WO2007040102A1 - Tensioner - Google Patents

Tensioner Download PDF

Info

Publication number
WO2007040102A1
WO2007040102A1 PCT/JP2006/319084 JP2006319084W WO2007040102A1 WO 2007040102 A1 WO2007040102 A1 WO 2007040102A1 JP 2006319084 W JP2006319084 W JP 2006319084W WO 2007040102 A1 WO2007040102 A1 WO 2007040102A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
shaft
shaft member
tensioner
tip
Prior art date
Application number
PCT/JP2006/319084
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Kobayashi
Tanehira Amano
Original Assignee
Nhk Spring Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nhk Spring Co., Ltd. filed Critical Nhk Spring Co., Ltd.
Priority to CN200680036342.2A priority Critical patent/CN101278143B/en
Publication of WO2007040102A1 publication Critical patent/WO2007040102A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0806Compression coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/081Torsion springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • F16H2007/0857Screw mechanisms

Definitions

  • the present invention relates to a tensioner that adjusts an endless belt or chain so as to keep the tension constant.
  • a tensioner for example, pushes a timing chain or a timing belt used in an engine of a motor vehicle such as a two-wheeled vehicle with a predetermined force, and when the tension or elongation occurs in these, the tension is kept constant. Acts to keep.
  • FIG. 6 is a layout diagram showing a state in which the tensioner 100 is mounted on the engine body 200 of the automobile.
  • a pair of cam sprockets 210, 210 and a crank sprocket 220 are arranged, and the timing chain 230 is stretched between these sprockets 210, 210, 220 in an endless manner.
  • a chain guide 240 is swingably disposed on the moving path of the timing chain 230, and the timing chain 230 slides on the chain guide 240! /.
  • a mounting surface 250 is formed on the engine body 200, and the tensioner 100 is fixed to the mounting surface 250 by 270 bolts. Note that lubricating oil (not shown) is sealed inside the engine body 200.
  • FIG. 7 is a longitudinal sectional view of a conventional general tensioner
  • FIG. 8 is an action model diagram for schematically explaining a state in which the propulsion shaft in the action approaches and contacts the rotating shaft.
  • the tensioner 100 includes a rotating shaft 120 and a propulsion shaft 130 that are screwed together by a female screw portion 121 and a male screw portion 131, and a torsion spring 150 that urges the rotating shaft 120 to rotate in one direction. And the rotation urging force of the torsion spring 150 is converted into the propulsion force of the propulsion shaft 130 by restricting the rotation of the propulsion shaft 130.
  • the flange 110 of the case 110 is attached to the mounting surface 250 of the engine body 200 by the Bonole 270.
  • the propulsion shaft 130 that penetrates the flat plate-shaped bearing 160 fixed in a state of being prevented from rotating at the tip of the case 110 has a non-circular cross section together with the through-hole 161 of the bearing 160 Since the rotation is constrained to the case 110 by being formed into a shape, the rotating shaft 120 is rotated by the biasing force of the torsion spring 150, and this rotational force is converted into the propulsive force of the propulsion shaft 130. The shaft 130 advances. Therefore, the propulsion shaft 130 can apply tension to the timing chain 230 by pressing the timing chain 230 via the cap 180 and the chain guide 240 as shown in FIG.
  • a load received by vibration from engine body 200 is input to propulsion member 130.
  • the reaction force a balance is established between the spring force of the torsion spring 150 and the sliding surface frictional resistance of the screw portions 121 and 131 and the lower end surface portion of the rotary shaft 120.
  • the propulsion member 130 having a large friction coefficient on the sliding surface does not come out or return.
  • the friction coefficient of the sliding surface decreases due to switching to the static frictional force dynamic friction, and the propulsion member 130 moves backward and rotates in the illustrated direction.
  • the propulsion shaft 130 finally returns to a position where the forces are balanced.
  • the load received by the tensioner 100 via the chain guide 240 shown in FIG. 6 is a vibration load that usually fluctuates due to the vibration of the engine, and the allowance dimension A of the propulsion shaft 130 also fluctuates.
  • the movable range of the propulsion member 130 is that the rear end 132 of the propulsion member 130 and the step portion 122 of the rotation member 120. Is from the position (AO) where the thrust member contacts the rear end surface step (not shown) of the propelling member 130 (see reference numeral 133 in FIG. 9 described later) and the position (A3) where the rear end surface of the bearing member 160 contacts.
  • the propulsion member 130 always tries to advance in the propulsion direction through the rotating member 120 by the rotational force of the torsion spring 150.
  • the propelling member 130 when the propelling member 130 is attached to the engine main body 200, the propelling member 130 receives the vibration load from the engine main body 200, and appropriately moves back and forth, and operates at a position (A2) where the tension of the timing chain 230 is properly maintained.
  • a (Fig. 7) A0 ⁇ A3 is a projecting dimension from the flange 112 mounting surface of the case 110 to the tip of the cap 180, respectively.
  • the propulsion member 130 attached to the engine body 200 operates at the position A2 in normal use.
  • the load received by the engine force becomes excessive, or the propulsion member moves backward.
  • the rotating member 120 is artificially rotated, the stepped portion 122 of the rotating member 120 and the rear end 132 of the propelling member 130 come into contact with each other, and the load received by the engine force decreases.
  • the propulsion member 130 could not move out (progress forward). This is because, if the degree of adhesion of the abutting portion of the rotating member 120 and the propulsion member 130 other than the threaded portion is strong! /, The fixing torque cannot be released with the rotational torque of the torsion spring 150. This is because the propulsion member 130 is fixed at the AO point, and the propulsion member 130 becomes unable to operate.
  • FIG. 9 is a mechanical model diagram of the contact portion fixing phenomenon between the rotating member step portion 122 and the propulsion member rear end portion 132.
  • FIG. 10 is a diagram for explaining the self-weight falling phenomenon of the rotating member 120 from the propelling member 130 to be screwed together. This is a model diagram.
  • the phenomenon that the propelling member 130 and the rotating member 120 adhere at the AO point is as follows. It occurs more. After the rotating member step 122 and the propulsion member rear end 132 contact each other, when the rotating member 120 is further rotated by the torque T in the direction in which the propelling member 130 is retracted, the propelling member 130 has an axial force F (downward in the figure). The force is pressed against the rotating member step 122. At this time, a friction torque Tm is generated at the propulsion member rear end 132 due to the axial force F, and when T is released, it acts as a counter-rotation (braking or resistance) torque that stops the rotation of the rotating member 120.
  • the propelling member 130 is pressed against the screw back surface of the rotating member 120 by the axial force F (upward force in the drawing).
  • F upward force in the drawing
  • a rotational torque ⁇ is generated in the direction in which the propelling member 130 is actuated (promoted upward in the drawing).
  • the contact radius of the contact portion between the propulsion member rear end 132 and the rotating member step 122 is Rl
  • the screw contact radius (effective radius) is R2
  • the friction of the contact portion between the propulsion member rear end 132 and the rotation member step portion is R2. If the coefficient is ⁇ 1, and the lead angle (value on R2) of the screw (usually square screw) surface is
  • Friction torque (braking torque) Tm generated at the rear end of the propulsion member
  • Tm F-Rl- ⁇ 1 ⁇ Formula (104)
  • the contact radius R1 of the contact portion between the propulsion member rear end 132 and the rotating member step 122 is larger than the contact radius R2 of the screw. (R1> R2), and R1 / R2> 1> —tan (2-a) / ⁇ 1, so the formula (108) cannot be satisfied. It was easy to do.
  • Patent Document 1 International Publication WO00Z61968
  • the present invention has been made in order to meet such demands, and with a simple mechanism, the rotating member and the propelling member are prevented from sticking in the fully contracted state, thereby reducing the management man-hours during assembly.
  • the purpose is to provide a tensioner that can ensure operation (fail safe) during abnormal operation (over-behavior) such as strength from the engine and input vibration load.
  • one shaft member of the pair of shaft members screwed together by the screw portion is rotationally biased by the spring, and the other shaft member is rotationally restrained.
  • the force in the pair of shaft members The contact portion is provided at a portion other than the screw portion, and the contact portion has a contact radius Rl by contact, an effective diameter of the screw portion R2, a friction coefficient of the contact portion by contact 1, and the screw portion.
  • the coefficient of friction is ⁇ 2 and the lead angle of the thread surface of the thread is ⁇ , so that the following equation (1) is satisfied.
  • the invention of claim 2 is the tensioner according to claim 1, wherein the abutting portion has a pointed shape or a curved shape directed toward the shaft member of the abutting partner.
  • the invention of claim 3 is the tensioner according to claim 1 or 2, wherein a tip member is provided at a tip portion in the propulsion direction of the other shaft member, and the contact portion is The tip member or Z and one shaft member are provided on opposing surfaces.
  • the invention of claim 4 is the tensioner according to claim 1, wherein the contact portion is a bearing member having a small apparent friction coefficient disposed between the pair of shaft members. It is characterized by.
  • the contact portions of the pair of shaft members are pointed or pointed toward the shaft member of the contact partner. Because of the curved shape, the tensioner can be formed so as to surely satisfy the expression (1), which is a condition for preventing the contact portion from being fixed.
  • the tip-shaped contact portion that can be formed minutely is provided with a tip member or Z and Since it is provided on the opposite surface of one of the shaft members, a tensioner that reliably satisfies equation (1), which is a condition for preventing this contact portion from sticking, should be formed with a simple and compact structure. Can do.
  • the abutting portion is disposed between the pair of shaft members and has a small apparent friction coefficient. Therefore, the tensioner can be improved in reliability so as to satisfy the expression (1) which is a condition for preventing the contact portion from being fixed.
  • FIG. 1 (a) is a longitudinal sectional view showing a tensioner according to Embodiment 1 of the present invention, and (b) is a plan view of (a).
  • FIG. 2 is a longitudinal sectional view of the tensioner 1 of Embodiment 1 in a fully contracted state.
  • FIG. 3 is a longitudinal sectional view showing a tensioner according to a second embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a tensioner according to Embodiment 3 of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a tensioner according to a fourth embodiment of the present invention.
  • FIG. 6 is a layout diagram showing a state in which the tensioner 1 is mounted on the engine body.
  • FIG. 7 is a longitudinal sectional view showing a conventional tensioner.
  • FIG. 8 is an action model diagram for schematically explaining a state in which the propulsion shaft of the tensioner shown in FIG. 7 comes close to and abuts the rotating shaft.
  • FIG. 9 is a mechanical model diagram of a contact portion fixing phenomenon between a rotating member step portion and a propulsion member rear end portion of the tensioner of FIG. [10]
  • FIG. 7 is a model diagram for explaining the self-weight falling phenomenon of the rotating member of the tensioner screwed in the tensioner of FIG.
  • FIG. 11 is an example of a fixed boundary diagram of a contact portion between a rotating member and a propelling member of a tensioner. ⁇ 12] This is the fixed boundary line when the friction coefficient of the contact part between the rotating member and propulsion member of the tensioner changes.
  • FIG. 13 is another example of a fixed boundary diagram of the contact portion between the rotating member and the propelling member of the tensioner.
  • FIG. 1 is a longitudinal sectional view showing a tensioner according to Embodiment 1 of the present invention
  • FIG. 2 is a longitudinal sectional view in the fully contracted state.
  • the tensioner 1 of this embodiment is roughly composed of a case 2, a first shaft member 3 that is a rotating member, a second shaft member 4 that is a propelling member, a torsion spring (elastic member) 5, a bearing 6, and a spacer 7. These are the conventional tensioner shown in Fig. 7.
  • the configuration is substantially the same.
  • the case 2 is roughly molded into a bottomed cylindrical shape having a flange portion 2b in the middle portion of the body portion 2a.
  • a housing hole 2c extending in the axial direction (propulsion direction) is formed in the body portion 2a toward the tip.
  • the front end portion of the storage hole 2c is open, and the assembly of the first and second shaft members 3, 4, the torsion spring 5, and the spacer 7 is stored in the storage hole 2c.
  • the flange portion 2b of the case 2 is to be attached to the applied engine body, and is formed with an attachment hole 2d through which a bolt (not shown) screwed into the engine body passes.
  • a bolt not shown
  • the front end surface of the flange portion 2b comes into contact with the mounting surface 250 of the engine body 200, as in FIG.
  • a tip member 10 having a cap force is attached to the tip of the second shaft member 4.
  • a conical pointed contact portion 20 is formed at the center of the distal end surface of the first shaft member 3.
  • the first shaft member 3 is rotated by being urged by a torsion spring 5 described later, and the second shaft member is restricted in rotation by a bearing 6 described later provided in the case 2 and is movable in the axial direction. 4 is propelled from the case 2 by the rotation of the first shaft member 3.
  • the first shaft member 3 includes a shaft portion 3a on the proximal end side and a screw shaft portion 3b on the distal end side (upper side in the figure) which are integrally formed in the axial direction.
  • a male screw 8 is formed on the outer periphery of the portion 3b.
  • the rotation of the base end portion of the shaft portion 3a on the base end side is supported by abutting against a receiving seat 19 provided in the case 2.
  • a slit 3e into which a distal end of a tightening jig (not shown) for rotating the first shaft 3 is inserted is formed on the base end surface of the shaft portion 3a.
  • the slit 3e communicates with the jig hole 2e opened on the base end surface of the body 2a of the case 2.
  • the tip of the clamping jig is inserted into the slit 3e from the jig hole 2e, and the slit 3e passes through the slit 3e.
  • the torsion spring 5 described later can be tightened.
  • the second shaft member 4 is formed with a cylindrical portion 4b that opens at the tip in the axial direction (upward in the figure).
  • the male screw 8 of the first shaft member 3 is threaded on the inner surface of the base end 4a.
  • a mating female screw 9 is formed.
  • the tip member 10 is composed of a head portion 10a and a leg portion 10b by press molding or the like, and the lower end portion of the leg portion 10b is connected to the tip end portion of the tubular portion 4b of the second shaft member 4 while the tubular portion It is fixed in the groove 4e formed at the tip of 4b by a method such as caulking.
  • the torsion spring 5 is externally inserted into the proximal end side shaft portion 3 a of the first shaft member 3.
  • the hook portion 5a on one end side (tip side) of the torsion spring 5 is inserted and locked in the hook groove 2f formed on the case 2, while the hook portion 5b on the other end side (base end side)
  • the first shaft member 3 is inserted and locked in the slit 3e on the base end surface (bottom). Therefore, the first shaft member 3 can be rotated by tightening the torsion spring 5 and applying torque.
  • the bearing 6 is attached to the tip portion of the case 2 and is fixed by a retaining ring 13.
  • the bearing 6 has a sliding hole 6a, and the second shaft member 4 passes through the sliding hole 6a.
  • the inner surface of the sliding hole 6a of the bearing 6 and the outer surface of the second shaft member 4 are formed in a substantially oval cross section, D-cut or parallel cut, or any other non-circular shape.
  • the rotation of the second shaft member 4 is restricted.
  • the bearing 6 is formed in a flat plate shape having a predetermined thickness, and a plurality of fixed pieces 6b are formed radially on the outer peripheral side, for example, as in the prior art.
  • a fixed piece 6b By fitting this fixed piece 6b into a notch groove 2g formed at the tip of the case 2, the entire bearing 6 is prevented from rotating.
  • the bearing 6 is thus prevented from rotating with respect to the case 2, whereby the second shaft member 4 penetrating the bearing 6 is rotationally restrained by the case 2 via the bearing 6.
  • the first shaft member 3 is screwed into the second shaft member 4 via male and female screws 9 and 8, and the first shaft member 3 is rotated by the rotational biasing force of the torsion spring 5. Is transmitted to the second shaft member 4. Since the second shaft member 4 is rotationally restrained by the bearing 6, the second shaft member 4 obtains a propulsive force and axially acts on the case 2. Move forward and backward.
  • the spacer 7 has a cylindrical shape, and the screwed portions of the first shaft member 3 and the second shaft member 4 are inserted therein.
  • a flange-shaped step portion 3c having a large diameter is formed at a boundary portion between the shaft portion 3a and the screw shaft portion 3b in the first shaft member 3, and the spacer 7 has a base end thereof.
  • the part 7a is in contact with the step part 3c.
  • Spacer 7 The front end portion 7b faces the lower surface of the bearing 6 and prevents the first and second shaft members 3 and 4 from coming out of the case 2 by contact with the bearing 6.
  • a contact portion 20 having a pointed shape such as a conical shape is formed in the center portion of the distal end surface of the second shaft member 3, As shown in FIG. 2, the contact portion 20 comes into contact with the back surface of the tip member 10 when the second shaft member 4 is retracted until it is fully contracted (AO position). At this time, the rear end 4f of the second shaft member 4 has a slight gap that does not contact the step 3c of the first shaft member 3, and the second shaft member 4 is structurally Neither the flange part 2b mounting surface force nor the protruding allowance AO force to the tip of the tip member 10 will be retracted.
  • the abutting portion 20 having a very small contact radius R1 such as a point contact between the back surface 10c of the tip member 10 and the pointed contact portion 20 does not adhere to the tip member back surface 10c.
  • the horizontal axis represents the screw lead angle ⁇
  • the vertical axis represents the ratio (contact radius R1 of the contact portion) Z (contact radius R2 of the screw).
  • the threaded portion refers to the female threaded portion 8 and the male threaded portion 9.
  • Tensioner model examples 1 to 3 plotted in FIG. 11 are set as follows.
  • the friction coefficient 1 between the back surface 10c of the tip member 10 and the contact part 20 and the friction coefficient 2 of the contact part in the screw parts 8 and 9 are both equal to 0.15, the contact radius Rl of the contact part 20, the screw part 8 and The contact radius R2 at 9 and the lead angle of thread 8 and 9 are
  • model example 1 is in the range above the fixing boundary and is fixed, and model examples 2 and 3 are in the range below the fixing boundary and are not fixed.
  • R1 when the value of R1 is small, the R1 / R2 value is small, and the possibility of being located in the lower region of the fixed boundary line increases.
  • Formula (108) in the above formula is a formula for a square screw.
  • the following component force calculations are required for screws such as trapezoidal screws and metric screws.
  • FIG. 3 is a longitudinal sectional view of the tensioner 1 according to the second embodiment of the present invention.
  • the pointed contact part 20 ′ is removed from the tip surface of the first shaft member 3 in the first embodiment, and the pointed contact part 20 ′ is provided on the tip member 10 ′ side.
  • the other configuration is the same as that of the first embodiment except that the shape of the tip member 10 ′ is different.
  • the tip member 10 ' includes a head portion 10a' and a leg portion 10b '.
  • the head portion 10a' covers the tubular portion 4b tip portion of the second shaft member 4, and the leg portion 10b 'is tubular.
  • the spring pin 11 is press-fitted into the tip portion of the shape portion 4b so as to be prevented from coming off and fixed to the tubular portion 4b.
  • a tip contact portion 20 ′ is provided at the center of the lower end surface of the leg portion 10b ′ of the tip member 10 ′. Therefore, when the second shaft member 4 is retracted until it is fully contracted (AO position), the contact portion 20 ′ comes into contact with the front end surface of the first shaft member 3. At this time, the rear end 4f of the second shaft member 4 has a slight gap that does not contact the step portion 3c of the first shaft member 3, and the second shaft member 4 also has an output allowance AO force. There will be no further retreat.
  • the tip surface of the first shaft member 3 and the pointed contact portion 20 ' are in a condition that the contact portion with a very small contact radius R1 such as point contact is not fixed.
  • the contact portion 20 ′ is not fixed to the front end surface of the first shaft member 3.
  • the minute tip-pointed contact portion 20 or 20 ′ is simply provided at the center of the opposing surface of the first shaft member 3 or the tip member 10 ′.
  • the tensioner can surely satisfy the conditional expression (108) for preventing the contact portion from being fixed.
  • FIG. 4 is a longitudinal sectional view showing a tensioner according to Embodiment 3 of the present invention.
  • the pointed contact portion 20 ′ in the tip member 10 ′ is removed from the second embodiment, and the rear end 4f of the second shaft member 4 and the step portion of the first shaft member 3 are removed.
  • a bearing member 30 such as a thrust bearing is provided between 3c and other configurations are basically the same as those of the second embodiment.
  • the rear end 4f of the second shaft member 4 comes into contact with the bearing member 30 when the second shaft member 4 is retracted until it is fully contracted (AO position). At this time, the back surface of the leg portion 10b 'of the tip member 10' has a slight gap without coming into contact with the tip surface of the first shaft member 3, and the second shaft member 4 has a protrusion allowance AO. There is no further retreat.
  • the bearing member 30 is a contact portion instead of the pointed contact portions 20, 20 'in the first and second embodiments.
  • the rolling resistance apparent coefficient of friction 1
  • the friction torque braking torque generated in the bearing member 30 is as described above.
  • Force Rotation torque generated at the screw 8 and 9 parts can be made sufficiently smaller than the torque Tn, so that the contact part does not stick. Since the expression (108) is sufficiently satisfied, the bearing member 30 as the contact portion does not adhere.
  • This Model Example 4 is in a range considerably below the fixing boundary line, and it can be seen that it does not stick at all.
  • the bearing member 30 having a small apparent friction coefficient 1 the bearing does not adhere even if the radius (R1) of the contact (spherical arrangement, etc.) is considerably large. That is, the tensioner can be configured to surely satisfy the condition (108) for preventing the contact portion from being fixed.
  • the radius of the bearing (such as the sphere array radius) can be changed arbitrarily, but the space that can be installed is limited, so it is appropriate to set it to 1 to 3 times slightly larger than the screw radius.
  • FIG. 5 is a longitudinal sectional view showing a tensioner according to Embodiment 4 of the present invention.
  • a compression spring 40 is provided between the first shaft member 3 and the second shaft member 4 in addition to the configuration of the embodiment 2 in FIG. And basically the same
  • the compression spring 40 is disposed between the upper part of the step 3c of the first shaft member 3 and the base end 4a rear end 4f of the second shaft member 4.
  • a coil spring having hook portions at both ends as free ends is used.
  • the front end portion 40 a abuts on the second shaft member 4, while the base end portion 40 b abuts on the first shaft member 3.
  • the base end portion 40b comes into contact with the upper surface 3f of the small diameter portion 3d formed on the upper portion of the step portion 3c of the first shaft member 3.
  • the compression spring 40 is assembled in a state where both end portions 40a and 40b are in contact with both shaft members 4 and 3 and are compressed to some extent.
  • the second shaft member 4 becomes the first shaft member 3 Is pressed in the axial direction on the distal end side of the screw shaft portion 3b.
  • a resistance torque due to the compression force of the compression spring 40 is applied to the first shaft member 3.
  • the second shaft member 4 becomes the step 3c of the first shaft member 3 as the first shaft member 3 rotates.
  • the compression spring 40 is compressed by the compression force acting directly on the compression spring 40 that is pushed to the side and the tip end portion 40a is in contact with the second shaft member 4. Since the other end 40b of the compression spring 40 is in contact with the first shaft member 3, resistance torque due to friction is added between the compression spring 40 and the first shaft member 3 due to compression of the compression spring 40. Added.
  • a strong braking force acts on the first shaft member 3 and the rotation of the first shaft member 3 is strongly controlled, so that a strong and stable vibration damping function can be secured. .
  • a small-diameter step portion 3e having an outer diameter corresponding to the inner diameter of the compression spring 40 is formed between the small-diameter portion 3d at the upper stage of the step portion 3c in the first shaft member 3 and the screw shaft portion 3b. .
  • the small diameter step portion 3e serves as a support seat that supports the base end portion 40b of the compression spring 40. Then, by inserting the small diameter step portion 3e into the base end portion 40b of the compression spring 40, a more stable support state is achieved.
  • the first shaft member 3 rotates relative to the compression spring 40 between the base end portion 40b of the compression spring 40 and the upper surface 3f of the small diameter portion 3d of the first shaft member 3. Not shown! It is desirable to sandwich a metal washer as a buffer plate or a friction plate.
  • the contact portion where the contact radius R1 such as point contact is extremely small is between the tip surface of the first shaft member 3 and the pointed contact portion 20 '. Satisfies (108). For this reason, the contact portion 20 ′ does not adhere to the distal end surface of the first shaft member 3.
  • the tensioner 1 of the above-described embodiment is different from the conventional product in which the contact portion as described above is in contact (contact) without being fixed only when the allowance dimension in the fully compressed state is AO. have. And, it has the same function as that of the conventional tensioner in the allowance dimension larger than AO (equivalent to A2 to A3 in Fig. 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

A tensioner in which sticking between a rotation member and a drive member when the tensioner is in a fully retracted state is prevented by using a simple mechanism, thereby ensuring reduced man-hour for control in assembling the tensioner and enabling the tensioner to function when it is abnormally operated. A pair of shaft members (3, 4) is threaded to each other by thread sections (8, 9), and one (3) of the shaft members (3, 4) is rotatingly urged by a spring (5) and driven by rotational force transmitted from the one shaft member (3) with the other shaft member (4) restrained from rotating. A contact section (20) is formed at that portion of the shaft members (3,4) which is other than that of the thread sections (8, 9), and the contact section (20) come into contact with the other shaft member (4) when it is moved in the direction opposite the drive direction. The contact section (20) is set to satisfy the expression of R1/R2 < -tan(μ2 - α)/μ1, where R1 is a contact radius caused by contact, R2 the effective diameter of the thread sections (8, 9), μ1 the coefficient of friction of the contact section (20), μ2 the coefficient of friction of the thread sections (8, 9), and α the lead angle of the thread faces of the thread sections (8,9).

Description

明 細 書  Specification
テンショナ一  Tensioner
技術分野  Technical field
[0001] 本発明は、無端状のベルトやチェーンの張力を一定に保つよう調整するテンショナ 一に関する。  The present invention relates to a tensioner that adjusts an endless belt or chain so as to keep the tension constant.
背景技術  Background art
[0002] テンショナ一は、例えば、二輪自動車等の自動車のエンジンに使用されるタイミング チェーンやタイミングベルトを所定の力で押しており、これらに伸びや緩みが生じた場 合に、その張力を一定に保つように作用する。  [0002] A tensioner, for example, pushes a timing chain or a timing belt used in an engine of a motor vehicle such as a two-wheeled vehicle with a predetermined force, and when the tension or elongation occurs in these, the tension is kept constant. Acts to keep.
[0003] 図 6は、テンショナ一 100を自動車のエンジン本体 200に実装した状態を示すレイ アウト図である。エンジン本体 200の内部には、一対のカムスプロケット 210、 210とク ランクスプロケット 220とが配置されており、これらのスプロケット 210、 210、 220の間 にタイミングチェーン 230が無端状となって掛け渡されている。また、タイミングチェ一 ン 230の移動路上には、チェーンガイド 240が揺動自在に配置されており、タイミング チェーン 230はチェーンガイド 240を摺動するようになって!/、る。エンジン本体 200に は、取付面 250が形成されており、テンショナ一 100はボルト 270〖こよって取付面 25 0に固定される。なお、エンジン本体 200の内部には、図示しない潤滑用のオイルが 封入されている。  FIG. 6 is a layout diagram showing a state in which the tensioner 100 is mounted on the engine body 200 of the automobile. Inside the engine body 200, a pair of cam sprockets 210, 210 and a crank sprocket 220 are arranged, and the timing chain 230 is stretched between these sprockets 210, 210, 220 in an endless manner. ing. In addition, a chain guide 240 is swingably disposed on the moving path of the timing chain 230, and the timing chain 230 slides on the chain guide 240! /. A mounting surface 250 is formed on the engine body 200, and the tensioner 100 is fixed to the mounting surface 250 by 270 bolts. Note that lubricating oil (not shown) is sealed inside the engine body 200.
[0004] 図 7は従来一般的なテンショナ一の縦断面図、図 8はその作用における推進シャフ トが回転シャフトに接近して当接する状態を模式的に説明するための作用モデル図 である。  [0004] FIG. 7 is a longitudinal sectional view of a conventional general tensioner, and FIG. 8 is an action model diagram for schematically explaining a state in which the propulsion shaft in the action approaches and contacts the rotating shaft.
図 7に示すように、テンショナ一 100は雌ねじ部 121及び雄ねじ部 131によって螺 合した回転シャフト 120及び推進シャフト 130と、回転シャフト 120を一方向に回転付 勢する捩りばね 150とがケース 110内に収容されており、推進シャフト 130の回転を 拘束して捩りばね 150の回転付勢力を推進シャフト 130の推進力に変換する。ケー ス 110のフランジ咅 112力 図 6に示すように、ボノレ卜 270によりエンジン本体 200の 取付面 250に対して取付けられる。 [0005] 以上の構造のテンショナ一 100では、ケース 110の先端部分に回転止めされた状 態で固定された平板形状の軸受 160を貫通した推進シャフト 130が軸受 160の貫通 孔 161と共に非円形断面形状に成形されることによりケース 110に回転拘束されるた め、捩りばね 150の付勢力によって回転シャフト 120が回転し、この回転力が推進シ ャフト 130の推進力に変換されることから、推進シャフト 130が進出する。したがって、 推進シャフト 130は、図 6に示すように、キャップ 180及びチェーンガイド 240を介して タイミングチェーン 230を押付けることにより、タイミングチェーン 230に張力を付与す ることがでさる。 As shown in FIG. 7, the tensioner 100 includes a rotating shaft 120 and a propulsion shaft 130 that are screwed together by a female screw portion 121 and a male screw portion 131, and a torsion spring 150 that urges the rotating shaft 120 to rotate in one direction. And the rotation urging force of the torsion spring 150 is converted into the propulsion force of the propulsion shaft 130 by restricting the rotation of the propulsion shaft 130. As shown in FIG. 6, the flange 110 of the case 110 is attached to the mounting surface 250 of the engine body 200 by the Bonole 270. [0005] In the tensioner 100 having the above-described structure, the propulsion shaft 130 that penetrates the flat plate-shaped bearing 160 fixed in a state of being prevented from rotating at the tip of the case 110 has a non-circular cross section together with the through-hole 161 of the bearing 160 Since the rotation is constrained to the case 110 by being formed into a shape, the rotating shaft 120 is rotated by the biasing force of the torsion spring 150, and this rotational force is converted into the propulsive force of the propulsion shaft 130. The shaft 130 advances. Therefore, the propulsion shaft 130 can apply tension to the timing chain 230 by pressing the timing chain 230 via the cap 180 and the chain guide 240 as shown in FIG.
[0006] エンジン本体 200からの振動による受け荷重が推進部材 130に入力される。一方、 その反力として、捩じりばね 150のばね力とねじ部 121、 131と回転シャフト 120の下 端面部等の摺動面摩擦抵抗との釣合いが成り立つ。静荷重時には、前記摺動面の 摩擦係数が大きぐ推進部材 130の出又は戻り作動は発生しない。ところが、ェンジ ン本体 200からの振動による受け荷重が推進部材 130に入力されると、摺動面の摩 擦係数が静摩擦力 動摩擦に切り替わることにより低下し、推進部材 130の図示下 方向後退、回転部材 120の図示例えば右方向回転、捩じりばね 150の圧縮が同時 的に順次行われることにより、最終的に力の釣合った位置まで推進シャフト 130が戻 り作動を行う。  [0006] A load received by vibration from engine body 200 is input to propulsion member 130. On the other hand, as the reaction force, a balance is established between the spring force of the torsion spring 150 and the sliding surface frictional resistance of the screw portions 121 and 131 and the lower end surface portion of the rotary shaft 120. When the load is static, the propulsion member 130 having a large friction coefficient on the sliding surface does not come out or return. However, when the load received by the vibration from the engine body 200 is input to the propulsion member 130, the friction coefficient of the sliding surface decreases due to switching to the static frictional force dynamic friction, and the propulsion member 130 moves backward and rotates in the illustrated direction. When the member 120 is rotated in the right direction, for example, and the torsion spring 150 is compressed simultaneously and sequentially, the propulsion shaft 130 finally returns to a position where the forces are balanced.
[0007] 図 6に示すチェーンガイド 240を介してテンショナ一 100が受ける受け荷重は、通 常エンジンの振動により変動する振動荷重であり、推進シャフト 130の出代寸法 Aも 変動する。  [0007] The load received by the tensioner 100 via the chain guide 240 shown in FIG. 6 is a vibration load that usually fluctuates due to the vibration of the engine, and the allowance dimension A of the propulsion shaft 130 also fluctuates.
[0008] ここで、図 8の作用モデル図を参照してテンショナ一 100の作用について説明する と、推進部材 130の可動範囲は、推進部材 130の後端 132と回転部材 120の段部 1 22が接触する位置 (AO)から推進部材 130の図示しない後端外面段部 (後述の図 9 における符号 133参照)と軸受部材 160の後端面が接触する位置 (A3)までである。 推進部材 130は捩じりばね 150の回転力により、回転部材 120を介して常に推進方 向に進出しょうとする。そこで、推進部材 130は、エンジン本体 200に取付けられた 時は、エンジン本体 200からの振動荷重を受けて、適宜出戻り作動を行い、タイミン グチェーン 230の張力を適正に保つ位置 (A2)で作動する。ここで、 A (図 7)、 A0〜 A3は、それぞれケース 110のフランジ部 112取付け面からキャップ 180先端までの 出代寸法である。 Here, the action of the tensioner 100 will be described with reference to the action model diagram of FIG. 8. The movable range of the propulsion member 130 is that the rear end 132 of the propulsion member 130 and the step portion 122 of the rotation member 120. Is from the position (AO) where the thrust member contacts the rear end surface step (not shown) of the propelling member 130 (see reference numeral 133 in FIG. 9 described later) and the position (A3) where the rear end surface of the bearing member 160 contacts. The propulsion member 130 always tries to advance in the propulsion direction through the rotating member 120 by the rotational force of the torsion spring 150. Therefore, when the propelling member 130 is attached to the engine main body 200, the propelling member 130 receives the vibration load from the engine main body 200, and appropriately moves back and forth, and operates at a position (A2) where the tension of the timing chain 230 is properly maintained. . Where A (Fig. 7), A0 ~ A3 is a projecting dimension from the flange 112 mounting surface of the case 110 to the tip of the cap 180, respectively.
[0009] ところで、エンジン本体 200に取付けられた推進部材 130は、通常の使用では A2 の位置で作動するが、エンジン力 の受け荷重が過大になった場合、或いは推進部 材が後退する方向に回転部材 120を人為的に回転させた場合等においては回転部 材 120の段部 122と推進部材 130の後端 132が当接して固着した状態となり、ェン ジン力ゝらの受け荷重が減少しても推進部材 130が出作動 (前方へ推進)できなくなる 状況が発生するという問題点があった。これは、回転部材 120と推進部材 130とのね じ部以外の部位の当接部の固着度合!/、が強!、場合、捩じりばね 150の回転トルクで は固着を解除できず、推進部材 130は AO点で固定した状態となってしまい、推進部 材 130が出作動できなくなるという現象が発生するためである。  [0009] By the way, the propulsion member 130 attached to the engine body 200 operates at the position A2 in normal use. However, when the load received by the engine force becomes excessive, or the propulsion member moves backward. When the rotating member 120 is artificially rotated, the stepped portion 122 of the rotating member 120 and the rear end 132 of the propelling member 130 come into contact with each other, and the load received by the engine force decreases. Even then, there was a problem that the propulsion member 130 could not move out (progress forward). This is because, if the degree of adhesion of the abutting portion of the rotating member 120 and the propulsion member 130 other than the threaded portion is strong! /, The fixing torque cannot be released with the rotational torque of the torsion spring 150. This is because the propulsion member 130 is fixed at the AO point, and the propulsion member 130 becomes unable to operate.
[0010] 一方、エンジン本体 200にテンショナ一 100を取付けるセッティング時には、推進部 材 130の位置は Al (A2より後退した位置)になるように、回転部材 120を図示しない 止め金部材 (卷締め治具)等で回転固定している。このとき、仮に推進部材 130の位 置を回転部材 120と推進部材 130とがねじ部以外の部位で当接する(以下、特にこ とわりがない限り、単に「当接する」という) AOの位置で止め金を装着し、エンジン本 体 200に組付けた後止め金部材を抜き回転部材 120の固定を開放しても、前記ねじ 部以外の部位の当接部の固着度合!/、が強!、場合、やはり捩じりばね 150の回転トル クでは固着を解除できず、推進部材 130が出作動できなくなるという場合も考えられ る。このため、エンジン本体にテンショナ一を取付けるセッティング時には、推進部材 130の位置を回転部材 120が当接する AOの位置にならないように配慮する必要が めつに。  [0010] On the other hand, at the time of setting to attach the tensioner 100 to the engine body 200, the rotating member 120 is not shown in the drawing so that the propulsion member 130 is in the position of Al (a position retracted from A2). Etc.). At this time, it is assumed that the position of the propulsion member 130 is in contact with the rotating member 120 and the propulsion member 130 at a portion other than the screw portion (hereinafter, simply referred to as “contact” unless otherwise specified). Even if the clasp is attached and the clasp member is pulled out after being assembled to the engine body 200 and the fixing of the rotating member 120 is released, the degree of adhesion of the abutting portion other than the threaded portion is strong! In this case, it is also conceivable that the rotation torque of the torsion spring 150 cannot be released and the propelling member 130 can no longer be operated. Therefore, when setting the tensioner to the engine body, it is necessary to consider that the position of the propulsion member 130 does not become the position of the AO where the rotating member 120 abuts.
[0011] ここで、回転部材 120と推進部材 130とのねじ部以外の部位の当接部(以下、単に 「当接部」という)の固着現象について発明者が検討した結果を説明する。図 9は回 転部材段部 122と推進部材後端部 132との当接部固着現象の力学的モデル図、図 10は螺合する推進部材 130から回転部材 120の自重落下現象を説明するためのモ デル図である。  [0011] Here, the result of the study by the inventor on the fixing phenomenon of the contact portion (hereinafter simply referred to as "contact portion") of the rotating member 120 and the propelling member 130 other than the screw portion will be described. FIG. 9 is a mechanical model diagram of the contact portion fixing phenomenon between the rotating member step portion 122 and the propulsion member rear end portion 132. FIG. 10 is a diagram for explaining the self-weight falling phenomenon of the rotating member 120 from the propelling member 130 to be screwed together. This is a model diagram.
[0012] AO点において推進部材 130と回転部材 120とが固着する現象は、以下の理由に より発生する。回転部材段部 122と推進部材後端部 132とが当接した後、さらに回転 部材 120を推進部材 130が後退する方向にトルク Tで回転させると、推進部材 130 は軸力 F (図示下方向の力)で回転部材段部 122に押し付けられる。このとき、推進 部材後端 132には軸力 Fにより摩擦トルク Tmが発生し、 Tを解除した場合、回転部 材 120の回転を止める反回転 (制動又は抵抗)トルクとして作用する。 [0012] The phenomenon that the propelling member 130 and the rotating member 120 adhere at the AO point is as follows. It occurs more. After the rotating member step 122 and the propulsion member rear end 132 contact each other, when the rotating member 120 is further rotated by the torque T in the direction in which the propelling member 130 is retracted, the propelling member 130 has an axial force F (downward in the figure). The force is pressed against the rotating member step 122. At this time, a friction torque Tm is generated at the propulsion member rear end 132 due to the axial force F, and when T is released, it acts as a counter-rotation (braking or resistance) torque that stops the rotation of the rotating member 120.
[0013] 一方ねじ部 121、 131では、軸力 F (図示上方向の力)によって推進部材 130が回 転部材 120のねじ背面に押し付けられる。この時、ねじ面のリード角 αがねじ接触部 の摩擦係数 2よりも大きければ、推進部材 130が出作動(図示上方向に推進)する 方向に回転トルク Τηが発生する。これは、図 10に示すように、逆に推進部材 130を 拘束した状態で回転部材 120を開放すると、回転部材 120が自重により回転落下し ていく自重落下現象と同様である。なお、摩擦係数 2は角度換算すると、摩擦角度 Θ 2として表され、 tan02= μ 2の関係で示される。  On the other hand, in the screw portions 121 and 131, the propelling member 130 is pressed against the screw back surface of the rotating member 120 by the axial force F (upward force in the drawing). At this time, if the lead angle α of the thread surface is larger than the friction coefficient 2 of the screw contact portion, a rotational torque Τη is generated in the direction in which the propelling member 130 is actuated (promoted upward in the drawing). As shown in FIG. 10, when the rotating member 120 is opened while the propelling member 130 is constrained, the rotating member 120 is rotated and dropped by its own weight. Note that the friction coefficient 2 is expressed as a friction angle Θ 2 in terms of angle, and is represented by a relationship of tan02 = μ 2.
[0014] このとき、摩擦トルク Tmよりも回転トルク Τηが上回れば、固着しないことになる。す なわち、この関係を数式で表すと、  [0014] At this time, if the rotational torque Τη exceeds the friction torque Tm, it does not adhere. In other words, when this relationship is expressed by a mathematical formula,
'固着しない場合は;  'If not sticking;
Tm+Tnく 0 ···式(101)  Tm + Tnoku 0 Formula (101)
'固着する場合は;  'If sticking;
Tm+Tn>0 ···式(102)  Tm + Tn> 0 ··· Formula (102)
となる。  It becomes.
[0015] ここで、テンショナ一 100の当該部位の力の関係を表すと以下の通りとなる。  [0015] Here, the relationship between the forces of the relevant portion of the tensioner 100 is expressed as follows.
推進部材後端 132と回転部材段部 122との当接部の接触半径を Rl、ねじの接触 半径 (有効半径)を R2、推進部材後端 132と回転部材段部との当接部の摩擦係数を μ 1、ねじ (通常、角ねじ)面のリード角(R2上の値)をひとすれば、  The contact radius of the contact portion between the propulsion member rear end 132 and the rotating member step 122 is Rl, the screw contact radius (effective radius) is R2, and the friction of the contact portion between the propulsion member rear end 132 and the rotation member step portion is R2. If the coefficient is μ 1, and the lead angle (value on R2) of the screw (usually square screw) surface is
'軸力 Fは;  'Axial force F is;
F=TZ(R2'tan 2+ α)) ···式(103)  F = TZ (R2'tan 2+ α)) ··· Formula (103)
•推進部材後端に発生す摩擦トルク (制動トルク) Tmは;  • Friction torque (braking torque) Tm generated at the rear end of the propulsion member;
Tm=F-Rl- μ 1···式(104)  Tm = F-Rl- μ 1 ··· Formula (104)
•ねじ部に発生する回転トルク Τηは; Tn=F'R2'tan 2— α) ···式(105) • Rotational torque Τη generated in the thread is Tn = F'R2'tan 2— α) Formula (105)
と表される。なお、摩擦係数 1は角度換算すると、摩擦角度 θ 1として表され、 tan Θ 1= 1の関係で示される。  It is expressed. Note that the friction coefficient 1 is expressed as a friction angle θ 1 when converted into an angle, and is represented by a relationship of tan Θ 1 = 1.
[0016] 推進部材後端 132と回転部材段部 122との当接部が固着しない関係は、次の場合 に成立する。 [0016] The relationship in which the contact portion between the propulsion member rear end 132 and the rotating member step portion 122 does not adhere is established in the following case.
Tm+Tn< 0であることから、  Since Tm + Tn <0,
F-R1- μ 1+ '1^2 &11 2— 0;)<0'''式(106)  F-R1- μ 1+ '1 ^ 2 & 11 2— 0;) <0' '' formula (106)
式(106)の両項を Fで除すと軸力 Fの大きさが関係なくなることが分かる。  Dividing both terms in equation (106) by F shows that the magnitude of axial force F is irrelevant.
すなわち、  That is,
R1- μ l+RS'tan /z 2— α)<0···式(107)  R1- μl + RS'tan / z 2— α) <0 ··· Equation (107)
したがって、  Therefore,
RlZR2<— tan 2— o Zw 1···式(108)  RlZR2 <— tan 2— o Zw 1 formula (108)
となる。  It becomes.
[0017] 式(108)の右辺の—tan 2—α)Ζ/ί 1が固着境界線であって、つまり、「RlZ R2値く固着限界線」の範囲では推進部材後端 132と回転部材段部 122との当接部 は固着しない。すなわち式(108)が前記当接部の固着をしない条件となる。  [0017] -tan 2-α) — / ί 1 on the right side of formula (108) is a fixed boundary line, that is, within the range of “RlZ R2 value fixed limit line”, the propulsion member rear end 132 and the rotating member The contact part with the stepped part 122 is not fixed. That is, Expression (108) is a condition that prevents the contact portion from being fixed.
[0018] これに対し、従来のテンショナ一では、図 7〜9に示すように、推進部材後端 132と 回転部材段部 122との当接部の接触半径 R1がねじの接触半径 R2より大きく(R1 > R2)なっており、 R1/R2>1 >—tan( 2- a) / μ 1であることから式(108)を満 足することができず、このため前記当接部が固着し易い構造となっていた。  [0018] On the other hand, in the conventional tensioner 1, as shown in FIGS. 7 to 9, the contact radius R1 of the contact portion between the propulsion member rear end 132 and the rotating member step 122 is larger than the contact radius R2 of the screw. (R1> R2), and R1 / R2> 1> —tan (2-a) / μ1, so the formula (108) cannot be satisfied. It was easy to do.
特許文献 1:国際公開 WO00Z61968  Patent Document 1: International Publication WO00Z61968
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0019] このような状況から、近年、組立時の管理工数削減及びフェールセーフ的な観点 から、回転部材 120と推進部材 130とが当接する場合に固着しない構造を有するテ ンショナ一の出現が強く要望されている。 [0019] Under these circumstances, in recent years, from the viewpoint of reducing the number of man-hours for assembly and fail-safe, the appearance of a tensioner having a structure that does not stick when the rotating member 120 and the propelling member 130 come into contact with each other is strong. It is requested.
[0020] 本発明は、このような要求に対応するためになされたものであり、簡潔な機構で全 縮状態における回転部材と推進部材の固着を防止して、組立時の管理工数削減及 びエンジンからの強 、入力振動荷重などの異常作動時 (過挙動)の作動確保 (フエ ールセーフ)が可能なテンショナ一を提供することを目的とする。 [0020] The present invention has been made in order to meet such demands, and with a simple mechanism, the rotating member and the propelling member are prevented from sticking in the fully contracted state, thereby reducing the management man-hours during assembly. The purpose is to provide a tensioner that can ensure operation (fail safe) during abnormal operation (over-behavior) such as strength from the engine and input vibration load.
課題を解決するための手段  Means for solving the problem
[0021] 上記目的を達成するため、請求項 1の発明のテンショナ一は、ねじ部によって螺合 した一対のシャフト部材における一方のシャフト部材がばねによって回転付勢され、 他方のシャフト部材が回転拘束された状態で一方のシャフト部材力 の回転力の伝 達により推進するテンショナ一において、前記他方のシャフト部材の反推進方向への 移動によって相互に当接する当接部力 前記一対のシャフト部材における前記ねじ 部以外の部位に設けられており、前記当接部は、当接による接触半径を Rl、前記ね じ部の有効径を R2、当接による当接部の摩擦係数を 1、前記ねじ部の摩擦係数を μ 2、ねじ部のねじ面のリード角を αとしたとき、下記式(1)を満足するように設定され ていることを特徴とする。  [0021] In order to achieve the above object, in the tensioner of the invention of claim 1, one shaft member of the pair of shaft members screwed together by the screw portion is rotationally biased by the spring, and the other shaft member is rotationally restrained. In the tensioner that is propelled by the transmission of the rotational force of one shaft member force in a state where the two shaft members are in contact with each other by the movement of the other shaft member in the anti-propulsion direction, the force in the pair of shaft members The contact portion is provided at a portion other than the screw portion, and the contact portion has a contact radius Rl by contact, an effective diameter of the screw portion R2, a friction coefficient of the contact portion by contact 1, and the screw portion. The coefficient of friction is μ 2 and the lead angle of the thread surface of the thread is α, so that the following equation (1) is satisfied.
R1ZR2く一 tan 2— a)Zw 1 ……式(1)  R1ZR2 Kuichi tan 2— a) Zw 1 …… Formula (1)
[0022] 請求項 2の発明は、請求項 1記載のテンショナ一であって、前記当接部は、当接相 手のシャフト部材に向力つて先尖形状又は曲面形状となっていることを特徴とする。  [0022] The invention of claim 2 is the tensioner according to claim 1, wherein the abutting portion has a pointed shape or a curved shape directed toward the shaft member of the abutting partner. Features.
[0023] 請求項 3の発明は、請求項 1又は請求項 2記載のテンショナ一であって、前記他方 のシャフト部材の推進方向の先端部分に先端部材が設けられており、前記当接部は 、先端部材又は Z及び一方のシャフト部材の対向面に設けられていることを特徴とす る。  [0023] The invention of claim 3 is the tensioner according to claim 1 or 2, wherein a tip member is provided at a tip portion in the propulsion direction of the other shaft member, and the contact portion is The tip member or Z and one shaft member are provided on opposing surfaces.
[0024] 請求項 4の発明は、請求項 1記載のテンショナ一であって、前記当接部は、前記一 対のシャフト部材の間に配置された見掛けの摩擦係数が小さなベアリング部材である ことを特徴とする。  [0024] The invention of claim 4 is the tensioner according to claim 1, wherein the contact portion is a bearing member having a small apparent friction coefficient disposed between the pair of shaft members. It is characterized by.
発明の効果  The invention's effect
[0025] 請求項 1の発明によれば、一対のシャフト部材の当接部が(1)式を満足するように 設定されていることよりこの当接部に発生する摩擦トルク Tm=F'Rl ' 1 (式(104) )をねじ部に発生する回転トルク Tn=F'R2'tan 2— α ) (式(105) )より小さくす ることができることから、全縮状態で一対のシャフト部材の当接部の固着防止を確保 することができる。また、エンジン力 の強い入力振動荷重などの異常作動時 (過挙 動)にも一対のシャフト部材の当接部固着現象が起きることなく作動確保 (フェールセ ーフ)ができると!、う優れた効果がある。 [0025] According to the invention of claim 1, since the contact portions of the pair of shaft members are set so as to satisfy the expression (1), the friction torque generated at the contact portions Tm = F'Rl '1 (Equation (104)) can be made smaller than the rotational torque Tn = F'R2'tan 2— α ) (Equation (105)) generated in the threaded portion. It is possible to ensure the prevention of sticking of the contact portion. Also, when abnormal operation such as input vibration load with strong engine power ( In addition, if the operation can be ensured (fail safe) without causing the contact portion fixing phenomenon of the pair of shaft members to occur, there is an excellent effect.
[0026] 請求項 2の発明によれば、請求項 1の発明と同様な効果を有するのに加えて、一対 のシャフト部材の当接部が当接相手のシャフト部材に向かって先尖形状又は曲面形 状となっていることから、当接部が固着しないための条件である(1)式を確実に満足 するようにテンショナ一を形成することができる。  [0026] According to the invention of claim 2, in addition to having the same effect as that of the invention of claim 1, the contact portions of the pair of shaft members are pointed or pointed toward the shaft member of the contact partner. Because of the curved shape, the tensioner can be formed so as to surely satisfy the expression (1), which is a condition for preventing the contact portion from being fixed.
[0027] 請求項 3の発明によれば、請求項 1あるいは請求項 2の発明と同様な効果を有する のに加えて、微小に形成できる前記先尖形状の当接部が先端部材又は Z及び一方 のシャフト部材の対向面に設けられていることから、この当接部が固着しないための 条件である(1)式を確実に満足するようなテンショナ一を簡潔でコンパクトな構造で 形成することができる。  [0027] According to the invention of claim 3, in addition to having the same effect as that of the invention of claim 1 or claim 2, the tip-shaped contact portion that can be formed minutely is provided with a tip member or Z and Since it is provided on the opposite surface of one of the shaft members, a tensioner that reliably satisfies equation (1), which is a condition for preventing this contact portion from sticking, should be formed with a simple and compact structure. Can do.
[0028] 請求項 4の発明によれば、請求項 1の発明と同様な効果を有するのに加えて、前記 当接部が一対のシャフト部材の間に配置された見掛けの摩擦係数が小さなベアリン グ部材であることから、この当接部が固着しないための条件である(1)式を確実に満 足するように信頼性が向上したテンショナ一とすることができる。  [0028] According to the invention of claim 4, in addition to having the same effect as that of the invention of claim 1, the abutting portion is disposed between the pair of shaft members and has a small apparent friction coefficient. Therefore, the tensioner can be improved in reliability so as to satisfy the expression (1) which is a condition for preventing the contact portion from being fixed.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1] (a)は本発明の実施形態 1のテンショナ一を示す縦断面図、(b)は (a)の平面図 である。  FIG. 1 (a) is a longitudinal sectional view showing a tensioner according to Embodiment 1 of the present invention, and (b) is a plan view of (a).
[図 2]実施形態 1のテンショナ一の全縮状態における縦断面図である。  FIG. 2 is a longitudinal sectional view of the tensioner 1 of Embodiment 1 in a fully contracted state.
[図 3]本発明の実施形態 2のテンショナ一を示す縦断面図である。  FIG. 3 is a longitudinal sectional view showing a tensioner according to a second embodiment of the present invention.
[図 4]本発明の実施形態 3のテンショナ一を示す縦断面図である。  FIG. 4 is a longitudinal sectional view showing a tensioner according to Embodiment 3 of the present invention.
[図 5]本発明の実施形態 4のテンショナ一を示す縦断面図である。  FIG. 5 is a longitudinal sectional view showing a tensioner according to a fourth embodiment of the present invention.
[図 6]テンショナ一をエンジン本体に装着した状態のレイアウト図である。  FIG. 6 is a layout diagram showing a state in which the tensioner 1 is mounted on the engine body.
[図 7]従来のテンショナ一を示す縦断面図である。  FIG. 7 is a longitudinal sectional view showing a conventional tensioner.
[図 8]図 7のテンショナ一の推進シャフトが回転シャフトに接近して当接する状態を模 式的に説明するための作用モデル図である。  FIG. 8 is an action model diagram for schematically explaining a state in which the propulsion shaft of the tensioner shown in FIG. 7 comes close to and abuts the rotating shaft.
[図 9]図 7のテンショナ一の回転部材段部と推進部材後端部との当接部固着現象の 力学的モデル図である。 圆 10]図 7のテンショナ一の螺合する推進部材カも回転部材の自重落下現象を説明 するためのモデル図である。 9 is a mechanical model diagram of a contact portion fixing phenomenon between a rotating member step portion and a propulsion member rear end portion of the tensioner of FIG. [10] FIG. 7 is a model diagram for explaining the self-weight falling phenomenon of the rotating member of the tensioner screwed in the tensioner of FIG.
[図 11]テンショナ一の回転部材と推進部材の当接部の固着境界線図の一例である。 圆 12]テンショナ一の回転部材と推進部材の当接部の摩擦係数が変化した場合の 固着境界線である。  FIG. 11 is an example of a fixed boundary diagram of a contact portion between a rotating member and a propelling member of a tensioner.圆 12] This is the fixed boundary line when the friction coefficient of the contact part between the rotating member and propulsion member of the tensioner changes.
[図 13]テンショナ一の回転部材と推進部材の当接部の固着境界線図の別の例であ る。  FIG. 13 is another example of a fixed boundary diagram of the contact portion between the rotating member and the propelling member of the tensioner.
符号の説明  Explanation of symbols
2 ケース  2 cases
3 第 1のシャフト部材 (一方のシャフト部材)  3 First shaft member (one shaft member)
4 第 2のシャフト部材 (他方のシャフト部材)  4 Second shaft member (the other shaft member)
4a 基端部  4a Base end
5 捩りばね  5 Torsion spring
10、 10' 先端部材 (キャップ)  10, 10 'Tip member (cap)
20 (先尖状)当接部  20 (Pointed) contact part
30 ベアリング部材  30 Bearing material
40 圧縮ばね 発明を実施するための最良の形態  40 Compression Spring Best Mode for Carrying Out the Invention
[0031] 以下、本発明を図示する実施形態により具体的に説明する。なお、各実施形態に おいて、同一の機能を有する部材には同一の符号を付して対応させてある。この実 施形態では、一対のシャフト部材の当接部の固着を防止するために、最小の部品点 数追カ卩により、テンショナ一の配置上スペース的にも問題のな!、ように構成して 、る。  [0031] The present invention will be specifically described below with reference to embodiments shown in the drawings. In each embodiment, members having the same function are assigned the same reference numerals and correspond to each other. In this embodiment, in order to prevent the abutting portions of the pair of shaft members from sticking, the arrangement of the tensioner has no problem in terms of space due to the minimum number of additional parts! And
[0032] (実施形態 1)  [0032] (Embodiment 1)
図 1は本発明の実施形態 1のテンショナ一を示す縦断面図、図 2はその全縮状態に おける縦断面図である。この実施形態のテンショナ一は、ケース 2、回転部材である 第 1のシャフト部材 3、推進部材である第 2のシャフト部材 4、捩りばね(弾性部材) 5、 軸受 6、スぺーサ 7から大略構成されており、これらは図 7に示す従来のテンショナ一 と略同じ構成である。 FIG. 1 is a longitudinal sectional view showing a tensioner according to Embodiment 1 of the present invention, and FIG. 2 is a longitudinal sectional view in the fully contracted state. The tensioner 1 of this embodiment is roughly composed of a case 2, a first shaft member 3 that is a rotating member, a second shaft member 4 that is a propelling member, a torsion spring (elastic member) 5, a bearing 6, and a spacer 7. These are the conventional tensioner shown in Fig. 7. The configuration is substantially the same.
[0033] ケース 2は、胴部 2aの中間部にフランジ部 2bを備えた有底円筒状に大略成形され ている。そして、胴部 2a内部には、先端部にかけて軸方向(推進方向)に延びる収納 孔 2cが形成されている。収納孔 2cの先端部分は開放されており、この収納孔 2c内 に、第 1及び第 2のシャフト部材 3、 4、捩りばね 5、スぺーサ 7の組付体が収容される。  [0033] The case 2 is roughly molded into a bottomed cylindrical shape having a flange portion 2b in the middle portion of the body portion 2a. A housing hole 2c extending in the axial direction (propulsion direction) is formed in the body portion 2a toward the tip. The front end portion of the storage hole 2c is open, and the assembly of the first and second shaft members 3, 4, the torsion spring 5, and the spacer 7 is stored in the storage hole 2c.
[0034] ケース 2のフランジ部 2bは、適用されるエンジン本体への取付けを行うものであり、 エンジン本体に螺合するボルト(図示省略)が貫通する取付孔 2dが形成されている。 エンジン本体への取付けに際しては、図 6と同様に、フランジ部 2bの先端面がェンジ ン本体 200の取付面 250と当接する。  [0034] The flange portion 2b of the case 2 is to be attached to the applied engine body, and is formed with an attachment hole 2d through which a bolt (not shown) screwed into the engine body passes. When mounting to the engine body, the front end surface of the flange portion 2b comes into contact with the mounting surface 250 of the engine body 200, as in FIG.
[0035] 第 2のシャフト部材 4の先端には、キャップ力もなる先端部材 10が取り付けられてい る。第 1のシャフト部材 3の先端面の中心部には、円錐状に尖った先尖状当接部 20 が形成されている。第 2のシャフト部材 4が後退すると、先端部材 10の裏面が第 1の シャフト部材 3先端の当接部 20と当接する。第 1のシャフト部材 3は後述する捩りばね 5によって付勢されることにより回転し、ケース 2に設けられた後述の軸受 6により回転 が規制されるとともに軸方向に移動可能な第 2のシャフト部材 4は第 1のシャフト部材 3の回転によってケース 2から推進する。  A tip member 10 having a cap force is attached to the tip of the second shaft member 4. A conical pointed contact portion 20 is formed at the center of the distal end surface of the first shaft member 3. When the second shaft member 4 moves backward, the back surface of the tip member 10 comes into contact with the contact portion 20 at the tip of the first shaft member 3. The first shaft member 3 is rotated by being urged by a torsion spring 5 described later, and the second shaft member is restricted in rotation by a bearing 6 described later provided in the case 2 and is movable in the axial direction. 4 is propelled from the case 2 by the rotation of the first shaft member 3.
[0036] 第 1のシャフト部材 3は、基端側のシャフト部 3aと、先端側(図示上方)のねじシャフ ト部 3bとが軸方向に一体的に形成されており、先端側のねじシャフト部 3bの外周に は、雄ねじ 8が形成されている。また、基端側のシャフト部 3aの基端部は、ケース 2内 に設けた受け座 19に当接することにより、その回転が支承されるようになっている。さ らに、シャフト部 3aの基端面には、第 1のシャフト 3を回転させるための卷締め治具( 図示省略)の先端が挿入されるスリット 3eが形成されて 、る。スリット 3eはケース 2の 胴部 2aの基端面に開設した治具孔 2eと連通しており、卷締め治具の先端を治具孔 2 eからスリット 3eに挿入し、スリット 3eを介して第 1のシャフト部材 3を回転させることによ り、後述する捩りばね 5を卷締めることができる。  [0036] The first shaft member 3 includes a shaft portion 3a on the proximal end side and a screw shaft portion 3b on the distal end side (upper side in the figure) which are integrally formed in the axial direction. A male screw 8 is formed on the outer periphery of the portion 3b. Further, the rotation of the base end portion of the shaft portion 3a on the base end side is supported by abutting against a receiving seat 19 provided in the case 2. Further, a slit 3e into which a distal end of a tightening jig (not shown) for rotating the first shaft 3 is inserted is formed on the base end surface of the shaft portion 3a. The slit 3e communicates with the jig hole 2e opened on the base end surface of the body 2a of the case 2. The tip of the clamping jig is inserted into the slit 3e from the jig hole 2e, and the slit 3e passes through the slit 3e. By rotating the shaft member 3 of 1, the torsion spring 5 described later can be tightened.
[0037] 第 2のシャフト部材 4は軸方向先端(図示上方)に開口する筒状部 4bが形成されて おり、基端部 4aの内面には、第 1のシャフト部材 3の雄ねじ 8が螺合する雌ねじ 9が形 成されている。これらのシャフト部材 3、 4は、雄ねじ 8及び雌ねじ 9を螺合させた状態 でケース 2の収納孔 2c内に挿入される。この第 2のシャフト部材 4の筒状部 4b先端に は、キャップ力もなる先端部材 10が取付けられている。先端部材 10はプレス成形等 により頭部 10a及び脚部 10bからなり、第 2のシャフト部材 4の筒状部 4bの先端部に 外嵌された状態で、脚部 10bの下端部を筒状部 4bの先端部に形成された溝 4e内に 加締め等の方法により固定される。 [0037] The second shaft member 4 is formed with a cylindrical portion 4b that opens at the tip in the axial direction (upward in the figure). The male screw 8 of the first shaft member 3 is threaded on the inner surface of the base end 4a. A mating female screw 9 is formed. These shaft members 3 and 4 are in a state where the male screw 8 and the female screw 9 are screwed together. Is inserted into the storage hole 2c of the case 2. A distal end member 10 having a cap force is attached to the distal end of the cylindrical portion 4b of the second shaft member 4. The tip member 10 is composed of a head portion 10a and a leg portion 10b by press molding or the like, and the lower end portion of the leg portion 10b is connected to the tip end portion of the tubular portion 4b of the second shaft member 4 while the tubular portion It is fixed in the groove 4e formed at the tip of 4b by a method such as caulking.
[0038] 捩りばね 5は、第 1のシャフト部材 3の基端側シャフト部 3aに外挿されている。この捩 りばね 5の一端側(先端側)のフック部 5aがケース 2に形成されたフック溝 2fに挿入さ れて係止される一方、他端側 (基端側)のフック部 5bが第 1のシャフト部材 3の基端面 (底部)のスリット 3eに挿入され係止されている。従って、捩りばね 5を卷締めてトルク を付与することにより第 1のシャフト部材 3を回転させることができる。  The torsion spring 5 is externally inserted into the proximal end side shaft portion 3 a of the first shaft member 3. The hook portion 5a on one end side (tip side) of the torsion spring 5 is inserted and locked in the hook groove 2f formed on the case 2, while the hook portion 5b on the other end side (base end side) The first shaft member 3 is inserted and locked in the slit 3e on the base end surface (bottom). Therefore, the first shaft member 3 can be rotated by tightening the torsion spring 5 and applying torque.
[0039] 軸受 6は、ケース 2の先端部分に取付けられ、止め輪 13によって固定されている。  The bearing 6 is attached to the tip portion of the case 2 and is fixed by a retaining ring 13.
軸受 6は、摺動孔 6aを有しており、この摺動孔 6a内を第 2のシャフト部材 4が貫通して いる。軸受 6の摺動孔 6aの内面及び第 2のシャフト部材 4の外面は、図 1 (b)に示すよ うに、断面が略小判形状、 Dカットや平行カット、その他いずれかの非円形に形成さ れており、これにより第 2のシャフト部材 4は回転が拘束された状態となる。  The bearing 6 has a sliding hole 6a, and the second shaft member 4 passes through the sliding hole 6a. As shown in Fig. 1 (b), the inner surface of the sliding hole 6a of the bearing 6 and the outer surface of the second shaft member 4 are formed in a substantially oval cross section, D-cut or parallel cut, or any other non-circular shape. Thus, the rotation of the second shaft member 4 is restricted.
[0040] 軸受 6は、所定厚さの平板形状に成形されており、例えば従来と同様に外周側に は複数の固定片 6bが放射状に形成されている。この固定片 6bがケース 2の先端部 分に形成されている切欠溝 2gに嵌合することにより、軸受 6の全体が回転止めされた 状態となっている。このように軸受 6がケース 2に対して回転止めされることにより、軸 受 6を貫通した第 2のシャフト部材 4が軸受 6を介してケース 2に回転拘束される。  [0040] The bearing 6 is formed in a flat plate shape having a predetermined thickness, and a plurality of fixed pieces 6b are formed radially on the outer peripheral side, for example, as in the prior art. By fitting this fixed piece 6b into a notch groove 2g formed at the tip of the case 2, the entire bearing 6 is prevented from rotating. The bearing 6 is thus prevented from rotating with respect to the case 2, whereby the second shaft member 4 penetrating the bearing 6 is rotationally restrained by the case 2 via the bearing 6.
[0041] 第 2のシャフト部材 4には、雌雄ねじ 9、 8部を介して第 1のシャフト部材 3が螺合して おり、捩りばね 5の回転付勢力によって回転する第 1のシャフト部材 3の回転力が第 2 のシャフト部材 4に伝達される力 第 2のシャフト部材 4が軸受 6によって回転拘束され ているため、第 2のシャフト部材 4は推進力を得てケース 2に対し軸方向に進退する。  [0041] The first shaft member 3 is screwed into the second shaft member 4 via male and female screws 9 and 8, and the first shaft member 3 is rotated by the rotational biasing force of the torsion spring 5. Is transmitted to the second shaft member 4. Since the second shaft member 4 is rotationally restrained by the bearing 6, the second shaft member 4 obtains a propulsive force and axially acts on the case 2. Move forward and backward.
[0042] スぺーサ 7は、筒状となっており、その内部には第 1のシャフト部材 3及び第 2のシャ フト部材 4の螺合部分が挿入される。この場合、第 1のシャフト部材 3におけるシャフト 部 3aとねじシャフト部 3bとの境界部分には、大径となるフランジ状の段部 3cが形成さ れており、スぺーサ 7はその基端部 7aが段部 3cに当接している。また、スぺーサ 7の 先端部 7bは軸受 6の下面に近接して臨んでおり、軸受 6への当接によって、第 1及び 第 2のシャフト部材 3、 4がケース 2から抜け出ることを防止して 、る。 The spacer 7 has a cylindrical shape, and the screwed portions of the first shaft member 3 and the second shaft member 4 are inserted therein. In this case, a flange-shaped step portion 3c having a large diameter is formed at a boundary portion between the shaft portion 3a and the screw shaft portion 3b in the first shaft member 3, and the spacer 7 has a base end thereof. The part 7a is in contact with the step part 3c. Spacer 7 The front end portion 7b faces the lower surface of the bearing 6 and prevents the first and second shaft members 3 and 4 from coming out of the case 2 by contact with the bearing 6.
[0043] 以上にカ卩えて、この実施形態では、第 2のシャフト部材 3の先端面の中心部に、円 錐状などの先尖形状となっている当接部 20が形成されており、図 2に示すように、第 2のシャフト部材 4が全縮状態 (AO位置)になるまで後退したときに当接部 20が先端 部材 10の裏面と当接するようになつている。このとき、第 2のシャフト部材 4の後端 4f は第 1のシャフト部材 3の段部 3cに接することなぐ僅かな隙間を有しているとともに、 第 2のシャフト部材 4は構造上ケース 2のフランジ部 2b取付け面力も先端部材 10先 端までの出代寸法 AO力も後退することはない。先端部材 10の裏面 10cと先尖状当 接部 20は点接触などの接触半径 R1が極めて小さぐ当接部 20は先端部材裏面 10 cに対して固着しない。 In view of the above, in this embodiment, a contact portion 20 having a pointed shape such as a conical shape is formed in the center portion of the distal end surface of the second shaft member 3, As shown in FIG. 2, the contact portion 20 comes into contact with the back surface of the tip member 10 when the second shaft member 4 is retracted until it is fully contracted (AO position). At this time, the rear end 4f of the second shaft member 4 has a slight gap that does not contact the step 3c of the first shaft member 3, and the second shaft member 4 is structurally Neither the flange part 2b mounting surface force nor the protruding allowance AO force to the tip of the tip member 10 will be retracted. The abutting portion 20 having a very small contact radius R1 such as a point contact between the back surface 10c of the tip member 10 and the pointed contact portion 20 does not adhere to the tip member back surface 10c.
[0044] これは、当接部が固着しない条件となる上記式(108)を満足するためであり、以下 に具体的に説明する。  [0044] This is to satisfy the above formula (108), which is a condition that the contact portion does not adhere, and will be specifically described below.
[0045] 図 11は横軸にねじリード角 α、縦軸に(当接部の接触半径 R1) Z (ねじの接触半 径 R2)比を取り、当接部の摩擦係数 1及びねじ部の摩擦係数 2 = 0. 15のときの -ίαη ( μ 2 - α ) / μ 1の値を実線(=固着境界線)で示した固着境界線図の一例、 図 12は摩擦係数; ζ ( = μ 1 = μ 2)が変化した場合の固着境界線を示した固着境界 線図である。ここで、ねじ部は、雌ねじ部 8及び雄ねじ部 9をいう。図 11及び図 12の いずれも、 R1ZR2値が固着境界線より上側であれば当接部は固着し、下側であれ ば当接部は固着しないことを示す。なお、図 11、図 12において縦軸 (R1ZR2)の負 の値は実在しないことはいうまでもない。これは、 R1は 0以上であることから明らかで ある。  [0045] In Fig. 11, the horizontal axis represents the screw lead angle α, and the vertical axis represents the ratio (contact radius R1 of the contact portion) Z (contact radius R2 of the screw). An example of a fixed boundary diagram showing the value of -ίαη (μ 2-α) / μ 1 when the coefficient of friction is 2 = 0.15 as a solid line (= fixed boundary line). Fig. 12 shows the coefficient of friction; ζ (= It is a fixed boundary diagram showing a fixed boundary line when μ 1 = μ 2) changes. Here, the threaded portion refers to the female threaded portion 8 and the male threaded portion 9. Both FIG. 11 and FIG. 12 indicate that when the R1ZR2 value is above the fixing boundary line, the contact portion is fixed, and when it is below, the contact portion is not fixed. Of course, the negative value of the vertical axis (R1ZR2) in FIGS. 11 and 12 does not exist. This is clear from R1 being 0 or more.
[0046] 図 11中にプロットされたテンショナ一のモデル例 1〜3は以下の通り設定されている 。先端部材 10の裏面 10cと当接部 20との摩擦係数 1及びねじ部 8、 9における接 触部の摩擦係数 2共に = 0. 15で、当接部 20の接触半径 Rl、ねじ部 8及び 9にお ける接触半径 R2、ねじ部 8及び 9のリード角ひは、  [0046] Tensioner model examples 1 to 3 plotted in FIG. 11 are set as follows. The friction coefficient 1 between the back surface 10c of the tip member 10 and the contact part 20 and the friction coefficient 2 of the contact part in the screw parts 8 and 9 are both equal to 0.15, the contact radius Rl of the contact part 20, the screw part 8 and The contact radius R2 at 9 and the lead angle of thread 8 and 9 are
モデル例 1 : R1 = 6. Omm、 R2 = 5. Omm、 α = 12° 、  Model example 1: R1 = 6. Omm, R2 = 5. Omm, α = 12 °,
モデル例 2 : Rl = 0mm、 R2 = 3. 5mm、 α = 10° 、 モデル例 3 :R1 = 1. 0mm、R2 = 3. 5mm、 a = 14° Model example 2: Rl = 0mm, R2 = 3.5mm, α = 10 °, Model example 3: R1 = 1.0 mm, R2 = 3.5 mm, a = 14 °
である。  It is.
モデル例 1は固着境界線より上の範囲にあり固着し、モデル例 2及び 3は固着境界 線より下の範囲にあり固着しないことが分かる。つまり R1の値が小さい場合、 R1/R 2値が小さくなり、固着境界線の下側領域に位置する可能性が高まることが分かる。  It can be seen that model example 1 is in the range above the fixing boundary and is fixed, and model examples 2 and 3 are in the range below the fixing boundary and are not fixed. In other words, when the value of R1 is small, the R1 / R2 value is small, and the possibility of being located in the lower region of the fixed boundary line increases.
[0047] このように、全縮状態(図 2の AO)で、第 2のシャフト部材 3と第 1のシャフト部材 3の 当接部 20の接触半径 R1を小さく設定することにより、すなわち、図 1〜3の先尖状の 当接部 20のように設定することにより、当接部 20が固着することのないテンショナ一 とすることができる。さらに、図 1〜図 3に示す先尖形状や球面を含む曲面形状とする ことにより、当接部 20の曲率半径 R1をより小さくすることができる。  [0047] Thus, in the fully contracted state (AO in FIG. 2), by setting the contact radius R1 of the contact portion 20 between the second shaft member 3 and the first shaft member 3 to be small, By setting like the pointed contact parts 20 having a pointed shape of 1 to 3, the tensioner without the contact parts 20 sticking can be obtained. Furthermore, the curvature radius R1 of the contact portion 20 can be further reduced by using a curved surface shape including a pointed tip shape or a spherical surface shown in FIGS.
[0048] なお、上記計算式における式(108)は角ねじの場合の計算式である。これに対し、 台形ねじやメートルねじ等のねじでは、次のような分力計算が必要になる。  [0048] Formula (108) in the above formula is a formula for a square screw. On the other hand, the following component force calculations are required for screws such as trapezoidal screws and metric screws.
メートルねじの場合は、式(108)の tan 2の部分が変化する。すなわち、角ねじの 時は tan ;z 2である力 メートルねじの時は tan 2,になり、 tan /z 2' = μ 2Zcos j8と なる。ここで、 j8はねじ山直角断面でのフランク角であり、メートルねじの場合は j8 = 30° (山角度 60° の半分になる)として計算する。なお、 30° 台形ねじ(|8 = 15° ) やメートルねじ( = 30° )のようにフランク角が小さい場合、式(108)の右項の値は 、角ねじとの有意差は少なぐ式(108)として計算しても結果に大きな差は生じない。  In the case of a metric thread, the tan 2 part of equation (108) changes. That is, tan; z 2 for square screw, tan 2 for metric screw, and tan / z 2 '= μ 2Zcos j8. Here, j8 is the flank angle in the section perpendicular to the thread, and in the case of a metric thread, it is calculated as j8 = 30 ° (half of the thread angle 60 °). If the flank angle is small, such as 30 ° trapezoidal screw (| 8 = 15 °) or metric screw (= 30 °), the value in the right term of equation (108) is less significant than the square screw. Even if it is calculated as equation (108), there is no significant difference in the results.
[0049] (実施形態 2)  [Embodiment 2]
図 3は、本発明の実施形態 2のテンショナ一の縦断面図である。  FIG. 3 is a longitudinal sectional view of the tensioner 1 according to the second embodiment of the present invention.
この実施形態においては、実施形態 1における第 1のシャフト部材 3の先端面から 先尖状の当接部 20を取除き、先尖状の当接部 20'を先端部材 10'側に設けたもの で、先端部材 10'の形状が異なる点を除く他の構成は実施形態 1と同じである。  In this embodiment, the pointed contact part 20 ′ is removed from the tip surface of the first shaft member 3 in the first embodiment, and the pointed contact part 20 ′ is provided on the tip member 10 ′ side. However, the other configuration is the same as that of the first embodiment except that the shape of the tip member 10 ′ is different.
[0050] 先端部材 10'は、頭部 10a'及び脚部 10b'からなり、頭部 10a'が第 2のシャフト部 材 4の筒状部 4b先端部分を覆 ヽ、脚部 10b 'を筒状部 4bの先端部内に嵌入した状 態で、これらにスプリングピン 11を圧入することにより抜け止めされて筒状部 4bに固 定される。先端部材 10'の脚部 10b'下端面の中心部に先尖状の当接部 20'が設け られている。 [0051] したがって、第 2のシャフト部材 4が全縮状態 (AO位置)になるまで後退したときに当 接部 20'が第 1のシャフト部材 3の先端面と当接するようになつている。このとき、第 2 のシャフト部材 4の後端 4fは第 1のシャフト部材 3の段部 3cに接することなぐ僅かな 隙間を有しているとともに、第 2のシャフト部材 4は出代寸法 AO力もさらに後退するこ とはない。 [0050] The tip member 10 'includes a head portion 10a' and a leg portion 10b '. The head portion 10a' covers the tubular portion 4b tip portion of the second shaft member 4, and the leg portion 10b 'is tubular. The spring pin 11 is press-fitted into the tip portion of the shape portion 4b so as to be prevented from coming off and fixed to the tubular portion 4b. A tip contact portion 20 ′ is provided at the center of the lower end surface of the leg portion 10b ′ of the tip member 10 ′. Therefore, when the second shaft member 4 is retracted until it is fully contracted (AO position), the contact portion 20 ′ comes into contact with the front end surface of the first shaft member 3. At this time, the rear end 4f of the second shaft member 4 has a slight gap that does not contact the step portion 3c of the first shaft member 3, and the second shaft member 4 also has an output allowance AO force. There will be no further retreat.
[0052] この実施形態 2においても、第 1のシャフト部材 3の先端面と先尖状当接部 20'は点 接触などの接触半径 R1が極めて小さぐ当接部の固着をしない条件となる式(108) を満足するため、当接部 20'は第 1のシャフト部材 3の先端面に対して固着しない。  [0052] Also in the second embodiment, the tip surface of the first shaft member 3 and the pointed contact portion 20 'are in a condition that the contact portion with a very small contact radius R1 such as point contact is not fixed. In order to satisfy the formula (108), the contact portion 20 ′ is not fixed to the front end surface of the first shaft member 3.
[0053] このように、実施形態 1及び 2においては、微小な先尖状の当接部 20又は 20'を第 1のシャフト部材 3又は先端部材 10'の対向面の中心部に設けるだけの簡潔かつコ ンパタトな構造で、この当接部が固着しないための条件式(108)を確実に満足する テンショナ一とすることができる。  Thus, in the first and second embodiments, the minute tip-pointed contact portion 20 or 20 ′ is simply provided at the center of the opposing surface of the first shaft member 3 or the tip member 10 ′. With a simple and compact structure, the tensioner can surely satisfy the conditional expression (108) for preventing the contact portion from being fixed.
[0054] (実施形態 3)  [Embodiment 3]
図 4は本発明の実施形態 3のテンショナ一を示す縦断面図である。この実施形態で は、実施形態 2に対して先端部材 10'における先尖状の当接部 20'を取除き、第 2の シャフト部材 4の後端 4fと第 1のシャフト部材 3の段部 3cとの間にスラストベアリングな どのベアリング部材 30を設けたもので、他の構成は実施形態 2と基本的に同様であ る。  FIG. 4 is a longitudinal sectional view showing a tensioner according to Embodiment 3 of the present invention. In this embodiment, the pointed contact portion 20 ′ in the tip member 10 ′ is removed from the second embodiment, and the rear end 4f of the second shaft member 4 and the step portion of the first shaft member 3 are removed. A bearing member 30 such as a thrust bearing is provided between 3c and other configurations are basically the same as those of the second embodiment.
[0055] したがって、第 2のシャフト部材 4が全縮状態 (AO位置)になるまで後退したときに第 2のシャフト部材 4の後端 4fがベアリング部材 30と当接するようになつている。このとき 、先端部材 10'の脚部 10b'裏面は第 1のシャフト部材 3の先端面に接することなく僅 力な隙間を有しているとともに、第 2のシャフト部材 4は出代寸法 AOからさらに後退す ることはない。  Therefore, the rear end 4f of the second shaft member 4 comes into contact with the bearing member 30 when the second shaft member 4 is retracted until it is fully contracted (AO position). At this time, the back surface of the leg portion 10b 'of the tip member 10' has a slight gap without coming into contact with the tip surface of the first shaft member 3, and the second shaft member 4 has a protrusion allowance AO. There is no further retreat.
[0056] この実施形態 3においては、実施形態 1、 2における先尖状の当接部 20、 20'に代 えてベアリング部材 30が当接部となっている。ベアリング部材 30が例えばスラストべ ァリングの場合は、転がり抵抗 (見掛けの摩擦係数 1)は通常 0. 001程度であるた め、前述のように、ベアリング部材 30に発生す摩擦トルク (制動トルク) Tm力 ねじ 8、 9部に発生する回転トルク Tnより十分小さい値にできるため、当接部が固着しない条 件式(108)を十分満足することから、当接部であるベアリング部材 30は固着しない。 [0056] In the third embodiment, the bearing member 30 is a contact portion instead of the pointed contact portions 20, 20 'in the first and second embodiments. For example, when the bearing member 30 is a thrust bearing, the rolling resistance (apparent coefficient of friction 1) is usually about 0.001, so the friction torque (braking torque) generated in the bearing member 30 is as described above. Force Rotation torque generated at the screw 8 and 9 parts can be made sufficiently smaller than the torque Tn, so that the contact part does not stick. Since the expression (108) is sufficiently satisfied, the bearing member 30 as the contact portion does not adhere.
[0057] 図 13は横軸にねじリード角 (X、縦軸に(ベアリングの球体配列半径 R1) Z (ねじの 接触半径 R2)比を取り、 1 = 0. 001、 2 = 0. 15のときの— tan ( 2— α ) Ζ 1 の値を実線 ( =固着境界線)で示した固着境界線図を示す。 [0057] Figure 13 shows the ratio of the screw lead angle (X on the horizontal axis and the radius (R1 of bearing sphere arrangement R1) Z (contact radius R2 of the screw) on the vertical axis, where 1 = 0.001 and 2 = 0.15. A fixed boundary diagram showing the value of — tan (2− α) Ζ 1 with a solid line (= fixed boundary line) is shown.
[0058] 図 13中にプロットされたテンショナ一のモデル例 4は以下の通り設定されている。す なわち、 Rl = 6mm、 R2=4. 5mm、 μ 1 = 0. 001、 μ 2 = 0. 15、 α = 12° である[0058] The model example 4 of the tensioner plotted in FIG. 13 is set as follows. That is, Rl = 6mm, R2 = 4.5mm, μ1 = 0.001, μ2 = 0.15, α = 12 °
。このモデル例 4は固着境界線よりかなり下の範囲にあり、全く固着しないことが分か る。 . This Model Example 4 is in a range considerably below the fixing boundary line, and it can be seen that it does not stick at all.
[0059] このように、見掛けの摩擦係数 1が小さいベアリング部材 30を用いることにより、 ベアリングの接触 (球体配列など)半径 R1値がかなり大きくても固着しないことが分か る。すなわち、当接部が固着しないための条件(108)式を確実に満足するようにテン ショナ一を構成することができる。なお、ベアリングの半径 (球体配列半径など)は任 意に変更できるが、設置できるスペースには限りがあるため、一般的な設定ではねじ 半径より若干大きめの 1〜3倍程度が適切である。  [0059] As described above, it can be seen that by using the bearing member 30 having a small apparent friction coefficient 1, the bearing does not adhere even if the radius (R1) of the contact (spherical arrangement, etc.) is considerably large. That is, the tensioner can be configured to surely satisfy the condition (108) for preventing the contact portion from being fixed. The radius of the bearing (such as the sphere array radius) can be changed arbitrarily, but the space that can be installed is limited, so it is appropriate to set it to 1 to 3 times slightly larger than the screw radius.
[0060] (実施形態 4)  [0060] (Embodiment 4)
図 5は、本発明の実施形態 4のテンショナ一を示す縦断面図である。この実施形態 では、図 3の実施形態 2の構成に加えて第 1のシャフト部材 3と第 2のシャフト部材 4と の間に圧縮ばね 40を設けたもので、他の構成は、実施形態 2と基本的に同様である  FIG. 5 is a longitudinal sectional view showing a tensioner according to Embodiment 4 of the present invention. In this embodiment, a compression spring 40 is provided between the first shaft member 3 and the second shaft member 4 in addition to the configuration of the embodiment 2 in FIG. And basically the same
[0061] 圧縮ばね 40は第 1のシャフト部材 3の段部 3c上部と第 2のシャフト部材 4の基端部 4 a後端 4fとの間に配置されている。この圧縮ばね 40としては、両端のフック部が自由 端となっているコイルばねが使用されている。コイルばねからなる圧縮ばね 40は、先 端部 40aが第 2のシャフト部材 4と当接する一方、基端部 40bが第 1のシャフト部材 3 と当接している。この場合、基端部 40bは第 1のシャフト部材 3の段部 3cの上段に形 成された小径部 3dの上面 3fと当接するものである。このような圧縮ばね 40は、両端 部 40a、 40bが両シャフト部材 4、 3と当接するとともに、ある程度圧縮された状態で組 み込まれる。 The compression spring 40 is disposed between the upper part of the step 3c of the first shaft member 3 and the base end 4a rear end 4f of the second shaft member 4. As the compression spring 40, a coil spring having hook portions at both ends as free ends is used. In the compression spring 40 formed of a coil spring, the front end portion 40 a abuts on the second shaft member 4, while the base end portion 40 b abuts on the first shaft member 3. In this case, the base end portion 40b comes into contact with the upper surface 3f of the small diameter portion 3d formed on the upper portion of the step portion 3c of the first shaft member 3. The compression spring 40 is assembled in a state where both end portions 40a and 40b are in contact with both shaft members 4 and 3 and are compressed to some extent.
[0062] このように圧縮ばね 40の追加によって、第 2のシャフト部材 4は第 1のシャフト部材 3 におけるねじシャフト部 3bの先端側軸方向に押付けられる。この結果、圧縮ばね 40 の圧縮力による抵抗トルクが第 1のシャフト部材 3に対して付加される。 [0062] By adding the compression spring 40 in this manner, the second shaft member 4 becomes the first shaft member 3 Is pressed in the axial direction on the distal end side of the screw shaft portion 3b. As a result, a resistance torque due to the compression force of the compression spring 40 is applied to the first shaft member 3.
[0063] 従って、第 2のシャフト部材 4を押込む外部入力荷重が入力すると、第 1のシャフト 部材 3が回転するのに伴い第 2のシャフト部材 4が第 1のシャフト部材 3の段部 3c側に 押込まれ、先端部 40aが第 2のシャフト部材 4と当接している圧縮ばね 40に直に圧縮 力が作用して圧縮ばね 40が圧縮される。圧縮ばね 40は他端部 40bが第 1のシャフト 部材 3と当接しているため、圧縮ばね 40の圧縮によって、圧縮ばね 40と第 1のシャフ ト部材 3との間に摩擦による抵抗トルクが加算的に付加される。これにより、第 1のシャ フト部材 3に対してブレーキ力が強く作用し、第 1のシャフト部材 3の回転が強力に制 動されることから強力で安定した制振機能を確保することができる。  Accordingly, when an external input load that pushes in the second shaft member 4 is input, the second shaft member 4 becomes the step 3c of the first shaft member 3 as the first shaft member 3 rotates. The compression spring 40 is compressed by the compression force acting directly on the compression spring 40 that is pushed to the side and the tip end portion 40a is in contact with the second shaft member 4. Since the other end 40b of the compression spring 40 is in contact with the first shaft member 3, resistance torque due to friction is added between the compression spring 40 and the first shaft member 3 due to compression of the compression spring 40. Added. As a result, a strong braking force acts on the first shaft member 3 and the rotation of the first shaft member 3 is strongly controlled, so that a strong and stable vibration damping function can be secured. .
[0064] 第 1のシャフト部材 3における段部 3c上段の小径部 3dとねじシャフト部 3bとの間に は、さらに圧縮ばね 40の内径に相応した外径の小径段部 3eが形成されている。この 小径段部 3eは、圧縮ばね 40の基端部 40bを支持する支持座となるものである。そし て、圧縮ばね 40の基端部 40bに対してこの小径段部 3eを挿入することにより、さらに 安定した支持状態としている。なお、圧縮ばね 40の基端部 40bと第 1のシャフト部材 3の小径部 3dの上面 3fとの間には、圧縮ばね 40に対して第 1のシャフト部材 3が相 対的に回転するため、図示しな!ヽ緩衝板又は摩擦板としての金属ヮッシャを挟設す ることが望ましい。  [0064] A small-diameter step portion 3e having an outer diameter corresponding to the inner diameter of the compression spring 40 is formed between the small-diameter portion 3d at the upper stage of the step portion 3c in the first shaft member 3 and the screw shaft portion 3b. . The small diameter step portion 3e serves as a support seat that supports the base end portion 40b of the compression spring 40. Then, by inserting the small diameter step portion 3e into the base end portion 40b of the compression spring 40, a more stable support state is achieved. The first shaft member 3 rotates relative to the compression spring 40 between the base end portion 40b of the compression spring 40 and the upper surface 3f of the small diameter portion 3d of the first shaft member 3. Not shown! It is desirable to sandwich a metal washer as a buffer plate or a friction plate.
[0065] この実施形態においても、第 1のシャフト部材 3の先端面と先尖状の当接部 20'との 間は点接触などの接触半径 R1が極めて小さぐ当接部が固着条件式(108)を満足 する。このため、当接部 20'が第 1のシャフト部材 3の先端面に対して固着しない。  [0065] Also in this embodiment, the contact portion where the contact radius R1 such as point contact is extremely small is between the tip surface of the first shaft member 3 and the pointed contact portion 20 '. Satisfies (108). For this reason, the contact portion 20 ′ does not adhere to the distal end surface of the first shaft member 3.
[0066] 以上の実施形態のテンショナ一は、全圧縮状態の出代寸法が AOになった時だけ 上述のような当接部が固着することなく接触(当接)するという従来品と異なる特徴を 有している。そして、 AO以上の出代寸法(図 4の A2〜A3相当)では従来のテンショ ナ一と同じ機能である。  [0066] The tensioner 1 of the above-described embodiment is different from the conventional product in which the contact portion as described above is in contact (contact) without being fixed only when the allowance dimension in the fully compressed state is AO. have. And, it has the same function as that of the conventional tensioner in the allowance dimension larger than AO (equivalent to A2 to A3 in Fig. 4).
[0067] なお、本発明においては、図 1〜5に示した実施形態以外にも組合せが自由に設 定でき、ケース 2、第 1、第 2のシャフト部材 3、 4及びその他の構成部材について、任 意に形状を変更したり、組合せを変更するなどにより、簡易な構造で、当接部の固着 防止を行うという新たな効果が得られるものである。また、捩じりばね 5、圧縮ばね 40 についても、径を含むばね部材寸法や形状は、任意に変更が可能であり、これにより 、ばねトルクあるいは圧縮力による抵抗トルクを任意に調整することができる。さらに、 圧縮ばね 40はコイルばね、皿ばね、ゴム成形体又は榭脂成形体等、あるいは捩じり ばね 5はコイルばね、板卷きばね、その他いずれか任意選択的に適用することができ る。 [0067] In the present invention, combinations other than the embodiment shown in Figs. 1 to 5 can be freely set. Case 2, first and second shaft members 3, 4 and other components The contact part can be fixed with a simple structure by arbitrarily changing the shape or changing the combination. A new effect of prevention is obtained. Also for the torsion spring 5 and the compression spring 40, the size and shape of the spring member including the diameter can be arbitrarily changed, so that the resistance torque by the spring torque or the compression force can be arbitrarily adjusted. it can. Further, the compression spring 40 can be applied as a coil spring, a disc spring, a rubber molded body, a resin molded body, or the like, or the torsion spring 5 can be optionally applied as a coil spring, a plate spring, or the like. .

Claims

請求の範囲 The scope of the claims
[1] ねじ部によって螺合した一対のシャフト部材における一方のシャフト部材がばねに よって回転付勢され、他方のシャフト部材が回転拘束された状態で一方のシャフト部 材からの回転力の伝達により推進するテンショナ一において、  [1] One shaft member of the pair of shaft members screwed by the screw portion is rotationally biased by the spring, and the other shaft member is rotationally restrained by transmission of rotational force from the one shaft member. In the tensioner to promote,
前記他方のシャフト部材の反推進方向への移動によって相互に当接する当接部が 、前記一対のシャフト部材における前記ねじ部以外の部位に設けられており、 前記当接部は、当接による接触半径を Rl、前記ねじ部の有効径を R2、当接による 当接部の摩擦係数を 1、前記ねじ部の摩擦係数を 2、ねじ部のねじ面のリード角 を αとしたとき、下記式(1)を満足するように設定されていることを特徴とするテンショ ナー。  The contact portions that contact each other by the movement of the other shaft member in the anti-propulsion direction are provided in a portion other than the screw portion in the pair of shaft members, and the contact portions are contact by contact When the radius is Rl, the effective diameter of the screw part is R2, the friction coefficient of the contact part by contact is 1, the friction coefficient of the screw part is 2, and the lead angle of the thread surface of the screw part is α, the following formula A tensioner that is set to satisfy (1).
R1ZR2く一 tan 2— a)Zw 1 ……式(1)  R1ZR2 Kuichi tan 2— a) Zw 1 …… Formula (1)
[2] 前記当接部は、当接相手のシャフト部材に向かって先尖形状又は曲面形状となつ て 、ることを特徴とする請求項 1記載のテンショナ一。 [2] The tensioner according to [1], wherein the contact portion has a pointed shape or a curved surface shape toward the shaft member of the contact partner.
[3] 前記他方のシャフト部材の推進方向の先端部分に先端部材が設けられており、 前記当接部は、先端部材又は Z及び一方のシャフト部材の対向面に設けられて 、 ることを特徴とする請求項 1又は請求項 2記載のテンショナ一。 [3] A tip member is provided at a tip portion in the propulsion direction of the other shaft member, and the abutting portion is provided on a facing surface of the tip member or Z and the one shaft member. The tensioner according to claim 1 or claim 2.
[4] 前記当接部は、前記一対のシャフト部材の間に配置された見掛けの摩擦係数が小 さなベアリング部材であることを特徴とする請求項 1記載のテンショナ一。 4. The tensioner according to claim 1, wherein the abutting portion is a bearing member having a small apparent friction coefficient disposed between the pair of shaft members.
PCT/JP2006/319084 2005-09-30 2006-09-26 Tensioner WO2007040102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200680036342.2A CN101278143B (en) 2005-09-30 2006-09-26 Tensioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-288948 2005-09-30
JP2005288948A JP4835915B2 (en) 2005-09-30 2005-09-30 Tensioner

Publications (1)

Publication Number Publication Date
WO2007040102A1 true WO2007040102A1 (en) 2007-04-12

Family

ID=37906145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319084 WO2007040102A1 (en) 2005-09-30 2006-09-26 Tensioner

Country Status (3)

Country Link
JP (1) JP4835915B2 (en)
CN (1) CN101278143B (en)
WO (1) WO2007040102A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060794A1 (en) * 2007-11-07 2009-05-14 Ntn Corporation Chain tensioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250889B2 (en) * 2008-10-01 2013-07-31 日本発條株式会社 Tensioner
JP5157013B2 (en) 2008-10-01 2013-03-06 日本発條株式会社 Tensioner
WO2012164707A1 (en) * 2011-06-01 2012-12-06 日本発條株式会社 Tensioner
BR112016024025B1 (en) * 2014-04-14 2023-03-28 Nhk Spring Co., Ltd. TENSOR
JP6948992B2 (en) * 2018-08-01 2021-10-13 日本発條株式会社 Tensioner
JP2022011785A (en) * 2020-06-30 2022-01-17 株式会社クボタ Chain tensioner and tensioner releasing tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023737A1 (en) * 1995-12-21 1997-07-03 Honda Giken Kogyo Kabushiki Kaisha Propelling force application apparatus
JPH10110795A (en) * 1996-10-03 1998-04-28 Honda Motor Co Ltd Tensioner
JP2003184968A (en) * 2001-12-18 2003-07-03 Nhk Spring Co Ltd Tensioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711434A (en) * 2002-11-01 2005-12-21 日本发条株式会社 Tensioner
JP4552001B2 (en) * 2003-08-04 2010-09-29 日本発條株式会社 Tensioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023737A1 (en) * 1995-12-21 1997-07-03 Honda Giken Kogyo Kabushiki Kaisha Propelling force application apparatus
JPH10110795A (en) * 1996-10-03 1998-04-28 Honda Motor Co Ltd Tensioner
JP2003184968A (en) * 2001-12-18 2003-07-03 Nhk Spring Co Ltd Tensioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060794A1 (en) * 2007-11-07 2009-05-14 Ntn Corporation Chain tensioner
JP2009115226A (en) * 2007-11-07 2009-05-28 Ntn Corp Chain tensioner

Also Published As

Publication number Publication date
CN101278143B (en) 2015-07-15
JP2007100753A (en) 2007-04-19
JP4835915B2 (en) 2011-12-14
CN101278143A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
WO2007040102A1 (en) Tensioner
JP4293902B2 (en) Belt tensioner with mounting pin
US7490695B2 (en) Electric power steering apparatus
CA3026902C (en) Rotary tensioner
JP6520379B2 (en) Resistance generator
FR2717546A1 (en) Belt tensioner.
JP2009526173A (en) Torque bias friction hinge for tensioner
JP4925636B2 (en) Auto tensioner
WO2003052295A1 (en) Tensioner
JP4934815B2 (en) Tensioner
JP4846648B2 (en) Chain tensioner
CN104565098B (en) Attachment means for drive shaft
JP4461360B2 (en) Tensioner
JP2005337333A (en) Gear with torque limiter mechanism
JP4552001B2 (en) Tensioner
JP6478559B2 (en) Tensioner unit for auxiliary drive belt
JP4925634B2 (en) Auto tensioner
FR3037160A1 (en) CLUTCH PEDAL COMPRISING AN ELASTIC ELEMENT FORMING THE JOINT DELIVERING A RECALL STRENGTH
JP4927638B2 (en) Chain tensioner
JP2004284505A (en) Electric power steering device
FR2858674A1 (en) Double flywheel damper for motor vehicle, has vibration damper that is mounted between coaxial primary and secondary flywheels, where vibration damper has flexible annular sheet plate that damps axial oscillations of primary flywheel
JPWO2004040166A1 (en) Tensioner
JPH1018670A (en) Pivot coupling structure
JPWO2004040167A1 (en) Tensioner
JP4917785B2 (en) Auto tensioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036342.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 798/MUMNP/2008

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 06798345

Country of ref document: EP

Kind code of ref document: A1