WO2007037181A1 - アルカリ乾電池 - Google Patents

アルカリ乾電池 Download PDF

Info

Publication number
WO2007037181A1
WO2007037181A1 PCT/JP2006/318883 JP2006318883W WO2007037181A1 WO 2007037181 A1 WO2007037181 A1 WO 2007037181A1 JP 2006318883 W JP2006318883 W JP 2006318883W WO 2007037181 A1 WO2007037181 A1 WO 2007037181A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
nickel
positive electrode
battery
oxyhydroxide
Prior art date
Application number
PCT/JP2006/318883
Other languages
English (en)
French (fr)
Inventor
Hidekatsu Izumi
Tadaya Okada
Yasuo Mukai
Michiko Fujiwara
Shigeto Noya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/885,663 priority Critical patent/US7476466B2/en
Priority to EP06798271A priority patent/EP1930971A1/en
Priority to JP2007537594A priority patent/JPWO2007037181A1/ja
Publication of WO2007037181A1 publication Critical patent/WO2007037181A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/182Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells with a collector centrally disposed in the active mass, e.g. Leclanché cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/023Gel electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an alkaline dry battery containing nickel oxyhydroxide powder and manganese dioxide powder as a positive electrode active material.
  • An alkaline dry battery containing nickel oxyhydroxide powder as a positive electrode active material has excellent high-load discharge characteristics as compared with a conventional alkaline dry battery. Therefore, it is becoming popular as the main power source for digital devices such as those represented by digital cameras.
  • digital devices for example, digital cameras have various functions such as strobe light emission, optical lens insertion / removal, liquid crystal display, and image data writing to recording media! Therefore, a battery used as a power source for digital devices must be able to instantly obtain heavy load power according to various functions.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-15106
  • Patent Document 2 it has been proposed in Patent Document 2 that it is added to the positive electrode mixture, and the calcium oxide compound contains the corrosion of the zinc alloy powder due to the raw materials and manufacturing method of the calcium oxide.
  • impurities such as iron elements that promote food.
  • the battery's leakage resistance decreases during long-term storage at room temperature.
  • There are also problems such as battery temperature becoming high when the battery is short-circuited.
  • the present invention improves the discharge characteristics by optimizing the positive electrode active material powder and additives contained in the positive electrode and the negative electrode active material powder used for the negative electrode, and suppressing the polarization during heavy load pulse discharge. It is an object of the present invention to provide an alkaline dry battery that is highly reliable in terms of safety when a battery is short-circuited.
  • a positive electrode active material comprising an oxyhydroxide-nickel powder and a diacid-manganese powder, a conductive agent comprising graphite, and a positive electrode comprising a calcium compound;
  • a negative electrode active material comprising zinc powder or zinc alloy powder, a negative electrode comprising a gelling agent and a potassium hydroxide aqueous solution,
  • the positive electrode contains a calcium compound having an iron element content of 150 ppm or less, in an amount of 0.1 to 10 mol% with respect to the positive electrode active material,
  • the nickel oxyhydroxide powder has an average nickel valence of 2.95 or more and 8-18. having an average particle size of ⁇ m,
  • the zinc powder or the zinc alloy powder includes a first powder having a particle size of more than 75 ⁇ m and not more than 425 ⁇ m, a second powder having a particle size of more than 5 ⁇ m and not more than 75 ⁇ m, And the weight ratio of the first powder to the second powder is 65:35 to 75:25, and the concentration of the aqueous potassium hydroxide solution is 33 to 35% by weight. It is characterized by.
  • the oxyhydroxide-nickel powder has a full width at half maximum of the (101) plane in the powder (X-ray diffraction) of 0.6 to 0.8 deg. ⁇ 0.7deg. / 2 ⁇ It is preferable to be obtained by acidifying a nickel hydroxide powder.
  • the surface area of the negative electrode active material that affects the discharge reaction is increased.
  • the polarization of the negative electrode can be suppressed, the heavy load pulse discharge characteristics of the alkaline battery can be improved.
  • the calcium compound is preferably acid calcium or hydroxide calcium.
  • FIG. 2 is a powder X-ray diffraction pattern of nickel hydroxide nickel powder.
  • the inventors of the present invention have used an oxyhydroxide-nickel powder used as a positive electrode active material to oxidize nickel-hydroxide with controlled crystallinity for secondary batteries. Based on the fact that the product was obtained, the oxyhydroxide-nickel powder for alkaline batteries suitable for the characteristics of digital devices In order to obtain a powder, we optimized the crystallinity of the raw material nickel hydroxide powder.
  • the first powder has a particle size greater than 75 ⁇ m and less than 425 ⁇ m
  • the second powder has a particle size of less than 75 ⁇ m.
  • the particle size of the first powder exceeds 425 ⁇ m
  • the specific surface area of the whole becomes small.
  • the reaction efficiency of the negative electrode decreases.
  • the particle size of the second powder is less than 5 m, the reaction efficiency of the negative electrode will be too high.
  • the temperature rise when the battery is short-circuited becomes large, which is not preferable because the amount of gas generated in the battery increases.
  • Examples of a method for obtaining the negative electrode active material powder as described above, for example, a zinc alloy powder include a gas atomization method.
  • a gas atomization method zinc alloy powder can be obtained as follows.
  • a zinc ingot is melted and, for example, a metal contained in an alloy such as Bi, In, or A1 is added.
  • the molten zinc alloy is allowed to flow down through the nozzle force for flowing down, and zinc alloy powder can be obtained by blowing compressed air onto the flowing-out alloy.
  • the particle size of the obtained zinc alloy powder can be controlled by adjusting the pressure at which the compressed air is blown or adjusting the distance between the flowing alloy and the compressed air blowing portion. Thereby, the first powder and the second powder can be obtained.
  • a gelled negative electrode obtained by mixing a negative electrode active material powder, a potassium hydroxide aqueous solution, and a gelling agent and gelling by a conventionally known method is used. it can.
  • a conventionally known gelling agent can be used.
  • An example is sodium polyacrylate.
  • the concentration of the aqueous potassium hydroxide solution is preferably 33 to 35% by weight. When the concentration of the potassium hydroxide aqueous solution is 33% by weight or more, the heavy load pulse discharge characteristics are further improved. On the other hand, when the concentration is 35% by weight or less, it is possible to suppress the diffusion of the negative electrode active material such as zinc reaction product when the battery is short-circuited. As a result, an increase in battery temperature can be suppressed.
  • the positive electrode preferably contains a calcium compound.
  • the calcium compound content is 0.1 mol% or more of the total amount of the positive electrode active material, the heavy load pulse discharge characteristics can be further improved.
  • the proportion of the positive electrode active material contained in the positive electrode is maintained by being 10 mol% or less. As a result, a better battery capacity can be obtained.
  • Calcium compounds for example, use limestone that exists in nature as a raw material, and therefore many impurities such as iron elements are mixed depending on the degree of purification at the manufacturing stage. Impurities such as iron elements promote the corrosion of zinc alloy powder, which is the negative electrode active material for batteries.
  • iron element in the calcium compound is 150 ppm or less, leakage resistance and safety in the event of a battery short circuit can be improved.
  • Calcium compounds are preferred because they have the same effect when they are oxidized or hydrated calcium or calcium hydroxide! /.
  • the content of the iron element contained in the calcium compound can be measured, for example, by the following method.
  • the Fe concentration in the measurement sample is measured by ICP emission spectrometry or atomic absorption spectrometry.
  • the measurement method is the calibration curve method with the same matrix (hydrochloric acid, calcium concentration) or the standard addition method. In either method, appropriate measurement conditions are set according to the equipment used, such as measurement wavelength selection and sample dilution. Use a standard Fe sample that can be traced.
  • the calcium compound as described above for example, calcium carbonate, can be obtained as follows.
  • the calcium hydroxide that has passed through the ripening machine is discharged in a state where there is no unevenness in digestion and the moisture content is uniform. During this time, excess water evaporates and the amount of digestion water is adjusted so that the water content in calcium hydroxide is almost lost.
  • the half width of the (101) plane of the nickel hydroxide powder is 0.8 deg./2 ⁇ or less
  • the crystal size of the nickel oxyhydroxide powder obtained from the nickel hydroxide powder becomes large. Therefore, it is possible to suppress the nickel hydroxide layer from being rapidly formed on the entire crystal surface during a heavy load pulse discharge. In other words, polarization during heavy load pulse discharge can be suppressed.
  • the nickel hydroxide hydroxide can be obtained, for example, as follows.
  • a suspension is prepared by mixing an aqueous nickel sulfate solution, an aqueous sodium hydroxide solution and an aqueous ammonia solution, and then stirred. By separating the precipitate from this suspension by decantation, nickel hydroxide is obtained.
  • the half width of the (101) plane and the (001) plane of the nickel hydroxide nickel powder depends on the concentration of the aqueous sodium hydroxide solution and the concentration of the aqueous ammonia solution.
  • the oxyhydroxide-nickel powder has an average nickel valence of 2.95 or more, and as a result, the proportion of the nickel hydroxide powder contained in the oxynickel hydroxide powder is reduced. Therefore, excellent heavy load discharge characteristics can be obtained.
  • the average nickel valence is 3.00 to 3.05, the proportion of nickel hydroxide powder contained in the nickel oxyhydroxide powder is further reduced. Therefore, it is preferable because the discharge characteristics of the battery are stable and variations are reduced.
  • the average nickel valence of nickel oxyhydroxide depends on, for example, the amount of sodium hypochlorite added in the step of obtaining nickel oxyhydroxide.
  • the average nickel valence of nickel oxyhydroxide can be determined, for example, as follows.
  • suction filtration is performed to collect the generated precipitate, followed by drying in an atmosphere of 110 ° C., for example.
  • the weight of the precipitate is measured, and the weight ratio of nickel contained in the active material powder is obtained from the following formula using the obtained weight.
  • Nickel weight ratio ⁇ Weight of precipitate (g) X O. 2032 ⁇ Z ⁇ Sample weight of active material powder (g)
  • oxyhydroxide-nickel powder potassium iodide such as lg, and sulfuric acid such as 25 cm 3 are mixed and stirred to completely dissolve.
  • metal ions having a high valence that is, nickel ions, oxidize potassium iodide to iodine.
  • Nickel itself is reduced to bivalent.
  • the reaction is stopped by adding an acetic acid-ammonium acetate aqueous solution and ion-exchanged water as a pH buffer solution.
  • the iodine that is formed and released is titrated with, for example, 0. ImolZl of sodium thiosulfate aqueous solution.
  • the titration amount at this time reflects the amount of metal ions whose valence is larger than divalent as described above.
  • the average nickel valence contained in nickel oxyhydroxide can be obtained using the nickel weight ratio obtained in (a) and the metal ion amount obtained in (b).
  • the nickel oxyhydroxide powder has an average particle size of 8 ⁇ m or more, so that the filling property of the positive electrode mixture is improved as described above. Therefore, more excellent discharge characteristics can be obtained.
  • the average particle size is 18 m or less, the contact property with graphite as a conductive agent is improved. Therefore, the heavy load discharge characteristics at the initial stage and after storage at high temperature are improved.
  • the weight ratio of oxyhydroxide-nickel powder to diacid-manganese powder in the positive electrode mixture is 20: By being 80 to 90:10, it is possible to improve the discharge characteristics and high load pulse characteristics after storage at high temperature for the first time, and to suppress the temperature rise when the battery is short-circuited.
  • the weight ratio of the oxyhydroxide-nickel powder to the diacid-manganese powder in the positive electrode mixture is 20:80 to 60:40, the heavy load pulse characteristics can be improved. Furthermore, it is preferable because the temperature rise when the battery is short-circuited can be sufficiently suppressed.
  • the electrolytic solution a conventionally known one can be used.
  • potassium hydroxide aqueous solution is mentioned.
  • the same aqueous solution of potassium hydroxide and potassium as that contained in the above negative electrode can be used.
  • the concentration of the aqueous potassium hydroxide solution is preferably 33 to 35% by weight.
  • concentration of the potassium hydroxide aqueous solution is 33% by weight or more, the heavy load pulse discharge characteristics are improved.
  • the concentration is 35% by weight or less, the increase in battery temperature when the battery is short-circuited can be suppressed.
  • a conventionally well-known thing can be used also for a separator.
  • a nonwoven fabric in which polyvinyl alcohol fiber and rayon are mixed can be used.
  • the alkaline battery has a cylindrical positive electrode mixture pellet 3 and a gelled negative electrode 6 filled in the hollow.
  • a separator 4 is interposed between the positive electrode and the negative electrode.
  • the inner surface of the positive electrode case 1 has a nickel plating layer on which a graphite coating film 2 is formed.
  • An alkaline dry battery is produced as follows, for example.
  • a plurality of hollow cylindrical positive electrode mixture pellets 3 are inserted into the positive electrode case 1, and the positive electrode mixture pellets 3 are repressurized in the positive electrode case 1. As a result, the positive electrode mixture pellet 3 is in close contact with the inner surface of the positive electrode case 1.
  • the separator 4 and the insulating cap 5 are arranged in the hollow of the positive electrode mixture pellet 3.
  • the electrolyte is poured into the hollow of the positive electrode mixture pellet 3 for the purpose of wetting the separator 4 and the positive electrode mixture pellet 3.
  • the gelled negative electrode 6 is filled inside the separator 4.
  • the resin sealing plate 7, the bottom plate 8 serving also as the negative electrode terminal, and the insulating washer 9 are integrated.
  • the negative electrode current collector 10 is inserted into the gelled negative electrode 6.
  • the opening end of the positive electrode case 1 is sealed by pressing the opening end portion of the positive electrode case 1 against the peripheral edge portion of the bottom plate 8 via the end portion of the resin sealant 7.
  • an alkaline dry battery can be obtained.
  • a 4 mol Zl nickel sulfate aqueous solution, a 5 mol Zl aqueous sodium hydroxide solution, and a 5 mol Zl aqueous ammonia solution were fed into the reactor.
  • the reaction apparatus was equipped with a stirring blade, and the inside of the apparatus was kept at 40 ° C.
  • Each aqueous solution was continuously supplied with a pump at a flow rate of 0.5 mlZmin.
  • the precipitate was alkali-treated with an aqueous sodium hydroxide solution having a pH of 13 to 14 to remove key ions such as sulfate ions in the metal hydroxide particles. Further, washing with water and drying were carried out to obtain hydroxide-nickel powder 1.
  • Nickel hydroxide powder 1 had a volume-based average particle size of 12.3 m as measured by a laser diffraction particle size distribution analyzer.
  • Measuring apparatus manufactured by Rigaku Corporation, powder X-ray diffractometer "RINT1400"
  • the X-ray diffraction pattern using CuKa line was recorded, and it was confirmed to be ⁇ -Ni (OH) 2 type single phase.
  • hydroxide-nickel powder 2 In order to obtain hydroxide-nickel powders with different half-widths on the (101) plane and the (001) plane, except for changing the concentrations of the sodium hydroxide aqueous solution and the aqueous ammonia solution, In the same manner as nickel powder 1, hydroxide-nickel powder 2 was obtained. Specifically, the concentration of the sodium hydroxide aqueous solution was set to 4.7 molZl, and the concentration of the ammonia aqueous solution was set to 5.3 molZl. Nickel hydroxide powder 2 had a peak half-width of (101) plane of 0.78 deg. Z20 and a peak half-width of (001) plane of 0.61 deg./2 ⁇ . The volume-based average particle diameter of the nickel hydroxide powder 2 as measured by a laser diffraction particle size distribution analyzer was 11.7 m.
  • Nickel hydroxide nickel powder 1 was mixed with 0.5 mol / l sodium hydroxide sodium hydroxide aqueous solution. Sarakuko, sodium hypochlorite aqueous solution (effective chlorine concentration: 12wt%) was added to an oxidant equivalent of 1.2. Thereafter, the mixture was stirred at a reaction atmosphere temperature of 45 ° C. for 3 hours to produce oxyhydroxy-nickel powder 1. The obtained oxyhydroxide-nickel powder was sufficiently washed with water and then vacuum-dried at 60 ° C. to obtain a positive electrode active material powder. Further, nickel oxyhydroxide powder 2 was produced in the same manner as described above except that nickel hydroxide powder 2 was used.
  • the average nickel valence of the oxyhydroxide-nickel powder was determined by the following chemical measurement.
  • Nickel weight ratio [Weight of precipitate (g) X O. 2032] Z [Sample weight of cathode active material powder (g) l
  • the calcium compound contained in the positive electrode a special grade reagent hydroxylated lucium manufactured by Pure Chemical Co., Ltd. was used. When the content of iron element was measured by the above method, it was 21 ppm.
  • a positive electrode mixture pellet produced as follows was used as the positive electrode.
  • nickel oxyhydroxide powder 1, manganese dioxide powder, graphite and electrolyte were mixed in a weight ratio of 50: 50: 6.5: 1. Further, the calcium hydroxide hydroxide was added so as to be 5 mol% with respect to the total amount of the positive electrode active material. This was mixed uniformly with a mixer and then sized to a constant particle size to obtain a positive electrode mixture. The positive electrode mixture was pressure-molded into a hollow cylindrical positive electrode mixture pellet. As the electrolytic solution, a 37 wt% potassium hydroxide aqueous solution was used. For the separator, a non-woven cloth mixed with polybulal alcohol fiber and rayon fiber was used.
  • a gelled negative electrode obtained as follows was used as the negative electrode.
  • a zinc ingot is melted, and bismuth, indium, and aluminum are added so that the following content is obtained.
  • the molten zinc alloy was caused to flow with the nozzle force for flow down, and compressed air was blown onto the flowed alloy to produce zinc alloy powder containing 250 ppm of bismuth, 250 ppm of indium and 35 ppm of aluminum.
  • the first powder whose particle size is more than 75 ⁇ m and 425 ⁇ m or less, and the second powder whose particle size is more than 5 ⁇ m and less than 75 ⁇ m by adjusting the pressure to blow compressed air And got.
  • the first powder and the second powder were mixed at a weight ratio of 65:35 to obtain a negative electrode active material powder.
  • the negative electrode active material powder, 37 wt% potassium hydroxide aqueous solution, and sodium polyacrylate were mixed and gelled in the same manner as before to obtain a gelled negative electrode.
  • FIG. 1 is a front view of a cross section of a part of an alkaline battery according to an embodiment of the present invention.
  • the alkaline battery was produced as follows.
  • a plurality of hollow cylindrical positive electrode mixture pellets 3 were inserted into the positive electrode case 1. This was brought into close contact with the inner surface of the positive electrode case 1 by re-pressurization in the positive electrode case 1. And after inserting the separator 4 and the insulating cap 5 in the hollow of this positive electrode mixture pellet 3, the electrolyte solution was injected. As the electrolytic solution, a 37% by weight potassium hydroxide aqueous solution was used. After the injection, the gelled negative electrode 6 was filled inside the separator 4.
  • the resin sealing plate 7, the bottom plate 8 also serving as the negative electrode terminal, and the negative electrode current collector 10 integrated with the insulating washer 9 were inserted into the gelled negative electrode 6.
  • the opening end of the positive electrode case 1 was sealed by pressing the opening end portion of the positive electrode case 1 against the peripheral edge portion of the bottom plate 8 via the end portion of the sealing plate 7. Finally, cover the outer surface of the positive electrode case 1 with the outer label 11, and use alkaline batteries.
  • Batteries 2 to 4 were the same as Battery 1 except that 35, 33, and 31 wt% potassium hydroxide aqueous solution were used as the electrolyte instead of the 37 wt% potassium hydroxide aqueous solution. Was made.
  • batteries 5 to 8 were produced in the same manner as described above except that nickel oxyhydroxide powder 2 was used instead of nickel oxyhydroxide powder 1.
  • the weight ratio of the first powder to the second powder is 85:15, 75:25.
  • L 1 was made in the same manner as Battery 6, except that the ratio was set to 55:35.
  • the weight ratio of the first powder to the second powder is 85:15, 7
  • Batteries 12 to 14 were produced in the same manner as Battery 7, except that 5:25 or 55:35. [0049] [Evaluation test]
  • the battery temperature rise at the time of forcibly short-circuiting the battery was evaluated. Specifically, the maximum temperature reached when the battery was short-circuited was measured using a thermocouple. Tables 1 to 3 show the average value of the maximum temperature reached for each of the five batteries.
  • the concentration of the aqueous solution of potassium hydroxide and potassium as the electrolytic solution is preferably 33 35% by weight.
  • Battery 9 and Battery 12 in which the weight ratio of the first powder to the second powder was 85:15 had a reduced discharge characteristic. This is thought to be due to the large polarization on the negative electrode side during heavy load pulse discharge. Further, in the case of the battery 11 and the battery 14 in which the weight ratio of the first powder to the second powder was 55:45, the temperature increase when the battery was short-circuited was extremely high.
  • the weight ratio of the first powder to the second powder is 65:35 7 5:25!
  • the half width of the (001) plane of the nickel hydroxide powder was 0.61 deg./2 ⁇ in this example, but the same effect is obtained as long as it is in the range of 0.5 0.7 deg / 2 ⁇ . was gotten.
  • the average nickel valence of oxyhydroxide-nickel powder was 3.01 in this example.
  • the weight ratio of nickel oxyhydroxide to manganese dioxide was 60:40 in this example, and the same effect was obtained when the force was in the range of 20:80 to 90:10.
  • the alkaline battery of the present invention can be used as a power source for equipment that requires improved heavy load discharge characteristics and improved safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

 強負荷パルス放電時の分極を抑制して放電特性を向上させ、かつ短絡時の安全性に関して高い信頼性を有するアルカリ乾電池を提供するため、正極に、鉄元素の含有量が150ppm以下であるカルシウム化合物を、正極活物質に対して0.1~10モル%添加し、2.95以上の平均ニッケル価数および8~18μmの平均粒径を有するオキシ水酸化ニッケル粉末を用い、オキシ水酸化ニッケル粉末と二酸化マンガン粉末との重量比を20:80~90:10とし、負極活物質である亜鉛粉末または亜鉛合金粉末として、粒径が75μmを超え425μm以下である第一の粉末と、粒径が5μmを超え75μm以下である第二の粉末と、を用い、かつ第一の粉末と第二の粉末との重量比を65:35~75:25とし、水酸化カリウム水溶液の濃度を33~35重量%とする。

Description

明 細 書
アルカリ乾電池
技術分野
[0001] 本発明は、正極活物質としてォキシ水酸化ニッケル粉末と二酸化マンガン粉末とを 含むアルカリ乾電池に関する。
背景技術
[0002] アルカリ乾電池は、インサイドアウト型の構造を有し、正極端子を兼ねる正極ケース の中に、正極ケースに密着して中空円筒状の正極合剤が配置されており、正極合剤 の中央に、セパレータを介してゲル状負極が配置されている。近年のデジタル機器 の普及に伴い、これらの電池が電源として使用される機器の負荷電力は次第に大き くなつている。そのため、強負荷放電性能に優れる電池が要望されてきた。これに対 応するベぐ特許文献 1は、正極合剤にォキシ水酸化ニッケル粉末を混合することを 提案している。正極にォキシ水酸化ニッケルを含む電池は、強負荷放電特性に優れ ており、近年では実用化に到っている。
[0003] 正極活物質としてォキシ水酸化ニッケル粉末を含むアルカリ乾電池は、従来のアル カリ乾電池に比べて優れた強負荷放電特性を有する。そのため、デジタルカメラに代 表されるようなデジタル機器の主電源として普及しつつある。しかし、デジタル機器に は、例えばデジタルカメラにおいては、ストロボ発光、光学レンズの出し入れ、液晶部 の表示および画像データの記録媒体への書き込みと!/、つた様々な機能がある。よつ て、デジタル機器の電源として用いられる電池は、様々な機能に応じた強負荷電力 を瞬時に得られることが必要である。
[0004] 正極活物質にォキシ水酸化ニッケル粉末を含むアルカリ乾電池は、高温保存する ことで正極ケースと正極合剤との間の抵抗が増大する。また、放電可能な正極活物 質の量は減少する。そのため、ォキシ水酸ィ匕ニッケル粉末を含まないアルカリマンガ ン乾電池よりも高温保存後の強負荷放電特性が劣るという問題があった。これに対し て、例えば特許文献 2は、正極合剤へ亜鉛酸化物やカルシウム酸化物を添加するこ とを提案している。 特許文献 1:特開 2000— 48827号公報
特許文献 2:特開 2001— 15106号公報
発明の開示
発明が解決しょうとする課題
[0005] ォキシ水酸ィ匕ニッケル粉末を含むアルカリ乾電池においては、放電により水酸化- ッケルが生成する。水酸ィ匕ニッケルは絶縁体であるため、電池の放電が進むと瞬時 の強負荷電力を供給しきれなくなる。その結果、例えば、デジタルカメラの場合、使用 中に突然カメラの電源が切れることがある。すなわち、ォキシ水酸化ニッケルを含む アルカリ乾電池においては、強負荷パルス放電時の分極が放電末期に大きくなるた め、この突然電源が切れると ヽつた問題が生じて ヽる。
[0006] また、上記特許文献 2で正極合剤に添加することが提案されて 、るカルシウム酸ィ匕 物には、当該カルシウム酸化物の原料や製造方法に起因して、亜鉛合金粉末の腐 食を助長する鉄元素などの不純物が多く混在している。そのため、常温での長期保 存においては電池の耐漏液性が低下する。また、電池短絡時に電池温度が高くなる 等の問題がある。
[0007] そこで、本発明は、正極に含まれる正極活物質粉末および添加剤、ならびに負極 に用いる負極活物質粉末の最適化を図り、強負荷パルス放電時の分極を抑制して 放電特性を向上させ、かつ電池短絡時の安全性に関して高!、信頼性を有するアル カリ乾電池を提供することを目的とする。
課題を解決するための手段
[0008] 本発明のアルカリ乾電池は、
ォキシ水酸ィ匕ニッケル粉末および二酸ィ匕マンガン粉末を含む正極活物質、ならび に黒鉛を含む導電剤、ならびにカルシウム化合物を具備する正極と、
亜鉛粉末または亜鉛合金粉末を含む負極活物質、ゲル化剤および水酸化カリウム 水溶液を具備する負極と、を有し、
前記正極は、鉄元素の含有量が 150ppm以下であるカルシウム化合物を、前記正 極活物質に対して 0. 1〜10モル%含み、
前記ォキシ水酸化ニッケル粉末は、 2. 95以上の平均ニッケル価数および 8〜18 μ mの平均粒径を有し、
前記ォキシ水酸ィ匕ニッケル粉末と前記二酸ィ匕マンガン粉末との重量比は 20: 80〜 90 : 10であり、
前記亜鉛粉末または前記亜鉛合金粉末は、粒径が 75 μ mを超え 425 μ m以下で ある第一の粉末と、粒径が 5 μ mを超え 75 μ m以下である第二の粉末と、を含み、か つ前記第一の粉末と前記第二の粉末との重量比は、 65: 35〜75: 25であり、 前記水酸ィ匕カリウム水溶液の濃度は 33〜35重量%であること、を特徴とする。 前記ォキシ水酸ィ匕ニッケル粉末は、粉末 X線回折における(101)面の半値幅が 0. 6〜0. 8deg. /2 Θであり、力つ(001)面の半値幅力 0. 5〜0. 7deg. /2 Θである 水酸ィ匕ニッケル粉末を酸ィ匕して得られたものであること、が好まし ヽ。
[0009] 正極合剤および負極活物質粉末を上記のような構成とすることで、放電反応に影 響する負極活物質の表面積が増大する。その結果、負極の分極を抑制することがで きるため、アルカリ乾電池の強負荷パルス放電特性を向上させることができる。
前記カルシウム化合物は、酸ィ匕カルシウムまたは水酸ィ匕カルシウムであることが好 ましい。
発明の効果
[0010] 本発明によると、正極に含まれる活物質粉末および添加剤、ならびに負極に用いる 負極活物質粉末が最適化される。その結果、強負荷パルス放電時の分極を抑制して 放電特性を向上させ、かつ電池短絡時の安全性に関して高!、信頼性を有するアル カリ乾電池を得ることができる。
図面の簡単な説明
[0011] [図 1]本発明の一実施の形態であるアルカリ乾電池の一部を断面にした正面図であ る。
[図 2]水酸ィ匕ニッケル粉末の粉末 X線回折図である。
発明を実施するための最良の形態
[0012] 本発明者らは、正極活物質として用いられているォキシ水酸ィ匕ニッケル粉末につい て、二次電池用に結晶性を制御した水酸ィ匕ニッケルをィ匕学酸ィ匕して得たものである ことを踏まえ、デジタル機器の特性に適うアルカリ乾電池用ォキシ水酸ィ匕ニッケル粉 末を得るために、原材料である水酸ィ匕ニッケル粉末の結晶性の最適化を図った。
[0013] まず、本発明における負極活物質粉末を構成する、第一の粉末および第二の粉末 について説明する。第一の粉末は 75 μ mを超え 425 μ m以下の粒径を有し、第二 の粉末は 75 μ m以下の粒径を有する。第一の粉末の粒径が 425 μ mを超えると、全 体の比表面積が小さくなる。その結果、負極の反応効率が低下する。また、第二の粉 末の粒径が 5 m未満であると、負極の反応効率が高まりすぎてしまう。その結果、電 池短絡時の温度上昇が大きくなるため、電池内のガス発生量が増加することから好 ましくない。
[0014] 第一の粉末の含有量が 65重量%未満、すなわち、第二の粉末の含有量が 35重量 %を超えると、負極の反応効率が高まりすぎてしまう。その結果、電池短絡時の温度 上昇が大きくなるため電池内のガス発生量が増加し、電池の耐漏液性が低下する。 一方、第一の粉末の含有量が 75重量%を超える、すなわち、第二の粉末の含有量 が 25重量%未満であると、全体の比表面積が小さくなる。そのため、電池の強負荷 放電特性が低下する。
[0015] 上記のような負極活物質粉末、例えば亜鉛合金粉末を得る方法には、例えばガス アトマイズ法が挙げられる。例えば、ガスアトマイズ法では、以下のようにして亜鉛合 金粉末を得ることができる。
まず、亜鉛インゴットを溶融させ、例えば、 Bi、 In、 A1等の合金に含ませる金属を添 加する。次にこの溶融させた亜鉛合金を流下用ノズル力 流下させ、流れ出た合金 に圧縮空気を吹き付けることにより亜鉛合金粉末を得ることができる。
上記の工程において、例えば、圧縮空気を吹き付ける圧力の調節や、流れ出る合金 と圧縮空気の吹き出し部との距離の調節を行うことで、得られる亜鉛合金粉末の粒径 を制御することができる。これにより、第一の粉末と第二の粉末とを得ることができる。
[0016] 負極には、例えば、負極活物質粉末と、水酸化カリウム水溶液と、ゲル化剤とを混 合し、従来公知の方法でゲルィ匕することで得られる、ゲル状負極を用いることができ る。
ゲル化剤には、従来公知のものを用いることができる。例えば、ポリアクリル酸ナトリ ゥムが挙げられる。 [0017] 水酸ィ匕カリウム水溶液の濃度は、 33〜35重量%であることが好ましい。水酸化カリ ゥム水溶液の濃度が 33重量%以上であることで、強負荷パルス放電特性がさらに向 上する。一方、濃度が 35重量%以下であることで、電池短絡時における負極活物質 、例えば亜鉛の反応生成物の拡散を抑制することができる。その結果、電池温度の 上昇を抑制することができる。
[0018] 正極は、カルシウム化合物を含むことが好ましい。カルシウム化合物の含有量は、 正極活物質の総量の 0. lmol%以上であることで、強負荷パルス放電特性をより向 上させることができる。一方、 10mol%以下であることで正極における正極活物質の 含まれる割合が維持される。その結果、より優れた電池容量が得られる。
カルシウム化合物は、例えば、天然に存在する石灰石を原材料とするため、製造段 階での精製の程度により、鉄元素などの不純物が多く混在している。鉄元素などの不 純物は、電池の負極活物質である亜鉛合金粉末の腐食を助長する。
カルシウム化合物における鉄元素の含有量が 150ppm以下であれば、耐漏液性 および電池短絡時の安全性を向上させることができる。鉄元素の含有量は少なけれ ば少ないほどよいが、 l〜50ppmであっても構わない。カルシウム化合物は、酸化力 ルシゥムまたは水酸ィ匕カルシウムであることで、同様の効果が得られるため好まし!/、。
[0019] カルシウム化合物に含まれる鉄元素の含有量は、例えば、以下の方法で測定する ことができる。
まず、カルシウム化合物と、水と、例えば等量の 2倍以上の塩酸とを加え、加熱して カルシウム化合物を溶解する。不溶成分が確認されない場合は、そのまま適切な容 量に定容して測定試料とすることができる。不溶成分が認められる場合は、これを濾 別し、濾液を定容して測定試料とする。
次に、測定試料中の Fe濃度を ICP発光分光分析法もしくは原子吸光分光分析法 で測定する。測定方法は、マトリックス (塩酸,カルシウム濃度)を一致させた検量線 法、もしくは標準添加法で行う。いずれの方法においても、測定波長の選択、試料の 希釈など使用する装置にあわせて適切な測定条件を設定する。 Feの標準試料はト レーサビリティーが確認できるものを使用する。
測定した Fe濃度、測定試料の容積およびカルシウム化合物量を用いて、カルシゥ ム化合物に含まれる鉄元素の含有量を求めることができる。
[0020] 上記のようなカルシウム化合物、例えば、酸ィ匕カルシウムは、以下のようにして得る ことができる。
原料には、例えば鉄元素の含有量が l lOppm以下の天然の石灰石 (炭酸カルシゥ ム)を用いる。石灰石を焼成炉に投入し、例えば重油 ·ガス ·石炭や電気等の熱源を 用いて約 1000°Cで焼成することで炭酸根を除去し、酸ィ匕カルシウムが得られる。 また、水酸ィ匕カルシウムは、例えば、以下のようにして得ることができる。 酸ィ匕カルシウムと純水とを、例えば消化機に定量供給し、消化機内で混合攪拌して 酸ィ匕カルシウムの消化 (水和)を行うことで得られる。消ィ匕機カゝら排出された水酸ィ匕カ ルシゥムを熟成機に供給する。熟成機を経た水酸ィ匕カルシウムは消化のムラがなくな り付着水分が均一になった状態で排出される。この間に過剰な水分は蒸発し、水酸 化カルシウム中に含まれる水分が殆どなくなるように消化水の量を調節する。
原料である天然の石灰石における鉄元素の含有量にもよる力 上記の方法により、 カルシウム化合物(酸ィ匕カルシウムまたは水酸ィ匕カルシウム)に含まれる鉄元素の含 有量を制御することができる。
[0021] 正極は、例えば、正極活物質であるォキシ水酸ィ匕ニッケルおよび二酸ィ匕マンガンと
、導電剤である黒鉛と、カルシウム化合物と、電解液とをミキサーで混合する。その後
、一定粒度に整粒したものを、中空円筒状に加圧成形する。こうして得られる正極合 剤ペレットを、正極として用いることができる。
[0022] 本発明にお 、ては、正極活物質が、ォキシ水酸ィ匕ニッケルおよび二酸ィ匕マンガン を含む。ォキシ水酸ィ匕ニッケルは、例えば、水酸化ニッケル粉末を水酸化ナトリウム 水溶液中に投入し、次亜塩素酸ナトリウム水溶液を十分量加え、攪拌することで得ら れる。
[0023] 上記の工程における水酸化ニッケル粉末の(101)面の半値幅が 0. 6deg. /2 Θ 以上であることで、次亜塩素酸ナトリウム等による酸ィ匕が容易になる。そのため、ォキ シ水酸ィ匕ニッケル粉末に含まれる水酸ィ匕ニッケル粉末の割合が小さくなる。ここで、 水酸化ニッケル粉末は、ォキシ水酸化ニッケル粉末の放電を阻害する。よって、ォキ シ水酸ィ匕ニッケルに含まれる水酸ィ匕ニッケルの割合が小さくなることで、優れた強負 荷放電特性が得られる。一方、水酸化ニッケル粉末の(101)面の半値幅が 0. 8deg . /2 Θ以下であることで、水酸化ニッケル粉末から得られるォキシ水酸化ニッケル粉 末の結晶サイズが大きくなる。そのため、強負荷パルス放電時に、水酸化ニッケル層 が結晶表面全体に急激に形成されることを抑制することができる。すなわち、強負荷 パルス放電時の分極を抑制することができる。
[0024] 水酸化ニッケル粉末の(001)面の半値幅が 0. 5deg. /2 Θ以上であることで、粒 径が 8 m以上のォキシ水酸ィ匕ニッケル粉末を作製することが容易となり、正極にお けるォキシ水酸ィ匕ニッケルの充填性が向上すること力 好ましい。一方、水酸化ニッ ケル粉末の(001)面の半値幅が 0. 7deg. /2 Θ以下であることで、水酸化ニッケル の結晶配向性が高くなる。よって、得られるォキシ水酸化ニッケル粉末を電池に用い ることで、正極において黒鉛等との密着性が向上する。そのため、特に電池の保存 後の優れた強負荷放電特性を得ることができる。
[0025] 水酸ィ匕ニッケルは、例えば、以下のようにして得ることができる。
まず、硫酸ニッケル水溶液、水酸ィ匕ナトリウム水溶液およびアンモニア水溶液を混 合して懸濁液を調製後、攪拌を行う。この懸濁液から、デカンテーシヨンによって沈殿 物を分離することで、水酸ィ匕ニッケルが得られる。なお、水酸化ニッケル粉末を得る 工程において、水酸ィ匕ニッケル粉末の(101)面および (001)面の半値幅は、水酸 化ナトリウム水溶液の濃度およびアンモニア水溶液の濃度に依存する。
[0026] ォキシ水酸ィ匕ニッケル粉末は、平均ニッケル価数が 2. 95以上であることで、結果と して、ォキシ水酸化ニッケル粉末に含まれる水酸化ニッケル粉末の割合が小さくなる 。そのため、優れた強負荷放電特性が得られる。平均ニッケル価数が 3. 00〜3. 05 であることで、ォキシ水酸化ニッケル粉末に含まれる水酸化ニッケル粉末の割合がさ らに小さくなる。よって、電池の放電特性が安定してバラツキが少なくなることから好ま しい。ォキシ水酸化ニッケルの平均ニッケル価数は、上記のォキシ水酸化ニッケルを 得る工程において、例えば、次亜塩素酸ナトリウムの添加量に依存する。
[0027] ォキシ水酸化ニッケルの平均ニッケル価数は、例えば以下のようにして求めること ができる。
(a)ォキシ水酸化ニッケル中のニッケル重量比率の測定 ォキシ水酸ィ匕ニッケル粉末を例えば 0. 05gと、濃硝酸を例えば 10cm3とをカ卩えて 加熱、溶解させる。酒石酸水溶液を例えば 10cm3と、イオン交換水とを加えて全量を 例えば 200cm3に体積調整して溶液を得る。溶液の pHをアンモニア水および酢酸を 用いて調整する。臭素酸カリウムを、例えば lg加えて測定誤差となりうるコバルトィォ ン等を高次な状態に酸化させる。溶液を加熱攪拌しながらジメチルダリオキシムのェ タノール溶液を添カロし、ニッケル (II)イオンをジメチルダリオキシム錯ィ匕合物として沈 殿させる。続いて、吸引濾過を行い、生成した沈殿物を捕集した後、例えば、 110°C 雰囲気で乾燥させる。沈殿物の重量を測定し、得られる重量を用いて活物質粉末中 に含まれるニッケル重量比率を以下の式より求められる。
ニッケル重量比率 = {沈殿物の重量 (g) X O. 2032}Z{活物質粉末の試料重量 (g)
[0028] (b)酸化還元滴定による平均ニッケル価数の測定
ォキシ水酸ィ匕ニッケル粉末を例えば 0. 2gと、ヨウ化カリウム例えば lgと硫酸例えば 25cm3とを混合、攪拌を行い完全に溶解させる。この過程で価数の高い金属イオン、 すなわち、ニッケルイオンは、ヨウ化カリウムをヨウ素に酸ィ匕する。また、ニッケルィォ ン自身は 2価に還元される。その後、例えば、 20分放置後、 pH緩衝液としての酢酸 —酢酸アンモ-ゥム水溶液とイオン交換水を加えて反応を停止させる。生成、遊離し たヨウ素を例えば 0. ImolZlのチォ硫酸ナトリウム水溶液で滴定する。この際の滴定 量は上記のような価数が 2価よりも大きい金属イオン量を反映する。
そこで、(a)で求められるニッケル重量比率と、(b)で求められる金属イオン量を用 V、て、ォキシ水酸ィ匕ニッケルに含まれる平均ニッケル価数を求めることができる。
[0029] ォキシ水酸化ニッケル粉末は、平均粒径が 8 μ m以上であることで、上記のように正 極合剤の充填性が向上する。そのため、より優れた放電特性を得ることができる。一 方、平均粒径が 18 m以下であることで、導電剤である黒鉛との接触性が向上する 。そのため、初期および高温保存後の強負荷放電特性が向上する。
ォキシ水酸ィ匕ニッケルの平均粒径は、上記の水酸ィ匕ニッケルを作製する工程にお いて、調整する懸濁液の攪拌時間に依存する。
[0030] 正極合剤中のォキシ水酸ィ匕ニッケル粉末と二酸ィ匕マンガン粉末の重量比は、 20 : 80〜90 : 10であることで、初度、高温保存後の放電特性および強負荷パルス特性 の向上させることができ、さらに、電池短絡時の温度上昇を抑制することができる。特 に、正極合剤中のォキシ水酸ィ匕ニッケル粉末と二酸ィ匕マンガン粉末の重量比は、 20 : 80〜60 :40であると、強負荷パルス特性を向上できる。さらに、電池短絡時の温度 上昇を十分に抑制することができるため好まし 、。
[0031] 電解液には、従来公知のものを用いることができる。例えば、水酸化カリウム水溶液 が挙げられる。この場合も、上記した負極に含まれるものと同様の水酸ィ匕カリウム水 溶液を用いることができる。
水酸ィ匕カリウム水溶液の濃度は、 33〜35重量%であることが好ましい。水酸化カリ ゥム水溶液の濃度が 33重量%以上であることで、強負荷パルス放電特性が向上す る。一方、濃度が 35重量%以下であることで、電池短絡時における電池温度の向上 を抑制することができる。
また、セパレータにも、従来公知のものを用いることができる。例えば、ポリビニルァ ルコール繊維と、レーヨンとを混抄した不織布等が挙げられる。
[0032] ここで、本発明の一実施の形態に係るアルカリ乾電池について、図 1を参照しなが ら説明する。アルカリ乾電池は、筒状の正極合剤ペレット 3と、その中空に充填された ゲル状負極 6とを有する。正極と負極との間にはセパレータ 4が介在している。正極ケ ース 1の内面は、ニッケルのメツキ層を有し、その上には、黒鉛塗装膜 2が形成されて いる。
アルカリ乾電池は、例えば以下のようにして作製される。
まず、正極ケース 1の内部に、中空円筒状の正極合剤ペレット 3を複数個挿入し、 正極ケース 1内において正極合剤ペレット 3を再加圧する。これにより正極合剤ペレツ ト 3は、正極ケース 1の内面に密着する。次に、正極合剤ペレット 3の中空にセパレー タ 4と絶縁キャップ 5とを配置する。
その後、セパレータ 4と正極合剤ペレット 3とを湿潤させる目的で電解液を正極合剤 ペレット 3の中空に注液する。電解液の注液後、セパレータ 4の内側にゲル状負極 6 を充填する。
次に、榭脂製封口板 7、負極端子を兼ねる底板 8および絶縁ヮッシャ 9と一体化され ている負極集電体 10をゲル状負極 6に差し込む。正極ケース 1の開口端部を、榭脂 封口体 7の端部を介して、底板 8の周縁部に力しめつけることにより、正極ケース 1の 開口部が密閉される。最後に、正極ケース 1の外表面を外装ラベル 11で被覆するこ とで、アルカリ乾電池が得られる。
[0033] 以下、本発明の実施例について説明する。本発明の内容は、これらの実施例に限 定されるものではない。
実施例
[0034] 《実験例》
2. 4molZl硫酸ニッケル水溶液、 5molZlの水酸化ナトリウム水溶液、 5molZlの アンモニア水溶液を反応装置内に供給した。反応装置は、攪拌翼を備えており、装 置内は 40°Cに保持した。それぞれの水溶液は、 0. 5mlZminの流量で連続的にポ ンプを用いて供給した。反応装置内の pHおよび金属塩濃度と金属水酸化物粒子濃 度とのバランスが一定となり、定常状態になったところで、オーバーフローにて得られ た懸濁液を採取した。懸濁液から、デカンテーシヨンにより沈殿物を分離した。沈殿 物を pH 13〜 14の水酸ィ匕ナトリウム水溶液でアルカリ処理し、金属水酸化物粒子中 の硫酸イオン等のァ-オンを除去した。さらに、水洗と乾燥とを行い、水酸ィ匕ニッケル 粉末 1を得た。水酸化ニッケル粉末 1は、レーザー回折式粒度分布計による体積基 準の平均粒径が 12. 3 mであった。
[0035] 水酸化ニッケル粉末の粒子の結晶構造を、粉末 X線回折装置を用いて、以下に示 す条件により測定した。図 2に代表的な水酸化ニッケル粉末の粉末 X線回折図を示 す。
[0036] 測定装置:理学株式会社製、粉末 X線回折装置 「RINT1400」
対陰極: Cu
フイノレタ: Ni
管電圧: 40kV
管電流: 100mA
サンプリング角度: 0. 02deg.
走査速度: 3. Odeg. /min. 発散スリット: lZ2deg.
散乱スリット: lZ2deg.
CuK a線を用いた X線回折パターンを記録したところ、 β—Ni (OH) 2型の単相で あることが確かめられた。水酸化ニッケル粉末 1の 2 0 = 37〜40°付近の(101)面の ピーク半価幅は 0. 92deg. /2 Θであった。また、 2 θ = 18〜21°付近に位置する( 001)面のピーク半値幅は 0. 90deg. /2 Θであった。なお、この半値幅は二次電池 の高率充放電特性を重視して水酸化ニッケルの結晶性を制御した場合に有効な値 である。
[0037] (101)面および (001)面の半値幅の異なる水酸ィ匕ニッケル粉末を得るために、水 酸ィ匕ナトリウム水溶液およびアンモニア水溶液の濃度を変化させたこと以外、水酸ィ匕 ニッケル粉末 1と同様にして、水酸ィ匕ニッケル粉末 2を得た。具体的には、水酸化ナト リウム水溶液の濃度を 4. 7molZlとし、アンモニア水溶液の濃度を 5. 3molZlとした 。水酸化ニッケル粉末 2は、(101)面のピーク半価幅が 0. 78deg. Z2 0であり、(0 01)面のピーク半値幅が 0. 61deg. /2 Θであった。また、水酸化ニッケル粉末 2の レーザー回折式粒度分布計による体積基準の平均粒径は 11. 7 mであった。
[0038] 水酸ィ匕ニッケル粉末 1と 0.5mol/lの水酸ィ匕ナトリウム水溶液とを混合した。さら〖こ、 次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 12wt%)を酸化剤当量として 1. 2にな るように加えた。その後、反応雰囲気温度 45°Cで 3時間攪拌してォキシ水酸ィ匕-ッケ ル粉末 1を作製した。得られたォキシ水酸ィ匕ニッケル粉末は十分に水洗を行った後、 60°Cの真空乾燥を行い正極活物質粉末とした。また、水酸化ニッケル粉末 2を用い たこと以外、上記と同様にして、ォキシ水酸化ニッケル粉末 2を作製した。
[0039] ォキシ水酸ィ匕ニッケル粉末の平均ニッケル価数を以下の化学測定により求めた。
(a)重量法 (ジメチルダリオキシム法)によるニッケル重量比率の測定
ォキシ水酸化ニッケル粉末 0. 05gに濃硝酸 10cm3をカ卩えて加熱を行い、溶解させ た。酒石酸水溶液 10cm3を添カ卩した後、さらにイオン交換水を加えて全量を 200cm3 に体積調整した。アンモニア水及び酢酸を用いて pHを調整した後、臭素酸カリウム 1 gを加えて混合溶液を得た。次に、混合溶液を加熱攪拌しながらジメチルダリオキシ ムのエタノール溶液を添カ卩して、ニッケル (Π)イオンをジメチルダリオキシム錯ィ匕合物 として沈殿させた。吸引濾過を行い、生成した沈殿物を捕集して 110°C雰囲気で乾 燥させ、沈殿物の重量を測定した。沈殿物のニッケル重量比率は次式により求めた。 ニッケル重量比率 =[沈殿物の重量 (g) X O. 2032]Z [正極活物質粉末の試料重量 (g)l
[0040] (b)酸化還元滴定による平均ニッケル価数の測定
ォキシ水酸化ニッケル粉末 0. 2gにヨウ化カリウム lgと硫酸 25cm3をカ卩え、十分に 攪拌を続けることで完全に溶解させた。 20分の放置後、 pH緩衝液として酢酸 酢酸 アンモ-ゥム水溶液とイオン交換水とを加えて反応を停止させた。そして、生成、遊 離したヨウ素を 0. ImolZlのチォ硫酸ナトリウム水溶液で滴定した。この際の滴定量 は上記のような価数が 2価よりも大きい金属イオン量を反映する。そこで、(a)で求め たニッケル重量比率と、(b)で求めた金属イオン量とを用い、ォキシ水酸ィ匕ニッケル 粉末の平均ニッケル価数を求めた。
[0041] また、正極が含むカルシウム化合物には、純正化学 (株)製の特級試薬の水酸化力 ルシゥムを用いた。上記の方法で鉄元素の含有量を測定したところ、 21ppmであつ た。
[0042] 正極には、以下のようにして作製した正極合剤ペレットを用いた。
まず、ォキシ水酸化ニッケル粉末 1、二酸化マンガン粉末、黒鉛および電解液を重量 比 50 : 50 : 6. 5 : 1の割合で混合した。さらに、上記の水酸ィ匕カルシウムを、正極活物 質の総量に対して 5mol%となるように添加した。これをミキサーで均一に混合した後 、一定粒度に整粒して正極合剤を得た。正極合剤は、加圧成型して中空円筒状の 正極合剤ペレットとした。電解液には、 37重量%の水酸ィ匕カリウム水溶液を用いた。 また、セパレータには、ポリビュルアルコール繊維およびレーヨン繊維を混紗した不 織布を用いた。
[0043] 負極は、以下のようにして得られたゲル状負極を用いた。
まず、亜鉛インゴットを溶融させ、その中に下記の含有量となるように、ビスマス、イン ジゥム、アルミニウムを添加する。次にこの溶融した亜鉛合金を流下用ノズル力ゝら流 下させ、流れ出た合金に圧縮空気を吹き付けることにより、ビスマス 250ppm、インジ ゥム 250ppmおよびアルミニウム 35ppmを含む亜鉛合金粉末を作製した。 上記において、圧縮空気を吹き付ける圧力を調節し、粒径が 75 μ mを超え 425 μ m 以下である第一の粉末と、粒径が 5 μ mを超え 75 μ m以下である第二の粉末とを得 た。
第一の粉末と第二の粉末とを、重量比 65 : 35で混合し、負極活物質粉末とした。 負極活物質粉末と、 37重量%の水酸ィ匕カリウム水溶液と、ポリアクリル酸ナトリウム とを混合して、従来と同様にゲル化を行 ヽゲル状負極を得た。
[0044] 次に、図 1に示す単 3サイズのアルカリ乾電池を作製した。図 1は、本発明の一実施 の形態であるアルカリ電池の一部を断面にした正面図である。アルカリ乾電池は、以 下のようにして作製した。
正極ケース 1の内部に、中空円筒状の正極合剤ペレット 3を複数個挿入した。これ を、正極ケース 1内において再加圧することにより正極ケース 1の内面に密着させた。 そして、この正極合剤ペレット 3の中空にセパレータ 4および絶縁キャップ 5を挿入し た後、電解液を注液した。電解液には、 37重量%の水酸化カリウム水溶液を用いた 。注液後、セパレータ 4の内側にゲル状負極 6を充填した。
次に、榭脂製封口板 7、負極端子を兼ねる底板 8、および絶縁ヮッシャ 9と一体化さ れた負極集電体 10を、ゲル状負極 6に差し込んだ。正極ケース 1の開口端部を封口 板 7の端部を介して底板 8の周縁部に力しめつけて正極ケース 1の開口部を密閉した 。最後に正極ケース 1の外表面に外装ラベル 11を被覆して、アルカリ乾電池
)を作製した。
[0045] 電解液として、 37重量%の水酸化カリウム水溶液の代わりに、 35、 33、および 31 重量%の水酸ィ匕カリウム水溶液を用いたこと以外、電池 1と同様にして電池 2〜4を 作製した。
[0046] また、ォキシ水酸化ニッケル粉末 1の代わりにォキシ水酸化ニッケル粉末 2を用い たこと以外、上記と同様にして電池 5〜8を作製した。
[0047] 負極活物質粉末において、第一の粉末と第二の粉末との重量比を 85 : 15、 75 : 25
、または 55 : 35としたこと以外、電池 6と同様にして電池 9〜: L 1を作製した。
[0048] また、負極活物質粉末において、第一の粉末と第二の粉末との重量比を 85 : 15、 7
5 : 25、または 55 : 35としたこと以外、電池 7と同様にして電池 12〜14を作製した。 [0049] [評価試験]
電池 1〜 14、デジタルカメラでの電池実使用を想定した評価として、 1. 5W2秒 0 . 65W28秒のパルスを 10サイクルとするパルス放電を 1時間毎に行った。電圧が 1. 05 Vに至るまでのサイクル数と 1. 05V時の電圧降下幅( Δ V)とを測定した(間欠放 電特性)。表 1〜3に、各電池 10個の平均値を、電池 1の各放電における持続時間を 100として示す。
また、電池を強制的に短絡させた際の電池温度上昇を評価した。具体的には、熱 電対を用いて、電池短絡時の最高到達温度を測定した。表 1〜3に、各電池 5個の最 高到達温度の平均値を示す。
[0050] [表 1]
( 1 ) K O H濃度の検討
Figure imgf000016_0001
[0051] [表 2]
( 2 ) ォキシ水酸化ニッケル粉末 2を用いた場合の検討
Figure imgf000016_0002
電池 1〜4 (表 1)と電池 5〜8 (表 2)とをそれぞれ比較するとわ力るように、粉末 X線 回折における(101)面の半値幅が 0. 6〜0. 8deg. Z2 0で、かつ(001)面の半値 幅が 0. 5〜0. 7deg. /2 Θである水酸化ニッケルから得られたォキシ水酸化-ッケ ルを用いた電池 5〜8の場合には、強負荷パルス放電時の分極がより確実に抑制さ れている。さらに、電池短絡時の電池の温度上昇もより確実に抑制されている。
[0053] 一方、電解液である水酸ィ匕カリウム水溶液の濃度が 35重量%を超えた電池 5の場 合には、短絡時の電池最高到達温度が 173°Cと高くなつた。また、電解液である水 酸ィ匕カリウム水溶液の濃度が 33重量%を下回る電池 8の場合には、電池のノ ルス放 電特性が低下し、電解液である水酸ィ匕カリウム水溶液の濃度が 33 35重量%の電 池 6 7では、優れた放電性能および短絡時の電池温度上昇抑制に優れた電池を得 ることが出来た。よって、電解液である水酸ィ匕カリウム水溶液の濃度は、 33 35重量 %が好ましいことがわかる。
[0054] [表 3]
( 3 ) 第一の粉末と第二の粉末との重量比および K O H濃度の検討
Figure imgf000017_0001
[0055] 第一の粉末と第二の粉末との重量比が 85 : 15である電池 9および電池 12は、放電 特性が低下した。これは、強負荷パルス放電時の負極側の分極が大きいためである と考えられる。また、第一の粉末と第二の粉末との重量比が 55 : 45である電池 11と電 池 14の場合には、電池短絡時の温度上昇が著しく高くなつた。
よって、負極活物質において、第一の粉末と第二の粉末との重量比は、 65 : 35 7 5: 25であれば好まし!/、ことがわ力る。
[0056] 水酸化ニッケル粉末の(101)面の半値幅は、本実施例では 0. 78deg. /2 Θであ つたが、 0. 6 0. 8deg. /2 Θの範囲であれば同様の効果が得られた。
また、水酸化ニッケル粉末の(001)面の半値幅は、本実施例では 0. 61deg. /2 Θであったが、 0. 5 0. 7deg. /2 Θの範囲であれば同様の効果が得られた。 [0057] ォキシ水酸ィ匕ニッケル粉末の平均ニッケル価数は、本実施例では 3. 01であったが
、 2. 95以上であれば同様の効果が得られた。
また、ォキシ水酸ィ匕ニッケル粉末の平均粒径は、本実施例では 11. 7 mであった 力 8〜18 μ mの範囲であれば同様の効果が得られた。
[0058] ォキシ水酸化ニッケルと二酸化マンガンとの重量比は、本実施例では 60 :40とした 力 20 : 80〜90: 10の範囲で同様の効果が得られた。
[0059] 水酸化カルシウムの含有量は、本実施例では正極活物質に対して 5mol%であつ た力 0. 1〜: LOmol%の範囲であれば同様の効果が得られた。
また、水酸ィ匕カルシウムにおける鉄元素の含有量は、本実施例では 21ppmとした 力 150ppm以下の範囲であれば同様の効果が得られた。
産業上の利用可能性
[0060] 本発明のアルカリ乾電池は、強負荷放電特性の向上および安全性の向上を必要と する機器の電源として利用することができる。

Claims

請求の範囲
[1] ォキシ水酸化ニッケル粉末および二酸化マンガン粉末を含む正極活物質、ならび に黒鉛を含む導電剤、ならびにカルシウム化合物を具備する正極と、
亜鉛粉末または亜鉛合金粉末を含む負極活物質、ゲル化剤および水酸化カリウム 水溶液を具備する負極と、を有するアルカリ乾電池であって、
前記正極は、鉄元素の含有量が 150ppm以下であるカルシウム化合物を、前記正 極活物質に対して 0. 1〜10モル%含み、
前記ォキシ水酸化ニッケル粉末は、 2. 95以上の平均ニッケル価数および 8〜18 μ mの平均粒径を有し、
前記ォキシ水酸ィ匕ニッケル粉末と前記二酸ィ匕マンガン粉末との重量比は 20: 80〜 90 : 10であり、
前記亜鉛粉末または前記亜鉛合金粉末は、粒径が 75 μ mを超え 425 μ m以下で ある第一の粉末と、粒径が 5 μ mを超え 75 μ m以下である第二の粉末と、を含み、か つ前記第一の粉末と前記第二の粉末との重量比は、 65: 35〜75: 25であり、 前記水酸ィ匕カリウム水溶液の濃度は 33〜35重量%であること、
を特徴とするアルカリ乾電池。
[2] 前記ォキシ水酸ィ匕ニッケル粉末は、粉末 X線回折における(101)面の半値幅が 0.
6〜0. 8deg. /2 Θであり、力つ(001)面の半値幅力 0. 5〜0. 7deg. /2 Θである 水酸ィ匕ニッケル粉末を酸ィ匕して得られたものであること、を特徴とする請求項 1に記 載のアルカリ乾電池。
[3] 前記カルシウム化合物は酸ィ匕カルシウムまたは水酸ィ匕カルシウムであること、を特 徴とする請求項 1記載のアルカリ乾電池。
PCT/JP2006/318883 2005-09-27 2006-09-22 アルカリ乾電池 WO2007037181A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/885,663 US7476466B2 (en) 2005-09-27 2006-09-22 Alkaline dry battery with a nickel oxyhydroxide and manganese oxide positive electrode including a calcium compound
EP06798271A EP1930971A1 (en) 2005-09-27 2006-09-22 Alkaline dry cell
JP2007537594A JPWO2007037181A1 (ja) 2005-09-27 2006-09-22 アルカリ乾電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-279704 2005-09-27
JP2005279704 2005-09-27

Publications (1)

Publication Number Publication Date
WO2007037181A1 true WO2007037181A1 (ja) 2007-04-05

Family

ID=37899608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318883 WO2007037181A1 (ja) 2005-09-27 2006-09-22 アルカリ乾電池

Country Status (5)

Country Link
US (1) US7476466B2 (ja)
EP (1) EP1930971A1 (ja)
JP (1) JPWO2007037181A1 (ja)
CN (1) CN100517824C (ja)
WO (1) WO2007037181A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158472A (ja) * 2007-12-07 2009-07-16 Panasonic Corp アルカリ電池及び電池パック

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294288A (ja) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd アルカリ乾電池
CN102569751A (zh) * 2010-12-08 2012-07-11 比亚迪股份有限公司 一种碱锰电池正极材料及其碱锰电池
US9717657B2 (en) 2012-10-24 2017-08-01 Amy Dukoff Composition and method of using medicament for endodontic irrigation, stem cell preparations and tissue regeneration
CN115312732A (zh) * 2022-08-31 2022-11-08 河南超力新能源有限公司 一种低成本碱性二次电池正极材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015106A (ja) * 1998-10-08 2001-01-19 Matsushita Electric Ind Co Ltd アルカリ電池
JP2003017079A (ja) * 2001-06-29 2003-01-17 Toshiba Battery Co Ltd 亜鉛アルカリ電池
JP2003151539A (ja) * 2001-07-19 2003-05-23 Matsushita Electric Ind Co Ltd アルカリ乾電池
JP2005071991A (ja) * 2003-08-06 2005-03-17 Matsushita Electric Ind Co Ltd アルカリ電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615724A1 (de) 1996-04-20 1997-10-23 Varta Batterie Galvanische Zelle
JP3552194B2 (ja) 1998-07-30 2004-08-11 松下電器産業株式会社 アルカリ電池
KR100802860B1 (ko) 2001-07-19 2008-02-12 마쯔시다덴기산교 가부시키가이샤 알카리 건전지
JP3873760B2 (ja) 2002-02-07 2007-01-24 松下電器産業株式会社 アルカリ電池
CA2534669A1 (en) 2003-08-06 2005-02-17 Matsushita Electric Industrial Co., Ltd. Alkaline primary battery including nickel oxyhydroxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015106A (ja) * 1998-10-08 2001-01-19 Matsushita Electric Ind Co Ltd アルカリ電池
JP2003017079A (ja) * 2001-06-29 2003-01-17 Toshiba Battery Co Ltd 亜鉛アルカリ電池
JP2003151539A (ja) * 2001-07-19 2003-05-23 Matsushita Electric Ind Co Ltd アルカリ乾電池
JP2005071991A (ja) * 2003-08-06 2005-03-17 Matsushita Electric Ind Co Ltd アルカリ電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158472A (ja) * 2007-12-07 2009-07-16 Panasonic Corp アルカリ電池及び電池パック

Also Published As

Publication number Publication date
US7476466B2 (en) 2009-01-13
JPWO2007037181A1 (ja) 2009-04-09
CN100517824C (zh) 2009-07-22
US20080138711A1 (en) 2008-06-12
EP1930971A1 (en) 2008-06-11
CN101156266A (zh) 2008-04-02

Similar Documents

Publication Publication Date Title
EP1083614B1 (en) Lithium intercalating material containing oxygen, sulfur and a transition metal, electrode structure and production process thereof, and secondary lithium battery
CN111129463B (zh) 一种mof包覆的单晶三元正极材料及其前驱体的制备方法
EP2634148B1 (en) Active material for non-aqueous electrolyte secondary battery, method for production of the active material, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2007023933A1 (ja) アルカリ乾電池
EP2157640B1 (en) Lithium manganese for non-aqueous electrolyte secondary battery, method for production thereof, and non-aqueous electrolyte secondary battery
US20060210879A1 (en) Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
EP2680348B1 (en) Positive active material for lithium secondary battery, method for production thereof, electrode for lithium secondary battery and lithium secondary battery
CN101146746A (zh) 含锂复合氧化物的制造方法
CN101595581A (zh) 非水电解质二次电池用Li-Ni复合氧化物颗粒粉末及其制造方法、非水电解质二次电池
CN109461895A (zh) 一种锂离子电池高镍正极材料的制备方法
CN113651367A (zh) 一种镍钴锰三元前驱体材料及其制备方法
CN111785960A (zh) 五氧化二钒/rGO包覆镍钴锰酸锂正极材料及制备方法
KR20140123039A (ko) 비수 전해질 2차 전지용 활물질, 그 활물질의 제조 방법, 비수 전해질 2차 전지용 전극 및 비수 전해질 2차 전지
JP2009123400A (ja) リチウム二次電池用活物質及びリチウム二次電池
WO2007037181A1 (ja) アルカリ乾電池
CN112919554B (zh) 氟掺杂锂正极材料及其制备方法和应用
WO2006109637A1 (ja) アルカリ乾電池
JP2003267732A (ja) リチウムニッケル複合酸化物の製造方法
JP2001357847A (ja) リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
CN114975932B (zh) 一种导电氧化物包覆的高镍三元锂离子电池正极材料及其制备方法
WO2007020828A1 (ja) アルカリ乾電池
JP2006221831A (ja) アルカリ乾電池
CN117819615A (zh) 功能材料及其制备方法、正极材料和钠离子电池
JP2007328997A (ja) アルカリ一次電池
JP2007328929A (ja) アルカリ一次電池およびアルカリ一次電池正極活物質用オキシ水酸化ニッケルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011655.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006798271

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11885663

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007537594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE