JP2007100753A - Tensioner - Google Patents

Tensioner Download PDF

Info

Publication number
JP2007100753A
JP2007100753A JP2005288948A JP2005288948A JP2007100753A JP 2007100753 A JP2007100753 A JP 2007100753A JP 2005288948 A JP2005288948 A JP 2005288948A JP 2005288948 A JP2005288948 A JP 2005288948A JP 2007100753 A JP2007100753 A JP 2007100753A
Authority
JP
Japan
Prior art keywords
contact
shaft
shaft member
tensioner
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005288948A
Other languages
Japanese (ja)
Other versions
JP4835915B2 (en
Inventor
Takao Kobayashi
林 貴 雄 小
Tanehira Amano
野 種 平 天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2005288948A priority Critical patent/JP4835915B2/en
Priority to PCT/JP2006/319084 priority patent/WO2007040102A1/en
Priority to CN200680036342.2A priority patent/CN101278143B/en
Publication of JP2007100753A publication Critical patent/JP2007100753A/en
Application granted granted Critical
Publication of JP4835915B2 publication Critical patent/JP4835915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0806Compression coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/081Torsion springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • F16H2007/0857Screw mechanisms

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tensioner capable of preventing sticking between a rotating member and an impulsion member in a fully contracted state with a simple mechanism, and reducing the number of management manhours for assembly and securing operation during an abnormal operation. <P>SOLUTION: One shaft member 3 of a pair of shaft members 3 and 4 screwed together by screw parts 8 and 9 is rotatably urged by a spring 5, and the tensioner propels by transmission of a rotary force from the shaft member 3 of the shaft members 3 and 4 in a state of the other shaft member 4 with the rotation restrained. In the tensioner, an abutting part 20 mutually abutting the shaft members 3 and 4 by movement of the other shaft member 4 in the opposite direction from the propelling direction is provided at a part other than the screw parts 8 and 9 of the pair of shaft members 3 and 4. The contact part 20 is set to satisfy a formula R1/R2<-tan(μ2-α)/μ1 when a contact radius by abutment is R1, the effective diameter of the screw parts 8 and 9 is R2, the friction coefficient of the abutting part 20 is μ1, the friction coefficient of the screw parts 8 and 9 is μ2, and the lead angle of a screw face of the screw parts 8 and 9 is α. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無端状のベルトやチェーンの張力を一定に保つよう調整するテンショナーに関する。   The present invention relates to a tensioner for adjusting the tension of an endless belt or chain so as to keep it constant.

テンショナーは、例えば、二輪自動車等の自動車のエンジンに使用されるタイミングチェーンやタイミングベルトを所定の力で押しており、これらに伸びや緩みが生じた場合に、その張力を一定に保つように作用する。   The tensioner, for example, pushes a timing chain or timing belt used in an engine of a motor vehicle such as a two-wheeled vehicle with a predetermined force, and acts to keep the tension constant when the tension or the slack occurs in these. .

図6は、テンショナー100を自動車のエンジン本体200に実装した状態を示すレイアウト図である。エンジン本体200の内部には、一対のカムスプロケット210、210とクランクスプロケット220とが配置されており、これらのスプロケット210、210、220の間にタイミングチェーン230が無端状となって掛け渡されている。また、タイミングチェーン230の移動路上には、チェーンガイド240が揺動自在に配置されており、タイミングチェーン230はチェーンガイド240を摺動するようになっている。エンジン本体200には、取付面250が形成されており、テンショナー100はボルト270によって取付面250に固定される。なお、エンジン本体200の内部には、図示しない潤滑用のオイルが封入されている。   FIG. 6 is a layout diagram showing a state in which the tensioner 100 is mounted on the engine body 200 of the automobile. A pair of cam sprockets 210 and 210 and a crank sprocket 220 are arranged inside the engine body 200, and a timing chain 230 is stretched between the sprockets 210, 210 and 220 in an endless manner. Yes. A chain guide 240 is swingably disposed on the moving path of the timing chain 230, and the timing chain 230 slides on the chain guide 240. A mounting surface 250 is formed on the engine body 200, and the tensioner 100 is fixed to the mounting surface 250 by bolts 270. Note that lubricating oil (not shown) is sealed inside the engine body 200.

図7は従来一般的なテンショナーの縦断面図、図8はその作用における推進シャフトが回転シャフトに接近して当接する状態を模式的に説明するための作用モデル図である。
図7に示すように、テンショナー100は雌ねじ部121及び雄ねじ部131によって螺合した回転シャフト120及び推進シャフト130と、回転シャフト120を一方向に回転付勢する捩りばね150とがケース110内に収容されており、推進シャフト130の回転を拘束して捩りばね150の回転付勢力を推進シャフト130の推進力に変換する。ケース110のフランジ部112が、図6に示すように、ボルト270によりエンジン本体200の取付面250に対して取付けられる。
FIG. 7 is a longitudinal sectional view of a conventional general tensioner, and FIG. 8 is an action model diagram for schematically explaining a state in which the propulsion shaft approaches and contacts the rotating shaft.
As shown in FIG. 7, the tensioner 100 includes a rotation shaft 120 and a propulsion shaft 130 that are screwed together by a female screw portion 121 and a male screw portion 131, and a torsion spring 150 that urges the rotation shaft 120 to rotate in one direction. It is housed and restrains the rotation of the propulsion shaft 130 to convert the rotational biasing force of the torsion spring 150 into the propulsion force of the propulsion shaft 130. As shown in FIG. 6, the flange portion 112 of the case 110 is attached to the attachment surface 250 of the engine body 200 with bolts 270.

以上の構造のテンショナー100では、ケース110の先端部分に回転止めされた状態で固定された平板形状の軸受160を貫通した推進シャフト130が軸受160の貫通孔161と共に非円形断面形状に成形されることによりケース110に回転拘束されるため、捩りばね150の付勢力によって回転シャフト120が回転し、この回転力が推進シャフト130の推進力に変換されることから、推進シャフト130が進出する。したがって、推進シャフト130は、図6に示すように、キャップ180及びチェーンガイド240を介してタイミングチェーン230を押付けることにより、タイミングチェーン230に張力を付与することができる。   In the tensioner 100 having the above-described structure, the propulsion shaft 130 penetrating the flat plate-shaped bearing 160 fixed in a state of being rotationally stopped at the tip portion of the case 110 is formed into a noncircular cross-sectional shape together with the through-hole 161 of the bearing 160. As a result, the rotation is constrained to the case 110, so that the rotating shaft 120 is rotated by the urging force of the torsion spring 150, and this rotating force is converted into the propulsive force of the propulsion shaft 130. Therefore, the propulsion shaft 130 can apply tension to the timing chain 230 by pressing the timing chain 230 via the cap 180 and the chain guide 240, as shown in FIG.

エンジン本体200からの振動による受け荷重が推進部材130に入力される。一方、その反力として、捩じりばね150のばね力とねじ部121、131と回転シャフト120の下端面部等の摺動面摩擦抵抗との釣合いが成り立つ。静荷重時には、前記摺動面の摩擦係数が大きく、推進部材130の出又は戻り作動は発生しない。ところが、エンジン本体200からの振動による受け荷重が推進部材130に入力されると、摺動面の摩擦係数が静摩擦から動摩擦に切り替わることにより低下し、推進部材130の図示下方向後退、回転部材120の図示例えば右方向回転、捩じりばね150の圧縮が同時的に順次行われることにより、最終的に力の釣合った位置まで推進シャフト130が戻り作動を行う。   A received load due to vibration from the engine body 200 is input to the propelling member 130. On the other hand, as the reaction force, a balance is established between the spring force of the torsion spring 150 and the sliding surface frictional resistance of the screw portions 121 and 131 and the lower end surface portion of the rotating shaft 120. When the static load is applied, the friction coefficient of the sliding surface is large, and the propelling member 130 does not come out or return. However, when the received load due to vibration from the engine body 200 is input to the propulsion member 130, the friction coefficient of the sliding surface is lowered by switching from static friction to dynamic friction, and the propulsion member 130 is retracted downward in the figure, and the rotating member 120 is rotated. For example, rightward rotation and compression of the torsion spring 150 are performed simultaneously and sequentially, so that the propulsion shaft 130 finally returns to a position where the forces are balanced.

図6に示すチェーンガイド240を介してテンショナー100が受ける受け荷重は、通常エンジンの振動により変動する振動荷重であり、推進シャフト130の出代寸法Aも変動する。   The load received by the tensioner 100 via the chain guide 240 shown in FIG. 6 is a vibration load that normally fluctuates due to engine vibration, and the allowance dimension A of the propulsion shaft 130 also varies.

ここで、図8の作用モデル図を参照してテンショナー100の作用について説明すると、推進部材130の可動範囲は、推進部材130の後端132と回転部材120の段部122が接触する位置(A0)から推進部材130の図示しない後端外面段部(後述の図9における符号133参照)と軸受部材160の後端面が接触する位置(A3)までである。推進部材130は捩じりばね150の回転力により、回転部材120を介して常に推進方向に進出しようとする。そこで、推進部材130は、エンジン本体200に取付けられた時は、エンジン本体200からの振動荷重を受けて、適宜出戻り作動を行い、タイミングチェーン230の張力を適正に保つ位置(A2)で作動する。ここで、A(図7)、A0〜A3は、それぞれケース110のフランジ部112取付け面からキャップ180先端までの出代寸法である。   Here, the action of the tensioner 100 will be described with reference to the action model diagram of FIG. 8. The movable range of the propulsion member 130 is the position (A0) where the rear end 132 of the propulsion member 130 and the step 122 of the rotating member 120 contact. ) To a position (A3) where a rear end outer surface step (not shown) of the propelling member 130 (see reference numeral 133 in FIG. 9 described later) and the rear end surface of the bearing member 160 come into contact. The propelling member 130 always tries to advance in the propelling direction via the rotating member 120 by the rotational force of the torsion spring 150. Therefore, when the propelling member 130 is attached to the engine main body 200, the propelling member 130 receives a vibration load from the engine main body 200, performs an appropriate return operation, and operates at a position (A2) that keeps the tension of the timing chain 230 properly. . Here, A (FIG. 7) and A <b> 0 to A <b> 3 are the allowance dimensions from the mounting surface of the flange portion 112 of the case 110 to the tip of the cap 180.

ところで、エンジン本体200に取付けられた推進部材130は、通常の使用ではA2の位置で作動するが、エンジンからの受け荷重が過大になった場合、或いは推進部材が後退する方向に回転部材120を人為的に回転させた場合等においては回転部材120の段部122と推進部材130の後端132が当接して固着した状態となり、エンジンからの受け荷重が減少しても推進部材130が出作動(前方へ推進)できなくなる状況が発生するという問題点があった。これは、回転部材120と推進部材130とのねじ部以外の部位の当接部の固着度合いが強い場合、捩じりばね150の回転トルクでは固着を解除できず、推進部材130はA0点で固定した状態となってしまい、推進部材130が出作動できなくなるという現象が発生するためである。   By the way, the propulsion member 130 attached to the engine main body 200 operates at the position A2 in normal use. However, when the load received from the engine becomes excessive, or the propulsion member 120 moves in the direction in which the propulsion member moves backward. In the case of artificial rotation, the stepped portion 122 of the rotating member 120 and the rear end 132 of the propelling member 130 come into contact with each other and are fixed, and the propelling member 130 comes out even when the load received from the engine decreases. There was a problem that a situation where it was impossible (progressed forward) occurred. This is because, when the degree of fixing of the contact portion of the rotating member 120 and the propelling member 130 other than the threaded portion is strong, the fixing cannot be released by the rotational torque of the torsion spring 150, and the propelling member 130 is at point A0. This is because a phenomenon occurs in which the propelling member 130 cannot be moved out due to the fixed state.

一方、エンジン本体200にテンショナー100を取付けるセッティング時には、推進部材130の位置はA1(A2より後退した位置)になるように、回転部材120を図示しない止め金部材(巻締め治具)等で回転固定している。このとき、仮に推進部材130の位置を回転部材120と推進部材130とがねじ部以外の部位で当接する(以下、特にことわりがない限り、単に「当接する」という)A0の位置で止め金を装着し、エンジン本体200に組付けた後止め金部材を抜き回転部材120の固定を開放しても、前記ねじ部以外の部位の当接部の固着度合いが強い場合、やはり捩じりばね150の回転トルクでは固着を解除できず、推進部材130が出作動できなくなるという場合も考えられる。このため、エンジン本体にテンショナーを取付けるセッティング時には、推進部材130の位置を回転部材120が当接するA0の位置にならないように配慮する必要があった。   On the other hand, at the time of setting to attach the tensioner 100 to the engine body 200, the rotating member 120 is rotated by a clasp member (winding jig) (not shown) or the like so that the position of the propelling member 130 is A1 (a position retracted from A2). It is fixed. At this time, if the propulsion member 130 is in contact with the rotation member 120 and the propulsion member 130 at a portion other than the threaded portion (hereinafter, simply referred to as “contact” unless otherwise specified), the stopper is attached. Even if the rear clasp member attached to the engine main body 200 is removed and the rotation member 120 is fixed, the torsion spring 150 is still applied if the contact portion of the portion other than the screw portion is strongly fixed. It is also conceivable that the sticking cannot be released with this rotational torque and the propelling member 130 cannot be operated. For this reason, when setting the tensioner to the engine body, it is necessary to consider that the position of the propelling member 130 does not become the position of A0 where the rotating member 120 abuts.

ここで、回転部材120と推進部材130とのねじ部以外の部位の当接部(以下、単に「当接部」という)の固着現象について発明者が検討した結果を説明する。図9は回転部材段部122と推進部材後端部132との当接部固着現象の力学的モデル図、図10は螺合する推進部材130から回転部材120の自重落下現象を説明するためのモデル図である。   Here, a description will be given of the results of examination by the inventor on the sticking phenomenon of the abutting portion (hereinafter simply referred to as “abutting portion”) other than the screw portion between the rotating member 120 and the propelling member 130. FIG. 9 is a mechanical model diagram of the contact portion fixing phenomenon between the rotating member step portion 122 and the propelling member rear end portion 132, and FIG. 10 is a diagram for explaining the self-weight falling phenomenon of the rotating member 120 from the propelling member 130 to be screwed together. It is a model figure.

A0点において推進部材130と回転部材120とが固着する現象は、以下の理由により発生する。回転部材段部122と推進部材後端部132とが当接した後、さらに回転部材120を推進部材130が後退する方向にトルクTで回転させると、推進部材130は軸力F(図示下方向の力)で回転部材段部122に押し付けられる。このとき、推進部材後端132には軸力Fにより摩擦トルクTmが発生し、Tを解除した場合、回転部材120の回転を止める反回転(制動又は抵抗)トルクとして作用する。   The phenomenon that the propelling member 130 and the rotating member 120 adhere at the point A0 occurs for the following reason. After the rotating member step portion 122 and the propelling member rear end portion 132 are in contact with each other, when the rotating member 120 is further rotated with the torque T in the direction in which the propelling member 130 is retracted, the propelling member 130 has an axial force F (downward direction in the drawing). ) To the rotating member step 122. At this time, a friction torque Tm is generated at the rear end 132 of the propelling member due to the axial force F, and when T is released, it acts as a counter-rotation (braking or resistance) torque that stops the rotation of the rotating member 120.

一方ねじ部121、131では、軸力F(図示上方向の力)によって推進部材130が回転部材120のねじ背面に押し付けられる。この時、ねじ面のリード角αがねじ接触部の摩擦係数μ2よりも大きければ、推進部材130が出作動(図示上方向に推進)する方向に回転トルクTnが発生する。これは、図10に示すように、逆に推進部材130を拘束した状態で回転部材120を開放すると、回転部材120が自重により回転落下していく自重落下現象と同様である。なお、摩擦係数μ2は角度換算すると、摩擦角度θ2として表され、tanθ2=μ2の関係で示される。   On the other hand, in the screw parts 121 and 131, the propelling member 130 is pressed against the screw back surface of the rotating member 120 by the axial force F (upward force in the drawing). At this time, if the lead angle α of the screw surface is larger than the friction coefficient μ2 of the screw contact portion, the rotational torque Tn is generated in the direction in which the propelling member 130 is actuated (promoted upward in the drawing). As shown in FIG. 10, when the rotating member 120 is opened with the propelling member 130 constrained, the rotating member 120 rotates and falls by its own weight. The friction coefficient μ2 is expressed as a friction angle θ2 in terms of angle, and is represented by a relationship of tan θ2 = μ2.

このとき、摩擦トルクTmよりも回転トルクTnが上回れば、固着しないことになる。すなわち、この関係を数式で表すと、
・固着しない場合は;
Tm+Tn<0 ・・・式(101)
・固着する場合は;
Tm+Tn>0 ・・・式(102)
となる。
At this time, if the rotational torque Tn exceeds the friction torque Tm, it does not adhere. That is, when this relationship is expressed by a mathematical formula,
・ If not fixed;
Tm + Tn <0 Formula (101)
・ If sticking;
Tm + Tn> 0 Formula (102)
It becomes.

ここで、テンショナー100の当該部位の力の関係を表すと以下の通りとなる。
推進部材後端132と回転部材段部122との当接部の接触半径をR1、ねじの接触半径(有効半径)をR2、推進部材後端132と回転部材段部との当接部の摩擦係数をμ1、ねじ(通常、角ねじ)面のリード角(R2上の値)をαとすれば、
・軸力Fは;
F=T/(R2・tan(μ2+α))・・・式(103)
・推進部材後端に発生す摩擦トルク(制動トルク)Tmは;
Tm=F・R1・μ1・・・式(104)
・ねじ部に発生する回転トルクTnは;
Tn=F・R2・tan(μ2−α)・・・式(105)
と表される。なお、摩擦係数μ1は角度換算すると、摩擦角度θ1として表され、tanθ1=μ1の関係で示される。
Here, it is as follows when the relationship of the force of the said part of the tensioner 100 is represented.
The contact radius of the contact portion between the propulsion member rear end 132 and the rotating member step portion 122 is R1, the screw contact radius (effective radius) is R2, and the friction of the contact portion between the propulsion member rear end 132 and the rotation member step portion is R2. If the coefficient is μ1, and the lead angle (value on R2) of the screw (usually square screw) surface is α,
・ Axial force F is;
F = T / (R2 · tan (μ2 + α)) (103)
The friction torque (braking torque) Tm generated at the rear end of the propelling member is;
Tm = F · R1 · μ1 (104)
-The rotational torque Tn generated in the thread is:
Tn = F · R2 · tan (μ2−α) (105)
It is expressed. Note that the friction coefficient μ1 is expressed as a friction angle θ1 in terms of an angle, and is represented by a relationship of tan θ1 = μ1.

推進部材後端132と回転部材段部122との当接部が固着しない関係は、次の場合に成立する。
Tm+Tn<0であることから、
F・R1・μ1+F・R2・tan(μ2−α)<0・・・式(106)
式(106)の両項をFで除すと軸力Fの大きさが関係なくなることが分かる。
すなわち、
R1・μ1+R2・tan(μ2−α)<0・・・式(107)
したがって、
R1/R2<−tan(μ2−α)/μ1・・・式(108)
となる。
The relationship in which the contact portion between the propelling member rear end 132 and the rotating member step portion 122 does not adhere is established in the following case.
Since Tm + Tn <0,
F · R1 · μ1 + F · R2 · tan (μ2−α) <0 Formula (106)
It can be seen that the magnitude of the axial force F becomes irrelevant when both terms of the equation (106) are divided by F.
That is,
R1 · μ1 + R2 · tan (μ2−α) <0 Formula (107)
Therefore,
R1 / R2 <−tan (μ2−α) / μ1 Formula (108)
It becomes.

式(108)の右辺の−tan(μ2−α)/μ1が固着境界線であって、つまり、「R1/R2値<固着限界線」の範囲では推進部材後端132と回転部材段部122との当接部は固着しない。すなわち式(108)が前記当接部の固着をしない条件となる。   -Tan (μ2−α) / μ1 on the right side of the equation (108) is a fixed boundary line, that is, in the range of “R1 / R2 value <fixed limit line”, the propulsion member rear end 132 and the rotating member stepped portion 122. The abutting part is not fixed. That is, Expression (108) is a condition that prevents the contact portion from being fixed.

これに対し、従来のテンショナーでは、図7〜9に示すように、推進部材後端132と回転部材段部122との当接部の接触半径R1がねじの接触半径R2より大きく(R1>R2)なっており、R1/R2>1>−tan(μ2−α)/μ1であることから式(108)を満足することができず、このため前記当接部が固着し易い構造となっていた。
国際公開WO00/61968
On the other hand, in the conventional tensioner, as shown in FIGS. 7 to 9, the contact radius R1 of the abutting portion between the propulsion member rear end 132 and the rotating member step 122 is larger than the screw contact radius R2 (R1> R2). R1 / R2>1> −tan (μ2−α) / μ1 and therefore the expression (108) cannot be satisfied, and therefore the abutting portion is easily fixed. It was.
International Publication WO00 / 61968

このような状況から、近年、組立時の管理工数削減及びフエールセーフ的な観点から、回転部材120と推進部材130とが当接する場合に固着しない構造を有するテンショナーの出現が強く要望されている。   In view of this situation, in recent years, there has been a strong demand for the appearance of a tensioner having a structure that does not stick when the rotating member 120 and the propelling member 130 come into contact with each other, from the viewpoint of reducing the man-hours required for assembling and failsafe.

本発明は、このような要求に対応するためになされたものであり、簡潔な機構で全縮状態における回転部材と推進部材の固着を防止して、組立時の管理工数削減及びエンジンからの強い入力振動荷重などの異常作動時(過挙動)の作動確保(フエールセーフ)が可能なテンショナーを提供することを目的とする。   The present invention has been made to meet such demands, and prevents the rotation member and the propelling member from sticking to each other in a fully contracted state with a simple mechanism, thereby reducing the number of management man-hours during assembly and strengthening the engine. It is an object of the present invention to provide a tensioner capable of ensuring operation (fail safe) during abnormal operation (over-behavior) such as input vibration load.

上記目的を達成するため、請求項1の発明のテンショナーは、ねじ部によって螺合した一対のシャフト部材における一方のシャフト部材がばねによって回転付勢され、他方のシャフト部材が回転拘束された状態で一方のシャフト部材からの回転力の伝達により推進するテンショナーにおいて、前記他方のシャフト部材の反推進方向への移動によって相互に当接する当接部が、前記一対のシャフト部材における前記ねじ部以外の部位に設けられており、前記当接部は、当接による接触半径をR1、前記ねじ部の有効径をR2、当接による当接部の摩擦係数をμ1、前記ねじ部の摩擦係数をμ2、ねじ部のねじ面のリード角をαとしたとき、下記式(1)を満足するように設定されていることを特徴とする。
R1/R2<−tan(μ2−α)/μ1 ……式(1)
In order to achieve the above object, the tensioner according to the first aspect of the present invention is a state in which one shaft member of the pair of shaft members screwed together by the threaded portion is rotationally biased by the spring and the other shaft member is rotationally restrained. In a tensioner that is propelled by transmission of rotational force from one shaft member, a contact portion that abuts each other by movement of the other shaft member in the anti-propulsion direction is a portion other than the screw portion in the pair of shaft members. The contact portion has a contact radius R1 by contact, an effective diameter of the screw portion R2, a friction coefficient of the contact portion by contact μ1, a friction coefficient of the screw portion μ2, When the lead angle of the thread surface of the thread portion is α, it is set so as to satisfy the following formula (1).
R1 / R2 <-tan (μ2-α) / μ1 (1)

請求項2の発明は、請求項1記載のテンショナーであって、前記当接部は、当接相手のシャフト部材に向かって先尖形状又は曲面形状となっていることを特徴とする。   A second aspect of the invention is the tensioner according to the first aspect, wherein the contact portion has a pointed shape or a curved shape toward the shaft member of the contact partner.

請求項3の発明は、請求項1又は請求項2記載のテンショナーであって、前記他方のシャフト部材の推進方向の先端部分に先端部材が設けられており、前記当接部は、先端部材又は/及び一方のシャフト部材の対向面に設けられていることを特徴とする。   The invention according to claim 3 is the tensioner according to claim 1 or 2, wherein a tip member is provided at a tip portion in the propulsion direction of the other shaft member, and the abutting portion is a tip member or / And provided in the opposing surface of one shaft member.

請求項4の発明は、請求項1記載のテンショナーであって、前記当接部は、前記一対のシャフト部材の間に配置された見掛けの摩擦係数が小さなベアリング部材であることを特徴とする。   A fourth aspect of the invention is the tensioner according to the first aspect, wherein the contact portion is a bearing member arranged between the pair of shaft members and having a small apparent friction coefficient.

請求項1の発明によれば、一対のシャフト部材の当接部が(1)式を満足するように設定されていることよりこの当接部に発生する摩擦トルクTm=F・R1・μ1(式(104))をねじ部に発生する回転トルクTn=F・R2・tan(μ2−α)(式(105))より小さくすることができることから、全縮状態で一対のシャフト部材の当接部の固着防止を確保することができる。また、エンジンからの強い入力振動荷重などの異常作動時(過挙動)にも一対のシャフト部材の当接部固着現象が起きることなく作動確保(フエールセーフ)ができるという優れた効果がある。   According to the first aspect of the present invention, since the contact portions of the pair of shaft members are set so as to satisfy the expression (1), the friction torque Tm = F · R1 · μ1 generated at the contact portion ( Since the expression (104)) can be made smaller than the rotational torque Tn = F · R2 · tan (μ2−α) (expression (105)) generated in the threaded portion, the contact of the pair of shaft members in the fully contracted state It is possible to ensure the prevention of sticking of the part. In addition, there is an excellent effect that the operation can be ensured (fail safe) without causing the contact portion fixing phenomenon of the pair of shaft members even during abnormal operation (over-behavior) such as strong input vibration load from the engine.

請求項2の発明によれば、請求項1の発明と同様な効果を有するのに加えて、一対のシャフト部材の当接部が当接相手のシャフト部材に向かって先尖形状又は曲面形状となっていることから、当接部が固着しないための条件である(1)式を確実に満足するようにテンショナーを形成することができる。   According to the invention of claim 2, in addition to having the same effect as that of the invention of claim 1, the contact portions of the pair of shaft members are pointed or curved toward the shaft member of the contact partner. Therefore, the tensioner can be formed so as to surely satisfy the expression (1) which is a condition for preventing the contact portion from being fixed.

請求項3の発明によれば、請求項1あるいは請求項2の発明と同様な効果を有するのに加えて、微小に形成できる前記先尖形状の当接部が先端部材又は/及び一方のシャフト部材の対向面に設けられていることから、この当接部が固着しないための条件である(1)式を確実に満足するようなテンショナーを簡潔でコンパクトな構造で形成することができる。   According to the invention of claim 3, in addition to having the same effect as that of the invention of claim 1 or 2, the tip-shaped contact portion that can be formed minutely is a tip member and / or one shaft. Since it is provided on the opposing surface of the member, it is possible to form a tensioner with a simple and compact structure that reliably satisfies the formula (1), which is a condition for preventing the contact portion from being fixed.

請求項4の発明によれば、請求項1の発明と同様な効果を有するのに加えて、前記当接部が一対のシャフト部材の間に配置された見掛けの摩擦係数が小さなベアリング部材であることから、この当接部が固着しないための条件である(1)式を確実に満足するように信頼性が向上したテンショナーとすることができる。   According to the invention of claim 4, in addition to having the same effect as that of the invention of claim 1, the abutment portion is a bearing member having a small apparent friction coefficient disposed between a pair of shaft members. Therefore, the tensioner can be improved in reliability so as to surely satisfy the expression (1) which is a condition for preventing the contact portion from being fixed.

以下、本発明を図示する実施形態により具体的に説明する。なお、各実施形態において、同一の機能を有する部材には同一の符号を付して対応させてある。この実施形態では、一対のシャフト部材の当接部の固着を防止するために、最小の部品点数追加により、テンショナーの配置上スペース的にも問題のないように構成している。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. In addition, in each embodiment, the member which has the same function is attached | subjected and matched with the same code | symbol. In this embodiment, in order to prevent the abutting portions of the pair of shaft members from sticking, the arrangement of the tensioners is configured so as not to cause a problem by adding the minimum number of parts.

(実施形態1)
図1は本発明の実施形態1のテンショナーを示す縦断面図、図2はその全縮状態における縦断面図である。この実施形態のテンショナーは、ケース2、回転部材である第1のシャフト部材3、推進部材である第2のシャフト部材4、捩りばね(弾性部材)5、軸受6、スペーサ7から大略構成されており、これらは図7に示す従来のテンショナーと略同じ構成である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view showing a tensioner according to Embodiment 1 of the present invention, and FIG. 2 is a longitudinal sectional view in the fully contracted state. The tensioner according to this embodiment is roughly constituted by a case 2, a first shaft member 3 that is a rotating member, a second shaft member 4 that is a propelling member, a torsion spring (elastic member) 5, a bearing 6, and a spacer 7. These have substantially the same configuration as the conventional tensioner shown in FIG.

ケース2は、胴部2aの中間部にフランジ部2bを備えた有底円筒状に大略成形されている。そして、胴部2a内部には、先端部にかけて軸方向(推進方向)に延びる収納孔2cが形成されている。収納孔2cの先端部分は開放されており、この収納孔2c内に、第1及び第2のシャフト部材3、4、捩りばね5、スペーサ7の組付体が収容される。   The case 2 is generally formed into a bottomed cylindrical shape having a flange portion 2b in the middle portion of the body portion 2a. A housing hole 2c extending in the axial direction (propulsion direction) is formed in the body portion 2a toward the distal end portion. The front end portion of the storage hole 2c is open, and the assembly of the first and second shaft members 3, 4, the torsion spring 5, and the spacer 7 is stored in the storage hole 2c.

ケース2のフランジ部2bは、適用されるエンジン本体への取付けを行うものであり、エンジン本体に螺合するボルト(図示省略)が貫通する取付孔2dが形成されている。エンジン本体への取付けに際しては、図6と同様に、フランジ部2bの先端面がエンジン本体200の取付面250と当接する。   The flange portion 2b of the case 2 is to be attached to the applied engine body, and is formed with an attachment hole 2d through which a bolt (not shown) screwed into the engine body passes. At the time of attachment to the engine body, the front end surface of the flange portion 2b abuts on the attachment surface 250 of the engine body 200, as in FIG.

第2のシャフト部材4の先端には、キャップからなる先端部材10が取り付けられている。第1のシャフト部材3の先端面の中心部には、円錐状に尖った先尖状当接部20が形成されている。第2のシャフト部材4が後退すると、先端部材10の裏面が第1のシャフト部材3先端の当接部20と当接する。第1のシャフト部材3は後述する捩りばね5によって付勢されることにより回転し、ケース2に設けられた後述の軸受6により回転が規制されるとともに軸方向に移動可能な第2のシャフト部材4は第1のシャフト部材3の回転によってケース2から推進する。   A tip member 10 made of a cap is attached to the tip of the second shaft member 4. A conical pointed contact portion 20 is formed at the center of the distal end surface of the first shaft member 3. When the second shaft member 4 moves backward, the back surface of the tip member 10 comes into contact with the contact portion 20 at the tip of the first shaft member 3. The first shaft member 3 is rotated by being biased by a later-described torsion spring 5, and the second shaft member is restricted in rotation by a later-described bearing 6 provided in the case 2 and is movable in the axial direction. 4 is propelled from the case 2 by the rotation of the first shaft member 3.

第1のシャフト部材3は、基端側のシャフト部3aと、先端側(図示上方)のねじシャフト部3bとが軸方向に一体的に形成されており、先端側のねじシャフト部3bの外周には、雄ねじ8が形成されている。また、基端側のシャフト部3aの基端部は、ケース2内に設けた受け座19に当接することにより、その回転が支承されるようになっている。さらに、シャフト部3aの基端面には、第1のシャフト3を回転させるための巻締め治具(図示省略)の先端が挿入されるスリット3eが形成されている。スリット3eはケース2の胴部2aの基端面に開設した治具孔2eと連通しており、巻締め治具の先端を治具孔2eからスリット3eに挿入し、スリット3eを介して第1のシャフト部材3を回転させることにより、後述する捩りばね5を巻締めることができる。   The first shaft member 3 includes a shaft portion 3a on the proximal end side and a screw shaft portion 3b on the distal end side (upper side in the drawing) that are integrally formed in the axial direction, and an outer periphery of the screw shaft portion 3b on the distal end side. Is formed with a male screw 8. Further, the base end portion of the shaft portion 3a on the base end side comes into contact with a receiving seat 19 provided in the case 2 so that its rotation is supported. Further, a slit 3e into which a distal end of a winding jig (not shown) for rotating the first shaft 3 is inserted is formed on the base end surface of the shaft portion 3a. The slit 3e communicates with a jig hole 2e formed in the base end surface of the body 2a of the case 2, and the distal end of the winding jig is inserted into the slit 3e from the jig hole 2e, and the first through the slit 3e. By rotating the shaft member 3, a later-described torsion spring 5 can be wound.

第2のシャフト部材4は軸方向先端(図示上方)に開口する筒状部4bが形成されており、基端部4aの内面には、第1のシャフト部材3の雄ねじ8が螺合する雌ねじ9が形成されている。これらのシャフト部材3、4は、雄ねじ8及び雌ねじ9を螺合させた状態でケース2の収納孔2c内に挿入される。この第2のシャフト部材4の筒状部4b先端には、キャップからなる先端部材10が取付けられている。先端部材10はプレス成形等により頭部10a及び脚部10bからなり、第2のシャフト部材4の筒状部4bの先端部に外嵌された状態で、脚部10bの下端部を筒状部4bの先端部に形成された溝4e内に加締め等の方法により固定される。   The second shaft member 4 is formed with a cylindrical portion 4b that opens at the tip in the axial direction (upward in the drawing), and the internal thread of the first shaft member 3 is screwed into the inner surface of the base end portion 4a. 9 is formed. The shaft members 3 and 4 are inserted into the housing hole 2c of the case 2 in a state where the male screw 8 and the female screw 9 are screwed together. A tip member 10 made of a cap is attached to the tip of the cylindrical portion 4 b of the second shaft member 4. The tip member 10 is composed of a head portion 10a and a leg portion 10b by press molding or the like, and the lower end portion of the leg portion 10b is a tubular portion in a state of being fitted on the tip portion of the tubular portion 4b of the second shaft member 4. It is fixed in a groove 4e formed at the tip of 4b by a method such as caulking.

捩りばね5は、第1のシャフト部材3の基端側シャフト部3aに外挿されている。この捩りばね5の一端側(先端側)のフック部5aがケース2に形成されたフック溝2fに挿入されて係止される一方、他端側(基端側)のフック部5bが第1のシャフト部材3の基端面(底部)のスリット3eに挿入され係止されている。従って、捩りばね5を巻締めてトルクを付与することにより第1のシャフト部材3を回転させることができる。   The torsion spring 5 is externally inserted into the proximal end side shaft portion 3 a of the first shaft member 3. A hook portion 5a on one end side (tip side) of the torsion spring 5 is inserted and locked in a hook groove 2f formed on the case 2, while a hook portion 5b on the other end side (base end side) is the first. The shaft member 3 is inserted and locked into the slit 3e on the base end surface (bottom). Therefore, the first shaft member 3 can be rotated by winding the torsion spring 5 and applying torque.

軸受6は、ケース2の先端部分に取付けられ、止め輪13によって固定されている。軸受6は、摺動孔6aを有しており、この摺動孔6a内を第2のシャフト部材4が貫通している。軸受6の摺動孔6aの内面及び第2のシャフト部材4の外面は、図1(b)に示すように、断面が略小判形状、Dカットや平行カット、その他いずれかの非円形に形成されており、これにより第2のシャフト部材4は回転が拘束された状態となる。   The bearing 6 is attached to the tip portion of the case 2 and is fixed by a retaining ring 13. The bearing 6 has a sliding hole 6a, and the second shaft member 4 passes through the sliding hole 6a. As shown in FIG. 1B, the inner surface of the sliding hole 6a of the bearing 6 and the outer surface of the second shaft member 4 are formed in a substantially oval shape, a D cut, a parallel cut, or any other non-circular shape. Thus, the rotation of the second shaft member 4 is restricted.

軸受6は、所定厚さの平板形状に成形されており、例えば従来と同様に外周側には複数の固定片6bが放射状に形成されている。この固定片6bがケース2の先端部分に形成されている切欠溝2gに嵌合することにより、軸受6の全体が回転止めされた状態となっている。このように軸受6がケース2に対して回転止めされることにより、軸受6を貫通した第2のシャフト部材4が軸受6を介してケース2に回転拘束される。   The bearing 6 is formed into a flat plate shape with a predetermined thickness. For example, a plurality of fixed pieces 6b are radially formed on the outer peripheral side as in the conventional case. The fixed piece 6b is fitted into a notch groove 2g formed at the tip of the case 2, so that the entire bearing 6 is prevented from rotating. The bearing 6 is thus prevented from rotating with respect to the case 2, whereby the second shaft member 4 penetrating the bearing 6 is rotationally restrained by the case 2 via the bearing 6.

第2のシャフト部材4には、雌雄ねじ9、8部を介して第1のシャフト部材3が螺合しており、捩りばね5の回転付勢力によって回転する第1のシャフト部材3の回転力が第2のシャフト部材4に伝達されるが、第2のシャフト部材4が軸受6によって回転拘束されているため、第2のシャフト部材4は推進力を得てケース2に対し軸方向に進退する。   The first shaft member 3 is screwed to the second shaft member 4 via male and female screws 9 and 8, and the rotational force of the first shaft member 3 that rotates by the rotational biasing force of the torsion spring 5 is provided. Is transmitted to the second shaft member 4, but since the second shaft member 4 is rotationally restrained by the bearing 6, the second shaft member 4 obtains a propulsive force and moves forward and backward in the axial direction with respect to the case 2. To do.

スペーサ7は、筒状となっており、その内部には第1のシャフト部材3及び第2のシャフト部材4の螺合部分が挿入される。この場合、第1のシャフト部材3におけるシャフト部3aとねじシャフト部3bとの境界部分には、大径となるフランジ状の段部3cが形成されており、スペーサ7はその基端部7aが段部3cに当接している。また、スペーサ7の先端部7bは軸受6の下面に近接して臨んでおり、軸受6への当接によって、第1及び第2のシャフト部材3、4がケース2から抜け出ることを防止している。   The spacer 7 has a cylindrical shape, and the screwed portions of the first shaft member 3 and the second shaft member 4 are inserted therein. In this case, a flange-shaped stepped portion 3c having a large diameter is formed at the boundary portion between the shaft portion 3a and the screw shaft portion 3b in the first shaft member 3, and the base end portion 7a of the spacer 7 has a base end portion 7a. It contacts the step 3c. The tip 7b of the spacer 7 faces the lower surface of the bearing 6 and prevents the first and second shaft members 3 and 4 from coming out of the case 2 by contact with the bearing 6. Yes.

以上に加えて、この実施形態では、第2のシャフト部材3の先端面の中心部に、円錐状などの先尖形状となっている当接部20が形成されており、図2に示すように、第2のシャフト部材4が全縮状態(A0位置)になるまで後退したときに当接部20が先端部材10の裏面と当接するようになっている。このとき、第2のシャフト部材4の後端4fは第1のシャフト部材3の段部3cに接することなく、僅かな隙間を有しているとともに、第2のシャフト部材4は構造上ケース2のフランジ部2b取付け面から先端部材10先端までの出代寸法A0から後退することはない。先端部材10の裏面10cと先尖状当接部20は点接触などの接触半径R1が極めて小さく、当接部20は先端部材裏面10cに対して固着しない。   In addition to the above, in this embodiment, a contact portion 20 having a pointed shape such as a conical shape is formed at the center of the distal end surface of the second shaft member 3, as shown in FIG. Furthermore, the contact portion 20 comes into contact with the back surface of the tip member 10 when the second shaft member 4 is retracted until it is fully contracted (A0 position). At this time, the rear end 4f of the second shaft member 4 is not in contact with the step portion 3c of the first shaft member 3 and has a slight gap, and the second shaft member 4 is structurally a case 2. It does not retreat from the allowance dimension A0 from the flange 2b mounting surface to the tip of the tip member 10. The contact radius R1 such as point contact is extremely small between the back surface 10c of the tip member 10 and the pointed contact portion 20, and the contact portion 20 does not adhere to the tip member back surface 10c.

これは、当接部が固着しない条件となる上記式(108)を満足するためであり、以下に具体的に説明する。   This is to satisfy the above formula (108), which is a condition that the contact portion does not adhere, and will be specifically described below.

図11は横軸にねじリード角α、縦軸に(当接部の接触半径R1)/(ねじの接触半径R2)比を取り、当接部の摩擦係数μ1及びねじ部の摩擦係数μ2=0.15のときの−tan(μ2−α)/μ1の値を実線(=固着境界線)で示した固着境界線図の一例、図12は摩擦係数μ(=μ1=μ2)が変化した場合の固着境界線を示した固着境界線図である。ここで、ねじ部は、雌ねじ部8及び雄ねじ部9をいう。図11及び図12のいずれも、R1/R2値が固着境界線より上側であれば当接部は固着し、下側であれば当接部は固着しないことを示す。なお、図11、図12において縦軸(R1/R2)の負の値は実在しないことはいうまでもない。これは、R1は0以上であることから明らかである。   In FIG. 11, the horizontal axis represents the screw lead angle α, and the vertical axis represents the ratio (contact radius R1 of the contact portion) / (contact radius R2 of the screw). The friction coefficient μ1 of the contact portion and the friction coefficient μ2 of the screw portion = An example of a fixed boundary diagram in which the value of −tan (μ2−α) / μ1 at 0.15 is indicated by a solid line (= fixed boundary line), FIG. 12 shows a change in the friction coefficient μ (= μ1 = μ2). It is the fixation boundary line figure which showed the fixation boundary line in the case. Here, the thread portion refers to the female screw portion 8 and the male screw portion 9. 11 and 12 indicate that the contact portion is fixed if the R1 / R2 value is above the fixing boundary, and the contact portion is not fixed if the R1 / R2 value is lower. In addition, it cannot be overemphasized that the negative value of a vertical axis | shaft (R1 / R2) does not actually exist in FIG. 11, FIG. This is clear from R1 being 0 or more.

図11中にプロットされたテンショナーのモデル例1〜3は以下の通り設定されている。先端部材10の裏面10cと当接部20との摩擦係数μ1及びねじ部8、9における接触部の摩擦係数μ2共に=0.15で、当接部20の接触半径R1、ねじ部8及び9における接触半径R2、ねじ部8及び9のリード角αは、
モデル例1:R1=6.0mm、R2=5.0mm、α=12°、
モデル例2:R1=0mm、R2=3.5mm、α=10°、
モデル例3:R1=1.0mm、R2=3.5mm、α=14°
である。
モデル例1は固着境界線より上の範囲にあり固着し、モデル例2及び3は固着境界線より下の範囲にあり固着しないことが分かる。つまりR1の値が小さい場合、R1/R2値が小さくなり、固着境界線の下側領域に位置する可能性が高まることが分かる。
Tensioner model examples 1 to 3 plotted in FIG. 11 are set as follows. The friction coefficient μ1 between the back surface 10c of the tip member 10 and the contact part 20 and the friction coefficient μ2 of the contact part in the screw parts 8 and 9 are both 0.15, the contact radius R1 of the contact part 20, the screw parts 8 and 9 The contact radius R2 and the lead angle α of the threaded portions 8 and 9 are
Model Example 1: R1 = 6.0 mm, R2 = 5.0 mm, α = 12 °,
Model Example 2: R1 = 0 mm, R2 = 3.5 mm, α = 10 °,
Model example 3: R1 = 1.0 mm, R2 = 3.5 mm, α = 14 °
It is.
It can be seen that Model Example 1 is in the range above the fixed boundary line and is fixed, and Model Examples 2 and 3 are in the range below the fixed boundary line and are not fixed. That is, when the value of R1 is small, the R1 / R2 value is small, and it is understood that the possibility of being located in the lower region of the fixed boundary line is increased.

このように、全縮状態(図2のA0)で、第2のシャフト部材3と第1のシャフト部材3の当接部20の接触半径R1を小さく設定することにより、すなわち、図1〜3の先尖状の当接部20のように設定することにより、当接部20が固着することのないテンショナーとすることができる。さらに、図1〜図3に示す先尖形状や球面を含む曲面形状とすることにより、当接部20の曲率半径R1をより小さくすることができる。   Thus, in the fully contracted state (A0 in FIG. 2), by setting the contact radius R1 of the contact portion 20 of the second shaft member 3 and the first shaft member 3 to be small, that is, FIGS. By setting like the pointed contact portion 20, it is possible to provide a tensioner in which the contact portion 20 does not stick. Furthermore, the curvature radius R1 of the contact part 20 can be made smaller by using the curved surface shape including the tip shape and the spherical surface shown in FIGS.

なお、上記計算式における式(108)は角ねじの場合の計算式である。これに対し、台形ねじやメートルねじ等のねじでは、次のような分力計算が必要になる。
メートルねじの場合は、式(108)のtanμ2の部分が変化する。すなわち、角ねじの時はtanμ2であるが、メートルねじの時はtanμ2’になり、tanμ2’=μ2/cosβとなる。ここで、βはねじ山直角断面でのフランク角であり、メートルねじの場合はβ=30°(山角度60°の半分になる)として計算する。なお、30°台形ねじ(β=15°)やメートルねじ(β=30°)のようにフランク角が小さい場合、式(108)の右項の値は、角ねじとの有意差は少なく、式(108)として計算しても結果に大きな差は生じない。
Note that the formula (108) in the above formula is a formula for a square screw. On the other hand, for screws such as trapezoidal screws and metric screws, the following component force calculation is required.
In the case of a metric screw, the tan μ2 portion of the equation (108) changes. That is, tan μ2 for a square screw, but tan μ2 ′ for a metric screw, and tan μ2 ′ = μ2 / cos β. Here, β is a flank angle in a cross section perpendicular to the thread, and in the case of a metric thread, β is calculated as 30 ° (half of the thread angle of 60 °). When the flank angle is small, such as a 30 ° trapezoidal screw (β = 15 °) or a metric screw (β = 30 °), the value in the right term of the formula (108) is not significantly different from the square screw. Even if it is calculated as equation (108), there is no significant difference in the results.

(実施形態2)
図3は、本発明の実施形態2のテンショナーの縦断面図である。
この実施形態においては、実施形態1における第1のシャフト部材3の先端面から先尖状の当接部20を取除き、先尖状の当接部20’を先端部材10’側に設けたもので、先端部材10’の形状が異なる点を除く他の構成は実施形態1と同じである。
(Embodiment 2)
FIG. 3 is a longitudinal sectional view of the tensioner according to the second embodiment of the present invention.
In this embodiment, the pointed contact part 20 ′ is removed from the tip surface of the first shaft member 3 in the first embodiment, and the pointed contact part 20 ′ is provided on the tip member 10 ′ side. However, the other configuration is the same as that of the first embodiment except that the shape of the tip member 10 ′ is different.

先端部材10’は、頭部10a’及び脚部10b’からなり、頭部10a’が第2のシャフト部材4の筒状部4b先端部分を覆い、脚部10b’を筒状部4bの先端部内に嵌入した状態で、これらにスプリングピン11を圧入することにより抜け止めされて筒状部4bに固定される。先端部材10’の脚部10b’下端面の中心部に先尖状の当接部20’が設けられている。   The tip member 10 ′ includes a head portion 10a ′ and a leg portion 10b ′, the head portion 10a ′ covers the tip portion of the cylindrical portion 4b of the second shaft member 4, and the leg portion 10b ′ is the tip of the cylindrical portion 4b. In a state of being fitted in the parts, the spring pins 11 are press-fitted into these parts to be prevented from being detached and fixed to the cylindrical part 4b. A pointed contact portion 20 'is provided at the center of the lower end surface of the leg portion 10b' of the tip member 10 '.

したがって、第2のシャフト部材4が全縮状態(A0位置)になるまで後退したときに当接部20’が第1のシャフト部材3の先端面と当接するようになっている。このとき、第2のシャフト部材4の後端4fは第1のシャフト部材3の段部3cに接することなく、僅かな隙間を有しているとともに、第2のシャフト部材4は出代寸法A0からさらに後退することはない。   Therefore, when the second shaft member 4 is retracted until the second shaft member 4 is fully contracted (A0 position), the contact portion 20 ′ comes into contact with the front end surface of the first shaft member 3. At this time, the rear end 4f of the second shaft member 4 is not in contact with the step portion 3c of the first shaft member 3, and has a slight gap, and the second shaft member 4 has an allowance dimension A0. No further retreat from.

この実施形態2においても、第1のシャフト部材3の先端面と先尖状当接部20’は点接触などの接触半径R1が極めて小さく、当接部の固着をしない条件となる式(108)を満足するため、当接部20’は第1のシャフト部材3の先端面に対して固着しない。   Also in the second embodiment, the tip surface of the first shaft member 3 and the pointed contact portion 20 ′ have a very small contact radius R1 such as a point contact, and the condition (108 that prevents the contact portion from being fixed). ) Does not adhere to the distal end surface of the first shaft member 3.

このように、実施形態1及び2においては、微小な先尖状の当接部20又は20’を第1のシャフト部材3又は先端部材10’の対向面の中心部に設けるだけの簡潔かつコンパクトな構造で、この当接部が固着しないための条件式(108)を確実に満足するテンショナーとすることができる。   As described above, in the first and second embodiments, a simple tip-shaped contact portion 20 or 20 ′ is simply and compactly provided only at the center portion of the opposing surface of the first shaft member 3 or the tip member 10 ′. With such a structure, the tensioner can surely satisfy the conditional expression (108) for preventing the contact portion from being fixed.

(実施形態3)
図4は本発明の実施形態3のテンショナーを示す縦断面図である。この実施形態では、実施形態2に対して先端部材10’における先尖状の当接部20’を取除き、第2のシャフト部材4の後端4fと第1のシャフト部材3の段部3cとの間にスラストベアリングなどのベアリング部材30を設けたもので、他の構成は実施形態2と基本的に同様である。
(Embodiment 3)
FIG. 4 is a longitudinal sectional view showing a tensioner according to Embodiment 3 of the present invention. In this embodiment, the pointed contact portion 20 ′ in the tip member 10 ′ is removed from the second embodiment, and the rear end 4f of the second shaft member 4 and the step portion 3c of the first shaft member 3 are removed. A bearing member 30 such as a thrust bearing is provided between them, and the other configuration is basically the same as that of the second embodiment.

したがって、第2のシャフト部材4が全縮状態(A0位置)になるまで後退したときに第2のシャフト部材4の後端4fがベアリング部材30と当接するようになっている。このとき、先端部材10’の脚部10b’裏面は第1のシャフト部材3の先端面に接することなく僅かな隙間を有しているとともに、第2のシャフト部材4は出代寸法A0からさらに後退することはない。   Therefore, the rear end 4f of the second shaft member 4 comes into contact with the bearing member 30 when the second shaft member 4 is retracted until it is fully contracted (A0 position). At this time, the back surface of the leg portion 10b ′ of the tip member 10 ′ has a slight gap without coming into contact with the tip surface of the first shaft member 3, and the second shaft member 4 further extends from the allowance dimension A0. There is no retreat.

この実施形態3においては、実施形態1、2における先尖状の当接部20、20’に代えてベアリング部材30が当接部となっている。ベアリング部材30が例えばスラストベアリングの場合は、転がり抵抗(見掛けの摩擦係数μ1)は通常0.001程度であるため、前述のように、ベアリング部材30に発生す摩擦トルク(制動トルク)Tmが、ねじ8、9部に発生する回転トルクTnより十分小さい値にできるため、当接部が固着しない条件式(108)を十分満足することから、当接部であるベアリング部材30は固着しない。   In the third embodiment, a bearing member 30 is a contact portion instead of the pointed contact portions 20 and 20 ′ in the first and second embodiments. When the bearing member 30 is a thrust bearing, for example, the rolling resistance (apparent coefficient of friction μ1) is usually about 0.001, so that the friction torque (braking torque) Tm generated in the bearing member 30 is as described above. Since the rotational torque Tn generated in the screws 8 and 9 can be made sufficiently smaller, the conditional expression (108) in which the contact portion is not fixed is sufficiently satisfied, and the bearing member 30 as the contact portion is not fixed.

図13は横軸にねじリード角α、縦軸に(ベアリングの球体配列半径R1)/(ねじの接触半径R2)比を取り、μ1=0.001、μ2=0.15のときの−tan(μ2−α)/μ1の値を実線(=固着境界線)で示した固着境界線図を示す。   In FIG. 13, the horizontal axis represents the screw lead angle α, and the vertical axis represents the ratio (ball bearing radius R1) / (screw contact radius R2), and −tan when μ1 = 0.001 and μ2 = 0.15. The fixed boundary diagram which showed the value of ((mu) 2- (alpha)) / (micro | micron | mu) 1 with the continuous line (= fixed boundary line) is shown.

図13中にプロットされたテンショナーのモデル例4は以下の通り設定されている。すなわち、R1=6mm、R2=4.5mm、μ1=0.001、μ2=0.15、α=12°である。このモデル例4は固着境界線よりかなり下の範囲にあり、全く固着しないことが分かる。   The tensioner model example 4 plotted in FIG. 13 is set as follows. That is, R1 = 6 mm, R2 = 4.5 mm, μ1 = 0.001, μ2 = 0.15, and α = 12 °. This model example 4 is in a range considerably below the fixing boundary line, and it can be seen that it does not fix at all.

このように、見掛けの摩擦係数μ1が小さいベアリング部材30を用いることにより、ベアリングの接触(球体配列など)半径R1値がかなり大きくても固着しないことが分かる。すなわち、当接部が固着しないための条件(108)式を確実に満足するようにテンショナーを構成することができる。なお、ベアリングの半径(球体配列半径など)は任意に変更できるが、設置できるスペースには限りがあるため、一般的な設定ではねじ半径より若干大きめの1〜3倍程度が適切である。   Thus, it can be seen that by using the bearing member 30 having a small apparent friction coefficient μ1, the bearing contact (spherical array, etc.) radius R1 value does not stick even if it is considerably large. That is, the tensioner can be configured so as to surely satisfy the condition (108) for preventing the contact portion from sticking. The radius of the bearing (such as the sphere arrangement radius) can be arbitrarily changed, but the space that can be installed is limited, and therefore, in general settings, about 1 to 3 times slightly larger than the screw radius is appropriate.

(実施形態4)
図5は、本発明の実施形態4のテンショナーを示す縦断面図である。この実施形態では、図3の実施形態2の構成に加えて第1のシャフト部材3と第2のシャフト部材4との間に圧縮ばね40を設けたもので、他の構成は、実施形態2と基本的に同様である。
(Embodiment 4)
FIG. 5 is a longitudinal sectional view showing a tensioner according to Embodiment 4 of the present invention. In this embodiment, a compression spring 40 is provided between the first shaft member 3 and the second shaft member 4 in addition to the configuration of the second embodiment shown in FIG. And basically the same.

圧縮ばね40は第1のシャフト部材3の段部3c上部と第2のシャフト部材4の基端部4a後端4fとの間に配置されている。この圧縮ばね40としては、両端のフック部が自由端となっているコイルばねが使用されている。コイルばねからなる圧縮ばね40は、先端部40aが第2のシャフト部材4と当接する一方、基端部40bが第1のシャフト部材3と当接している。この場合、基端部40bは第1のシャフト部材3の段部3cの上段に形成された小径部3dの上面3fと当接するものである。このような圧縮ばね40は、両端部40a、40bが両シャフト部材4、3と当接するとともに、ある程度圧縮された状態で組み込まれる。   The compression spring 40 is disposed between the upper portion of the step portion 3 c of the first shaft member 3 and the rear end 4 f of the base end portion 4 a of the second shaft member 4. As the compression spring 40, a coil spring having hook portions at both ends as free ends is used. The compression spring 40 made of a coil spring has a distal end portion 40 a in contact with the second shaft member 4, and a proximal end portion 40 b in contact with the first shaft member 3. In this case, the base end portion 40b comes into contact with the upper surface 3f of the small diameter portion 3d formed on the upper portion of the step portion 3c of the first shaft member 3. Such a compression spring 40 is incorporated in a state where both end portions 40a and 40b are in contact with both shaft members 4 and 3 and are compressed to some extent.

このように圧縮ばね40の追加によって、第2のシャフト部材4は第1のシャフト部材3におけるねじシャフト部3bの先端側軸方向に押付けられる。この結果、圧縮ばね40の圧縮力による抵抗トルクが第1のシャフト部材3に対して付加される。   As described above, by adding the compression spring 40, the second shaft member 4 is pressed in the axial direction of the distal end side of the screw shaft portion 3 b in the first shaft member 3. As a result, a resistance torque due to the compression force of the compression spring 40 is applied to the first shaft member 3.

従って、第2のシャフト部材4を押込む外部入力荷重が入力すると、第1のシャフト部材3が回転するのに伴い第2のシャフト部材4が第1のシャフト部材3の段部3c側に押込まれ、先端部40aが第2のシャフト部材4と当接している圧縮ばね40に直に圧縮力が作用して圧縮ばね40が圧縮される。圧縮ばね40は他端部40bが第1のシャフト部材3と当接しているため、圧縮ばね40の圧縮によって、圧縮ばね40と第1のシャフト部材3との間に摩擦による抵抗トルクが加算的に付加される。これにより、第1のシャフト部材3に対してブレーキ力が強く作用し、第1のシャフト部材3の回転が強力に制動されることから強力で安定した制振機能を確保することができる。   Therefore, when an external input load that pushes in the second shaft member 4 is input, the second shaft member 4 is pushed into the step 3c side of the first shaft member 3 as the first shaft member 3 rotates. In rare cases, the compression spring 40 is compressed by the compression force acting directly on the compression spring 40 in which the distal end portion 40 a is in contact with the second shaft member 4. Since the compression spring 40 is in contact with the first shaft member 3 at the other end 40b, the compression spring 40 compresses the resistance torque caused by friction between the compression spring 40 and the first shaft member 3. To be added. As a result, a strong braking force acts on the first shaft member 3 and the rotation of the first shaft member 3 is strongly braked, so that a strong and stable vibration damping function can be secured.

第1のシャフト部材3における段部3c上段の小径部3dとねじシャフト部3bとの間には、さらに圧縮ばね40の内径に相応した外径の小径段部3eが形成されている。この小径段部3eは、圧縮ばね40の基端部40bを支持する支持座となるものである。そして、圧縮ばね40の基端部40bに対してこの小径段部3eを挿入することにより、さらに安定した支持状態としている。なお、圧縮ばね40の基端部40bと第1のシャフト部材3の小径部3dの上面3fとの間には、圧縮ばね40に対して第1のシャフト部材3が相対的に回転するため、図示しない緩衝板又は摩擦板としての金属ワッシャを挟設することが望ましい。   A small-diameter step portion 3e having an outer diameter corresponding to the inner diameter of the compression spring 40 is formed between the small-diameter portion 3d at the upper stage of the step portion 3c in the first shaft member 3 and the screw shaft portion 3b. The small diameter step portion 3 e serves as a support seat that supports the base end portion 40 b of the compression spring 40. Further, by inserting the small diameter step portion 3e into the base end portion 40b of the compression spring 40, a more stable support state is achieved. In addition, since the 1st shaft member 3 rotates relatively with respect to the compression spring 40 between the base end part 40b of the compression spring 40, and the upper surface 3f of the small diameter part 3d of the 1st shaft member 3, It is desirable to sandwich a metal washer as a buffer plate or a friction plate (not shown).

この実施形態においても、第1のシャフト部材3の先端面と先尖状の当接部20’との間は点接触などの接触半径R1が極めて小さく、当接部が固着条件式(108)を満足する。このため、当接部20’が第1のシャフト部材3の先端面に対して固着しない。   Also in this embodiment, the contact radius R1 such as a point contact is extremely small between the tip surface of the first shaft member 3 and the pointed contact part 20 ′, and the contact part is fixed by the conditional expression (108). Satisfied. For this reason, the contact portion 20 ′ does not adhere to the distal end surface of the first shaft member 3.

以上の実施形態のテンショナーは、全圧縮状態の出代寸法がA0になった時だけ上述のような当接部が固着することなく接触(当接)するという従来品と異なる特徴を有している。そして、A0以上の出代寸法(図4のA2〜A3相当)では従来のテンショナーと同じ機能である。   The tensioner of the above embodiment has a feature different from the conventional product in which the contact portion is in contact (contact) without being fixed only when the allowance dimension in the fully compressed state is A0. Yes. And in the allowance dimension (equivalent to A2-A3 of FIG. 4) of A0 or more, it is the same function as the conventional tensioner.

なお、本発明においては、図1〜5に示した実施形態以外にも組合せが自由に設定でき、ケース2、第1、第2のシャフト部材3、4及びその他の構成部材について、任意に形状を変更したり、組合せを変更するなどにより、簡易な構造で、当接部の固着防止を行うという新たな効果が得られるものである。また、捩じりばね5、圧縮ばね40についても、径を含むばね部材寸法や形状は、任意に変更が可能であり、これにより、ばねトルクあるいは圧縮力による抵抗トルクを任意に調整することができる。さらに、圧縮ばね40はコイルばね、皿ばね、ゴム成形体又は樹脂成形体等、あるいは捩じりばね5はコイルばね、板巻きばね、その他いずれか任意選択的に適用することができる。   In the present invention, combinations other than those shown in FIGS. 1 to 5 can be freely set, and the case 2, the first and second shaft members 3, 4 and other components are arbitrarily shaped. A new effect of preventing sticking of the abutting portion with a simple structure can be obtained by changing the combination or changing the combination. In addition, with regard to the torsion spring 5 and the compression spring 40 as well, the size and shape of the spring member including the diameter can be arbitrarily changed, whereby the spring torque or the resistance torque due to the compression force can be arbitrarily adjusted. it can. Further, the compression spring 40 can be optionally applied as a coil spring, a disc spring, a rubber molded body, a resin molded body, or the like, or the torsion spring 5 can be applied as a coil spring, a plate spring, or the like.

(a)は本発明の実施形態1のテンショナーを示す縦断面図、(b)は(a)の平面図である。(A) is a longitudinal cross-sectional view which shows the tensioner of Embodiment 1 of this invention, (b) is a top view of (a). 実施形態1のテンショナーの全縮状態における縦断面図である。It is a longitudinal cross-sectional view in the fully contracted state of the tensioner of Embodiment 1. 本発明の実施形態2のテンショナーを示す縦断面図である。It is a longitudinal cross-sectional view which shows the tensioner of Embodiment 2 of this invention. 本発明の実施形態3のテンショナーを示す縦断面図である。It is a longitudinal cross-sectional view which shows the tensioner of Embodiment 3 of this invention. 本発明の実施形態4のテンショナーを示す縦断面図である。It is a longitudinal cross-sectional view which shows the tensioner of Embodiment 4 of this invention. テンショナーをエンジン本体に装着した状態のレイアウト図である。It is a layout figure of the state which mounted | wore the engine main body with the tensioner. 従来のテンショナーを示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional tensioner. 図7のテンショナーの推進シャフトが回転シャフトに接近して当接する状態を模式的に説明するための作用モデル図である。FIG. 8 is an action model diagram for schematically explaining a state in which the propulsion shaft of the tensioner in FIG. 7 approaches and contacts the rotating shaft. 図7のテンショナーの回転部材段部と推進部材後端部との当接部固着現象の力学的モデル図である。It is a dynamic model figure of the contact part adhering phenomenon of the rotation member step part and propulsion member rear end part of the tensioner of FIG. 図7のテンショナーの螺合する推進部材から回転部材の自重落下現象を説明するためのモデル図である。It is a model figure for demonstrating the dead weight fall phenomenon of a rotating member from the propulsion member which the tensioner of FIG. 7 screws. テンショナーの回転部材と推進部材の当接部の固着境界線図の一例である。It is an example of the fixed boundary diagram of the contact part of the rotation member of a tensioner, and a propulsion member. テンショナーの回転部材と推進部材の当接部の摩擦係数が変化した場合の固着境界線である。It is a fixed boundary line when the friction coefficient of the contact portion between the rotating member of the tensioner and the propelling member changes. テンショナーの回転部材と推進部材の当接部の固着境界線図の別の例である。It is another example of the fixed boundary diagram of the contact part of the rotation member of a tensioner, and a propulsion member.

符号の説明Explanation of symbols

2 ケース
3 第1のシャフト部材(一方のシャフト部材)
4 第2のシャフト部材(他方のシャフト部材)
4a 基端部
5 捩りばね
10、10’ 先端部材(キャップ)
20 (先尖状)当接部
30 ベアリング部材
40 圧縮ばね
2 Case 3 First shaft member (one shaft member)
4 Second shaft member (the other shaft member)
4a Base end portion 5 Torsion spring 10, 10 'Tip member (cap)
20 (pointed tip) contact portion 30 bearing member 40 compression spring

Claims (4)

ねじ部によって螺合した一対のシャフト部材における一方のシャフト部材がばねによって回転付勢され、他方のシャフト部材が回転拘束された状態で一方のシャフト部材からの回転力の伝達により推進するテンショナーにおいて、
前記他方のシャフト部材の反推進方向への移動によって相互に当接する当接部が、前記一対のシャフト部材における前記ねじ部以外の部位に設けられており、
前記当接部は、当接による接触半径をR1、前記ねじ部の有効径をR2、当接による当接部の摩擦係数をμ1、前記ねじ部の摩擦係数をμ2、ねじ部のねじ面のリード角をαとしたとき、下記式(1)を満足するように設定されていることを特徴とするテンショナー。
R1/R2<−tan(μ2−α)/μ1 ……式(1)
In a tensioner that is propelled by transmission of rotational force from one shaft member in a state in which one shaft member in a pair of shaft members screwed by a threaded portion is rotationally biased by a spring and the other shaft member is rotationally restrained,
Contact portions that contact each other by movement of the other shaft member in the anti-propulsion direction are provided in a portion other than the screw portion in the pair of shaft members,
The contact portion has a contact radius R1 by contact, an effective diameter of the screw portion R2, a friction coefficient of the contact portion by contact μ1, a friction coefficient of the screw portion μ2, and a screw surface of the screw portion. A tensioner that is set to satisfy the following formula (1) when the lead angle is α.
R1 / R2 <-tan (μ2-α) / μ1 (1)
前記当接部は、当接相手のシャフト部材に向かって先尖形状又は曲面形状となっていることを特徴とする請求項1記載のテンショナー。   2. The tensioner according to claim 1, wherein the contact portion has a tip shape or a curved surface shape toward the shaft member of the contact partner. 前記他方のシャフト部材の推進方向の先端部分に先端部材が設けられており、
前記当接部は、先端部材又は/及び一方のシャフト部材の対向面に設けられていることを特徴とする請求項1又は請求項2記載のテンショナー。
A tip member is provided at a tip portion in the propulsion direction of the other shaft member,
3. The tensioner according to claim 1, wherein the contact portion is provided on a facing surface of the tip member and / or one of the shaft members.
前記当接部は、前記一対のシャフト部材の間に配置された見掛けの摩擦係数が小さなベアリング部材であることを特徴とする請求項1記載のテンショナー。   2. The tensioner according to claim 1, wherein the contact portion is a bearing member having a small apparent friction coefficient disposed between the pair of shaft members.
JP2005288948A 2005-09-30 2005-09-30 Tensioner Active JP4835915B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005288948A JP4835915B2 (en) 2005-09-30 2005-09-30 Tensioner
PCT/JP2006/319084 WO2007040102A1 (en) 2005-09-30 2006-09-26 Tensioner
CN200680036342.2A CN101278143B (en) 2005-09-30 2006-09-26 Tensioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288948A JP4835915B2 (en) 2005-09-30 2005-09-30 Tensioner

Publications (2)

Publication Number Publication Date
JP2007100753A true JP2007100753A (en) 2007-04-19
JP4835915B2 JP4835915B2 (en) 2011-12-14

Family

ID=37906145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288948A Active JP4835915B2 (en) 2005-09-30 2005-09-30 Tensioner

Country Status (3)

Country Link
JP (1) JP4835915B2 (en)
CN (1) CN101278143B (en)
WO (1) WO2007040102A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038619A1 (en) * 2008-10-01 2010-04-08 日本発條株式会社 Tensioner
US8968127B2 (en) 2008-10-01 2015-03-03 Nhk Spring Co., Ltd. Tensioner
WO2015159782A1 (en) * 2014-04-14 2015-10-22 日本発條株式会社 Tensioner
CN112513500A (en) * 2018-08-01 2021-03-16 日本发条株式会社 Tensioner
JP2022011785A (en) * 2020-06-30 2022-01-17 株式会社クボタ Chain tensioner and tensioner releasing tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257733B2 (en) * 2007-11-07 2013-08-07 Ntn株式会社 Chain tensioner
CN103562595B (en) * 2011-06-01 2016-07-06 日本发条株式会社 Stretcher

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023737A1 (en) * 1995-12-21 1997-07-03 Honda Giken Kogyo Kabushiki Kaisha Propelling force application apparatus
JP2003184968A (en) * 2001-12-18 2003-07-03 Nhk Spring Co Ltd Tensioner
JP2005054889A (en) * 2003-08-04 2005-03-03 Nhk Spring Co Ltd Tensioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110795A (en) * 1996-10-03 1998-04-28 Honda Motor Co Ltd Tensioner
AU2003277532A1 (en) * 2002-11-01 2004-05-25 Nhk Spring Co., Ltd. Tensioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023737A1 (en) * 1995-12-21 1997-07-03 Honda Giken Kogyo Kabushiki Kaisha Propelling force application apparatus
JP2003184968A (en) * 2001-12-18 2003-07-03 Nhk Spring Co Ltd Tensioner
JP2005054889A (en) * 2003-08-04 2005-03-03 Nhk Spring Co Ltd Tensioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038619A1 (en) * 2008-10-01 2010-04-08 日本発條株式会社 Tensioner
JP2010084878A (en) * 2008-10-01 2010-04-15 Nhk Spring Co Ltd Tensioner
CN102171488A (en) * 2008-10-01 2011-08-31 日本发条株式会社 Tensioner
TWI408298B (en) * 2008-10-01 2013-09-11 Nhk Spring Co Ltd Tensioner
US8870694B2 (en) 2008-10-01 2014-10-28 Nhk Spring Co., Ltd. Tensioner
US8968127B2 (en) 2008-10-01 2015-03-03 Nhk Spring Co., Ltd. Tensioner
WO2015159782A1 (en) * 2014-04-14 2015-10-22 日本発條株式会社 Tensioner
JPWO2015159782A1 (en) * 2014-04-14 2017-04-13 日本発條株式会社 Tensioner
CN112513500A (en) * 2018-08-01 2021-03-16 日本发条株式会社 Tensioner
CN112513500B (en) * 2018-08-01 2023-08-29 大同工业株式会社 tensioner
JP2022011785A (en) * 2020-06-30 2022-01-17 株式会社クボタ Chain tensioner and tensioner releasing tool

Also Published As

Publication number Publication date
CN101278143B (en) 2015-07-15
CN101278143A (en) 2008-10-01
WO2007040102A1 (en) 2007-04-12
JP4835915B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835915B2 (en) Tensioner
JP5819143B2 (en) damper
US20080058141A1 (en) One-way clutched damper for automatic belt tensioner
US20100064846A1 (en) Pedal assembly
FR2717546A1 (en) Belt tensioner.
JP2009526173A (en) Torque bias friction hinge for tensioner
JP2005325944A (en) Lead screw type moving device and its moving body
JP4521624B2 (en) Tensioner
KR20160122734A (en) Auto tensioner
US20070066427A1 (en) Friction damped blade tensioner
JP3962817B2 (en) Tensioner
JP4934815B2 (en) Tensioner
JP2007100868A (en) Automatic tensioner
JP4806301B2 (en) Chain tensioner
ATE425325T1 (en) LENGTH-ADJUSTABLE INTERMEDIATE PIECE WITH A UNI-DIRECTIONAL ACTIVATION LOCKING MECHANISM
JP4934816B2 (en) Tensioner
WO2000061968A1 (en) Tensioner for providing tension to force transmitting member
JP4846648B2 (en) Chain tensioner
JP4448959B2 (en) Tensioner
JP6542776B2 (en) Load application device
JP4461360B2 (en) Tensioner
JP2003071736A (en) Impact tool
JP4552001B2 (en) Tensioner
JP2005337333A (en) Gear with torque limiter mechanism
JP4927638B2 (en) Chain tensioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250