WO2007037088A1 - 無線送受信方法および無線送受信装置 - Google Patents

無線送受信方法および無線送受信装置 Download PDF

Info

Publication number
WO2007037088A1
WO2007037088A1 PCT/JP2006/316860 JP2006316860W WO2007037088A1 WO 2007037088 A1 WO2007037088 A1 WO 2007037088A1 JP 2006316860 W JP2006316860 W JP 2006316860W WO 2007037088 A1 WO2007037088 A1 WO 2007037088A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
frequency band
transmission
terminal
reception
Prior art date
Application number
PCT/JP2006/316860
Other languages
English (en)
French (fr)
Inventor
Tohru Kimura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US11/992,773 priority Critical patent/US8364093B2/en
Priority to JP2007537555A priority patent/JP5125511B2/ja
Publication of WO2007037088A1 publication Critical patent/WO2007037088A1/ja
Priority to US13/735,565 priority patent/US8694048B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • H04B1/1615Switching on; Switching off, e.g. remotely
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless transmission / reception apparatus that exchanges data by performing wireless transmission / reception with a communication partner's wireless transmission / reception apparatus, and in particular, for controlling wireless transmission / reception performed between the wireless transmission / reception apparatuses.
  • the present invention relates to a wireless transmission / reception method.
  • FIG. 1 of Non-Patent Document 1 shows a configuration in which a network is configured between wireless communication devices and data acquired by each device is sent to a sano (PAN Coordinator).
  • Patent Document 1 discloses that each state and operation of a wireless communication device installed in a room temperature sensor, an air conditioner, and a water heater is transmitted to an external communication unit, and each operation state is transmitted from the external communication unit to an external communication line. The system to transfer to is shown. Further, Patent Document 2 shows that a radio communication device uses different frequencies for transmission and reception.
  • Patent Document 1 Patent Document 2, Patent Document 2 and Non-Patent Document 1 cannot achieve both high-speed data communication and low power consumption operation! /, And! / Has problems.
  • the reason is that although the maximum transmission / reception rate is determined by the carrier frequency band to be used, the power consumption of the wireless communication device strongly depends on the carrier frequency.
  • Non-Patent Document 1 a mechanism such as intermittent operation is proposed in order to realize low-power operation.
  • power is generated by intermittent operation.
  • the total amount of data communication is reduced in proportion to the amount of reduction.
  • this ad hoc network system is composed of a plurality of terminals 91, and exchanges transfer data with each other via the wireless transmission / reception number 92 between the terminals 91. It is a system that performs information communication in the field, and has the following characteristics that it is not restricted to the use area and does not require expensive equipment.
  • a wireless communication network system using an ad hoc mesh network is widely used, such as a safety ensuring system using a surveillance camera network, an entrance / exit inspection system, physical distribution management, and patient management at a medical site.
  • terminal A when terminal A makes a communication request to terminal B (step 111), terminal B and terminal C are communicating with each other. The reply cannot be received (step 112). For this reason, terminal A waits for a certain period of time (step 113), makes a communication request to terminal B again (step 114), and repeats steps 115 and 116. This iterative process is repeated until communication between terminal B and terminal C is completed.
  • steps 117 and 118 when terminal A makes a communication request to terminal B (step 119), terminal A receives a response from terminal B. (Step 120), communication begins.
  • FIG. 5 is a diagram illustrating an exposed terminal problem in an ad hoc wireless system.
  • terminal C is communicating with terminal D, and terminal B tries to transmit to terminal A, but terminal B can intercept terminal C's communication, so it does not enter the transmission operation and does not enter terminal A. Indicates a situation where transmission is not possible.
  • a flowchart for explaining this operation is shown in FIG.
  • terminal B When terminal B wishes to communicate with terminal A (step 131), terminal B senses the communication carrier of terminal C (step 132). Then, after waiting for a certain period of time (step 133), terminal B senses the communication carrier of terminal C again (step 134) and performs a standby operation (step 135). This iterative process is repeated until communication between terminal C and terminal D is completed. When communication between terminal C and terminal D is completed (steps 136 and 137), terminal B can confirm that there is no communication carrier (step 138) and make a communication request to terminal A. It will be possible (step 139).
  • each terminal is performing the longest reception standby operation, but it is expensive to increase the transmission / reception transfer rate to achieve high-speed operation. If the carrier frequency band of the frequency is used, the circuit for receiving the high carrier frequency needs to be operated for the standby operation, which causes a problem that the power consumption increases.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-101578
  • Patent Document 2 Japanese Patent Laid-Open No. 10-13958
  • Non-Patent Document 1 IEEE Computer Society, 804.15.4, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)
  • MAC Medium Access Control
  • PHY Physical Layer
  • the conventional wireless transmission / reception apparatus described above has a problem in that both high-speed data communication and low power consumption operation cannot be achieved.
  • An object of the present invention is to provide a wireless transmission / reception device and a wireless transmission / reception method capable of achieving both high-speed data communication and low power consumption operation.
  • a radio transmission / reception method of the present invention is a radio transmission / reception method that performs radio transmission / reception using two or more types of carriers belonging to different frequency bands. Transmitting and receiving a control signal for controlling a transmission / reception operation of the wireless transmission / reception apparatus using a carrier wave to which it belongs;
  • control signal may include a signal for performing authentication processing of the communication partner.
  • the wireless transmission / reception method of the present invention performs power adjustment to reduce the transmission power of communication using the low frequency band, and communication in the low frequency band becomes impossible.
  • the transmission power of the communication using the low frequency band is adjusted by increasing the transmission power of the communication using the low frequency band by the communication of the high frequency band.
  • Power adjustment is performed to reduce the transmission power of communication using the high frequency band. If communication in the high frequency band becomes impossible, communication by the low frequency band And adjusting the transmission power of communication using the higher frequency band by increasing the transmission power of communication using the higher frequency band.
  • control signals such as a signal for performing authentication processing are transmitted and received using a carrier wave belonging to a lower frequency band that requires less power consumption, and a communication partner is determined. Later, by performing data transfer using a carrier wave belonging to a higher frequency band where the maximum transmission / reception rate can be set high, it is possible to achieve both high-speed data communication and low power consumption operation.
  • control signals can be transmitted and received using a carrier wave belonging to a lower frequency band that requires less power consumption, and the maximum transmission / reception rate can be set high.
  • the maximum transmission / reception rate can be set high.
  • FIG. 1 shows an example of a network connection protocol in a conventional wireless transmission / reception method.
  • FIG. 2 is a conceptual diagram showing ad hoc network connection.
  • FIG. 3 is a conceptual diagram illustrating a hidden terminal problem in an ad hoc network.
  • FIG. 4 A flowchart explaining the conventional operation in a hidden terminal environment in an ad hoc network.
  • FIG. 5 is a conceptual diagram illustrating an exposed terminal problem in an ad hoc network.
  • FIG. 6 A flow chart explaining the conventional operation in an exposed terminal environment in an ad hoc network.
  • FIG. 7 is a conceptual diagram showing a communication form between one wireless device using the wireless transmission / reception method of one embodiment of the present invention.
  • FIG. 8 is a diagram showing a specific example of a wireless transmission / reception apparatus that implements a wireless transmission / reception method according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of a network connection protocol using a wireless transmission / reception method according to an embodiment of the present invention.
  • FIG. 10 is a flowchart showing processing when authentication in the 400 MHz band is not performed in the wireless transmission / reception method according to the embodiment of the present invention.
  • FIG. 11 is a flowchart showing a process in the case of performing power adjustment in the 400 MHz band in a state where authentication in the 400 MHz band is performed and 4 GHz band communication is established in the wireless transmission / reception method of the embodiment of the present invention. .
  • Frequency band means a frequency range defined individually based on legal regulations and standardization regulations related to wireless use, as typified by the Radio Law.
  • FIG. 7 is a diagram showing a state of communication between the wireless communication devices according to the present embodiment. Communication using both the low frequency band (here 400 MHz band) and the high frequency band (here 2.4 GHz band) between node A and node B constituting the network. Has been done.
  • the low frequency band here 400 MHz band
  • the high frequency band here 2.4 GHz band
  • FIG. 8 shows a specific configuration example of the wireless transmission / reception apparatus as shown in FIG.
  • the radio transmission / reception apparatus includes filters 1 and 4, 2.4 GHz band transmission / reception unit 2, 400 MHz band transmission / reception unit 5, and authentication control unit 3.
  • the 4 GHz band transmitting / receiving unit 2 transmits and receives a carrier wave belonging to the 2.4 GHz band which is a high frequency band.
  • the 400 MHz band transmission / reception unit 5 transmits and receives a 400 MHz band carrier wave, which is a lower frequency band.
  • the authentication control unit 3 uses the 400 MHz band transmission / reception unit 5 to exchange control signals for controlling transmission / reception operations such as authentication processing with the communication partner, and when the communication partner is determined, 2.4 GHz Operates the band transmitter / receiver 2 to send / receive data to / from the communication partner.
  • transmission / reception units 2 and 5 corresponding to a plurality of carrier frequencies are mounted in the same apparatus.
  • the circuit on the high frequency side that consumes more power (in this case, the 2.4 GHz band transmitter / receiver 2) should operate only when reception on the low frequency side (400 MHz band) is normal.
  • the signal 6 received by the 400 MHz band transceiver 5 is analyzed by the authentication controller 3 and the signal transmitted from the legitimate partner. If it can be determined that it is a signal, the authentication control unit 3 outputs a response signal 7 to the communication partner to the 400 MHz band transmitting / receiving unit 5.
  • Authentication control unit 3 then outputs 2.4 GHz band transceiver unit operation control signal 8 to activate the power and clock signal generation of 2.4 GHz band transceiver unit 2 and enables 2.4 GHz band transmission and reception. And for this reason, the 2.4 GHz z-band transmitter / receiver 2, which is a high-frequency circuit, operates only intermittently. 2. Necessary for direct reception of 4 GHz band signals 2. Always operates the 4 GHz-band transmitter / receiver 2 This eliminates the need for power consumption. In the wireless transmission / reception apparatus of this embodiment, when actively performing high-speed communication, an authentication signal is transmitted from the 400 MHz band transmission / reception unit 5 to the partner node, and the 2.4 GHz band transmission / reception unit 2 is operated after the authentication is completed. Thus, high-speed data communication can be realized.
  • 400 MHz band transmission / reception power and 2.4 GHz band transmission / reception power may be adaptively optimized.
  • the authentication control unit 3 performs power adjustment to reduce the transmission power of communication using the 400 MHz band, and when communication in the 400 MHz band becomes impossible, the communication is performed at 400 MHz by 2.4 GHz band communication. By increasing the transmission power of communication using the band, the transmission power of the communication using the 400MHz band is adjusted.
  • the authentication control unit 3 performs power adjustment to reduce the transmission power of communication using the 2.4 GHz band. 2.
  • the 400 MHz band 2.4 Increase the transmission power of communications using the 2.4 GHz band by communication, and adjust the transmission power of communications using the 2.4 GHz band.
  • Fig. 9 shows a procedure for adaptively setting 400 MHz band transmission / reception power and 2.4 GHz band transmission / reception power in this way.
  • the network connection between the nodes shown in Fig. 7 starts with the 400MHz band.
  • data transmission / reception is performed after initialization processing such as preamble, carrier sense, synchronization, and authentication.
  • initialization processing such as preamble, carrier sense, synchronization, and authentication.
  • communication is performed only with a communication partner that can authenticate in the 400 MHz band, and 2.4 GHz band communication is performed, safety in 2.4 GHz band communication can be ensured.
  • the 400MHz band and 2.4GHz band are equipped with independent transmission / reception devices. By using a communication device, transmission and reception in the 400MHz band and 2.4GHz band can be performed in parallel.
  • FIG. 9 it is possible to adjust the power of the 400MHz band transmitter / receiver in parallel while transmitting / receiving 4GHz band.
  • Figure 10 shows the process when authentication is not performed in the 400MHz band
  • Figure 11 shows the process when power is adjusted in the 400MHz band when 4GHz band communication is established. Shown in
  • terminal A makes a communication request to terminal B with the maximum power using a frequency in the 400 MHz band (step 41).
  • the terminal B that has received the communication request from the terminal A returns a response to the terminal A with the maximum power using the frequency of 400 MHz band (step 42).
  • mutual authentication is performed between terminal A and terminal B using the 400M band frequency (step 43).
  • terminals A and B block communication and end communication (steps 45 and 46).
  • terminal A makes a communication request to terminal B with the maximum power using a frequency in the 400 MHz band (step 51).
  • Terminal B that has received the communication request from terminal A returns a response to terminal A with the maximum power using the frequency in the 400 MHz band (step 52).
  • mutual authentication is performed between terminal A and terminal B using a 400M band frequency (step 53).
  • the processing so far is the same as the flowchart shown in FIG.
  • terminal A makes a communication request to terminal B with the maximum power using the frequency in the 2.4 GHz band (step 55).
  • Terminal B that has received this terminal A power communication request sends a response to terminal A with the maximum power using the 2.4 GHz band frequency (step 56).
  • terminals A and B perform power adjustment of the frequency in the 400 MHz band (steps 57 to 59). If this power adjustment cuts off the 400 MHz band frequency communication between terminals A and B (step 60), terminal A increases the power of the 400 MHz band to terminal B by the 2.4 GHz band frequency. Request (Step 61 ;). Similarly, terminal B requests terminal A to increase power at a frequency of 400 MHz with a frequency of 2.4 GHz (step 62). In this way, the frequency power in the 400 MHz band between terminals A and B is adjusted to the minimum power at which communication is possible (step 63).
  • FIG. 11 it is shown that initial connection is performed at the maximum power in both the 400 MHz band and the 2.4 GHz band, and adjustment is performed to gradually reduce the power in the 400 MHz band.
  • the communicable distance is reduced and the SZN ratio deteriorates, so communication at the 400 MHz band is cut off at some point.
  • 400MHz band communication with sufficient power as necessary is established by performing power increase processing using the 2.4GHz band during communication.
  • the wireless transmission / reception method according to the present embodiment even if the power of the transmitter / receiver is reduced too much and communication in the 400 MHz band is interrupted, 2.4 communication in the 4 GHz band can be continued and the status of each node can be mutually confirmed.
  • a low-power operation is realized during the signal standby operation that occupies most of the operation period of the ubiquitous system, and a wireless transmission / reception method capable of high-speed data transfer during spontaneous active operation is realized. can do.
  • terminal B is connected to terminal B even in a hidden terminal environment in which terminal B and terminal C are communicating using a 2.4 GHz band frequency.
  • Terminal B can return a response signal to terminal A because it can receive a communication request with A using a frequency in the 400 MHz band.
  • Figure 12 shows the operations of terminals A, B, and C at this time.
  • terminal A makes a communication request to terminal B using a frequency in the 400 MHz band (step 71).
  • terminal B can transmit a response signal to terminal A. Therefore, terminal A can know that terminal B is communicating with terminal C and can enter a standby state (step 72).
  • terminal A makes a communication request to terminal B and receives a response signal from terminal B. The communication with terminal B is started using the frequency (step 76).
  • terminal B can notify terminal A that it is currently communicating and the communication time of the communication that is currently being performed, terminal A will not issue a meaningless communication request. .
  • the problem of an increase in power due to ineffective operation of terminal A is solved.
  • terminal C and terminal D as shown in FIG.
  • terminal B can issue a communication request using 400 MHz band to terminal A, and can establish communication between terminal B and terminal A. it can.
  • the operation of terminals A, B, C, and D at this time is shown in FIG.
  • terminal B when terminal B wishes to communicate with terminal A (step 81), terminal B detects the 2.4 GHz communication carrier of terminal C by confirming a receivable communication carrier (Step 82) Confirm that there is no 400MHz communication carrier (Step 83). Therefore, terminal B makes a communication request to terminal A using a frequency in the 400 MHz band (step 84). Terminal B then communicates by receiving a response signal using a frequency of 400 MHz for terminal A.
  • Terminal A and Terminal B start communication using the 2.4 GHz frequency band.
  • the wireless transmission / reception method according to the present embodiment the hidden terminal problem and the exposed terminal problem, which have been problems in the ad hoc network configured by the conventional wireless transmission / reception apparatus, are solved. As a result, the number of cases of ineffective transmission / reception operations is reduced, and the low power consumption characteristics and the communication data rate of the entire network are improved.
  • the radio transmission / reception method of the present embodiment by using two carrier frequencies and optimally controlling the transmission / reception power at high speed for each carrier frequency, the hidden terminal problem, It is possible to deal with problems specific to ubiquitous ad hoc networks, such as terminal problems, and to minimize power consumption during operation.
  • the power during transmission / reception is minimized by using two frequency bands, a high frequency band and a low frequency band, and therefore, as shown in Figs. This produces a synergistic effect that can avoid problems caused by radio waves reaching other parties that should not communicate.

Abstract

 本発明は、ユビキタスシステムに適応される無線送受信装置で、高速データ転送と低消費電力動作を両立することができる無線送受信方法を提供することを目的とし、その構成は、異なる周波数帯域に属する2種以上の搬送波を用いて無線送受信を行う無線送受信方法を用いて、低域側の周波数帯域(400MHz帯)に属する搬送波を用いて無線送受信装置の送受信動作を制御するための制御信号を送受信し、高域側の周波数帯域(2.4GHz帯)に属する搬送波を用いてデータ転送を行う。

Description

明 細 書
無線送受信方法および無線送受信装置
技術分野
[0001] 本発明は、通信相手の無線送受信装置との間で無線送受信を行うことによりデータ のやり取りを行う無線送受信装置に関し、特に、この無線送受信装置間で行われる 無線送受信を制御するための無線送受信方法に関する。
背景技術
[0002] 近年の半導体微細加工技術の発展に伴い、無線通信用デバイス '装置が安価か つ多量に安定して供給され、日々の生活に深く浸透しつつある。今後、あらゆるもの に無線通信デバイスが搭載されたュビキタス時代が到来する事が予想されている。 ュビキタス時代の無線通信デバイスは、電池での長時間動作を要求され、このため に低消費電力化が必須の技術となって 、る。
[0003] このような無線通信デバイスの一例として、非特許文献 1に示すような無線デバイス 仕様が提案されている。この非特許文献 1の図 1では、無線通信デバイス間でネット ワークを構成し、それぞれのデバイスが取得したデータをサーノ (PAN Coordinator) に送る構成が示されている。また、特許文献 1には、室温センサ、エアコン、給湯器に 設置された無線通信デバイス力 それぞれの状態 ·動作を外部通信手段部に送信し 、それぞれの動作状態を外部通信手段部より外部通信回線に転送するシステムが示 されている。さらに特許文献 2では、無線通信デバイスにおいて、送信時と受信時と で、異なる周波数を用いる事が示されている。
[0004] しかしながら、上記、特許文献 1、特許文献 2、非特許文献 1に開示された無線通信 システムでは、高速なデータ通信と低消費電力動作の両立が出来な!/、と!/、う問題点 を有している。その理由は、使用する搬送周波数帯域により最大送受信レートが決 定されてしまうが、無線通信デバイスの消費電力は搬送波周波数に強く依存するか らである。
[0005] つまり、映像伝送などの高速データ通信を行う際には、 5GHz帯、若しくは 2. 4GH z帯等の高い周波数帯域を用いる必要があるが、これらの帯域で通信されたデータ の搬送波力 の取り出しや、通信データを搬送波に乗せるためには、無線通信デバ イス内で 5GHz、若しくは、 2. 4GHzという高速に動作する回路が必要であり、高速 動作回路部は無線通信デバイスの大部分の電力を消費するからである。
[0006] 一般的に無線通信システムでは、図 1に示すように、電波法等の法規制により割り 当てられた 1つの周波数帯の搬送波を使用してデータの送受信や動作制御が行わ れる。そのため、割り当てられる周波数帯域により最大送受信データレートは決まつ てしまう。
[0007] 特許文献 2に記載された従来技術では、無線通信デバイスの送信時と受信時に別 個の搬送周波数を用いて 、るが、同一周波数帯域内のチャネルの違いに留まるため 、搬送周波数の違いはきわめて小さぐチャネル選択の仕方の違いによる搬送周波 数の違 、が、動作電力に与える影響はほとんど無 、。
[0008] また、非特許文献 1では、低電力動作を実現するため、間歇動作などの機構が提 示されているが、ひとつの周波数帯域を利用するこのシステムでは、間歇的動作によ り電力を低減した分に比例して、トータルのデータ通信量が低減する。
[0009] 近年、端末間の通信のみで実現されるアドホックネットワークシステムが注目されて いる。このアドホックネットワークシステムは、図 2に示されるように、複数の端末 91に より構成され、この端末 91間で無線送受信号 92を介して相互に転送データを交換 することにより他の端末との間で情報通信を行うシステムであり、利用エリアに縛られ な 、、高価な設備が不要であると 、つた特徴を有して 、る。
[0010] アドホックメッシュネットワークを利用した無線通信ネットワークシステムは、監視カメ ラネットワークを用いた安全確保システム、入退場検査システムや物流管理、医療現 場での患者管理など、広範囲に使用される。
[0011] 次に、このようなアドホックネットワークシステムの端末として、図 1に示したような 1つ の周波数帯域のみを使用する無線送受信装置を用いた場合の問題点について説 明する。
[0012] 先ず、アドホック無線システムにおける隠れ端末問題を図 3を参照して説明する。図 3では、端末 Bと端末 Cが通信中であり、端末 Aには端末 Bと端末 Cが通信中である事 が分力 ない場合、端末 Aは通信中の端末 Bに通信要求を出すことになる。しかしな 力 端末 Aは端末 Bからの返信を受け取れないため、端末 Aの通信要求動作は無駄 な動作となり端末 Aは無為な電力を消費する。この動作を説明するためのフローチヤ 一トを図 4に示す。
[0013] この図 4では、端末 Aが端末 Bに対して通信要求を行った場合 (ステップ 111)、端 末 Bと端末 Cとの間では交信中であるため、端末 Aでは端末 Bからの返答を受け取る ことができない (ステップ 112)。そのため、端末 Aでは一定時間待機 (ステップ 113) した後、再度端末 Bへ通信要求を行い (ステップ 114)、ステップ 115、 116の処理が 繰り返される。この繰り返し処理は、端末 B、端末 Cの間の交信が終了するまで繰り返 される。そして、端末 B、端末 Cの間の交信が終了した場合 (ステップ 117、 118)、端 末 Aが端末 Bへ通信要求を行うと (ステップ 119)、端末 Aは端末 Bから返答を受信し て (ステップ 120)、交信が開始される。
[0014] 図 5は、アドホック無線システムにおけるさらされ端末問題を示す図である。図 5では 、端末 Cは端末 Dと交信中であり、端末 Bは端末 Aに送信しょうとしているが、端末 B は端末 Cの通信が傍受できてしまうため、送信動作に入れず端末 Aへの送信が行え ない状況を示す。この動作を説明するためのフローチャートを図 6に示す。
[0015] 端末 Bが端末 Aに対する通信を希望した場合 (ステップ 131)、端末 Bが端末 Cの通 信キャリアを感知してしまう(ステップ 132)。すると、端末 Bは一定時間待機した後 (ス テツプ 133)、再度通信キャリアの有無を判定すると、端末 Cの通信キャリアを感知し( ステップ 134)、待機動作を行ってしまう(ステップ 135)。そして、この繰り返し処理は 、端末 Cと端末 Dとの間の交信が終了するまで繰り返される。そして、端末 C、端末 D の間の交信が終了した場合 (ステップ 136、 137)、端末 Bは通信キャリアが無いこと を確認して (ステップ 138)、端末 Aに対して通信要求を行うことができるようになる (ス テツプ 139)。
[0016] このように、従来の無線送受信装置を用いてアドホックネットワークシステムを構成し た場合、無駄な通信処理が繰り返されることにより送信電力が無駄に使用されること になる。
[0017] さらに、一般的な無線通信システムでは、各端末は受信待ち受け動作を行っている 時間が最も長くなるが、送受信転送レートを上げて高速動作を実現しょうとして、高い 周波数の搬送周波数帯域を使用すると、待ち受け動作についても高い搬送周波数 を受信するための回路を動作させる必要があり消費電力が大きくなつてしまうという問 題的を有している。
特許文献 1 :特開 2000— 101578号公報
特許文献 2 :特開平 10— 13958号公報
非特許文献 1 : IEEE Computer Society, 804.15.4, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low- R ate Wireless Personal Area Networks (LR- WPANs)
発明の開示
発明が解決しょうとする課題
[0018] 上記で説明した従来の無線送受信装置では、高速なデータ通信と低消費電力動 作を両立することができな 、と 、う問題点があった。
[0019] 本発明の目的は、高速なデータ通信と低消費電力動作の両立ができる無線送受 信装置および無線送受信方法を提供することにある。
課題を解決するための手段
[0020] 上記目的を達成するために、本発明の無線送受信方法は、異なる周波数帯域に 属する 2種以上の搬送波を用いて無線送受信を行う無線送受信方法であって、 低域側の周波数帯域に属する搬送波を用いて無線送受信装置の送受信動作を制 御するための制御信号を送受信するステップと、
高域側の周波数帯域に属する搬送波を用いてデータ転送を行うステップとを備え ている。
[0021] また、前記制御信号には、通信相手の認証処理を行うための信号を含むようにして ちょい。
[0022] さらに、本発明の無線送受信方法は、低域側の周波数帯を用いた通信の送信電 力を減少させる電力調整を行!ヽ、低域側の周波数帯の通信が通信不能となった場 合には、高域側の周波数帯の通信により低域側の周波数帯を用いた通信の送信電 力を増加させることにより、低域側の周波数帯を用いた通信の送信電力調整を行うス テツプと、 高域側の周波数帯を用いた通信の送信電力を減少させる電力調整を行、、高域 側の周波数帯の通信が通信不能となった場合には、低域側の周波数帯の通信によ り高域側の周波数帯を用いた通信の送信電力を増加させることにより、高域側の周 波数帯を用いた通信の送信電力調整を行うステップとをさらに有するようにしてもよい
[0023] 本発明によれば、消費電力が少なくて済む低域側の周波数帯域に属する搬送波 を用いて認証処理を行うための信号等の制御信号の送受信を行 、、通信相手が確 定した後に、最大送受信レートを高く設定することが可能な高域側の周波数帯域に 属する搬送波を用いてデータ転送を行うことにより、高速なデータ通信と低消費電力 動作の両立が可能になる。
[0024] このことにより、ュビキタス無線システムにおいて、動作の大半を占める信号待ち受 け期間では低域側の周波数帯を用いた通信を行うことで消費電力を低減し、能動的 通信を行う際には高域側の周波数帯を用いた通信を行うことで高速なデータ通信を 可能とする。
[0025] 以上説明したように、本発明によれば、消費電力が少なくて済む低域側の周波数 帯域に属する搬送波を用いて制御信号の送受信を行い、最大送受信レートを高く設 定することが可能な高域側の周波数帯域に属する搬送波を用いてデータ転送を行う ことにより、高速なデータ通信と低消費電力動作の両立が可能になるという効果を得 ることがでさる。
図面の簡単な説明
[0026] [図 1]従来の無線送受信方法でのネットワーク接続プロトコル例を示すである。
[図 2]アドホックネットワーク接続を示す概念図である。
[図 3]アドホックネットワークでの隠れ端末問題を説明する概念図である。
[図 4]アドホックネットワークでの隠れ端末環境での従来動作を説明するフローチヤ一 トである。
[図 5]アドホックネットワークでのさらされ端末問題を説明する概念図である。
[図 6]アドホックネットワークでのさらされ端末環境での従来動作を説明するフローチ ヤートである。 [図 7]本発明の一実施形態の無線送受信方法を用いたひとつの無線装置間の通信 形態を示す概念図である。
[図 8]本発明の一実施形態の無線送受信方法を実現する無線送受信装置の具体例 を示す図である。
[図 9]本発明の一実施形態の無線送受信方法を用いたネットワーク接続プロトコルの 一例を示す図である。
[図 10]本発明の一実施形態の無線送受信方法において、 400MHz帯での認証が 行われなかった場合の処理を示すフローチャートである。
[図 11]本発明の一実施形態の無線送受信方法において、 400MHz帯での認証が 行われ 2. 4GHz帯通信が確立した状態で 400MHz帯の電力調整を行う場合の処 理を示すフローチャートである。
圆 12]アドホックネットワークでの隠れ端末環境での本発明による動作を説明するフ ローチャートである。 圆 13]アドホックネットワークでのさらされ端末環境での本発明による動作を説明する フローチャートである。 符号の説明
1 フイノレタ
2 2. 4GHz帯送受信部
3 認証 ·制御部
4 フイノレタ
5 400MHz帯送受信部
6 受信制御信号
7 送信制御信号
8 2. 4GHz帯トランシーバ部動作制御信号
41〜46 ステップ
51〜63 ステップ
71〜76 ステップ
81〜86 ステップ 92 無線送受信信号
111〜120 ステップ
131〜139 ステップ
発明を実施するための最良の形態
[0028] 次に、本発明の実施の形態について図面を参照して詳細に説明する。なお、ここで は説明を簡略ィ匕するために、もっとも単純な周波数帯域が 2つの場合について説明 する。ここで言う「周波数帯域」とは、電波法などに代表される、無線利用に関する法 規定、標準化規定に基づき個々に定義された周波数レンジを意味するものとする。
[0029] 図 7は、本実施形態による無線通信用デバイス間での通信の様子を示す図である 。ネットワークを構成するノード A、ノード Bとの間において、低域側の周波数帯域 (こ こでは 400MHz帯)と高域側の周波数帯域 (ここでは 2. 4GHz帯)の両方を用いた通 信が行われている。
[0030] 次に、図 7に示したような無線送受信装置の具体的な構成例を図 8に示す。この無 線送受信装置は、フィルタ 1、 4と、 2. 4GHz帯送受信部 2と、 400MHz帯送受信部 5と、認証制御部 3とを備えている。
[0031] 2. 4GHz帯送受信部 2は、高域側の周波数帯域である 2. 4GHz帯に属する搬送 波の送受信を行う。
[0032] 400MHz帯送受信部 5と、低域側の周波数帯域である 400MHz帯の搬送波の送 受信を行う。
[0033] 認証制御部 3は、 400MHz帯送受信部 5を用いて通信相手との間の認証処理等 の送受信動作を制御する制御信号をやり取りし、通信相手が確定された場合に、 2. 4GHz帯送受信部 2を動作させて通信相手との間でデータの送受信を行う。
[0034] 本実施形態における無線送受信装置では、図 8に示すように、同一装置内に複数 の搬送周波数に対応する送受信部 2、 5を搭載する。より多くの電力を消費する高周 波側の回路 (ここでは 2. 4GHz帯送受信部 2)は、低周波側 (400MHz帯)の受信が 正常であった場合のみ動作するようにする。図 8の例では、 400MHz帯送受信部 5 にて受信された信号 6は認証制御部 3にて解析され、正規の相手より送信された信 号であると判断できた場合、認証制御部 3は、通信相手への返答信号 7を 400MHz 帯送受信部 5に出力する。そして、認証制御部 3は、 2. 4GHz帯送受信部 2の電源 · クロック信号発生を活性ィ匕するための 2. 4GHz帯トランシーバ部動作制御信号 8を 出力し、 2. 4GHz帯の送受信を可能とする。このため、高周波帯回路である 2. 4GH z帯送受信部 2は間歇的にしか動作せず、 2. 4GHz帯信号を直接受信する場合に 必要な 2. 4GHz帯送受信部 2の常時動作をする必要が無くなり、消費電力を抑制す ることができる。そして、本実施形態の無線送受信装置では、能動的に高速通信を 行う場合は、 400MHz帯送受信部 5より相手ノードへ認証信号を発信し、認証完了 後に 2. 4GHz帯送受信部 2を動作させることで、高速なデータ通信が実現できる。
[0035] 上記に説明した実施形態において、 400MHz帯送受信電力、 2. 4GHz帯送受信 電力を適応的に最適化設定するようにしてもよい。
[0036] 例えば、認証制御部 3は、 400MHz帯を用いた通信の送信電力を減少させる電力 調整を行い、 400MHz帯の通信が通信不能となった場合には、 2. 4GHz帯の通信 により 400MHz帯を用いた通信の送信電力を増加させることにより、 400MHz帯を 用いた通信の送信電力調整を行う。
[0037] また、認証制御部 3は、 2. 4GHz帯を用いた通信の送信電力を減少させる電力調 整を行い、 2. 4GHz帯の通信が通信不能となった場合には、 400MHz帯の通信に より 2. 4GHz帯を用いた通信の送信電力を増加させることにより、 2. 4GHz帯を用い た通信の送信電力調整を行う。
[0038] このようにして、 400MHz帯送受信電力、 2. 4GHz帯送受信電力を適応的に最適 化設定するための手順を、図 9に示す。図 7に示したノード間のネットワーク接続を、 まずは 400MHz帯から開始する。初めの 400MHz帯の送受信では、プリアンブル、 キャリアセンス、同期、認証などの初期化処理を行った後にデータ送受信が行われる 。ここで、 400MHz帯での認証処理が正規に行える通信相手とのみ 2. 4GHz帯で の交信を行うようにすれば、 2. 4GHz帯通信での安全性を確保することが出来る。ま た、 400MHz帯で認証を行うことで、許可された交信相手以外からの通信に 2. 4G Hz帯を用いる必要がなくなるため、電力消費の多い高域通信動作頻度を低減できる 。また、 400MHz帯、 2. 4GHz帯と、それぞれ独立した送受信装置を具備した送受 信デバイスを用いることで、 400MHz帯と 2. 4GHz帯の送受信を平行して行うことが できる。
[0039] 図 9に示すように、 2. 4GHz帯の送受信を行いながら、平行して 400MHz帯送受 信器の電力調整を行う事が出来る。 400MHz帯での認証が行われな力つた場合の 処理を図 10に、 400MHz帯での認証が行われ 2. 4GHz帯通信が確立した状態で 400MHz帯の電力調整を行う場合の処理を図 11に示す。
[0040] 先ず、図 10を参照して、認証が行われな力つた場合の動作について説明する。こ の場合、端末 Aは、 400MHz帯の周波数を用いて最大電力で端末 Bに対して交信 要求を行う(ステップ 41)。この端末 Aからの交信要求を受信した端末 Bは、 400MH z帯の周波数を用いて最大電力で端末 Aに対して返信を行う(ステップ 42)。その後、 端末 Aと、端末 Bとの間で、 400M帯の周波数を用いて相互認証が行われる (ステツ プ 43)。しかし、ここでは、認証結果は NGとなるため(ステップ 44)、端末 A、 Bは交信 を遮断して通信を終了する (ステップ 45、 46)。
[0041] 次に、図 11を参照して、 400MHz帯での認証が行われ 2. 4GHz帯通信が確立し た状態で 400MHz帯の電力調整を行う場合の動作につ ヽて説明する。この場合、 端末 Aは、 400MHz帯の周波数を用いて最大電力で端末 Bに対して交信要求を行 う(ステップ 51)。この端末 Aからの交信要求を受信した端末 Bは、 400MHz帯の周 波数を用いて最大電力で端末 Aに対して返信を行う (ステップ 52)。その後、端末 Aと 、端末 Bとの間で、 400M帯の周波数を用いて相互認証が行われる (ステップ 53)。こ こまでの処理は、図 10に示したフローチャートと同様である。
[0042] し力し、ここでは、認証結果は OKとなるため(ステップ 54)、端末 Aは 2. 4GHz帯の 周波数を用いて最大電力で端末 Bに交信要求を行う(ステップ 55)。そして、この端 末 A力 の交信要求を受信した端末 Bは、 2. 4GHz帯の周波数を用いて最大電力 で端末 Aに対して返信を行う(ステップ 56)。
[0043] このようにして 2. 4GHz帯での通信が確立した状態で端末 A、 Bは、 400MHz帯の 周波数の電力調整を行う(ステップ 57〜59)。この電力調整により端末 A、 B間の 40 0MHz帯の周波数の通信が遮断された場合 (ステップ 60)、端末 Aは 2. 4GHz帯の 周波数により端末 Bに対して 400MHz帯の周波数の電力増を要求する (ステップ 61 ;)。同様に、端末 Bは 2. 4GHz帯の周波数により端末 Aに対して 400MHz帯の周波 数の電力増を要求する(ステップ 62)。このようにして端末 A、 B間の 400MHz帯の周 波数の電力は通信が可能な最小電力となるように調整される (ステップ 63)。
[0044] この図 11では 400MHz帯、 2. 4GHz帯ともに初期接続は最大電力にて行い、徐 々に 400MHz帯の電力を低減する調整を行うことが示されている。電力低減に伴い 通信可能距離が低減し SZN比が劣化するため、あるところで 400MHz帯の通信が 遮断される。このとき、交信中の 2. 4GHz帯を用いて電力増加処理を行うことで、必 要にして十分な電力での 400MHz帯通信が確立される。本実施形態による無線送 受信方法では、送受信器の電力を低減しすぎて 400MHz帯通信が途絶えた場合で も、 2. 4GHz帯を用いた通信を «続でき各ノードの状態を互いに確認できるため、無 線通信デバイス間の同期、認証処理などが不要となる。結果、再度 400MHz帯での 通信を確立する際には、上記の初期化処理は極めて単純化、短時間化できる。よつ て、図 1に示した従来例に比べ非常に高速に 400MHz帯の電力調整が完了できる
[0045] 同様に、 400MHz帯の電力調整完了後、 2. 4GHz帯の電力調整を行うことで、そ れぞれの周波数帯域での最低電力での通信が可能となる。
[0046] また、図 10に示すように、 400MHz帯での認証処理が行えな力つた際には電力を より消費する 2. 4GHz帯の無線送受信機は動作しないため、無為な電力消費を回 避できる。
[0047] さらに、ュビキタスシステムの動作期間の大半の時間を占める信号待ち受け動作時 間にお 、て低電力動作を実現し、自発的能動的動作時には高速データ転送が行え る無線送受信方法を実現することができる。
[0048] 次に、このような無線送受信装置を、図 2に示すアドホックネットワークシステムに対 して適用した場合の動作について説明する。
[0049] 1つの周波数帯のみを用いる従来の無線送受信装置により構成されたアドホックネ ットワークシステムでは、上記で説明したように、図 3、図 5に示した隠れ端末問題や、 さらされ端末問題が発生した。しかし、本実施形態の無線送受信装置のように 2つの 周波数帯を使用する無線送受信装置を用いることによりこれらの問題を解消して消 費電力の低減を図ることが可能となる。
[0050] 本実施形態の無線送受信装置では、図 3に示すように端末 Bと端末 Cが 2. 4GHz 帯の周波数を用いて通信中であるような隠れ端末環境であっても端末 Bは端末 Aと の間で 400MHz帯の周波数を使った通信要求を受ける事ができるため、端末 Bは端 末 Aに返答信号を返す事ができる。このときの端末 A、 B、 Cの動作を図 12に示す。
[0051] 先ず、端末 Aが端末 Bに対して 400MHz帯の周波数を使用して通信要求を行う(ス テツプ 71)。ここで、端末 Bと端末 Cとの間では、 2. 4GHz帯の周波数を使用して交 信中であったとしても、端末 Bは返答信号を端末 Aに送信することができる。そのため 、端末 Aは、端末 Bが端末 Cとの間で交信中であることを知ることができ待機状態に入 ることができる (ステップ 72)。そして、端末 Bと、端末 Cとの間の交信が終了すると (ス テツプ 73、 74)、端末 Aは端末 Bへ通信要求を行い、端末 Bからの返答信号を受信し て、 2. 4GHz帯の周波数を使用して端末 Bとの間の交信を開始する (ステップ 76)。
[0052] このように端末 Bは端末 Aに現在通信中であることや現在行っている通信の通信時 間等を通知することができるため、端末 Aは無意味な通信要求を出すことがなくなる。 この結果、端末 Aの無為な動作による電力増加という問題が解消される。
[0053] また、本実施形態の無線送受信装置では、図 5に示したような端末 Cと端末 Dが 2.
4GHzで通信中であるようなさらされ端末環境の場合でも、端末 Bは端末 Aに 400M Hz帯を用いた通信要求を出す事ができ、端末 Bと端末 Aとの間の通信を確立する事 ができる。このときの端末 A、 B、 C、 Dの動作を図 13に示す。
[0054] 先ず、端末 Bが端末 Aに対する通信を希望した場合 (ステップ 81)、端末 Bは受信 可能な通信キャリアの確認を行うことにより、端末 Cの 2. 4GHzの通信キャリアを感知 するが(ステップ 82)、 400MHzの通信キャリアは無いことを確認する(ステップ 83)。 そのため、端末 Bは、 400MHz帯の周波数を使用して端末 Aに対する通信要求を行 う(ステップ 84)。そして、端末 Bは、端末 A力も 400MHz帯の周波数を使用した返答 信号を受信して、交信を行う。
[0055] そして、端末 Cと端末 Dとの間の 2. 4GHz帯の周波数を使用した交信が終了すると
(ステップ 85、 86)、端末 Aと端末 Bとは、 2. 4GHz帯の周波数を使用した交信を開 始する。 [0056] 本実施形態による無線送受信方法により、従来の無線送受信装置により構成され たアドホックネットワークで問題となっていた、隠れ端末問題、さらされ端末問題が解 消されている。その結果、無為な送受信動作を行う場合が減少し、低消費電力特性 、および、ネットワーク全体の通信データレートが改善する。
[0057] つまり、本実施形態の無線送受信方法によれば、 2つの搬送周波数を用いて、そ れぞれの搬送周波数ごとに送受信電力を高速に最適制御することで、隠れ端末問 題、さらされ端末問題などのュビキタスアドホックネットワークに特有な問題に対応し、 かつ、動作時消費電力の最小化を実現することができる。
[0058] さらに、高域側の周波数帯域と低域側の周波数帯域という 2つの周波数帯域の搬 送波を使用することにより送受信時の電力を最小化しているので、図 3、図 5で示した ような、本来通信すべきでない相手まで電波が届くことによる問題を回避できるという 相乗的な効果を奏する。
[0059] 本実施形態では、説明を単純ィ匕するために、 400MHz帯、 2. 4GHz帯という 2つ の周波数帯を用いた場合について述べたが、本発明はこのような場合に限定される わけではなぐ 3種類以上の周波数帯を用いた場合でも同様に適用することが可能 である。

Claims

請求の範囲
[1] 異なる周波数帯域に属する 2種以上の搬送波を用いて無線送受信を行う無線送受 信方法であって、
低域側の周波数帯域に属する搬送波を用いて無線送受信装置の送受信動作を制 御するための制御信号を送受信するステップと、
高域側の周波数帯域に属する搬送波を用いてデータ転送を行うステップとを備え た無線送受信方法。
[2] 前記制御信号は、通信相手の認証処理を行うための信号を含む請求項 1記載の無 線送受信方法。
[3] 低域側の周波数帯を用いた通信の送信電力を減少させる電力調整を行!ヽ、低域 側の周波数帯の通信が通信不能となった場合には、高域側の周波数帯の通信によ り低域側の周波数帯を用いた通信の送信電力を増加させることにより、低域側の周 波数帯を用いた通信の送信電力調整を行うステップと、
高域側の周波数帯を用いた通信の送信電力を減少させる電力調整を行 、、高域 側の周波数帯の通信が通信不能となった場合には、低域側の周波数帯の通信によ り高域側の周波数帯を用いた通信の送信電力を増加させることにより、高域側の周 波数帯を用いた通信の送信電力調整を行うステップと、をさらに有する請求項 1また は 2記載の無線送受信方法。
[4] 第 1の周波数帯域に属する搬送波の送受信を行うための第 1の送受信部と、
前記第 1の周波数帯域よりも周波数が高い第 2の周波数帯域に属する搬送波の送 受信を行うための第 2の送受信部と、
前記第 1の送受信部を制御することにより第 1の周波数帯域に属する搬送波を用い て送受信動作を制御するための制御信号を通信相手とやり取りし、通信相手が確定 された場合に、前記第 2の送受信部を動作させて通信相手との間のデータ送受信を 行う認証制御部と、を備えた無線送受信装置。
[5] 前記制御信号は、通信相手の認証処理を行うための信号を含む請求項 4記載の無 線送受信装置。
[6] 前記認証制御部は、 前記第 1の周波数帯を用いた通信の送信電力を減少させる電力調整を行い、前記 第 1の周波数帯の通信が通信不能となった場合には、前記第 2の周波数帯の通信に より前記第 1の周波数帯を用いた通信の送信電力を増加させることにより、前記第 1 の周波数帯を用いた通信の送信電力調整を行 、、
前記第 2の周波数帯を用いた通信の送信電力を減少させる電力調整を行い、前記 第 2の周波数帯の通信が通信不能となった場合には、前記第 1の周波数帯の通信に より前記第 2の周波数帯を用いた通信の送信電力を増加させることにより、前記第 2 の周波数帯を用いた通信の送信電力調整を行う請求項 4または 5記載の無線送受 信装置。
PCT/JP2006/316860 2005-09-29 2006-08-28 無線送受信方法および無線送受信装置 WO2007037088A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/992,773 US8364093B2 (en) 2005-09-29 2006-08-28 Wireless transmitting/receiving method and wireless transmitting/receiving apparatus
JP2007537555A JP5125511B2 (ja) 2005-09-29 2006-08-28 無線送受信方法および無線送受信装置
US13/735,565 US8694048B2 (en) 2005-09-29 2013-01-07 Wireless transmitting/receiving method and wireless transmitting/receiving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-283842 2005-09-29
JP2005283842 2005-09-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/992,773 A-371-Of-International US8364093B2 (en) 2005-09-29 2006-08-28 Wireless transmitting/receiving method and wireless transmitting/receiving apparatus
US13/735,565 Continuation US8694048B2 (en) 2005-09-29 2013-01-07 Wireless transmitting/receiving method and wireless transmitting/receiving apparatus

Publications (1)

Publication Number Publication Date
WO2007037088A1 true WO2007037088A1 (ja) 2007-04-05

Family

ID=37899521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316860 WO2007037088A1 (ja) 2005-09-29 2006-08-28 無線送受信方法および無線送受信装置

Country Status (3)

Country Link
US (2) US8364093B2 (ja)
JP (2) JP5125511B2 (ja)
WO (1) WO2007037088A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001433A1 (ja) * 2007-06-25 2008-12-31 Panasonic Corporation 無線通信ユニット及び携帯端末装置、並びに無線認証制御方法
JP2009124463A (ja) * 2007-11-15 2009-06-04 Nec Corp 無線通信装置および方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI516148B (zh) * 2013-10-29 2016-01-01 財團法人工業技術研究院 於車載網路環境中動態調整訊息產生頻率之系統與其方法
US9590661B2 (en) * 2013-11-18 2017-03-07 Netgear, Inc. Systems and methods for improving WLAN range
JP6463059B2 (ja) * 2014-09-24 2019-01-30 キヤノン株式会社 携帯機器、その制御方法及びプログラム
US10721694B2 (en) 2015-05-18 2020-07-21 Mediatek Inc. Methods and electronic devices for controlling transmission power

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345477A (ja) * 2002-04-17 2003-12-05 Microsoft Corp ネットワーク化バッテリ動作デバイスにおけるアイドル電力消費の削減
JP2004032062A (ja) * 2002-06-21 2004-01-29 Nec Corp 無線通信システムおよび中継器
JP2004320132A (ja) * 2003-04-11 2004-11-11 Sharp Corp 無線通信システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754961A (en) * 1994-06-20 1998-05-19 Kabushiki Kaisha Toshiba Radio communication system including SDL having transmission rate of relatively high speed
JP3363034B2 (ja) 1996-06-25 2003-01-07 ソニー株式会社 無線電話システム
JPH11168303A (ja) 1997-12-05 1999-06-22 Hitachi Metals Ltd 高周波スイッチモジュール
EP1443666B1 (en) 1997-12-03 2006-08-02 Hitachi Metals, Ltd. Multiband high-frequency switching module
JP2000101578A (ja) 1998-09-21 2000-04-07 Matsushita Electric Ind Co Ltd 無線ネットワークシステム
JP2002094440A (ja) 2000-09-14 2002-03-29 Hitachi Kokusai Electric Inc 無線システム
JP2002101004A (ja) 2000-09-25 2002-04-05 Kenwood Corp 通信システム、及び周波数設定方法
CN1462527A (zh) * 2001-05-08 2003-12-17 索尼株式会社 无线通信系统、控制站、通信设备、通信控制方法、无线通信方法和通信控制程序
JP2003046402A (ja) 2001-08-01 2003-02-14 Denso Corp 遠隔操作用受信装置
JP4010504B2 (ja) 2003-06-04 2007-11-21 日立金属株式会社 マルチバンド用送受信機およびそれを用いた無線通信機
JP4370931B2 (ja) 2004-02-19 2009-11-25 沖電気工業株式会社 無線ネットワーク装置、無線ネットワークシステム及び経路選択方法
JP2006352191A (ja) * 2005-06-13 2006-12-28 Mitsubishi Electric Corp 無線通信方法、制御局および移動局
US20070009067A1 (en) * 2005-07-08 2007-01-11 Michalak Gerald P Methods and apparatus for radio frequency interference reduction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345477A (ja) * 2002-04-17 2003-12-05 Microsoft Corp ネットワーク化バッテリ動作デバイスにおけるアイドル電力消費の削減
JP2004032062A (ja) * 2002-06-21 2004-01-29 Nec Corp 無線通信システムおよび中継器
JP2004320132A (ja) * 2003-04-11 2004-11-11 Sharp Corp 無線通信システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001433A1 (ja) * 2007-06-25 2008-12-31 Panasonic Corporation 無線通信ユニット及び携帯端末装置、並びに無線認証制御方法
US8160496B2 (en) 2007-06-25 2012-04-17 Panasonic Corporation Wireless communication unit, mobile terminal, and wireless authentication control method
JP5020318B2 (ja) * 2007-06-25 2012-09-05 パナソニック株式会社 無線通信ユニット及び携帯端末装置、並びに無線認証制御方法
JP2009124463A (ja) * 2007-11-15 2009-06-04 Nec Corp 無線通信装置および方法

Also Published As

Publication number Publication date
US8364093B2 (en) 2013-01-29
US20090117860A1 (en) 2009-05-07
US20130190029A1 (en) 2013-07-25
JP2012257320A (ja) 2012-12-27
JP5354075B2 (ja) 2013-11-27
JPWO2007037088A1 (ja) 2009-04-02
JP5125511B2 (ja) 2013-01-23
US8694048B2 (en) 2014-04-08

Similar Documents

Publication Publication Date Title
US9288774B2 (en) Communications apparatuses and method for multi-level transmission power control thereof
US8503968B2 (en) Method and system for power saving in wireless communications
US7193986B2 (en) Wireless network medium access control protocol
US6980839B2 (en) Apparatus, system and method for use in powering on a remote wireless device
EP2356848B1 (en) Method and apparatus for band switching in wireless local access network
JP5722424B2 (ja) 60GHzにおけるBSS/PBSSをサポートし且つスケジューリングがないネットワーキング
US8248981B2 (en) Method and apparatus for low cost, long range, power efficient, wireless system with enhanced functionality
JP5354075B2 (ja) 無線送受信方法および無線送受信装置
US10891248B2 (en) Configuring wireless communications according to multiple communication protocols
JP4347222B2 (ja) 電子装置、方法、および通信システム
Kim et al. Physical layer and medium access control design in energy efficient sensor networks: An overview
Kardach Bluetooth architecture overview
US8971225B2 (en) Method of communication for station operating based on battery in wireless local area network system and apparatus for the same
EP3255931B1 (en) Configuring wireless communications and an advertising event according to multiple communication protocols
KR20110025170A (ko) 데이터를 전송하고 수신하기 위한 장치 및 데이터를 전송하고 수신하기 위한 방법
JP2004363728A (ja) 無線情報通信端末
JP2004282756A (ja) 無線lanシステムでの無線接続ノードの電力制御方法
US20120182928A1 (en) Wireless internet connection repeater without signal interference
US20220150831A1 (en) Wakeup Radio for Low Power Nodes in Bluetooth
JP3681377B2 (ja) 複数の無線通信部を有する情報処理装置におけるrf信号干渉を防止するための通信監視制御
Monowar TRW-MAC: A thermal-aware receiver-driven wake-up radio enabled duty cycle MAC protocol for multi-hop implantable wireless body area networks in Internet of Things
US20040085941A1 (en) Information appliance control system
JP2000286856A (ja) 無線lanシステム
WO2004100461A1 (en) Wireless ad hoc communication with different power levels for message header and payload
Masrub Energy Efficiency MAC Protocols for Wireless Sensor Networks: Slotted Protocols Approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537555

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11992773

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783089

Country of ref document: EP

Kind code of ref document: A1