WO2007043362A1 - 冷陰極蛍光ランプ、バックライトユニット及び液晶表示装置 - Google Patents

冷陰極蛍光ランプ、バックライトユニット及び液晶表示装置 Download PDF

Info

Publication number
WO2007043362A1
WO2007043362A1 PCT/JP2006/319548 JP2006319548W WO2007043362A1 WO 2007043362 A1 WO2007043362 A1 WO 2007043362A1 JP 2006319548 W JP2006319548 W JP 2006319548W WO 2007043362 A1 WO2007043362 A1 WO 2007043362A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode fluorescent
cold cathode
glass bulb
lamp
fluorescent lamp
Prior art date
Application number
PCT/JP2006/319548
Other languages
English (en)
French (fr)
Inventor
Takashi Maniwa
Akiko Nakanishi
Kazuhiro Kumada
Masanobu Murakami
Taizou Ono
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007539870A priority Critical patent/JPWO2007043362A1/ja
Priority to US12/067,508 priority patent/US20090237597A1/en
Publication of WO2007043362A1 publication Critical patent/WO2007043362A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/76Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only
    • H01J61/78Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only with cold cathode; with cathode heated only by discharge, e.g. high-tension lamp for advertising
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • H01J61/526Heating or cooling particular parts of the lamp heating or cooling of electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Definitions

  • the present invention relates to a cold cathode fluorescent lamp, a backlight unit using the cold cathode fluorescent lamp as a light source, and a liquid crystal display device equipped with the backlight unit.
  • a cold cathode fluorescent lamp comprises a cylindrical glass bulb and a cold cathode type electrode sealed at both ends of the glass bulb.
  • the electrode has, for example, a bottomed cylindrical electrode body and a lead wire attached to the bottom thereof, and a portion of the lead wire is attached to the end of the glass bulb so that the electrode is attached to the glass bulb. It is.
  • cold cathode fluorescent lamps used as a light source is, for example, a backlight unit of a liquid crystal display device such as a liquid crystal television.
  • a backlight unit of a liquid crystal display device such as a liquid crystal television.
  • cold cathode fluorescent lamps have become thin tubes as liquid crystal display devices (backlight units) have become thinner, and in accordance with this, the miniaturization of electrodes (main body) and the progress of lead wire thinning have progressed. .
  • the liquid crystal display device in addition to the reduction in thickness, there is a tendency for the display panel to be larger in screen size, and the improvement in luminance as a light source is required, and the input current to the cold cathode fluorescent lamp is large. .
  • the current density in the lead wire is increased due to the thinning of the lead wire and the increase of the input current, and the heat generation amount in the lead wire at the time of lighting is increased.
  • the calorific value increases due to the increase of the input current. Such an increase in the calorific value of the electrode leads to a rise in temperature of the electrode, resulting in shortening of the life and lowering of the lamp efficiency.
  • a heat sink having a diameter larger than that of the lead wire is provided in a portion of the lead wire, which is located outside the glass sleeve, to increase the surface area to radiate heat.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-190279
  • the cold cathode fluorescent lamp has a problem that the heat radiation characteristic is not sufficient, and the lead wire is easily broken. That is, although the heat dissipation area is improved and the heat dissipation characteristics are improved as compared with the lead wire which is larger than the outside diameter cable wire, it is necessary to store the cold cathode fluorescent lamp in the knock light unit. As a result, it is difficult to further increase the size of the heat sink (both in the outer diameter and the length), and as a result, the heat release characteristics become insufficient.
  • the heat dissipating member is provided on the lead wire extending at the end of the cold cathode fluorescent lamp, and the lead wire is formed into a thin tube, the heat dissipating member is peripheral when assembled as a backlight unit. The lead wire is easily broken if it contacts the member.
  • a cold cathode fluorescent lamp comprises a glass bulb, an electrode body and a lead wire, and the electrode body is positioned inside the glass bulb.
  • the lead wire includes an electrode sealed at an end of the glass bulb, and a heat dissipation body provided in a portion of the lead wire located outside the glass bulb, the heat dissipation body includes the lead When viewed from the outside of the wire extension, the wire is in contact with the outer surface of the end of the glass bulb in a state of surrounding the lead wire.
  • the lead wire when looking at the outward force of the lead wire in the direction of extension of the lead wire, the lead wire is positioned inside the polygon when the heat sink and the glass bulb are in contact, so the lead wire is supported in a stable state.
  • the heat dissipating member has a cylindrical shape in which one end is closed, and the closed end surface is substantially in surface contact with the end surface of the glass bulb.
  • the heat dissipating member has a columnar shape and the end surface is And a surface contact with the end face of the glass bulb.
  • the heat dissipating member is characterized by being made of a conductive material, and the lead wire is characterized in that it is integral with the heat dissipating member.
  • the heat dissipating member has conductivity, and is electrically connected to the lead wire, and a conductive covering is attached to the outer peripheral end of the glass bulb, and the heat dissipating member and the heat dissipating The body is electrically connected, and the surface of the heat dissipation body on the glass bulb side has a shape adapted to the end face of the glass bulb, and the end face of the glass bulb Or, the heat dissipating member is characterized by being a solder force.
  • the heat dissipating member includes a first member which is a solder force, and a second member which forms a conductive force other than solder and which is joined to the first member and conforms to the end face of the glass bulb.
  • the surface having the following shape is formed on the first member, or the heat dissipating member may be a conductor plate made of a conductor other than solder, and a solder body joined to the conductor plate.
  • a surface having a shape that conforms to the end surface of the glass bulb is formed on the surface of the conductor plate opposite to the semiconductor body. Is characterized in that a plurality of through holes are formed.
  • the lead wire and the heat dissipating member are disposed at an interval and electrically connected to each other through a solder, and the solder causes the Joule to flow when an overcurrent flows.
  • the insulating member is characterized in that it is fused by heat, and further comprising an insulating member for sealing a space in the vicinity of the connection portion between the lead wire and the heat sink in the solder, and the insulating member is rosin.
  • the lead wire is characterized in that the lead wire has a buildup portion larger than the outer diameter, and the buildup portion is disposed in contact with the end outer surface of the glass bulb. as a feature! /.
  • the backlight unit according to the present invention is characterized in that the cold cathode fluorescent lamp described above is mounted as a light source.
  • the backlight unit according to the present invention includes a plurality of cold cathode fluorescent lamps as a light source, a housing for housing the cold cathode fluorescent lamps, and an outer periphery of the cold cathode fluorescent lamps provided in the housing. And a lighting circuit for lighting the cold cathode fluorescent lamp.
  • the cold cathode fluorescent lamp is the cold cathode fluorescent lamp according to claim 6, and the lamp holder is electrically connected by sandwiching the outer periphery of the coating of the cold cathode fluorescent lamp.
  • Each of the cold cathode fluorescent lamps in a book is held by the lamp holder in a state of being arranged in a substantially parallel manner at intervals, and one covering of two adjacent cold cathode fluorescent lamps arranged in parallel
  • the lamp holders that sandwich the lamp are electrically connected!
  • a knock light unit according to the present invention is provided in a plurality of cold cathode fluorescent lamps as a light source, a housing for housing the cold cathode fluorescent lamps, and the housing.
  • the lamp holder is electrically connected by being in contact with the covering of the cold cathode fluorescent lamp, and each of the plurality of cold cathode fluorescent lamps is spaced approximately parallel.
  • the lamp holder held by the lamp holder in an arrayed state and in contact with one of the coverings of at least two adjacent cold cathode fluorescent lamps arranged in parallel is connected to the ground side.
  • the lamp holder for contact with the other cover member is connected to the high pressure side of the lighting circuit, as characterized Rukoto, Ru.
  • a liquid crystal display device is characterized in that the above-described backlight unit is mounted.
  • the “liquid crystal display device” referred to here includes a liquid crystal color television, a liquid crystal monitor for a computer, and a small display device for portable and car use. Effect of the invention
  • the cold cathode fluorescent lamp according to the present invention can increase the amount of heat transfer to the glass bulb power and the heat sink, so the heat radiation characteristics can be improved without increasing the lamp diameter. Also, since the lead wire is supported at the contact portion between the heat sink and the glass bulb, for example, even if the heat sink is in contact with something, the lead wire becomes difficult to deform, and as a result, the lead The breakage of the wire can be reduced.
  • the backlight unit according to the present invention includes the above-described cold cathode fluorescent lamp as a light source, so that it is possible to improve the heat radiation characteristics, and when assembling the knock light unit, for example, a heat radiator It is difficult for breakage of the electrode lead wire to occur even when The manufacturing yield can be improved.
  • FIG. 1 is a view showing an outline of a liquid crystal television 1 according to a first embodiment.
  • FIG. 2 is a schematic perspective view showing the configuration of a backlight unit 5 according to the first embodiment.
  • FIG. 3 (a) is a cross-sectional view showing the configuration of the lamp 20 according to the present embodiment, and (b) is a view showing a portion where the heat dissipators 32, 34 are in contact with the end face of the glass bulb 21. It is.
  • Fig. 4 is a schematic perspective view of a backlight unit 100 according to a second embodiment, and a part of the backlight unit 100 is cut away so that the internal state is divided.
  • FIG. 5 shows an example of the lighting circuit 160 provided in the backlight 100
  • FIG. 5 (a) shows the lighting circuit 160
  • FIG. 5 (b) shows each lamp connected to the lighting circuit 160. It is a figure which shows the connection relation of La.
  • FIG. 6 is an enlarged cross-sectional view of an end portion of a lamp 120 according to a second embodiment.
  • FIG. 7 is an enlarged cross-sectional view of an end portion of a lamp 200 according to a third embodiment.
  • FIG. 8 A diagram when the solder body 222 in the fuse 200 is fused.
  • FIG. 9 is a view showing a modification of the third embodiment.
  • FIG. 11 is an enlarged view showing an end portion of a lamp 300 according to Modification 1;
  • FIG. 12 is a view showing a portion where the heat radiating body is in contact with the end face of the glass member.
  • FIG. 13 is an enlarged view showing an end portion of a lamp 310 according to Modification 2;
  • FIG. 14 is an enlarged view showing an end portion of a lamp 310 according to Modification 2;
  • FIG. 15 is a view showing a portion where the heat dissipating member is in contact with the end face of the glass bulb.
  • FIG. 16 is an enlarged view showing an end portion of a lamp 320 according to Modification 3;
  • FIG. 17 is an enlarged view showing an end portion of a lamp 340 according to Modification 4.
  • FIG. 18 A diagram for explaining the configuration of a heat sink 343.
  • FIG. 19 (a) is a view showing a modification 4-1 of the heat sink 360, (b) is a view showing a modification 4-2 of the heat sink 370, (c) is a heat sink 380
  • FIG. 25 is a diagram showing a modified example 4-3 of FIG.
  • FIG. 20 is an enlarged cross-sectional view showing an end portion of a lamp according to Modification 5.
  • FIG. 21 is a perspective view showing a cover 420 according to Modification 6. 22 (a) shows the lighting circuit 440, and FIG. 22 (b) shows the connection of the lamps La connected to the lighting circuit 440. FIG.
  • FIG. 23 is a schematic view of a lamp 500 according to Modification 8.
  • a cold cathode fluorescent lamp hereinafter simply referred to as “lamp”
  • a backlight unit and a liquid crystal display device according to an embodiment of the present invention will be described with reference to the drawings.
  • the figure for explaining the present invention is a schematic view for facilitating the understanding of the configuration of the knock light unit and the lamp, and the size and ratio thereof are different from the actual ones.
  • FIG. 1 is a view showing an outline of a liquid crystal television 1 according to the first embodiment.
  • the liquid crystal television 1 shown in FIG. 1 is one of the liquid crystal display devices of the present invention, and is, for example, a 32 ⁇ liquid crystal television.
  • the liquid crystal television 1 includes a liquid crystal screen unit 3 and a backlight unit 5.
  • the liquid crystal display unit 3 includes a color filter substrate, a liquid crystal, a TFT substrate, a drive module and the like (not shown), and forms a color image based on an external image signal. 2. Configuration of Backlight Unit
  • FIG. 2 is a schematic perspective view showing the configuration of the backlight unit 5 according to the first embodiment. In the figure, a part of the front panel 16 is cut away to show the internal structure.
  • the backlight unit 5 includes, for example, a plurality of (for example, 14) cold cathode fluorescent lamps (hereinafter referred to as “lamps”) 20, and a housing 10 having an opening and housing these lamps 20. And a lighting device 50 (not shown in FIG. 2, see FIGS. 1 and 5) for lighting a plurality of lamps 20.
  • lamps cold cathode fluorescent lamps
  • the housing 10 is made of, for example, polyethylene terephthalate (PET) resin, and has a rectangular bottom wall 10a, and four side walls 10b, 10c, 10d, 10e erected from the edge of the bottom wall 10a.
  • a metal such as silver is vapor-deposited on the inner surface to form a reflective surface.
  • the material of the housing 10 may be made of a material other than resin, for example, a metal material such as aluminum or SPCC.
  • a reflection sheet whose reflectance is enhanced by adding calcium carbonate, titanium dioxide, etc. to polyethylene terephthalate resin other than metal deposition film, for example, is used as a side wall or bottom wall of the case.
  • the opening of the case 10 is covered with a translucent front panel 16 formed by laminating the diffusion plate 13, the diffusion sheet 14 and the lens sheet 15, and dust and dirt may be attached. Do not let dust or other foreign matter get inside the case 10.
  • the diffusion plate 13 is made of, for example, polymethyl methacrylate (PMMA) resin, and is disposed so as to close the opening of the housing 10.
  • the diffusion sheet 14 is made of, for example, polyester resin, and scatters / diffuses the light emitted from the lamp 20.
  • the lens sheet 15 is, for example, a sheet made of acrylic resin and a sheet made of polyester resin laminated, and the light is aligned in the normal direction of the sheet 15.
  • the lamp 20 is a fluorescent lamp using a cold cathode type electrode, and in the present embodiment, 1 Four lamps and 20 forces As shown in FIG. 2, the lamps 20 are arranged such that their axes are in the direction along the long side of the housing 10 (the Y direction in the figure). You may arrange so that it may face the direction (X direction) along the short side of the housing
  • FIG. 3 (a) is a cross-sectional view showing the configuration of the lamp 20 according to the present embodiment
  • FIG. 3 (b) is a portion where the heat radiators 32, 34 are in contact with the end face of the glass bulb 21.
  • the lamp 20 includes a glass bulb 21 formed by sealing both ends of a straight cylindrical glass tube 22, electrodes 28 and 30 sealed to both ends 21 a and 21 b of the glass bulb 21, and the electrode
  • the heat sinks 32 and 34 are provided in the part located in the exterior of the said glass bulb 21 among 28 and 30.
  • the glass bulb 21 includes the glass beads 44 and 46 in addition to the glass tube 22 when sealed at both ends 21a and 21b, for example, the glass beads 44 and 46 described later. If the end of the glass tube is crushed and sealed, it consists only of the glass tube.
  • the glass tube 22 also has, for example, a borosilicate glass force, and its cross section (cross section) when cut at a plane perpendicular to the axis is substantially circular.
  • the glass tube 22 is not limited to borosilicate glass, and lead glass, lead-free glass, soda glass or the like may be used. In this case, the dark startability can be improved. That is, the above glass is represented by sodium oxide (Na 2 O)
  • the sodium (Na) component increases with the passage of time.
  • the alkali metal acid salt is sodium acid sodium
  • its content is preferably 5 mol% or more and 20 mol% or less. If it is less than 5 mol%, the dark start time will be long, and if it exceeds 20 mol%, the glass bulb will become black (brownish) and the luminance will decrease due to long-term use. It is because problems such as being caused and the strength of the glass pulp being reduced may occur.
  • lead-free glass may contain lead as an impurity during the manufacturing process. Therefore, glass containing lead at an impurity level of 0. iwt% or less is also defined as lead-free glass.
  • the glass tube 22 may have another shape, for example, an elliptical shape, as long as its cross-sectional shape is not limited to a circle.
  • a discharge medium such as mercury or a rare gas (for example, argon, neon) is sealed at a predetermined filling pressure. Note that these discharge media are filled under reduced pressure.
  • a phosphor layer 23 is formed on the inner surface of the glass bulb 21.
  • the phosphor layer 23 is for converting the emitted ultraviolet light to predetermined visible light, and is made of, for example, a rare earth phosphor.
  • a rare earth phosphor for example, red (YO Eu 3+ ), green (LaPO Ce 3+ , Tb 3+ ) and blue (BaMg Al O Eu 2+ ) are used.
  • the configuration of the phosphor layer 23 is not limited to the above configuration.
  • the red phosphor (Y VO Eu j +), a green phosphor (BaMg Al O Eu 2+), a blue phosphor (BaMg Al O Eu +
  • Mn 2+ , Mn 2+ ) and the like may contain a phosphor that absorbs ultraviolet light of 313 nm.
  • the phosphor that absorbs 313 nm ultraviolet light contains 50 wt% or more of the total weight of the phosphor, it is possible to almost prevent leakage to the outside of the 313 nm ultraviolet light pump.
  • the backlight unit is configured to be used, it is possible to prevent the resin etc. used for the front panel 16 (see FIG. 2) from being deteriorated by ultraviolet light.
  • PC polycarbonate
  • the phosphor layer 23 contains a phosphor that absorbs ultraviolet light of 313 nm, even the backlight unit using a diffusion plate of PC resin can maintain the characteristics as a backlight unit for a long time.
  • ultraviolet light of 313 nm means an excitation wavelength spectrum nore (near 254 nm).
  • the excitation wavelength spectrum is a plot of excitation wavelength and emission intensity with excitation light emission while changing the wavelength of the phosphor.
  • the intensity of the excitation wavelength spectrum at 313 nm is defined as 80% or higher, where the intensity of 100%) is 100%. That is, a phosphor that absorbs 313 nm ultraviolet light is a phosphor that can absorb 313 nm ultraviolet light and convert it into visible light.
  • An example of a phosphor that absorbs ultraviolet light with a wavelength of 313 nm is as follows.
  • phosphors of different compounds may be mixed and used for one kind of luminescent color.
  • BAM only in blue, LAP (does not absorb 313 nm) and BAM: M ⁇ in green can use phosphors of YOX (does not absorb 313 nm) and YVO: Eu 3+ in red.
  • the electrodes 28, 30 have a cylindrical electrode body 28a, 30a whose one end is closed and a lead wire 28b whose one end is fixed to the closed end wall. , 30b. Electrodes 28, 30 and so on, and have the same configuration.
  • the electrode bodies 28a and 30a use a holo-type, and an emitter which is an electron-emitting substance is applied to the cylindrical inner surface.
  • the electrode bodies 28a and 30a are made of, for example, a metal such as nickel, niobium, tantalum, molybdenum or tungsten, and the emitter may be made of other than carbonates such as barium, strontium or calcium. Alkali metal oxides and alkaline earth metal oxides are used.
  • tungsten is used for the lead wires 28b and 30b as a material thinner than the cylindrical electrode bodies 28a and 30a. Sealing of the electrodes 28, 30 to the end 21a, 21b of the glass bulb 21 is carried out, for example, as shown in FIG. 3 (a).
  • the lead wire 28b is inserted into the through holes 44a, 46a of the glass beads 44, 46. , 30b in an airtight state, the outer periphery of the glass beads 44, 46 and the This is done by sealing the inner circumferences of the end portions 21a, 21b of the valve 21.
  • the heat radiators 32, 34 have a cylindrical shape having an end wall 32a, 34a at one end with a through hole at the center, similar to the shape of the electrode main bodies 28a, 30a, and the lead in the through hole The other end of the wire 28b, 30b is inserted.
  • the heat sinks 32 and 34 may use, for example, the same dust as the lead wires 28 b and 30 b.
  • the external force of the end walls 32a and 34a of the heat sinks 32 and 34 surrounds the lead wires 28b and 30b as shown in (b) of FIG. 3 when viewed from the outside in the extending direction of the lead wires 28b and 30b.
  • the end face of the glass bulb 21 (in fact, the end faces of the glass beads 44 and 46 but the glass beads 44 and 46 are included in the glass bead 21) is in surface contact.
  • the end walls of the radiators 32 and 34 32a, 34a extend around the lead wires 28b, 30b (circumferential direction) all the way (over substantially the entire area of the end walls 32a, 34a of the radiators 32, 34) the end face of the glass bulb 21 Contact with c, 21 d!
  • the entire range of the outer surface of the end walls 32a and 34a of the heat sinks 32 and 34 can be reduced by making the outside diameter D2 of the heat sinks 32 and 34 smaller than the outside diameter D1 of the glass bulb 21.
  • the end faces 21c, 21d of the second embodiment can be substantially contacted.
  • the outer diameter D2 of the heat sinks 32, 34 is preferably equal to or less than the outer diameter D1 of the glass bulb 21.
  • the end walls 32a, 34a of the heat dissipating members 32, 34 provided at one end of the lead wires 28b, 30b are in surface contact with the end faces 21c, 21d of the glass bulb 21, Even when the heat sinks 32 and 34 contact the wall surface of the housing 10 and the like when the 20 is incorporated into the housing 10, the lead wires 28b and 30b can be prevented from being deformed and broken. .
  • the lead wires 28b, 30b and the electrode body 28a In the lamp 20 having the above configuration, the lead wires 28b, 30b and the electrode body 28a, The heat generated at 30a can be transmitted to the heat sinks 32, 34 via the lead wires 28b, 30b also via the glass beads 44, 46, and also directly to the heat sinks 32, 34 from the lead wires 28b, 30b. Can. For this reason, the amount of heat transferred to the heat sinks 32, 34 is larger than, for example, when the conventional heat sink is separated from the glass bulb, and the temperature rise of the electrode bodies 28a, 30a can be suppressed accordingly.
  • the heat sinks 32, 34 are circular, heat can be dissipated from the inner circumferential surface only by radiating heat from the outer circumferential surface, so the heat transmitted from the lead wires 28b, 30b can be efficiently It can dissipate heat. Furthermore, since the outer diameter D2 of the heat sinks 32, 34 and the outer diameter D1 of the glass bulb 21 are substantially the same, the above-described effect can be obtained without causing the lamp 20 to be enlarged.
  • a current is supplied to the lamp 20 by bringing the power supply units 40 and 42 into contact with the heat sinks 32 and 34 and the lead wires 28 b and 30 b.
  • a power feeding portion is provided at the end of the glass bulb, and mounting of the lamp to the housing and power feeding are performed by a socket method.
  • FIG. 4 is a schematic perspective view of the knock light unit 100 according to the second embodiment, and a part of the knock light unit 100 is cut away so that the internal state is divided.
  • the knock light unit 100 includes a housing 110, a front panel (not shown), a plurality of lamps 120, and a lighting circuit 160 for lighting the plurality of lamps 120 (see FIG. 5). See).
  • Housing 110 is, as shown in FIG. 4, a pair of U-shaped lamp holders provided on bottom wall 110 a of housing 110 and disposed corresponding to the mounting position of each lamp 120. 130 and 132, and a lighting circuit 160 (see FIG. 5) for lighting, for example, each lamp 120 attached to the outside of the housing 110 and connected to the lamp holders 130 and 132.
  • power feeding parts 124 and 126 are provided on the outer periphery of the end of the glass bulb 121, and the power is received from the lamp holders 130 and 132 through the power feeding parts 124 and 126.
  • the lamp holders 130 and 132 are made of an electrically conductive material, such as stainless steel or phosphor bronze. Etc. is formed by bending a plate material such as. And each lamp holder 130 (, 132) consists of holding plate 130a, 130b (132a, 132b) and the connection piece 130c (132c) which connects those holding plate 130a, 130b (132a, 132b) by the lower end edge. .
  • the holding plates 130a and 130b and the holding plates 132a and 132b are provided with a recess that matches the outer shape of the feeding portions 124 and 126 of the lamp 120, and the feeding portion 124 and 126 of the lamp 120 is provided in the recess.
  • the respective lamps 120 are held by the respective lamp holders 130 and 132 by the plate spring action of the holding plates 130a and 130b and the holding plates 132a and 132b by fitting them into the lamp holders 130, 132, and the power feeding rods 124, 126. And force ⁇ electrically connected.
  • the width DL of the holding portion of the lamp holders 130 and 132 is the width of the feeding parts 124 and 126 provided on the outside of both ends of the lamp 120 in order to suppress the occurrence of corona discharge when the lamp is lit. It is designed to have dimensions that can be held in the area.
  • FIG. 5 shows an example of the lighting circuit 160 included in the backlight unit 100.
  • FIG. 5 (a) shows the lighting circuit 160.
  • FIG. 5 (b) shows each lamp La connected to the lighting circuit 160. Is a diagram showing the connection relationship of
  • Electric power is supplied to each lamp 120 provided in the knock light unit 100 from the lighting circuit 160 shown in FIG. 5 through the lamp holders 130 and 132.
  • each of the plurality of lamps 120 is held substantially in parallel by the lamp holders 130 and 132 at a predetermined interval, and one of the feeding portions 126 of two adjacent lamps 120 (see FIG. b) In (c), the lamp holders 132 holding the lamps Lai and La2 and the lamps La7 and La8, etc. are electrically connected to each other!
  • two straight tubular lamps Lai and La2 can form a pseudo bending tube (U-shaped tube).
  • U-shaped tube in addition to being able to form a pseudo-bent portion (U-shaped tube) capable of reducing the number of inverters to half, the longitudinal direction of the lamp 120 (axial direction) compared to a lamp having a conventional bent portion. Therefore, the brightness of the left and right sides in the housing can be reduced, and damage to the sealing portion and the like of the lamp 120 can be prevented, and the lamp 120 can be attached and detached in one touch.
  • the straight tubular lamps 120 having the electrodes 28 described later at both ends are arranged, for example, in the vertical direction, the electrodes 28 serving as a heat source do not concentrate on one side. It is possible to prevent the occurrence of temperature difference between the left and right inside, and as a result, it is possible to suppress the uneven brightness of the knock light unit 100 generated by the influence of the mercury vapor pressure of the lamp 120.
  • an insulating plate 134 made of polycarbonate is disposed between the lamp holders 130 and 132 and the housing 110 to insulate the lamp holders 130 and 132 and the housing 110 from each other.
  • the lamp Lai and the lamp La2 feed part 126 or the lamp La7 and the lamp La8 feed part 126 are connected in FIG. 5 (b) !, and the lamp holder 132 has one of them. It is welded to the metal substrate 132d.
  • the lamp holder 132 is composed of a plurality of parts obtained by welding each one of the U-shaped lamp holders 132 to the metal substrate 132 d so as to correspond to the respective lamps 120.
  • the holding plate 132a and 132b may be cut and raised from one plate by a known method.
  • Lighting circuit 160 is connected to DC power supply (V) and DC power supply (V) as shown in (a) of FIG.
  • Step-up transformer Tl, T2 (or step-up) connected between the junction of connected switch element Ql, Q2 and capacitors C2, C3, switch element Q1 and switch element Q2, and the junction of capacitor C2 and capacitor C3.
  • An inverter control IC that supplies gate signals for alternately turning ON / OFF the transformers T7 and ⁇ 8) and the switch elements Ql and Q2 is also configured.
  • the lighting circuit 160 forms a resonant circuit, and supplies a sinusoidal current having a phase difference of approximately 180 degrees to two adjacent lamps Lai and La2.
  • the lamp holders 132 for holding one of the feed portions 126 of two adjacent lamps La1 and La2 are connected to each other as shown in FIG.
  • the present invention is not limited to the form in which a bent tube (U-shaped tube) is formed, and as shown in FIG.
  • the feed portion 124 of one of two adjacent lamps La or the feed portion of the other 126 are alternately connected to each other, and a plurality of lamps La (for example, two adjacent lamps Lai and La2, two adjacent lamps La2 and La3, and two adjacent lamps La3 , La4 and next door Two lamps La9, LalO, two adjacent lamps LalO, Lal l, two adjacent lamps Lai 1, Lal2 etc., and in order to facilitate the explanation, the two adjacent Book lamp Lai, La2, two lamps La2 and La3, two lamps La3 and La4 [Kotsu! /, Only to explain].
  • lamps La for example, two adjacent lamps Lai and La2, two adjacent lamps La2 and La3, and two adjacent lamps La3 , La4 and next door
  • the lamp holders 130 and 132 may be arranged in a staggered manner so as to connect to each other in order.
  • the lamp holders 132 of the lamp Lai and the lamp feeding unit 126 such as the lamp La2 are connected to each other via the metal substrate 132d, and
  • the lamp holders 130 of the power supply units 124 such as the lamp La2 and the lamp La3 are connected to each other via the metal substrate 130d.
  • the number of inverters can be further reduced, and harness processing can be performed only by arranging them in a staggered manner by the lamp holders 130 and 132, that is, from the lighting circuit to each lamp holder 130 and 132 Harness processing can be reduced because it is not necessary to perform wiring processing.
  • FIG. 6 is an enlarged cross-sectional view of an end portion of the lamp 120 according to the second embodiment.
  • the same structure as in the first embodiment is denoted by the same reference numeral.
  • the lamp 120 includes the glass sleeve 21, the electrode 28 (30) sealed to the end 21 a (21 b) of the glass bulb 21, and the end 21 a of the glass norb 21.
  • a covering 12 5 (, 125) which projects outward beyond ((21 b) and covers the end 21 a (, 21 b) of the glass sleeve 21 and the inside of the feeding part 124, 126 and the glass norb 21.
  • the heat sink 128 (, 128) provided on the lead wire 28b (, 30b) which also extends to the end face 21c (, 2 Id) is provided.
  • a conductor 125 (, 128), which is a conductive material, is filled in the cover 125, and the lead 125 is electrically connected to the cover 125 (, 125). As).
  • FIG. 6 only one end (on the side of the feeding portion 124) of the lamp 120 appears, but the same electrode as that of the first embodiment is provided on the other end, and the same as the one end.
  • a power supply unit 126 is also provided, which also serves as a cover 125 and a radiator 128. Also inside the glass bulb 21 In the same manner as in the first embodiment, mercury, a rare gas or the like is enclosed in the portion, and a phosphor layer 23 is formed on the inner surface of the glass bulb 21.
  • the electrode 28 (30) includes an electrode body 28a (30a) and a lead 28b (30b) as in the first embodiment.
  • the heat radiating body 128 (, 128) is the inside of the covering 125 (, 125), and from the end face 21c (, 21 d) of the glass bulb 21 to the outside of the lamp 125 in the axial direction of the lamp 125 (, 125). Over the area to the end, for example, it is configured by filling the solder.
  • the heat sink 128 (128) is formed with the lead wire 28b (30b) embedded substantially in the center, and the end 128a (128a) force of the heat sink 128 (128) ⁇ It is in surface contact with the end face 21c (, 21d) of 21.
  • the heat dissipating body 128, 128 is made of a conductive material (solder) as described above, and the cover 125, 125 is a lamp horned when the lamp 120 is mounted on the lamp horneders 130, 132. Power is supplied from the 130, 132 force, whereby the current force S flows to the electrode bodies 28a, 30a.
  • the coverings 125, 125 it is necessary to flow a current as described above, and a material (metal) having good electrical conductivity is used.
  • the heat sink 128 (, 128) with the lead wire 28b buried inside is in surface contact with the end face 21c (, 21d) of the glass bulb 21.
  • the lead wire 28b (, 30b) can be reduced or eliminated.
  • the heat generated by the lead wire 28b (, 30b) and the electrode body 28a (, 30a) is transferred from the lead wire 28b (, 30b) to the glass bead 44 (, 46)
  • the heat sink 128 (, 128) it can also be directly transmitted from the lead wire 28b (, 30b) to the heat sink 12 8 (, 128), and further, the heat sink 128 (, 128) And glass bead 44 (, 46) forces can also be transmitted to the covering 125 (, 125).
  • the amount of heat transferred to the radiator 128 (, 128) and the coverings 125, 125 is, as in the prior art,
  • the temperature of the electrode body 28a (, 30a) can be suppressed by a greater amount than in the case where the heat dissipating member separates from the glass bulb (in contact with the glass bulb, etc.).
  • the lamp 120 according to the second embodiment may include the glass bulb 21, the electrode 28 (30), and the power supply unit 124 and 126, and other members, for example.
  • FIG. 7 is an enlarged cross-sectional view of the end portion of the lamp 200 according to the third embodiment.
  • a lamp 200 according to the third embodiment includes a glass bulb 202, an electrode 204, a cover 207, a radiator 208, and a fuse 220.
  • the electrode 204 includes an electrode body 212 and a lead wire 214
  • the lead wire 214 also has a force with a large diameter portion 214a and a small diameter portion 214b thinner than the large diameter portion 214a.
  • the large diameter portion 214a is formed in a region from the connection portion of the electrode body 212 in the lead wire 214 to the outer end of the sealing portion 202a of the glass bulb 202, and the small diameter portion 214b is outside the glass bulb 202 It is formed in the area that extends to the area.
  • a fuse 220 is attached to the outer end of the lead wire 214, that is, the outer end of the small diameter portion 214b.
  • the lead wire 214 and the fuse 220 are electrically connected.
  • a pair of terminal lead wires 224 and 226 are connected via a solder body 222, and the terminal lead wire 224 is connected to the lead wire 214 on substantially the same line.
  • the connection between the lead wire 214 and the terminal lead wire 224 is, for example, performed by welding.
  • the solder body 222 and the connection portion between the solder body 222 and each of the terminal lead wires 224 and 226 are covered with a wire 228, and the solder body 222 is sealed by an insulating case 230.
  • the insulating case 230 includes a cylindrical body 232 and lids 234 a and 234 b that close the openings at both ends of the cylindrical body 232.
  • the terminal lead wires 224 and 226 are made of, for example, a nickel wire, and the solder body 222 has a composition of, for example, Sn: 96.5%, Ag: 3.0%, Au: 0.5% It has a melting point of about 220 ° C.
  • the cylinder 232 is made of, for example, ceramic, and the lid 234a, 23 4b is made of, for example, resin (epoxy resin).
  • the cover 207 uses metal sleep and the end of the glass bulb 202 is extended so that one end thereof protrudes from the end of the glass bulb 202. a) is covered.
  • the inside of the cover 207 and a portion protruding from the end (202 a) of the glass bulb 202 is filled with a heat sink 208 which also has a solder force, for example, except for the insulating space 236.
  • the heat sink 208 secures the conductivity between the terminal lead wire 226 and the feeding portion 206, and the feeding portion 206 is configured by these.
  • the reason for providing the insulating space 236 is to prevent the current from flowing to the cover 207 through the heat sink 208 and the small diameter portion 214b of the lead wire 214 and the terminal lead wire 224 and the force. This is to cause a current to flow in the solder body 222.
  • the solder body 222 is melted when the current flowing through the solder body 222 exceeds a predetermined value and becomes an overcurrent, whereby the power supply (energization) from the power supply unit 206 to the electrode 204 is interrupted.
  • FIG. 8 is a diagram when the solder body 222 in the fuse 220 is fused.
  • solder body 222 When an overcurrent flows in the solder body 222, as shown in FIG. 8, the solder body 222 is melted and split into the solder 222a and the solder 222b.
  • the split solder 222 a and the solder 222 b are covered with the rosin 2288 as they are.
  • the terminal lead wire 224 and the terminal lead wire 226 are electrically insulated. Even if a voltage is applied to the feeding portion 206 in this state, no current flows in the lead wire 214 because the feeding portion 206 and the lead wire 214 are electrically isolated.
  • solders 222a and 222b are covered with the insulating rosin 228, discharge (corona discharge) is not generated between the solder 222a and the solder 222b after melting, so that the generation of ozone is prevented. Ru.
  • the cover 207 has a sleeve shape, but as a modification of the third embodiment, another shape, for example, a cap shape may be used. Explain it briefly.
  • FIG. 9 is a view showing a modification of the third embodiment.
  • the lamp 250 according to the modification has a glass groove 202, an electrode 204, a cover 253, a heat sink 208, and a fuse 220, as in the third embodiment.
  • the cover 253 has a cap shape, and includes a cylindrical portion 253a and a bottom portion 253b that closes one end of the cylindrical portion 253a.
  • the terminal lead wire 254 not connected to the lead wire 214 of the fuse 220 is fitted in the through hole of the bottom portion 253 b of the force cover 253.
  • the terminal lead wire 254 and the cover 253 may or may not be electrically connected.
  • the inventors conducted a confirmation test on the effect of the heat sink. Specifically, the test was performed using a lamp in which the lead wires 350 (external lead portions 354) of the electrodes shown in FIG. 17 described in Modification 4 to be described later are extended to the end face of the heat sink 343.
  • the outside diameter R of the glass bulb 342 is 3.0 mm, and the total length of the lamp is 417 mm.
  • the outer diameter of the inner lead portion 352 is 1. O mm, and the outer diameter of the outer lead portion 354 is 0.8 mm.
  • the total length of the cover 345 is 7.5 mm, and the heat sink 343 is provided in all the remaining space formed by covering the glass bulb 342 with the cover 345.
  • Electrode body 348 is made of nickel, and in lead wire 350, inner lead portion 352 is made of tungsten, and outer lead portion 354 is made of nickel.
  • the heat sink 343 is made of solder, and the cover 345 is made of iron-nickel alloy.
  • FIG. 17 shows the relationship between the lamp current Ila and the electrode temperature T.
  • “L” in FIG. 17 indicates the result of the 0.5 mm lamp as “ ⁇ ”, 1.
  • the result of the O mm lamp as “mouth”, and the result of the 1.5 mm lamp as “ ⁇ ”. ing.
  • a similar test is performed on a lamp not having a sleeve and a heat dissipating body and having a length of 1.5 mm for the external lead portion. It shows by.
  • the electrode temperature T rises with the increase of the lamp current Ila in both the lamp provided with the heat dissipating member and the lamp containing the covering and the heat dissipating member. Obviously, when comparing a lamp with a heat sink to a lamp without a cover and a heat sink, it is clear that the lamp with a heat sink has an electrode temperature with an increase in the lamp current Ila. It can be seen that the rise in T is small (the temperature gradient is small).
  • the lamp current Ila at the time of lighting is preferably used in the range of 5 mA or more and 12 mA or less. This is because when the lamp current Ila is less than 5 mA, the effect of the heat dissipating member can not be obtained (that is, the heat dissipating characteristics are the same as those of the lamp without the heat dissipating member). On the other hand, when the lamp current Ila is larger than 12 mA, the temperature of the electrode becomes too high, which is a force that may cause the solder constituting the heat dissipating member to melt.
  • the lamp current Ila is more preferably used in the range of 5 mA or more and 9.5 mA or less. This is as described above when the lamp current Ila is smaller than 5 mA. On the other hand, when the lamp current Ila is more than 9.5 mA, the electrode temperature T becomes 130 ° C. or more, the consumption of the electrode body by the solder becomes severe, and the lamp efficiency decreases.
  • the end face of the heat sink on the glass bulb side is flat.
  • This has a flat shape in which the end face of the glass bulb (glass bead) is substantially orthogonal to the axis of the glass bulb, and is flat for surface contact with the flat end face.
  • the reason for the surface contact is to increase the contact area between the heat sink and the glass bulb and to prevent the deformation of the lead wire.
  • the shape of the end face of the glass bulb may be not only a flat shape orthogonal to the axis of the glass knob, but also other shapes.
  • the end face of the heat sink on the glass bulb side has a flat shape and conforms to the shape of the end face of the glass bulb and the heat sink is in surface contact with the end face of the glass bulb.
  • FIG. 11 is an enlarged view showing an end of a lamp 300 according to the first modification.
  • the first modification one end of the lamp 300 will be described, but the structure of the other end is the same as that of the one end.
  • the lamp 300 according to the modification 1 also includes the glass bulb 302, the electrode 28, and the heat sink 304.
  • the electrode 28 includes the electrode body 28 a and the lead wire 28 b as in the first to third embodiments, and the lead wire 28 b is attached to the end of the glass bulb 302 via the glass bead 306. It is sealed.
  • glass bulb 302 consists of glass tube 308 and glass bead 306.
  • the glass bulb 302 basically has the same shape as that of the first to third embodiments, and the shape of the force glass bead 306 is different from that described in the first to third embodiments. It has a circular arc shape that overhangs.
  • the end face 302 a of the glass bulb 302 has an arc shape similar to the end face shape of the glass bead 306.
  • the heat sink 304 is provided at a portion of the lead wire 28 b of the electrode 28 which is located outside the glass bulb 302.
  • FIG. 12 is a view showing a portion where the heat dissipating member is in contact with the end face of the glass member.
  • the heat sink 304 has a substantially columnar shape, and the end on the glass bulb 302 side is It is formed in a shape which is recessed in an arc at a curvature smaller than the curvature of the arc of the end face 302 a of the glass bulb 302. Then, as shown in FIG. 12, the radiator 304 contacts the end face 302a of the glass bulb 302 on the circumference of a predetermined radius (with a predetermined width) centered on the lead wire 28b (surface contact ) (As shown in Figure 12).
  • the heat sink 304 when viewed from the outside of the extending direction of the lead wire 28b, the heat sink 304 is in a state of surrounding the entire circumference around the lead wire 28b (in a state of surrounding the lead wire 28b
  • the surface of the glass bulb 302 is in surface contact with the end surface 302a of the glass bulb 302, and in particular, in the area in contact with the surface, the lead wire 28b is centered inside when viewed from the outside of the extension of the lead wire 28b as shown in FIG. Including the vertices of the virtual triangle X2 located.
  • the deformation of the lead wire 28b can be suppressed even when the radiator 304 contacts the peripheral member.
  • the heat generated when the lamp is lit can be efficiently transmitted from the electrode 28 to the radiator 304.
  • Such mounting of the heat sink 304 to the glass bulb 302 is carried out, for example, by pressing a mold, which is recessed into an arc of a predetermined curvature, to the heated portion while heating the end of the glass bulb 302 to a slight extent.
  • the end shape of the glass nose 302 is first finished into a predetermined arc shape, and the lead wire hole 304b in the heat sink 304 manufactured in advance is shrink-fitted to the lead wire 28b and the heat sink This can be carried out by pressing the end face 304 a of 304 onto the glass bulb 302.
  • the heat sink 304 is in force in surface contact with the end face 302 a of the glass bulb 302, for example, all around the lead wire. Even though the end face of the glass valve is in line contact with the end face of the glass bulb, the heat dissipation effect can be obtained similarly although the heat dissipation effect is inferior to that of the first modification. That is, although the amount of heat transferred from the electrode to the heat sink in this case is less V than when the heat sink 304 is in surface contact with the glass bulb 302 as in the first modification, the heat sink is in contact with the glass bulb !! /, ! /, more than stuff!
  • FIG. 13 and 14 are enlarged views showing the end of a lamp 310 according to the second modification.
  • one end of the lamp 310 will be described, but the structure of the other end is the same as that of the one end.
  • FIG. 13 is a cross-sectional view in a direction perpendicular to the crushing direction in which the end of the glass bulb is crushed and sealed, as viewed from the crushing direction.
  • FIG. 14 is parallel to the crushing direction in which the end of the glass bulb is crushed and sealed. It is the figure which looked at the direction force perpendicular
  • the first to third embodiments and the first modification (hereinafter, when including the embodiment, the modification, etc., it is referred to as “the embodiment and the like”. And the glass bulb 312, the electrode 28, and the heat sink 314 are provided.
  • the electrode 28 includes an electrode body 28 a and a lead wire 28 b, and crushes the end of the glass tube 316 in a state where the electrode body 28 a is inserted into the glass bulb 312. Electrode 28 is sealed to glass bulb 312.
  • the glass bulb 312 comprises a glass tube 316.
  • the end shape is the embodiment described above. Unlike glass bulbs etc.
  • the heat sink 314 is a portion of the lead wire 28b of the electrode 28 located outside the glass bulb 312 and is in contact with the end face 316c of the glass bulb 312 (glass tube 316).
  • the heat radiating body 314 has a substantially columnar shape, and the end face 314 a on the glass bulb 312 side is shaped to match the shape of the end face 316 c of the glass bulb 3 12, and the portion corresponding to the sealing portion 316 b of the glass bulb 312 is concave. It has a shape to be inserted.
  • FIG. 15 is a view showing a portion where the heat dissipating member is in contact with the end face of the glass bulb.
  • the heat radiating body 314 is opposed to the sealing portion 316b of the glass bulb 312 with the sealing portion 316b facing (in the figure, facing up and down), the end face 316c of the glass sleeve 312 and the sealing portion In surface contact with 316b.
  • the portion in surface contact surrounds the lead wire 28b when also seeing the outward force of the extension of the lead wire 28b. That is, the portion in surface contact includes the vertex of the virtual square X3 in which the lead 28b is located at the center of the inside.
  • Such a heat dissipating body 31 for example, arranges a ring-shaped mold having the outer diameter dimension of the heat dissipating body 314 at the inner diameter at the end of the glass bulb 312, fills the melted solder into the mold, and stores the solder.
  • a ring-shaped mold having the outer diameter dimension of the heat dissipating body 314 at the inner diameter at the end of the glass bulb 312, fills the melted solder into the mold, and stores the solder.
  • the glass bulb of the lamp in the second embodiment for example, the glass bulb in the modification 1 and the modification 2 can be used.
  • the heat dissipating member one described in the second embodiment or the third embodiment may be used, or one described in the first modification may be used.
  • the power feeding unit in the second embodiment or the third embodiment may be provided at the end of the glass bulb.
  • the heat dissipating body in the embodiment and the like is separate from the lead wire, but may be integrated.
  • the heat dissipating member is made of the same material as the lead wire, and the end of the lead wire on the opposite side of the electrode body is formed to have the same configuration as the heat dissipating member described in the above embodiment and modifications. Also good.
  • the materials of the two may be different or the same.
  • the contact portion between the heat sink and the glass groove includes the apex of the virtual polygon in which the lead wire is positioned at the inner center when viewed from the outward force of the lead wire extension.
  • the surface contact or line contact between the heat sink and the glass bulb makes it difficult for the lead wire to deform even when there is any contact with the end of the lamp, but it merely suppresses deformation of the lead wire. In this case, it is not necessary for the heat sink to be in surface contact or line contact with the glass noble force.
  • an imaginary polygon formed by contacting the points where the heat dissipation body is in contact with the end face of the glass bulb at three or more points where the lead wire is positioned inside (polygon of triangle or more)
  • the lead wire should be located inside of.
  • the contact point of the heat dissipation body and the glass bulb in each of the above-described embodiments and each modification includes the above-described three points. Needless to say.
  • the lead wire of the electrode in the second embodiment described above may have a force other than a substantially bar shape (a shape without a step).
  • the other shape is described as a third modification.
  • FIG. 16 is an enlarged view showing an end portion of a lamp 320 according to a third modification.
  • the lamp 320 has basically the same configuration as the lamp 120 in the second embodiment, and includes a glass bulb 21, an electrode 322, a heat sink 128, and a cover 125.
  • the electrode 322 comprises an electrode body 324 and a lead wire 326 connected to the electrode body 324.
  • the lead wire 326 includes an inner lead portion 327, an outer lead portion 328, and a blind portion 329 located between the inner lead portion 327 and the outer lead portion 328.
  • the internal lead portion 327 is composed of a portion attached to the glass bead 44 and a portion extending from the glass bead 44 to the inside of the glass bulb 21.
  • the outer lead portion 328 is a portion extending from the dead end portion 329 to the outside of the glass bulb 21 above the axial center of the inner lead portion 327.
  • the lumped portion 329 has an outer diameter at least larger than the outer diameter of the inner lead portion 327.
  • the lump portion 329 is formed, for example, by welding the inner lead portion 327 and the outer lead portion 328 by welding.
  • the dimension from the blind portion 329 to the electrode body 324 can be made constant. That is, the gap between the bottom of the electrode body 324 and the inner surface of the opposing glass bead 44 can be reduced (for example, about 0.5 mm) to extend the effective light emitting length of the lamp.
  • the buildup portion 329 is not limited to the force formed of the same nickel material as the external lead portion 328, and may be formed of, for example, a material of Fe-Ni alloy, Cu-Ni alloy, or dumet wire.
  • the inner lead portion 327 has a substantially circular cross section, for example, a total length of 3 mm and a wire diameter of 0.8 mm. Further, the inner lead portion 327 is inserted into the through hole 44a and sealed in a state where the end on the side of the lump portion 329 contacts (or substantially contacts) the end surface of the glass bead 44. The end opposite to the lead portion 328 is joined to the approximate center of the outer surface of the bottom 322 a of the electrode body 322.
  • the external lead portion 328 and the lump portion 329 are projecting portions from which the external surface force of the glass bulb 21 also protrudes in the axial direction, and are joined to the covering 125 via the heat sink 128.
  • the power supply unit 124 is configured by this configuration.
  • the external lead portion 328 and the lumped portion 329 have a substantially circular cross section, and the total axial length of the two in the axial direction is, for example, 1 mm.
  • the axial center of the external lead portion 328 and the end of the glass bulb 21 The axial center of the unit is almost the same.
  • the total length in the axial direction of the external lead portion 328 and the hollow portion 329 is preferably 1 mm or less in consideration of the size of the entire lamp length.
  • the outer diameter of the lumped portion 329 is an internal lead in consideration of breakage of the portion where the glass bead 44 and the internal lead portion 327 are sealed (hereinafter also referred to as “sealed portion”) and part price. It is preferable that the outer diameter of the part 327 be 1.5 to 4 times.
  • the outer diameter of the glass bulb 21 is preferably in the range of 1.8 mm to 6. O mm. In the lamp 320 of such a size, the external lead is used.
  • the total length force in the axial direction of the portion 328 and the piled portion 329 may be such that it does not protrude from the heat sink 128, that is, it has a length to be embedded in the heat sink 128.
  • the external lead portion 328 is prevented from bending against the peripheral member or the like to bend the external lead portion 328 or to damage the sealing portion between the glass bead 44 and the internal lead portion 327. Can.
  • the external lead portion 328 may be bent over the housing of the backlight unit or a socket or the like in the housing, or may be added to the external lead portion 328 at that time. There is little risk of the glass bead 4 4 breaking due to stress.
  • the force applied to the dead end portion 329 is absorbed at both ends of the glass bulb 21, It is possible to prevent a leak due to breakage of the glass bead 44 or the like to which the inner lead portion 327 is sealed.
  • the heat dissipating body 128 in the second embodiment has a sleeve-shaped cover in a state in which the electrode 28 is buried.
  • the inside of the cover 125 may be filled, and the lead wire of the electrode may be configured by a single force.
  • Other configurations are described below as modified examples.
  • FIG. 17 is an enlarged view showing an end portion of a lamp 340 according to the fourth modification.
  • the glass noble 342 and the electrode 344 are used.
  • the glass bulb 342 has an annular cross section, for example, an outer diameter of 3 mm and an inner diameter of 3 mm.
  • Wall thickness is 0.5 mm.
  • the end of the glass notch 342 forms a sealing portion 342 a which is crushed to attach the electrode 344.
  • a phosphor layer is formed on the inner surface of glass groove 342, and mercury, a rare gas, and the like are enclosed inside.
  • the electrode 344 has a so-called hollow shape, is constituted of an electrode body 348 and a lead wire 350, and is sealed to the sealing portion 342a of the glass valve 342 !.
  • the electrode body 348 is made of nickel (Ni) and has a bottomed cylindrical shape.
  • the electrode main body 348 is not limited to nickel, and may be made of, for example, niobium (Nb), tantalum (Ta), or molybdenum (Mo).
  • the electrode body 348 has, for example, a total length of 5.2 mm, an outer diameter of 2.7 mm, an inner diameter of 2.3 mm, and a thickness of 0.2 mm.
  • the electrode 344 is disposed such that the axis of the electrode body 348 and the axis at the end of the glass bulb 21 substantially coincide with each other, and the outer peripheral surface of the electrode body 348 and the inner peripheral surface of the glass valve 342 The interval between the two is substantially uniform over the entire outer periphery of the electrode body 348.
  • the distance between the outer peripheral surface of the electrode body 348 and the inner surface of the glass bulb 342 is 0.15 mm.
  • the discharge does not enter the distance and the discharge occurs only in the inside of the electrode body 348. Therefore, the lamp 340 which adheres to the inner surface of the sputtered material force glass bulb 342 scattered due to the electric discharge has a long life.
  • the distance between the outer peripheral surface of the electrode body 348 and the inner surface of the glass bulb 342 is not necessarily 0.1 mm, but in order to prevent the discharge from entering the distance, it is not necessary. Preferred to be less than or equal to mm.
  • the lead wire 350 is an interconnection between an internal lead portion 352 made of tungsten (W) and an easy-to-adhere to solder etc.-A lead wire is broken between the external lead portion 354 made of nickel, and the internal lead portion 352 and the external lead portion 354 The bonding surface is substantially flush with the outer surface of the glass bulb 342. That is, the inner lead portion 352 is located inside the outer surface of the glass bulb 342, and the outer lead portion 354 is located outside the outer surface of the glass bulb 342.
  • the inner lead portion 352 has a substantially circular cross section, for example, a total length of 3 mm and a wire diameter of 0.8 mm.
  • the end of the inner lead portion 352 on the outer lead portion 354 side is sealed to the sealing portion 342 a of the glass bulb 342, and the end opposite to the outer lead portion 354 is the outer surface of the bottom of the electrode body 23. It is joined approximately at the center.
  • the heat dissipating member 343 is disposed inside the sleeve-like covering 345, and the end face force of the glass bulb 342 is also disposed in the remaining space between it and the outer side edge of the covering 345.
  • the heat sink 343 is made of solder and is formed in advance into a predetermined shape (a shape corresponding to the remaining space).
  • a through hole 343a for the external lead portion 354 of the electrode 344 is formed at a position corresponding to the axial center, and the external lead portion 354 is inserted into the through hole 343a.
  • the outer lead portion 354 is joined to the heat dissipating member 343 at a projecting portion where the outer surface force of the glass bulb 342 also protrudes along the axial direction.
  • the external lead portion 354 has a total length of 1 to LO mm, for example 2 mm, and the axial center of the external lead portion 354 and the axial center of the glass bulb 342 substantially coincide with each other.
  • the cover 345 is in the shape of a sleeve which also has an iron-nickel alloy strength.
  • the outer lead portion 354 has a substantially circular cross section, and the wire diameter is smaller than the inner lead portion 352, for example, 0.6 mm.
  • the cover 345 is connected via the heat dissipating body 343. It is configured by connecting with the lead wire 350.
  • the end of the glass sleeve 342 is directly inserted into the cover 345, and the external lead portion 354 and the cover 345 are electrically connected via the heat sink 343 present in the remaining space of the cover 345. Therefore, even if the heat sink 343 abuts on the glass groove 342, the end face of the glass bulb 342 is open, and the heat sink does not cover the side of the glass bulb as in Patent Document 1, so the lamp lights up. In particular, even if stress is generated in the glass bulb 342 due to the difference in thermal expansion coefficient between the heat sink 343 and the glass bulb 342, the glass bulb 342 has the merit of being hard to crack.
  • the length L between the outer end face of the feeding portion 346 (cover 345) and the end face of the glass bulb 342 shown in FIG. 17 increases, the surface area of the feeding portion 346 (heat radiating body 343) increases. Heat dissipation will be improved.
  • the length L is preferably longer than the outer diameter R of the glass bulb 342.
  • the glass nose 342, the heat sink 343, and the covering 345 are prepared.
  • FIG. 18 is a view for explaining the configuration of the heat sink 343. As shown in FIG.
  • the heat sink 343 has a cylindrical shape as shown in FIG.
  • a cylindrical solder body is formed.
  • the outer diameter of the cylindrical solder body is made approximately equal to the inner diameter of the cover 345.
  • a cylindrical through hole 343a having a diameter substantially equal to the wire diameter of the external lead portion 354 is formed in the axial center of the cylindrical solder body (the axial center of the cylindrical solder body substantially coincides with the axial center of the through hole become.).
  • one end face of the cylindrical solder body is machined (machined) to a shape that matches the end face of the glass nose (forming process). A heat sink 343 is thus obtained.
  • the end force (342 a) of the glass bulb 342 is also, for example After inserting the sheath 345 by heating etc. (shrink fitting) and inserting the external lead portion 354 of the electrode 344 into the through-hole 343a of the radiator 343, the radiator 343 is contained in the sheath 345 3 Insert the end face 343b of 43 and the end face of the glass notch 342 until it is in close contact.
  • heat is applied to a substantially central portion in the axial direction of the covering 345 (a position corresponding to a position where the glass bulb 342 and the heat radiating body 343 contact with each other). Then, the portion of the heat dissipating member 343 made of solder, which is close to the end of the glass bulb 342, is melted by the heating, and the heat dissipating body 343 and the end face of the glass bulb 342 are adhered (fixed).
  • the end surface 343b on the glass bulb 342 side of the heat dissipation body 343 has a shape that matches the end face of the glass bulb 342, and the end (including at least the end face) of the heat dissipation body 343 on the glass bulb 342 side.
  • the solder also enters the narrow gap formed between the end face of the glass bulb 342 and the cover 345, and the end face 343b of the heat dissipating body 343 can be in close contact with the end face of the glass valve 342 Process).
  • the glass bulb 342 is directly inserted into the cover 345, and the external lead portion 354 and the cover 345 are electrically discharged through the heat sink 343 in the remaining space of the cover 345. Connected.
  • the heat radiating body 343 is provided in close contact with the end face of the glass groove 342, the heat generated from the electrode main body 348 is transmitted through the glass bulb 342, the lead wire 350, the heat radiating body 343 and the like. The heat is conducted to the cover 345 and as a result, the heat is dissipated from the cover 345 to the atmosphere, resulting in high heat dissipation.
  • the heat dissipating body 343 can be obtained by so-called forging, in which molten solder is poured, using a mold or the like matched to the shape of the heat dissipating body 343.
  • the heat dissipating member disposed in the feeding portion may be implemented as follows. (2-1) Modification 4 1
  • FIG. 19 (a) is a view showing a modified example 4-1 of the heat dissipator 360.
  • FIG. 19 (a) is a view showing a modified example 4-1 of the heat dissipator 360.
  • the heat sink 360 according to the modified example 4 1 is broken with the main body 362 and the solder body 364.
  • the main body portion 362 is, for example, a copper foil, and has a cylindrical shape having a through hole 362 a at a substantially central position into which the lead wire is inserted.
  • a solder body 364 is joined to one end face (the end face in the left side in the drawing) of the main body portion 362.
  • the solder body 364 has a disk shape having a through hole 364a at the center, and the surface 364a opposite to the bonding surface with the main body 362 has a shape corresponding to the end surface shape of the glass bulb! /.
  • the cover is attached to the end of the glass bulb, for example using a shrink fit method.
  • the heat sink 360 is inserted into the covering until the surface 364b of the solder 364 abuts the end face of the glass bulb.
  • the surface 364 b of the solder 364 is shaped to substantially fit the end face of the glass bulb, so the solder 364, that is, the heat sink 360 closely contacts (or widens in close contact with) the end face of the glass bulb. It will be.
  • the cover and the heat sink 360 are attached to the glass bulb by this method, the melted solder also enters the narrow space formed between the end face of the glass bulb and the cover, so that the heat sink 360 is Thus, the heat sink 360 can be in close contact with the end face of the glass bulb, thereby improving the heat radiation characteristics.
  • FIG. 19 (b) is a view showing a modified example 4-2 of the heat dissipator 370.
  • the heat dissipator 370 according to the modified example 4-2 has a force with the main body 372 and the solder film 374.
  • the main body 372 has a cylindrical shape as in the fourth modification, and the main body 372 is One end face (left side in the figure) 372a has a shape corresponding to the end face shape of the glass bulb.
  • a solder film 374 is applied to the end face 372 a of the main body 372. Since the solder film 374 is applied to the end surface 372a of the main body portion 372 with a substantially uniform thickness, the surface 374a of the solder film 374 has a shape adapted to the end surface of the glass bulb.
  • the attachment of the heat sink 370 and the sleeve-like covering to the glass bulb is the same as that of the above-described modification 41.
  • FIG. 19 (c) is a view showing a modified example 4-3 of the heat dissipator 380.
  • the heat dissipator 380 according to the modification 4-3 is in force with the main body 382 and the solder film 384.
  • the main body portion 382 has a cylindrical shape made of copper as in the modification 41.
  • One end face of the main body portion 382 (the end face on the left side in the figure) and the side face thereof are soldered by the solder film 384. It is covered.
  • the surface 384b in contact with the end face of the glass bulb is processed (formed) in advance so as to conform to the end face of the glass bulb.
  • the attachment of the heat sink 370 and the sleeve-like covering to the glass bulb is the same as in the above-described variation 4-1, and the configuration shown in FIG. The same effects as described in 1 and 4-2 can be obtained.
  • the lamp 340 may be configured with another structure in which the lamp 340 is configured using a sleeve-like power supply portion 346 and a heat sink 343 made of solder.
  • the other configuration is described below as modification 5.
  • the one that consists of the cover and the radiator is It is referred to as a "terminal" and will be described below.
  • FIG. 20 is an enlarged cross-sectional view showing one end of a lamp according to a fifth modification.
  • the power supply terminal 400 is composed of a cover 402 and a heat sink 404, and is attached to the end of the glass bulb 342.
  • the heat sink 404 comprises a conductor plate 406 and a solder body 405.
  • the conductor plate 406 is made of, for example, an iron-nickel alloy that is the same material as the covering 402.
  • the conductor plate 406 has an outer diameter substantially equal to the inner diameter of the cover 402 and has a shape in which the contact surface 406 a with the glass bulb 342 conforms to the end face of the glass bulb 342.
  • the end of the glass bulb 342 is inserted into the covering 402 by a predetermined length.
  • the external lead portion 354 is inserted into the through hole 406 b of the conductor plate 406, and then the solder body 405 is inserted into the cover 402 until the conductor plate 406 is in close contact with the end face of the glass bulb 342.
  • a solder in a molten state (hereinafter referred to as “melted solder”) is disposed in the space divided by the inner wall of the cover 402 and the conductor plate 406 with the glass core 342 arranged with its axis oriented in the vertical direction. (This solder becomes solder body 405.) 0 Cover 402 and conductor plate 406 become high temperature due to the heat of molten solder with high thermal conductivity, so cover 402 and conductor plate 406 The molten solder also flows into the narrow area to be formed.
  • the conductive plate 406 and the glass bulb 342 are in close contact with each other, so that the heat transfer efficiency from the glass bulb 342 to the conductive plate 406 is enhanced.
  • the heat generated from the electrode main body 348 is dissipated to the air from the cover 402 and the solder body 405 connected to the conductor plate 406, and as a result, the heat dissipation characteristics of the lamp can be enhanced.
  • a plurality of through holes may be formed in the conductor plate 406.
  • the molten solder flows into the through holes in the forming step, so the adhesion between the conductor plate 406 and the end face of the glass bulb 342 is enhanced, and the heat transfer effect from the glass bulb 342 to the conductor plate 406 is enhanced.
  • a plurality of through holes be formed with a diameter of 3 mm or less, for example, about 0.5 mm.
  • the cover 402 and the conductor plate 406 in FIG. 20 (a) were welded in advance, as shown in FIG. 20 (b), the cylindrical body and the conductor plate became a single body.
  • the cover 410 the solder body 408 And the feed terminal 412 may be configured.
  • the heat sink according to the present invention corresponds to the cover 410.
  • each embodiment and each modification was mainly in the shape of a sleeve, it may be other shape. Another shape is described below as Modification 6.
  • FIG. 21 is a perspective view showing a cover 420 according to the sixth modification.
  • the cover 420 according to the modification has, for example, a shape in which one flat plate is rounded and the end portions thereof are not joined. That is, it has a cylindrical shape having a slit 422 in a part in the circumferential direction along its longitudinal direction, and the shape of the cut surface (the cross section) perpendicular to the longitudinal direction is C-shaped. ).
  • a feed terminal is provided at the end of the glass bulb, and when the cover 420 and the lead wire are connected by a heat sink that also has a solder force, for example, between the glass bulb and the solder. It is considered that the air bubbles in the air gaps that can be generated in the above are released from the slits 422, so that an effect that air gaps are less likely to be generated between the glass bulb and the heat sink can be obtained.
  • suction and degassing of air bubbles in the gap is performed in a vacuum atmosphere or the like.
  • the backlight unit described in each of the above embodiments stores the lamps 20 and 120 inside the housings 10 and 110 and directly irradiates the liquid crystal image unit 11 from the lamps 20 and 120.
  • Other types may be used, specifically, an edge type in which a lamp is disposed at the edge of the light guide plate and light from the lamp is reflected by the light guide plate to illuminate the liquid crystal panel.
  • the lamp in the edge type may be a straight tube or an “L” shape along the adjacent edge of the light guide plate.
  • the lighting circuit 160 in the second embodiment has a phase difference of about 180 degrees between two adjacent lamps.
  • two adjacent lamps may be supplied with sinusoidal currents of the same phase.
  • this case will be described as a seventh modification.
  • FIG. 22 (a) shows the lighting circuit 440
  • FIG. 22 (b) shows the connection of the lamps La connected to the lighting circuit 440. As shown in FIG. 22 (a)
  • the lighting circuit 440 has substantially the same configuration as the lighting circuit 160 of the second embodiment. Lighting circuit 440 is connected to DC power supply (V) and DC power supply (V) as shown in (a) of Fig. 22.
  • Step-up transformer Tl, 2T2 (or step-up) connected between the junction of connected switch element Ql, Q2 and capacitors C2, C3, switch element Q1 and switch element Q2, and the junction of capacitor C2 and capacitor C3.
  • the inverter control IC power which supplies the gate signal for turning on and off the transformer T7, 2 ⁇ 8) and the switch element Ql and Q2 alternately is also configured.
  • the lighting circuit 160 of the second embodiment differs from the lighting circuit 160 of the second embodiment in the direction of connection of the transformers on the secondary side of the step-up transformers 2T2 and 2T8. In this way, it is possible to supply sine waves of the same phase to two adjacent lamps.
  • the power feeding portion is provided at the end of the glass bulb, and the mounting of the lamp to the housing and the power feeding are performed by the socket method.
  • the lamp, the lamp holder, and the power feeding part of the lamp are the same as those of the second embodiment, they will be described with the same reference numerals.
  • the plurality of lamps 120 are connected and held substantially parallel by the lamp holders 130 and 132 while maintaining a predetermined distance therebetween.
  • the lamp holder 132 for connecting and holding one of the feeding parts 126 (in the case of FIG. 22B, the feeding parts 126 of the lamps Lai and La2 and the lamps La7 and La8, etc. in FIG. 22) of two adjacent lamps 120 It is connected to the ground side.
  • the lamp holder 130 that connects and holds the other feeding part 124 (the lamps Lai and La2 and the feeding part 124 such as the lamps La7 and La8 in FIG. 22B) of two adjacent lamps 120 is connected.
  • Each is connected to the high voltage side of the lighting circuit 440!
  • the same effect as that of the second embodiment can be obtained, and the voltage phase difference is approximately 0 degrees, so that the voltage difference between the two lamp holders 130 applied is
  • the interval between two adjacent lamps 120 can be made smaller than in the case where the potential difference is the same and the voltage phase difference is approximately 180 degrees.
  • all the lamp holders 132 for connecting and holding one of the feeding parts 126 of the plurality of lamps Lal to La8 are all It is grounded. As shown in FIG. 22 (b), this grounding is performed by welding each of the U-shaped lamp holders 132 to the metal substrate 445 on the lamp holder 132 side.
  • the lamp described in each of the above embodiments has a straight tubular shape, but may have another shape, for example, a "U” shape, a "U” shape, or a "W” shape.
  • the outer diameter of the lamp is preferably 5 mm or less. This is because the thinner the lamp, the thinner the electrode and the higher the temperature of the electrode when lit. In particular, when the outer diameter of the lamp is 5 mm or less, the electrode life is shortened and the lamp efficiency is significantly reduced due to the temperature rise of the electrode, and it becomes necessary to improve the heat dissipation characteristics of the electrode.
  • the lamp in the embodiment and the like has a substantially circular cross-sectional shape, but may have another shape.
  • a lamp of another shape is described below as a modified example 8.
  • FIG. 23 is a schematic view of a lamp 500 according to the eighth modification.
  • the lamp 500 has a glass bulb 508 in which both ends 504 and 506 of a glass tube 502 having an elliptical cross-sectional shape at the center are sealed, and both ends of the glass bulb 508. Electrodes 28, 30 sealed at 506, and heat sinks 32, 34 provided at portions of the electrodes 28, 30, which are located outside the glass bulb 508, are provided.
  • the lamp 500 is covered, and the electrodes 28 and 30, the radiators 32 and 34 are omitted except for the glass nano-reve 508, and the configuration is the same as those of the first embodiment.
  • the cross section of the central portion of the glass tube 502 constituting the glass bulb 508 is elliptical as shown in (c) of FIG. 23, and the cross sections of the both ends 504 (506) are as shown in (b) of FIG. As shown, it is approximately circular.
  • the central portion means at least the light extraction portion (within the area where the positive column substantially occurs) of the light emission portion of the positive light bulb of the glass bulb 508 (disposed from the both ends of the glass bulb 508 to the above location) Region between the tip of each of the electrode bodies 28a and 30a It is a flat part in a minute.
  • a phosphor layer 509 is formed in a portion corresponding to the light extraction portion in the glass bulb 508.
  • the total length L1 of the lamp 500 is 705 mm
  • the length Da of the positive column light emitting part is about 680 mm
  • the length Db and Dc of the circular part on the electrode side are each about 12 mm
  • the outer peripheral surface area of the positive column light emitting part is about 105 cm. 2
  • the substantially elliptical short outer diameter ao is 4.0 mm
  • the short inner diameter ai is 3.0 mm
  • the long outer diameter bo is 5.8 mm
  • the long inner diameter bi is 4.8 mm It is.
  • the above-mentioned substantially circular pipe outer diameter ro is 5.0 mm
  • the pipe inner diameter ri is 4.0 mm.
  • the outer peripheral surface area is increased compared to the conventional straight tube lamp, and the excessive rise of the coldest spot temperature is suppressed. Since the short inner diameter ai, which has a flat shape, is shorter than a conventional straight tube lamp having a tube inner diameter similar to the long inner diameter bi, the distance from the center of the positive column plasma space to the inner wall of the tube is Can be effectively kept short. For this reason, even if the lamp current is made larger than before, the luminous efficiency can be lowered.
  • the cold cathode fluorescent lamp according to the present invention can be used as a light source for a thin and large screen knock light unit, and the backlight unit according to the present invention can be used for a thin and large screen display device It is.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

明 細 書
冷陰極蛍光ランプ、バックライトユニット及び液晶表示装置
技術分野
[0001] 本発明は、冷陰極蛍光ランプ、当該冷陰極蛍光ランプを光源とするバックライトュ- ット、当該バックライトユニットを搭載する液晶表示装置に関する。
背景技術
[0002] 冷陰極蛍光ランプは、筒状のガラスバルブと、ガラスバルブの両端に封着された冷 陰極型の電極とを備える。電極は、例えば、有底筒状の電極本体とその底に取着さ れたリード線とを有し、リード線の一部分がガラスバルブの端部に封着されることでガ ラスバルブに装着されて 、る。
このような冷陰極蛍光ランプを光源として利用したものに、例えば、液晶テレビ等の 液晶表示装置のバックライトユニットがある。近年、冷陰極蛍光ランプは、液晶表示装 置 (バックライトユニット)の薄型化に伴い細管化し、これにあわせて、電極 (本体)の小 型化やリード線の細線ィ匕が進んで 、る。
[0003] 一方、液晶表示装置は、薄型化以外にも、表示パネルの大画面化が進む傾向にあ り、光源として輝度向上が要望され、冷陰極蛍光ランプへの投入電流が大きくなつて いる。
このため、近年の冷陰極蛍光ランプは、リード線の細線化、投入電流の増大により、 リード線での電流密度が大きくなり、点灯時のリード線での発熱量が増大している。な お、電極本体についても、投入電流の増大により発熱量が増大する。このような電極 の発熱量の増大は、電極の温度上昇に繋がり、結果的に短寿命化、ランプ効率の低 下をもたらす。
[0004] 電極の温度上昇を抑える冷陰極蛍光ランプとして、リード線の内、ガラスノ レブの 外部に位置する部分に、リード線よりも大径の放熱体を設けて、表面積を大きくして 放熱特性を改善したものがある (特許文献 1)。
特許文献 1 :特開 2002— 190279号公報
発明の開示 発明が解決しょうとする課題
[0005] し力しながら、上記冷陰極蛍光ランプでは、放熱特性が十分でなぐ又、リード線が 折損しやすいという問題がある。つまり、放熱体は、その外径カ^ード線よりも大きぐ リード線に比べて放熱面積が大きくなり放熱特性は改善するが、冷陰極蛍光ランプを ノ ックライトユニット内に収納する必要があるので、放熱体をこれ以上大型化 (外径或 いは長さの両方である。)することが難しぐ結果的に放熱特性が不十分になるので ある。
[0006] また、放熱体は、冷陰極蛍光ランプの端部力 延出するリード線に設けられ、またリ 一ド線は細管化されているため、バックライトユニットとして組み立てる際に放熱体が 周辺部材と接触すると、リード線が折損しやすい。
本発明は、上記の課題に鑑み、全体として大型化を招くことなぐ放熱特性を向上 させ、しカゝも、リード線が折損し難い冷陰極蛍光ランプ及びバックライトユニットを提供 することを目的とする。
課題を解決するための手段
[0007] 上記課題を解決するために、本発明に係る冷陰極蛍光ランプは、ガラスバルブと、 電極本体とリード線とを有し且つ前記電極本体が前記ガラスバルブの内部に位置す る状態で前記リード線が前記ガラスバルブの端部で封着された電極と、前記リード線 の内、前記ガラスバルブの外部に位置する部分に設けられた放熱体とを備え、前記 放熱体は、前記リード線の延伸外方から見たときに、前記リード線を包囲する状態で 前記ガラスバルブの端部外面に接触して 、ることを特徴として 、る。
[0008] この構成によると、放熱体とガラスバルブの端部とが直接接触することになるので、 ガラスバルブ力 放熱体へ直接伝わる伝熱量を増やすことができる。また、放熱体と ガラスバルブとが接触している部分をリード線の延伸方向の外方力 見たときに、リー ド線が多角形の内部に位置するので、リード線が安定した状態で支持されることにな る。
また、前記放熱体は一端が塞がった筒形状をし、塞がった端面が、前記ガラスバル ブの端面に略面接触していることを特徴とし、或いは、前記放熱体は柱状をし、当該 端面が、当該ガラスバルブの端面に面接触していることを特徴としている。 [0009] さらに、前記放熱体は、導電性材料により構成されていることを特徴とし、しカゝも、前 記リード線は、前記放熱体と一体になつていることを特徴としている。
また、前記放熱体は導電性を有すると共に、前記リード線と電気的に接続され、前 記ガラスバルブの外周端部には、導電性を有する被覆体が装着され、当該被覆体と 、前記放熱体とが電気的に接続していることを特徴とし、しカゝも、前記放熱体の前記 ガラスバルブ側の面は、前記ガラスバルブの端面に適合する形状を有すると共に、 前記ガラスバルブの端面に接触していることを特徴とし、或いは、前記放熱体は半田 力 なることを特徴として 、る。
[0010] さらに、前記放熱体は、半田力 なる第 1部材と、半田以外の導体力 なり前記第 1 部材と接合して!/ヽる第 2部材とを備え、前記ガラスバルブの端面に適合する形状を有 する面は、前記第 1部材に形成されていることを特徴とし、或いは、前記放熱体は、 半田以外の導体からなる導体板と、前記導体板と接合している半田体とを備え、前 記ガラスバルブの端面に適合する形状を有する面は、前記導体板における前記半 田体と反対側の面に形成されていることを特徴とし、しカゝも、前記導体板には、複数 の貫通孔が形成されて 、ることを特徴として 、る。
[0011] また、前記リード線と前記放熱体とは、間隔をおいては配設されていると共に半田 を介して電気的に接続されており、当該半田は、過電流が流れた際のジュール熱に よって溶断することを特徴とし、さらに、前記半田における前記リード線と前記放熱体 との接続部分近傍の空間を密閉する絶縁部材を備えることを特徴とし、しかも、前記 絶縁部材は、ロジンであることを特徴とし、また、前記リード線は、当該外径よりも大き い肉だまり部を備え、当該肉だまり部は、ガラスバルブの端部外面に接触状態で配さ れて 、ることを特徴として!/、る。
[0012] 一方、上記課題を解決するために、本発明に係るバックライトユニットは、光源とし て、上記記載の冷陰極蛍光ランプが搭載されて 、ることを特徴として 、る。
また、本発明に係るバックライトユニットは、光源としての複数本の冷陰極蛍光ラン プと、前記冷陰極蛍光ランプを収納する筐体と、前記筐体内に設けられ且つ前記冷 陰極蛍光ランプの外周を挟持する u字状のランプホルダーと、前記冷陰極蛍光ラン プを点灯させるための点灯回路とを備え、 前記冷陰極蛍光ランプは、請求項 6に記載の冷陰極蛍光ランプであり、前記ランプホ ルダ一は、前記冷陰極蛍光ランプの被覆体の外周を挟保することにより電気的に接 続し、複数本の前記冷陰極蛍光ランプのそれぞれは、間隔をおいて略平行に配列さ れた状態で前記ランプホルダーによって挟持され、平行に配列された隣接する 2本 の冷陰極蛍光ランプの一方の被覆体を挟持するランプホルダー同士が電気的に接 続されて!、ることを特徴として!/、る。
[0013] 或 、は、本発明に係るノ ックライトユニットは、光源としての複数本の冷陰極蛍光ラ ンプと、前記冷陰極蛍光ランプを収納する筐体と、前記筐体内に設けられ且つ前記 冷陰極蛍光ランプ保持するランプホルダーと、前記冷陰極蛍光ランプを点灯させるた めの点灯回路とを備えるノ ックライトユニットにおいて、前記冷陰極蛍光ランプは、請 求項 6に記載の冷陰極蛍光ランプであり、前記ランプホルダーは、前記冷陰極蛍光 ランプの被覆体と接触することにより電気的に接続し、複数本の前記冷陰極蛍光ラン プのそれぞれは、間隔をお!/、て略平行に配列された状態で前記ランプホルダーによ つて保持され、平行に配列された少なくとも隣接する 2本の冷陰極蛍光ランプの一方 の被覆体と接触するランプホルダーは接地側に接続され、他方の被覆体と接触する ランプホルダーは前記点灯回路の高圧側に接続されて 、ることを特徴として 、る。
[0014] さらに、本発明に係る液晶表示装置は、上記記載のバックライトユニットが搭載され ていることを特徴としている。なお、ここでいう「液晶表示装置」は、液晶カラーテレビ、 コンピュータ用の液晶モニタの他、携帯用及び車載用の小型表示装置等を含む。 発明の効果
[0015] 本発明に係る冷陰極蛍光ランプは、ガラスバルブ力 放熱体への伝熱量を増やす ことができるので、ランプ径を大きくすることなく放熱特性を向上させることができる。ま た、リード線が放熱体とガラスバルブとの接触部分で支持されることになるので、例え ば、放熱体が何かに接触した場合でも、リード線が変形し難くなり、結果的にリード線 の折損を少なくできる。
[0016] 本発明に係るバックライトユニットは、上記冷陰極蛍光ランプを光源として備えて ヽ るので、放熱特性を向上させることができ、また、ノ ックライトユニットを組み立てる際 に、例えば、放熱体が何かに接触した場合でも、電極のリード線の折損が生じ難くな り、製造歩留まりを向上させることができる。
図面の簡単な説明
[図 1]第 1の実施の形態に係る液晶テレビ 1の概要を示す図である。
[図 2]第 1の実施の形態に係るバックライトユニット 5の構成を示す概略斜視図である。
[図 3] (a)は本実施の形態に係るランプ 20の構成を示す断面図であり、 (b)は、放熱 体 32, 34がガラスバルブ 21の端面に接触している部分を示す図である。
[図 4]第 2の実施の形態におけるバックライトユニット 100の概略斜視図であり、内部 の様子が分力るように一部を切り欠 、て 、る。
[図 5]バックライトュ-ッと 100が備える点灯回路 160の一例を示し、図 5の(a)が点灯 回路 160を示す図で、図 5の (b)が点灯回路 160に接続された各ランプ Laの接続関 係を示す図である。
[図 6]第 2の実施の形態に係るランプ 120の端部の拡大断面図である。
[図 7]第 3の実施の形態に係るランプ 200の端部の拡大断面図である。
[図 8]ヒューズ 200内の半田体 222が溶断した際の図である。
[図 9]第 3の実施の形態の変形例を示す図である。
[図 10]ランプ電流 Ilaと電極温度 Tとの関係を示す。
[図 11]変形例 1に係るランプ 300の端部を示す拡大図である。
[図 12]放熱体がガラス部材の端面に接触している部分を示す図である。
[図 13]変形例 2に係るランプ 310の端部を示す拡大図である。
[図 14]変形例 2に係るランプ 310の端部を示す拡大図である。
[図 15]放熱体がガラスバルブの端面に接触している部分を示す図である。
[図 16]変形例 3に係るランプ 320の端部を示す拡大図である。
[図 17]変形例 4に係るランプ 340の端部を示す拡大図である。
[図 18]放熱体 343の構成を説明する図である。
[図 19] (a)は放熱体 360の変形例 4— 1を示す図であり、 (b)は放熱体 370の変形例 4— 2を示す図であり、(c)は、放熱体 380の変形例 4— 3を示す図である。
[図 20]変形例 5に係るランプの一端部を示す拡大断面図である。
[図 21]変形例 6に係る被覆体 420を示す斜視図である。 [図 22] (a)が点灯回路 440を示す図で、図 22の (b)が点灯回路 440に接続された各 ランプ Laの接続関係を示す図である。
[図 23]変形例 8に係るランプ 500の概略図である。
符号の説明
[0018] 1 液晶テレビ
3 液晶画面ユニット
5 ノ ックライトユニット
10 筐体
20 冷陰極蛍光ランプ
21 ガラスバルブ
22 ガラス管
28, 30 電極
28a, 30a 電極本体
28b, 30b リード線
32, 34 放熱体
44, 46 ガラスビード
発明を実施するための最良の形態
[0019] 以下、図面を参照しながら、本発明の実施の形態に係る冷陰極蛍光ランプ (以下、 単に「ランプ」という。)、バックライトユニット及び液晶表示装置について説明する。な お、本発明を説明する図は、ノ ックライトユニット及びランプの構成の把握を容易に するための模式図であって、その寸法及び比率は実際のものと相違する。
<第 1の実施の形態 >
1.液晶テレビの構成
図 1は、第 1の実施の形態に係る液晶テレビ 1の概要を示す図である。
[0020] 図 1に示す液晶テレビ 1は、本発明の液晶表示装置の 1つであり、例えば 32吋液晶 テレビである。液晶テレビ 1は、液晶画面ユニット 3とバックライトユニット 5とを備える。 液晶画面ユニット 3は、カラーフィルタ基板、液晶、 TFT基板、駆動モジュール等( 図示せず)を備え、外部からの画像信号に基づ!ヽてカラー画像を形成する。 [0021] 2.バックライトユニットの構成
はじめに、バックライトユニット 5の構成にっ ヽて説明する。
図 2は、第 1の実施の形態に係るバックライトユニット 5の構成を示す概略斜視図で ある。同図において内部の構造を示すために、前面パネル 16の一部を切り欠いて示 している。
[0022] バックライトユニット 5は、例えば、複数 (例えば 14本)の冷陰極蛍光ランプ (以下、「 ランプ」という。) 20と、開口部を有しこれらのランプ 20を収納する筐体 10と、この筐 体 10の開口部を覆う前面パネル 16と、複数のランプ 20を点灯する点灯装置 50 (図 2 では省略、図 1及び図 5を参照)とを備える。
筐体 10は、例えば、ポリエチレンテレフタレート (PET)榭脂製であって、長方形状 の底壁 10aと、当該底壁 10aの端縁から立設する 4つの側壁 10b, 10c, 10d, 10eと を有し、その内面に銀などの金属が蒸着されて反射面が形成されている。
[0023] なお、筐体 10の材料としては榭脂以外の材料、例えば、アルミニウム、 SPCC等の 金属材料により構成しても良い。また、筐体内側の反射面として金属蒸着膜以外、例 えば、ポリエチレンテレフタレート樹脂に炭酸カルシウム、二酸ィ匕チタン等を添加する ことにより反射率を高めた反射シートを筐体の側壁や底壁に貼付して構成しても良い また、筐体 10の開口部は、拡散板 13、拡散シート 14及びレンズシート 15を積層し てなる透光性の前面パネル 16で覆われており、ちりや埃などの異物が筐体 10の内 部に入り込まな 、ようにして 、る。
[0024] 拡散板 13は、例えばポリメタクリル酸メチル (PMMA)榭脂製であって、筐体 10の 開口部を塞ぐように配されている。拡散シート 14は、例えばポリエステル榭脂製であ つて、ランプ 20から放射された光を散乱 '拡散させる。レンズシート 15は、例えばァク リル榭脂製シートとポリエステル榭脂製シートとを貼り合わせたものであって、当該シ ート 15の法線方向へ光をそろえる。そしてこれら拡散版 13、拡散シート 14、レンズシ ート 15によって、ランプ 20から発せられた光が前面パネル 16の表面(発光面)の全 体に亘り均一に前方を照射するようになる。
[0025] ランプ 20は、冷陰極型の電極を用いた蛍光ランプであって、本実施の形態では、 1 4本のランプ 20力 図 2に示すように、ランプ 20は、その軸心が筐体 10の長辺に沿う 方向(図中の Y方向)を向くように配列されている力 その軸心が筐体 10の短辺に沿 う方向(X方向)を向くように配列しても良い。
3.ランプの構成の構成
次に、ランプ 20の構成について説明する。
[0026] 図 3の(a)は本実施の形態に係るランプ 20の構成を示す断面図であり、 (b)は、放 熱体 32, 34がガラスバルブ 21の端面に接触している部分を示す図である。
ランプ 20は、直管円筒状をしたガラス管 22の両端が封止されてなるガラスバルブ 2 1と、このガラスバルブ 21の両端部 21a, 21bに封着された電極 28, 30と、この電極 28, 30の内、前記ガラスバルブ 21の外部に位置する部分に設けられた放熱体 32, 34とを備える。
[0027] なお、電極 28, 30への電流供給は、図 3の(a)〖こ示すように、給電部 40, 42力ら行 われる。また、ガラスバルブ 21は、その両端部 21a, 21b力 例えば、後述のガラスビ ード 44, 46を用いて封止された場合には、ガラス管 22の他、ガラスビード 44, 46も 含み、例えば、ガラス管の端部が圧潰封止された場合には、ガラス管のみで構成さ れる。
[0028] ガラス管 22は、例えば、ホウケィ酸ガラス力もなり、軸心に垂直な平面で切断したと きの断面 (横断面)は、略円状をしている。なお、ガラス管 22は、ホウケィ酸ガラスに 限らず、鉛ガラス、鉛フリーガラス、ソーダガラス等を用いても良い。この場合に暗黒 始動性が改善できる。すなわち、上記のガラスは、酸化ナトリウム (Na O)に代表され
2
るアルカリ金属酸化物を多く含み、例えば、酸ィ匕ナトリウムの場合はナトリウム (Na)成 分が時間の経過とともにガラスノ レブ
内面に溶出する。ナトリウムは電気陰性度が低いため、(保護膜の形成されていない 。)ガラスバルブ内側端部に溶出したナトリウムが、暗黒始動性の向上に寄与するも のと思われる力 である。
[0029] 例えば、アルカリ金属酸ィ匕物が酸ィ匕ナトリウムの場合、その含有率は、 5mol%以上 20mol%以下が好ましい。 5mol%未満であると暗黒始動時間が長くなり、 20mol% を超えると、長時間の使用によりガラスバルブが黒ィ匕 (茶褐色化)して輝度の低下を 招いたり、ガラスパルプの強度が低下したりするなどの問題が生じるからである。 また、自然環境保護を考慮した場合、鉛フリーガラスを用いるのが好ましい。ただ、 鉛フリーガラスは、製造過程で不純物として鉛を含んでしまう場合がある。そこで、 0. iwt%以下といった不純物レベルで鉛を含有するガラスも鉛フリーガラスと定義する こととする。
[0030] さらに、ガラス管 22は、その横断面形状が円形に限定するものではなぐ他の形状 、例えば、楕円状であっても良い。
ガラスバルブ 21の内部には、例えば、水銀や希ガス(例えば、アルゴン、ネオン)等 の放電媒体が所定の封入圧で封入されている。なお、これらの放電媒体は、減圧状 態で充填されている。
[0031] ガラスバルブ 21の内面には、蛍光体層 23が形成されている。
蛍光体層 23は、水銀力も放射された紫外線を所定の可視光に変換するためのもの であり、例えば、希土類の蛍光体から構成される。希土類の蛍光体としては、例えば 、赤 (Y O Eu3+)、緑 (LaPO Ce3+, Tb3+)及び青(BaMg Al O Eu2+)を利用で
2 4 2 16 27 きる。
[0032] なお、蛍光体層 23の構成は上記の構成に限定されない。例えば、赤色蛍光体 (Y VO Euj+)、緑色蛍光体(BaMg Al O Eu2+)、青色蛍光体(BaMg Al O Eu +
4 2 lb 27 2 16 27
, Mn2+)等のように 313nmの紫外線を吸収する蛍光体が含まれていても良い。
上記のように 313nmの紫外線を吸収する蛍光体を蛍光体の総重量の 50wt%以 上含む場合には、 313nmの紫外線力 ンプの外部に漏れるのをほとんど防止するこ とができ、このランプを利用してバックライトユニットを構成した場合、前面パネル 16 ( 図 2参照)に用いられている樹脂等が紫外線により劣化することを防止することができ る。特に、前面パネル 16の拡散板 13としてポリカーボネート (PC)樹脂を用いた場合 には、アクリル樹脂を用いた場合よりも 313nmの紫外線により劣化,変色する等の影 響を受けやすい。よって、 313nmの紫外線を吸収する蛍光体を蛍光体層 23に含む 場合には、 PC樹脂の拡散板を用いたバックライトユニットでもバックライトユニットとし ての特性を長時間維持することができる。
[0033] ここで、「313nmの紫外線を吸収する」とは、 254nm付近の励起波長スぺクトノレ(
れた 励起波長スペクトルとは、蛍光体を波長変化させながら励起発光させ、励起波長と発 光強度をプロットしたものである。)の強度を 100%としたときに、 313nmの励起波長 スペクトルの強度が 80%以上のものと定義する。すなわち、 313nmの紫外線を吸収 する蛍光体とは、 313nmの紫外線を吸収して可視光に変換できる蛍光体である。
[0034] なお、波長 313nmの紫外線を吸収する蛍光体の例は次の通りである。
'青色蛍光体 ' ' 'BaMg Al O : Eu2+、Sr (PO ) CI :Eu (Sr, Ca, Ba) (P
2 16 27 10 4 6 2 10
O ) CI: Eu2+、 Ba Sr Eu Mg Mn Al O (但し、 x,y,zはそれぞれ 0≤x≤0. 4
4 6 2 1-x-y X y 1 - z z 10 17
, 0. 07≤y≤0. 25, 0. l≤z≤0. 6なる条件を満たす数であり、 zは 0. 4≤z≤0. 5 であることが特に好ましい。 )
'緑色蛍光体' · -BaMg Al O : Eu2+, Mn2+、 MgGa O : Mn CeMgAL O :
2 16 27 2 4 11 19
Tb3+
•赤色蛍光体 · ' ·Υνθ: Eu3+
4 、YVO: Dy3+(緑と赤の発光)
4
なお、一種類の発光色に対して、異なる化合物の蛍光体を混合して用いるとしても 良い。例えば、青色に BAMのみ、緑色に LAP (313nmを吸収しなぃ。)とBAM : M η 赤色に YOX(313nmを吸収しない。)と YVO: Eu3+の蛍光体を用いても構わな
4
い。
[0035] 電極 28, 30は、図 3の(a)に示すように、一端が塞がった円筒状をした電極本体 28 a, 30aと、当該塞がった端壁に一端が固着されたリード線 28b, 30bとを備える。な お、電極 28, 30ίま、互 ヽに同じ構成をして ヽる。
電極本体 28a, 30aは、ここでは、ホロ一型を利用し、円筒状の内面に電子放射物 質であるェミッタが塗布されている。なお、電極本体 28a, 30aは、例えば、ニッケル、 ニオブ、タンタル、モリブデン、タングステン等の金属により形成されており、また、エミ ッタには、例えば、バリウム、ストロンチウム、カルシウム等の炭酸塩の他、アルカリ金 属酸化物やアルカリ土類金属酸化物が用いられる。
[0036] リード線 28b, 30bは、筒状の電極本体 28a, 30aよりも細ぐ材料として、例えば、タ ングステンが用いられている。電極 28, 30のガラスバルブ 21の端部 21a, 21bへの 封着は、例えば、図 3の(a)〖こ示すよう〖こ、ガラスビード 44, 46の貫通孔 44a, 46aに リード線 28b, 30bが気密状に挿着された状態で、ガラスビード 44, 46の外周とガラ スバルブ 21の端部 21a, 21bの内周とを封止することで行われる。
[0037] 放熱体 32, 34は、電極本体 28a, 30aの形状と同じような、中央部に貫通孔を有す る端壁 32a, 34aを一端に有する筒状をし、前記貫通孔にリード線 28b, 30bの他端 が挿着されている。なお、放熱体 32, 34には、例えば、リード線 28b, 30bと同じタン ダステンを利用することができる。
この放熱体 32, 34の端壁 32a, 34aの外面力 リード線 28b, 30bの延伸方向の外 方から見たときに、図 3の (b)に示すように、リード線 28b, 30bを包囲する状態でガラ スバルブ 21の端面(実際にはガラスビード 44, 46の端面であるが、ガラスビード 44, 46はガラスノ レブ 21に含まれるものとしている。)に面接触している。つまり、リード線 28b, 30bの軸心が延出する方向(以下、「軸心方向」ともいう。)の外方力も接触して ヽる咅分を見ると、放熱体 32, 34の端壁 32a, 34aは、リード線 28b, 30bの周り(周 方向)を全周に亘つて(放熱体 32, 34の端壁 32a, 34aの外面の略全範囲に亘つて )ガラスバルブ 21の端面 21 c, 21 dと接触して!/、る。
[0038] なお、放熱体 32, 34の外径 D2をガラスバルブ 21の外径 D1よりも小にすることで、 放熱体 32, 34の端壁 32a, 34aにおける外面の全範囲をガラスバルブ 21の端面 21 c, 21dに略接触させることができる。但し、ランプ点灯時の放熱体 32, 34の放熱特 性を考慮すると、放熱体 35, 36の外径 D2が大きくなる程、放熱面積が広がり、放熱 特性も良くなる力 ランプ 20よりも放熱体 32, 34の方が太くなると、ノ ックライトュ-ッ トの厚肉化を招く。従って、放熱体 32, 34の外径 D2は、ガラスバルブ 21の外径 D1 と略同等若しくはそれ以下が好まし 、。
[0039] 4.作用効果
(1)リード線の折損
上記構成のランプ 20は、リード線 28b, 30bの一端に設けられた放熱体 32, 34の 端壁 32a, 34aが、ガラスバルブ 21の端面 21c, 21dに面接触しているので、例えば 、ランプ 20を筐体 10の内部に組み込む際に、放熱体 32, 34が筐体 10の壁面等に 接触しても、リード線 28b, 30bが変形して折損するようなことを無くすることができる。
[0040] (2)放熱特性
上記構成のランプ 20では、点灯した際に、リード線 28b, 30b及び電極本体 28a, 30aで生じた熱を、リード線 28b, 30b力もガラスビード 44, 46を介して放熱体 32, 3 4に伝えることができる他、リード線 28b, 30bからも直接放熱体 32, 34に伝えること ができる。このため、放熱体 32, 34に伝わる熱量は、例えば、従来の放熱体がガラス バルブと離れているような場合に比べて多くなり、その分、電極本体 28a, 30aの温度 上昇を抑制できる。
[0041] また、放熱体 32, 34は円状をしているため、その外周面力も放熱するだけでなぐ 内周面からも放熱できるので、リード線 28b, 30bを伝わってきた熱を効率良く放熱で きる。さらに、放熱体 32, 34の外径 D2とガラスバルブ 21の外径 D1とを略同じにして いるため、ランプ 20の大型化を招くことなぐ上記効果が得られる。
<第 2の実施の形態 >
第 1の実施の形態では、放熱体 32, 34及びリード線 28b, 30bに給電部 40, 42を 接触させることで、ランプ 20に電流を供給している。第 2の実施の形態では、ガラスバ ルブの端部に給電部を設け、ランプの筐体への装着及び給電をソケット方式で行つ ている。
[0042] 1.バックライトユニットの構成
図 4は、第 2の実施の形態におけるノ ックライトユニット 100の概略斜視図であり、内 部の様子が分力るように一部を切り欠 、て 、る。
ノ ックライトユニット 100は、第 1の実施の形態と同様に、筐体 110と、前面パネル( 図示省略)と、複数のランプ 120と、複数のランプ 120を点灯する点灯回路 160 (図 5 を参照)とを備える。
[0043] 筐体 110は、図 4に示すように、筐体 110の底壁 110aに設けられ且つは各ランプ 1 20の取り付け位置に対応して配置された一組の U字状のランプホルダー 130, 132 と、例えば、筐体 110の外部に取り付けられ且つランプホルダー 130, 132に接続さ れた各ランプ 120を点灯させるための点灯回路 160 (図 5参照)とから構成されている 。なお、ランプ 120は、ガラスバルブ 121の端部外周に給電部 124, 126が設けられ 、この給電部 124, 126を介して前記ランプホルダー 130, 132から電力の供給を受 ける。
[0044] ランプホルダー 130, 132は、導電性を有する材料、例えば、ステンレス、りん青銅 等の板材を折り曲げて形成したものである。そして、各ランプホルダー 130 (, 132) は、挟持板 130a, 130b (132a, 132b)とそれら挟持板 130a, 130b (132a, 132b )をその下端縁で連結する連結片 130c (132c)とからなる。
[0045] 挟持板 130a, 130b及び挟持板 132a, 132bには、ランプ 120の給電部 124, 12 6の外形に合わせた凹部が設けられており、その凹部内にランプ 120の給電部 124, 126を嵌め込むことにより、挟持板 130a, 130b及び挟持板 132a, 132bの板ばね 作用によって、各ランプ 120が各ランプホルダー 130, 132に保持されるとともに、ラ ンプホノレダー 130, 132と給電咅 124, 126と力 ^電気的に接続される。
[0046] なお、ランプホルダー 130, 132の保持部分の幅 DLは、ランプ点灯時のコロナ放 電の発生を抑制するために、ランプ 120の両端部の外側に設けられた給電部 124, 126の領域内で保持できる寸法に設計している。
図 5は、バックライトユニット 100が備える点灯回路 160の一例を示し、図 5の(a)が 点灯回路 160を示す図で、図 5の (b)が点灯回路 160に接続された各ランプ Laの接 続関係を示す図である。
[0047] ノ ックライトユニット 100に設けられた各ランプ 120には、図 5に示す点灯回路 160 からランプホルダー 130, 132を介して電力が供給される。
ここでは、ランプホルダー 130, 132により、複数本のランプ 120のそれぞれが所定 の間隔を保って略平行に保持され、かつ、隣り合う 2本のランプ 120における一方の 給電部 126 (図 5の(b) (c)においてはランプ Lai, La2及びランプ La7, La8等の給 電部 126)を保持するランプホルダー 132同士が電気的に接続されて!ヽる。
[0048] その結果、例えば、 2本の直管状のランプ Lai, La2により、疑似屈曲管 (U字管)を 形成することができる。この構成によれば、インバータ本数を半分に減らすことができ る疑似屈曲部 (U字管)を形成できることに加え、従来の屈曲部を有するランプに比 ベ、ランプ 120の長手方向(軸心方向であり、筐体内の左右両側である。)の輝度む らを少なくでき、かつ、ランプ 120の封着部等の破損を防止し、ランプ 120をワンタツ チで着脱することができる。
[0049] また、両端部に後述の電極 28を有する直管状のランプ 120を、例えば上下方向に 配列しているため、発熱源となる電極 28が片側に集中することがないので、筐体 110 内の左右に温度差が生じることを防止でき、その結果、ランプ 120の水銀蒸気圧の 影響によって発生するノ ックライトユニット 100の輝度むらを抑制することができる。 さらに、ランプホルダー 130, 132と筐体 110との間には、図 4に示すように、ランプ ホルダー 130, 132と筐体 110とを絶縁するポリカーボネートからなる絶縁板 134が 配置されている。
[0050] また、図 5の(b)におけるランプ Laiとランプ La2の給電部 126又はランプ La7とラン プ La8の給電部 126が接続されて!、るランプホルダー 132は、それら 1つ 1つを金属 基板 132dに溶接したものである。
なお、このランプホルダー 132は、各ランプ 120に対応するように U字状のランプホ ルダー 132の 1つ 1つを金属基板 132dに溶接した複数の部品で構成されたものであ る力 これに限らず、周知の方法により、 1枚の板から各挟持板 132a, 132bを切り起 こした 1部品の構成のものでも良い。
[0051] 次に、点灯回路 160についての一例を説明する。
点灯回路 160は、図 5の(a)に示すように、直流電源 (V )、直流電源 (V )に接
DC DC
続されたスィッチ素子 Ql, Q2及びコンデンサ C2, C3、スィッチ素子 Q1とスィッチ素 子 Q2の接続点とコンデンサ C2とコンデンサ C3の接続点との間に接続された昇圧ト ランス Tl, T2 (又は昇圧トランス T7, Τ8)、スィッチ素子 Ql, Q2を交互に ON— OF Fさせるためのゲート信号を供給するインバータ制御 IC力も構成されたものである。
[0052] また、トランス 2次側にぉ 、ては、(b)に示すように、トランス 2次側漏れインダクタン スと、トランス出力と筐体 110の内面及びランプに発生する寄生容量により直列共振 回路を形成し、点灯回路 160は、隣り合う 2本のランプ Lai, La2に位相差を略 180 度とした正弦波電流を供給する。
なお、複数本のランプ Laの接続は、図 5の (b)に示すように、隣り合う 2本のランプ L al, La2の一方の給電部 126を保持するランプホルダー 132同士が接続され、疑似 屈曲管 (U字管)を形成する形態に限らず、図 5の (c)に示すように、ランプホルダー が隣り合う 2本のランプ Laの一方同士の給電部 124又は他方同士の給電部 126を交 互に接続するものであって、複数本が配列されたランプ La (例えば、隣り合う 2本のラ ンプ Lai, La2、隣り合う 2本のランプ La2, La3、隣り合う 2本のランプ La3, La4や隣 り合う 2本のランプ La9, LalO、隣り合う 2本のランプ LalO, Lal l、隣り合う 2本のラ ンプ Lai 1, Lal2等であり、以降、説明を分力りやすくするため、隣り合う 2本のランプ Lai, La2、隨り合う 2本のランプ La2, La3、隨り合う 2本のランプ La3, La4【こつ!/、て のみ説明する。)において、隣り合う 2本のランプ Lai, La2の給電部 126同士、次に 隣り合う 2本のランプ La2, La3の給電部 124同士及び次に隣り合う 2本のランプ La3 , La4の給電部 126同士の順に接続するように、ランプホルダー 130, 132を千鳥状 に配置したものでも良い。
[0053] なお、この場合は、図 5の(c)に示すように、ランプ Laiとランプ La2等の給電部 126 同士は、これらのランプホルダー 132同士が金属基板 132dを介して接続され、また ランプ La2とランプ La3等の給電部 124同士は、これらのランプホルダー 130同士が 金属基板 130dを介して接続される。
この構成によれば、さらにインバータ本数を少なくすることができると共に、ランプホ ルダー 130, 132による千鳥状に配置するだけでハーネス処理ができ、つまり、各ラ ンプホルダー 130, 132に対して点灯回路からの配線処理を行う必要がないので、 ハーネス処理を軽減することができる。
[0054] 2.ランプの構成
図 6は、第 2の実施の形態に係るランプ 120の端部の拡大断面図である。なお、第 1の実施の形態と同様の構造のものは、同じ符号を付している。
ランプ 120は、第 1の実施の形態と同様に、ガラスノ レブ 21と、ガラスバルブ 21の 端部 21a (, 21b)に封着された電極 28 (, 30)と、ガラスノルブ 21の端部 21a (, 21b )よりも外方に張り出し且つガラスノ レブ 21の端部 21a (, 21b)を被覆する被覆体 12 5 (, 125)と、当該給電部 124, 126の内部であってガラスノルブ 21の端面 21c (, 2 Id)カも延出するリード線 28b (, 30b)に設けられた放熱体 128 (, 128)とを備える。
[0055] 被覆体 125内に導電材料である放熱体 128 (, 128)が充填され、被覆体 125 (, 1 25)とリード線とが電気的に接続されたものを給電部 124 (, 126)として 、る。
なお、図 6では、ランプ 120の一端側(給電部 124側)のみが表れているが、他端側 にも、第 1の実施の形態と同様の電極が設けられ、前記一端側と同様の、被覆体 12 5と放熱体 128と力もなる給電部 126が設けられている。また、ガラスバルブ 21の内 部には、第 1の実施の形態と同様に、水銀、希ガス等が封入され、ガラスバルブ 21の 内面には蛍光体層 23が形成されている。
[0056] 電極 28 (, 30)は、第 1の実施の形態と同様に、電極本体 28a (, 30a)と、リード線 2 8b (, 30b)とを備える。放熱体 128 (, 128)は、被覆体 125 (, 125)の内部であって、 ガラスバルブ 21の端面 21c (, 21d)から被覆体 125 (, 125)におけるランプの軸心 方向の外方側端までの領域に亘つて、例えば、半田を充填することで構成されてい る。なお、放熱体 128 (, 128)は、リード線 28b (, 30b)を略中央に埋設する状態で 形成され、また、放熱体 128 (, 128)の端部 128a (, 128a)力 ^ガラスノルブ 21の端 面 21c (, 21d)に面接触している。
[0057] 放熱体 128, 128は、上述のように導電性を有する材料(半田)が使用され、被覆 体 125, 125は、ランプホノレダー 130, 132にランプ 120を装着したときに、ランプホ ノレダー 130, 132力ら給電を受け、これにより電極本体 28a, 30aに電流力 S流れる。 なお、被覆体 125, 125は、このように電流を流す必要があり、通電性の良い材料( 金属)が使用される。
[0058] 3.作用効果
(1)リード線の折損
上記第 2の実施の形態に係るランプ 120では、リード線 28bを内部に埋没状態で備 える放熱体 128 (, 128)がガラスバルブ 21の端面 21c (, 21d)に面接触しているの で、第 1の実施の形態と同様に、例えば、ランプ 120を筐体 110内に装着する際に、 放熱体 128 (, 128)付近が筐体 110等に接触しても、リード線 28b (, 30b)が折損す るようなことを少、なくすることができる。
[0059] (2)放熱特性
上記構成のランプ 120では、点灯した際に、リード線 28b (, 30b)及び電極本体 28 a (, 30a)で生じた熱を、リード線 28b (, 30b)からガラスビード 44 (, 46)を介して放 熱体 128 (, 128)に伝えることができる他、リード線 28b (, 30b)からも直接放熱体 12 8 (, 128)に伝えることができ、さらには、放熱体 128 (, 128)及びガラスビード 44 (, 46)力も被覆体 125 (, 125)に伝えることができる。
[0060] このため、放熱体 128 (, 128)や被覆体 125, 125に伝わる熱量は、従来のように、 放熱体がガラスバルブと離れて 、る (ガラスバルブと接触して 、な 、。 )場合に比べて 多くなり、その分電極本体 28a (, 30a)の温度上昇を抑制することができる。
<第 3の実施の形態 >
第 2の実施の形態に係るランプ 120は、ガラスバルブ 21、電極 28 (, 30)、給電部 1 24, 126を備えていた力 例えば、他の部材を備えても良い。
[0061] 第 3の実施の形態では、他の部材としてヒューズを備える場合について説明する。
.構成
図 7は、第 3の実施の形態に係るランプ 200の端部の拡大断面図である。 まず、第 3の実施の形態に係るランプ 200は、ガラスバルブ 202、電極 204、被覆体 207、放熱体 208、ヒューズ 220を有する。
[0062] 電極 204は、ここでは、電極本体 212とリード線 214とを供え、リード線 214は、大径 部 214aと、当該大径部 214aよりも細い小径部 214bと力もなる。大径部 214aは、リ ード線 214における電極本体 212の接続部分からガラスバルブ 202の封止部 202a の外方端までの領域に形成され、また、小径部 214bは、ガラスバルブ 202から外部 に延出して 、る領域に形成されて 、る。
[0063] リード線 214の外方端、つまり、小径部 214bの外方端には、ヒューズ 220が取着さ れている。なお、リード線 214とヒューズ 220とは電気的に接続されている。
ヒューズ 220は、図 7に示すように、半田体 222を介して一対の端子リード線 224, 2 26が接続してなり、端子リード線 224がリード線 214に略同一線上に接続されている 。なお、リード線 214と端子リード線 224との接続は、例えば、溶接により行なっている
[0064] 半田体 222と、当該半田体 222と各端子リード線 224, 226との接続部分とは、ロジ ン 228により被覆され、また、半田体 222は、絶縁ケース 230により密閉されている。 絶縁ケース 230は、筒体 232と、当該筒体 232の両端の開口を塞ぐ蓋体 234a, 234 bとからなる。
ここで、端子リード線 224, 226は、例えばニッケル線で構成され、半田体 222は、 組成が、例えば、 Sn: 96. 5%、 Ag : 3. 0%、 Au: 0. 5%の半田で構成され、当該半 田の融点は約 220°Cである。筒体 232は、例えばセラミック製であり、蓋体 234a, 23 4bは、例えば榭脂(エポキシ榭脂)製である。
[0065] 被覆体 207は、第 2の実施の形態と同じように、金属製スリープを利用し、ガラスバ ルブ 202の端部からその一端が張り出すように、前記ガラスバルブ 202の端部(202 a)を被覆している。
被覆体 207の内部であって、ガラスバルブ 202の端部(202a)から張り出している 部分には、絶縁空間 236を除いて、例えば半田力もなる放熱体 208が充填されてい る。これにより、放熱体 208は、端子リード線 226と給電部 206との通電性を確保し、 またこれらにより、給電部 206が構成される。
[0066] なお、絶縁空間 236を設ける理由は、リード線 214の小径部 214b及び端子リード 線 224と力も放熱体 208を介して被覆体 207に電流が流れるのを防止して、ヒューズ 220内の半田体 222に電流を流すようにするためである。
半田体 222は、当該半田体 222を流れる電流が所定値を超えて過電流となると溶 断し、これにより給電部 206から電極 204への給電 (通電)が遮断される。
[0067] 図 8は、ヒューズ 220内の半田体 222が溶断した際の図である。
半田体 222に過電流が流れると、図 8に示すように、半田体 222が溶断して、半田 2 22aと半田 222bに分裂する。分裂した半田 222aと半田 222bとはそのままロジン 22 8によって覆われる。
このロジン 228は絶縁性材料であるので、端子リード線 224と端子リード線 226とは 電気的に絶縁状態となる。この状態で給電部 206に電圧が印加されたとしても、給電 部 206と、リード線 214とは電気的に絶縁状態であるため、リード線 214に電流が流 れることはない。
[0068] また、半田 222a, 222bは絶縁性のロジン 228によって覆われているため、溶断後 の半田 222aと半田 222bとの間で放電(コロナ放電)が生じないので、オゾンの発生 が防止される。
半田 222a, 222bがロジン 228によって覆われずに当該ロジン 228から露出し、半 田 222a,222b間で仮に放電が生じた場合であっても、端子リード線 224, 226と半 田 222a, 222bとの接合部近傍の空間は、絶縁ケース 230によって密閉されている ため、前記放電によって大気中の酸素がオゾンに変化することはない。従って、ォゾ ンの生成が防止されることになる。
[0069] なお、第 3の実施の形態では、被覆体 207は、スリーブ状であつたが、他の形状、 例えば、キャップ状をしていても良ぐ第 3の実施の形態の変形例として簡単に説明 する。
図 9は、第 3の実施の形態の変形例を示す図である。
変形例に係るランプ 250は、第 3の実施の形態と同様に、ガラスノ レブ 202、電極 2 04、被覆体 253、放熱体 208、ヒューズ 220を有する。
[0070] 被覆体 253は、図 9に示すように、キャップ状をし、筒部 253aと、当該筒部 253aの 一端を塞ぐ底部 253bとからなる。本例では、ヒューズ 220におけるリード線 214と接 続されない端子リード線 254力 被覆体 253の底部 253bの貫通孔に嵌合されている 。なお、端子リード線 254と被覆体 253とは、電気的に接続されていても良いし、接続 されていなくても良い。
[0071] 2.放熱効果
発明者らは、放熱体の効果について確認試験を行なった。具体的には、後述する 変形例 4で説明する図 17で示す電極のリード線 350 (外部リード部 354)を放熱体 34 3の端面まで伸ばしたランプを用いて試験を行った。
試験に用いたランプの基本構成について説明する。ガラスバルブ 342の外径 Rが 3 . Omm、ランプの全長が 417mmである。電極のリード線 350のうち、内部リード部 35 2の外径が 1. Omm、外部リード部 354の外径 0. 8mmである。被覆体 345の全長は 7. 5mmで、ガラスバルブ 342に被覆体 345を被覆した状態で形成される残存空間 全てに放熱体 343が設けられている。
[0072] なお、電極本体 348は、ニッケル製であり、リード線 350のうち、内部リード部 352は タングステン製で、外部リード部 354はニッケル製である。放熱体 343は、半田で構 成され、また被覆体 345は、鉄 'ニッケル合金製である。
試験では、被覆体 345のガラスノ レブ 342の端面からの張り出し量、つまり、図 17 の「L」が、 0. 5mm、 1. Omm、 1. 5mmの 3種類のランプが製作され、これらのラン プを用いて、ランプ電流と電極本体の温度との関係を測定し、放熱体の効果を確認 した。 [0073] 図 10は、ランプ電流 Ilaと電極温度 Tとの関係を示す。
図 10では、図 17の「L」が 0. 5mmのランプの結果を「〇」で、 1. Ommのランプの 結果を「口」で、 1. 5mmのランプの結果を「△」で示している。なお、上記放熱体の 効果を確認するために、スリーブと放熱体とを備えず且つ外部リード部の長さが 1. 5 mmのランプについても同様の試験を行い、図 10に「X ref」で示している。
[0074] 放熱体を備えたランプと、被覆体及び放熱体を備えな ヽランプとも、ランプ電流 Ila の増加に伴って、電極温度 Tが上昇している。しカゝしながら、放熱体を備えたランプと 、被覆体及び放熱体を備えないランプとを比較すると、明らかに、放熱体を備えるラ ンプの方が、ランプ電流 Ilaの増加に伴う電極温度 Tの上昇が少な 、(温度勾配が小 さい。)ことが分かる。
[0075] また、放熱体を備えるランプ同士を比較すると、ランプ電流 Ilaの増加に伴う温度上 昇が略同じあることが分かる。これは、ガラスバルブの端面力もの被覆体の張り出し量 (「L」である。)が上記試験の範囲で変化しても、放熱体とガラスバルブとの接触面積 が変化しないため、その放熱効果に大きな差異がな力つたものと考えられる。
本発明に係るランプは、点灯時のランプ電流 Ilaが、 5mA以上 12mA以下の範囲 で使用されることが好ましい。これは、ランプ電流 Ilaが 5mAより小さい場合は、放熱 体の効果が得られない(つまり、放熱体を備えないランプと放熱特性が同じである。 ) ためである。一方、ランプ電流 Ilaが 12mAより大きい場合は、電極の温度が高くなり すぎ、放熱体を構成する半田が溶融するおそれが生じる力もである。
[0076] なお、上記ランプ電流 Ilaは、 5mA以上 9. 5mA以下の範囲で使用されることがよ り好ましい。これは、ランプ電流 Ilaが 5mAより小さい場合は、上述した通りである。一 方、ランプ電流 Ilaが 9. 5mAより大きい場合は、電極温度 Tが 130°C以上となり、ス ノ ッタによる電極本体の消耗が激しくなり、またランプ効率が低下するからである。
[0077] 以上、本発明を各実施の形態に基づいて説明した力 本発明の内容が、上記の各 実施の形態に示された具体例に限定されないことは勿論であり、例えば、以下のよう な変形例をさらに実施することができる。
<変形例>
1.放熱体について (1)形状
各実施の形態では、放熱体におけるガラスバルブ側の端面は平坦状をしている。こ れは、ガラスバルブ (ガラスビード)の端面がガラスバルブの軸心と略直交するような 平坦な形状をしており、この平坦な端面に面接触させるために平坦状となっている。 なお、面接触させる理由は、放熱体とガラスバルブとの接触面積を広くするため及び リード線の変形を防止するためである。
[0078] し力しながら、ガラスバルブの端面の形状は、ガラスノ レブの軸心に直交する平坦 な形状だけでなく他の形状の場合もある。このような場合は、放熱体のガラスバルブ 側の端面形状は平坦な形状でなぐガラスバルブの端面の形状に合わせ、放熱体を ガラスバルブの端面に面接触させるのが好ましい。以下、放熱体の形状についての 変形例について説明する。
[0079] (1 1)変形例 1
図 11は、変形例 1に係るランプ 300の端部を示す拡大図である。なお、変形例 1で は、ランプ 300の一方の端側について説明するが、他端側の構造も一端側と同じで ある。
変形例 1に係るランプ 300も、第 1〜第 3の実施の形態と同様に、ガラスバルブ 302 、電極 28及び放熱体 304を備える。
[0080] 電極 28は、第 1〜第 3の実施の形態と同様に、電極本体 28aとリード線 28bとを備 え、リード線 28bがガラスビード 306を介して、ガラスバルブ 302の端部に封着されて いる。ここでも、ガラスバルブ 302は、ガラス管 308と、ガラスビード 306とからなる。 ガラスバルブ 302は、基本的には、第 1〜第 3の実施の形態と同じである力 ガラス ビード 306の形状が、第 1〜第 3の実施の形態で説明したものと異なり、外方に張り出 す円弧状をしている。これにより、ガラスバルブ 302の端面 302aが、ガラスビード 306 の端面形状と同様に円弧状をしている。
[0081] 放熱体 304は、第 1〜第 3の実施の形態と同様に、電極 28のリード線 28bにおける ガラスバルブ 302の外部に位置する部分に設けられている。
図 12は、放熱体がガラス部材の端面に接触している部分を示す図である。 放熱体 304は、図 11に示すように、略柱状をし、そのガラスバルブ 302側の端が、 ガラスバルブ 302の端面 302aの円弧状の曲率よりも小さい曲率で円弧状に凹入す る形状に形成されている。そして、図 12に示すように、放熱体 304が、リード線 28bを 中心とした所定の半径 (で所定の幅を持って)の円周上でガラスバルブ 302の端面 3 02aと接触(面接触)して 、る(図 12の接触部である。 )。
[0082] つまり、放熱体 304は、リード線 28bの延伸方向の外方から見たときに、リード線 28 bを中心としてその周りを全周に亘つて(リード線 28bを包囲する状態である。)ガラス バルブ 302の端面 302aと面接触し、特に面接触している部分は、図 12に示すように 、リード線 28bの延伸の外方から見たときに、リード線 28bが内部中央に位置する仮 想三角形 X2の頂点を含んで 、る。
[0083] これにより、例えば、ランプ 300を筐体内に組み込む際に、放熱体 304が周辺部材 と接触した場合でも、リード線 28bの変形を抑制できる。言うまでもなぐランプ点灯時 に発生する熱を電極 28から放熱体 304に効率的に伝えることもできる。
このような放熱体 304のガラスバルブ 302への装着は、例えば、ガラスバルブ 302 の端部を若干溶融する程度にまで加熱した状態で、所定の曲率の円弧に凹入する 型を加熱部分に押し当てて、ガラスノ レブの 302の端部形状を所定の円弧状にまず 仕上げ、予め製造しておいた放熱体 304にあるリード線用の孔(穴) 304bをリード線 28bに焼き嵌めると共に放熱体 304の端面 304aをガラスバルブ 302に押し当てるこ とにより挿着することで実施できる。
[0084] なお、変形例 1では、放熱体 304は、図 12に示すように、ガラスバルブ 302の端面 302aに面接触している力 例えば、リード線を中心としてその周りを全周に亘つてガ ラスバルブの端面に線接触していても、変形例 1における放熱効果よりも劣るものの、 同様に放熱効果が得られる。つまり、この場合の電極から放熱体に伝える熱量は、上 記変形例 1のように放熱体 304がガラスバルブ 302に面接触している場合よりは少な V、ものの、放熱体がガラスバルブに接触して!/、な!/、ものよりは多!、。
[0085] (1 2)変形例 2
図 13及び図 14は、変形例 2に係るランプ 310の端部を示す拡大図である。なお、 変形例 2では、ランプ 310の一方の端側について説明するが、他端側の構造も一端 側と同じである。 図 13は、ガラスバルブの端部を圧潰封止する圧潰方向と垂直な面における断面を 圧潰方向から見た図であり、図 14は、ガラスバルブの端部を圧潰封止する圧潰方向 と平行な面における断面を圧潰方向と垂直な方向力 見た図である。
[0086] 変形例 2に係るランプ 310も、第 1〜第 3の実施の形態及び変形例 1 (以下、実施の 形態や変形例等を含めていうときは、「実施の形態等」とする。)と同様に、ガラスバル ブ 312、電極 28及び放熱体 314を備える。
電極 28は、実施の形態等と同様に、電極本体 28aとリード線 28bとを備え、電極本 体 28aがガラスバルブ 312内に挿入された状態でガラス管 316の端部を圧潰すること により、電極 28がガラスバルブ 312に封着される。なお、ここでは、ガラスバルブ 312 は、ガラス管 316からなる。
[0087] ガラスバルブ 312は、ガラス管 316の端部 316aが圧潰封止(封止部を「316b」で 示している。)されているので、端部形状が、上記で説明した実施の形態等における ガラスバルブと異なる。
放熱体 314は、電極 28のリード線 28bにおけるガラスバルブ 312の外部に位置す る部分であって、ガラスバルブ 312 (ガラス管 316)の端面 316cに接触するように設 けられている。
[0088] 放熱体 314は略柱状をし、そのガラスバルブ 312側の端面 314aは、ガラスバルブ 3 12の端面 316cの形状に合わせて、ガラスバルブ 312の封止部 316bに対応する部 分が凹入する形状をしている。
図 15は、放熱体がガラスバルブの端面に接触している部分を示す図である。
放熱体 314は、図 15に示すように、ガラスバルブ 312の封止部 316bを挟んで対向 する状態(図では上下に対向する状態である。)で、ガラスノ レブ 312の端面 316cと 封止部 316bとに面接触している。そして、面接触している部分は、図 15に示すよう に、リード線 28bの延伸の外方力も見たときに、リード線 28bを包囲している。つまり、 面接触している部分は、リード線 28bが内部中央に位置する仮想四角形 X3の頂点 を含んでいる。
[0089] これにより、例えば、ランプを筐体内に組み込む際に、放熱体 314が周辺部材と接 触した場合でも、リード線 28bの変形を抑制できる。言うまでもなぐランプ点灯時に 発生する熱を電極 28から放熱体 314に効率的に伝えることもできる。
このような放熱体 314は、例えば、放熱体 314の外径寸法を内径に有するリング状 の成形型をガラスバルブ 312の端部に配置し、溶融した半田を成形型に充填させ、 半田をかためることで実施できる。
[0090] (1 3)その他
第 2の実施の形態におけるランプのガラスバルブとして、例えば、変形例 1及び変 形例 2におけるガラスバルブを利用することもできる。この場合、放熱体は、第 2の実 施の形態や第 3の実施の形態等で説明したものを使用しても良いし、変形例 1で説 明したものを使用しても良い。さらに、変形例 1及び変形例 2について、ガラスバルブ の端部に、第 2の実施の形態や第 3の実施の形態等における給電部を設けても良い
[0091] (2)リード線との関係
実施の形態等における放熱体は、リード線と別体であつたが、一体であっても良い 。例えば、放熱体をリード線と同じ材料で構成し、リード線における電極本体と反対側 の端部に、上記実施の形態及び変形例等で説明した放熱体と同じ構成のものを形 成しても良い。なお、リード線と放熱体とを別体で構成する場合、両者の材料は異な つていても良いし、同じであっても良い。
[0092] (3)放熱体とガラスバルブとの接触につ!、て
実施の形態等では、放熱体とガラスノ レブとの接触している部分が、リード線の延 伸の外方力 見たときに、リード線が内部中央に位置する仮想多角形の頂点を含む ように、放熱体とガラスバルブとを面接触又は線接触させることで、ランプの端部に何 力が接触した場合でもリード線が変形し難いようにしているが、リード線の変形を単に 抑えるだけであれば、放熱体とガラスノ レブ力 面接触或いは線接触していなくても 良い。
[0093] 例えば、放熱体が、ガラスバルブの端面に、内部にリード線が位置するに 3点以上 で接触し、当該接触している点を結んでできる仮想の多角形 (三角形以上の多角形 である。)の内部にリード線が位置していれば良い。なお、上記各実施の形態及び各 変形例における放熱体とガラスバルブとの接触点は、上記の 3点が含まれて 、ること は言うまでもない。
2.電極について
上記の第 2の実施の形態における電極のリード線は、略棒状 (段付きがない形状) をしていた力 他の形状をしていても良い。他の形状のものを変形例 3として説明す る。
[0094] 図 16は、変形例 3に係るランプ 320の端部を示す拡大図である。
ランプ 320は、第 2の実施の形態におけるランプ 120と基本的に同じ構成であり、ガ ラスバルブ 21、電極 322、放熱体 128、被覆体 125を備える。
電極 322は、電極本体 324と、当該電極本体 324に接続されたリード線 326とを備 える。リード線 326は、内部リード部 327と、外部リード部 328と、内部リード部 327と 外部リード部 328との間に位置する肉だまり部 329とからなる。
[0095] 内部リード部 327は、ガラスビード 44に装着されている部分と、ガラスビード 44から ガラスバルブ 21の内部に延出している部分とからなる。外部リード部 328は、肉だま り部 329から内部リード部 327の軸心上をガラスバルブ 21の外方へと延出する部分 からなる。
肉だまり部 329は、少なくとも内部リード部 327の外径よりも大きい外径を有している 。肉だまり部 329は、例えば内部リード部 327と外部リード部 328とを溶接接合して、 その部分に形成される。
[0096] 電極 322のリード線 326に肉だまり部 329を備えると、肉だまり部 329から電極本体 324までの寸法を一定にできる。つまり、電極本体 324の底部と対向するガラスビー ド 44の内面との隙間を小さく(例えば、約 0. 5mm)して、ランプとしての有効発光長 を長くすることができる。
なお、肉だまり部 329は外部リード部 328と同じニッケル材料で形成した力 これに 限らず、例えば Fe— Ni合金、 Cu— Ni合金、又はジュメット線の材料等で形成するこ とが考えられる。
[0097] 内部リード部 327は、断面が略円形であって、例えば全長が 3mm、線径が 0. 8m mである。また、内部リード部 327は、肉だまり部 329側の端部がガラスビード 44の端 面に接触する(或いは略接触する。)状態に貫通孔 44aに挿入されて封着され、外部 リード部 328側とは反対側の端部が電極本体 322の底部 322aの外側面略中央に接 合されている。
[0098] 外部リード部 328及び肉だまり部 329は、ガラスバルブ 21の外表面力も軸心方向 に突出する突出部分であって、放熱体 128を介して被覆体 125に接合されている。 この構成により、給電部 124が構成される。そして、外部リード部 328及び肉だまり部 329は、その横断面が略円形であり、両者の合計の軸心方向の全長が例えば lmm であり、外部リード部 328の軸心とガラスバルブ 21の端部における軸心とが略一致し ている。
[0099] 外部リード部 328及び肉だまり部 329の軸心方向の合計の全長は、ランプ全長の サイズを考慮すると lmm以下が好適である。また、肉だまり部 329の外径は、ガラス ビード 44と内部リード部 327とが封着している部分 (以下、「封着部」ともいう。)の破 損や部品価格を考慮すると内部リード部 327の外径の 1. 5倍〜 4倍が好ましい。 上述したように、ランプ 320を細長くするためにはガラスバルブ 21の外径が 1. 8m m〜6. Ommの範囲内であることが好ましいが、このようなサイズのランプ 320におい て、外部リード部 328及び肉だまり部 329の軸心方向の合計全長力 放熱体 128か ら突出しない、つまり、放熱体 128内に埋設させる長さであれば良い。
[0100] 従って、外部リード部 328が周辺部材等にぶっかって、外部リード部 328を折り曲 げたり、ガラスビード 44と内部リード部 327との封着部を破損させたりすることを防ぐこ とができる。これにより、例えば、ランプ 320をバックライトユニットに取り付ける際に、 外部リード部 328がバックライトユニットの筐体、あるいは筐体内のソケット等にぶっか つて折れ曲がったり、その際に外部リード部 328に加わる応力によってガラスビード 4 4が割れたりするおそれが少な 、。
[0101] また、外部リード部 328が、放熱体 128のより覆われる前に外部の何かとぶつかつ た際、肉だまり部 329に掛力る力がガラスバルブ 21の両端部で吸収されるので、内 部リード部 327が封着されているガラスビード 44等の破損によるリークを防止すること ができる。
3.被覆体、放熱体及び電極について
第 2の実施の形態での放熱体 128は、電極 28が埋没する状態に、スリーブ状の被 覆体 125内に充填させ、また、電極のリード線は 1本で構成されていた力 他の構成 でも良い。他の構成を以下、変形例として説明する。
[0102] (1)変形例 4
図 17は、変形例 4に係るランプ 340の端部を示す拡大図である。
変形例 4に係るランプ 340も、実施の形態等と同様に、ガラスノ レブ 342、電極 344
、放熱体 343及び被覆体 345を備える。
ガラスバルブ 342は、断面が円環状であって、例えば、外径力 mm、内径が 3mm
、肉厚が 0. 5mmである。ガラスノ レブ 342の端部は、電極 344を装着すべく圧潰さ れた封着部 342aとなって ヽる。
[0103] なお、ガラスノ レブ 342の内面には蛍光体層が形成され、また内部に水銀及び希 ガス等が封入されている。
電極 344は、所謂ホロ一型であって、電極本体 348とリード線 350とで構成され、ガ ラスバルブ 342の封着部 342aに封着されて!、る。
電極本体 348は、ニッケル (Ni)製であって有底筒状をしている。なお、電極本体 3 48は、ニッケル製に限定されず、例えば、ニオブ (Nb)、タンタル (Ta)、モリブデン( Mo)製にすることが考えられる。
[0104] 電極本体 348は、例えば全長が 5. 2mm、外径が 2. 7mm、内径が 2. 3mm、肉厚 が 0. 2mmである。電極 344は、電極本体 348の軸心とガラスバルブ 21の端部にお ける軸心とが略一致するように配設されており、電極本体 348の外周面とガラスバル ブ 342の内周面との間隔は、電極本体 348の外周全域に亘つて略均一となっている
[0105] 電極本体 348の外周面とガラスバルブ 342の内面との間隔は、具体的には 0. 15 mmである。このように間隔が狭いと、間隔に放電が入り込まず、電極本体 348の内 部のみで放電が起こる。したがって、放電により飛散するスパッタ物質力 ガラスバル ブ 342の内面に付着しにくぐランプ 340は長寿命となる。
一方、前記間隔が狭いと、放電時の電子等が、電極本体 348の裏側、つまりリード 線 350側へ回り込まないため、リード線 350が放電時の電子のスパッタ等によって加 熱されにくくなる。 [0106] なお、電極本体 348の外周面とガラスバルブ 342の内面との間隔は、必ずしも 0. 1 5mmである必要はないが、当該間隔に放電が入り込まないようにするためには 0. 2 mm以下であることが好まし 、。
リード線 350は、タングステン (W)製の内部リード部 352と、半田等に付着し易い- ッケル製の外部リード部 354との継線カゝらなり、内部リード部 352と外部リード部 354 との接合面が、ガラスバルブ 342の外表面と略一致して面一となつている。すなわち 、内部リード部 352は、ガラスバルブ 342の外表面よりも内側に位置し、外部リード部 354は、ガラスバルブ 342の外表面よりも外側に位置する。
[0107] 内部リード部 352は、断面が略円形であって、例えば全長が 3mm、線径が 0. 8m mである。当該内部リード部 352は、外部リード部 354側の端部がガラスバルブ 342 の封着部 342aに封着され、外部リード部 354側とは反対側の端部が電極本体 23の 底部の外側面略中央に接合されている。
放熱体 343は、スリーブ状の被覆体 345の内部であって、ガラスバルブ 342の端面 力も被覆体 345の外方側端縁との間の残存空間に配されている。この放熱体 343は 、半田から構成され、予め所定形状 (前記残存空間に対応する形状)に形成されて いる。
[0108] 放熱体 343は、その軸心に相当する位置に、電極 344の外部リード部 354用の貫 通孔 343aが形成され、当該貫通孔 343aに外部リード部 354が挿入されている。 外部リード部 354は、ガラスバルブ 342の外表面力も軸心方向に沿って突出する突 出部分で放熱体 343と接合されている。当該外部リード部 354は、全長が 1〜: LOmm 、例えば 2mmであり、外部リード部 354の軸心とガラスバルブ 342の軸心とが略一致 している。
[0109] 被覆体 345は、鉄一ニッケルの合金力もなるスリーブ状をしている。
外部リード部 354の全長が 10mmを超えると、外部リード部 354の応力によってガラ スバルブ 342の封着部 342aにクラックが生じることがあり、外部リード部 354の機能を 果たすためには、少なくとも lmm以上は必要である。また、外部リード部 354は、横 断面が略円形であり、線径は内部リード部 352よりも細い、例えば 0. 6mmである。
[0110] なお、本変形例 4においても、給電部 346は、被覆体 345が放熱体 343を介してリ ード線 350と接続することによって構成されている。
上記構成では、被覆体 345にガラスノ レブ 342の端部が直接挿入され、被覆体 34 5の残存空間に存在する放熱体 343を介して外部リード部 354と被覆体 345とが電 気的に接続されているため、放熱体 343がガラスノ レブ 342と当接したとしてもガラ スバルブ 342の端面にぉ 、てであり、特許文献 1のように放熱体がガラスバルブ側面 を覆っていないので、ランプ点灯中において、放熱体 343とガラスバルブ 342との熱 膨張係数の差によってガラスバルブ 342に応力が生じた場合でも、ガラスバルブ 342 にクラックは生じ難 、と 、うメリットがある。
[0111] また、図 17に示す給電部 346 (被覆体 345)の外方側の端面とガラスバルブ 342の 端面との間の長さ Lが長いほど、給電部 346 (放熱体 343)の表面積が増して放熱性 が向上することになる。具体的には、例えば長さ Lはガラスバルブ 342の外径 Rより長 いことが好ましい。
ここで、ランプ 340の製造方法について説明する。
[0112] まず、ガラスノ レブ 342、放熱体 343、被覆体 345を準備する。
図 18は、放熱体 343の構成を説明する図である。
放熱体 343は、図 18に示すように、円柱状をし、その一端の形状がガラスバルブ 3 42の
端面の形状と合うように内方に凹入する形状に形成され、また、軸心に相当する位置 に貫通孔 343aが形成されて 、る。
[0113] この放熱体 343の製造方法について説明する。
最初に、円柱状の半田体を形成する。このとき、円柱半田体の外径を被覆体 345 の内径と略等しくする。そして、円柱半田体の軸心に、外部リード部 354の線径に略 等しい径を有する円柱状の貫通孔 343aを形成する(円柱半田体の軸心と貫通孔の 軸心と略一致することになる。)。さらに、円柱半田体の一方の端面をガラスノ レブの 端面と適合する形状に (機械)加工する (成形工程)。これにより放熱体 343が得られ る。
[0114] つづいて、被覆体 345の取り付け工程について説明する。
被覆体 345の一端力もその中程までガラスバルブ 342の端部(342a)を、例えば被 覆体 345を加熱等して挿入した (焼き嵌め)後、放熱体 343の貫通孔 343aに電極 34 4の外部リード部 354を挿入しながら、放熱体 343を被覆体 345内に、当該放熱体 3 43の端面 343bとガラスノ レブ 342の端面とを密接するまで内挿する。
[0115] 最後に、被覆体 345の軸心方向の略中央部(ガラスバルブ 342と放熱体 343とが 接触する位置に相当する位置である。)に熱を加える。そして、半田からなる放熱体 3 43におけるガラスバルブ 342の端部に近い部分を前記加熱により溶融させて、放熱 体 343とガラスバルブ 342の端面とを密着(固着)させる。
このとき、放熱体 343のガラスバルブ 342側の端面 343bは、ガラスバルブ 342の端 面に適合する形状をし、且つ、放熱体 343におけるガラスバルブ 342側の端部 (端面 を少なくとも含む。)を溶融させているので、ガラスバルブ 342の端面と被覆体 345と の間にできる狭小な隙間にも半田が入り込み、放熱体 343の端面 343bは、ガラスバ ルブ 342の端面に密接させることができる (密接工程)。
[0116] 上記製造方法によって得られたランプ 340では、被覆体 345にガラスバルブ 342が 直接挿入され、被覆体 345の残存空間において外部リード部 354と被覆体 345とが 放熱体 343を介して電気的に接続されている。
このため、放熱体 343がガラスバルブ 342と当接していても、それはガラスバルブ 3 42においてであるため、放熱体 343とガラスバルブ 342との熱膨張係数の差によつ てガラスバルブ 342に応力が生じた場合でも、ガラスバルブ 342にクラックは生じ難 い。
[0117] また、放熱体 343がガラスノ レブ 342の端面に密接した状態で設けられているので 、電極本体 348から発せられた熱が、ガラスバルブ 342、リード線 350、放熱体 343 等を介して被覆体 345へ伝導されて、結果的に被覆体 345から大気中に放熱される ことになり、高い放熱性を有することになる。
なお、上記放熱体 343は、放熱体 343の形状に合わせた金型などを用いて、溶融 状態の半田を流し込む、所謂、铸造により形成しても得られる。
[0118] (2)他の例について
上記変形例 4で説明した以外に、給電部内に配される放熱体として、以下のような ちのち実施でさる。 (2— 1)変形例 4 1
図 19 (a)は放熱体 360の変形例 4— 1を示す図である。
[0119] 図 19 (a)に示すように、変形例 4 1に係る放熱体 360は、本体部 362と半田体 36 4とカゝらなる。本体部 362は、例えば銅カゝらなり、リード線が挿入される貫通孔 362aを 略中央に有する円柱状をして 、る。
本体部 362の一方の端面(図中左側の端面)には、半田体 364が接合されている。 半田体 364は、中央に貫通孔 364aを有する円板状をしており、本体部 362との接合 面とは反対側の面 364aは、ガラスバルブの端面形状に対応する形状を有して!/、る。
[0120] 放熱体 360及びスリーブ状の被覆体のガラスバルブへの装着にっ 、て簡単に説明 する。
まず、被覆体を、例えば焼き嵌め法を利用して、ガラスバルブの端部に装着する。 次に、放熱体 360を、半田体 364の面 364bがガラスバルブの端面に当接するまで 、被覆体内に挿入する。このとき、半田体 364の面 364bは、ガラスバルブの端面に 略適合する形状をしているので、半田体 364、すなわち放熱体 360はガラスバルブ の端面に密接する(或いは密着する部分が広くなる。 )ことになる。
[0121] この状態で、本体部 362の端面や被覆体の外周から、半田体 364が溶融する温度 になるまで熱を加える。半田体 34が溶融すると加熱を止めて自然冷却する。
本方法により被覆体と放熱体 360とをガラスバルブに装着すると、ガラスバルブの 端面と被覆体との間で形成させる狭小な空間にも溶融した半田が入り込むので、放 熱体 360はガラスノ レブとの間に空隙ができることなく接合され、放熱体 360とガラス バルブの端面とが密接した状態になり、放熱特性を向上させることができる。
[0122] 図 19 (a)に示す構成では、製造工程においてガラスバルブと放熱体とを接合する 際に、本体部 362を加熱することによって、ガラスバルブとの接合部となる半田体 36 4に、半田を溶融させるための熱が伝わりやすいという利点がある。
(2— 2)変形例 4 2
図 19 (b)は放熱体 370の変形例 4— 2を示す図である。
[0123] 図 19 (b)に示すように、変形例 4— 2に係る放熱体 370は、本体部 372と半田膜 37 4と力 なる。本体部 372は、変形例 4 1と同様に円柱状をしており、本体部 372の 一方の端面(図中左側) 372aは、ガラスバルブの端面形状に対応する形状を有して いる。
本体部 372の端面 372aには、半田膜 374が塗布されている。半田膜 374は、本体 部 372の端面 372aに略均一な厚みで塗布されているので、半田膜 374の表面 374 aは、ガラスバルブの端面に適合する形状をしている。なお、放熱体 370及びスリー ブ状の被覆体のガラスバルブへの装着については、上記変形例 4 1と同様である。
[0124] 図 19 (b)に示す構成では、図 19 (a)に示す構成と同様に、製造工程においてガラ スバルブと放熱体 370とを接合する際に、放熱体 370の本体部 372を加熱すること によって、ガラスバルブとの接合部となる半田膜 374に、半田を溶融させるための熱 が十分に伝導されるという利点がある。また、半田膜 374を本体部 372の端面 372a に均一な厚さで塗布し、半田膜 374の溶融時に本体部 372をガラスバルブの端部側 に押圧するのみで、半田膜 374の表面 374aがガラスバルブの端面に適合する形状 となるとともに、放熱体とガラスバルブとの接触面積を増加させることができる。もちろ ん製造工程を簡略ィ匕することもできる。
[0125] (2— 3)変形例 4 3
図 19 (c)は、放熱体 380の変形例 4— 3を示す図である。
図 19 (c)に示すように、変形例 4— 3に係る放熱体 380は、本体部 382と半田膜 38 4と力らなる。本体部 382は、変形例 4 1と同様に、銅製の円柱状をしており、本体 部 382の一方の端面(図中左側の端面である。)及びその側面は、半田膜 384によつ て被覆されている。半田膜 384のうち、ガラスバルブの端面に当接する面 384bは、 ガラスバルブの端面に適合する形状に予め加工 (形成)されて ヽる。
[0126] 放熱体 370及びスリーブ状の被覆体のガラスバルブへの装着については、上記変 形例 4—1と同様であり、また、図 19 (c)に示す構成でも、上記変形例 4—1や 4— 2 で説明した同様の効果が得られる。
(3)変形例 5
上記変形例 4では、図 17に示すように、スリーブ状の給電部 346と、半田製の放熱 体 343とを用いてランプ 340を構成した力 他の構成からなるものであっても良い。他 の構成を以下、変形例 5として説明する。なお、被覆体と放熱体とからなるものを「給 電端子」とし、以下、説明する。
[0127] 図 20は、変形例 5に係るランプの一端部を示す拡大断面図である。
図 20 (a)に示すように、変形例 5に係る給電端子 400は、被覆体 402と放熱体 404 とからなり、ガラスバルブ 342の端部に装着されている。放熱体 404は、導体板 406と 半田体 405とを備える。
導体板 406は、例えば被覆体 402と同じ材質である鉄—ニッケル合金カゝらなる。導 体板 406は、外径が被覆体 402の内径に略等しぐまたガラスバルブ 342との当接面 406aがガラスバルブ 342の端面に適合する形状をしている。
[0128] ここで、給電端子 400のガラスバルブ 342への取り付け工程について説明する。は じめに、被覆体 402にガラスバルブ 342の端部を所定の長さ内挿する。つぎに、導体 板 406を、その貫通孔 406bに外部リード部 354を挿通させ、その後、導体板 406が ガラスバルブ 342の端面に密接するまで、半田体 405を被覆体 402に内挿する。
[0129] そして、ガラスノ レブ 342を、その軸心が鉛直方向に向くように配して、被覆体 402 の内壁と導体板 406とで区切られる空間に溶融状態の半田(以下、「溶融半田」とも いう。)を流し込む (この半田が半田体 405となる。 )0被覆体 402及び導体板 406は 熱伝導率が高ぐ溶融半田の熱により高温になるので、被覆体 402と導体板 406とで 形成させる狭小な領域にも溶融半田が流れ込む。
[0130] これにより、導体板 406とガラスバルブ 342とが密接するので、ガラスバルブ 342か ら導体板 406への伝熱効率が高まる。これにより、電極本体 348から発せられた熱が 、導体板 406と連結している被覆体 402 ·半田体 405から大気へ放熱され、結果的に ランプの放熱特性を高めることができる。
ここで、変形例では説明していないが、例えば導体板 406に複数の貫通孔が形成 されていても良い。これにより、形成工程において当該貫通孔に溶融半田が流れ込 むので、導体板 406とガラスバルブ 342の端面との密着性が高まり、ガラスバルブ 34 2から導体板 406への伝熱効果が高まる。なお、貫通孔はその径を 3mm以下、例え ば約 0. 5mmとして複数形成することが好適である。
[0131] また、図 20 (a)における被覆体 402と導体板 406とを予め溶接しておいて、図 20 (b )に示すように、筒状体と導体板とがー体となった被覆体 410を用いて、半田体 408 とから給電端子 412を構成しても良い。なお、この場合は、本発明に係る放熱体は被 覆体 410が該当する。
(4)変形例 6
上記の各実施の形態及び各変形例における被覆体は、主に、スリーブ状をしてい たが、他の形状であっても良い。他の形状を変形例 6として以下説明する。
[0132] 図 21は、変形例 6に係る被覆体 420を示す斜視図である。
変形例に係る被覆体 420は、例えば、 1枚の平板を丸めて、その端部同士を付き合 わせていない形状をしている。つまり、筒状にその長手方向に沿って周方向の一部 にスリット 422を有する形状をして 、る (長手方向と垂直な切断面 (横断面)の形状が C字状をしている。)。
[0133] この被覆体 420を用いて、ガラスバルブの端部に給電端子を設け、被覆体 420と、 リード線とを例えば半田力もなる放熱体で接続する際に、ガラスバルブと半田との間 で生成しうる空隙における気泡がスリット 422から放出されるので、ガラスバルブと放 熱体との間に空隙が生じにくいという効果が得られると考えられる。なお、スリットを有 しないスリーブ状の給電部を利用する場合は、真空雰囲気内で行う等して、隙間内 の気泡を吸引脱泡している。
[0134] 4.バックライトユニットについて
(1)構成
上記各実施の形態で説明したバックライトユニットは、ランプ 20, 120を筐体 10, 1 10の内部に格納し、ランプ 20, 120から液晶画像ユニット 11を直接照射する直下タ イブであった力 他のタイプ、具体的には、ランプを導光板の端縁に配し、ランプから の光を前記導光板で反射させて液晶パネルを照射するエッジタイプでも良 、。なお、 エッジタイプにおけるランプは、直管状でも良ぐ導光板の隣接する端縁に沿うような 「L」字状でも良い。
[0135] (2)変形例 7
第 2の実施の形態における点灯回路 160は、隣り合う 2本のランプに位相差を略 18 0度
としていた力 例えば、隣り合う 2本のランプに同位相の正弦波電流を供しても良い。 以下、この場合を変形例 7として、以下説明する。
[0136] 図 22の(a)が点灯回路 440を示す図で、図 22の(b)が点灯回路 440に接続された 各ランプ Laの接続関係を示す図である。
点灯回路 440は、第 2の実施の形態の点灯回路 160と略同様の構成を有している 。点灯回路 440は、図 22の(a)に示すように、直流電源 (V )、直流電源 (V )に接
DC DC
続されたスィッチ素子 Ql, Q2及びコンデンサ C2, C3、スィッチ素子 Q1とスィッチ素 子 Q2の接続点とコンデンサ C2とコンデンサ C3の接続点との間に接続された昇圧ト ランス Tl, 2T2 (又は昇圧トランス T7, 2Τ8)、スィッチ素子 Ql, Q2を交互に ON— OFFさせるためのゲート信号を供給するインバータ制御 IC力も構成されたものである
[0137] 第 2の実施の形態の点灯回路 160とは、昇圧トランス 2T2, 2T8の 2次側のトランス の接続向きが異なる。これにより、隣り合う 2本のランプに同位相の正弦波電流を供 給することができる。
次にランプの接続について、図 22の (b)を用いて説明する。
本変形例 7では、第 2の実施の形態と同様に、ガラスバルブの端部に給電部を設け 、ランプの筐体への装着及び給電をソケット方式で行っている。ここではランプ、ラン プホルダー、ランプの給電部は、第 2の実施の形態と同じであるため、同じ符号で説 明する。
[0138] 複数本のランプ 120は、ランプホルダー 130, 132により、それぞれが所定の間隔 を保って略平行に接続保持されている。そして、隣り合う 2本のランプ 120における一 方の給電部 126 (図 22の(b)においてはランプ Lai, La2及びランプ La7, La8等の 給電部 126)を接続保持するランプホルダー 132は、それぞれ接地側に接続されて いる。
[0139] また、隣り合う 2本のランプ 120における他方の給電部 124 (図 22の(b)においては ランプ Lai, La2及びランプ La7, La8等の給電部 124)を接続保持するランプホル ダー 130のそれぞれが点灯回路 440の高圧側に接続されて!、る。
この構成においても、第 2の実施の形態と同様の効果が得られうえ、電圧の位相差 を略 0度として 、るので、隣り合う 2つのランプホルダー 130に印加する電圧電位差が 同電位となり、電圧の位相差を略 180度とした場合に比べ、隣り合う 2本のランプ 120 の間隔を小さくすることができる。
[0140] なお、電圧の位相差を略 0度とし、また、ハーネス処理をさらに軽減するために、例 えば、複数のランプ Lal〜La8における一方の給電部 126を接続保持するランプホ ルダー 132が全て接地されている。この接地は、図 22の(b)に示すように、ランプホ ルダー 132側が、各 U字状のランプホルダー 132の 1つ 1つを金属基板 445に溶接 して行われている。
[0141] 5.ランプ形状等について
上記各実施の形態で説明したランプは、直管状をしていたが、他の形状、例えば、 「U」字状、「コ」字状、「W」字状をしていても良い。
ランプの外径については、 5mm以下が好ましい。これは、ランプが細いほど、電極 が細くなり、点灯時の電極の温度が高くなる。特に、ランプの外径が 5mm以下になる と、電極の温度上昇によって電極 (ランプ)の短寿命化及びランプ効率の低下が顕著 となり、電極の放熱特性を向上させる必要が生じるからである。
[0142] また、実施の形態等でのランプは、その横断面形状が略円形をしていたが、他の形 状であっても良い。他の形状のランプを変形例 8として、以下説明する。
図 23は、変形例 8に係るランプ 500の概略図である。
ランプ 500は、図 23に示すように、中央部の横断面形状が楕円状をしたガラス管 5 02の両端部 504, 506が封止されてなるガラスバルブ 508と、このガラスバルブ 508 の両端咅 506に封着された電極 28, 30と、この電極 28, 30の内、前記ガラス バルブ 508の外部に位置する部分に設けられた放熱体 32, 34とを備える。
[0143] なお、本ランプ 500ίま、ガラスノ ノレブ 508を除!ヽて、電極 28, 30、放熱体 32, 34ίま 、第 1の実施の形態のこれらと同じ構成である。
ガラスバルブ 508を構成するガラス管 502は、その中央部の横断面は図 23の(c) に示すように楕円状をし、両端部 504 (506)の横断面は図 23の (b)に示すように略 円状をしている。ここでの中央部とは、少なくともガラスバルブ 508の陽光柱発光部の 内(実質的に陽光柱が発生する領域内である。 )の光取り出し部 (ガラスバルブ 508 の両端から前記箇所に配設された電極本体 28a, 30aのそれぞれの先端間領域部 分における扁平状部である。)をいう。なお、ガラスバルブ 508における光取り出し部 に相当する部分には、蛍光体層 509が形成されている。
[0144] ここで、ランプ 500の各寸法について述べる。ランプ 500の全長 L1は 705mm、陽 光柱発光部の長さ Daは約 680mm、電極部側の円状部分の長さ Db、 Dcはそれぞ れ約 12mm,陽光柱発光部の外周表面積は約 105cm2である。
また、図 23の(c)に示すように、上記略楕円の短外径 aoは 4. 0mm、短内径 aiは 3 . 0mm、長外径 boは 5. 8mm、長内径 biは 4. 8mmである。また、図 23の(b)に示 すように、上記略円形の管外径 roは 5. 0mm、管内径 riは 4. 0mmである。
[0145] この構成によれば、ガラスノ レブ 508の光取り出し部の横断面を扁平状としたこと で、従来の直管状ランプより外周表面積を増大させて最冷点温度の過度な上昇を抑 えることができ、し力も、扁平な形状をした短内径 aiは、長内径 biと同程度の管内径を 有する従来の直管状ランプより短いので、陽光柱プラズマ空間の中心から管内壁ま での距離は実効的に短く保つことが可能になる。このため、ランプ電流を従来より大 きくしても、発光効率を低下しに《することができる。
産業上の利用可能性
[0146] 本発明に係る冷陰極蛍光ランプは、薄型及び大画面用のノ ックライトユニットの光 源として、本発明に係るバックライトユニットは、薄型及び大画面用の表示装置用とし て利用可能である。

Claims

請求の範囲
[1] ガラスバルブと、電極本体とリード線とを有し且つ前記電極本体が前記ガラスノ レ ブの内部に位置する状態で前記リード線が前記ガラスバルブの端部で封着された電 極と、前記リード線の内、前記ガラスバルブの外部に位置する部分に設けられた放熱 体とを備える冷陰極蛍光ランプにおいて、
前記放熱体は、前記リード線の延伸外方力 見たときに、前記リード線を包囲する 状態で前記ガラスバルブの端部外面に接触していることを特徴とする冷陰極蛍光ラ ンプ。
[2] 前記放熱体は一端が塞がった筒状をし、塞がった端面が、前記ガラスバルブの端 面に略面接触していることを特徴とする請求項 1に記載の冷陰極蛍光ランプ。
[3] 前記放熱体は柱状をし、当該端面が、当該ガラスバルブの端面に面接触している ことを特徴とする請求項 1に記載の冷陰極蛍光ランプ。
[4] 前記放熱体は、導電性材料により構成されて!ヽることを特徴とする請求項 1に記載 の冷陰極蛍光ランプ。
[5] 前記リード線は、前記放熱体と一体になつていることを特徴とする請求項 4に記載 の冷陰極蛍光ランプ。
[6] 前記放熱体は導電性を有すると共に、前記リード線と電気的に接続され、
前記ガラスバルブの外周端部には、導電性を有する被覆体が装着され、当該被覆 体と、前記放熱体とが電気的に接続していることを特徴とする請求項 1に記載の冷陰 極蛍光ランプ。
[7] 前記放熱体の前記ガラスバルブ側の面は、前記ガラスバルブの端面に適合する形 状を有すると共に、前記ガラスバルブの端面に接触して ヽることを特徴とする請求項 6に記載の冷陰極蛍光ランプ。
[8] 前記放熱体は半田からなることを特徴とする請求項 6に記載の冷陰極蛍光ランプ。
[9] 前記放熱体は、半田力 なる第 1部材と、半田以外の導体力 なり前記第 1部材と 接合して!/、る第 2部材とを備え、前記ガラスバルブの端面に適合する形状を有する面 は、前記第 1部材に形成されていることを特徴とする請求項 7に記載の冷陰極蛍光ラ ンプ。
[10] 前記放熱体は、半田以外の導体からなる導体板と、前記導体板と接合している半 田体とを備え、前記ガラスバルブの端面に適合する形状を有する面は、前記導体板 における前記半田体と反対側の面に形成されていることを特徴とする請求項 7に記 載の冷陰極蛍光ランプ。
[11] 前記導体板には、複数の貫通孔が形成されていることを特徴とする請求項 10に記 載の冷陰極蛍光ランプ。
[12] 前記リード線と前記放熱体とは、間隔をおいては配設されていると共に半田を介し て電気的に接続されており、当該半田は、過電流が流れた際のジュール熱によって 溶断することを特徴とする請求項 6に記載の冷陰極蛍光ランプ。
[13] 前記半田における前記リード線と前記放熱体との接続部分近傍の空間を密閉する 絶縁部材を備えることを特徴とする請求項 12に記載の冷陰極蛍光ランプ。
[14] 前記絶縁部材は、ロジンであることを特徴とする請求項 13に記載の冷陰極蛍光ラ ンプ。
[15] 前記リード線は、当該外径よりも大きい肉だまり部を備え、当該肉だまり部は、ガラス バルブの端部外面に接触状態で配されて!ヽることを特徴とする請求項 1に記載の冷 陰極蛍光ランプ。
[16] 光源として、請求項 1に記載の冷陰極蛍光ランプが搭載されて 、ることを特徴とする ノ ックライトユニット。
[17] 光源としての複数本の冷陰極蛍光ランプと、前記冷陰極蛍光ランプを収納する筐 体と、前記筐体内に設けられ且つ前記冷陰極蛍光ランプの外周を挟持する U字状の ランプホルダーと、前記冷陰極蛍光ランプを点灯させるための点灯回路とを備えるバ ックライトユニットにお 、て、
前記冷陰極蛍光ランプは、請求項 6に記載の冷陰極蛍光ランプであり、 前記ランプホルダーは、前記冷陰極蛍光ランプの被覆体の外周を挟保することによ り電気的に接続し、
複数本の前記冷陰極蛍光ランプのそれぞれは、間隔をお 、て略平行に配列された 状態で前記ランプホルダーによって挟持され、平行に配列された隣接する 2本の冷 陰極蛍光ランプの一方の被覆体を挟持するランプホルダー同士が電気的に接続さ れて ヽることを特徴とするノ ックライトユニット。
[18] 光源としての複数本の冷陰極蛍光ランプと、前記冷陰極蛍光ランプを収納する筐 体と、前記筐体内に設けられ且つ前記冷陰極蛍光ランプ保持するランプホルダーと 、前記冷陰極蛍光ランプを点灯させるための点灯回路とを備えるバックライトユニット において、
前記冷陰極蛍光ランプは、請求項 6に記載の冷陰極蛍光ランプであり、 前記ランプホルダーは、前記冷陰極蛍光ランプの被覆体と接触することにより電気 的に接続し、
複数本の前記冷陰極蛍光ランプのそれぞれは、間隔をお 、て略平行に配列された 状態で前記ランプホルダーによって保持され、平行に配列された少なくとも隣接する 2本の冷陰極蛍光ランプの一方の被覆体と接触するランプホルダーは接地側に接続 され、他方の被覆体と接触するランプホルダーは前記点灯回路の高圧側に接続され て 、ることを特徴とするバックライトユニット。
[19] 請求項 16に記載のノ ックライトユニットが搭載されていることを特徴とする液晶表示 装置。
PCT/JP2006/319548 2005-10-04 2006-09-29 冷陰極蛍光ランプ、バックライトユニット及び液晶表示装置 WO2007043362A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007539870A JPWO2007043362A1 (ja) 2005-10-04 2006-09-29 冷陰極蛍光ランプ、バックライトユニット及び液晶表示装置
US12/067,508 US20090237597A1 (en) 2005-10-04 2006-09-29 Cold-cathode fluorescent lamp, backlight unit, and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005291522 2005-10-04
JP2005-291522 2005-10-04

Publications (1)

Publication Number Publication Date
WO2007043362A1 true WO2007043362A1 (ja) 2007-04-19

Family

ID=37942608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319548 WO2007043362A1 (ja) 2005-10-04 2006-09-29 冷陰極蛍光ランプ、バックライトユニット及び液晶表示装置

Country Status (6)

Country Link
US (1) US20090237597A1 (ja)
JP (1) JPWO2007043362A1 (ja)
KR (1) KR20080055942A (ja)
CN (1) CN101278371A (ja)
TW (1) TW200721238A (ja)
WO (1) WO2007043362A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199991A (ja) * 2008-02-25 2009-09-03 Nec Lighting Ltd 照明装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319543B1 (ko) 2012-05-17 2013-10-21 삼성디스플레이 주식회사 곡면 디스플레이 장치 및 이를 포함하는 멀티 디스플레이 장치
WO2013172538A1 (en) * 2012-05-17 2013-11-21 Samsung Electronics Co., Ltd. Curved display apparatus
KR20160117186A (ko) * 2015-03-31 2016-10-10 호야 칸데오 옵트로닉스 가부시키가이샤 수은 방전 램프
US11120977B2 (en) * 2016-11-22 2021-09-14 Modern Electron, Inc. Conductive oxide-coated electrodes via nano- or micro-structured materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190279A (ja) * 2000-12-19 2002-07-05 Harison Toshiba Lighting Corp 蛍光ランプ
JP2003142027A (ja) * 2001-11-01 2003-05-16 West Electric Co Ltd 冷陰極放電管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190279A (ja) * 2000-12-19 2002-07-05 Harison Toshiba Lighting Corp 蛍光ランプ
JP2003142027A (ja) * 2001-11-01 2003-05-16 West Electric Co Ltd 冷陰極放電管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199991A (ja) * 2008-02-25 2009-09-03 Nec Lighting Ltd 照明装置

Also Published As

Publication number Publication date
KR20080055942A (ko) 2008-06-19
TW200721238A (en) 2007-06-01
US20090237597A1 (en) 2009-09-24
JPWO2007043362A1 (ja) 2009-04-16
CN101278371A (zh) 2008-10-01

Similar Documents

Publication Publication Date Title
US6515433B1 (en) Gas discharge fluorescent device
KR20060100236A (ko) 박막 형상의 급전단자를 구비한 냉음극 형광램프, 그제조방법, 당해 냉음극 형광램프를 구비한 점등장치,백라이트 유닛 및 액정표시장치
JP4249689B2 (ja) 外部電極型放電ランプおよびその製造方法
WO2007043362A1 (ja) 冷陰極蛍光ランプ、バックライトユニット及び液晶表示装置
US20070090740A1 (en) External electrode type discharge lamp
JP4520529B2 (ja) 放電ランプ、照明装置および液晶表示装置
US5698951A (en) Electrodeless discharge lamp and device for increasing the lamp&#39;s luminous development
US20050218808A1 (en) CCFL tube device
JP3122373U (ja) 放電管
JP2006294593A (ja) 冷陰極蛍光ランプおよびバックライトユニット
WO2001020642A1 (en) Gas discharge fluorescent device
JP2007157565A (ja) 点灯装置、バックライトユニットおよび液晶テレビ
KR20100126172A (ko) 냉음극 형광램프, 백라이트 유닛 및 액정표시장치
JP4150349B2 (ja) 冷陰極蛍光ランプおよびバックライトユニット
JP2007226982A (ja) 冷陰極蛍光ランプ、点灯装置、バックライトユニットおよび液晶ディスプレイ装置
JP2007157632A (ja) 冷陰極放電ランプ、バックライトユニット及び冷陰極放電ランプの製造方法
KR20100014238A (ko) 열음극 형광램프를 구비한 백라이트 및 액정 디스플레이 장치
KR20070009425A (ko) 외부 전극을 구비한 방전램프 및 그 제조방법, 당해방전램프를 구비한 백라이트 유닛 및 액정표시장치
JP2006286448A (ja) 外部電極型蛍光ランプ、バックライトユニット及び外部電極型蛍光ランプの製造方法
JP2007157564A (ja) 点灯装置、バックライトユニットおよび液晶テレビ
JP3635849B2 (ja) 希ガス放電灯
JP2008135362A (ja) ソケット、それを用いたソケット付ランプ、バックライトユニットおよび液晶表示装置
KR101343284B1 (ko) 희가스 방전 램프
JP2008146841A (ja) 電極マウント、放電ランプ、バックライトユニットおよび液晶表示装置
JP2008108493A (ja) 低圧放電ランプ、バックライトユニットおよび液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036112.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12067508

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007539870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087009802

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06810927

Country of ref document: EP

Kind code of ref document: A1