恐怖条件付け試験にて実施す る。被検物質は、 0.5%メチルセルロース生理食塩水に懸濁し、腹腔内投与する。被検 物質投与 SREB2トランスジエニックマウス群で、コントロールの 0.5%メチルセルロース 生理食塩水投与群に比較して、プレパルスインヒピション (プレパルスによる驚愕反応 抑制)の低下、社会性行動障害の改善、記憶学習障害の改善があれば、被検物質 は統合失調症治療効果を有すると判断し、統合失調症治療剤として選択することが できる。
また、社会性行動試験において社会性行動障害の改善を示すか、あるいは、モー リスの水迷路学習課題にお!、て無動化増強の改善を示せば、被検物質は統合失調 症の陰性症状治療効果を有すると判断し、陰性症状治療剤として選択することがで きる。モーリスの水迷路学習課題及び Z又は恐怖条件付け試験にぉ 、て記憶学習 障害が改善されれば、被検物質は統合失調症の認知機能障害治療効果を有すると 判断し、認知機能障害治療剤として選択することができる。
産業上の利用可能性
[0063] 本発明のスクリーニング方法によって、統合失調症治療剤、特に陰性症状及び認 知機能障害治療剤として有用な物質をインビボスクリーニングすることができ、より良 V、治療剤を選択することができる。 本発明のトランスジエニック動物は、統合失調症治療剤スクリーニングのために使 用する統合失調症治療剤、特に陰性症状及び認知機能障害治療剤スクリーニング ツールである統合失調症モデル動物として有用である。
本発明のスクリーニング方法により得ることができる物質を有効成分とし、担体、賦 形剤及び Z又はその他の添加剤を用いて製剤化することにより、統合失調症治療、 特に陰性症状及び認知機能障害治療用医薬組成物を製造することができる。 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は 本発明の範囲に含まれる。
配列表フリーテキスト
配列表の配列番号 1の配列で表される塩基配列は、トランスジ ニックマウス作製 用配列である。また、配列表の配列番号 3〜 12の配列で表される各塩基配列は、人 ェ的に合成したプライマー配列である。

Claims

請求の範囲
[1] (1)配列番号 2で表されるアミノ酸配列を含むポリペプチドをコードするポリヌクレオ チドと、(2)プロモーターを含むポリヌクレオチドとが導入され、統合失調症状を呈す る非ヒトトランスジェニック動物。
[2] 前記プロモーターが外来性プロモーターである、請求項 1に記載の非ヒトトランスジ エニック動物。
[3] 前記ポリペプチドが、配列番号 2で表されるアミノ酸配列からなるポリペプチドである
、請求項 1又は 2に記載の非ヒトトランスジヱニック動物。
[4] 前記プロモーターが、前記ポリペプチドを脳に限定して発現させるプロモーターで ある、請求項 1〜3のいずれか一項に記載の非ヒトトランスジエニック動物。
[5] 前記プロモーターが α—カルシウムカルモジュリン依存性キナーゼ IIプロモーター である、請求項 1〜4のいずれか一項に記載の非ヒトトランスジエニック動物。
[6] 動物がマウスである、請求項 1〜5のいずれか一項に記載の非ヒトトランスジエニック 動物。
[7] 前脳での配列番号 2で表されるアミノ酸配列を含むポリペプチドの mRNA発現量 が野生型と比較して 1. 5倍以上 3倍未満である、請求項 1〜6のいずれか一項に記 載の非ヒトトランスジェニック動物。
[8] 請求項 1〜7のいずれか一項に記載の非ヒトトランスジエニック動物からなる統合失 調症モデル動物。
[9] 陰性症状及び Z又は認知障害モデル動物である、請求項 8に記載の統合失調症 モテノレ動物。
[10] 統合失調症治療効果検出のための請求項 1〜7のいずれか一項に記載の非ヒトト ランスジエニック動物の使用。
[ill 統合失調症治療効果が、統合失調症の陰性症状及び Z又は認知障害治療効果 である、請求項 10に記載の使用。
[12] 請求項 1〜7のいずれか一項に記載の非ヒトトランスジ ニック動物に被検物質を投 与する工程、及び、被検物質を投与された動物の統合失調症関連障害を分析する 工程を含む、被検物質の統合失調症治療効果を検出する方法。
[13] 分析する工程が、統合失調症の陰性症状及び Z又は認知障害の改善効果を分析 する工程であり、統合失調症治療効果が陰性症状及び z又は認知障害の改善効果 である、請求項 12に記載の検出する方法。
[14] 統合失調症治療剤のスクリーニングのための請求項 1〜7のいずれか一項に記載 の非ヒトトランスジエニック動物の使用。
[15] 統合失調症治療剤が陰性症状及び Z又は認知障害治療剤である、請求項 14に 記載の使用。
[16] 請求項 1〜6のいずれか一項に記載の非ヒトトランスジエニック動物に被検物質を投 与する工程、被検物質を投与された動物の統合失調症関連障害を分析する工程、 及び統合失調症治療効果を有する物質を選択する工程を含む、統合失調症治療剤 のスクリーニング方法。
[17] 分析する工程が、統合失調症の陰性症状及び Z又は認知障害の改善効果を分析 する工程であり、選択する工程が統合失調症の陰性症状及び Z又は認知障害の改 善効果を有する物質を選択する工程であり、統合失調症治療剤が陰性症状及び Z 又は認知障害治療剤である、請求項 16に記載のスクリーニング方法。
[18] 請求項 16又は 17に記載の方法によりスクリーニングする工程、及び、前記スクリー ニングにより得られた物質を製剤化する工程を含む、統合失調症治療用医薬組成物 の製造方法。
PCT/JP2006/320343 2005-10-12 2006-10-11 統合失調症モデル動物 WO2007043589A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/919,709 US20090119786A1 (en) 2005-10-12 2006-10-11 Model animal of schizophrenia
EP06821840A EP1935244A4 (en) 2005-10-12 2006-10-11 ANIMAL MODEL OF SCHIZOPHRENIA
CA002609116A CA2609116A1 (en) 2005-10-12 2006-10-11 Animal model of schizophrenia
JP2007539971A JPWO2007043589A1 (ja) 2005-10-12 2006-10-11 統合失調症モデル動物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-298049 2005-10-12
JP2005298049 2005-10-12
JP2006200234 2006-07-24
JP2006-200234 2006-07-24

Publications (1)

Publication Number Publication Date
WO2007043589A1 true WO2007043589A1 (ja) 2007-04-19

Family

ID=37942819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320343 WO2007043589A1 (ja) 2005-10-12 2006-10-11 統合失調症モデル動物

Country Status (5)

Country Link
US (1) US20090119786A1 (ja)
EP (1) EP1935244A4 (ja)
JP (1) JPWO2007043589A1 (ja)
CA (1) CA2609116A1 (ja)
WO (1) WO2007043589A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837683B1 (ko) 2015-07-14 2018-04-26 한국과학기술연구원 PLCβ1 돌연변이 생쥐에서 연상 매개 미각혐오 학습을 이용한 현실 검증능력 장애 검증을 위한 동물모델 및 이를 이용한 스크리닝 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080260744A1 (en) 2002-09-09 2008-10-23 Omeros Corporation G protein coupled receptors and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046378A1 (fr) 1998-03-12 1999-09-16 Yamanouchi Pharmaceutical Co., Ltd. Nouvelles proteines receptrices couplees aux proteines g
WO2002086147A2 (en) 2001-04-24 2002-10-31 Pharmacia & Upjohn Company Single nucleotide polymorphisms diagnostic for schizophrenia

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040091928A1 (en) * 1999-10-27 2004-05-13 Pharmacia & Upjohn Company G protein-coupled receptors expressed in brain
US20070071753A1 (en) * 2003-10-31 2007-03-29 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with g protein-coupled receptor 85 (gpr85)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046378A1 (fr) 1998-03-12 1999-09-16 Yamanouchi Pharmaceutical Co., Ltd. Nouvelles proteines receptrices couplees aux proteines g
WO2002086147A2 (en) 2001-04-24 2002-10-31 Pharmacia & Upjohn Company Single nucleotide polymorphisms diagnostic for schizophrenia

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ANIMAL BIOTECHNOLOGY, vol. 1, 1990, pages 175 - 84
BEHAVIOURAL PHARMACOLOGY, THE UNITED KINGDOM, vol. 11, 2000, pages 223 - 233
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, THE U.S.A., vol. 272, 2000, pages 576 - 582
LIEBERMAN ET AL., N ENGL J MED., vol. 353, 2005, pages 1209 - 1223
MATSUMOTO M. ET AL.: "An evolutionarily conserved G-protein coupled receptor family, SREB, expressed in the central nervous system", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 272, no. 2, 7 June 2000 (2000-06-07), pages 576 - 582, XP002164712 *
MAYFORD, M. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 93, 1990, pages 13250 - 13255
N.K.TERRETT; M.GARDNER; D.W.GORDON; R.J.KOBYLECKI; J.STEELE, TETRAHEDRON, vol. 51, 1995, pages 8135 - 73
NODA ET AL., BR J PHARMACOL., vol. 116, 1995, pages 2531 - 2537
QUON, D. ET AL., NATURE, vol. 352, 1991, pages 239 - 241
SAIKI, R. K. ET AL., SCIENCE, vol. 239, 1988, pages 487 - 491
See also references of EP1935244A4
THE NEW ENGLAND JOURNAL OF MEDICINE, THE U.S.A., vol. 353, 2005, pages 1209 - 1223
VIDAL, M. ET AL., EMBO J, vol. 9, 1990, pages 833 - 840

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837683B1 (ko) 2015-07-14 2018-04-26 한국과학기술연구원 PLCβ1 돌연변이 생쥐에서 연상 매개 미각혐오 학습을 이용한 현실 검증능력 장애 검증을 위한 동물모델 및 이를 이용한 스크리닝 방법

Also Published As

Publication number Publication date
US20090119786A1 (en) 2009-05-07
CA2609116A1 (en) 2007-04-19
EP1935244A4 (en) 2010-02-17
JPWO2007043589A1 (ja) 2009-04-16
EP1935244A1 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP3679403B2 (ja) トランスジェニック動物
Van Meer et al. Mouse behavioural analysis in systems biology
Hawkins et al. Epilepsy and neurobehavioral abnormalities in mice with a dominant-negative KCNB1 pathogenic variant
JP5686335B2 (ja) 筋萎縮性側索硬化症の診断マーカー、及び、方法、並びに、筋萎縮性側索硬化症を発症するモデル動物、及び、モデル細胞
US9232775B2 (en) Genetically engineered mouse model for autism spectrum disorder having deletion of Shank2 gene and use thereof
Jasinska Resources for functional genomic studies of health and development in nonhuman primates
WO2007043589A1 (ja) 統合失調症モデル動物
CN106282123B (zh) 一种非人哺乳动物认知障碍或其相关疾病动物模型的建立方法及其用途
JP5119430B2 (ja) 多発性嚢胞腎疾患関連遺伝子及びその利用
JP7061312B2 (ja) 多系統萎縮症モデル動物
JP2007068537A (ja) Taar1機能についてのノックアウト動物
KR101499299B1 (ko) Shank2 유전자가 결실된 자폐증 모델 형질전환마우스 및 그 용도
JP2007174952A (ja) 関節リウマチおよび関節リウマチの睡眠障害の発症または発症可能性の判定方法、並びにその利用
JP2006288387A (ja) 気分障害又は関連障害による疾患症状を改善させる方法
Ikpatt An analysis of gene expression in the socially monogamous brain
StaciJakyong A step forward towards demystifying sleep physiology: Dominant screening of sleep and wake behavior in mice
JP5054519B2 (ja) Adam11遺伝子が破壊された非ヒト遺伝子破壊動物
JP3817638B2 (ja) トランスジェニック非ヒト哺乳動物
CN117965636A (zh) 一种fa2h基因点突变大鼠模型的构建方法及其应用
CN116970646A (zh) 猫叫综合征基因敲除非人动物模型的构建方法及应用
CN114990160A (zh) 一种Navβ2-ICD低表达转基因鼠模型的构建方法及其应用
JP2008237072A (ja) 遺伝子操作非ヒト動物、および向精神薬開発法
JP2006158397A (ja) sca2遺伝子の病原性変異体を発現するF066トランスジェニックマウス
EP2093289A1 (en) Knockout animal exhibiting anxiety-like behavior
Hu Neural Basis of Social Status Transition in Astatotilapia burtoni

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007539971

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006821840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11919709

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2609116

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE