WO2007043499A1 - 構造材の内部応力測定方法と装置 - Google Patents

構造材の内部応力測定方法と装置 Download PDF

Info

Publication number
WO2007043499A1
WO2007043499A1 PCT/JP2006/320160 JP2006320160W WO2007043499A1 WO 2007043499 A1 WO2007043499 A1 WO 2007043499A1 JP 2006320160 W JP2006320160 W JP 2006320160W WO 2007043499 A1 WO2007043499 A1 WO 2007043499A1
Authority
WO
WIPO (PCT)
Prior art keywords
circular hole
internal stress
stress
hole
strain
Prior art date
Application number
PCT/JP2006/320160
Other languages
English (en)
French (fr)
Other versions
WO2007043499A9 (ja
Inventor
Susumu Watanabe
Original Assignee
Susumu Watanabe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Susumu Watanabe filed Critical Susumu Watanabe
Publication of WO2007043499A1 publication Critical patent/WO2007043499A1/ja
Publication of WO2007043499A9 publication Critical patent/WO2007043499A9/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0004Force transducers adapted for mounting in a bore of the force receiving structure

Definitions

  • the present invention relates to a structural material for detecting internal stress applied to a basic structural member such as a structure or a mechanical device with a simple configuration with high sensitivity and high accuracy.
  • the present invention relates to a method for measuring internal stress and an apparatus therefor. Background art
  • -Shaped base materials and box-shaped basic materials are used with external shapes and cross-sectional shapes suitable for the direction in which a large amount of internal stress is applied.
  • force transmission members that dynamically transmit power, such as gears, shafts, and rods, as basic members of mechanical products.
  • the internal stress applied to these structural materials is calculated to the extent that the structure is not destroyed based on the calculation formula created in the basic research of the structure. I try to keep it.
  • the stress applied to the structural material in the state of use of the structure is difficult to measure easily in the non-destructive state, and is predicted from the destructive test in the laboratory and the simulation results.
  • This measuring method for attaching a strain gauge to a measurement site is a well-known technique and is not specifically indicated as patent literature.
  • Patent Document 1 discloses that a cylindrical strain gauge is filled with a filler and integrated into a rod shape.
  • FIG. 10 shows the inside of the bolt and the axis of the bolt. And a cylindrical strain gauge is integrated into the hole and embedded in the hole.
  • Patent Document 2 describes a diaphragm at one end and a distortion for detecting the distortion of the diaphragm.
  • a pressure sensor comprising: a stem having a gauge portion, an opening for introducing pressure into the diaphragm on the other end side; and a housing having a through hole penetrating from one side surface to the other side surface Is disclosed.
  • Patent Document 3 as in Patent Document 2, a plurality of strain gauges are arranged on an eardrum-shaped diaphragm provided in an annular case, and the diaphragm is subjected to an axial force, An annular load cell for measuring deformation is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 5-9 1 2 5 0
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 4-3 0 9 3 3 4
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-11 2 1 1 5 8 9 Disclosure of Invention
  • An object of the present invention is to provide a method for measuring internal stress of a structural material and an apparatus for obtaining an electrical signal for constantly monitoring the internal stress of the structural material constituting the molded body.
  • Recent computer systems and communication means have been reduced in size and power consumption, and even in large structures and large machines, the history of structural materials fatigue and internal weight can be recorded using the reduced computer system. In order to make observations, there is an increasing demand for systems that constantly monitor internal stress applied to structural materials.
  • Patent Documents 1 to 3 disclose independent strain gauges as strain detection sensors that can be attached to and detached from a measurement site.
  • the sensor of Patent Document 1 can measure the internal stress only in the direction corresponding to the strain gauge pattern.
  • the senor is inserted in a circular hole, but the direction in which the force is felt is the pressure difference between the gas in the rooms on both sides partitioned by the wall, and is not sensitive to the internal stress applied to the wall.
  • this sensor is a diaphragm-type gas pressure sensor that detects the difference in gas pressure.
  • the sensor of Patent Document 3 is a pressure sensor (load cell) that measures the force applied in the axial direction of the annular case, and is mainly used for a scale that measures the weight of a load or the like.
  • the present invention has been made in view of the above points.
  • a cylindrical portion of a stress sensor provided with a strain gage is fitted into a circular hole provided in the structure, and the axial direction of the circular hole is determined.
  • Orthogonal hole cut By measuring the strain of the surface by the strain of the cylinder part of the stress sensor, the magnitude and direction of the internal stress concentrated in the circular hole are measured.
  • an existing circular hole is used, or the structure that forms the shaped body is not weakened.
  • the internal stress applied to the structure is detected with multiple strain gauges in the cylinder tightly fitted in the circular hole. It can be easily added to existing equipment, and the relative variation of internal stress applied to the structure after the installation of the stress sensor can be measured with absolute values for the amount of variation. At the same time, the direction of the line of force to which internal stress is applied can be measured, and by utilizing the distortion characteristics of the circular hole, fluctuations in internal stress can be detected with high sensitivity.
  • any shaped body to which internal stress is applied it is drilled in an existing circular hole or a structure that forms the shaped body to such an extent that the structure is not weakened.
  • the stress sensor cylinder is tightly fitted into the circular hole to detect the degree of distortion of the circular hole, so multiple strain gauges are installed in the cylinder in advance, and the strain gauge is fixed on-site. No need to be skilled in installation. It is also possible to adjust the offset to zero with respect to the pre-loaded internal stress. It can also be used as a switch for moving the camera.
  • a stress sensor it is possible to calibrate the absolute value of the relative fluctuation sensitivity by simulating the mounting environment and to calibrate the directivity in the direction in which the line of internal stress is applied.
  • FIG. 1 is a central longitudinal cross-sectional side view showing an embodiment of a stress sensor configured based on the implementation procedure of the method of the present invention.
  • FIG. 2 is a front view of the stress sensor in FIG.
  • FIG. 3 is a longitudinal sectional view taken along line III-III in FIG.
  • Fig. 4 is an explanatory diagram showing the strain state of the circular hole using the cross-sectional view similar to Fig. 3 according to the direction of the line of force applied to the force wall, for explaining the stress measurement procedure according to the method of the present invention. It is.
  • FIG. 5 is an electric circuit diagram showing an example of a connection procedure of a strain gauge of the stress sensor (2).
  • FIG. 6 is a cross-sectional view similar to FIG. 3, showing another embodiment in which the mounting procedure of the strain gauge is different. Explanation of symbols
  • FIG. 1 to FIG. 5 show an implementation procedure of the method of the present invention and an embodiment of an apparatus constructed based on the implementation procedure.
  • FIG. 1 is a central longitudinal sectional view showing a state in which an internal stress measuring device (hereinafter abbreviated as a stress sensor) (2) according to the present invention is attached to a force wall (1) for measuring internal stress.
  • a stress sensor an internal stress measuring device
  • Fig. 2 is a front view of the stress sensor (2)
  • Fig. 3 is a cross-sectional view taken along the line III-I II in Fig. 2
  • Fig. 4 shows the strain state of the circular hole (3) in Fig. 3
  • the force wall (1
  • Figure 5 shows the electrical circuit diagram of the stress sensor (2).
  • the force wall (1) has a circular hole (3) perpendicular to the wall and the axis, and the circular hole (3) has a cylindrical body (4) that forms the outer cylindrical part of the stress sensor (2). ) The outer periphery (5) is closely fitted.
  • the circular hole (3) is a taper hole (3a), and the cylindrical body (4) has the same taper and slope as the hole.
  • a tapered cylinder (4a) is preferable. Further, as shown in the figure, a female thread (3b) is screwed into the tapered hole (3a), a male screw (4b) is threaded into the tapered cylinder (4a), and a cylindrical body ( 4) may be screwed.
  • the method of tightly fitting the circular hole (3) and the cylindrical body (4) is to use a straight diameter for both the hole and the shaft.
  • the fitting allowance can be made slightly negative, and the gap between the fitting portions can be fixed with an adhesive, so that tight fitting can be achieved.
  • the tightness (the amount of internal stress applied) can be adjusted by taper fitting, and the tightness can be easily adjusted by screwing.
  • the tolerance of the processing accuracy of the diameter of the circular hole (3) and the processing accuracy of the diameter of the cylindrical body (4) in the stress sensor (2) is increased, so that they are closely fitted to each other. You can.
  • the cylindrical body (4) is provided with a flange (6) having a non-circular cross-sectional shape perpendicular to the axis, for example, a hexagonal flange (6) when viewed from the front. By rotating, the cylindrical body (4) can be screwed into the circular hole (3) to be advanced and retracted.
  • a guide hole (7) having a straight diameter is provided on the inlet side where the flange (6) is provided, and the guide hole (7) is retracted toward the back.
  • a thin partition wall (9) is provided at the reduced diameter end portion of the tapered hole (8).
  • the hole (10) opposite the tapered hole (8) across the partition wall (9) is a cutting hole for adjusting the thickness of the partition wall (9) to be thin and uniform.
  • a sleeve (12) with a disc-shaped flange (11) is loosely fitted into the guide hole (7) in the opening of the cylindrical body (4), and a female screw (13) is inserted into the inner hole of the sleeve (12). ) Is threaded.
  • the flange (11) in the sleeve (12) is engaged with a plurality of position adjusting poles (14) that allow the position of the sleeve (12) in the guide hole (7) to be adjusted.
  • Each position adjustment bolt (14) has its male thread (15) part screwed into a screw hole (16) provided in the flange (6) of the cylindrical part (4), and each position adjustment bolt (14) The axis can be moved forward and backward.
  • Each position adjusting bolt (14) has a through-hole (17) provided in the flange (11) of the sleeve (12), and the head (18) side is rotatable through the male screw (15). It is screwed into the screw hole (16) of (4).
  • each position adjustment bolt (14) is in the groove (19) provided in the upper part of the male screw (15) and between the thickness of the flange (11), and the axial direction of the flange (11)
  • the locking plate (21) that is engaged with and engaged with the groove (20) orthogonal to the axis restricts the movement of the position adjustment pole rod (14) in the axial direction.
  • the engagement hole (21a) of the locking plate (21) is a snap ring that Engages when engaged, but not easily disengaged.
  • An elastic seal material (22) is provided between the flange (6) of the cylindrical portion (4) and the flange (11) of the sleeve (12).
  • This elastic seal material (22) Does not act as an elastic material that maintains the gap between the flanges (6) and (11), and this gap is adjusted by the degree of screwing of the position adjusting bolt (14) to the flange (6).
  • a bottomed cylindrical screw cylinder (23) is screwed into the female screw (13) of the sleeve (12).
  • a gauge fastening plate (25) having a gage fastening surface (25a) orthogonal to the axis of the screw cylinder (23) is provided approximately in the middle of the taper surface (24) in the axial direction.
  • the screw cylinder (23) is provided with a hexagonal screwdriver head (26), and the screw cylinder (23) can be screwed into the sleeve (13) via a tool.
  • the screw fixing surface (25a) facing the partition wall (9) of the cylindrical body (4) in the screw fixing plate (25) of the screw cylinder (23) is orthogonal to the axis of the screw cylinder (23).
  • a set of four strain gauges (r 1) (r 2) (r 3) (r 4) is provided, with the strain sensing direction of the strain gauges matched to the direction of radiation (Fig. 4). 3)
  • Each strain gauge (r1) to (r4) has a strain detection resistance pattern (not shown) so that the resistance value changes when extending or contracting in the longitudinal direction from the center of the gauge fixing plate (25).
  • the connection wiring is connected to the screw cylinder through the through hole (27) provided in the center of the gage fastening plate (25). It is connected to the connector (28) that is fixed to the opening of (23) in a lid shape.
  • the connector (28) is fixed to the front surface of the head part (26) of the screw cylinder (23) with a screw (30) by a mounting plate (29) fixed integrally therewith.
  • the circular hole (3) of the force wall (1) may be an existing hole or may be newly provided in the part to be measured.
  • Existing holes include through holes, bottomed holes, straight diameter holes, taper diameter holes, and screw holes in which screws are screwed, and the original intended use of the holes is not limited.
  • the hexagonal direction of the flange (6) does not have to coincide with the specific direction as shown in the figure.
  • the cylindrical part (4) and the sleeve (12) are assembled in advance, and the gap between the flanges (6) and (11) is slightly increased with a tightening margin.
  • the screw cylinder (23) abuts the tapered surface (24) at the tip to the tapered hole (3a) of the cylindrical body (4). It is set in advance at the position immediately before, and after attaching the stress sensor (2) to the circular hole (3), the upper surface (24) is brought into close contact with the tapered hole (3a).
  • the direction in which the stress sensor (2) is highly sensitive can be set in advance.
  • the head of the screw cylinder (23) is closer to either the X-X direction or the Y_Y direction perpendicular to the X-X direction. Align the positioning mark (31) on the front of (26) by moving the screw tube (23) backward. In Fig. 2, the mark (31) is aligned in the X-X direction.
  • This pressure contact force adjusts the preload at the initial setting and adjusts the position of each position adjustment bolt (14) so that the bridge circuit (R) in Fig. 5 is balanced.
  • FIG. 4 is a diagram showing the direction of internal stress applied to the force wall (1) and the degree of distortion of the circular hole (3).
  • (a) shows the strain ellipse (3 ') of the circular hole (3) when an extension force is applied in the X-X direction or a compression force is applied in the Y-Y direction.
  • (b) shows the strain ellipse (3 ') of the circular hole (3) when compressive force is applied in the X-X direction or extension force is applied in the Y-Y direction.
  • (c) is an angle of 45 degrees counterclockwise with respect to the X-X and Y-Y directions.
  • the extension force is in the ⁇ '_ ⁇ 'direction, or the compression force is in the ⁇ '- ⁇ ' direction. Shows the distorted ellipse (3 ') of the circular hole (3) when added.
  • compressive force is applied in the X'-X 'direction or extension force is applied in the Y'-Y' direction, it is the same as rotating the diagram in (b) 45 degrees counterclockwise. The illustration is omitted.
  • the cylindrical part (4) tightly fitted in the circular hole (3) deforms following the rounding (3), and the cylindrical part (4) is deformed by its tapered hole (3a). Is transmitted to the gauge fastening plate (25) of the screw cylinder (23) fitted to the gauge cylinder, and the gauge fastening plate (25) is deformed.
  • the gauge fixing plate (25) is distributed 90 degrees each with its mounting position aligned with the mark (31) provided on the screw cylinder (23), and the strain sensing direction is set to the screw cylinder (23 )
  • the four strain gauges (r 1) to (r 4) are provided in the radial direction perpendicular to the axial direction of). Each strain gauge (r) to (r4) is electrically connected as shown in FIG.
  • the strain-sensitive directions match each other (
  • the electrical output signal is a reverse-phase output, and thus, the distortion sensitive directions are matched (r 1) (r 4) and (r 2) ( If r 3) simultaneously increases or decreases each other's resistance value in the same direction, the output signal increases.
  • the strain gauges (r1) to (r4) fixed to the gauge fixing plate (25) in the screw tube (23) ) Indicates that the direction of strain sensitivity (r 1) (r4) and (r 2) (r 3) that match each other increases or decreases the resistance value in the same direction at the same time.
  • (R 1) (r 2) and (r32) (r4) increase or decrease the resistance value in the opposite direction at the same time.
  • V a highly sensitive electrical signal corresponding to internal stress
  • This electrical signal (V) is detected as a relative value from the initial setting value (usually the zero equilibrium value of the bridge circuit) when the stress sensor (2) is installed in the circular hole (3).
  • the stress sensor (2) calibrates in advance the relationship between the magnitude of force and the output signal (V) when the circular hole (3) is distorted in the X-X direction or Y-Y direction.
  • force wall (1) It is possible to observe the relative fluctuation value after setting the stress sensor (2), excluding the preload applied in advance.
  • FIG. 4 shows the strain ellipse (3 ') of the circular hole (3) when the direction of internal stress deviates 45 degrees from the X-X direction or Y-Y direction. In this case, there is no distortion in the X-X direction or Y-Y direction.
  • Fig. 6 shows an example in which no dead band is generated in the sensitivity of the stress sensor (2) with respect to the direction of the line of internal stress.
  • strain gauges (r ⁇ ) to (r 4 ') in Fig. 6 are the X'-X' direction, Y'-Y, with the strain sensitive direction rotated 45 degrees with respect to the X-X direction and Y-Y direction. 'Matched in the direction, they constitute the same bridge circuit (not shown) as in Fig. 5.
  • the two bridge circuits (R) cover each other's dead band, and by appropriately calibrating the direction and magnitude of internal stress from the output signal (V) of both bridge circuits (R), It can be easily determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

構造体に平常時に加わっている応力に対して、設定時以降に変動した応力変動を、高感度に測定することが可能となる応力センサーを提供する。解決手段力壁1等の被測定構造材における内部応力の測定を要する個所に設けられた、測定を要する応力の力線と軸線を直交させた円孔3に、外周部を密接に嵌合させた円筒体4と、その円筒体4の内孔3に設けられた、円筒体4の軸線に対してゲージ止着面を直交させたゲージ止着板25と、そのゲージ止着板25に、円孔3の円形歪みを検出すべく、円孔の軸線に対して、歪み検出方向を放射方向に合致させた、複数の歪みゲージr1~r4を備えること。

Description

明 細 書
構造材の内部応力測定方法と装置 技術分野 本発明は、 構造物や機械装置等の基礎構造部材に加わる内部応力を、 簡単な構成を もって、 高感度で高精度に検出するための、 構造材の内部応力測定方法と、 その装置 に関する。 背景技術
船や橋梁、 鉄塔や大型の建築物、 大型及び小型の機械製品等、 工業製品の基礎造型 体には、 造形物の形を維持するための、 骨格を形成する、 ビーム状の基礎材料、 面状 の基礎材料、 箱状の基礎材料が、 内部応力が多く加わる方向に適した、 外形や断面形 状をもって使用されている。
橋や鉄塔及び大型建築物には、 断面形を一定とした、 型材の鉄骨が、 また船や建築 物には板材が、 さらにエンジンやタービン、およびバルブやモータ等の機械製品には、 ハウジングまたはケース等の箱形材が、 それぞれ基礎部材として使用される。
また機械製品の基礎部材には、 歯車、 軸、 ロッ ド等の動的に動力を伝達する力伝達 部材もある。
これらの構造材に加わる内部応力は、 構造の基礎研究において作られた計算式に基 づき、 構造物を破壊しない程度に求められて、 造型物の形を、 長時間あらゆる環境に 対応して、 維持するようにしている。
構造物の使用状態における構造材に加わる応力は、 非破壊状態で簡便に測定するの が困難で、 実験室での破壊試験やそれのシミュレーション結果から予測している。
しかし、 耐用年数の計算や保守点検の適性時期を求めるために、 実稼働中の実測値 を必要とすることが望まれるようになり、 従来は、 歪みゲージを被測定部位に添着す る測定法が多く採用されている。
この、 歪みゲージを被測定部位に添着する測定方法は、 周知の技術なので、 特に特 許文献として示さない。
特許文献 1には、 円筒状の歪みゲージの内部に充填物が充填されて、 棒状に一体化 されたものが開示され、それの図 1 0には、ボル卜の内部に、ボル卜の軸線に沿って、 細長い孔を穿孔して、 その孔の中に、 円筒状の歪みゲージを充填物と一体化して、 埋 装したものが開示されている。
特許文献 2には、 一端にダイヤフラムおよびこのダイヤフラムの歪みを検出する歪 みゲージ部を有し、 他端側に前記ダイヤフラムに圧力を導入するための開口部を有す るステムと、 一側面から他側面に貫通する貫通穴を有するハウジングとを備えた、 圧 力センサが開示されている。
特許文献 3には、 特許文献 2と同様に、 円環状のケースに設けた、 鼓膜状のダイヤ フラムに、 複数の歪みゲージを配設し、 そのダイヤフラムが軸線方向に受ける力に応 じて、 変形するのを測定する、 円環状のロードセルが開示されている。
[特許文献 1 ] 特開 2 0 0 5— 9 1 2 5 0号公報
[特許文献 2 ] 特開 2 0 0 4— 3 0 9 3 3 4号公報
[特許文献 3 ] 特開平 1 1一 2 1 1 5 8 9号公報 発明の開示
発明が解決しょうとする課題
本発明は、 造型体を構成する構造材の内部応力を、 常時監視する電気信号を得るた めの構造材の内部応力測定方法とその装置を提供することを目的とするものである。 最近のコンピュータシステムおよび通信手段は、 小型化と省電力化が進み、 大型構 造物や大型機械においても、 その小型化されたコンピュータシステムを利用して、 構 造材の疲労や内部加重の履歴を観測するために、 構造材に加わる内部応力を、 常時監 視するシステムの要求が高まっている。
上記監視システムを達成するには、 構造材に加わる内部応力を測定するセンサが必 要となり、 従来の歪みゲージを被測定部位に直接添着する方法では、 安定した測定が 困難であるとともに、 歪みゲージの添着には、 熟練を要し、 かつ長期間に亘つて安定 した測定を保証することが困難である。
そこで、 歪みゲージを、 被測定部位に着脱可能な歪み検出センサーとして、 独立さ せたものが、 特許文献 1 〜 3に開示されている。
しかし、 特許文献 1のセンサーは、 歪みゲージのパターンに応じた方向にしか、 内 部応力の大きさを測ることができない。
特許文献 2は、 円孔にセンサーを填め込んで使用するが、 力の感じる方向は、 壁で 仕切られる両側の部屋の気体の圧力差で、 壁に加わる内部応力には感応しない。 すな わち、 このセンサーは、 気体の圧力の差を検出するダイヤフラム型の、 気体圧力セン サーである。
すなわち、 この特許文献 3のセンサーは、 円環状ケースの軸線方向に加わる力を測 る圧力センサ (ロードセル) で、 主に荷重などの、 重さを計る秤に使用される。
本発明は、 上記の点に鑑みてなされたものであり、 構造体に設けた円孔に、 歪みゲ ージを設けた応力センサーの筒部を嵌合して、 その円孔の軸線方向と直交する円孔断 面の歪みを、 応力センサーにおける筒部の歪みで測ることにより、 円孔に集中する内 部応力の大きさと、 その方向を測るようにしたものである。
特に、 平常時に加わっている応力に対して、 設定時以降に変動した応力変動を、 高 感度に測定することが可能となる
また、 応力センサーの筒部には、 予め歪みゲージが内装されているので、 メンテナ ンス性にすぐれた内部応力測定装置を提供する。 課題を解決するための手段
本発明によると、 上記課題は、 次のようにして解決される。
( 1 ) 造型体を構成する構造材の内部応力を測定するに際して、 構造材の応力測定部 位に円孔を穿設し、 その円孔の軸線方向と直交する円孔断面の歪みを、 電気センサー で検出することにより。
( 2 ) 被測定構造材における内部応力の測定を要する個所に設けられた、 測定を要す る応力の力線と軸線を直交させた円孔に、 外周部を密接に嵌合させた円筒体と、 その 円筒体の内孔に設けられた、 円筒体の軸線に対してゲージ止着面を直交させたゲージ 止着板と、そのゲージ止着板に、円孔の円形歪みを検出すべく、円孔の軸線に対して、 歪み検出方向を放射方向に合致させた、 複数の歪みゲージを備えることにより。 発明の効果
本発明によると、 次のような効果が奏せられる。
( a ) 請求項 1の発明によれば、内部応力が加わっているあらゆる造形体に対して、 既存の円孔を利用したり、 造形体をなす構造体に、 構造体を脆弱にしない程度の円孔 を穿設するなどして、 構造体に加わる内部応力を、 円孔内に緊密に嵌合した円筒体内 の複数の歪みゲージで、 円孔の歪み具合をもって検出するので、 応力センサーの後付 処理が容易で、 既存設備に対して簡単に追加でき、 その応力センサー取付け以降の構 造体に加わる内部応力の相対的変動分を、 変動量については絶対値をもって計測する ことも可能であると共に、 内部応力の加わる力線の方向も、 測定可能とし、 円孔の歪 み特性を利用することにより、 内部応力の変動を高感度に検出することができる。
( b ) 請求項 2の発明によれば、 内部応力が加わっているあらゆる造形体に対して、 既存の円孔もしくは、 造形体をなす構造体へ、 構造体を脆弱にしない程度に穿設した 円孔に、 応力センサーの円筒体を緊密に嵌合して、 円孔の歪み具合を検出するので、 予め、 複数の歪みゲージを円筒内に装着しておき、 現場で歪みゲージの止着作業をす ることがなく、 取付けに熟練を要しない。 また、 予め予圧されている内部応力に対し て、 オフセッ トのゼロ調整ができるようにすることも可能なので、 内部応力のリミツ ト動作のスィッチなどとしても利用できる。 さらに、 応力センサーとして、 取付環境 を模擬試験して、 相対変動の感度の絶対値を校正したり、 内部応力の力線が加わる方 向の指向性を校正することができる。 図面の簡単な説明
図 1は、 本発明方法の実施要領に基づいて構成された応力センサの一実施例を示す、 中央縦断側面図である。
図 2は、 図 1における応力センサの正面図である。
図 3は、 図 1における III— III線縦断面図である。
図 4は、 本発明方法による応力測定要領を説明するための、 力壁に加わる力線の方向 に応じて、 円孔の歪み状態を、 図 3と同様断面図を用いて、 それぞれ示す説明図であ る。
図 5は、 応力センサ(2)の歪みゲージの接続要領の一例を示す電気回路図である。 図 6は、 歪みゲージの取付け要領を異えた、 別な実施例を示す、 図 3と同様の断面図 である。 符号の説明
力壁(1 )
応力センサ(2)
円孔(3)
テーパ穴 (3a)
円筒部(4)
亍一パー筒 (4a)
外周(5)
フランジ(6)
案内孔(フ)
テーパー孔(8)
底壁(9)
孔(10)
フランジ(11)
スリーブ(12)
雌ネジ(13)
位置調節ポルト(14)
雄ねじ(15) ねじ孔(16)
貫通孔(17)
頭部(18)
溝(19)
溝(20)
係止板(21)
弾性シール材(22)
ねじ筒(23)
テーパ面(24)
壁面(25)
頭部 (26)
通孔(27)
コネクタ(28)
取り付け板(29)
ねじ (30)
マーク(31)
増幅器 (32)
発明を実施するための最良の形態
以下、 本発明を添付図面に基づいて説明する。
実施例 1
図 1〜図 5は、 本発明方法の実施要領を示すとともに、 その実施要領に基づいて構 成された装置の一実施例を示すものである。
図 1は、内部応力の測定を所用する力壁(1 )に、本発明に係る内部応力測定装置(以 下応力センサと略称する) (2)を取り付けた状態の、 中央縦断面図を示し、 図 2は、 応力センサ(2)の正面図、 図 3は、 図 2における III— I II線断面図、 図 4は、 図 3 における円孔(3)の歪み状態を、 力壁(1 )に加わる力線の方向に応じて示し、 図 5は 応力センサ(2)の電気回路図を示すものである。
力壁(1 )には、 壁面と軸線を直交した円孔(3)を穿設して、 その円孔(3)には、 応 力センサ(2)における外側円筒部をなす円筒体(4)の外周(5)を、 緊密に嵌合してあ る。
円孔(3)と円筒体(4)を緊密に嵌合するには、 円孔(3)をテ一パ穴(3a)とし、 円筒 体(4)を、 穴のテーパーと勾配を同じく したテーパー筒(4a)とするのが好ましい。 また、 図示のように、 テーパ穴(3a)に、 雌ねじ(3b)を螺設し、 テーパ筒(4a)に雄ね じ(4b)を螺刻して、 円孔(3)に円筒体(4)を螺着してもよい。
この、 円孔(3)と円筒体(4)の緊密な嵌合の仕方には、 孔と軸共にストレートの径 として、 互いの嵌合代を極わずか正にして、 緊密に嵌合させることも、 その嵌合代を 若干負にして、 その嵌合部の隙間を接着材で固定し、 緊密に止着嵌合することもでき る。
しかし、 図示のようにテーパー嵌合にすることにより、 緊密度 (内部応力の加え方 の大きさ)を加減でき、 しかも螺合させることにより、緊密度の調正が容易にできる。 このテーパー嵌合により、 円孔(3)の径の加工精度と、 応力センサ(2)における円 筒体(4)の径の加工精度の許容度を大きく して、 互いに緊密に嵌合させることができ る。
円筒体(4)の拡径端部には、 軸線と直交する断面形を非円形、 例えば、 正面視 6角 形のフランジ( 6 )を設けてあり、そのフランジ( 6 )は、工具等で回転することにより、 円筒体(4)を円孔(3)の中で螺進させて、 進退させることができる。
円筒体(4)の中には、 フランジ(6)を設けてある入口側に、 ス トレートの径の案内 孔(7)を設け、 その案内孔(7)の奥に、 奥に向けて縮径するテーパー孔(8)を設けて める。
テーパー孔(8)の縮径終端部には、 肉薄の隔壁(9)を設けてある。
隔壁(9)を挟んでテーパー孔(8)の反対側の孔(10)は、 隔壁(9)の肉厚を、 薄肉で 均一の厚さに調整する切削孔である。
円筒体(4)における開口部の案内孔(7)には、 円盤状のフランジ(11)付きスリーブ (12)を緩く嵌合し、 そのスリーブ(12)の内孔には、 雌ネジ(13)を螺刻してある。
スリーブ(12)におけるフランジ(11)には、 案内孔(7)におけるスリーブ(12)の位置 を調節自在にする複数の位置調節ポル卜(14)を係合してある。
各位置調節ボルト(14)は、 それの雄ねじ(15)部分を、 円筒部(4)のフランジ(6)に 設けたねじ孔(16)に螺合し、 各位置調節ボルト(14)それぞれが、 軸線方向に進退自在 になっている。
各位置調節ボルト(14)は、 スリーブ(12)におけるフランジ(11)に設けた貫通孔(17) を、 頭部(18)側が回転自在に貫通して、 雄ねじ(15)部分を、 円筒体(4)のねじ孔(16) に螺合してある。
また、 各位置調節ボルト(14)の頭部(18)側は、 雄ねじ(15)の上部でフランジ(11)の 厚みの間部分に設けた溝(19)に、 フランジ(11)の軸線方向と直交する溝(20)に嵌合さ れて係合する係止板(21)によリ、 位置調節ポル卜(14)の軸線方向への移動が拘束され ている。 なお係止板(21)の係合孔(21a)は、 スナップリングになっており、 強く押し 込むと係合するが、 容易に離脱しないようになっている。
なお、 円筒部(4)のフランジ(6)とスリーブ(12)のフランジ(11)の間には、 弾性シ ール材(22)を挾装してあるが、 この弾性シール材(22)は、 両フランジ(6) (11)の隙間 を維持する弾性材としては働かず、 この隙間は、 各位置調節ボルト(14)のフランジ (6)に対するねじ込み度合によって調節される。
スリーブ(12)の雌ネジ(13)には、 有底筒状のねじ筒(23)を螺合してある。
ねじ筒(23)の先端底部側には、 円筒部(4)の内孔に設けたテーパー孔(8)と同じ勾 配で先端に向けて縮怪したテーパー面(24)を設けてある。
このテーパー面(24)の軸線方向のほぼ中ほどには、 ねじ筒(23)の軸線と直交したゲ 一ジ止着面(25a)を有するゲージ止着板(25)を設けてある。
ねじ筒(23)には、 6角形のねじ回し頭部(26)が設けられ、 そのねじ筒(23)は、 スリ —ブ(13)に、 工具を介してねじ込めるようになつている。
ねじ筒(23)のゲ一ジ止着板(25)における前記円筒体(4)の隔壁(9)と向き合うゲ —ジ止着面(25a)には、 ねじ筒(23)の軸線と直交する放射方向に、 歪みゲージの歪み 感応方向を合致させた複数の、 例えば 4個で 1組の歪みゲージ( r 1) ( r 2) ( r 3) ( r 4) が設けられている (図 3参照) 。
各歪みゲージ( r 1)〜( r4)は、 ゲージ止着板(25)の中心から放射方向向く、 長手方 向に伸縮したとき抵抗値を変化するように歪み検出抵抗パターン (図示略) が構成さ れており、 それらは、 図 5に示すブリッジ回路をなすように、 その接続配線が、 ゲー ジ止着板(25)の中央に設けた、 通孔(27)を介して、 ねじ筒(23)の開口部へ蓋状に止着 したコネクタ(28)に、 接続されている。
コネクタ(28)は、 それと一体に固定された取り付け板(29)により、 ねじ筒(23)の頭 部(26)の前面に、 ねじ(30)により止着されている。
次に、 応力センサ(2)を、 力壁(1 )に取り付ける要領を説明する。
力壁(1 )の円孔(3)は、 既設の孔を利用しても、 被測定部に新たに設けてもよい。 既設の孔としては、 貫通孔、 有底孔、 ストレート径孔、 テーパー径孔、 それらの孔に ねじを螺設したねじ孔等で、 孔の本来の使用目的は問わない。
円孔(3)に応力センサ(2)を螺合し、 円筒部(4)のフランジ(6)に工具を係合して、 応力センサ(2)を力壁(1 )の円孔(3)に、 しっかりと緊締する。
この際、 フランジ(6)の 6角形の向きは、 図示のように、 特定方向に一致していな くともよい。
円筒部(4)とスリーブ(12)は、 予め組付されており、 両フランジ(6)と(11)間の間 隔は、 締め込み代をとつて、 若干大きめにしてある。
ねじ筒(23)は、 先端のテーパー面(24)を、 円筒体(4)のテーパー孔(3a)へ当接する 直前の位置に、 予め設定されており、 応力センサ(2)を円孔(3)に取り付け後で、 亍 ーパ一面(24)をテーパー孔(3a)に密接するようになっている。
この際、 力壁(1 )に加わる応力の方向を測定する場合、 応力センサ(2)の感度が高 い方向を、 予め設定することができるようになつている。
すなわち、 円筒部(4)を円孔(3)に緊締した後、 ねじ筒(23)の頭部(26)を、 工具を 介してねじ筒(23)を奥に進める方向に回転して、 その回転が停まるところまでねじ筒 (23)を進める。
その後、力壁(1 )に力が加わる方向、例えば X— X方向とすれば、その X— X方向、 若しくは、 それと直交する Y_Y方向のいずれか近い方向に、 ねじ筒(23)の頭部(26) の正面に設けた位置決めマーク(31)を、 ねじ筒(23)を後退して合致させる。 図 2にお いては、 X— X方向に、 マーク(31)を合致させている。
さらに、 その後、 スリーブ(12)の 4本の位置調節ボルト(14)を、 順に少しずつねじ 込む方に回転させて、 ねじ筒(23)を奥の方に送りこみ、 テーパー面(24)を円筒部(4) のテーパー孔(3a)に、 適度の密着力をもって圧接する。
この圧接力は、 初期設定時の予圧を調整するとともに、 図 5のブリッジ回路(R)を 平衡するように、 各位置調節ボルト(14)の位置を調節する。
この際に、 力壁(1 )が、 実際に稼働中の構造部材であれば、 内部応力が加わった状 態にあり、 この内部応力の絶対値を、 応力センサ(2)によって、 測定することはでき ない。
しかし、 上述の如く、 応力センサ(2)を取り付けて、 ブリッジ回路(R)を平衡させ ると、 その後の、 ブリッジ回路(R)に表れる不平衡成分は、 内部応力の変動成分とし て、 測定可能となる。
図 4は、力壁(1 )に加わる内部応力の方向と、円孔(3)の歪み具合を示す図である。
(a) は、 X— X方向に伸長力、 もしくは Y— Y方向に圧縮力が加わった場合の、 円孔(3)の歪み楕円(3' )を示す。
(b) は、 X— X方向に圧縮力、 もしくは Y— Y方向に伸長力が加わった場合の、 円孔(3)の歪み楕円(3' )を示す。
(c)は、 X— X方向と Y— Y方向に対して、反時計廻りに 45度の角度を進めた、 Χ' _Χ'方向に伸長力、 もしくは Υ'—Υ'方向に圧縮力が加わった場合の、 円孔(3) の歪み楕円(3')を示す。 なお、 X'— X'方向に圧縮力、 もしくは Y'— Y'方向に伸 長力が加わる場合もあるが、 (b) の図を 45度、 反時計方向に回転させたのと同様 なので、 図示を省略する。
図 4の (a) において、 力壁(1 )に加わる内部応力として、 X— X方向の伸長力が 増すと、 それに応じて、 円孔(3)周囲に集中する内部応力としては、 Y_Y方向に圧 縮力を増し、また力壁(1 )に加わる内部応力として、 γ_γ方向に圧縮力を増しすと、 円孔(3)周囲に集中する内部応力としては、 X— X方向に伸長力が増して、 いずれの 場合も、 円孔(3)の形状は、 伸長力の作用する方向に長軸を持つ歪み楕円形(3')に 変形する。
この際、 円孔(3)に緊密に嵌合した円筒部(4)は、 円孑し(3)に追従して変形すると ともに、 円筒部(4)の変形は、 そのテーパ穴(3a)に嵌合しているねじ筒(23)のゲージ 止着板(25)に伝達されて、 そのゲージ止着板(25)を変形する。
ゲージ止着板(25)には、 ねじ筒(23)に設けたマーク(31)に対して、 支着位置を整合 させて、 各 90度に分配され、 かつ歪み感応方向を、 ねじ筒(23)の軸線方向に対して 直交させて放射方向にむけた、 4個の歪みゲージ( r 1)〜( r 4)が設けられている。 各歪みゲージ( r )〜( r 4)は、 図 5に示すように電気的に接続されている。
すなわち、構造的に、 歪み感応方向が、 合致してぃるもの同士(|" 1) 4)ぉょび 2) ( r 3)は、 電気的に、 歪み変化を、 同じに変化したときの電気的出力信号が逆相出 力となる、 ブリッジ回路における対向辺同士に接続され、 これにより、 歪み感応方向 を、 合致しているもの同士( r 1) ( r 4)および( r 2) ( r 3)が、 同時に互いの抵抗値の変 化を同一方向に増減させると、 出力信号は増大する。
また、 構造的に、 電気的に、 歪み変化を、 逆に変化したときの電気的出力信号が同 相出力となる、 ブリッジ回路における電源 (E) に対して直列となる直列辺同士に接 続してあり、 これにより、 歪み感応方向を、 直交するもの同士( r 1) ( r 2)および( r 3) ( r 4)が、同時に互いの抵抗値の変化を逆方向に増減させると、出力信号は増大する。 力壁(1 )に加わる内部応力は、円孔(3)を楕円形に歪ませるが、その際に、円孔(3) の周囲には、伸長力と圧縮力が互いに直交して現れて、円孔(3)を歪ませるとともに、 ねじ筒(23)のゲージ止着板(25)を歪み楕円形(3' )と相似形に歪ませる。
円孔(3)に加わる伸長力と圧縮力は、 直交して同時に現れるため、 ねじ筒(23)にお けるゲージ止着板(25)に止着された歪みゲージ(r 1)〜( r4) は、 歪み感応方向を、 合致しているもの同士( r 1) ( r4)および(r 2) ( r 3)が、 同時に同じ方向に、 抵抗値を 増減し、 また歪み感応方向を、 直交するもの同士(r 1) ( r 2)および(r32) ( r4)が、 同時に逆方向に抵抗値を増減する。
これにより、 ブリッジ回路 (R) の増幅器(32)の出力には、 歪み楕円形(3')の歪 み具合に応じて、 高感度の内部応力対応の電気信号 (V) が得られる。
この電気信号(V) は、 円孔(3)へ応力センサ(2)を設置した際に、初期設定値(通 常は、 ブリッジ回路の零平衡値) からの、 相対値として検出される。
なお、 応力センサ(2)は、 X— X方向、 または Y— Y方向へ円孔(3)を歪ませた ときの力の大きさ対出力信号(V)の関係を、予め校正しておくことにより、力壁(1 ) に予め加わっている予圧力を省いた、 応力センサ(2)の設定時以降の相対変動値を観 測することができる。
しかし、 内部応力の方向が、 X— X方向、 または Y— Y方向からずれた場合には、 校正値と整合しなくなる。
図 4の (c) は、 内部応力の方向が、 X— X方向、 または Y— Y方向から、 45 度ずれた場合における円孔(3)の歪み楕円形(3')を示すもので、 この場合には、 が X— X方向、 または Y— Y方向には、 歪みを生じない。
力壁( 1 )に加わる内部応力の力線の方向が定まらない場合には、 図 3の用に歪みゲ ージ(r 1)〜(r4)を装着すると、 不感帯を生じることになる。
図 6は、 内部応力の力線の方向に対して、 応力センサ(2)の感度に不感帯を生じな いようにした実施例を示す。
図 6における歪みゲージ( r Γ)〜( r 4' ) は、 X— X方向、 Y— Y方向に対して、 歪み感応方向を 45度回転させた X'— X'方向、 Y'— Y'方向に合致させたもので、 それらは、 図 5と同一のブリッジ回路 (図示略) を構成している。
2つのプリッジ回路(R)は、互いの不感帯をカバ一しておリ、両ブリッジ回路(R) の出力信号 (V) から、 内部応力の方向と大きさを、 適正に校正することにより、 容 易に割り出すことができる。

Claims

請 求 の 範 囲
1 造型体を構成する構造材の内部応力を測定するに際して、 構造材の応力測定部位 に円孔を穿設し、 その円孔の軸線方向と直交する円孔断面の歪みを、 電気センサーで 検出することによリ、 構造材に加わる内部応力を測定することを特徴とする構造材の 内部応力測定方法。
2 被測定構造材における内部応力の測定を要する個所に設けられた、 測定を要する 応力の力線と軸線を直交させた円孔に、 外周部を密接に嵌合させた円筒体と、 その円 筒体の内孔に設けられた、 円筒体の軸線に対してゲージ止着面を直交させたゲージ止 着板と、 そのゲージ止着板に、 円孔の円形歪みを検出すべく、 円孔の軸線に対して、 歪み検出方向を放射方向に合致させた、 複数の歪みゲージを備えることを特徴とする 構造体の内部応力測定装置。
PCT/JP2006/320160 2005-10-05 2006-10-03 構造材の内部応力測定方法と装置 WO2007043499A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005318806A JP2007101515A (ja) 2005-10-05 2005-10-05 構造材の内部応力測定方法と装置
JP2005-318806 2005-10-05

Publications (2)

Publication Number Publication Date
WO2007043499A1 true WO2007043499A1 (ja) 2007-04-19
WO2007043499A9 WO2007043499A9 (ja) 2007-06-07

Family

ID=37942736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320160 WO2007043499A1 (ja) 2005-10-05 2006-10-03 構造材の内部応力測定方法と装置

Country Status (2)

Country Link
JP (1) JP2007101515A (ja)
WO (1) WO2007043499A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772739A1 (fr) * 2013-03-01 2014-09-03 Haulotte Group Nacelle élévatrice comprenant une cellule de mesure de poids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915070A (ja) * 1995-06-30 1997-01-17 Minebea Co Ltd 土圧計
JP2000304628A (ja) * 1999-04-21 2000-11-02 Yokogawa Koji Kk 荷重測定方法および荷重センサ
JP3089928U (ja) * 2002-05-14 2002-11-22 株式会社共和電業 鉄筋計装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915070A (ja) * 1995-06-30 1997-01-17 Minebea Co Ltd 土圧計
JP2000304628A (ja) * 1999-04-21 2000-11-02 Yokogawa Koji Kk 荷重測定方法および荷重センサ
JP3089928U (ja) * 2002-05-14 2002-11-22 株式会社共和電業 鉄筋計装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772739A1 (fr) * 2013-03-01 2014-09-03 Haulotte Group Nacelle élévatrice comprenant une cellule de mesure de poids
FR3002799A1 (fr) * 2013-03-01 2014-09-05 Haulotte Group Cellule de mesure d'effort pour nacelle elevatrice et nacelle elevatrice comprenant une telle cellule

Also Published As

Publication number Publication date
WO2007043499A9 (ja) 2007-06-07
JP2007101515A (ja) 2007-04-19

Similar Documents

Publication Publication Date Title
US11754456B2 (en) Pressure monitoring system for wet barrel hydrant
CN101622462B (zh) 指示负载的方法和设备
JP2004029023A (ja) ねじ締め具を較正するためのトルクセンサ
JP2008039126A (ja) 弁装置の監視システム
US9719900B1 (en) Strain-gauged washer for measuring bolt preload
US7434473B1 (en) Flow through pressure transducer
US20110259110A1 (en) Device for Measuring Strain in a Component
US7093496B2 (en) Non-intrusive pressure sensing device
WO2007043499A1 (ja) 構造材の内部応力測定方法と装置
WO2019077314A1 (en) FIXING ELEMENT INDICATING A LOAD
JP2013156118A (ja) 溶接配管形状測定装置
GB2050624A (en) Strain transducers
JP2005134220A (ja) 軸グリップセンサ
JP7260095B2 (ja) 荷重変換器
JPH09304212A (ja) 検出器
JP2013040647A (ja) フランジのガスケット締代測定方法
JP2009063171A (ja) 弁装置の監視システム
JP7352724B2 (ja) 検出体
KR20030074002A (ko) 로드셀을 장착한 턴버클
JP2929155B2 (ja) ダイヤフラム型変換器に使用するひずみゲージ
JP2010151620A (ja) 分力計
US20050145044A1 (en) Six degrees of freedom mirrored cantilever extensometer
WO2024014036A1 (ja) 緩みセンサ付きボルトとその使用方法並びに緩み検出システム
CN219455025U (zh) 一种用于地下砖石类文物结构裂缝宽度变化的测量装置
CN109141531B (zh) 监测装置及安装监测装置的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798510

Country of ref document: EP

Kind code of ref document: A1