WO2007040000A1 - 単結晶試料の極性判定方法及び装置 - Google Patents

単結晶試料の極性判定方法及び装置 Download PDF

Info

Publication number
WO2007040000A1
WO2007040000A1 PCT/JP2006/317095 JP2006317095W WO2007040000A1 WO 2007040000 A1 WO2007040000 A1 WO 2007040000A1 JP 2006317095 W JP2006317095 W JP 2006317095W WO 2007040000 A1 WO2007040000 A1 WO 2007040000A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
wavelength
polarity
single crystal
intensity
Prior art date
Application number
PCT/JP2006/317095
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Inaba
Original Assignee
Rigaku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corporation filed Critical Rigaku Corporation
Priority to JP2007538665A priority Critical patent/JP4615022B2/ja
Priority to US11/991,495 priority patent/US7680246B2/en
Priority to EP06797068.1A priority patent/EP1942336B1/en
Publication of WO2007040000A1 publication Critical patent/WO2007040000A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Definitions

  • the present invention relates to a method and apparatus for determining the polarity of a single crystal sample using an X-ray diffraction method.
  • FIG. 5 is a perspective view showing a typical crystal lattice plane of a GaAs crystal.
  • the crystal structure of GaAs is cubic, and if the top surface in Fig. 5 is the (100) plane, eight crystal lattice planes equivalent to the (111) plane when considered as a simple cubic crystal (crosshatching in Fig. 5).
  • the planes shown (referred to as Ga ⁇ 111 ⁇ planes) can be planes with only Ga atoms (Ga plane) or planes with only As planes (As plane).
  • the Ga plane and As plane appear alternately at a 3-to-1 spacing.
  • Ga surface force The direction of viewing the As surface closest to it and the direction of the As surface force viewing the Ga surface closest to it are opposite to each other, and the physical properties differ depending on the direction. This difference in crystal orientation is called polarity.
  • the four equivalent crystal lattice planes of (111), (1-1-1), (-11-1) and (1-111) are This is the Ga surface, which is defined as the “front surface”.
  • the four crystal lattice planes of (-1-1-1), (11-1), (1-11), and (1 111) are As planes, which are defined as "ura planes”. .
  • the number in Katsuko is the mirror index, and the minus sign is attached to the number after it.
  • Non-Patent Document 1 discloses determining the polarity using a special X-ray diffraction method.
  • Non-Patent Document 1 RL Barns, 2 people, "X—ray Determination of Polarity Sense by Anomalous Scattering at an Absorption Edge", J. Appl. Cryst. (1970) 3, 27, p.27— 32 [0004]
  • the wavelength dependence of the diffracted X-ray intensity of a GaAs crystal is measured near the K absorption edge of Ga or As.
  • the X-ray diffraction intensity at the shorter wavelength side than the absorption edge is examined, the X-ray diffraction intensity is different between the front and back surfaces, and the polarity of the GaAs crystal can be determined by the difference.
  • Non-Patent Document 1 uses a single crystal spectroscope to measure the X-ray diffraction intensity dependence of the X-ray diffraction intensity, and therefore requires a powerful X-ray incident optical system. To do. Moreover, since it is a special X-ray incident optical system, it is difficult to switch to applications other than polarity determination.
  • An object of the present invention is to measure the wavelength dependence of the diffracted X-ray intensity of a single crystal sample using an X-ray incident optical system having a simple structure, and thereby determine the polarity of the single crystal sample. It is an object of the present invention to provide a polarity determination method and apparatus.
  • the polarity determination method of the present invention includes the following steps.
  • IIi A step of preparing an X-ray source capable of generating X-rays in a predetermined wavelength range sandwiching the wavelength of the absorption edge of the shift key element among the plurality of elements.
  • U The X-ray source force A step in which the emitted divergent X-ray beam is reflected by a parabolic multilayer mirror to produce a parallel beam including X-rays in the predetermined wavelength range.
  • the diffraction X-ray intensity may be standardized using a standard sample having no polarity. That is, for a standard sample having no polarity, the diffraction X-ray intensity is obtained in the same manner as for the single crystal sample having polarity, and the diffraction X-ray intensity at each wavelength of the single crystal sample is obtained. By dividing by the diffracted X-ray intensity at the same wavelength, the standardized diffracted X-ray intensity can be obtained, and the ratio can be obtained based on the standardized diffracted X-ray intensity.
  • the single crystal sample may be in the form of a wafer or a single crystal film formed on a substrate.
  • the single crystal sample can be a compound containing any of Ga, Zn, Ge, and As, and in that case, the target material of the X-ray source can be any of Au, W, and Pt. .
  • the multilayer mirror is adjusted to reflect the wavelength near the K absorption edge of Ga, Zn, Ge, or As.
  • the single crystal sample can be a compound containing Ta, and in this case, the target material of the X-ray source can be either Au, W, or Pt.
  • the multilayer mirror is adjusted to reflect the wavelength near the Ta L absorption edge.
  • the polarity determination device for a single crystal sample of the present invention has the following configuration.
  • A An X-ray tube having a target of a predetermined material.
  • Ii A parabolic multilayer mirror that reflects X-rays emitted from the X-ray tube force and converts them into parallel beams.
  • U A sample holder that holds a single crystal sample composed of multiple elemental forces and having polarity.
  • E An X-ray detector for detecting diffraction X-rays from the single crystal sample.
  • a control device that scans in conjunction with an angle ⁇ formed by the single crystal sample with respect to the parallel beam and an angle 20 formed with the X-ray detector with respect to the parallel beam.
  • a parallel beam is produced using a parabolic multilayer mirror and is used as incident X-rays
  • incident X-rays including an appropriate wavelength range can be obtained
  • the polarity of a single crystal sample can be determined using an incident optical system with a simple configuration.
  • An incident optical system with a parabolic multi-layer mirror can be adjusted to reflect characteristic X-rays and various X-ray analyzes other than polarity determination (for example, high resolution using characteristic X-rays). Therefore, the X-ray diffractometer for polarity determination can be used as a high-resolution X-ray analyzer.
  • the diffracted X-ray intensity is standardized using a standard sample with no polarity, the effect of the wavelength dependence of the incident X-ray intensity can be eliminated.
  • FIG. 1 is a plan view showing a configuration example of an X-ray diffraction apparatus for carrying out a polarity determination method of the present invention.
  • FIG. 2 is a perspective view when measuring the GaAs (333) plane with the apparatus of FIG. 1.
  • FIG. 3 is a perspective view when the GaAs (33-3) plane is measured with the apparatus of FIG.
  • FIG. 5 is a perspective view showing a typical crystal lattice plane of a GaAs crystal.
  • FIG. 7 A graph showing only the measurement results on the front surface.
  • FIG. 10 is a plan view showing the configuration of an X-ray analyzer that can switch between polarity determination and high-resolution X-ray analysis.
  • FIG. 11 Wavelength dependence of the X-ray intensity of the parallel beam when X-rays are extracted in the state of Fig. 4 (A), and X of the parallel beam when X-rays are extracted in the state of Fig. 4 (B) It is a graph showing a comparison of the wavelength dependence of the line intensity.
  • FIG. 12 is a flowchart showing a polarity determination procedure.
  • FIG. 13 is a flowchart showing another procedure for polarity determination.
  • FIG. 14 An example of a sample for polarity determination.
  • FIG. 1 is a plan view showing a configuration example of an X-ray diffraction apparatus for carrying out the polarity determination method of the present invention.
  • the divergent X-ray beam 12 emitted from the X-ray focal point 11 of the rotating anti-cathode X-ray tube 10 is converted into a parallel beam 16 (incident X-ray) by a parabolic artificial multilayer mirror 14.
  • the sample 18 is irradiated.
  • the diffracted X-ray 20 diffracted by the sample 18 is detected by the X-ray detector 22.
  • the angle formed by the diffracted X-ray 20 with respect to the incident X-ray 16 is 2 ⁇ .
  • the orientation of sample 18 is determined so that X-rays are diffracted at the target crystal lattice plane (not necessarily parallel to the sample surface).
  • the Bragg angle ⁇ varies with the wavelength of the X-ray, so if the wavelength of the X-ray changes, the angular position of the X-ray detector 20 at which the diffracted X-ray 20 is detected (ie, 20) Should be different.
  • the X-ray detector 20 is powered so that 2 ⁇ changes, and at the same time, the rotation angle of the sample 18 with respect to the incident X-ray 16 ⁇ If the X-ray detector 20 is rotated at an angular velocity half that of the X-ray detector 20 (2 0 ⁇ ⁇ scan), the wavelength dependence of the diffraction X-ray intensity can be measured.
  • the parabolic artificial multilayer mirror 14 can convert the divergent X-ray beam 12 into a parallel beam 16, and the parallel beam 16 has a certain wavelength spread.
  • the X-ray divergence angle is within 0.05 degrees.
  • the wavelength dependence of the diffraction intensity can be measured by allowing the single crystal sample itself to play the role of the spectroscopic function (ie, by performing a 20 0 ⁇ scan). Therefore, the wavelength dependence of the diffraction intensity can be measured simply by using the multilayer mirror 14 without using a large-scale single crystal spectrometer as used in the EXAFS system.
  • Fig. 2 is a perspective view of the device in Fig. 1 when measuring the front side of the ⁇ 333 ⁇ plane of the GaAs wafer, ie, the (333) plane.
  • the target material of the rotating counter cathode 10 is Au (gold).
  • the GaAs wafer 18 is attached to a sample holder that can rotate three axes. To explain the three-axis rotation, first, there is an ⁇ axis 26 that coincides with the rotation center line of the goometer (extending in the vertical direction). The wafer 18 (sample) can be rotated around this ⁇ axis 26 by ⁇ .
  • the wafer 18 can be rotated% around the% axis 28 extending horizontally through the surface of the wafer 18. Furthermore, the wafer 18 can be rotated about the ⁇ axis 24 perpendicular to the normal of the surface of the wafer 18. Wafer 18 is assumed to be oriented so that orientation flat 30 is directly below, and the (001) plane of GaAs is parallel to the surface of the wafer. Under these conditions, the% axis 28 (that is, the wafer 18) is parallel to the incident X-ray 12, around the ⁇ axis 28, clockwise as viewed from above, 33.3 degrees. Then, the wafer 18 is rotated by 53.7 degrees around the% axis 28 and clockwise as viewed from the right in FIG.
  • X-ray diffraction is performed on the X-ray force GaAs (333) plane having the wavelength of the Ga ⁇ absorption edge (0.1957 nm), and the diffracted X-ray 20 is detected by the X-ray detector 22.
  • the wavelength dependence of the diffracted X-ray intensity from the GaAs (333) plane can be measured.
  • the 2 ⁇ / ⁇ scan described above is automatically executed in response to a command from the controller.
  • the wavelength dependence of the diffracted X-ray intensity is automatically measured in a predetermined wavelength range with the wavelength of the Ga ⁇ absorption edge sandwiched by the measurement command means attached to the controller.
  • FIG. 6 shows the measurement result of the front surface and the measurement result of the back surface superimposed.
  • the diffraction X-ray intensity on the front surface is represented by I (GaAs, 333). Then, I (GaAs, 333) is divided by the diffracted X-ray intensity I (Si, 333) at the same wavelength on the (333) plane of Si (silicon) as the standard sample, and the diffraction intensity is normalized. I'm ashamed. By standardizing in this way, the effect of the wavelength dependence of the incident X-ray intensity is eliminated. Therefore, the vertical axis represents such relative X-ray intensity. The horizontal axis is the X-ray wavelength.
  • the graph in Fig. 6 shows data in the wavelength range of 0.115 nm force and 0.125 nm.
  • This wavelength range corresponds to the continuous wavelength portion of the wavelength band near the Au–L r? Characteristic X-ray.
  • the change in the diffraction X-ray intensity is obtained with respect to the change in 2 ⁇ , but by converting 20 into the wavelength, You can draw a graph. 2
  • the numerical value of the lattice spacing of Ga (333) is used to calculate with the Bragg equation.
  • the diffracted X-ray intensity I (GaAs, ⁇ 3 ⁇ 3 ⁇ 3) on the back surface In Fig. 3, the actual measurement was Ga (33-3), but the measurement results are displayed as Ga (-3-3-3) data! Ga (33-3) and Ga (-3-3-3) are both equivalent crystal lattice planes belonging to the back plane.
  • FIG. 7 is a graph showing only the measurement results on the front surface.
  • the ratio of the diffracted X-ray intensity at the shorter wavelength side than the absorption edge to the diffracted X-ray intensity at the longer wavelength side from the absorption edge (hereinafter referred to as polarity determination)
  • the ratio is about 0.55 as shown in Fig. 9 (1).
  • Fig. 8 is a graph showing only the measurement result of the back surface.
  • Their values are both about 1.7.
  • the polarity determination ratio for the back surface is approximately 0.85, as shown in Equation (2) in Fig. 9.
  • the polarity determination ratio for the front and back surfaces was calculated to be about 0.
  • FIG. 12 is a flowchart showing the polarity determination procedure.
  • step S1 prepare a sample (eg, GaAs single crystal) with a known polarity and the location of the back surface, and select the front of the crystal lattice plane (eg, the ⁇ 333 ⁇ plane of GaAs) whose polarity is to be determined.
  • a 2 ⁇ ⁇ scan is performed near the wavelength of the absorption edge (eg, K absorption edge) of one element (eg, Ga) contained in the sample. Measure the wavelength dependence of the diffracted X-ray intensity.
  • the absorption edge eg, K absorption edge
  • step S2 a similar 20 ⁇ ⁇ ⁇ scan is performed on a predetermined crystal lattice plane (eg, (333) plane) of a standard sample (eg, Si single crystal) to measure the wavelength dependence of the diffracted X-ray intensity.
  • a predetermined crystal lattice plane eg, (333) plane
  • a standard sample eg, Si single crystal
  • the diffracted X-ray intensity of the front and back of the known sample obtained in step S1 is divided by the diffracted X-ray intensity of the standard sample obtained in step S2 at the same wavelength to obtain the diffracted X-ray intensity.
  • step S4 the ratio of the intensity on the short wavelength side to the intensity on the long wavelength side of the absorption edge is calculated using the standardized diffraction X-ray intensity, and this is used as the polarity judgment ratio.
  • step S5 X-ray diffraction measurement is performed on the target sample (ie, GaAs single crystal whose front and back positions are unknown) in the same manner as in step S1.
  • step S6 the diffraction X-ray intensity is specified in the same way as in step S3.
  • step S7 the polarity determination ratio is calculated using the diffracted X-ray intensity of the target sample after standardization.
  • step S8 the polarity determination ratio obtained in step S7 is compared with the polarity determination ratio of the front and back obtained in step S4 to determine the polarity of the measurement part of the target sample. Judge whether it is mote or ura.
  • the work of obtaining the polarity judgment ratio in step 4 and step 7 and the judgment work in step 8 are automatically performed by the judgment means attached to the control unit.
  • FIG. 13 is a flowchart showing another procedure for polarity determination.
  • the front and rear polarity judgment ratios are measured and measured. Alternatively, theoretical values can be used.
  • steps S9, SIO, Sl l, and S12 are the same as steps S5, S2, S6, and S7 on the Tegawa page in Fig. 12.
  • step S13 in Fig. 13 the crystal structure factor is calculated.
  • step S14 an absorption correction is calculated. Crystal structure factor and absorption correction are necessary to theoretically calculate the intensity of X-rays diffracted at the target crystal lattice plane of the target sample.
  • step S15 the theoretical value of the polarity judgment ratio is calculated. That is, for the crystal lattice plane whose polarity is to be determined, the theoretical diffraction X-ray intensity at any one X-ray wavelength on the long wavelength side of a given absorption edge is first calculated, assuming that it is a front face. In addition, the theoretical diffraction X-ray intensity at any one X-ray wavelength on the short wavelength side of a given absorption edge is calculated, and the ratio between the two is calculated. This gives the theoretical polarity determination ratio for the front side. Next, the theoretical polarity determination ratio is calculated in the same way when it is assumed that the surface is a back surface.
  • Step S6 the polarity determination ratio obtained in Step S12 is compared with the theoretical polarity determination ratio of the front and back obtained in Step S14. , Judge whether it is an error.
  • the reliability of the theoretically determined polarity judgment ratio is important, so the theoretical polarity judgment ratio and the measured polarity judgment ratio for at least one sample with polarity are Therefore, it is necessary to confirm that they are close enough to be used for polarity determination.
  • FIG. 14 is an example of a sample for determining the polarity.
  • Figure 14 (A) shows a GaAs single crystal wafer 18 (sample), and the surface of wafer 18 is parallel to the (001) plane.
  • the (111) plane or (-1-1-1) plane shown in Fig. 5 that is, the front plane. From there, there is a front surface in the direction rotated by 90 degrees clockwise around the normal of the wafer surface, and a reverse surface in the direction rotated by 270 degrees.
  • Fig. 14 (A) there are types of wafers made with the ⁇ 111 ⁇ plane in the direction of orientation flat 30.
  • the wafer 18 in FIG. 14B has the (11 1) plane or (1 11) plane shown in FIG.
  • the GaAs wafer is of the type shown in FIG. 4 It is possible to determine whether the type is (B).
  • the sample shown in FIG. 14 is for determining the polarity of the single crystal wafer itself, but a single crystal film (for example, an epitaxially grown film) formed on the substrate can also be used for polarity determination.
  • a single crystal film for example, an epitaxially grown film
  • the substrate diffraction data is subtracted from the measured diffraction data (the substrate diffraction data may overlap the thin film diffraction data) before It is preferable to determine the polarity.
  • the switching operation between polarity determination using continuous-wave X-rays and high-resolution X-ray prayer using characteristic X-rays is described.
  • the parallel beam 16 can be extracted as a continuous-wave X-ray and a characteristic X-ray can be extracted. Can be switched.
  • the Au target is used to determine the polarity of the front and back of the GaAs ⁇ 333 ⁇ plane. The reason is that the characteristic X-ray wavelength by the Au target and Ga The wavelength of the K absorption edge of
  • FIG. 4 is an explanatory diagram for explaining changing the wavelength region to be extracted by changing the posture of the multilayer mirror.
  • Fig. 4 (A) by adjusting the attitude of the multilayer mirror 14, the incident X-rays 12 emitted from the X-ray focal point 11 are reflected by the multilayer mirror 14 and are slightly smaller than the Ga K absorption edge. A continuous wavelength parallel beam 16 in a short wavelength region is extracted.
  • the orientation of the multilayer mirror 14 can be adjusted by rotating around the center of rotation 32 at the center of the reflecting surface.
  • Fig. 4 (A) above shows a state in which the parallel beam 16 is extracted for polarity determination, but this is changed to a state in which the parallel beam 16 of characteristic X-rays is extracted as shown in Fig.
  • Fig. 11 shows the wavelength dependence of the X-ray intensity of the parallel beam 16 when X-rays are extracted in the state of Fig. 4 (A), and the X-rays when X-rays are extracted in the state of Fig. 4 (B). It is a graph showing a comparison of the wavelength dependence of the X-ray intensity of the parallel beam 16. Curve 34 drawn with a thin line is the X-ray intensity for Fig. 4 (A), and curve 36 drawn with a thick line is the X-ray intensity for Fig. 4 (B). These dulls were measured using the (004) plane of a Si single crystal with no absorption edge in this wavelength region as the spectroscopic crystal.
  • the wavelength of the K absorption edge of Ga (shown as GaK in Fig. 11) is 0.19575 nm, while the wavelength of AuL ⁇ 1 (one of the characteristic X-rays of Au) is 0.13273 ⁇ m. , The two are quite close. Therefore, by changing the angle of the multilayer mirror slightly, it is possible to switch from the state of extracting X-rays near the Ga K absorption edge to the state of extracting AuL a l.
  • Fig. 10 (A) is a plan view showing the configuration of an X-ray analyzer that can switch between polarity determination and high-resolution X-ray analysis.
  • the configuration diagram in Fig. 1 is more specific. Is.
  • a four-crystal monochromator 39 can be inserted or removed between the multilayer mirror 14 and the entrance slit 38.
  • the multilayer mirror 14 can rotate around the rotation center line 32.
  • the entrance slit 38 is movable in the vertical direction in FIG.
  • the Goometer base 40 is rotatably mounted with a 2 ⁇ rotation table 42 and a sample table 44, which are independently around a rotation center line 46 of the gometer. Can rotate. 2
  • the light receiving slit 48 and the X-ray detector 22 are mounted on the ⁇ turntable 42.
  • the goometer base 40 is movable in the vertical direction in FIG.
  • Fig. 10 (A) shows the device status for determining the polarity of a GaAs wafer.
  • the multilayer mirror 14 is in the state shown in FIG. We will explain how to switch from this state to a state where high-resolution X-ray analysis using AuL al is possible.
  • Fig. 10 (B) a 4-crystal mono A chromometer 39 is inserted between the multilayer mirror 14 and the entrance slit 38. Then, as shown in Fig. 4 (B), the multilayer mirror 14 is rotated counterclockwise by 0.057 degrees. When the multilayer mirror 14 is rotated, the way in which the parallel beam 16 emerges slightly changes, so that the parallel beam 16 passes through the rotation center line 46 of the goometer 40 Move slightly upward in Fig. 10.
  • the entrance slit 38 is also moved slightly upward in FIG. 10 so that the parallel beam 16 passes successfully.
  • a parallel beam made of AuLal can be taken out, and further monochromatized and parallelized with a 4-crystal monochromator, and this parallel beam is used for high resolution. X-ray analysis can be performed.
  • High-resolution X-ray analysis means measurement that requires an angular resolution of 0.01 degrees or less.
  • X-ray diffraction measurement of powder samples and crystallinity of thin film samples are evaluated. This includes locking curve measurement, X-ray diffraction measurement such as reciprocal lattice map measurement, or X-ray reflectivity measurement.
  • the change of the angle of the multilayer mirror can be omitted.
  • curve 36 when the multilayer mirror is adjusted to match the characteristic X-ray AuL a 1 is used, the X-ray intensity of the wavelength near the K absorption edge of Ga is moderate. I understand that there is. If this X-ray intensity does not interfere with polarity determination, the polarity can be determined in the state of curve 36. In this case, switching work as shown in Fig. 10 is not necessary, and in the state shown in Fig. 10 (B), first, the 4-crystal monochromator 39 is removed and the polarity is determined. 39 can be inserted to perform high-resolution X-ray analysis.
  • the diffraction X-ray intensity on the long wavelength side of the absorption edge is the average of the two wavelengths
  • the diffraction X-ray intensity on the short wavelength side is also two.
  • each of them may use the diffraction X-ray intensity of a single wavelength, or the average of all the diffraction X-ray intensities of three or more wavelengths! ,.
  • GaAs is exemplified as a polar sample, but the present invention can be applied to other single crystal samples.
  • the polarity can be determined using an Au target. You can.
  • the wavelength of the K absorption edge of Zn is 0.12833 nm.
  • the multilayer mirror is rotated clockwise. Rotate by 0.005014 degrees.
  • the wavelength of the Ge K absorption edge is 0.1117 nm.
  • the multilayer mirror To switch the multilayer mirror adjusted near this wavelength from the state shown in Fig. 4 (A) to the state shown in Fig. 4 (B) (the state in which AuL a 1 is extracted), the multilayer mirror must be turned counterclockwise. Rotate only 11389 degrees.
  • the wavelength of the K absorption edge of As is 0.1045 nm. To switch the multilayer mirror adjusted near this wavelength to the state force in Fig. 4 (A) (the state in which AuL a 1 is taken out), switch the multilayer mirror counterclockwise to 0. You only need to rotate 16546 degrees.
  • Ga-containing compounds examples include GaAs, GaP, GaSb, and those with many zinc blende-type crystal structures such as InAs and A1P.
  • Solid solution crystals of so-called langasite-type crystal structures such as SiO 2 and La Ga Ta O ”,“
  • Group III nitride compound semiconductor crystals with a GaN and Uluru crystal structure There are “Group III nitride compound semiconductor crystals with a GaN and Uluru crystal structure” and “Solid solution crystals such as LiGaO and LiGaO — LiAlO”. Polarity with Ge-containing compounds
  • langasite-type crystal structures such as La Ga GeO.
  • the As-containing compounds are polar crystals such as GaAs, InAs, AlAs, and those with many zinc blende-type crystal structures such as GaP, InSb, etc.
  • semiconductor crystals There are semiconductor crystals.
  • Examples of polar crystals of Ta-containing compounds include solid solutions such as LiTaO-LiNbO and KTaO-KNbO.
  • an Au target is used as the X-ray source. Characteristics Due to the positional relationship with the X-ray wavelength, polarity determination may be successful even when a W (tungsten) target or a Pt (platinum) target is used.
  • the sample may be not only a single crystal of Balta but also an epitaxial thin film grown on a single crystal substrate.
  • the standard is determined using the diffraction X-ray intensity of the Si single crystal.
  • a standard is used. ⁇ may be omitted.
  • a rotating anti-cathode X-ray tube is exemplified as the X-ray source, but an enclosed tube type X-ray tube may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 簡単な構造のX線入射光学系を用いて,単結晶試料の回折X線強度の波長依存性を測定し,これにより,単結晶試料の極性を判定できるようにする。GaAs単結晶試料(18)の{111}面の極性を判定することを例にとると,GaのK吸収端の波長を挟んだ所定の波長範囲のX線を発生させることのできるX線源(10),すなわちAuターゲットのX線源,を用いる。このX線源から出射されたX線ビーム(12)を放物面多層膜ミラー(14)で反射させて,所定の波長範囲のX線を含む平行ビーム(16)を作る。この平行ビームを試料(18)に照射して,そこからの回折X線の強度をX線検出器(22)で検出する。2θ/ωスキャンを実行することで,前記吸収端の波長を挟んだ波長範囲で,回折X線の強度の波長依存性を測定する。吸収端よりも長波長側での回折X線強度に対する,短波長側での回折X線強度の比率を求めて,極性を判定する。

Description

明 細 書
単結晶試料の極性判定方法及び装置
技術分野
[0001] 本発明は、 X線回折法を用いて単結晶試料の極性を判定する方法及び装置に関 する。
背景技術
[0002] GaAsなどの 3— 5族半導体結晶では,その結晶構造において極性 (結晶の向き) が存在する。図 5は GaAs結晶の代表的な結晶格子面を示す斜視図である。 GaAs の結晶構造は立方晶であり,図 5における上面を(100)面とすると,単純立方晶と考 えた場合における(111)面に等価な 8個の結晶格子面(図 5においてクロスハツチン グで示した面,これらを Ga{ 111 }面と表す)は, Ga原子だけが並ぶ面(Ga面)か, As 面だけが並ぶ面 (As面)となる。そして,その結晶格子面に垂直な方向(極性の軸) に, Ga面と As面が 3対 1の間隔で交互に現れる。 Ga面力 それに最も近い As面を 見る方向と, As面力 それに最も近い Ga面を見る方向とは互いに逆向きとなり,その 向きによって物理的'ィ匕学的性質が異なるとされている。このような結晶の向きの違い を極性と呼ぶ。 Ga{ l l l }面に属する 8個の結晶格子面のうち, (111) , (1— 1— 1) , ( - 11 - 1)及び(一 1 11)の 4個の等価な結晶格子面は Ga面であり,これを「ォモ テ面」と定義する。一方, ( - 1 - 1 - 1) , (11 - 1) , (1— 11)及び(一 111)の 4個の 結晶格子面は As面であり,これを「ゥラ面」と定義する。カツコの中の数値はミラー指 数であり,マイナス符号はその後ろの数字に付くものとする。ォモテ面が結晶の表面 にあるときは, Ga原子が結晶表面に露出し,ゥラ面が結晶の表面にあるときは, As原 子が結晶表面に露出する。
[0003] 上述の極性の違いは,通常の X線回折法による測定では区別できない。ところで, 次の非特許文献 1には,特殊な X線回折法を用いて極性を判定することが開示され ている。
非特許文献 1 : R. L. Barns,ほ力 2名, "X— ray Determination of Polarity Sense by An omalous Scattering at an Absorption Edge", J. Appl. Cryst. (1970) 3, 27, p.27— 32 [0004] この非特許文献 1では, Gaまたは Asの K吸収端の付近で, GaAs結晶の回折 X線 強度の波長依存性を測定している。吸収端よりも短波長側での回折 X線強度を検討 すると,ォモテ面とゥラ面では X線回折強度が異なっており,その違いによって, GaA s結晶の極性を判定することができる。 X線回折強度の X線波長依存性を測定するに は,試料に照射する X線の波長を変える必要があるが,そのために,この非特許文献 1では,重金属ターゲットの X線管から発生する連続波長部分と,単結晶分光装置と を組み合わせている。
発明の開示
発明が解決しょうとする課題
[0005] 上述の非特許文献 1は, X線回折強度の X線波長依存性を測定するために単結晶 分光装置を用いているので,力なり大掛力りな X線入射光学系を必要とする。しかも, 特殊な X線入射光学系なので,極性判定以外の用途に切り換えることが難しいと考 えられる。
[0006] この発明の目的は,簡単な構造の X線入射光学系を用いて,単結晶試料の回折 X 線強度の波長依存性を測定し,これにより,単結晶試料の極性を判定できるようにし た極性判定方法及び装置を提供することにある。
課題を解決するための手段
[0007] 本発明の極性判定方法は次の各段階を備えている。(ァ)複数の元素から構成され て!、て極性を有する単結晶試料を準備する段階。(ィ)前記複数の元素の 、ずれカゝ の元素の吸収端の波長を挟んだ所定の波長範囲の X線を発生させることのできる X 線源を準備する段階。(ゥ)前記 X線源力 出射された発散性の X線ビームを放物面 多層膜ミラーで反射させて,前記所定の波長範囲の X線を含む平行ビームを作る段 階。(ェ)前記平行ビームを入射 X線として前記単結晶試料に照射して,前記単結晶 試料からの回折 X線の強度を X線検出器で検出する段階。(ォ)前記入射 X線に対す る前記単結晶試料の表面がなす角度 ωと,前記入射 X線に対する前記回折 X線の なす角度 2 Θとを, 1対 2の角速度比で連動してスキャンすることにより,前記複数の 元素の!/、ずれかの元素の吸収端の波長を挟んだ波長範囲で,前記回折 X線の強度 の波長依存性を測定する段階。(力)前記吸収端よりも長波長側での回折 X線強度に 対する,前記吸収端よりも短波長側での回折 X線強度の比率を求めて,その比率の 値に基づ 1、て前記極性を判定する段階。
[0008] 本発明を実施するに当たっては,極性を有しない標準試料を用いて,回折 X線強 度を規格ィ匕してもよい。すなわち,極性を有しない標準試料についても,極性を有す る前記単結晶試料と同様に回折 X線強度を求めて,前記単結晶試料の各波長での 回折 X線強度を,前記標準試料の同じ波長での回折 X線強度で割り算することで, 規格ィ匕した回折 X線強度を求めて,この規格ィ匕した回折 X線強度に基づいて,前記 比率を求めることができる。
[0009] 単結晶試料はウェハーの形状であってもよいし,基板上に成膜した単結晶膜であ つてもよい。
[0010] 単結晶試料は Ga, Zn, Ge及び Asのいずれかを含む化合物とすることができ,そ の場合, X線源のターゲットの材質は Au, W及び Ptのいずれかとすることができる。 そして,多層膜ミラーは, Ga, Zn, Ge及び Asのいずれかの K吸収端の付近の波長 を反射できるように調整される。また、単結晶試料は Taを含む化合物とすることがで き,その場合も, X線源のターゲットの材質は Au, W及び Ptのいずれかとすることが できる。そして,多層膜ミラーは, Taの L吸収端の付近の波長を反射できるように調 整される。
[0011] また,本発明の単結晶試料の極性判定装置は次の構成を備えている。(ァ)所定の 材質のターゲットを有する X線管。(ィ)前記 X線管力も出射される X線を反射して平 行ビームに変換する放物面の多層膜ミラー。(ゥ)複数の元素力 構成されていて極 性を有する単結晶試料を保持する試料ホルダー。(ェ)前記単結晶試料からの回折 X線を検出する X線検出器。(ォ)前記平行ビームに対する前記単結晶試料のなす 角度 ωと,前記平行ビームに対する前記 X線検出器とのなす角度 2 0とを連動してス キャンする制御装置。(力)前記平行ビームを入射 X線として前記単結晶試料に照射 して,前記単結晶試料からの回折 X線の強度を X線検出器で検出する作業を実施し ,前記角度 ωと前記角度 2 0とを 1対 2の角速度比で連動してスキャンすることにより ,前記複数の元素のいずれかの元素の吸収端の波長を挟んだ波長範囲で,前記回 折 X線の強度の波長依存性を測定する測定指令手段。(キ)前記吸収端よりも長波 長側での回折 X線強度に対する,前記吸収端よりも短波長側での回折 X線強度の比 率を求めて,その比率の値に基づ!/、て前記極性を判定する判定手段。
発明の効果
[0012] 本発明によれば,放物面多層膜ミラーを用いて平行ビームを作ってこれを入射 X線 としているので,適度の波長範囲を含む入射 X線を得ることができて,比較的簡易な 構成の入射光学系を用いて単結晶試料の極性判定が可能となる。そして,放物面多 層膜ミラーを有する入射光学系は,特性 X線を反射するように調整し直せば,極性判 定以外の多様な X線分析 (例えば,特性 X線を用いた高分解能の X線回折測定)に も使えるので,極性判定のための X線回折装置を,高分解能の X線分析装置として 使うこともできる。また,極性を有しない標準試料を用いて回折 X線強度を規格ィ匕す ると,入射 X線強度の波長依存性の影響を排除することができる。
図面の簡単な説明
[0013] [図 1]本発明の極性判定方法を実施するための X線回折装置の構成例を示す平面 図である。
[図 2]図 1の装置で GaAs (333)面を測定するときの斜視図である。
[図 3]図 1の装置で GaAs (33- 3)面を測定するときの斜視図である。
圆 4]多層膜ミラーの姿勢を変化させて,取り出す波長領域を変更することを説明す る説明図である。
[図 5]GaAs結晶の代表的な結晶格子面を示す斜視図である。
[図 6]ォモテ面の測定結果とゥラ面の測定結果を重ね合わせて示したものである。
[図 7]ォモテ面の測定結果だけを示したグラフである。
[図 8]ゥラ面の測定結果だけを示したグラフである。
[図 9]極性判定比率の計算式である。
[図 10]極性判定と高分解能の X線分析とを切り換えることのできる X線分析装置の構 成を示す平面図である。
[図 11]図 4 (A)の状態で X線を取り出したときの平行ビームの X線強度の波長依存性 と,図 4 (B)の状態で X線を取り出したときの平行ビームの X線強度の波長依存性とを 比較して示したグラフである。 [図 12]極性判定の手順を示したフローチャートである。
[図 13]極性判定の別の手順を示したフローチャートである。
[図 14]極性判定をする試料の一例である。
符号の説明
[0014] 10 回転対陰極
11 X線焦点
12 X線ビーム
14 多層膜ミラー
16 平行ビーム
18 試料
20 回折 X線
22 X線検出器
24 Φ軸
26 ω軸
28 X軸
38 入射スリット
39 4結晶モノクロメータ
40 ゴニ才メータ.ベース
42 2 0回転台
44 試料台
48 受光スリット
発明を実施するための最良の形態
[0015] 以下,図面を参照して本発明の実施例を詳しく説明する。図 1は,本発明の極性判 定方法を実施するための X線回折装置の構成例を示す平面図である。回転対陰極 X線管の回転対陰極 10の X線焦点 11から出射された発散性の X線ビーム 12は,放 物面の人工多層膜ミラー 14で平行ビーム 16 (入射 X線)に変換されて,試料 18に照 射される。試料 18で回折された回折 X線 20は X線検出器 22で検出される。入射 X線 16に対する回折 X線 20のなす角度は 2 Θである。 [0016] この装置の使用方法を説明する。試料として (001)面が試料表面に平行になって いる GaAsの単結晶試料を考える。そして,使用する X線の波長として, Gaの K吸収 端の波長(0. 11957nm)を想定する。まず,極性判定の対象となる結晶格子面のブ ラッグ角 Θの 2倍の角度(2 Θ )のところに, X線検出器 22をもってくる。例えば, GaA s単結晶の(333)面を測定対象の結晶格子面とすると, Gaの K吸収端の波長(0. 1 1957nm)でのブラッグ角 Θは 33. 3度である。そして, 目的の結晶格子面(必ずしも 試料表面に平行とは限らない)で X線が回折するように,試料 18の姿勢を定める。と ころで,ブラッグ角 Θは, X線の波長に応じて変化するので, X線の波長が変われば ,回折 X線 20が検出される X線検出器 20の角度位置 (すなわち, 2 0 )が異なるはず である。逆に言えば,もし入射 X線が連続波長の X線であれば, 2 Θが変化するように X線検出器 20を動力して,それと同時に,入射 X線 16に対する試料 18の回転角度 ωを, X線検出器 20の 2分の 1の角速度で連動回転させれば(2 0 Ζ ωスキャン),回 折 X線強度の波長依存性を測定することができる。
[0017] 放物面の人工多層膜ミラー 14は,発散性の X線ビーム 12を平行ビーム 16に変換 することができて,かつ,この平行ビーム 16は,ある程度の波長の広がりをもっている 。平行性については,例えば, X線の発散角が 0. 05度以内である。また,波長の広 力 Sりは,極性判定に十分な程度の広がりである。例えば, Δ λ Ζ λ = 20%程度の広 力 Sりをもっている。波長の広がりは,もっと小さくても(例えば, 1%程度であっても), 極性判定にとっては十分である。そして,単結晶試料自体に分光機能の役割を果た させることで (すなわち, 2 0 Ζ ωスキャンを実行することで),回折強度の波長依存 性を測定できる。したがって, EXAFS装置で使うような大掛かりな単結晶分光装置を 用いることなく,多層膜ミラー 14を使うだけで,回折強度の波長依存性を測定するこ とがでさる。
[0018] 次に, GaAsウェハーを用いた測定例を説明する。図 2は GaAsウェハーの {333} 面のォモテ面,すなわち(333)面,を測定するときにおける,図 1の装置の斜視図で ある。回転対陰極 10のターゲット材質は Au (金)である。 GaAsウェハー 18は, 3軸 回転が可能な試料ホルダーに取り付けられている。 3軸回転について説明すると,ま ず,ゴ-ォメータの回転中心線 (鉛直方向に延びている)に一致する ω軸 26があり, この ω軸 26の周りにウェハー 18 (試料)を ω回転させることができる。次に,ウェハー 18の表面を通過して水平に延びる%軸 28の周りにウェハー 18を%回転させること ができる。さらに,ウェハー 18の表面の法線に垂直な φ軸 24の周りにウェハー 18を φ回転させることができる。ウェハー 18はオリフラ 30が真下にくる姿勢をとるものとし ,ウェハーの表面に GaAsの(001)面が平行であるとする。このような条件のときに, %軸 28を (すなわち,ウェハー 18を),入射 X線 12に平行な状態から, ω軸 28の周 りに,上から見て時計方向に, 33. 3度だけ回転し,さらに,ウェハー 18を%軸 28の 周りに,図 2の右方向から見て時計回りに, 53. 7度だけ回転する。このような姿勢に すると, Gaの Κ吸収端の波長(0. 11957nm)を有する X線力 GaAs (333)面で X 線回折して,その回折 X線 20が X線検出器 22で検出される。 ω力 ¾3. 3度の付近に おいて, 2 0 Ζ ωスキャンをして X線回折プロファイルを測定すると, GaAs (333)面 による回折 X線強度の波長依存性を測定することができる。このとき,上述の 2 θ / ω スキャンは,制御装置からの指令により, 自動的に実行される。そして,制御装置に 付属する測定指令手段により, Gaの Κ吸収端の波長を挟んだ所定の波長範囲につ いて,回折 X線強度の波長依存性が自動的に測定される。
[0019] 次に,ゥラ面の測定について説明する。図 2の状態から,ウェハー 18を φ軸 24の 周りに,時計方向に, 90度だけ回転すると,ウェハー 18の姿勢は図 3の状態になる。 すなわち,オリフラ 30がウェハー 18の左側に来る。この状態で,図 2のときと同様に X 線回折測定を実施すると, GaAs (33— 3)面による回折 X線強度の波長依存性を測 定することができる。
[0020] 図 6はォモテ面の測定結果とゥラ面の測定結果を重ね合わせて示したものである。
ォモテ面の回折 X線強度は I (GaAs, 333)で表している。そして, I (GaAs, 333)を ,標準試料としての Si (シリコン)の(333)面での同一波長での回折 X線強度 I (Si, 3 33)で割り算して,回折強度を規格ィ匕している。このように規格ィ匕することで,入射 X 線強度の波長依存性の影響をなくしている。したがって,縦軸は,このような相対 X線 強度である。横軸は X線の波長である。図 6のグラフは, 0. 115nm力 0. 125nmの 波長範囲のデータを示している。この波長範囲は, Au— L r?特性 X線の近傍の波長 帯の連続波長部分に相当する。 [0021] 図 2及び図 3の状態で X線回折測定を実施すると, 2 Θの変化に対して,回折 X線 強度の変化が求まるが, 20を波長えに換算することで,図 6のグラフを描くことがで きる。 2 Θを波長えに換算するには, Ga (333)の格子面間隔の数値を用いて,ブラッ グの式で計算する。ゥラ面の回折 X線強度 I(GaAs, —3— 3— 3)についても同様で ある。なお,図 3において実際に測定したのは Ga(33— 3)であるが,その測定結果 は Ga (-3-3-3)のデータとして表示して!/、る。 Ga (33— 3)と Ga (— 3— 3— 3)は ,どちらもゥラ面に属する,等価な結晶格子面である。
[0022] 図 6において, Gaの K吸収端よりも波長の長い領域 (エネルギーの小さい領域)で は,ォモテ面とゥラ面とで,回折 X線強度はほぼ同じである。これに対して, Gaの K吸
Figure imgf000010_0001
、領域)では,ォモテ面とゥラ面とでは ,回折 X線強度がかなり異なる。この差異を利用して,ォモテ面とゥラ面を判定するこ とがでさる。
[0023] 図 7は,ォモテ面の測定結果だけを示したグラフである。 Gaの K吸収端( λ =0. 11 957nm)よりも短波長の λ 1(=0. 116nm)とえ 2( = 0. 117nm)において,相対 X 線強度を求めると,それらは,それぞれ, KGaAs, 333, ll)/l(Si, 333, λΐ)と , KGaAs, 333, 2)/l(Si, 333, 2)【こなる。それらの値 ίま,どちらち,約 1. 1で ある。同様にして, Gaの Κ吸収端よりも長波長の a ( = 0. 121nm)とえ b ( = 0. 122 nm)において,相対 X線強度を求めると,それらは,それぞれ, KGaAs, 333, la) /I (Si, 333, a)と, I(GaAs, 333, lb) /I (Si, 333, λ b)と表すこと力 ^でき,そ れらの値は,どちらも,約 2.0である。
[0024] これらの数値をもとにして,ォモテ面について,吸収端よりも長波長側の回折 X線強 度に対する,吸収端よりも短波長側の回折 X線強度の比率 (以下,極性判定比率と いう)を求めると,図 9の(1)式のように,約 0. 55となる。
[0025] 図 8は,ゥラ面の測定結果だけを示したグラフである。 Gaの K吸収端(λ =0. 1195 7nm)よりも短波長の λ1( = 0. 116nm)とえ 2( = 0. 117nm)で,相対 X線強度を 求めると,それらは,それぞれ, KGaAs, -3-3-3, λ l)/l(Si, 333, λΐ)と, I (GaAs, -3-3-3, 12)/l(Si, 333, λ 2)と表すことができる。それらの値は,ど ちらも,約 1. 7である。同様にして, Gaの Κ吸収端よりも長波長の a( = 0. 121nm) とえ b ( = 0. 122nm)で,相対 X線強度を求めると,それらは,それぞれ, KGaAs, - 3- 3 - 3, l a) /l (Si, 333, a)と, I (GaAs, —3— 3— 3, l b) /I (Si, 333, b)と表すことができて,それらの値は,どちらも,約 2. 0である。
[0026] これらの数値をもとにして,ゥラ面について,極性判定比率を求めると,図 9の(2)式 のように,約 0. 85となる。
[0027] 以上述べたように,ォモテ面とゥラ面について極性判定比率を求めたところ,約 0.
55と約 0. 85という,明確な違いが得られた。そこで,ォモテ面力ゥラ面かが不明な G a{ 111 }面について,その極性判定比率を測定することで,ォモテ面力ゥラ面かを判 定することができる。すなわち,極性判定比率が 0. 55付近になればォモテ面であり , 0. 85付近になればゥラ面である。
[0028] 図 12は,極性判定の手順を示したフローチャートである。ステップ S1で,極性のォ モテとゥラの存在位置が既知の試料 (例えば, GaAs単結晶)を準備して,極性を判 定したい結晶格子面(例えば, GaAsの {333}面)のォモテとゥラの両方について, 試料に含まれるひとつの元素(例えば, Ga)の吸収端 (例えば, K吸収端)の波長の 付近で,図 1に示すように 2 θ Ζωスキャンを実施して,回折 X線強度の波長依存性 を測定する。ステップ S2では,標準試料 (例えば, Si単結晶)の所定の結晶格子面( 例えば, (333)面)について,同様の 2 0 Ζωスキャンを実施して,回折 X線強度の 波長依存性を測定する。ステップ S3では,ステップ S1で求めた既知試料のォモテと ゥラの回折 X線強度を,同一の波長における,ステップ S2で求めた標準試料の回折 X線強度で,割り算して,回折 X線強度を規格化する。ステップ S4では,その規格ィ匕 した回折 X線強度を用いて,吸収端の長波長側の強度に対する短波長側の強度の 比率を計算して,これを,極性判定比率とする。そして,ォモテとゥラについて,それ ぞれ,極性判定比率を求める。ステップ S5では,対象試料 (すなわち,ォモテとゥラ の位置が不明の GaAs単結晶)について,ステップ S1と同様にして X線回折測定を 実施する。ステップ S6では,ステップ S3と同様に回折 X線強度を規格ィ匕する。ステツ プ S7では,規格ィ匕したあとの対象試料の回折 X線強度を用いて,極性判定比率を計 算する。ステップ S8では,ステップ S7で取得した極性判定比率と,ステップ S4で取 得したォモテとゥラの極性判定比率とを比較して,対象試料の測定部分の極性がォ モテなのか,ゥラなのかを判定する。ステップ 4及びステップ 7における極性判定比率 の取得作業,並びに,ステップ 8における判定作業は,制御装置に付属する判定手 段によって, 自動的に実行される。
[0029] 図 13は極性判定の別の手順を示したフローチャートである。図 12の手順では,ォ モテとゥラの存在位置が既知の試料を用いて,あら力じめ,ォモテの極性判定比率と ゥラの極性判定比率とを実測して 、るが,実測する代わりに理論値を用いることもで きる。図 13の手川頁において,ステップ S9, SIO, Sl l, S12は,図 12の手川頁における ステップ S5, S2, S6, S7と同じである。そして,図 13のステップ S13では,結晶構造 因子を計算している。ステップ S14では吸収補正を計算している。結晶構造因子と吸 収補正は,対象試料の目的の結晶格子面で回折する X線の強度を理論的に計算す るために必要なものである。そして,ステップ S 15で極性判定比率の理論値を計算す る。すなわち,極性を判定したい結晶格子面について,まず,ォモテ面であると仮定 して,所定の吸収端の長波長側でのどれかひとつの X線波長における理論的な回折 X線強度を計算し,さらに,所定の吸収端の短波長長側でのどれかひとつの X線波 長における理論的な回折 X線強度を計算して,両者の比率を計算する。これにより, ォモテ面についての理論的な極性判定比率が求まる。次に,ゥラ面であると仮定した 場合の理論的な極性判定比率も同様に計算する。次に,ステップ S6で,ステップ S1 2で取得した極性判定比率と,ステップ S 14で取得したォモテとゥラの理論的な極性 判定比率とを比較して,対象試料の測定部分がォモテなの力,ゥラなのかを判定す る。なお,この図 13の手順では,理論的に求めた極性判定比率の信頼性が重要で あるので,極性を有する少なくともひとつの試料について,理論的な極性判定比率と ,実測した極性判定比率とが,極性判定に使えるほど十分に接近していることを確認 する必要がある。
[0030] 図 14は極性判定をする試料の一例である。図 14 (A)は GaAs単結晶のウェハー 1 8 (試料)であり,ウェハー 18の表面が(001)面に平行である。オリフラ 30の方向に は,図 5に示す(111)面または(- 1— 1— 1)面,すなわちォモテ面,が存在する。そ して,そこからウェハー表面の法線の周りに時計方向に 90度回転した方向にゥラ面 力 180度回転した方向にォモテ面が, 270度回転した方向にゥラ面が存在する。と ころで,あら力じめオリフラ 30の方向に { 111 }面が来るように作ったウェハーは,図 1 4 (A)のほかに,図 14 (B)のタイプも存在する。この図 14 (B)のウェハー 18は,オリ フラ 30の方向に,図 5に示す(11 1)面または(1 11)面,すなわちゥラ面,が存 在する。そして,そこからウェハー表面の法線の周りに時計方向に 90度ずつ回転し た方向に,順に,ォモテ面,ゥラ面,ォモテ面が存在する。本発明の極性判定方法に よれば,図 2に示すウェハー姿勢で回折 X線の波長依存性を測定して極性判定をす れば,その GaAsウェハーが図 4 (A)のタイプなの力,図 4 (B)のタイプなのかを判別 することができる。
[0031] 図 14に示す試料は単結晶ウェハー自体の極性を判定するものであるが,基板上 に成膜した単結晶膜 (例えば,ェピタキシャル成長膜)を極性判定の対象とすることも できる。なお、基板上の薄膜を極性判定対象とする場合は、測定された回折データ( 薄膜の回折データに基板の回折データが重なっていることがある)から基板の回折 データを引き算してから、上述の極性判定をするのが好ましい。
[0032] 次に,連続波長の X線を用いた極性判定と,特性 X線を用いた高分解能の X線分 祈との切り換え作業について説明する。図 1の装置構成において,入射 X線 12に対 する多層膜ミラー 14の姿勢をわずかに変更すると,平行ビーム 16として,連続波長 の X線を取り出せると状態と,特性 X線を取り出せる状態とに切り換えることができる。 そのようなことを可能にするためには,特性 X線のすぐ近くに存在するような連続波長 部分を極性判定に使うことが大切になる。上述の実施例では, GaAs{333}面のォモ テとゥラの極性判定をするために, Auのターゲットを使っているが,その理由は, Au ターゲットによる特性 X線の波長と, Gaの K吸収端の波長とが,近くにあることにある
[0033] 図 4は多層膜ミラーの姿勢を変化させて,取り出す波長領域を変更することを説明 する説明図である。図 4 (A)において,多層膜ミラー 14の姿勢を調整することで, X 線焦点 11から出射された入射 X線 12は,多層膜ミラー 14で反射して, Gaの K吸収 端よりも少し波長の短い領域の連続波長の平行ビーム 16が取り出される。多層膜ミラ 一 14は,その反射面の中央の回転中心線 32の周りに回転することで,その姿勢を 調節することができる。 [0034] 上述の図 4 (A)は極性判定のための平行ビーム 16を取り出す状態であるが,これ を図 4 (B)に示すように,特性 X線の平行ビーム 16を取り出す状態に変更することが できる。例えば, Gaの K吸収端の波長付近を取り出せるようにした図 4 (A)の状態か ら, AuL o; 1の特性 X線の波長をうまく取り出せるようにした図 4 (B)の状態にするに は,多層膜ミラー 14を回転中心線 32の周りに,反時計方向に 0. 057度だけ回転さ せる。このように,必要な回転角度はわずかなものである。
[0035] 図 11は,図 4 (A)の状態で X線を取り出したときの平行ビーム 16の X線強度の波長 依存性と,図 4 (B)の状態で X線を取り出したときの平行ビーム 16の X線強度の波長 依存性とを比較して示したグラフである。細線で描 、た曲線 34が図 4 (A)のときの X 線強度であり,太線で描いた曲線 36が図 4 (B)のときの X線強度である。これらのダラ フは,この波長領域に吸収端を持たない Si単結晶の(004)面を分光結晶として用い て測定したものである。 Gaの K吸収端の波長(図 11では GaKと表示している)は, 0. 11957nmであり,一方, AuL α 1 (Auの特性 X線のひとつ)の波長は, 0. 12763η mであり,両者はかなり近い位置にある。したがって,多層膜ミラーの角度をわずかに 変更するだけで, Gaの K吸収端付近の X線を取り出す状態から, AuL a lを取り出 す状態へと切り換えることができる。
[0036] 図 10 (A)は極性判定と高分解能の X線分析とを切り換えることのできる X線分析装 置の構成を示す平面図であり,図 1の構成図を,より具体ィ匕したものである。多層膜ミ ラー 14と試料 18の間には入射スリット 38がある。多層膜ミラー 14と入射スリット 38の 間には, 4結晶モノクロメータ 39を挿入したり,外したりすることができる。多層膜ミラ 一 14は回転中心線 32の周りに回転可能である。入射スリット 38は図 10の上下方向 に移動可能である。ゴ-ォメータ'ベース 40には 2 Θ回転台 42と試料台 44が回転可 能に搭載さいされていて,それらは,ゴ-ォメータの回転中心線 46の周りに,それぞ れ,独立して回転できる。 2 Θ回転台 42には受光スリット 48と X線検出器 22が取り付 けられて 、る。ゴ-ォメータ ·ベース 40は図 10の上下方向に移動可能である。
[0037] 図 10 (A)は, GaAsウェハーの極性判定をするための装置状態を示している。多 層膜ミラー 14は図 4 (A)の状態にある。この状態から, AuL a lを用いる高分解能の X線分析が可能な状態に切り換える方法を説明する。図 10 (B)において, 4結晶モノ クロメータ 39を多層膜ミラー 14と入射スリット 38の間に挿入する。そして,多層膜ミラ 一 14を図 4 (B)に示すように,反時計方向に 0. 057度だけ回転させる。多層膜ミラー 14を回転させると,平行ビーム 16の出てくる方法がわずかに変化するので,その平 行ビーム 16がゴ-ォメータの回転中心線 46を通過するように,ゴ-ォメータ.ベース 40を図 10の上方向にわずかに移動させる。同様に,入射スリット 38も,平行ビーム 1 6がうまく通過するように,図 10の上方向にわずかに移動させる。このような調整を実 施することで, AuL a lからなる平行ビームを取り出すことができて,さらにこれを 4結 晶モノクロメータで単色化かつ平行ィ匕して,この平行ビームを用いて高分解能の X線 分析を実施することができる。
[0038] 高分解能の X線分析とは, 0. 01度以下の角度分解能が必要な測定を意味してお り,例えば,粉末試料の X線回折測定や,薄膜試料の結晶性を評価するためのロッ キングカーブ測定や,逆格子マップ測定などの X線回折測定など,あるいは, X線反 射率測定がこれに該当する。
[0039] ところで,多層膜ミラーの角度の変更を省略することもできる。図 11のグラフにおい て,曲線 36 (特性 X線 AuL a 1に合うように多層膜ミラーが調整された場合)を使って も, Gaの K吸収端付近での波長の X線強度はそこそこにあることが分かる。もしこの 程度の X線強度でも極性判定に支障がなければ,曲線 36の状態で極性判定をする こともできる。この場合は,図 10に示すような切り換え作業が不要になり,図 10 (B)に 示す状態で,まず, 4結晶モノクロメータ 39を外して極性判定を実施し,次に, 4結晶 モノクロメータ 39を挿入して高分解能の X線分析を実施できる。
[0040] 本発明は上述の実施例に限定されず,次のような変更が可能である。
(1)図 9の(1)式及び(2)式において,吸収端の長波長側の回折 X線強度は二つ の波長の平均をとつており,短波長側の回折 X線強度も二つの波長の平均をとつて いるが,それぞれ,単一の波長の回折 X線強度を用いてもよいし,三つ以上の波長 につ 、ての回折 X線強度の平均をとつてもよ!、。
[0041] (2)上述の実施例では,極性のある試料として GaAsを例示しているが,本発明は その他の単結晶試料にも適用できる。例えば, Zn, Ga, Ge, As, Taを含む化合物 の単結晶で,極性のあるものについては, Auターゲットを用いて,極性判定をするこ とができる。 Znを含む化合物の場合, Znの K吸収端の波長は 0. 1283nmである。こ の波長付近で調整されて 、る多層膜ミラーを,図 4 (A)の状態力も図 4 (B)の状態 (A uL a lを取り出す状態)に切り換えるには,多層膜ミラーを時計方向に 0. 005014度 だけ回転させればよい。同様に, Geを含む化合物の場合, Geの K吸収端の波長は 0. 1117nmである。この波長付近で調整されている多層膜ミラーを,図 4 (A)の状態 から図 4 (B)の状態 (AuL a 1を取り出す状態)に切り換えるには,多層膜ミラーを反 時計方向に 0. 11389度だけ回転させればよい。さらに, Asを含む化合物の場合, Asの K吸収端の波長は 0. 1045nmである。この波長付近で調整されている多層膜 ミラーを図 4 (A)の状態力 図 4 (B)の状態 (AuL a 1を取り出す状態)に切り換える には,多層膜ミラーを反時計方向に 0. 16546度だけ回転させればよい。 Zn, Ge, A sの K吸収端の波長と AuL a 1との位置関係は図 11のグラフに示してある。また、 Ta を含む化合物の場合は、 Taの L吸収端の波長(L =0. 1059nm, L =0. 11124η
1 2
m, L =0. 12542nm)の付近を使うように多層膜ミラーを調整する。そして、多層膜
3
ミラーをわずかに回転することで、この波長付近で調整されている多層膜ミラーを、 A uL a 1を取り出す状態に切り換えることができる。
[0042] Znを含む化合物で極性のある結晶としては, ZnO,及び,固溶体結晶として, ZnO
-MgO, ZnO-CoO, ZnO— CdOがある。 Gaを含む化合物で極性のある結晶とし ては, 「GaAs, GaP, GaSb,及び,これらと InAs, A1Pなどの多くの閃亜鉛鉱型の 結晶構造を有するものの固溶体結晶である, 3— 5族化合物半導体結晶」, 「La Ga
3 5
SiO , La Ga Ta O などのいわゆるランガサイト型結晶構造の固溶体結晶」, 「
14 3 5. 5 0. 5 14
GaN及びウルッ型の結晶構造を有する 3族 窒化物化合物半導体結晶」,並びに, 「LiGaO , LiGaO — LiAlOなどの固溶体結晶」がある。 Geを含む化合物で極性
2 2 2
のある結晶としては, La Ga GeO などのいわゆるランガサイト型結晶構造の固溶体
3 5 14
結晶がある。 Asを含む化合物で極性のある結晶としては, GaAs, InAs, AlAs,及 び,これらと GaP, InSbなどの多くの閃亜鉛鉱型の結晶構造を有するものの固溶体 結晶である, 3— 5族化合物半導体結晶がある。 Taを含む化合物で極性のある結晶 としては, LiTaO -LiNbOや KTaO —KNbOなどの固溶体がある。
3 3 3 3
[0043] (3)上述の実施例では, X線源として Auターゲットを用いているが,吸収端波長と 特性 X線波長との位置関係から, W (タングステン)ターゲットや, Pt (白金)ターゲット を用いても,極性判定がうまくいく場合がある。
[0044] (4)試料はバルタの単結晶だけではなく,単結晶基板上に成長させたェピタキシャ ル薄膜であってもよい。
[0045] (5)上述の実施例では, Si単結晶の回折 X線強度を用いて規格ィ匕しているが,入 射 X線強度の波長依存性が小さい場合には,このような規格ィ匕を省略してもよい。
[0046] (6)図 1の実施例では, X線源として回転対陰極 X線管を例示したが,封入管式の X線管を用いてもよい。

Claims

請求の範囲
[1] 次の各段階を備える単結晶試料の極性判定方法。
(ァ)複数の元素から構成されて!、て極性を有する単結晶試料 (18)を準備する段階
(ィ)前記複数の元素の!/、ずれかの元素の吸収端の波長を挟んだ所定の波長範囲 の X線を発生させることのできる X線源(10)を準備する段階。
(ゥ)前記 X線源力ゝら出射された発散性の X線ビーム(12)を放物面多層膜ミラー(14
)で反射させて,前記所定の波長範囲の X線を含む平行ビーム(16)を作る段階。
(ェ)前記平行ビームを入射 X線として前記単結晶試料に照射して,前記単結晶試料 力もの回折 X線 (20)の強度を X線検出器 (22)で検出する段階。
(ォ)前記入射 X線に対する前記単結晶試料の回転角度 ωと,前記入射 X線に対す る前記回折 X線のなす角度 2 0とを, 1対 2の角速度比で連動してスキャンすることに より,前記複数の元素のいずれかの元素の吸収端の波長を挟んだ波長範囲で,前 記回折 X線の強度の波長依存性を測定する段階。
(力)前記吸収端よりも長波長側での回折 X線強度に対する,前記吸収端よりも短波 長側での回折 X線強度の比率を求めて,その比率の値に基づ 、て前記極性を判定 する段階。
[2] 請求項 1に記載の極性判定方法にぉ 、て,極性を有しな 、標準試料にっ 、ても, 極性を有する前記単結晶試料と同様に回折 X線強度を求めて,前記単結晶試料の 各波長での回折 X線強度を,前記標準試料の同じ波長での回折 X線強度で割り算し て,規格ィ匕した回折 X線強度を求めて,この規格ィ匕した回折 X線強度に基づいて,前 記比率を求めることを特徴とする極性判定方法。
[3] 請求項 1に記載の極性判定方法において,前記単結晶試料はウェハーの形状で あることを特徴とする極性判定方法。
[4] 請求項 1に記載の極性判定方法において,前記単結晶試料は基板上に成膜した 単結晶膜であることを特徴とする極性判定方法。
[5] 請求項 1に記載の極性判定方法において,前記単結晶試料は Ga, Zn, Ge及び A sのいずれかを含む化合物であり,前記 X線源のターゲットの材質は Au, W及び Pt のいずれかであり,前記多層膜ミラーは Ga, Zn, Ge及び Asのいずれかの K吸収端 の付近の波長を反射させるように調整されることを特徴とする極性判定方法。
[6] 請求項 1に記載の極性判定方法において,前記単結晶試料は Taを含む化合物で あり,前記 X線源のターゲットの材質は Au, W及び Ptのいずれかであり,前記多層膜 ミラーは Taの L吸収端の付近の波長を反射させるように調整されることを特徴とする 極性判定方法。
[7] 次の構成を備える単結晶試料の極性判定装置。
(ァ)所定の材質のターゲットを有する X線管(10)。
(ィ)前記 X線管から出射される X線 ( 12)を反射して平行ビーム(16)に変換する放物 面の多層膜ミラー(14)。
(ゥ)複数の元素から構成されて ヽて極性を有する単結晶試料(18)を保持する試料 ホノレダ一。
(ェ)前記単結晶試料力ゝらの回折 X線 (20)を検出する X線検出器 (22)。
(ォ)前記平行ビームに対する前記単結晶試料の回転角度 ωと,前記平行ビームに 対する前記 X線検出器とのなす角度 2 Θとを連動してスキャンする制御装置。
(力)前記平行ビームを入射 X線として前記単結晶試料に照射して,前記単結晶試料 からの回折 X線の強度を X線検出器で検出する作業を実施し,前記角度 ωと前記角 度 2 0とを 1対 2の角速度比で連動してスキャンすることにより,前記複数の元素のい ずれかの元素の吸収端の波長を挟んだ波長範囲で,前記回折 X線の強度の波長依 存性を測定する測定指令手段。
(キ)前記吸収端よりも長波長側での回折 X線強度に対する,前記吸収端よりも短波 長側での回折 X線強度の比率を求めて,その比率の値に基づ 、て前記極性を判定 する判定手段。
[8] 請求項 7に記載の極性判定装置において,前記多層膜ミラーは前記 X線管から出 射される X線に対して角度を変更可能であることを特徴とする極性判定装置。
[9] 請求項 7に記載の極性判定装置において,前記ターゲットの材質は Au, W及び Pt のいずれかであり,前記多層膜ミラーは Ga, Zn, Ge及び Asのいずれかの K吸収端 の付近の波長を反射するように調整可能であることを特徴とする極性判定装置。
[10] 請求項 7に記載の極性判定装置において,前記ターゲットの材質は Au, W及び Pt のいずれかであり,前記多層膜ミラーは Taの L吸収端の付近の波長を反射するよう に調整可能であることを特徴とする極性判定装置。
[11] 請求項 7に記載の極性判定装置において,前記ターゲットの材質は Au, W及び Pt のいずれかであり,前記多層膜ミラーは, Ga, Zn, Ge及び Asのいずれかの K吸収 端の付近の波長と,前記ターゲットの特性 X線の波長,のいずれかを選択的に反射 するように調整可能であることを特徴とする極性判定装置。
[12] 請求項 7に記載の極性判定装置において,前記ターゲットの材質は Au, W及び Pt のいずれかであり,前記多層膜ミラーは, Taの L吸収端の付近の波長と,前記ターゲ ットの特性 X線の波長,の 、ずれかを選択的に反射するように調整可能であることを 特徴とする極性判定装置。
PCT/JP2006/317095 2005-09-05 2006-08-30 単結晶試料の極性判定方法及び装置 WO2007040000A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007538665A JP4615022B2 (ja) 2005-09-05 2006-08-30 単結晶試料の極性判定方法及び装置
US11/991,495 US7680246B2 (en) 2005-09-05 2006-08-30 Method and device for judging polarity of single crystal sample
EP06797068.1A EP1942336B1 (en) 2005-09-05 2006-08-30 Method and device for judging polarity of single crystal sample

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-257154 2005-09-05
JP2005257154 2005-09-05

Publications (1)

Publication Number Publication Date
WO2007040000A1 true WO2007040000A1 (ja) 2007-04-12

Family

ID=37906044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317095 WO2007040000A1 (ja) 2005-09-05 2006-08-30 単結晶試料の極性判定方法及び装置

Country Status (4)

Country Link
US (1) US7680246B2 (ja)
EP (1) EP1942336B1 (ja)
JP (1) JP4615022B2 (ja)
WO (1) WO2007040000A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025211B2 (ja) * 2013-11-28 2016-11-16 株式会社リガク X線トポグラフィ装置
DE102015226101A1 (de) * 2015-12-18 2017-06-22 Bruker Axs Gmbh Röntgenoptik-Baugruppe mit Umschaltsystem für drei Strahlpfade und zugehöriges Röntgendiffraktometer
JP6864888B2 (ja) * 2016-07-15 2021-04-28 株式会社リガク X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3691827B2 (ja) * 2003-05-29 2005-09-07 株式会社リガク 逆格子マップの測定範囲の設定方法
JP3697246B2 (ja) * 2003-03-26 2005-09-21 株式会社リガク X線回折装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548556B2 (ja) * 2001-12-28 2004-07-28 株式会社リガク X線回折装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697246B2 (ja) * 2003-03-26 2005-09-21 株式会社リガク X線回折装置
JP3691827B2 (ja) * 2003-05-29 2005-09-07 株式会社リガク 逆格子マップの測定範囲の設定方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BARNS R.L., KEVE E.T., ABRAHAMS S.C.: "X-ray Determination of Polarity Sense by Anomalous Scattering at an Absorption Edge", JOURNAL OF APPLIED CRYSTALLOGRAPHY, vol. 3, 1970, pages 27 - 32, XP003011514 *
IKEDA S. ET AL.: "Epitaxial growth and domain coalescence of sexithiophene induced by the steps on cleaved KBr(001)", JOURNAL OF CRYSTAL GROWTH, vol. 265, no. 1-2, 2004, pages 296 - 301, XP004501015 *
IKEDA T. ET AL.: "Epitaxial growth on MnAs on single-crystalline Mn-Zn ferrite substrates", JOURNAL OF CRYSTAL GROWTH, vol. 208, no. 1-4, 2000, pages 395 - 400, XP004252158 *
MATSUNO S. ET AL.: "Kokyodo X-sen to Tajiku Gonio o Yusuru Usumaku Kaiseki Sochi ni yoru X-sen hansharitsu Sokutei to Fukasa Seigyo In-Plane X-sen Kaisetsu (X-Ray Reflectivity and Depth-Resolved In-Plane X-Ray Diffraction Studies of Thin Films Using a High Performance....)", ADVANCES IN X-RAY CHEMICAL ANALYSIS (X-RAY ANALYSIS), vol. 30, no. 34TH SERIES, 1999, pages 189 - 203, XP003011515 *
MINEGISHI T. ET AL.: "Selective growth of Zn- and O-polar ZnO layers by plasma-assisted molecular beam epitaxy", JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, vol. 23, no. 3, May 2005 (2005-05-01), pages 1286 - 1290, XP012079973 *
See also references of EP1942336A4 *

Also Published As

Publication number Publication date
JP4615022B2 (ja) 2011-01-19
EP1942336A4 (en) 2009-06-24
EP1942336B1 (en) 2014-11-05
EP1942336A1 (en) 2008-07-09
US7680246B2 (en) 2010-03-16
JPWO2007040000A1 (ja) 2009-04-16
US20090225946A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US20200284733A1 (en) Methods And Systems For Measurement Of Thick Films And High Aspect Ratio Structures
TWI536014B (zh) 用於分析來自傾斜層的x射線繞射之方法及設備
US6385289B1 (en) X-ray diffraction apparatus and method for measuring X-ray rocking curves
CN102269623B (zh) 垂直入射宽带偏振光谱仪和光学测量系统
US9170156B2 (en) Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system
US11137350B2 (en) Mid-infrared spectroscopy for measurement of high aspect ratio structures
JPH0755729A (ja) X線分析装置
WO2015146287A1 (ja) ビーム生成ユニットおよびx線小角散乱装置
JP2004045369A (ja) 多結晶材料の配向性の評価方法
JPH0949811A (ja) X線回折装置の光学系切換装置
Tanner et al. Advanced X-ray scattering techniques for the characterization of semiconducting materials
WO2007040000A1 (ja) 単結晶試料の極性判定方法及び装置
US20230324283A1 (en) Spectroscopic ellipsometry system for thin film imaging
Fewster Alignment of double-crystal diffractometers
US20230266233A1 (en) System for measuring thickness and physical properties of thin film using spatial light modulator
Omote et al. Convergent-beam parallel detection x-ray diffraction system for characterizing combinatorial epitaxial thin films
CN103162830B (zh) 包含参考光束的垂直入射光谱仪及光学测量系统
CN103185638B (zh) 宽带偏振光谱仪和光学测量系统
US11668645B2 (en) Spectroscopic ellipsometry system for thin film imaging
Kovalev et al. Ellipsometry based spectroscopic complex for rapid assessment of the Bi2Te3-xSexthin films composition
JPH03289547A (ja) 格子定数測定方法及び測定装置
JP2006337122A (ja) X線分光装置
Altewischer Sub-wavelength hole arrays, surface plasmons and quantum entanglement
JPS63273098A (ja) X線モノクロメ−タ
Gałdecka Multiple-crystal–pseudo-non-dispersive techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538665

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11991495

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006797068

Country of ref document: EP