WO2003052295A1 - Tensioner - Google Patents

Tensioner Download PDF

Info

Publication number
WO2003052295A1
WO2003052295A1 PCT/JP2002/013255 JP0213255W WO03052295A1 WO 2003052295 A1 WO2003052295 A1 WO 2003052295A1 JP 0213255 W JP0213255 W JP 0213255W WO 03052295 A1 WO03052295 A1 WO 03052295A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft member
coil spring
tensioner
shaft
spring
Prior art date
Application number
PCT/JP2002/013255
Other languages
French (fr)
Japanese (ja)
Inventor
Tanehira Amano
Takao Kobayashi
Original Assignee
Nhk Spring Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nhk Spring Co., Ltd. filed Critical Nhk Spring Co., Ltd.
Priority to AU2002354218A priority Critical patent/AU2002354218A1/en
Publication of WO2003052295A1 publication Critical patent/WO2003052295A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/081Torsion springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • F16H2007/0853Ratchets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • F16H2007/0857Screw mechanisms

Definitions

  • the present invention relates to a tensioner for keeping the tension of an endless belt chain constant.
  • the tensioner pushes a timing chain used in an automobile engine or a timing belt with a predetermined force, and acts to keep the tension constant when these elongate or loosen.
  • FIG. 13 shows a state in which the cushion 100 is mounted on the engine body 200 of the automobile.
  • a pair of force sprockets 210, 210 and a crank sprocket 220 are arranged, and these sprockets 210, 210, 220 are arranged.
  • the timing chain 230 is extended endlessly.
  • a chain guide 240 is swingably disposed on the movement path of the timing chain 230, and the timing chain 230 slides on the chain guide 240.
  • the engine body 200 has a mounting surface 250 formed thereon, and the tensioner 100 is formed on the mounting surface 250 by a port 270 that passes through the mounting hole 260 of the mounting surface 250. Fixed.
  • the engine body 200 is filled with lubricating oil (not shown).
  • Figs. 14 and 15 show a tensioner 100 conventionally used, and a rotating shaft 120 and a propulsion shaft 130 are assembled and arranged inside a case 110.
  • the case 110 includes a main body 111 extending in the axial direction to insert the shafts 120, 130, and a flange 1 extending from the main body 111 in a direction intersecting the axial direction. 1 and 2.
  • the flange portion 112 is for attaching the tensioner 100 to the engine body 200. Therefore, the flange portion 112 is attached to the engine body 200.
  • Mounting holes 113 are formed to allow a port to be screwed through.
  • the main body 111 accommodates each of the components described below. For this reason, a housing hole 114 having the same diameter is formed in the inside along the axial direction.
  • the assembling of the rotating shaft 120 and the propulsion shaft 130 forms an external thread portion 121 on the outer surface of the rotating shaft 120, while forming an internal thread portion 131 on the inner surface of the propulsion shaft 130, It is performed by screwing these threaded portions 1 2 1 and 1 3 1.
  • a receiving seat 140 is provided inside the case 110 corresponding to the proximal end of the rotating shaft 120 so as to be located in the storage hole 114. The end of the tomb of the rotating shaft 120 is supported by 140.
  • the propulsion shaft 130 is screwed into the front half of the rotary shaft 120 and the rear half where the propulsion shaft 130 is not screwed. 150 are arranged.
  • the torsion spring 150 has one end hook portion 151 inserted into a slit 123 formed in the base end of the rotating shaft 120 and locked, and the other end hook portion 152 is a case. Locked at 110. Therefore, when the torsion spring 150 is twisted to assemble with a predetermined torque applied, the rotating shaft 120 is rotated by the urging force of the torsion spring 150.
  • a bearing 160 is fixed to a tip portion of the case 110 by a retaining ring 170, and the propulsion shaft 130 passes through a sliding hole 161 of the bearing 16.
  • the inner surface of the sliding hole 161 of the bearing 160 and the outer surface of the propulsion shaft 130 are formed in a substantially oval shape, parallel cut, or other non-circular shape, so that the propulsion shaft 130 rotates. It is in a restrained state.
  • the bearing 160 is formed in a flat plate shape having a predetermined thickness, and a plurality of fixing pieces 162 are formed on the outer peripheral side. The fixed piece 162 fits into the notch groove 115 formed at the tip of the case 110, so that the entire bearing 160 is in a state where rotation is stopped.
  • a cap 180 is attached. 180 is in contact with the above-described chain guide 240 in the engine body 200 described above.
  • a spacer 190 is arranged inside the case 110.
  • the spacer 190 has a cylindrical shape extending in the axial direction (propulsion direction) so as to surround the rotary shaft 120 and the propulsion shaft 130, and the shaft 1 2 in a screwed state is formed. 0, 130 are prevented from falling out of the tip of the case 110.
  • the rotating shaft 120 is formed in a flanged shape that can abut against the spacer 190.
  • the rotating shaft 120 is rotated by the urging force of the torsion spring 150, and this rotational force is converted into the propulsive force of the propulsion shaft 130. 130 will advance.
  • the propulsion shaft 130 presses the timing chain 230 through the cap 180 and the chain guide 240, and thus tension can be applied to the timing chain 230.
  • the propulsion (forward) characteristic of the propulsion shaft 130 tends to be stronger. If the propulsion shaft 130 protrudes more than necessary, the friction between the chain guide 240 and the chain 230 increases, which causes a large engine output loss. .
  • a friction plate is provided on a case, and a flange-shaped friction surface having a large contact diameter is provided on a portion of the rotary shaft facing the friction plate. Further, a structure is disclosed in which a friction surface is held by an auxiliary spring so as not to contact a friction plate. With this structure, when the external input load from the chain guide is small, the friction surface contacts the friction plate. It does not touch, but when the external input load exceeds a certain level, the friction surface can contact the friction plate and generate frictional force. This eliminates the need for the above-mentioned structures (1) to (3), thereby reducing the output loss of the engine and suppressing the amplitude of the propulsion shaft against a large external input load.
  • Japanese Patent Laid-Open Publication No. 2001-21012 also makes it possible to suppress the amplitude of the propulsion shaft, but depending on the engine model, the characteristic that focuses on the suppression of the amplitude may be reduced. May be required.
  • the present invention has been made to meet such a demand, and an object of the present invention is to provide a tensioner capable of performing fine amplitude suppression with respect to external input weight. Disclosure of the invention
  • a tensioner in order to achieve the above object, includes a first shaft member and a second shaft member screwed by a screw portion, and the first shaft member being rotated in one direction.
  • a biasing torsion spring housed in the case, the tensioner for restricting rotation of the second shaft member and converting the rotational urging force of the torsion spring into a propulsion force of the second shaft member;
  • An elastic member for generating a resistance torque against an external input load input to the first shaft member is disposed between the first shaft member and the second shaft member.
  • the load acts on the elastic member disposed between the first shaft member and the second shaft member. .
  • the elastic member generates a resistance torque against an external input load, so that the amplitude of the second shaft member can be reduced.
  • the elastic member is disposed between the first shaft member and the second shaft member.
  • the invention according to claim 2 is the tensioner according to claim 1, wherein the elastic member is compressed by the first shaft member and the second shaft member. And a coil spring that is compressed by an external input load to generate a friction torque with the first shaft member.
  • the elastic member is formed by a coil spring.
  • the coil spring is compressed by the first shaft member and the second shaft member, and is also compressed by an external load applied to the second shaft member. Compressed.
  • a friction torque is generated between the first shaft member and the generated friction torque is increased, so that the rotation of the first shaft member is restricted. That is, when the external input load is input, the second shaft member is pushed into the case, so that the first shaft member rotates in the direction opposite to the rotational biasing direction of the torsion spring.
  • a braking force due to the frictional force of the compression spring acts. For this reason, the pushing amount (amplitude) of the second shaft member is suppressed.
  • the invention according to claim 3 is the tensioner according to claim 1, wherein the elastic member is twisted by an external load applied to a second shaft member. And a coil spring that generates a reaction torque in the same direction as the rotational urging direction.
  • the coil spring when an external input load is input to the second shaft member, the coil spring is twisted to generate a reaction torque or increase the reaction torque. Because of this, On the other hand, the pushing force on the second shaft member due to the external input load is small, and the pushing amount (amplitude) of the second shaft member can be suppressed.
  • the invention according to claim 4 is the cushioning device according to claim 2, wherein a support seat for supporting the coil spring on either the first shaft member or the second shaft member. It is characterized by being provided.
  • the invention according to claim 5 is the tensioner according to any one of claims 2 to 4, wherein the coil spring has an end on the first shaft member side that is the second shaft member. The diameter is gradually reduced in a direction opposite to the direction in which the shaft member is propelled.
  • the invention according to claim 6 is the tensioner according to claims 2 to 5, wherein the coil winding direction of the coil spring is opposite to the thread cutting direction of the threaded portion of the first shaft member. It is characterized by the fact that
  • the invention set forth in claim 5 is the cushioning device according to any one of claims 2 to 6, wherein the clutch portion that rotates as the second shaft member advances and retreats includes a clutch.
  • the coil spring is characterized in that one end of the coil spring is locked to the clutch portion and the other end is locked to the first shaft member.
  • the clutch portion formed on the second shaft member twists the coil spring, so that a reaction torque is generated in the coil spring. For this reason, the amplitude of the second shaft member can be suppressed.
  • the invention according to claim 8 is the tensioner according to claim 1, wherein the elastic member is arranged in contact with the first shaft member and the second shaft member, It is a disc spring, a rubber molded body or a resin molded body that generates a friction torque with the first shaft member by being compressed by a force load.
  • a disc spring, a rubber molded body or a resin molded body is used as the elastic member.
  • These disc springs, rubber molded bodies and resin molded bodies are all deformed when an external input load is applied to the second shaft member, and generate friction torque with the first shaft member. . For this reason, the rotation of the first shaft member is restricted, so that the amplitude of the second shaft member can be suppressed.
  • the disc spring, the rubber molded body or the resin molded body is disposed between the first shaft member and the second shaft member, the input of the external input load is reduced. In this case, a friction torque is always generated, so that the amplitude of the second shaft member can be finely controlled.
  • the invention according to claim 9 is the cushioning device according to any one of claims 1 to 8, wherein a buffer plate is provided between the elastic member and the first shaft member. It is characterized by being inserted.
  • the cushioning plate inserted between the elastic member and the first shaft member acts to prevent the elastic member from biting into the first shaft member. For this reason, the elastic member operates smoothly. And the wear of the elastic member and the first shaft member can be suppressed, and the durability can be improved.
  • FIG. 1 is a plan view showing a tensioner according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view taken along line C--C in FIG. 1, and FIG. FIG.
  • FIG. 8 is a cross-sectional view illustrating a tensioner according to a fourth embodiment
  • FIG. 9 is a cross-sectional view illustrating a tensioner according to a fifth embodiment
  • FIG. 11 is a sectional view showing a tensioner according to a sixth embodiment
  • FIG. 11 is a sectional view showing a tensioner according to a seventh embodiment
  • FIG. 8 is a cross-sectional view illustrating a tensioner according to a fourth embodiment
  • FIG. 9 is a cross-sectional view illustrating a tensioner according to a fifth embodiment
  • FIG. 11 is a sectional view showing a tensioner according to a sixth embodiment
  • FIG. 11 is a sectional view showing a tensioner according to a seventh embodiment
  • FIG. 12 is a sectional view showing a tensioner according to an eighth embodiment.
  • FIG. 13 is a sectional view showing a state in which the tensioner is mounted on the engine body, and
  • FIG. FIG. 1 is a plan view showing a conventional cushioner.
  • FIG. 15 is a cross-sectional view taken along line QQ in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a tensioner A1 according to a first embodiment of the present invention.
  • a case 2 a first shaft member 3, a second shaft member 4, a grip spring 5, a bearing 6, and a shaft It has 7 sensors.
  • Case 2 has a substantially T-shaped cross section in which a flange portion 2b extends in a substantially orthogonal direction from a tip of a body portion 2a. Then, from the trunk 2a to the part where the flange 2 is formed, The receiving hole 2c is formed to extend in the same direction. The tip of the storage hole 2c is open, and the assembly of the first and second shaft members 3, 4, the torsion spring 5, and the spacer 7 is stored in the storage hole 2c. You.
  • the flange portion 2b of the case 2 is for mounting to an engine body, which is a device to be used, and has a mounting hole 2d through which a port (not shown) screwed to the engine body penetrates. At the time of attachment to the engine body, the tip surface of the flange portion 2b comes into contact with the attachment surface 250 of the engine body 200, as in FIG.
  • the first shaft member 3 is rotated by being urged by a torsion spring 5 described later, and the second shaft member 4 is propelled from the case 2 by the rotation of the first shaft member 3.
  • the first shaft member 3 has a shaft portion 3a on the proximal end side and a screw portion 3b on the distal end side integrally formed in the axial direction, and an outer periphery of the screw portion 3b on the distal end side has An external thread 8 is formed.
  • the base end of the shaft portion 3a comes into contact with a receiving seat 19 provided in the case 2, whereby the rotation thereof is supported.
  • a slit 3e into which a distal end of a fastening jig (not shown) for rotating the first shaft 3 is inserted is formed in the base end surface of the shaft portion 3a.
  • the slit 3 e communicates with the jig hole 2 e formed in the base end face of the body 2 a of the case 2.
  • the second shaft member 4 is formed in a cylindrical shape, and on the inner surface thereof, a female screw 9 with which the male screw 8 of the first shaft member 3 is screwed is formed. These shaft members 3 and 4 are inserted into the storage hole 2 c of the case 2 with the female screw 9 and the male screw 8 screwed together.
  • a cap 10 is attached to the tip of the second shaft member 4.
  • the cap 10 is composed of a head 10 Oa and a leg 1 Ob, the head 10 a covers a tip portion of the second shaft member 4, and the leg 10 b is attached to the second shaft member 4.
  • the spring pins 11 are press-fitted into these in a state where they are fitted to the distal end portions thereof, and are prevented from coming off and fixed to the second shaft member 4.
  • the torsion spring 5 is extrapolated to the shaft portion 3a of the first shaft member 3. This twist The hook 5a at one end of the hook 5 is inserted and locked in a hook groove 2f formed in the case 2, while the hook 5b at the other end is connected to the first shaft member 3 and the slit 3 at the bottom. Inserted and locked in e. Therefore, the first shaft member 3 can be rotated by tightening the torsion spring 5 and applying a torque.
  • the bearing 6 is attached to the tip of the case 2 and is fixed by a retaining ring 13.
  • the bearing 6 has a sliding hole 6a, and the second shaft member 4 passes through the sliding hole 6a.
  • the inner surface of the sliding hole 6a of the bearing 6 and the outer surface of the second shaft member 4 are formed in a substantially oval shape, a D-cut ⁇ parallel cut, and other non-circular shapes.
  • the member 4 is in a state where the rotation is restricted.
  • the bearing 6 is formed in a flat plate shape having a predetermined thickness, and a plurality of fixing pieces 613 are radially formed on the outer peripheral side.
  • the fixing piece 6b is fitted into the notch groove 2g formed in the front end portion of the case 2, the entire bearing 6 is in a state where rotation is stopped.
  • the bearing 6 is stopped from rotating with respect to the case 2 in this manner, the second shaft member 4 that has penetrated the bearing 6 is restrained from rotating by the case 2 via the bearing 6.
  • the first shaft member 3 is screwed to the second shaft member 42 via the threaded portions 8 and 9, and the rotational force of the first shaft member 3 rotated by the rotational urging force of the torsion spring 5. Is transmitted to the second shaft member 4. Since the second shaft member 4 is rotationally constrained by the bearing 6, the second shaft member 4 advances and retreats with respect to the case 2.
  • the spacer 7 has a cylindrical shape, and a threaded portion of the first shaft member 3 and the second shaft member 4 is inserted therein.
  • a large-diameter flange portion 3c is formed at a boundary portion between the shaft portion 3a and the thread portion 3b in the first shaft member 3, and the spacer 7 has a base end portion. It is in contact with the flange 3c.
  • the distal end of the spacer 7 faces the bearing 6, and the contact with the bearing 6 prevents the first and second shaft members 13, 14 from coming out of the case 2.
  • a coil spring 20 as an elastic member is provided.
  • the coil spring 20 is disposed between the first shaft member 3 and the second shaft member 4. I have.
  • the coil spring 20 is disposed between the threaded portion 3 of the first shaft member 3 and the base end of the second shaft member 4.
  • the coil spring 20 a compression spring having hook portions at both ends being free ends is used.
  • One end 20 a of the coil spring 20 made of a compression spring is in contact with the second shaft member 4, while the other end 20 b is in contact with the first shaft member 3. In this case, the other end portion 20 b comes into contact with the flange portion 3 c of the first shaft member 3.
  • Such a coil spring 20 is assembled in a state where both end portions 20a and 20b are in contact with both shaft members 3 and 4 and are compressed to some extent.
  • FIG. 3 explains the operation of this embodiment in comparison with the conventional tensioner shown in FIGS. 14 and 15, and the conventional tensioner has the same reference numerals as those in FIG. Is added to the corresponding.
  • a rotational urging force composed of a torque T acts on the first shaft member 3 by a torsion spring 5.
  • the second shaft 4 is pushed into the case 2, so that the first shaft member 3 rotates in the direction of arrow D against the rotational urging force of the torsion spring 5.
  • the tensioner without the coil spring 20 rotates in the direction of arrow D with a rotation torque Tk corresponding to the load of the external input load F, as shown in FIG.
  • the rotation angle of the first shaft member 3 is 0 2
  • the amplitude of the second shaft member 4 corresponding to the angle ⁇ 2 is B.
  • a coil spring 20 composed of a compression spring is disposed between the second shaft member 4 and the coil spring 20 when the external input load F is input to the second shaft member 4.
  • a friction torque is generated between the lower end portion 20b and the flange portion 3c of the first shaft member 3, or the friction torque is larger than the friction torque already generated.
  • the friction torque ⁇ 1 exerts a braking action on the rotation angle 02 at which the first shaft member 3 is forcibly rotated by the pushing of the second shaft member 4. For this reason, the rotation angle of the first shaft member is reduced from 0 ° to ⁇ 1, and the pushing amount (amplitude) ⁇ 1 of the second shaft member 4 can be reduced.
  • the coil spring 20 is disposed between the first shaft member 3 and the second shaft member 4 so that when an external input load F is input, the coil spring 2 0 must be compressed to generate friction torque or increase. Therefore, regardless of the magnitude of the external input load F, the amplitude of the first shaft member 3 can be suppressed, so that fine amplitude suppression can be performed.
  • FIG. 4 shows a tensioner 1 according to a second embodiment of the present invention, in which a buffer plate 22 is inserted between a coil spring 20 composed of a compression spring and a flange portion 3c of the first shaft member 3.
  • the buffer plate 22 is made of a thin metal plate such as a washer, and is provided so as to be sandwiched between the other end portion 20 b of the coil spring 20 and the flange portion 3 c of the first shaft member 3.
  • FIG. 5 and FIG. 6 show variations of this embodiment.
  • a metal washer 23 such as iron or stainless steel and a PTFE
  • a buffer plate 22 made of a laminate of a resin washer 24 such as poly (tetrafluoroethylene) and the above-mentioned metal washer 25 is inserted.
  • a buffer plate made of a metal washer 26 is inserted between one end 20 a of the coil spring 20 and the second shaft member 4.
  • a solid lubricant 27 such as PTFE is coated on the outer surface of the wire of the coil spring 20. Further, between both end portions of the coil spring 20 and the flange portion 3c of the first shaft member 3 and the second shaft member 4, a buffer plate made of a metal washer 23 and a metal washer 26 is inserted. ing.
  • FIG. 7 shows A3 of the third embodiment of the present invention.
  • both ends 20a and 20b of a coil spring 20 composed of a compression spring are supported by the first shaft member 3 and the second shaft member 4.
  • a stepped portion 3 g having an outer diameter corresponding to the inner diameter of the coil spring 20 is formed between the flange portion 3 c and the screw portion 3 b of the first shaft member 3, while the second shaft member 4 A step 4 g having an outer diameter corresponding to the inner diameter of the coil spring 20 is formed at the end of the first shaft member 3 side.
  • These steps 3 g and 4 g serve as support seats for supporting the ends of the coil spring 20.
  • these steps 3 g and 4 g are applied to both ends 20 a and 20 b of the coil spring 20. By inserting it, a more stable support state is achieved.
  • a metal washer 22 as a buffer plate is sandwiched between the other end 2 Ob of the coil spring 20 and the flange 3 c of the first shaft member 3.
  • the coil spring 20 is in a compressed state to some extent.
  • both ends of the coil spring 20 are supported by the first and second shaft members 3 and 4 in this manner, even if the first shaft member 3 repeats reciprocating rotation, it smoothly responds to its operation. As a result, stable operation can be performed.
  • the end of the coil spring 20 can be stably supported if it is one of the shaft members 3 and 4.
  • FIG. 8 shows a tensioner A4 according to Embodiment 4 of the present invention.
  • both ends 20a and 20b of the coil spring 20 are attached to both shaft members 3 and 4, similarly to the tensioner A3 of the third embodiment shown in FIG. Supported. Therefore, it is possible to smoothly respond to the reciprocating rotation of the first shaft member 3.
  • the coil diameter of the coil portion of the coil spring 20 located on the first shaft member 3 side is reduced. That is, the diameter of the coil spring 20 gradually decreases at the end on the first shaft member side in the direction opposite to the direction in which the second shaft member 4 is propelled. Then, the gradually reduced other end 2 Ob is supported by the step 3 g of the first shaft member.
  • the coil spring 20 and the first shaft member 3 can slide positively, and the friction torque between them can be increased.
  • the amplitude of the second shaft member 4 can be suppressed.
  • the coil diameter of the coil spring 20 is large on the side of the second shaft member 4, the friction torque generated from the coil spring 20 can be increased.
  • Rotation angle of member 3 Can be smaller. Thereby, the amplitude of the second shaft member 4 can be reduced. It should be noted that the rate of change of the diameter of the end of the coil spring 20 can be arbitrarily changed, whereby the reaction torque can be arbitrarily adjusted.
  • FIG. 9 shows a tensioner A5 according to Embodiment 5 of the present invention.
  • the elastic member 30 is disposed between the first shaft member 3 and the second shaft member 4, but the elastic member 30 is formed of a cylindrical resin molded body. I have.
  • the resin molded body a hard filler mixed resin or the like can be used.
  • the elastic member 30 made of a resin molded body is disposed so as to be sandwiched between the first shaft member 3 and the second shaft member 4, so that the elastic member 30 can receive an external input load to the second shaft member 4. Compressed. This compression generates a friction torque with the first shaft member 3 or increases the generated friction torque. Therefore, a braking force acts on the first shaft member 3 and the amplitude of the second shaft member 4 can be suppressed.
  • a rubber molded body such as a synthetic rubber can be used instead of the resin molded body.
  • FIG. 10 shows a first embodiment A6 of the sixth embodiment of the present invention.
  • the elastic member 31 disposed between the first shaft member 3 and the second shaft member 4 is formed of a laminate of disc springs.
  • the elastic member 31 made of a laminate of disc springs is compressed by an external input load to the second shaft member 4 by being sandwiched between the first shaft member 3 and the second shaft member 4. Therefore, friction torque is generated between the first shaft member 3 and the generated friction torque is increased. Also, between the stacked disc springs, a braking force ⁇ is generated due to friction. Accordingly, a braking force acts on the first shaft member 3 by these, and the amplitude of the second shaft member 4 can be suppressed.
  • FIG. 11 shows a tensioner A7 according to a seventh embodiment of the present invention.
  • the main body 41 has the second shaft member 4 located on the engine body side
  • the clutch 42 has the second shaft member 4 located on the first shaft member 3 side of the body 41. It is configured.
  • the main body 41 and the clutch part 42 are propelled from Case 2. Further, the clutch part 42 and the main body part 41 are engaged with each other by forming a locking claw 43 having an isosceles triangle shape.
  • a hook portion 33 a at one end of a coil spring 33 as an elastic member is locked to the clutch portion 42.
  • the coil spring 33 is externally inserted into the screw portion 3 b of the first shaft member 3, and the hook portion 33 b at the other end is engaged with the flange portion 3 c of the first shaft member 3.
  • the coil spring 33 is disposed between the first shaft member 3 and the second shaft member 4 in a compressed state, and is connected via hook portions 33 a and 33 b at both ends. It is engaged with both shaft members 3 and 4 in a twisted state. Thereby, the coil spring 33 has a reaction torque against the external input load.
  • FIG. 12 shows a cushion A 8 according to an eighth embodiment of the present invention.
  • the second shaft member 4 is formed by the main body portion 41 on the distal end side and the clutch portion 42 on the first shaft member 3 side.
  • a locking claw 43 is formed between them.
  • the coil spring 33 is disposed between the first shaft member 3 and the second shaft member 4, and the hook portion 33a at one end is engaged with the clutch portion 42, and the hook portion at the other end. 33 b is locked to the flange portion 3 c of the first shaft member 3.
  • the locking claw 43 is formed in a saw-tooth shape, and this The reverse rotation of 2 is not possible. Therefore, after the second shaft member 4 is once propelled, the clutch portion 42 does not rotate in the reverse direction, and the reaction torque by the coil spring 33 can be increased.
  • the coil winding direction of the coil spring is opposite to the thread cutting direction of the external thread portion 8 of the first shaft member 3.
  • the coil spring is twisted in a direction in which the coil diameter is tightened. Therefore, the coil diameter does not increase, interference with surrounding components can be prevented, and operation becomes smooth.
  • the elastic member is disposed between the first shaft member and the second shaft member. Since the resistance torque is generated, it is possible to finely suppress the amplitude of the second shaft member. Further, since the friction between the chain guide and the chain does not increase, the output loss of the engine can be reduced.
  • the first system is provided. Since the support seat for supporting the coil spring is provided on either the shaft member or the second shaft member, even if the first shaft member repeats reciprocating rotation, it can respond to the operation well, Stable operation can be ensured.
  • the fifth aspect of the invention in addition to having the effects of the second to fourth aspects of the invention, it is possible to increase the friction torque with the first shaft member.
  • the amplitude of the second shaft member can be suppressed.
  • an arbitrary friction torque can be set depending on the spring shape.
  • the coil winding direction is opposite to the thread cutting direction of the first shaft member. Accordingly, the coil spring does not have a large coil diameter and does not interfere with surrounding parts such as a case, and thus the operation can be performed smoothly.
  • the clutch portion formed on the second shaft member twists the coil spring.
  • a reaction torque is generated in the coil spring, and the amplitude of the second shaft member can be suppressed.
  • the disc spring, the rubber molded body and the resin molded body are compressed to form the first shaft member and Since a friction torque is generated between the first shaft member and the second shaft member, the amplitude of the second shaft member can be suppressed.
  • the fact that the three simple members bit into the first shaft member is prevented by the buffer plate.
  • smooth operation of the elastic member can be performed, wear of the elastic member and the first shaft member can be suppressed, and durability can be improved.

Abstract

The amplitude of a second shaft member of a tensioner to which an externally applied load is applied is suppressed minutely. A first shaft member (3) and a second shaft member (4), screwed together by thread portions (8), (9), and a torsion spring (5) urging rotationally the first shaft member (3) in one direction are received in a case (2). By restricting the rotation of the second shaft member (4), rotational urging force of the torsion spring (5) is converted into propulsion force of the second shaft member (4). An elastic member (20) for generating a resistance torque against an externally applied force applied to the second shaft member (4) is installed between the first shaft member (3) and the second shaft member (4) so that the amplitude of the second shaft member (4) is suppressed minutely.

Description

明細書 亍ンショナ一 技術分野  Technical Specification
本発明は、 無端状のベルトゃチェ一ンの張力を一定に保つテンショナ一に関する。 背景技術  The present invention relates to a tensioner for keeping the tension of an endless belt chain constant. Background art
テンショナ一は、 例えば、 自動車のエンジンに使用されるタイミングチェーンゃタイミ ングベルトを所定の力で押しておリ、 これらに伸びや緩みが生じた場合に、 その張力を一 定に保つように作用する。  For example, the tensioner pushes a timing chain used in an automobile engine or a timing belt with a predetermined force, and acts to keep the tension constant when these elongate or loosen.
第 1 3図は亍ンショナ一 1 0 0を自動車のエンジン本体 2 0 0に実装した状態を示す。 エンジン本体 2 0 0の内部には、 一対の力ムスプロケット 2 1 0 , 2 1 0とクランクスプ ロケット 2 2 0とが配置されており、 これらのスプロケット 2 1 0 , 2 1 0 , 2 2 0の間 にタイミングチェーン 2 3 0が無端状となって掛け渡されている。 また、 タイミングチェ —ン 2 3 0の移動路上には、 チェーンガイド 2 4 0が揺動自在に配置されており、 タイミ ングチェーン 2 3 0はチェーンガイド 2 4 0を摺動するようになっている。 エンジン本体 2 0 0には、 取付面 2 5 0が形成されており、 テンショナ一1 0 0は取付面 2 5 0の取付 孔 2 6 0を貫通するポルト 2 7 0によって取付面 2 5 0に固定される。 なお、 エンジン本 体 2 0 0の内部には、 潤滑用のオイル (図示省略) が封入されている。  FIG. 13 shows a state in which the cushion 100 is mounted on the engine body 200 of the automobile. Inside the engine body 200, a pair of force sprockets 210, 210 and a crank sprocket 220 are arranged, and these sprockets 210, 210, 220 are arranged. In between, the timing chain 230 is extended endlessly. A chain guide 240 is swingably disposed on the movement path of the timing chain 230, and the timing chain 230 slides on the chain guide 240. I have. The engine body 200 has a mounting surface 250 formed thereon, and the tensioner 100 is formed on the mounting surface 250 by a port 270 that passes through the mounting hole 260 of the mounting surface 250. Fixed. The engine body 200 is filled with lubricating oil (not shown).
第 1 4図及び第 1 5図は、 従来から用いられているテンショナ一1 0 0を示し、 ケース 1 1 0の内部には、 回転シャフト 1 2 0及び推進シャフト 1 3 0が組み付けられて配置さ れている。 ケース 1 1 0は、 これらのシャフト 1 2 0, 1 3 0を揷入するために軸方向に 延びる本体部 1 1 1と、 本体部 1 1 1から軸方向と交差する方向に延びるフランジ部 1 1 2とを有している。 フランジ部 1 1 2はテンショナ一1 0 0をエンジン本体 2 0 0に対す る取り付けを行うものであり、 このため、 フランジ部 1 1 2には、 エンジン本体 2 0 0に 螺合するポルトが貫通するための取付孔 1 1 3が形成されている。 本体部 1 1 1は後述す る各部品を収容するものであり、 このため、 内部には同一径の収納孔 1 1 4が軸方向に沿 つて形成されている。 Figs. 14 and 15 show a tensioner 100 conventionally used, and a rotating shaft 120 and a propulsion shaft 130 are assembled and arranged inside a case 110. Has been done. The case 110 includes a main body 111 extending in the axial direction to insert the shafts 120, 130, and a flange 1 extending from the main body 111 in a direction intersecting the axial direction. 1 and 2. The flange portion 112 is for attaching the tensioner 100 to the engine body 200. Therefore, the flange portion 112 is attached to the engine body 200. Mounting holes 113 are formed to allow a port to be screwed through. The main body 111 accommodates each of the components described below. For this reason, a housing hole 114 having the same diameter is formed in the inside along the axial direction.
回転シャフト 1 2 0及び推進シャフト 1 3 0の組み付けは、 回転シャフト 1 2 0の外面 に雄ねじ部 1 2 1を形成する一方、 推進シャフト 1 3 0の内面に雌ねじ部 1 3 1を形成し、 これらのねじ部 1 2 1, 1 3 1を螺合させることによって行われる。 回転シャフト 1 2 0 の基端側の端部に対応したケース 1 1 0の内部には、 受け座 1 4 0が収納孔 1 1 4内に位 置するように設けられており、 この受け座 1 4 0によって回転シャフト 1 2 0の墓端部が 支持されている。 組み付け状態では、 推進シャフト 1 3 0は回転シャフト 1 2 0の前側略 半分部分に螺合しておリ、 推進シャフト 1 3 0が螺合していない後側の略半分部分には捩 リぱね 1 5 0が配置されている。  The assembling of the rotating shaft 120 and the propulsion shaft 130 forms an external thread portion 121 on the outer surface of the rotating shaft 120, while forming an internal thread portion 131 on the inner surface of the propulsion shaft 130, It is performed by screwing these threaded portions 1 2 1 and 1 3 1. Inside the case 110 corresponding to the proximal end of the rotating shaft 120, a receiving seat 140 is provided so as to be located in the storage hole 114. The end of the tomb of the rotating shaft 120 is supported by 140. In the assembled state, the propulsion shaft 130 is screwed into the front half of the rotary shaft 120 and the rear half where the propulsion shaft 130 is not screwed. 150 are arranged.
捩りばね 1 5 0は一端のフック部 1 5 1が回転シャフト 1 2 0の基端部に形成されてい るスリット 1 2 3に挿入されて係止され、 他端のフック部 1 5 2がケース 1 1 0に係止さ れている。 従って、 捩りばね 1 5 0を捩って所定のトルクを付与させた状態で組み立てる と、 捩りばね 1 5 0の付勢力によって回転シャフト 1 2 0が回転する。  The torsion spring 150 has one end hook portion 151 inserted into a slit 123 formed in the base end of the rotating shaft 120 and locked, and the other end hook portion 152 is a case. Locked at 110. Therefore, when the torsion spring 150 is twisted to assemble with a predetermined torque applied, the rotating shaft 120 is rotated by the urging force of the torsion spring 150.
ケース 1 1 0の先端部分には、 軸受 1 6 0が止め輪 1 7 0によって固定されており、 推 進シャフト 1 3 0は軸受 1 6 0の摺動孔 1 6 1を貫通している。 軸受 1 6 0の摺動孔 1 6 1の内面及び推進シャフト 1 3 0の外面は、 略小判形状や平行カツト、 その他の非円形に 形成されており、 これにより推進シャフト 1 3 0は回転が拘束された状態となっている。 軸受 1 6 0は所定厚さの平板形状に成形されており、 外周側には複数の固定片 1 6 2が 形成されている。 そして、 この固定片 1 6 2がケース 1 1 0の先端部分に形成されている 切欠溝 1 1 5に嵌合することにより、 軸受 1 6 0の全体が回転止めされた状態となってい る。 このように軸受 1 6 0がケース 1 1 0に対して回転止めされることにより、 軸受 1 6 0を貫通した推進シャフト 1 3 0カ軸受1 6 0を介してケース 1 1 0に回転拘束されるた め、 この回転拘束状態で推進シャフト 1 3 0がケース 1 1 0に対して進退する。  A bearing 160 is fixed to a tip portion of the case 110 by a retaining ring 170, and the propulsion shaft 130 passes through a sliding hole 161 of the bearing 16. The inner surface of the sliding hole 161 of the bearing 160 and the outer surface of the propulsion shaft 130 are formed in a substantially oval shape, parallel cut, or other non-circular shape, so that the propulsion shaft 130 rotates. It is in a restrained state. The bearing 160 is formed in a flat plate shape having a predetermined thickness, and a plurality of fixing pieces 162 are formed on the outer peripheral side. The fixed piece 162 fits into the notch groove 115 formed at the tip of the case 110, so that the entire bearing 160 is in a state where rotation is stopped. In this way, the rotation of the bearing 160 with respect to the case 110 is stopped, and the rotation is restricted to the case 110 via the propulsion shaft 130 through the bearing 160 through the bearing 160. Therefore, in this rotation restricted state, the propulsion shaft 130 moves back and forth with respect to the case 110.
なお、 推進シャフト 1 3 0の先端には、 キャップ 1 8 0が取り付けられ、 このキャップ 1 8 0が上述したエンジン本体 2 0 0内のチ x—ンガイド 2 4 0と接触している。 At the tip of the propulsion shaft 130, a cap 180 is attached. 180 is in contact with the above-described chain guide 240 in the engine body 200 described above.
さらに、 ケース 1 1 0の内部には、 スぺ一サ 1 9 0力配置されている。 スぺ一サ 1 9 0 は、 回転シャフト 1 2 0及び推進シャフト 1 3 0の周囲を囲んだ状態で軸方向 (推進方向) に延びた筒状となっており、 螺合状態のシャフト 1 2 0 , 1 3 0がケース 1 1 0の先端部 分から抜け出ることを防止している。 この抜け止めを行うため、 回転シャフト 1 2 0はス ぺーサ 1 9 0との突き当てが可能な鍔付き形状に成形されている。  Further, inside the case 110, a spacer 190 is arranged. The spacer 190 has a cylindrical shape extending in the axial direction (propulsion direction) so as to surround the rotary shaft 120 and the propulsion shaft 130, and the shaft 1 2 in a screwed state is formed. 0, 130 are prevented from falling out of the tip of the case 110. In order to prevent the falling off, the rotating shaft 120 is formed in a flanged shape that can abut against the spacer 190.
以上の構造のテンショナ一 1 0 0では、 捩りばね 1 5 0の付勢力によって回転シャフト 1 2 0が回転し、 この回転力が推進シャフト 1 3 0の推進力に変換されるため、 推進シャ フト 1 3 0が進出する。 これにより、 推進シャフト 1 3 0はキャップ 1 8 0及びチェーン ガイド 2 4 0を介してタイミングチェーン 2 3 0を押し付けるため、 タイミングチェーン 2 3 0に張力を付与することができる。  In the tensioner 100 having the above structure, the rotating shaft 120 is rotated by the urging force of the torsion spring 150, and this rotational force is converted into the propulsive force of the propulsion shaft 130. 130 will advance. Thus, the propulsion shaft 130 presses the timing chain 230 through the cap 180 and the chain guide 240, and thus tension can be applied to the timing chain 230.
このようなテンショナ一では、 チヱーンガイド 2 4 0からの外部入力加重に対する推進 シャフト 1 3 0の押し込み量 (振幅) を押さえて作動を安定させるために、 チェーンガイ ド 2 4 0を強く押さえる必要がある。 このためには、 ①捩リばね 1 5 0のばねトルクを大 きくする、 ②回転シャフト 1 2 0と推進シャフト 1 3 0の螺合を行っている雄ねじ部 1 2 1及び雌ねじ部 1 3 1のリード角を小さくする (例えば、 1 2 ° を 9 ° にする)、 ③回転シ ャフト 1 2 0の端面の径を大きくして回転シャフト 1 2 0と受け座 1 4 0 (ケース 1 1 0 ) との接触面積を大き〈する、 等の対応がなされている。  In such a tensioner, it is necessary to strongly press the chain guide 240 in order to stabilize the operation by suppressing the pushing amount (amplitude) of the propulsion shaft 130 against the external input load from the chain guide 240. . For this purpose, (1) increase the spring torque of the torsion spring 150, (2) the male screw part 1 2 1 and the female screw part 1 3 1 that screw the rotary shaft 120 and the propulsion shaft 130 together. To reduce the lead angle of the shaft (for example, from 12 ° to 9 °). ③ Increase the diameter of the end face of the rotating shaft 120 and the rotating shaft 120 and the receiving seat 140 (case 110). ), Etc., the contact area is increased.
しかしながら、 これらの対応構造では、 逆に推進シャフト 1 3 0が推進 (前進) する特 性が強くなる傾向となっている。 そして、 推進シャフト 1 3 0が必要以上に推進する場合 には、 チェーンガイド 2 4 0とチェーン 2 3 0との間の摩擦が増加して、 エンジンの出力 ロスが大き〈なる原因となり、 好ましくない。  However, with these corresponding structures, the propulsion (forward) characteristic of the propulsion shaft 130 tends to be stronger. If the propulsion shaft 130 protrudes more than necessary, the friction between the chain guide 240 and the chain 230 increases, which causes a large engine output loss. .
これに対し、 特開 2 0 0 1—2 1 0 1 2号公報には、 ケースに摩擦板を設けると共に、 回転シャフトにおける摩擦板との対向部分に接触径の大きな鍔状の摩擦面を設け、 さらに 補助ばねによって摩擦面が摩擦板と接触しないように保持する構造が開示されている。 こ の構造では、 チヱーンガイ ドからの外部入力加重が小さいときには、 摩擦面が摩擦板と接 触しないが、 外部入力加重が一定大きさ以上となったとき、 摩擦面が摩擦板と接触して摩 擦力を発生することができる。 これにより、 上述した①〜③の構造とする必要がなくなつ て、 エンジンの出力ロスを低減させることができ、 しかも大きな外部入力加重に対する推 進シャフトの振幅を抑えることが可能となっている。 On the other hand, in Japanese Patent Application Laid-Open No. 2000-210102, a friction plate is provided on a case, and a flange-shaped friction surface having a large contact diameter is provided on a portion of the rotary shaft facing the friction plate. Further, a structure is disclosed in which a friction surface is held by an auxiliary spring so as not to contact a friction plate. With this structure, when the external input load from the chain guide is small, the friction surface contacts the friction plate. It does not touch, but when the external input load exceeds a certain level, the friction surface can contact the friction plate and generate frictional force. This eliminates the need for the above-mentioned structures (1) to (3), thereby reducing the output loss of the engine and suppressing the amplitude of the propulsion shaft against a large external input load.
特開 2 0 0 1 - 2 1 0 1 2号公報の構造によっても、 推進シャフ卜の振幅を抑えること が可能となっているが、 ェンジンの機種によっては、 振幅抑制に重点をおいた特性が要求 されることがある。  The structure of Japanese Patent Laid-Open Publication No. 2001-21012 also makes it possible to suppress the amplitude of the propulsion shaft, but depending on the engine model, the characteristic that focuses on the suppression of the amplitude may be reduced. May be required.
本発明は、 このような要求に対応するためになされたものであり、 外部入力加重に対し て、 きめ細かな振幅抑制を行うことが可能なテンショナーを提供することを目的とする。 発明の開示  The present invention has been made to meet such a demand, and an object of the present invention is to provide a tensioner capable of performing fine amplitude suppression with respect to external input weight. Disclosure of the invention
上記目的を達成するため、 請求の範囲第 1項の発明のテンショナ一は、 ねじ部によって 螺合した第 1のシャフト部材及び第 2のシャフト部材と、 第 1のシャフト部材を一方向に 回転付勢する捩りばねとがケースに収容されており、 第 2のシャフト部材の回転を拘束し て捩りばねの回転付勢力を第 2のシャフト部材の推進力に変換するテンショナ一であって、 第 2のシャフト部材に入力する外部入力荷重に対して抵抗トルクを発生させる弾性部材が、 前記第 1のシャフト部材と第 2のシャフト部材との間に配置されていることを特徴とする。 請求の範囲第 1項の発明では、 外部入力荷重が第 2のシャフト部材に入力されると、 第 1のシャフト部材と第 2のシャフト部材との間に配置された弾性部材に荷重が作用する。 これにより、 弾性部材が外部入力荷重に対する抵抗トルクを発生させるため、 第 2のシャ フト部材の振幅を小さくすることができる。  In order to achieve the above object, a tensioner according to the first aspect of the present invention includes a first shaft member and a second shaft member screwed by a screw portion, and the first shaft member being rotated in one direction. A biasing torsion spring housed in the case, the tensioner for restricting rotation of the second shaft member and converting the rotational urging force of the torsion spring into a propulsion force of the second shaft member; An elastic member for generating a resistance torque against an external input load input to the first shaft member is disposed between the first shaft member and the second shaft member. According to the first aspect of the present invention, when an external input load is input to the second shaft member, the load acts on the elastic member disposed between the first shaft member and the second shaft member. . Thus, the elastic member generates a resistance torque against an external input load, so that the amplitude of the second shaft member can be reduced.
このような請求の範囲第 1項の発明では、 弾性部材が第 1のシャフト部材と第 2のシャ フ卜部材との間に配置されているため、 外部入力荷重の入力があると、 弾性部材が常に抵 抗トルクを発生する。 従って、 外部入力荷重の大小に関係なく、 抵抗トルクが発生して第 2のシャフト部材の振幅を制御するため、 きめ細かな振幅抑制を行うことができる。  According to the first aspect of the present invention, the elastic member is disposed between the first shaft member and the second shaft member. Always generate resistive torque. Therefore, regardless of the magnitude of the external input load, since the resistance torque is generated to control the amplitude of the second shaft member, fine amplitude suppression can be performed.
また、 捩りばねのばねトルクを大きくしたり、 ねじ部のリード角を小さくする等によつ て第 2のシャフト部材の推進力を大きくする必要がなくなる。 このため、 チェーンガイド とチェーンとの間の摩擦が大きくなることがなく、 エンジンの出力ロスを少な〈すること ができる。 Also, by increasing the spring torque of the torsion spring or reducing the lead angle of the threaded part, etc. Therefore, it is not necessary to increase the propulsive force of the second shaft member. For this reason, the friction between the chain guide and the chain does not increase, and the output loss of the engine can be reduced.
請求の範囲第 2項の発明は、 請求の範囲第 1項記載のテンショナ一であって、 前記弾性 部材は、 第 1のシャフト部材及び第 2のシャフト部材によって圧縮された状態で両シャフ ト部材の間に配置されると共に、 外部入力荷重によって圧縮されることにより、 第 1のシ ャフト部材との間で摩擦トルクを発生させるコイルばねであることを特徴とする。  The invention according to claim 2 is the tensioner according to claim 1, wherein the elastic member is compressed by the first shaft member and the second shaft member. And a coil spring that is compressed by an external input load to generate a friction torque with the first shaft member.
請求の範囲第 2項の発明では、 弾性部材がコイルばねによって形成されている。 このコ ィルばねは、 第 1のシャフト部材及び第 2のシャフト部材によって圧縮された状態となつ ていると共に、 第 2のシャフト部材への外部入力荷重の入力によって圧縮力が作用するこ とにより圧縮される。 この圧縮によって、 第 1のシャフト部材との間に摩擦トルクが発生 する或いは発生している摩擦トルクが増大するため、 第 1のシャフト部材の回転が規制さ れる。 すなわち、 外部入力荷重が入力することによって、 第 2のシャフト部材がケース内 に押し込まれるため、 第 1のシャフト部材は捩りばねの回転付勢方向と逆方向に回転する 力 この逆方向の回転に対しては圧縮ばねの摩擦力によるブレーキ力が作用する。 このた め、 第 2のシャフト部材の押し込み量 (振幅) が抑制される。  In the second aspect of the present invention, the elastic member is formed by a coil spring. The coil spring is compressed by the first shaft member and the second shaft member, and is also compressed by an external load applied to the second shaft member. Compressed. By this compression, a friction torque is generated between the first shaft member and the generated friction torque is increased, so that the rotation of the first shaft member is restricted. That is, when the external input load is input, the second shaft member is pushed into the case, so that the first shaft member rotates in the direction opposite to the rotational biasing direction of the torsion spring. On the other hand, a braking force due to the frictional force of the compression spring acts. For this reason, the pushing amount (amplitude) of the second shaft member is suppressed.
請求の範囲第 2項の発明においても、 外部入力荷重によって圧縮されるコイルばねが第 1のシャフト部材と第 2のシャフト部材との間に配置されているため、 外部入力荷重の入 力があると、 コイルばねが常に摩擦トルクを発生して第 1のシャフト部材の回転を抑制す るため、 第 2のシャフト部材に対するきめ細かな振幅抑制を行うことができる。  Also in the invention of claim 2, since the coil spring compressed by the external input load is disposed between the first shaft member and the second shaft member, there is an input of the external input load. Since the coil spring always generates a friction torque to suppress the rotation of the first shaft member, fine amplitude suppression of the second shaft member can be performed.
請求の範囲第 3項の発明は、 請求の範囲第 1項記載のテンショナ一であって、 前記弾性 部材は、 第 2のシャフト部材への外部入力荷重によって捩られる.ことにより、 前記捩りば ねの回転付勢方向と同じ方向に反力トルクを発生させるコイルばねであることを特徴とす る。  The invention according to claim 3 is the tensioner according to claim 1, wherein the elastic member is twisted by an external load applied to a second shaft member. And a coil spring that generates a reaction torque in the same direction as the rotational urging direction.
請求の範囲第 3項の発明では、 外部入力荷重が第 2のシャフト部材に入力することによ リ、 コイルばねが捩られて反力トルクが発生或いは反力トルクが増大する。 このため、 相 対的に外部入力荷重による第 2のシャフト部材への押し込み力が小さ〈なり、 第 2のシャ フト部材の押し込み量 (振幅) を抑制することができる。 According to the third aspect of the present invention, when an external input load is input to the second shaft member, the coil spring is twisted to generate a reaction torque or increase the reaction torque. Because of this, On the other hand, the pushing force on the second shaft member due to the external input load is small, and the pushing amount (amplitude) of the second shaft member can be suppressed.
この請求の範囲第 3項の発明においても、 外部入力荷重によって捩られて反力トルクを 発生させるコイルばねが第 1のシャフト部材と第 2のシャフト部材との間に配置されてい るため、 外部入力荷重の入力に応じた第 2のシャフト部材へのきめ細かな振幅抑制を行う ことができる。  Also in the invention of claim 3, since the coil spring that is twisted by the external input load and generates a reaction torque is disposed between the first shaft member and the second shaft member, Fine amplitude suppression of the second shaft member according to the input of the input load can be performed.
請求の範囲第 4項の発明は、 請求の範囲第 2項記載の亍ンショナ一であって、 前記第 1 のシャフト部材または第 2のシャフト部材のいずれかに前記コイルばねを支持する支持座 が設けられていることを特徴とする。  The invention according to claim 4 is the cushioning device according to claim 2, wherein a support seat for supporting the coil spring on either the first shaft member or the second shaft member. It is characterized by being provided.
このようにシャフト部材に設けた支持座にコイルばねが支持されることにより、 コイル ばねとシャフト部材との結合が安定する。 このため、 第 1のシャフト部材が往復回転を繰 リ返しても、 その作動に良好に対応することができ、 安定した作動を確保することができ る。  Since the coil spring is supported by the support seat provided on the shaft member in this manner, the connection between the coil spring and the shaft member is stabilized. For this reason, even if the first shaft member repeats reciprocating rotation, the operation can be satisfactorily performed, and stable operation can be ensured.
請求の範囲第 5項の発明は、 請求の範囲第 2項〜第 4項のいずれかに記載のテンショナ 一であって、 前記コイルばねは、 第 1のシャフト部材側の端部が第 2のシャフト部材の推 進方向との反対方向に向かって径が漸減していることを特徴とする。  The invention according to claim 5 is the tensioner according to any one of claims 2 to 4, wherein the coil spring has an end on the first shaft member side that is the second shaft member. The diameter is gradually reduced in a direction opposite to the direction in which the shaft member is propelled.
請求の範囲第 5項の発明では、 第 1のシャフト部材側の端部が径が小さくなつているた め、 第 1のシャフト部材と積極的に摺動する。 このため、 第 1のシャフト部材との間の摩 擦トルクを大きくすることができ、 これにより第 2のシャフト部材の振幅を抑制すること ができる。  In the invention set forth in claim 5, since the end portion on the first shaft member side has a smaller diameter, the first shaft member slides positively with the first shaft member. For this reason, the friction torque between the first shaft member and the first shaft member can be increased, whereby the amplitude of the second shaft member can be suppressed.
請求の範囲第 6項の発明は、 請求の範囲第 2項〜第 5項記載のテンショナ一であって、 前記コイルばねのコィル卷方向が第 1のシャフト部材のねじ部のねじ切り方向と逆となつ ていることを特徴とする。  The invention according to claim 6 is the tensioner according to claims 2 to 5, wherein the coil winding direction of the coil spring is opposite to the thread cutting direction of the threaded portion of the first shaft member. It is characterized by the fact that
このように第 1のシャフト部材のねじ切り方向と逆のコイル巻き方向とすることによリ、 外部入力荷重により第 2のシャフト部材が押し込まれて第 1のシャフト部材が回転すると、 コイルばねはそのコイル径が卷締まる方向に捩られる。 このため、 コイルばねがコイル径 が広がってケース等の周囲の部品と干渉することがなく、 作動を円滑に行うことができる。 請求の範囲第フ項の発明は、 請求の範囲第 2項〜第 6項のいずれかに記載の亍ンショナ —であって、 前記第 2のシャフト部材の進退に伴つて回転するクラッチ部が第 2のシャフ ト部材に形成されておリ、 前記コイルばねは一端がクラツチ部に係止され、 他端が第 1の シャフト部材に係止されていることを特徴とする。 By setting the coil winding direction opposite to the thread cutting direction of the first shaft member in this way, when the second shaft member is pushed in by the external input load and the first shaft member rotates, the coil spring is The coil diameter is twisted in the direction of winding. For this reason, the coil spring Can be smoothly operated without interfering with surrounding parts such as a case. The invention set forth in claim 5 is the cushioning device according to any one of claims 2 to 6, wherein the clutch portion that rotates as the second shaft member advances and retreats includes a clutch. The coil spring is characterized in that one end of the coil spring is locked to the clutch portion and the other end is locked to the first shaft member.
請求の範囲第 7項の発明では、 第 2のシャフト部材に形成されたクラッチ部がコイルば ねを捩るため、 コイルばねに反力トルクが発生する。 このため、 第 2のシャフト部材の振 幅を抑制することができる。  According to the seventh aspect of the present invention, the clutch portion formed on the second shaft member twists the coil spring, so that a reaction torque is generated in the coil spring. For this reason, the amplitude of the second shaft member can be suppressed.
請求の範囲第 8項の発明は、 請求の範囲第 1項記載のテンショナ一であって、 前記弾性 部材は、 第 1のシャフト部材及び第 2のシャフト部材に接触した状態で配置され、 外部入 力荷重によって圧縮されることにより、 第 1のシャフト部材との間で摩擦トルクを発生さ せる皿ばね、 ゴム成形体または樹脂成形体であることを特徴とする。  The invention according to claim 8 is the tensioner according to claim 1, wherein the elastic member is arranged in contact with the first shaft member and the second shaft member, It is a disc spring, a rubber molded body or a resin molded body that generates a friction torque with the first shaft member by being compressed by a force load.
請求の範囲第 8項の発明では、 皿ばね、 ゴム成形体または樹脂成形体が弾性部材として 用いるものである。 これらの皿ばね、 ゴム成形体及び樹脂成形体は、 いずれも第 2のシャ フト部材に外部入力荷重が入力することにより変形して、 第 1のシャフト部材との間で摩 擦トルクを発生する。 このため、 第 1のシャフト部材の回転が規制されるため、 第 2のシ ャフト部材の振幅を抑制することができる。  In the invention of claim 8, a disc spring, a rubber molded body or a resin molded body is used as the elastic member. These disc springs, rubber molded bodies and resin molded bodies are all deformed when an external input load is applied to the second shaft member, and generate friction torque with the first shaft member. . For this reason, the rotation of the first shaft member is restricted, so that the amplitude of the second shaft member can be suppressed.
請求の範囲第 8項の発明においても、 皿ばね、 ゴム成形体または樹脂成形体が第 1のシ ャフト部材及び第 2のシャフト部材との間に配置されているため、 外部入力荷重の入力が あると、 常に摩擦トルクを発生し、 従って、 第 2のシャフト部材の振幅をきめ細やかに制 御することができる。  Also in the invention of claim 8, since the disc spring, the rubber molded body or the resin molded body is disposed between the first shaft member and the second shaft member, the input of the external input load is reduced. In this case, a friction torque is always generated, so that the amplitude of the second shaft member can be finely controlled.
請求の範囲第 9項の発明は、 請求の範囲第 1項〜第 8項のいずれかに記載の亍ンショナ 一であって、 前記弾性部材と第 1のシャフト部材との間に、 緩衝板が挿入されていること を特徴とする。  The invention according to claim 9 is the cushioning device according to any one of claims 1 to 8, wherein a buffer plate is provided between the elastic member and the first shaft member. It is characterized by being inserted.
弾性部材と第 1のシャフト部材との間に挿入された緩衝板は、 弾性部材が第 1のシャフ ト部材に食い込むことを防止するように作用する。 このため、 弾性部材の円滑な作動を行 うことができると共に、 弾性部材及び第 1のシャフト部材の摩耗を抑制することができ、 耐久性を向上させることができる。 図面の簡単な説明 The cushioning plate inserted between the elastic member and the first shaft member acts to prevent the elastic member from biting into the first shaft member. For this reason, the elastic member operates smoothly. And the wear of the elastic member and the first shaft member can be suppressed, and the durability can be improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態 1のテンショナ一を示す平面図であり、 第 2図は、 第 1 図における C一 C線断面図であリ、第 3図は、コィルばねの作用を説明する斜視図であり、 FIG. 1 is a plan view showing a tensioner according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along line C--C in FIG. 1, and FIG. FIG.
( a ) は従来のテンショナ一を、 (b ) は実施の形態 1のテンショナ一を示し、 第 4図は、 実施の形態 2のテンショナ一を示す断面図であり、 第 5図は、 実施の形態 2の変形々態を 示す部分断面図であり、 第 6図は、 実施の形態 2のさらに別の変形々態を示す部分断面図 であり、 第 7図は、 実施の形態 3のテンショナ一を示す断面図であり、 第 8図は、 実施の 形態 4のテンショナ一を示す断面図であり、 第 9図は、 実施の形態 5のテンショナ一を示 す断面図であり、 第 1 0図は、 実施の形態 6のテンショナ一を示す断面図であり、 第 1 1 図は、 実施の形態 7のテンショナ一を示す断面図であり、 第 1 2図は、 実施の形態 8の亍 ンショナ一を示す断面図であり、 第 1 3図は、 テンショナ一をエンジン本体に装着した状 態の断面図であり、 第 1 4図は、 従来の亍ンショナ一を示す平面図であり、 第 1 5図は、 第 1 4図における Q— Q線断面図である。 発明を実施するための最良の形態 (a) shows the conventional tensioner, (b) shows the tensioner of the first embodiment, FIG. 4 is a sectional view showing the tensioner of the second embodiment, and FIG. FIG. 6 is a partial cross-sectional view showing a modification of the second embodiment, FIG. 6 is a partial cross-sectional view showing another modification of the second embodiment, and FIG. 7 is a tensioner of the third embodiment. FIG. 8 is a cross-sectional view illustrating a tensioner according to a fourth embodiment, FIG. 9 is a cross-sectional view illustrating a tensioner according to a fifth embodiment, and FIG. 11 is a sectional view showing a tensioner according to a sixth embodiment, FIG. 11 is a sectional view showing a tensioner according to a seventh embodiment, and FIG. 12 is a sectional view showing a tensioner according to an eighth embodiment. FIG. 13 is a sectional view showing a state in which the tensioner is mounted on the engine body, and FIG. FIG. 1 is a plan view showing a conventional cushioner. FIG. 15 is a cross-sectional view taken along line QQ in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図示する実施の形態により具体的に説明する。 なお、 各実施の形態にお いて、 同一の部材には同一の符号を付して対応させてある。  Hereinafter, the present invention will be specifically described with reference to the illustrated embodiments. In each embodiment, the same members are denoted by the same reference numerals and correspond to each other.
(実施の形態 1 )  (Embodiment 1)
第 1図〜第 3図は、 本発明の実施の形態 1のテンショナ一 A 1を示し、 ケース 2、 第 1 のシャフト部材 3、 第 2のシャフト部材 4、 握りばね 5、 軸受 6及びスぺ一サ 7を備えて いる。  1 to 3 show a tensioner A1 according to a first embodiment of the present invention. A case 2, a first shaft member 3, a second shaft member 4, a grip spring 5, a bearing 6, and a shaft It has 7 sensors.
ケ ス 2は胴部 2 aの先端からフランジ部 2 bが略直交方向に延びた断面略 T字形に成 形されている。 そして、 胴部 2 aからフランジ部 2の形成部位にかけて、 軸方向 (推進方 向) に延びる収納孔 2 cが形成されている。 収納孔 2 cの先端部分は開放されており、 こ の収納孔 2 c内に、 第 1及び第 2のシャフト部材 3 , 4、 捩りばね 5及びスぺ一サ 7の組 付体が収容される。 Case 2 has a substantially T-shaped cross section in which a flange portion 2b extends in a substantially orthogonal direction from a tip of a body portion 2a. Then, from the trunk 2a to the part where the flange 2 is formed, The receiving hole 2c is formed to extend in the same direction. The tip of the storage hole 2c is open, and the assembly of the first and second shaft members 3, 4, the torsion spring 5, and the spacer 7 is stored in the storage hole 2c. You.
ケース 2のフランジ部 2 bは、 使用機器であるエンジン本体への取り付けを行うもので あり、 エンジン本体に螺合するポルト (図示省略) が貫通する取付孔 2 dが形成されてい る。 エンジン本体への取り付けに際しては、 第 1 3図と同様に、 フランジ部 2 bの先端面 がェンジン本体 2 0 0の取付面 2 5 0と接触する。  The flange portion 2b of the case 2 is for mounting to an engine body, which is a device to be used, and has a mounting hole 2d through which a port (not shown) screwed to the engine body penetrates. At the time of attachment to the engine body, the tip surface of the flange portion 2b comes into contact with the attachment surface 250 of the engine body 200, as in FIG.
第 1のシャフト部材 3は後述する捩りばね 5によって付勢されることにより回転し、 第 2のシャフト部材 4は第 1のシャフト部材 3の回転によってケース 2から推進する。 第 1のシャフト部材 3は、 基端側のシャフト部 3 aと、 先端側のねじ部 3 bとが軸方向 に一体的に形成されており、先端側のねじ部 3 bの外周には、雄ねじ 8が形成されている。 また、シャフト部 3 aの基端部は、ケース 2内に設けた受け座 1 9に当接することにより、 その回転が支承されるようになっている。 さらにう、 シャフト部 3 aの基端面には、 第 1 のシャフト 3を回転させるための巻締め治具 (図示省略) の先端が挿入されるスリット 3 eが形成されている。 スリツト 3 eはケース 2の胴部 2 aの基端面に開設した治具孔 2 e と連通しており、 巻締め治具の先端を治具孔 2 eからスリット 3 eに挿入し、 スリット 3 eを介して第 1のシャフト部材 3を回転させることにより、 後述する捩りばね 5を巻締め ることができる。  The first shaft member 3 is rotated by being urged by a torsion spring 5 described later, and the second shaft member 4 is propelled from the case 2 by the rotation of the first shaft member 3. The first shaft member 3 has a shaft portion 3a on the proximal end side and a screw portion 3b on the distal end side integrally formed in the axial direction, and an outer periphery of the screw portion 3b on the distal end side has An external thread 8 is formed. In addition, the base end of the shaft portion 3a comes into contact with a receiving seat 19 provided in the case 2, whereby the rotation thereof is supported. Further, a slit 3e into which a distal end of a fastening jig (not shown) for rotating the first shaft 3 is inserted is formed in the base end surface of the shaft portion 3a. The slit 3 e communicates with the jig hole 2 e formed in the base end face of the body 2 a of the case 2. By rotating the first shaft member 3 via e, a torsion spring 5 described later can be wound and tightened.
第 2のシャフト部材 4は筒状に形成されており、 その内面には、 第 1のシャフト部材 3 の雄ねじ 8が螺合する雌ねじ 9が形成されている。 これらのシャフト部材 3, 4は、 雌ね じ 9及び雄ねじ 8を螺合させた状態でケース 2の収納孔 2 c内に挿入される。 この第 2の シャフト部材 4の先端には、 キャップ 1 0が取り付けられている。 キャップ 1 0は、 頭部 1 O a及び脚部 1 O bからなリ、 頭部 1 0 aが第 2のシャフト部材 4の先端部分を覆い、 脚部 1 0 bを第 2のシャフト部材 4の先端部分に嵌め込んだ状態で、 これらにスプリング ピン 1 1を圧入することにより抜け止めされて第 2のシャフト部材 4に固定される。 捩りばね 5は、 第 1のシャフト部材 3のシャフト部 3 aに外挿されている。 この捩りば ね 5の一端側のフック部 5 aがケース 2に形成されたフック溝 2 f に挿入されて係止され る一方、 他端側のフック部 5 bが第 1のシャフト部材 3底部のスリツト 3 eに挿入されて 係止されている。 従って、 捩りばね 5を卷締めてトルクを付与することによリ第 1のシャ フト部材 3を回転させることができる。 The second shaft member 4 is formed in a cylindrical shape, and on the inner surface thereof, a female screw 9 with which the male screw 8 of the first shaft member 3 is screwed is formed. These shaft members 3 and 4 are inserted into the storage hole 2 c of the case 2 with the female screw 9 and the male screw 8 screwed together. A cap 10 is attached to the tip of the second shaft member 4. The cap 10 is composed of a head 10 Oa and a leg 1 Ob, the head 10 a covers a tip portion of the second shaft member 4, and the leg 10 b is attached to the second shaft member 4. The spring pins 11 are press-fitted into these in a state where they are fitted to the distal end portions thereof, and are prevented from coming off and fixed to the second shaft member 4. The torsion spring 5 is extrapolated to the shaft portion 3a of the first shaft member 3. This twist The hook 5a at one end of the hook 5 is inserted and locked in a hook groove 2f formed in the case 2, while the hook 5b at the other end is connected to the first shaft member 3 and the slit 3 at the bottom. Inserted and locked in e. Therefore, the first shaft member 3 can be rotated by tightening the torsion spring 5 and applying a torque.
軸受 6はケース 2の先端部分に取り付けられ、 止め輪 1 3によって固定されている。 軸 受 6は摺動孔 6 aを有しており、 この摺動孔 6 a内を第 2のシャフト部材 4が貫通してい る。 軸受 6の摺動孔 6 aの内面及び第 2のシャフト部材 4の外面は、 略小判形状、 Dカツ トゃ平行カット、 その他の非円形に形成されており、 これによリ第 2のシャフト部材 4は 回転が拘束された状態となる。  The bearing 6 is attached to the tip of the case 2 and is fixed by a retaining ring 13. The bearing 6 has a sliding hole 6a, and the second shaft member 4 passes through the sliding hole 6a. The inner surface of the sliding hole 6a of the bearing 6 and the outer surface of the second shaft member 4 are formed in a substantially oval shape, a D-cut ゃ parallel cut, and other non-circular shapes. The member 4 is in a state where the rotation is restricted.
軸受 6は所定厚さの平板形状に成形されており、 外周側には複数の固定片 6 13カ放射状 に形成されている。 この固定片 6 bがケース 2の先端部分に形成されている切欠溝 2 gに 嵌合することにより、 軸受 6の全体が回転止めされた状態となっている。 このように軸受 6がケース 2に対して回転止めされることにより、 軸受 6を貫通した第 2のシャフト部材 4が軸受 6を介してケース 2に回転拘束される。  The bearing 6 is formed in a flat plate shape having a predetermined thickness, and a plurality of fixing pieces 613 are radially formed on the outer peripheral side. When the fixing piece 6b is fitted into the notch groove 2g formed in the front end portion of the case 2, the entire bearing 6 is in a state where rotation is stopped. When the bearing 6 is stopped from rotating with respect to the case 2 in this manner, the second shaft member 4 that has penetrated the bearing 6 is restrained from rotating by the case 2 via the bearing 6.
第 2のシャフト部材 4 2には、 ねじ部 8, 9を介して第 1のシャフト部材 3が螺合して おり、 捩りばね 5の回転付勢力によって回転する第 1のシャフト部材 3の回転力が第 2の シャフト部材 4に伝達される力 第 2のシャフト部材 4が軸受 6によって回転拘束されて いるため、 第 2のシャフト部材 4はケース 2に対して進退する。  The first shaft member 3 is screwed to the second shaft member 42 via the threaded portions 8 and 9, and the rotational force of the first shaft member 3 rotated by the rotational urging force of the torsion spring 5. Is transmitted to the second shaft member 4. Since the second shaft member 4 is rotationally constrained by the bearing 6, the second shaft member 4 advances and retreats with respect to the case 2.
スぺ一サ 7は筒状となっており、 その内部には、 第 1のシャフト部材 3及び第 2のシャ フト部材 4の螺合部分が挿入される。 この場合、 第 1のシャフト部材 3におけるシャフト 部 3 aとねじ部 3 bとの境界部分には、 大径となるフランジ部 3 cが形成されており、 ス ぺーサ 7はその基端部分がフランジ部 3 cに当接している。 また、 スぺーサ 7の先端部分 は軸受 6に臨んでおり、 軸受 6への当接によって、 第 1及び第 2のシャフト部材 1 3 , 1 4がケース 2から抜け出ることを防止している。  The spacer 7 has a cylindrical shape, and a threaded portion of the first shaft member 3 and the second shaft member 4 is inserted therein. In this case, a large-diameter flange portion 3c is formed at a boundary portion between the shaft portion 3a and the thread portion 3b in the first shaft member 3, and the spacer 7 has a base end portion. It is in contact with the flange 3c. The distal end of the spacer 7 faces the bearing 6, and the contact with the bearing 6 prevents the first and second shaft members 13, 14 from coming out of the case 2.
以上に加えて、 この実施の形態では、 弾性部材としてのコイルばね 2 0が設けられてい る。 コイルばね 2 0は第 1のシャフト部材 3及び第 2のシャフト部材 4の間に配置されて いる。 この実施の形態において、 コイルばね 2 0は第 1のシャフト部材 3におけるねじ部 3 と、 第 2のシャフト部材 4の基端部との間に配置されている。 In addition to the above, in this embodiment, a coil spring 20 as an elastic member is provided. The coil spring 20 is disposed between the first shaft member 3 and the second shaft member 4. I have. In this embodiment, the coil spring 20 is disposed between the threaded portion 3 of the first shaft member 3 and the base end of the second shaft member 4.
また、 コイルばね 2 0としては、 両端のフック部が自由端となっている圧縮ばねが使用 されている。 圧縮ばねからなるコイルばね 2 0は、 一端部 2 0 aが第 2のシャフト部材 4 と接触する一方、 他端部 2 0 bが第 1のシャフト部材 3と接触している。 この場合、 他端 部 2 0 bは第 1のシャフト部材 3のフランジ部 3 cと接触するものである。 このようなコ ィルばね 2 0は、 両端部 2 0 a、 2 0 bが両シャフト部材 3 , 4と接触すると共に、 ある 程度圧縮された状態で組み込まれる。  Further, as the coil spring 20, a compression spring having hook portions at both ends being free ends is used. One end 20 a of the coil spring 20 made of a compression spring is in contact with the second shaft member 4, while the other end 20 b is in contact with the first shaft member 3. In this case, the other end portion 20 b comes into contact with the flange portion 3 c of the first shaft member 3. Such a coil spring 20 is assembled in a state where both end portions 20a and 20b are in contact with both shaft members 3 and 4 and are compressed to some extent.
従って、 第 2のシャフト部材 4を押し込む外部入力荷重が入力すると、 先端部 2 0 aが 第 2のシャフト部材 4と接触しているコイルばね 2 0に直に圧縮力が作用して、 コイルば ね 2 0が圧縮される。 コイルばね 2 0は他端部 2 0 bが第 1のシャフト部材 3と接触して いるため、 コイルばね 2 0の圧縮によって、 コイルばね 2 0と第 1のシャフト部材 3との 間に摩擦トルクが発生するか、 既に発生していた摩擦トルクがさらに増大する。 これによ リ、 第 1のシャフト部材 3に対してブレーキ力が作用し、 第 1のシャフト部材 3の回転が 規制される。  Therefore, when an external input load that pushes the second shaft member 4 is input, a compressive force is applied directly to the coil spring 20 in which the distal end portion 20a is in contact with the second shaft member 4, and the coil spring Hey 20 is compressed. Since the other end 20 b of the coil spring 20 is in contact with the first shaft member 3, the compression of the coil spring 20 causes a friction torque between the coil spring 20 and the first shaft member 3. Occurs or the friction torque already generated further increases. Thereby, a braking force acts on the first shaft member 3, and the rotation of the first shaft member 3 is restricted.
第 3図は、 この実施の形態の作用を第 1 4図及び第 1 5図に示す従来のテンショナ一と 比較して説明するものであり、 従来のテンショナ一には、 この実施の形態の符号を付して 対応させてある。 同図に示すように、 第 1のシャフト部材 3には捩りばね 5によってトル ク Tからなる回転付勢力が作用している。 外部入力荷重 Fの入力があると、 第 2のシャフ ト 4がケース 2内に押し込まれるため、 第 1のシャフト部材 3が捩りばね 5の回転付勢力 に抗して矢印 D方向に回転する。  FIG. 3 explains the operation of this embodiment in comparison with the conventional tensioner shown in FIGS. 14 and 15, and the conventional tensioner has the same reference numerals as those in FIG. Is added to the corresponding. As shown in the figure, a rotational urging force composed of a torque T acts on the first shaft member 3 by a torsion spring 5. When the external input load F is input, the second shaft 4 is pushed into the case 2, so that the first shaft member 3 rotates in the direction of arrow D against the rotational urging force of the torsion spring 5.
コイルばね 2 0を備えていないテンショナ一では、 同図 (a ) で示すように、 外部入力 荷重 Fの荷重に応じた回転トルク T kで矢印 D方向に回転する。 この場合の第 1のシャフ ト部材 3の回転角度は 0 2であり、 角度 Θ 2に対応した第 2のシャフト部材 4の振幅は B となる。  The tensioner without the coil spring 20 rotates in the direction of arrow D with a rotation torque Tk corresponding to the load of the external input load F, as shown in FIG. In this case, the rotation angle of the first shaft member 3 is 0 2, and the amplitude of the second shaft member 4 corresponding to the angle Θ2 is B.
これに対し、 この実施の形態では、 同図 (b ) で示すように、 第 1のシャフト部材 3と 第 2のシャフト部材 4との間に圧縮ばねからなるコイルばね 2 0が配置されており、 第 2 のシャフト部材 4に対して外部入力荷重 Fの入力があると、 コイルばね 2 0が圧縮され、 その下端部 2 0 bとが第 1のシャフト部材 3のフランジ部 3 cとの間に摩擦トルクが発生 するか、 既に発生している摩擦トルクよリも大きな摩擦トルクとなる。 On the other hand, in this embodiment, as shown in FIG. A coil spring 20 composed of a compression spring is disposed between the second shaft member 4 and the coil spring 20 when the external input load F is input to the second shaft member 4. A friction torque is generated between the lower end portion 20b and the flange portion 3c of the first shaft member 3, or the friction torque is larger than the friction torque already generated.
この摩擦トルク T 1は、 コイルばね 2 0の軸方向荷重 Wと、 第 1のシャフト部材 3との 接触半径 rと、 第 1のシャフト部材との間の摩擦係数/ との積 ( T Ί = r ' μ ) とな つている。 この摩擦トルク Τ 1は、 第 2のシャフト部材 4の押し込みによって第 1のシャ フト部材 3が強制的に回転させられる回転角 0 2に対して制動作用を行う。 このため、 第 1のシャフト部材の回転角が 0 Ζから Θ 1へ低減し、 第 2のシャフト部材 4の押し込み量 (振幅) Β 1を小さくすることができる。  This friction torque T 1 is obtained by multiplying the axial load W of the coil spring 20, the contact radius r of the first shaft member 3, and the coefficient of friction between the first shaft member 3 (T Ί = r 'μ). The friction torque Τ1 exerts a braking action on the rotation angle 02 at which the first shaft member 3 is forcibly rotated by the pushing of the second shaft member 4. For this reason, the rotation angle of the first shaft member is reduced from 0 ° to Θ1, and the pushing amount (amplitude) Β1 of the second shaft member 4 can be reduced.
このような実施の形態では、 コイルばね 2 0が第 1のシャフト部材 3及び第 2のシャフ ト部材 4との間に配置されることにより、 外部入力荷重 Fの入力があると、 コイルばね 2 0が必ず圧縮されて摩擦トルクが発生するか、 増大する。 従って、 外部入力荷重 Fの大小 に関係なく、 第 1のシャフト部材 3の振幅を抑制できるため、 きめ細やかな振幅抑制を行 うことが可能となる。  In such an embodiment, the coil spring 20 is disposed between the first shaft member 3 and the second shaft member 4 so that when an external input load F is input, the coil spring 2 0 must be compressed to generate friction torque or increase. Therefore, regardless of the magnitude of the external input load F, the amplitude of the first shaft member 3 can be suppressed, so that fine amplitude suppression can be performed.
また、 振幅抑制を行うために捩りばね 5のばねトルクを大きくしたり、 ねじ部 8 , 9の リード角を小さくして第 2のシャフト部材 4の推進力を大きくする必要がない。 このため、 チェーンガイドとチェーンとの間の摩擦が大き〈なることがなく、 エンジンの出力ロスを 少なくすることができる。  Further, it is not necessary to increase the spring torque of the torsion spring 5 or to reduce the lead angle of the threaded portions 8 and 9 to increase the propulsive force of the second shaft member 4 to suppress the amplitude. For this reason, the friction between the chain guide and the chain does not become large, and the output loss of the engine can be reduced.
(実施の形態 2 )  (Embodiment 2)
第 4図は本発明の実施の形態 2のテンショナ一 Α 2を示し、 圧縮ばねからなるコィルば ね 2 0と第 1のシャフト部材 3のフランジ部 3 cとの間に緩衝板 2 2が挿入されている。 緩衝板 2 2はヮッシャ等の金属薄板からなり、 コィルばね 2 0の他端部 2 0 bと第 1のシ ャフト部材 3のフランジ部 3 cとの間に挟まれるように設けられている。  FIG. 4 shows a tensioner 1 according to a second embodiment of the present invention, in which a buffer plate 22 is inserted between a coil spring 20 composed of a compression spring and a flange portion 3c of the first shaft member 3. Have been. The buffer plate 22 is made of a thin metal plate such as a washer, and is provided so as to be sandwiched between the other end portion 20 b of the coil spring 20 and the flange portion 3 c of the first shaft member 3.
このような緩衝板 2 2を設けることにより、 コイルばね 2 0の他端部 2 0 bが第 1のシ ャフト部材 3に食い込むことを防止することができる。 これにより、 コイルばね 2 0の円 滑な作動を行うことができると共に、 コィルばね 2 0及び第 1のシャフト部材 3の摩耗を 抑制することができ、 耐久性のあるものとすることができる。 By providing such a buffer plate 22, it is possible to prevent the other end portion 20 b of the coil spring 20 from biting into the first shaft member 3. This makes the coil spring 20 circle Smooth operation can be performed, wear of the coil spring 20 and the first shaft member 3 can be suppressed, and durability can be achieved.
第 5図及び第 6図は、 この実施の形態の変形々態を示す。 第 5図の形態では、 第 1のシ ャフト部材 3のフランジ部 3 cとコイルばね 2 0の他端部 2 0 bとの間に、 鉄、 ステンレ ス等の金属ヮッシャ 2 3と、 P T F E (ポリ亍トラフルォロエチレン) 等の樹脂ヮッシャ 2 4と、 上述した金属ヮッシャ 2 5との積層体からなる緩衝板 2 2が揷入されている。 ま た、 コイルばね 2 0の一端部 2 0 aと第 2のシャフト部材 4との間に、 金属ヮッシャ 2 6 からなる緩衝板が挿入されている。  FIG. 5 and FIG. 6 show variations of this embodiment. In the embodiment shown in FIG. 5, between the flange portion 3c of the first shaft member 3 and the other end portion 20b of the coil spring 20, a metal washer 23 such as iron or stainless steel and a PTFE ( A buffer plate 22 made of a laminate of a resin washer 24 such as poly (tetrafluoroethylene) and the above-mentioned metal washer 25 is inserted. A buffer plate made of a metal washer 26 is inserted between one end 20 a of the coil spring 20 and the second shaft member 4.
第 6図の形態ではコイルばね 2 0の線材の外面に P T F E等の固体潤滑剤 2 7がコ一テ イングされている。 また、 コイルばね 2 0の両端部と、 第 1のシャフト部材 3のフランジ 部 3 c及び第 2のシャフト部材 4との間には金属ヮッシャ 2 3及び金属ヮッシャ 2 6から なる緩衝板が挿入されている。  In the embodiment shown in FIG. 6, a solid lubricant 27 such as PTFE is coated on the outer surface of the wire of the coil spring 20. Further, between both end portions of the coil spring 20 and the flange portion 3c of the first shaft member 3 and the second shaft member 4, a buffer plate made of a metal washer 23 and a metal washer 26 is inserted. ing.
このような種々の緩衝板をコイルばね 2 0と第 1のシャフト部材 3及びノまたは第 2の シャフト部材 4との間に挿入したり、 コィルばね 2 0に固体潤滑剤をコーティングするこ とにより、 コイルばね 2 0と第 1のシャフト部材 3及びノまたは第 2のシャフト部材 4と の間の摩擦係数を任意に調整することができる。 これにより、 目的に合わせた摩擦トルク を容易に得ることができる。  By inserting such various cushioning plates between the coil spring 20 and the first shaft member 3 and the or the second shaft member 4, or by coating the coil spring 20 with a solid lubricant. The coefficient of friction between the coil spring 20 and the first shaft member 3 and / or the second or fourth shaft member 4 can be arbitrarily adjusted. This makes it possible to easily obtain the desired friction torque.
(実施の形態 3 )  (Embodiment 3)
第 7図は本発明の実施の形態 3の A 3を示す。 この実施の形態のテンショナ一A 3では、 圧縮ばねからなるコイルばね 2 0の両端部 2 0 a、 2 0 bが第 1のシャフト部材 3及び第 2のシャフト部材 4に支持されている。  FIG. 7 shows A3 of the third embodiment of the present invention. In the tensioner A3 of this embodiment, both ends 20a and 20b of a coil spring 20 composed of a compression spring are supported by the first shaft member 3 and the second shaft member 4.
すなわち、 第 1のシャフト部材 3のフランジ部 3 cとねじ部 3 bとの間に、 コイルばね 2 0の内径に相応した外径の段部 3 gを形成する一方、 第 2のシャフト部材 4の第 1のシ ャフト部材 3側の端部に、 コイルばね 2 0の内径に相応した外径の段部 4 gを形成してい る。 これらの段部 3 g、 4 gは、 コイルばね 2 0の端部を支持する支持座となるものであ る。 そして、 コイルばね 2 0の両端部 2 0 a、 2 0 bに対してこれらの段部 3 g、 4 gを 挿入することにより、 さらに安定した支持状態としている。 なお、 コイルばね 2 0の他端 部 2 O bと第 1のシャフト部材 3のフランジ部 3 cとの間には、 緩衝板としての金属ヮッ シャ 2 2が挟み込まれている。 この実施の形態においても、 コイルばね 2 0はある程度圧 縮された状態となっている。 That is, a stepped portion 3 g having an outer diameter corresponding to the inner diameter of the coil spring 20 is formed between the flange portion 3 c and the screw portion 3 b of the first shaft member 3, while the second shaft member 4 A step 4 g having an outer diameter corresponding to the inner diameter of the coil spring 20 is formed at the end of the first shaft member 3 side. These steps 3 g and 4 g serve as support seats for supporting the ends of the coil spring 20. Then, these steps 3 g and 4 g are applied to both ends 20 a and 20 b of the coil spring 20. By inserting it, a more stable support state is achieved. Note that a metal washer 22 as a buffer plate is sandwiched between the other end 2 Ob of the coil spring 20 and the flange 3 c of the first shaft member 3. Also in this embodiment, the coil spring 20 is in a compressed state to some extent.
このように第 1及び第 2のシャフト部材 3、 4にコイルばね 2 0の両端部が支持される ことにより、 第 1のシャフト部材 3が往復回転を繰り返しても、 その作動に円滑に対応す ることができるため、 安定した作動を行うことができる。 なお、 コイルばね 2 0の端部の 支持は、 シャフト部材 3または 4のいずれか一方であれば、 安定的な支持を行うことがで きるものである。  Since both ends of the coil spring 20 are supported by the first and second shaft members 3 and 4 in this manner, even if the first shaft member 3 repeats reciprocating rotation, it smoothly responds to its operation. As a result, stable operation can be performed. The end of the coil spring 20 can be stably supported if it is one of the shaft members 3 and 4.
(実施の形態 4 )  (Embodiment 4)
第 8図は本発明の実施の形態 4におけるテンショナ一 A 4を示す。 この実施の形態にお いても、 第 7図に示す実施の形態 3のテンショナ一A 3と同様に、 コイルばね 2 0の両端 部 2 0 a、 2 0 bが双方のシャフト部材 3 , 4に支持されている。 従って、 第 1のシャフ ト部材 3の往復回転に円滑に対応することが可能となっている。 これに加えてこの実施の形態では、 コイルばね 2 0における第 1のシャフト部材 3側に 位置したコイル部分のコイル径が小さくなつている。 すなわち、 コイルばね 2 0は第 1の シャフト部材側の端部が第 2のシャフト部材 4の推進方向との反対方向に向かって径が漸 減するものである。 そして、 漸減した他端部 2 O bが第 1のシャフト部材の段部 3 gに支 持されている。 このように径が小さくなつていることにより、 コイルばね 2 0と第 1のシャフト部材 3 とが積極的に摺動することができ、 これらの間の摩擦トルクを大きくすることが可能とな リ、 第 2のシャフト部材 4の振幅を抑制することができる。 また、 第 2のシャフト部材 4 側ではコィルばね 2 0のコィル径が大きくなつた状態で密着しているため、 コィルばね 2 0から発生する摩擦トルクを大き〈することができ、 第 1のシャフト部材 3の回転角度を 小さくすることができる。 これにより、 第 2のシャフト部材 4の振幅を小さ〈することが できる。 なお、 このようなコイルばね 2 0の端部の径ゃ変化率は、 任意に変更が可能であ リ、 これにより、 反力トルクを任意に調整することができる。 FIG. 8 shows a tensioner A4 according to Embodiment 4 of the present invention. Also in this embodiment, both ends 20a and 20b of the coil spring 20 are attached to both shaft members 3 and 4, similarly to the tensioner A3 of the third embodiment shown in FIG. Supported. Therefore, it is possible to smoothly respond to the reciprocating rotation of the first shaft member 3. In addition, in the present embodiment, the coil diameter of the coil portion of the coil spring 20 located on the first shaft member 3 side is reduced. That is, the diameter of the coil spring 20 gradually decreases at the end on the first shaft member side in the direction opposite to the direction in which the second shaft member 4 is propelled. Then, the gradually reduced other end 2 Ob is supported by the step 3 g of the first shaft member. With such a small diameter, the coil spring 20 and the first shaft member 3 can slide positively, and the friction torque between them can be increased. However, the amplitude of the second shaft member 4 can be suppressed. In addition, since the coil diameter of the coil spring 20 is large on the side of the second shaft member 4, the friction torque generated from the coil spring 20 can be increased. Rotation angle of member 3 Can be smaller. Thereby, the amplitude of the second shaft member 4 can be reduced. It should be noted that the rate of change of the diameter of the end of the coil spring 20 can be arbitrarily changed, whereby the reaction torque can be arbitrarily adjusted.
(実施の形態 5 )  (Embodiment 5)
第 9図は本発明の実施の形態 5のテンショナ一 A 5を示す。 この実施の形態においても、 第 1のシャフト部材 3と第 2のシャフト部材 4との間に弾性部材 3 0が配置されるが、 弾 性部材 3 0は筒状の樹脂成形体によって形成されている。 樹脂成形体としては、 硬質フィ ラ一混合の樹脂等を用いることができる。  FIG. 9 shows a tensioner A5 according to Embodiment 5 of the present invention. Also in this embodiment, the elastic member 30 is disposed between the first shaft member 3 and the second shaft member 4, but the elastic member 30 is formed of a cylindrical resin molded body. I have. As the resin molded body, a hard filler mixed resin or the like can be used.
樹脂成形体からなる弾性部材 3 0は、 第 1のシャフト部材 3と第 2のシャフト部材 4と の間に挟まれるように配置されることにより、 第 2のシャフト部材 4への外部入力荷重で 圧縮される。 この圧縮により第 1のシャフト部材 3との間で摩擦トルクが発生するか、 あ るいは発生していた摩擦トルクが増大する。 従って、 第 1のシャフト部材 3にブレーキ力 が作用し、 第 2のシャフト部材 4の振幅を抑制することができる。,なお、 樹脂成形体に代 えて、 合成ゴム等のゴム成形体を用いることも可能である。  The elastic member 30 made of a resin molded body is disposed so as to be sandwiched between the first shaft member 3 and the second shaft member 4, so that the elastic member 30 can receive an external input load to the second shaft member 4. Compressed. This compression generates a friction torque with the first shaft member 3 or increases the generated friction torque. Therefore, a braking force acts on the first shaft member 3 and the amplitude of the second shaft member 4 can be suppressed. However, a rubber molded body such as a synthetic rubber can be used instead of the resin molded body.
(実施の形態 6 )  (Embodiment 6)
第 1 0図は本発明の実施の形態 6の亍ンショナ一 A 6を示す。 この実施の形態において は、 第 1のシャフト部材 3と第 2のシャフト部材 4との間に配置された弾性部材 3 1が皿 ばねの積層体によって構成されている。  FIG. 10 shows a first embodiment A6 of the sixth embodiment of the present invention. In this embodiment, the elastic member 31 disposed between the first shaft member 3 and the second shaft member 4 is formed of a laminate of disc springs.
皿ばねの積層体からなる弾性部材 3 1は、 第 1のシャフト部材 3と第 2のシャフト部材 4との間に挟まれることにより、 第 2のシャフト部材 4への外部入力荷重で圧縮されるた め、 第 1のシャフト部材 3との間で摩擦トルクが発生するか、 あるいは発生していた摩擦 トルクが増大する。 また、 積層されている皿ばねの間においても、 摩擦によるブレーキ力 力《発生する。 従って、 これらによって第 1のシャフト部材 3にブレーキ力が作用し、 第 2 のシャフト部材 4の振幅を抑制することができる。  The elastic member 31 made of a laminate of disc springs is compressed by an external input load to the second shaft member 4 by being sandwiched between the first shaft member 3 and the second shaft member 4. Therefore, friction torque is generated between the first shaft member 3 and the generated friction torque is increased. Also, between the stacked disc springs, a braking force << is generated due to friction. Accordingly, a braking force acts on the first shaft member 3 by these, and the amplitude of the second shaft member 4 can be suppressed.
(実施の形態 7 )  (Embodiment 7)
第 1 1図は本発明の実施の形態 7のテンショナ一 A 7を示す。 この実施の形態では、 第 2のシャフト部材 4がエンジン本体側に位置する本体部 4 1 と、. 本体部 4 1の第 1のシャフト部材 3側に位置するクラッチ部 4 2との 2部材によって構成 されている。 本体部 4 1及びクラッチ部 4 2は、 ケース 2から推進する。 また、 クラッチ 部 4 2と本体部 4 1とは、 相互に二等辺三角形状の係止爪 4 3が形成されることにより、 係合する。 FIG. 11 shows a tensioner A7 according to a seventh embodiment of the present invention. In this embodiment, the main body 41 has the second shaft member 4 located on the engine body side, and the clutch 42 has the second shaft member 4 located on the first shaft member 3 side of the body 41. It is configured. The main body 41 and the clutch part 42 are propelled from Case 2. Further, the clutch part 42 and the main body part 41 are engaged with each other by forming a locking claw 43 having an isosceles triangle shape.
—方、 クラッチ部 4 2には弾性部材としてのコイルばね 3 3の一端のフック部 3 3 aが 係止している。 コイルばね 3 3は第 1のシャフト部材 3のねじ部 3 bに外挿されており、 他端のフック部 3 3 bが第 1のシャフト部材 3のフランジ部 3 cに係止している。 この実 施の形態において、 コイルばね 3 3は第 1のシャフト部材 3及び第 2のシャフト部材 4の 間に圧縮状態で配置されると共に、 両端のフック部 3 3 a、 3 3 bを介して捩られた状態 で両シャフト部材 3, 4に係合している。 これにより、 コイルばね 3 3は外部入力荷重に 対する反力トルクを有している。  On the other hand, a hook portion 33 a at one end of a coil spring 33 as an elastic member is locked to the clutch portion 42. The coil spring 33 is externally inserted into the screw portion 3 b of the first shaft member 3, and the hook portion 33 b at the other end is engaged with the flange portion 3 c of the first shaft member 3. In this embodiment, the coil spring 33 is disposed between the first shaft member 3 and the second shaft member 4 in a compressed state, and is connected via hook portions 33 a and 33 b at both ends. It is engaged with both shaft members 3 and 4 in a twisted state. Thereby, the coil spring 33 has a reaction torque against the external input load.
このような実施の形態では、 第 2のシャフト部材 4に外部入力荷重が入力すると、 係止 爪 4 3の角度、 高さに応じて、 コイルばね 3 3の反力トルクが増大する。 このため、 この 実施の形態では、 外部入力荷重に対して捩りばね 5のトルクとコイルばね 3 3の反力トル クとによって制動を行うため、 第 2のシャフト部材 4の振幅をきめ細やかに抑制すること ができる。  In such an embodiment, when an external input load is applied to the second shaft member 4, the reaction torque of the coil spring 33 increases according to the angle and height of the locking claw 43. For this reason, in this embodiment, since the braking is performed by the torque of the torsion spring 5 and the reaction torque of the coil spring 33 in response to the external input load, the amplitude of the second shaft member 4 is finely suppressed. can do.
(実施の形態 8 )  (Embodiment 8)
第 1 2図は本発明の実施の形態 8の亍ンショナー A 8を示す。 この実施の形態において も、 実施の形態 7のテンショナ一 A 7と同様に第 2のシャフト部材 4が先端側の本体部 4 1と第 1のシャフト部材 3側のクラッチ部 4 2とによって形成されると共に、 これらの間 に係止爪 4 3が形成されている。 また、 コイルばね 3 3は第 1のシャフト部材 3及び第 2 のシャフト部材 4の間に配置されると共に、 一端のフック部 3 3 aがクラッチ部 4 2に係 止され、 他端のフック部 3 3 bが第 1のシャフト部材 3のフランジ部 3 cに係止されてい る。  FIG. 12 shows a cushion A 8 according to an eighth embodiment of the present invention. Also in this embodiment, similarly to the tensioner A 7 of the seventh embodiment, the second shaft member 4 is formed by the main body portion 41 on the distal end side and the clutch portion 42 on the first shaft member 3 side. In addition, a locking claw 43 is formed between them. Further, the coil spring 33 is disposed between the first shaft member 3 and the second shaft member 4, and the hook portion 33a at one end is engaged with the clutch portion 42, and the hook portion at the other end. 33 b is locked to the flange portion 3 c of the first shaft member 3.
この実施の形態では、 係止爪 4 3が鋸歯状に形成されており、 これによリクラッチ部 4 2の逆回転ができないようになつている。 従って、 第 2のシャフト部材 4が一旦推進した 後は、 クラッチ部 4 2が逆回転することがなく、 コイルばね 3 3による反力トルクを大き くすることができる。 In this embodiment, the locking claw 43 is formed in a saw-tooth shape, and this The reverse rotation of 2 is not possible. Therefore, after the second shaft member 4 is once propelled, the clutch portion 42 does not rotate in the reverse direction, and the reaction torque by the coil spring 33 can be increased.
(実施の形態 9 )  (Embodiment 9)
この実施の形態では図示しないが、 実施の形態 1 ~ 8において、 コイルばねのコイル巻 き方向が、 第 1のシャフト部材 3の雄ねじ部 8のねじ切り方向と逆となっているものであ る。 これにより、 外部入力荷重による第 2のシャフト部材 4の押し込みによって第 1のシ ャフト部材 3が回転すると、 コイルばねはコイル径が卷締められる方向に捩られる。 従つ て、 コイル径が広がることがなく、 周囲の部品との干渉を防止することができ、 作動が円 滑となる。 産業上の利用可能性  Although not shown in this embodiment, in Embodiments 1 to 8, the coil winding direction of the coil spring is opposite to the thread cutting direction of the external thread portion 8 of the first shaft member 3. Thus, when the first shaft member 3 is rotated by the second shaft member 4 being pushed by the external input load, the coil spring is twisted in a direction in which the coil diameter is tightened. Therefore, the coil diameter does not increase, interference with surrounding components can be prevented, and operation becomes smooth. Industrial applicability
請求の範囲第 1項の発明によれば、 弾性部材が第 1のシャフト部材と第 2のシャフト部 材との間に配置されることにより、 外部入力荷重の入力があると、 弾性部材が常に抵抗ト ルクを発生するため、 第 2のシャフト部材に対するきめ細かな振幅抑制を行うことができ る。 また、 チェーンガイドとチェーンとの間の摩擦が大きくなることがないため、 ェンジ ンの出力ロスを少なくすることができる。  According to the first aspect of the present invention, the elastic member is disposed between the first shaft member and the second shaft member. Since the resistance torque is generated, it is possible to finely suppress the amplitude of the second shaft member. Further, since the friction between the chain guide and the chain does not increase, the output loss of the engine can be reduced.
請求の範囲第 2項の発明によれば、 請求の範囲第 1項の発明と同様な効果を有するのに 加えて、 第 1のシャフト部材と第 2のシャフト部材との間に配置されたコイルばねが圧縮 されることにより、 摩擦トルクを発生して第 1のシャフト部材の回転を抑制するため、 第 2のシャフト部材に対するきめ細かな振幅抑制を行うことができる。  According to the second aspect of the present invention, in addition to having the same effect as the first aspect of the present invention, a coil disposed between the first shaft member and the second shaft member Since the compression of the spring generates a friction torque to suppress the rotation of the first shaft member, fine amplitude suppression of the second shaft member can be performed.
請求の範囲第 3項の発明によれば、 請求の範囲第 1項の発明と同様な効果を有するのに 加えて、 第 1のシャフト部材と第 2のシャフト部材との間に配置されたコイルばねが捩ら れて反力トルクを発生するため、 外部入力荷重の入力に応じた第 2のシャフト部材へのき め細かな振幅抑制及び大きな振幅抑制を行うことができる。  According to the third aspect of the invention, in addition to having the same effects as the first aspect of the invention, a coil disposed between the first shaft member and the second shaft member Since the spring is twisted to generate a reaction torque, it is possible to perform fine amplitude suppression and large amplitude suppression on the second shaft member according to the input of the external input load.
請求の範囲第 4項の発明によれば、 請求の範囲第 2項の発明の効果に加えて、 第 1のシ ャフト部材または第 2のシャフト部材のいずれかにコイルばねを支持する支持座を設けて いるため、 第 1のシャフト部材が往復回転を繰り返しても、 その作動に良好に対応するこ とができ、 安定した作動を確保することができる。 According to the invention set forth in claim 4, in addition to the effect of the invention set forth in claim 2, the first system is provided. Since the support seat for supporting the coil spring is provided on either the shaft member or the second shaft member, even if the first shaft member repeats reciprocating rotation, it can respond to the operation well, Stable operation can be ensured.
請求の範囲第 5項の発明によれば、 請求の範囲第 2項〜第 4項の発明の効果を有するの に加えて、 第 1のシャフト部材との間の摩擦トルクを大きくすることができ、 第 2のシャ フト部材の振幅を抑制することができる。 また、 ばね形状によって、 任意の摩擦トルクを 設定することができる。  According to the fifth aspect of the invention, in addition to having the effects of the second to fourth aspects of the invention, it is possible to increase the friction torque with the first shaft member. In addition, the amplitude of the second shaft member can be suppressed. Also, an arbitrary friction torque can be set depending on the spring shape.
請求の範囲第 6項の発明によれば、 請求の範囲第 2項〜第 5項の発明の効果を有するの に加えて、 第 1のシャフト部材のねじ切り方向と逆のコイル巻き方向とすることにより、 コイルばねがコイル径が広がってケース等の周囲の部品と干渉することがなく、 作動を円 滑に行うことができる。  According to the invention set forth in claim 6, in addition to having the effects of the inventions set forth in claims 2 to 5, the coil winding direction is opposite to the thread cutting direction of the first shaft member. Accordingly, the coil spring does not have a large coil diameter and does not interfere with surrounding parts such as a case, and thus the operation can be performed smoothly.
請求の範囲第 7項の発明によれば、 請求の範囲第 2項〜第 6項の発明の効果を有するの に加えて、 第 2のシャフト部材に形成されたクラッチ部がコイルばねを捩るため、 コイル ばねに反力トルクが発生し、 第 2のシャフト部材の振幅を抑制することができる。  According to the invention set forth in claim 7, in addition to having the effects of the inventions set forth in claims 2 to 6, the clutch portion formed on the second shaft member twists the coil spring. However, a reaction torque is generated in the coil spring, and the amplitude of the second shaft member can be suppressed.
請求の範囲第 8項の発明によれば、 請求の範囲第 1項の発明の効果を有するのに加えて、 皿ばね、 ゴム成形体及び樹脂成形体が圧縮されて、 第 1のシャフト部材との間で摩擦トル クを発生するため、 第 2のシャフト部材の振幅を抑制することができる。  According to the invention of claim 8, in addition to having the effect of the invention of claim 1, the disc spring, the rubber molded body and the resin molded body are compressed to form the first shaft member and Since a friction torque is generated between the first shaft member and the second shaft member, the amplitude of the second shaft member can be suppressed.
請求の範囲第 9項の発明によれば、 請求の範囲第 1項〜第 8項の発明の効果を有するの に加えて、 3単性部材が第 1のシャフト部材に食い込むことを緩衝板によって防止するため、 弾性部材の円滑な作動を行うことができると共に、 弾性部材及び第 1のシャフト部材の摩 耗を抑制することができ、 耐久性を向上させることができる。  According to the ninth aspect of the present invention, in addition to having the effects of the inventions of the first to eighth aspects, the fact that the three simple members bit into the first shaft member is prevented by the buffer plate. In order to prevent this, smooth operation of the elastic member can be performed, wear of the elastic member and the first shaft member can be suppressed, and durability can be improved.

Claims

請求の範囲  The scope of the claims
1 . ねじ部によって螺合した第 1のシャフト部材及ぴ第 2のシャフト部材と、 第 1のシャ フト部材を一方向に回転付勢する捩りばねとがケースに収容されており、 第 2のシャフト 部材の回転,を拘束して捩りばねの回転付勢力を第 2のシャフト部材の推進力に変換するテ ンショナ一であって、 1. A first shaft member and a second shaft member screwed together by a screw portion, and a torsion spring for urging the first shaft member to rotate in one direction are accommodated in a case. A tensioner for restricting rotation of a shaft member and converting the rotational urging force of a torsion spring into a propulsion force of a second shaft member,
第 2のシャフト部材に入力する外部入力荷重に対して抵抗トルクを発生させる弾性部材 力 前記第 1のシャフト部材と第 2のシャフト部材との間に配置されていることを特徴と するテンショナ一。  An elastic member for generating a resistance torque against an external input load input to a second shaft member. A tensioner disposed between the first shaft member and the second shaft member.
2 . 前記弾性部材は、 第 1のシャフト部材及び第 2のシャフト部材によって圧縮された状 態で両シャフト部材の間に配置されると共に、 外部入力荷重によって圧縮されることによ リ、 第 1のシャフト部材との間で摩擦トルクを発生させるコイルばねであることを特徴と する請求の範囲第 1項記載の亍ンショナ一。  2. The elastic member is disposed between the first shaft member and the second shaft member in a compressed state, and is compressed by an external input load. 2. The cushioning spring according to claim 1, wherein the spring is a coil spring that generates a friction torque with the shaft member.
3 . 前記弾性部材は、第 2のシャフト部材への外部入力荷重によって捩られることにより、 前記捩りばねの回転付勢方向と同じ方向に反力トルクを発生させるコイルばねであること を特徴とする請求の範囲第 1項記載のテンショナ一。 3. The elastic member is a coil spring that generates a reaction torque in the same direction as the rotational biasing direction of the torsion spring by being twisted by an external input load to the second shaft member. The tensioner according to claim 1.
4 . 前記第 1のシャフト部材または第 2のシャフト部材のいずれかに前記コイルばねを支 持する支持座が設けられていることを特徴とする請求の範囲第 2項記載のテンショナ一。  4. The tensioner according to claim 2, wherein a support seat for supporting the coil spring is provided on either the first shaft member or the second shaft member.
5 . 前記コイルばねは、 第 1のシャフト部材側の端部が第 2のシャフト部材の推進方向と の反対方向に向かって径が漸減していることを特徴とする請求の範囲第 2項〜第 4項のい ずれかに記載のテンショナ一。 5. The coil spring according to claim 2, wherein the end of the first shaft member on the side of the first shaft member has a diameter gradually reduced in a direction opposite to a propulsion direction of the second shaft member. A tensioner according to any of the preceding clauses.
6 . 前記コイルばねのコイル巻方向が第 1のシャフト部材のねじ部のねじ切り方向と逆と なっていることを特徴とする請求の範囲第 2項〜第 5項のいずれかに記載のテンショナ一。 フ. 前記第 2のシャフト部材の進退に伴って回転するクラッチ部が第 2のシャフト部材に 形成されており、 前記コイルばねは一端がクラッチ部に係止され、 他端が第 1のシャフト 部材に係止されていることを特徴とする請求の範囲第 2項〜第 6項のいずれかに記載のテ ンショナ一。 6. The tensioner according to any one of claims 2 to 5, wherein a coil winding direction of the coil spring is opposite to a thread cutting direction of a threaded portion of the first shaft member. . (F) a clutch portion that rotates as the second shaft member advances and retreats is formed on the second shaft member; one end of the coil spring is locked to the clutch portion, and the other end is the first shaft member. The tensioner according to any one of claims 2 to 6, wherein the tensioner is locked to the tensioner.
8 . 前記弾性部材は、 第 1のシャフト部材及び第 2のシャフト部材に接触した状態で配置 され、 外部入力荷重によって圧縮されることにより、 第 1のシャフト部材との間で摩擦ト ルクを発生させる皿ばね、 ゴム成形休または樹脂成形体であることを特徴とする請求の範 囲第 1項記載のテンショナ一。  8. The elastic member is arranged in contact with the first shaft member and the second shaft member, and generates a friction torque with the first shaft member by being compressed by an external input load. The tensioner according to claim 1, wherein the tensioner is a disc spring, a rubber molding rest, or a resin molding.
9 . 前記弾性部材と第 1のシャフト部材との間に、 緩衝板が挿入されていることを特徴と する請求の範囲第 1項〜第 7項のいずれかに記載のテンショナ一。  9. The tensioner according to any one of claims 1 to 7, wherein a buffer plate is inserted between the elastic member and the first shaft member.
PCT/JP2002/013255 2001-12-18 2002-12-18 Tensioner WO2003052295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002354218A AU2002354218A1 (en) 2001-12-18 2002-12-18 Tensioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001385253A JP3962817B2 (en) 2001-12-18 2001-12-18 Tensioner
JP2001-385253 2001-12-18

Publications (1)

Publication Number Publication Date
WO2003052295A1 true WO2003052295A1 (en) 2003-06-26

Family

ID=19187803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013255 WO2003052295A1 (en) 2001-12-18 2002-12-18 Tensioner

Country Status (4)

Country Link
JP (1) JP3962817B2 (en)
CN (1) CN100398871C (en)
AU (1) AU2002354218A1 (en)
WO (1) WO2003052295A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412380A (en) * 2019-03-28 2021-09-17 本田技研工业株式会社 Tensioning regulator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552001B2 (en) * 2003-08-04 2010-09-29 日本発條株式会社 Tensioner
JP4461360B2 (en) * 2003-12-22 2010-05-12 日本発條株式会社 Tensioner
JP4835915B2 (en) * 2005-09-30 2011-12-14 日本発條株式会社 Tensioner
JP4806301B2 (en) * 2006-06-15 2011-11-02 Ntn株式会社 Chain tensioner
JP4934816B2 (en) * 2007-03-08 2012-05-23 日本発條株式会社 Tensioner
JP4934815B2 (en) * 2007-03-08 2012-05-23 日本発條株式会社 Tensioner
DE102011008703B4 (en) * 2011-01-15 2016-09-29 Audi Ag Device for driving connection
JP5947223B2 (en) * 2011-01-19 2016-07-06 日本発條株式会社 Tensioner
JP6657743B2 (en) * 2015-10-06 2020-03-04 株式会社ジェイテクト Steering device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256948U (en) * 1988-10-18 1990-04-24
JPH0538443U (en) * 1991-10-28 1993-05-25 栃木富士産業株式会社 Belt type continuously variable transmission
JPH0842655A (en) * 1994-07-28 1996-02-16 Suzuki Motor Corp V-belt automatic gear shift device
JP2001021012A (en) * 1999-07-09 2001-01-26 Nhk Spring Co Ltd Tensioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2257264Y (en) * 1996-05-24 1997-07-02 郑翔 Fully automatic tensioner for car
JP3683119B2 (en) * 1999-04-02 2005-08-17 Ntn株式会社 Chain tensioner
JP2001124159A (en) * 1999-10-27 2001-05-08 Ntn Corp Chain tensioner
CN2481907Y (en) * 2001-05-11 2002-03-13 无锡市永凯达齿轮制造有限责任公司 Cylinder linked automotive automatic belt tension device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256948U (en) * 1988-10-18 1990-04-24
JPH0538443U (en) * 1991-10-28 1993-05-25 栃木富士産業株式会社 Belt type continuously variable transmission
JPH0842655A (en) * 1994-07-28 1996-02-16 Suzuki Motor Corp V-belt automatic gear shift device
JP2001021012A (en) * 1999-07-09 2001-01-26 Nhk Spring Co Ltd Tensioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412380A (en) * 2019-03-28 2021-09-17 本田技研工业株式会社 Tensioning regulator

Also Published As

Publication number Publication date
JP3962817B2 (en) 2007-08-22
CN1606667A (en) 2005-04-13
JP2003184968A (en) 2003-07-03
AU2002354218A1 (en) 2003-06-30
CN100398871C (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP2951321B1 (en) Auto tensioner
US8678965B2 (en) Auto-tensioner
JP4508641B2 (en) Tensioner
JP2009531634A (en) Tensioner
US9829081B2 (en) Tensioner for engine with large and stable damping and minimum deflection o f shaft
JP2010112549A5 (en)
WO2003052295A1 (en) Tensioner
US20060229151A1 (en) Linear tensioner
JP4835915B2 (en) Tensioner
US20060258497A1 (en) Tensioner
JP3916973B2 (en) Auto tensioner
JP4806301B2 (en) Chain tensioner
US9982760B2 (en) Tensioner for engine with large and stable damping and minimum deflection of shaft
JP4934815B2 (en) Tensioner
JP4448959B2 (en) Tensioner
JP4981567B2 (en) Auto tensioner
JP4461360B2 (en) Tensioner
JP4552001B2 (en) Tensioner
JP4892758B2 (en) Tensioner
JP7112941B2 (en) auto tensioner
US20230140725A1 (en) Bearing pivot tensioner assembly
WO2016021567A1 (en) Load application device
WO2004040167A1 (en) Tensioner
JP3302827B2 (en) Auto tensioner
JP2000179634A (en) Automatic tensioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002825533X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1549/CHENP/2004

Country of ref document: IN

122 Ep: pct application non-entry in european phase