WO2007036461A1 - Measurement apparatus and measurement system for inspection of a surface of a substrate - Google Patents

Measurement apparatus and measurement system for inspection of a surface of a substrate Download PDF

Info

Publication number
WO2007036461A1
WO2007036461A1 PCT/EP2006/066505 EP2006066505W WO2007036461A1 WO 2007036461 A1 WO2007036461 A1 WO 2007036461A1 EP 2006066505 W EP2006066505 W EP 2006066505W WO 2007036461 A1 WO2007036461 A1 WO 2007036461A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
sensor
substrate
measuring head
measuring device
Prior art date
Application number
PCT/EP2006/066505
Other languages
German (de)
French (fr)
Inventor
Franz Drobner
Theodoro Rombauer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN2006800354527A priority Critical patent/CN101273245B/en
Priority to KR1020087009810A priority patent/KR101338028B1/en
Priority to JP2008532726A priority patent/JP4940242B2/en
Publication of WO2007036461A1 publication Critical patent/WO2007036461A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/16Measuring arrangements characterised by the use of fluids for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/22Measuring arrangements characterised by the use of fluids for measuring roughness or irregularity of surfaces

Definitions

  • the invention relates to a measuring device for inspecting a surface of a substrate, which measuring device has a sensor which can be positioned at a predetermined distance above a surface to be measured by means of a surface positioning system.
  • the invention further relates to a measuring system with a plurality of measuring devices mentioned above.
  • sensors are usually positioned at a predetermined distance above the substrate surface to be measured.
  • the positioning is usually carried out by a positioning ⁇ niersystem with which the sensor can be positioned within a plane parallel to the surface to be measured.
  • By appropriate control of the positioning can thus be scanned, for example, by a meandering movement, the entire surface to be measured.
  • sensors are used which comprise a plurality of individual sensors so that by a simultaneous measurement ⁇ rer measuring points several measurement time for a given area ent ⁇ speaking the number of individual sensors is reduced.
  • a camera is used with, for example, a line or area sensor.
  • a capacitive measuring task one or a plurality of Messspit ⁇ zen is used, which is loaded with a particular AC or DC voltage.
  • the measuring signal is a small current flow over the respective measuring tip, which depends on the capacitance. between the measuring tip or the respective measuring point of the surface to be measured.
  • a method for example in which the wiring pattern of a substrate, which for a Crystal Display flues ⁇ (Liquid Crystal Display LCD) is used with regard to possible defects can be inspected before the completion of the LCD.
  • a corresponding capacitive measurement between a measuring tip and an area of the conductor track structure opposite the measuring tip unwanted short circuits, interruptions and constrictions of the conductor track structure can thus be detected.
  • Such defects can either be repaired prior to further processing of the LCD substrate, or the LCD substrate can be sorted out of a production process.
  • the manufacturing cost of liquid crystal displays can be significantly reduced.
  • the invention has for its object to provide a measuring device, which allows a precise measurement of even an uneven substrate surface.
  • the invention is further based on the object of providing a measuring system, which enables a particularly rapid measurement of an uneven substrate surface.
  • the first of the object underlying the invention is solved by a measuring apparatus for inspecting a surface of a substrate having the features of independent claim 1.
  • the measuring apparatus according to the invention comprises a measuring ⁇ head, comprising a sensor for detecting the surface and arranged next to the sensor pneumatic element.
  • the pneumatic element has an inlet opening and at least ⁇ a downwardly directed outlet opening.
  • the measuring device according to the invention further comprises a surface positioning system, arranged for precise positioning of the measuring head within an xy plane above the substrate, and a compressed air generating device, which is pneumatically coupled to the inlet opening, so that when the pneumatic element with compressed air Measuring head can be positioned at a predetermined height above the substrate.
  • the invention is based on the finding that a PR ⁇ ZI ⁇ se height adjustment of the sensor can be done by an air bearing of the sensor on the substrate surface easily.
  • the air exiting through the outlet creates an air cushion on which the probe can slide freely over the surface of the substrate.
  • the strength of the air flow be ⁇ adjusts the height of the air cushion and so the vertical distance of the measuring head over the substrate surface.
  • a significant advantage of the storage of the measuring head by means of an air cushion is that an automatic height adjustment of the sensor is easily done even with a corrugated surface.
  • This automatic fatiguenanpas ⁇ solution is based on the measuring head that is always in a height determined by the thickness of the air cushion over the area of the substrate to be measured.
  • the measuring device additionally has a coupling device which is arranged between the surface positioning system and the measuring head.
  • the coupling device can be designed so that, apart from a translational movement of the measuring head parallel to the x-y plane, certain movements of the measuring head relative to the positioning system are possible.
  • the coupling device may also comprise spring elements, so that even with a jerky movement of the positioning system, a gentle positioning of the sensor can be ensured.
  • the coupling device is also understoodbil ⁇ det, that the measuring head along a to the xy plane senk ⁇ right z-direction, at least within a certain range of motion is freely displaced.
  • This has the Prior ⁇ part, that the height of the sensor above the substrate exclu ⁇ Lich determined by the air cushion.
  • the coupling device is designed such that the measuring head is freely tiltable about an axis at least within a certain angular range.
  • the axis is oriented parallel to the x-y plane.
  • the coupling device allows tilting about any axis parallel to the substrate plane, so that the sensor can also adapt to short-wave unevenness of the substrate surface by means of a corresponding inclination.
  • the coupling device usually has a plurality of coupling elements which are mounted on the measuring gropf each exercise a holding power.
  • the coupling elements are preferably arranged relative to one another such that the force lines associated with the individual holding forces intersect at the center of gravity of the measuring head. This has the consequence that even with a jerky translational movement of the measuring head no torques act on the measuring head, so that an undesirable tilting of the Meßkop ⁇ fes is advantageously avoided even in a highly dynamic movement of the sensor.
  • the coupling device comprises an upper coupling element, which is connected in a rigid manner with the pneumatic element, and a lower coupling element, which is connected via an articulated suspension with the upper coupling element.
  • the upper coupling element is positioned by the positioning system along the x and the y direction. The positioning of the upper coupling element along the z-direction is determined by the air bearing, so that the measuring head and thus also the sensor is always kept at a certain distance from the substrate surface to be measured.
  • the articulated suspension comprises at least two rods whose upper ends are connected to the upper coupling element and the lower ends to the lower coupling element in each case a ball element.
  • This type of suspension has the advantage that with a suitable choice of rod length and a suitable spatial arrangement of the ball joints a tilting movement about a virtual Ie rotation axis is possible, which axis of rotation is located directly on the underside of the sensor. In this way, it is ensured that the sensor is always located at a predetermined distance above the substrate surface to be measured even with a tilting.
  • the pneumatic element which before ⁇ given an air duct with corresponding inlet and outlet ⁇ openings has arranged around the sensor around. This has the advantage that a uniform force ⁇ effect along the z-direction is exerted on the measuring head, so that no torques are generated by the air cushion, which could trigger a tilting of the measuring head.
  • At least one outlet opening is a
  • Air nozzle which is designed such that the Geschwin ⁇ speed of exiting air reaches at least approximately Schallge ⁇ speed.
  • Such a high Strömungsgeschwin ⁇ speed can be achieved in that the air nozzle has a favorable flow resistance taper of the nozzle cross-section, which on the other hand causes the one hand such a high speed and an acceptable Ausbergsge ⁇ pneumatic flow resistance.
  • Such a high outflow velocity has to be that, even with a possible undesirable change in the height position of the measuring head over the surface to be measured substrate ⁇ the pressure conditions in the pneumatic element only insignificantly influenced advantage. In particular, under no circumstances does an abrupt drop in the air pressure within the pneumatic element take place. In this way it is ensured that an unwanted lifting and placing the sensor head is not possible, so that a particularly stable height positioning of the measuring head is ensured.
  • the sensor has an optical, a capacitive and / or an inductive sensor element. The Messvor ⁇ direction with the above-described pneumatic height positioning can thus be realized without specific conversions with any sensor types.
  • the second of the object underlying the invention is achieved by a measurement system for inspecting a surface of a substrate having the features of independent claim 10.
  • the measuring system according to the invention comprises at least two measurement ⁇ devices according to one of claims 1 to 9.
  • the measuring devices are arranged relative to each other, that the respective sensors are arranged along a measuring line.
  • the invention is based on the finding that a long line sensor can be created in a simple manner by a defined sequence of several measuring heads. This can cling to an uneven or wavy substrate ⁇ surface, so that each sensor is automatically positioned at a predetermined distance from the substrate surface to be measured.
  • the invention of course also includes a measuring system in which a plurality of measuring heads are arranged in the form of a two-dimensional grid.
  • a surface sensor is maraf ⁇ fen, which hugs as well as the above-mentioned line sensor so on an uneven substrate surface, that each sensor is automatically adjusted in a predetermined altitude.
  • 3a shows a suspension of a sensor on a pneumatically mounted upper coupling plate
  • Figure 3b shows a deflection of the suspension shown in Figure 3a, in which the sensor is tilted about a virtual axis of rotation
  • FIG. 4 shows a measuring system with four measuring heads arranged next to one another.
  • FIG. 1 shows a pneumatically mounted measuring head 110 according to an embodiment of the invention in three different views.
  • a plan view of the measuring head shown, wherein the viewing direction along a z-axis.
  • the upper part shows the measuring head in a cross-sectional view parallel to an x-y plane.
  • the probe is shown in a cross-sectional view parallel to a y-z plane.
  • the x-, y- and z-axes form a rectangular coordinate system in which one axis is perpendicular to a plane spanned by the other two axes.
  • the measuring head 110 has a sensor 111, which may be any sensor such as an optical, a capacitive or an inductive sensor.
  • the sensor 111 is surrounded by a pneumatic element 112 which forms an air duct 113.
  • the pneumatic element 112 has on its upper side two inlet openings 115, which via compressed air lines with a compressed air generation device, such as a pump, are pneumatically coupled.
  • the compressed air lines and the Druckbucherzeu ⁇ restriction device are not shown for clarity in FIG. 1
  • a plurality of nozzle-like outlet openings are formed, which generate an air flow 195 between the measuring head 110 and a substrate surface to be measured.
  • the air flow 195 creates an air cushion on which the measuring head 110 slides at a predetermined distance above the substrate 190.
  • an air gap 196 is formed between the underside of the measuring head ⁇ 110 and the substrate 190. The thickness of the air gap 196 and thus the distance between the measuring head 110 and the substrate 190 depends on the strength of the air flow 195th
  • the coupling of the measuring head 110 to the positioning system via a spring element 130 is formed such that it (a) in the x and y direction no
  • the loose connection allows a free Relativbewe ⁇ tion between positioning and measuring head 110 at least within a certain deflection range from a predetermined by the thickness of the air cushion free movement.
  • the spring element 130 ensures that the measuring head by the positioning system, not shown in Figure 1 only in the xy plane is positioned accurately.
  • the coupling of the measuring head 110 to the positioning system via the spring element 130 is further characterized in that a tilting of the measuring head 110 is possible relative to the positioning system. These tilts can be reduced by the x- Axis, around the y-axis, or any axis in the xy plane.
  • the two Verkippips about the x and about the y-axis are indicated in Figure 1 each by a double arrow.
  • the spring element 130 is further such that of the
  • Positioning system on the measuring head 110 only attack holding forces whose lines of force extend along the longitudinal extension of the respective portion of the spring element 130.
  • the spring element 130 is connected to the measuring head 110 in such a way that the lines of force of the various
  • Cut side acting holding forces in the center of gravity of the measuring head 110 is determined by the starting point of a force vector G, which represents the weight force of the measuring head 110 acting in the z-direction.
  • the coincidence of the lines of force in the center of gravity of the measuring head 110 has the advantage that even with a jerky translational movement of the measuring head 110, no torques act on the measuring head, so that undesired tilting of the measuring head 110 is advantageously avoided in an advantageous manner.
  • FIG. 2 shows a plan view of a pneumatically mounted measuring device which has the measuring head 110 shown in FIG. 1, which is now identified by the reference numeral 210.
  • the measuring head 210 which includes a sensor 211 and a pneumatic element 212 with two inlet openings 215, is connected by means of a spring element 230 to a Positioning system 220 attached.
  • the type of fastening and the degrees of freedom remaining by the spring element 230 with respect to a movement of the measuring head 210 are explained in detail above with reference to FIG.
  • the measurement is Kopf 210 by a corresponding control of the positio ⁇ niersystems 220 within a certain working area parallel to the xy plane can be positioned freely.
  • the positio ⁇ niersystem 220 has for this purpose two groovelie ⁇ constricting pages on one X-guide 221, on which the spring element 230 is displaceable by means of a not shown driving along the x direction.
  • the measuring head 210 is displaceable along the spring element 230 by means of a drive (also not shown) along the y-direction.
  • a compressed air generator 250 is provided.
  • the compressed air generator 250 is attached to the frame of the positioning system 220 according to the embodiment described here.
  • a vibration-onsdämpfendes material is provided between the compressed air generator (not shown).
  • the pneumatic element 212 is supplied with compressed air via flexible compressed air lines 251.
  • FIG. 3 a shows, according to a further exemplary embodiment of the invention, an advantageous suspension of a sensor 311, which suspension allows a free tilting movement of the sensor 311 about a virtual rotation pole VP.
  • the suspension comprises an upper coupling plate 331, which is positioned by means of a surface positioning system, not shown, within a working area which is parallel to the surface of a substrate 390 to be measured.
  • the upper coupling plate 331 is slidable along a z-direction, at least within a certain range of deflection free ver ⁇ .
  • the altitude of the sensor 311 and the Height of the upper coupling plate 331 determined by the height of an air cushion, which forms between the substrate 390 and a sensor arranged next to the 390 pneumatic element (not shown).
  • the suspension further comprises a lower coupling plate 333, which is connected to the sensor 311.
  • the two coupling ⁇ plates 331 and 333 are connected together by two rigid rods 332a and 332b, the ends of each of steering in a ball joints are mounted 334th
  • Two ball joints 334 are located on the underside of the upper coupling plate 331.
  • Two Kugelge ⁇ joints 334 are located at the top of the lower coupling plate 333rd
  • the suspension can be realized without lower coupling plate 333.
  • the two lower ball joints 334 are located directly on the sensor 311.
  • the two rigid rods 332 a and 332 b are arranged symmetrically with respect to one another to an axis of symmetry 338.
  • the two lower ball joints ⁇ ke 334 are arranged at a distance 1 from each other.
  • the sensor 311, along with the lower coupling plate 333 attached to the sensor 311, has a height d along the z-direction.
  • FIG. 3b schematically illustrates the case in which the sensor 311 (not shown) is tilted out of its initial position.
  • the suspension is dependent on the height d, in particular with regard to the position of the upper ball joints 334, dimensioned in terms of the length of the two rigid rods 332a and 332b and with respect to the distance 1 such that the sensor tilts around the virtual pivot pole.
  • the sensor 311 always optimally, even with a wavy substrate surface, ie, conforming to the substrate surface at the predetermined distance.
  • FIG. 4 shows a measuring system with four measuring heads 410a, 410b, 410c and 410d arranged next to one another.
  • the measuring heads 410a, 410b, 410c and 410d are each assigned a positioning system with which the corresponding measuring head can be positioned within an xy plane.
  • at least some of the measuring heads 410a, 410b, 410c and 410d are firmly connected to one another along the x and along the y direction.
  • the measuring heads 410a, 410b, 410c and 410d inde ⁇ z-direction are in any case gig apart along the movable and respectively about a virtual center of rotation on the underside of the measuring heads 410a, 410b, 410c and 410d freely tiltable.
  • an unillustrated air bearing of the measuring heads 410a, 410b, 410c and 410d on the substrate 490 which has a waviness shown exaggerated in Figure 4 start to ⁇ , and the free tilting capability can the single ⁇ NEN measuring heads 410a, 410b, 410c or 410d each optimally cling to the corrugated substrate surface.
  • the starting points are the measuring head center lines shown in front of a nestle against the corrugated Substratoberflä ⁇ surface and provided with the reference numerals 416a, 416b, 416c or 416d.
  • the measuring heads 410a and 410b are tilted counterclockwise in comparison to their initial position.
  • the measuring head 410c is not tilted and the measuring head 410d is tilted in a clockwise direction compared to its initial position.

Abstract

The invention provides a measurement apparatus for inspection of a surface of a substrate (190), by means of a measurement head (110), having a sensor (111) for detection of the surface and having a pneumatic element (112) which is arranged alongside the sensor (111) and has an inlet opening (115) and at least one outlet opening (114), which points downwards. The measurement apparatus also has a surface positioning system (220), designed for precise positioning of the measurement head (110, 210) within an x-y plane above the substrate (190), and a compressed-air generating device (250), which is pneumatically coupled to the inlet opening (215), so that, when compressed air is applied to the pneumatic element (112, 212), the measurement head (110, 210) can be positioned at a predetermined height above the substrate (190), and slides on an air cushion. The invention also provides a measurement system having a plurality of abovementioned measurement apparatuses, which are arranged with respect to one another such that the respective sensors form a measurement row.

Description

Beschreibungdescription
Messvorrichtung und Messsystem zum Inspizieren einer Oberfläche eines SubstratesMeasuring device and measuring system for inspecting a surface of a substrate
Die Erfindung betrifft eine Messvorrichtung zum Inspizieren einer Oberfläche eines Substrates, welche Messvorrichtung einen Sensor aufweist, der in einem vorbestimmten Abstand über einer zu vermessenden Oberfläche mittels eines Flächen- Positioniersystems positionierbar ist. Die Erfindung betrifft ferner ein Messsystem mit einer Mehrzahl von oben genannten Messvorrichtungen .The invention relates to a measuring device for inspecting a surface of a substrate, which measuring device has a sensor which can be positioned at a predetermined distance above a surface to be measured by means of a surface positioning system. The invention further relates to a measuring system with a plurality of measuring devices mentioned above.
Auf dem Gebiet der Oberflächeninspektion von ebenen Flächen werden Sensoren in der Regel in einem vorbestimmten Abstand oberhalb der zu vermessenden Substratoberfläche positioniert. Die Positionierung erfolgt üblicherweise durch ein Positio¬ niersystem, mit dem der Sensor innerhalb einer Ebene parallel zu der zu vermessenden Oberfläche positioniert werden kann. Durch eine entsprechende Ansteuerung des Positioniersystems kann somit beispielsweise durch eine mäanderförmige Bewegung die gesamte zu vermessende Oberfläche abgetastet werden. Um eine hohe Messgeschwindigkeit zu erreichen, werden auch Sensoren eingesetzt, die eine Mehrzahl von Einzelsensoren aufweisen, so dass durch eine gleichzeitige Vermessung mehre¬ rer Messpunkte die Messzeit für eine bestimmte Fläche ent¬ sprechend der Anzahl der Einzelsensoren reduziert wird.In the field of surface inspection of flat surfaces, sensors are usually positioned at a predetermined distance above the substrate surface to be measured. The positioning is usually carried out by a positioning ¬ niersystem with which the sensor can be positioned within a plane parallel to the surface to be measured. By appropriate control of the positioning can thus be scanned, for example, by a meandering movement, the entire surface to be measured. To obtain a high measurement speed, sensors are used which comprise a plurality of individual sensors so that by a simultaneous measurement ¬ rer measuring points several measurement time for a given area ent ¬ speaking the number of individual sensors is reduced.
Abhängig von der Art der zu erbringenden Messaufgabe werden unterschiedliche Sensoren eingesetzt. Bei einer optischenDepending on the type of measurement task to be performed different sensors are used. In an optical
Inspektion wird üblicherweise eine Kamera mit beispielsweise einem Zeilen- oder Flächensensor verwendet. Bei einer kapazitiven Messaufgabe wird eine oder eine Mehrzahl von Messspit¬ zen verwendet, die mit einer bestimmten Wechsel- oder Gleich- Spannung beaufschlagt wird. Als Messsignal dient ein kleiner Stromfluss über die jeweilige Messspitze, die von der Kapazi- tät zwischen der Messspitze oder dem jeweiligen Messpunkt der zu vermessenen Oberfläche abhängt.Inspection usually a camera is used with, for example, a line or area sensor. In a capacitive measuring task one or a plurality of Messspit ¬ zen is used, which is loaded with a particular AC or DC voltage. The measuring signal is a small current flow over the respective measuring tip, which depends on the capacitance. between the measuring tip or the respective measuring point of the surface to be measured.
So ist beispielsweise ein Verfahren bekannt, bei dem die Leiterbahnstruktur eines Substrates, welches für eine Flüs¬ sigkristallanzeige (Liquid Crystal Display, LCD) verwendet wird, vor der Fertigstellung des LCD hinsichtlich möglicher Defekte inspiziert werden kann. Durch eine entsprechende kapazitive Messung zwischen einer Messspitze und einem der Messspitze gegenüberliegenden Bereich der Leiterbahnstruktur können somit ungewollte Kurzschlüsse, Unterbrechungen und Einschnürungen der Leiterbahnstruktur erkannt werden. Derartige Defekte können entweder vor der weiteren Verarbeitung des LCD-Substrates repariert oder das LCD-Substrat kann aus einem Produktionsprozess aussortiert werden. Somit können auf jeden Fall die Herstellkosten für Flüssigkristallanzeigen erheblich reduziert werden.Thus, a method is known for example in which the wiring pattern of a substrate, which for a Crystal Display flues ¬ (Liquid Crystal Display LCD) is used with regard to possible defects can be inspected before the completion of the LCD. By means of a corresponding capacitive measurement between a measuring tip and an area of the conductor track structure opposite the measuring tip, unwanted short circuits, interruptions and constrictions of the conductor track structure can thus be detected. Such defects can either be repaired prior to further processing of the LCD substrate, or the LCD substrate can be sorted out of a production process. Thus, in any case, the manufacturing cost of liquid crystal displays can be significantly reduced.
Für eine präzise Inspektion ist in der Regel eine hochgenaue Einstellung und Einhaltung des Abstandes zwischen Sensor und zu vermessender Substratoberfläche erforderlich. Die Einhal¬ tung eines genauen Abstandes ist aber dann deutlich erschwert, wenn das zu vermessende Substrat eine unebene bzw. leicht gewellte Oberfläche aufweist. Zur Vermessung von unebenen Oberflächen muss deshalb ein Positioniersystem verwendet werden, welches nicht nur eine Positionierung des Sensors in der Ebene parallel zu der zu vermessenden Oberflä¬ che, sondern auch eine Positionierung senkrecht zu dieser Ebene ermöglicht. Derartige Positionierungen senkrecht zu der zu vermessenden Oberfläche führen jedoch in der Regel zu einer Verlangsamung des Messvorgangs und zu einer Reduzierung der Messgenauigkeit.For a precise inspection, a highly accurate adjustment and compliance with the distance between the sensor and the substrate surface to be measured is usually required. TO OBSERVE ¬ tung specific distance is then much more difficult when the substrate to be measured has an uneven or slightly wavy surface. Therefore, for the measurement of uneven surfaces, a positioning system must be used which che not only positioning of the sensor in the plane parallel to the to be measured Oberflä ¬, but also allows a positioning perpendicular to this plane. However, such positioning perpendicular to the surface to be measured usually leads to a slowing down of the measuring process and to a reduction of the measuring accuracy.
Der Erfindung liegt die Aufgabe zugrunde, eine Messvorrich- tung zu schaffen, welche eine präzise Vermessung auch einer unebenen Substratoberfläche ermöglicht. Der Erfindung liegt ferner die Aufgabe zugrunde, ein Messsystem zu schaffen, welches eine besonders zügige Vermessung einer unebenen Substratoberfläche ermöglicht.The invention has for its object to provide a measuring device, which allows a precise measurement of even an uneven substrate surface. The invention is further based on the object of providing a measuring system, which enables a particularly rapid measurement of an uneven substrate surface.
Die erste der Erfindung zugrundeliegende Aufgabe wird gelöst durch eine Messvorrichtung zum Inspizieren einer Oberfläche eines Substrates mit den Merkmalen des unabhängigen Anspruchs 1. Die erfindungsgemäße Messvorrichtung umfasst einen Mess¬ kopf, aufweisend einen Sensor zur Erfassung der Oberfläche und ein neben dem Sensor angeordnetes pneumatisches Element. Das pneumatische Element weist eine Einlassöffnung und zumin¬ dest eine nach unten gerichtete Auslassöffnung auf. Die erfindungsgemäße Messvorrichtung umfasst ferner ein Flächen- Positioniersystem, eingerichtet zum präzisen Positionieren des Messkopfes innerhalb einer x-y-Ebene oberhalb des Sub- strates, und eine Drucklufterzeugungseinrichtung, welche mit der Einlassöffnung pneumatisch gekoppelt ist, so dass bei einer Beaufschlagung des pneumatischen Elements mit Druckluft der Messkopf in einer vorbestimmten Höhe über dem Substrat positionierbar ist.The first of the object underlying the invention is solved by a measuring apparatus for inspecting a surface of a substrate having the features of independent claim 1. The measuring apparatus according to the invention comprises a measuring ¬ head, comprising a sensor for detecting the surface and arranged next to the sensor pneumatic element. The pneumatic element has an inlet opening and at least ¬ a downwardly directed outlet opening. The measuring device according to the invention further comprises a surface positioning system, arranged for precise positioning of the measuring head within an xy plane above the substrate, and a compressed air generating device, which is pneumatically coupled to the inlet opening, so that when the pneumatic element with compressed air Measuring head can be positioned at a predetermined height above the substrate.
Der Erfindung liegt die Erkenntnis zugrunde, dass eine präzi¬ se HöhenJustierung des Sensors auf einfache Weise durch eine Luftlagerung des Sensors auf der Substratoberfläche erfolgen kann. Die durch die Auslassöffnung austretende Luft erzeugt ein Luftkissen, auf dem der Messkopf frei über der Substratoberfläche gleiten kann. Durch das Flächen-Positioniersystem wird somit lediglich die x-y-Position des Messkopfes relativ zu dem Substrat bestimmt. Die Stärke der Luftströmung be¬ stimmt die Höhe des Luftkissens und damit den vertikalen Abstand des Messkopfes über der Substratoberfläche.The invention is based on the finding that a PRÄZI ¬ se height adjustment of the sensor can be done by an air bearing of the sensor on the substrate surface easily. The air exiting through the outlet creates an air cushion on which the probe can slide freely over the surface of the substrate. Thus, only the xy position of the measuring head relative to the substrate is determined by the surface positioning system. The strength of the air flow be ¬ adjusts the height of the air cushion and so the vertical distance of the measuring head over the substrate surface.
Ein bedeutender Vorteil der Lagerung des Messkopfes mittels eines Luftkissens besteht darin, dass eine automatische Höhenanpassung des Sensors auf einfache Weise auch bei einer gewellten Oberfläche erfolgt. Diese automatische Höhenanpas¬ sung beruht darauf, dass sich der Messkopf stets in einer durch die Stärke des Luftkissens bestimmten Höhe über dem zu vermessenden Bereich des Substrates befindet.A significant advantage of the storage of the measuring head by means of an air cushion is that an automatic height adjustment of the sensor is easily done even with a corrugated surface. This automatic Höhenanpas ¬ solution is based on the measuring head that is always in a height determined by the thickness of the air cushion over the area of the substrate to be measured.
Gemäß Anspruch 2 weist die Messvorrichtung zusätzlich eine Koppeleinrichtung auf, welche zwischen dem Flächen- Positioniersystem und dem Messkopf angeordnet ist. Dies hat den Vorteil, dass abhängig von der jeweils zu bewältigenden Inspektionsaufgabe die Koppeleinrichtung so gestaltet sein kann, dass abgesehen von einer translatorischen Bewegung des Messkopfes parallel zu der x-y-Ebene bestimmte Bewegungen des Messkopfes relativ zu dem Positioniersystem möglich sind. Die Koppeleinrichtung kann außerdem Federelemente aufweisen, so dass auch bei einer ruckartigen Bewegung des Positioniersystems ein sanftes Positionieren des Sensors gewährleistet werden kann.According to claim 2, the measuring device additionally has a coupling device which is arranged between the surface positioning system and the measuring head. This has the advantage that, depending on the particular inspection task to be performed, the coupling device can be designed so that, apart from a translational movement of the measuring head parallel to the x-y plane, certain movements of the measuring head relative to the positioning system are possible. The coupling device may also comprise spring elements, so that even with a jerky movement of the positioning system, a gentle positioning of the sensor can be ensured.
Gemäß Anspruch 3 ist die Koppeleinrichtung derart ausgebil¬ det, dass der Messkopf entlang einer zu der x-y-Ebene senk¬ rechten z-Richtung zumindest innerhalb eines bestimmten Bewegungsbereiches frei verschiebbar ist. Dies hat den Vor¬ teil, dass die Höhe des Sensors über dem Substrat ausschlie߬ lich durch das Luftkissen bestimmt wird. Durch eine entspre¬ chende Ansteuerung der Drucklufterzeugungseinrichtung kann somit die Höhe des Sensors über dem Substrat frei bestimmt werden.According to claim 3, the coupling device is ausgebil ¬ det, that the measuring head along a to the xy plane senk ¬ right z-direction, at least within a certain range of motion is freely displaced. This has the Prior ¬ part, that the height of the sensor above the substrate exclu ¬ Lich determined by the air cushion. By a corre ¬ sponding control of the compressed air generating device thus the height of the sensor above the substrate can be determined freely.
Gemäß Anspruch 4 ist die Koppeleinrichtung derart ausgebildet ist, dass der Messkopf zumindest innerhalb eines bestimmten Winkelbereiches um eine Achse frei verkippbar ist. Die Achse ist dabei parallel zu der x-y-Ebene orientiert. Bevorzugt ermöglicht die Koppeleinrichtung ein Verkippen um jede beliebige Achse parallel zur Substratebene, so dass sich der Sensor durch eine entsprechende Schrägstellung auch an kurzwellige Unebenheiten der Substratoberfläche anpassen kann.According to claim 4, the coupling device is designed such that the measuring head is freely tiltable about an axis at least within a certain angular range. The axis is oriented parallel to the x-y plane. Preferably, the coupling device allows tilting about any axis parallel to the substrate plane, so that the sensor can also adapt to short-wave unevenness of the substrate surface by means of a corresponding inclination.
Es wird darauf hingewiesen, dass die Koppeleinrichtung üblicherweise mehrere Koppelelemente aufweist, die auf den Mess- köpf jeweils eine Haltekraft ausüben. Bevorzugt sind die Koppelelemente derart zueinander angeordnet, dass sich die den einzelnen Haltekräften zugeordneten Kraftlinien im Schwerpunkt des Messkopfes schneiden. Dies hat zur Folge, dass auch bei einer ruckbehafteten translatorischen Bewegung des Messkopfes keine Drehmomente auf den Messkopf wirken, so dass auf vorteilhafte Weise auch bei einer hochdynamischen Bewegung des Sensors eine ungewollte Verkippung des Messkop¬ fes vermieden wird.It should be noted that the coupling device usually has a plurality of coupling elements which are mounted on the measuring köpf each exercise a holding power. The coupling elements are preferably arranged relative to one another such that the force lines associated with the individual holding forces intersect at the center of gravity of the measuring head. This has the consequence that even with a jerky translational movement of the measuring head no torques act on the measuring head, so that an undesirable tilting of the Meßkop ¬ fes is advantageously avoided even in a highly dynamic movement of the sensor.
Gemäß Anspruch 5 umfasst die Koppeleinrichtung ein oberes Koppelelement, welches in starrer Weise mit dem pneumatischen Element verbunden ist, und ein unteres Koppelelement, welches über eine gelenkige Aufhängung mit dem oberen Koppelelement verbunden ist. Dabei wird das obere Koppelelement durch das Positioniersystem entlang der x- und der y-Richtung positioniert. Die Positionierung des oberen Koppelelements entlang der z-Richtung wird durch die Luftlagerung bestimmt, so dass der Messkopf und damit auch der Sensor stets in einem be- stimmten Abstand zu der zu vermessenden Substratoberfläche gehalten wird.According to claim 5, the coupling device comprises an upper coupling element, which is connected in a rigid manner with the pneumatic element, and a lower coupling element, which is connected via an articulated suspension with the upper coupling element. In this case, the upper coupling element is positioned by the positioning system along the x and the y direction. The positioning of the upper coupling element along the z-direction is determined by the air bearing, so that the measuring head and thus also the sensor is always kept at a certain distance from the substrate surface to be measured.
Gemäß Anspruch 6 umfasst die gelenkige Aufhängung zumindest zwei Stäbe, deren obere Enden mit dem oberen Koppelelement und deren untere Enden mit dem unteren Koppelelement in jeweils einem Kugelelement verbunden sind. Diese Art der Aufhängung hat den Vorteil, dass bei einer entsprechenden Wahl der Stablänge und eine einer geeigneten räumlichen Anordnung der Kugelgelenke eine Kippbewegung um eine virtuel- Ie Drehachse möglich ist, welche Drehachse sich unmittelbar an der Unterseite des Sensors befindet. Auf diese Weise wird sichergestellt, dass sich der Sensor auch bei einer Verkippung stets im vorgegebenen Abstand oberhalb der zu vermessenden Substratoberfläche befindet.According to claim 6, the articulated suspension comprises at least two rods whose upper ends are connected to the upper coupling element and the lower ends to the lower coupling element in each case a ball element. This type of suspension has the advantage that with a suitable choice of rod length and a suitable spatial arrangement of the ball joints a tilting movement about a virtual Ie rotation axis is possible, which axis of rotation is located directly on the underside of the sensor. In this way, it is ensured that the sensor is always located at a predetermined distance above the substrate surface to be measured even with a tilting.
Es wird darauf hingewiesen, dass bei einer gelenkigen Aufhängung mit drei Stäben eine Verkippung um eine beliebige Achse möglich ist, welche parallel zu der x-y-Ebene bzw. zu der zu vermessenden Substratoberfläche orientiert ist. Dies ermög¬ licht auf vorteilhafte Weise auch dann einen optimalen Ab¬ stand zwischen Sensor und Substratoberfläche, wenn die Sub- stratoberflache eine unregelmäßige Welligkeit aufweist.It should be noted that in a hinged suspension with three bars tilts around any axis is possible, which is oriented parallel to the xy plane or to the substrate surface to be measured. This allowed ¬ light advantageously also an optimal From ¬ stood between the sensor and the substrate surface when the sub stratoberflache has an irregular ripple.
Gemäß Anspruch 7 ist das pneumatische Element, welches bevor¬ zugt einen Luftkanal mit entsprechenden Einlass- und Auslass¬ öffnungen aufweist, um den Sensor herum angeordnet. Dies hat den Vorteil, dass auf den Messkopf eine gleichmäßige Kraft¬ wirkung entlang der z-Richtung ausgeübt wird, so dass durch das Luftkissen keine Drehmomente erzeugt werden, welche eine Verkippung des Messkopfes auslösen könnten.According to claim 7, the pneumatic element, which before ¬ given an air duct with corresponding inlet and outlet ¬ openings has arranged around the sensor around. This has the advantage that a uniform force ¬ effect along the z-direction is exerted on the measuring head, so that no torques are generated by the air cushion, which could trigger a tilting of the measuring head.
Gemäß Anspruch 8 ist zumindest eine Auslassöffnung eineAccording to claim 8, at least one outlet opening is a
Luftdüse, welche derart ausgebildet ist, dass die Geschwin¬ digkeit von austretender Luft zumindest annähernd Schallge¬ schwindigkeit erreicht. Eine derart hohe Strömungsgeschwin¬ digkeit kann dadurch erreicht werden, dass die Luftdüse eine strömungsmechanisch günstige Verjüngung des Düsenquerschnitts aufweist, welche zum einen eine derart hohe Austrittsge¬ schwindigkeit und zum anderen einen vertretbaren pneumatischen Strömungswiderstand bewirkt.Air nozzle, which is designed such that the Geschwin ¬ speed of exiting air reaches at least approximately Schallge ¬ speed. Such a high Strömungsgeschwin ¬ speed can be achieved in that the air nozzle has a favorable flow resistance taper of the nozzle cross-section, which on the other hand causes the one hand such a high speed and an acceptable Austrittsge ¬ pneumatic flow resistance.
Eine derart hohe Austrittsgeschwindigkeit hat den Vorteil, dass auch bei einer eventuellen unerwünschten Änderung der Höhenlage des Messkopfes über der zu vermessenden Substrat¬ oberfläche die Druckverhältnisse in dem pneumatischen Element nur unwesentlich beeinflusst werden. Insbesondere findet unter keinen Umständen ein abrupter Abfall des Luftdrucks innerhalb des pneumatischen Elements statt. Auf diese Weise wird sicher gestellt, dass ein unerwünschtes Abheben und Aufsetzen des Sensorkopfes nicht möglich ist, so dass eine besonders stabile Höhenpositionierung des Messkopfes gewähr- leistet ist. Gemäß Anspruch 9 weist der Sensor ein optisches, ein kapazitives und/oder ein induktives Sensorelement auf. Die Messvor¬ richtung mit der oben erläuterten pneumatischen Höhenpositionierung kann somit ohne spezifische Umbauten mit beliebigen Sensortypen realisiert werden.Such a high outflow velocity has to be that, even with a possible undesirable change in the height position of the measuring head over the surface to be measured substrate ¬ the pressure conditions in the pneumatic element only insignificantly influenced advantage. In particular, under no circumstances does an abrupt drop in the air pressure within the pneumatic element take place. In this way it is ensured that an unwanted lifting and placing the sensor head is not possible, so that a particularly stable height positioning of the measuring head is ensured. According to claim 9, the sensor has an optical, a capacitive and / or an inductive sensor element. The Messvor ¬ direction with the above-described pneumatic height positioning can thus be realized without specific conversions with any sensor types.
Die zweite der Erfindung zugrundeliegende Aufgabe wird gelöst durch ein Messsystem zum Inspizieren einer Oberfläche eines Substrates mit den Merkmalen des unabhängigen Anspruchs 10. Das erfindungsgemäße Messsystem umfasst zumindest zwei Mess¬ vorrichtungen nach einem der Ansprüche 1 bis 9. Die Messvorrichtungen sind dabei derart zueinander angeordnet, dass die jeweiligen Sensoren entlang einer Messzeile angeordnet sind.The second of the object underlying the invention is achieved by a measurement system for inspecting a surface of a substrate having the features of independent claim 10. The measuring system according to the invention comprises at least two measurement ¬ devices according to one of claims 1 to 9. The measuring devices are arranged relative to each other, that the respective sensors are arranged along a measuring line.
Der Erfindung liegt die Erkenntnis zugrunde, dass durch eine definierte Aneinanderreihung von mehreren Messköpfen auf einfache Weise ein langer Liniensensor geschaffen werden kann. Dieser kann sich an eine unebene bzw. wellige Substrat¬ oberfläche anschmiegen, so dass jeder Sensor automatisch in einem vorgegebenen Abstand von der zu vermessenden Substratoberfläche positioniert ist.The invention is based on the finding that a long line sensor can be created in a simple manner by a defined sequence of several measuring heads. This can cling to an uneven or wavy substrate ¬ surface, so that each sensor is automatically positioned at a predetermined distance from the substrate surface to be measured.
Es wird darauf hingewiesen, dass die Erfindung selbstverständlich auch ein Messsystem umfasst, bei dem eine Mehrzahl von Messköpfen in Form eines zweidimensionalen Rasters angeordnet sind. Auf diese Weise wird ein Flächensensor geschaf¬ fen, welcher sich ebenso wie der oben genannte Liniensensor derart an eine unebene Substratoberfläche anschmiegt, dass jeder Sensor automatisch in einem vorgegebenen Höhenlage justiert ist.It should be noted that the invention of course also includes a measuring system in which a plurality of measuring heads are arranged in the form of a two-dimensional grid. In this way, a surface sensor is geschaf ¬ fen, which hugs as well as the above-mentioned line sensor so on an uneven substrate surface, that each sensor is automatically adjusted in a predetermined altitude.
Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung derzeit bevorzugter Ausführungsformen.Further advantages and features of the present invention will become apparent from the following exemplary description of presently preferred embodiments.
In der Zeichnung zeigen in schematischen Darstellungen Figur 1 einen pneumatisch gelagerten Messkopf in einerIn the drawing show in schematic representations 1 shows a pneumatically mounted measuring head in a
Draufsicht und zwei verschiedenen Querschnittsansichten,Top view and two different cross-sectional views,
Figur 2 eine pneumatisch gelagerte Messvorrichtung in einer Draufsicht,2 shows a pneumatically mounted measuring device in a plan view,
Figur 3a eine Aufhängung eines Sensors an einer pneumatisch gelagerten oberen Koppelplatte,3a shows a suspension of a sensor on a pneumatically mounted upper coupling plate,
Figur 3b eine Auslenkung der in Figur 3a dargestellten Aufhängung, bei welcher der Sensor um eine virtuelle Drehachse gekippt ist, undFigure 3b shows a deflection of the suspension shown in Figure 3a, in which the sensor is tilted about a virtual axis of rotation, and
Figur 4 ein Messsystem mit vier zu einer Messzeile aneinander gereihten Messköpfen.FIG. 4 shows a measuring system with four measuring heads arranged next to one another.
An dieser Stelle bleibt anzumerken, dass sich in der Zeich- nung die Bezugszeichen von gleichen oder von einander entsprechenden Komponenten lediglich in ihrer ersten Ziffer und/oder durch einen angehängten Buchstaben unterscheiden.It should be noted at this point that in the drawing the reference symbols of identical or corresponding components differ only in their first digit and / or by an appended letter.
Figur 1 zeigt einen pneumatisch gelagerten Messkopf 110 gemäß einem Ausführungsbeispiel der Erfindung in drei verschiedenen Ansichten. Unten links ist eine Draufsicht des Messkopfes abgebildet, wobei die Betrachtungsrichtung entlang einer z- Achse verläuft. Der obere Teil zeigt den Messkopf in einer Querschnittsansicht parallel zu einer x-y-Ebene . Unten rechts ist der Messkopf in einer Querschnittsansicht parallel zu einer y-z-Ebene dargestellt. Die x-, die y- und die z-Achse bilden dabei ein rechtwinkliges Koordinatensystem, bei dem jeweils eine Achse senkrecht auf einer durch die beiden anderen Achsen aufgespannten Ebene steht.FIG. 1 shows a pneumatically mounted measuring head 110 according to an embodiment of the invention in three different views. At the bottom left is a plan view of the measuring head shown, wherein the viewing direction along a z-axis. The upper part shows the measuring head in a cross-sectional view parallel to an x-y plane. Bottom right, the probe is shown in a cross-sectional view parallel to a y-z plane. The x-, y- and z-axes form a rectangular coordinate system in which one axis is perpendicular to a plane spanned by the other two axes.
Der Messkopf 110 weist einen Sensor 111 auf, welcher ein beliebiger Sensor wie beispielsweise ein optischer, ein kapazitiver oder ein induktiver Sensor sein kann. Der Sensor 111 ist von einem pneumatischen Element 112 umgeben, welches einen Luftkanal 113 bildet. Das pneumatische Element 112 weist an seiner Oberseite zwei Einlassöffnungen 115 auf, welche über Druckluftleitungen mit einer Drucklufterzeugungs- einrichtung, beispielsweise einer Pumpe, pneumatisch gekoppelt sind. Die Druckluftleitungen und die Drucklufterzeu¬ gungseinrichtung sind aus Gründen der Übersichtlichkeit in Figur 1 nicht dargestellt.The measuring head 110 has a sensor 111, which may be any sensor such as an optical, a capacitive or an inductive sensor. The sensor 111 is surrounded by a pneumatic element 112 which forms an air duct 113. The pneumatic element 112 has on its upper side two inlet openings 115, which via compressed air lines with a compressed air generation device, such as a pump, are pneumatically coupled. The compressed air lines and the Drucklufterzeu ¬ restriction device are not shown for clarity in FIG. 1
An der Unterseite des pneumatischen Elements 112 sind eine Mehrzahl von düsenartigen Auslassöffnungen ausgebildet, welche zwischen dem Messkopf 110 und einer zu vermessenden Substratoberfläche eine Luftströmung 195 erzeugen. Die Luft- Strömung 195 erzeugt ein Luftkissen, auf dem der Messkopf 110 in einem vorbestimmten Abstand oberhalb des Substrates 190 gleitet. Somit bildet sich zwischen der Unterseite des Mess¬ kopfes 110 und dem Substrat 190 ein Luftspalt 196. Die Stärke des Luftspaltes 196 und damit der Abstand zwischen Messkopf 110 und Substrat 190 hängt von der Stärke der Luftströmung 195 ab.On the underside of the pneumatic element 112, a plurality of nozzle-like outlet openings are formed, which generate an air flow 195 between the measuring head 110 and a substrate surface to be measured. The air flow 195 creates an air cushion on which the measuring head 110 slides at a predetermined distance above the substrate 190. Thus formed between the underside of the measuring head ¬ 110 and the substrate 190, an air gap 196. The thickness of the air gap 196 and thus the distance between the measuring head 110 and the substrate 190 depends on the strength of the air flow 195th
Die Ankopplung des Messkopfes 110 an das Positioniersystem erfolgt über ein Federelement 130. Das Federelement 130 ist derart ausgebildet, dass es (a) in x- und y-Richtung keineThe coupling of the measuring head 110 to the positioning system via a spring element 130. The spring element 130 is formed such that it (a) in the x and y direction no
Relativbewegung zwischen dem Positioniersystem und dem Messkopf 110 zulässt und (b) in z-Richtung eine lose Verbindung zwischen Positioniersystem und dem Messkopf 110 darstellt. Die lose Verbindung ermöglicht zumindest innerhalb eines bestimmten Auslenkungsbereiches aus einer durch die Stärke des Luftkissens vorgegebenen Nulllage eine freie Relativbewe¬ gung zwischen Positioniersystem und Messkopf 110. Somit stellt das Federelement 130 sicher, dass der Messkopf durch das in Figur 1 nicht dargestellte Positioniersystem lediglich in der x-y-Ebene genau positioniert wird. Durch eine entspre¬ chende Ansteuerung des Positioniersystems kann jeder Mess¬ punkt oberhalb des Substrates 190 angefahren werden.Relative movement between the positioning system and the measuring head 110 permits and (b) in the z-direction is a loose connection between the positioning system and the measuring head 110. The loose connection allows a free Relativbewe ¬ tion between positioning and measuring head 110 at least within a certain deflection range from a predetermined by the thickness of the air cushion free movement. Thus, the spring element 130 ensures that the measuring head by the positioning system, not shown in Figure 1 only in the xy plane is positioned accurately. By a entspre ¬ sponding control of the positioning of each measuring point ¬ can be moved to above the substrate 190th
Die Ankopplung des Messkopfes 110 an das Positioniersystem über das Federelement 130 zeichnet sich ferner dadurch aus, dass relativ zu dem Positioniersystem eine Verkippung des Messkopfes 110 möglich ist. Diese Verkippungen kann um die x- Achse, um die y-Achse oder um jede beliebige in der x-y-Ebene liegende Achse erfolgen. Die beiden Verkippmöglichkeiten um die x- und um die y-Achse sind in Figur 1 jeweils durch einen Doppelpfeil angedeutet.The coupling of the measuring head 110 to the positioning system via the spring element 130 is further characterized in that a tilting of the measuring head 110 is possible relative to the positioning system. These tilts can be reduced by the x- Axis, around the y-axis, or any axis in the xy plane. The two Verkippmöglichkeiten about the x and about the y-axis are indicated in Figure 1 each by a double arrow.
Somit bleibt festzustellen, dass von insgesamt sechs prinzi¬ piell möglichen Freiheitsgraden der Bewegung des Messkopfes 110, drei translatorischen Freiheitsgraden entlang der Achsen x, y und z und drei rotatorischen Freiheitsgraden um die Achsen x, y und z, lediglich die x- und die y-Translation und die Rotation um die z-Achse durch die starre Kopplung zwischen Positioniersystem und Messkopf 110 ausgeschlossen ist.Thus, there remains to be noted that x of six Prinzi ¬ Piell possible degrees of freedom of movement of the measurement head 110, three translational degrees of freedom along the axes y and z, and three rotational degrees of freedom x about the axes y and z, only the x and y Translation and the rotation about the z-axis is excluded by the rigid coupling between the positioning system and the measuring head 110.
Wie in der Querschnittsansicht unten rechts angedeutet, ist das Federelement 130 ferner so beschaffen, dass von demAs indicated in the cross-sectional view at the bottom right, the spring element 130 is further such that of the
Positioniersystem an dem Messkopf 110 lediglich Haltekräfte angreifen, deren Kraftlinien entlang der Längserstreckung des jeweiligen Abschnitts des Federelements 130 verlaufen. Das Federelement 130 ist dabei derart mit dem Messkopf 110 ver- bunden, dass sich die Kraftlinien der von verschiedenenPositioning system on the measuring head 110 only attack holding forces whose lines of force extend along the longitudinal extension of the respective portion of the spring element 130. The spring element 130 is connected to the measuring head 110 in such a way that the lines of force of the various
Seiten wirkenden Haltkräfte in dem Schwerpunkt des Messkopfes 110 schneiden. Der Schwerpunkt ist durch den Ausgangspunkt eines Kraftvektors G bestimmt, der die in die z-Richtung wirkende Gewichtskraft des Messkopfes 110 darstellt. Das Zusammentreffen der Kraftlinien im Schwerpunkt des Messkopfes 110 hat den Vorteil, dass auch bei einer ruckbehafteten translatorischen Bewegung des Messkopfes 110 keine Drehmomente auf den Messkopf wirken, so dass auf vorteilhafte Weise eine ungewollte Verkippung des Messkopfes 110 zuverlässig vermieden wird.Cut side acting holding forces in the center of gravity of the measuring head 110. The center of gravity is determined by the starting point of a force vector G, which represents the weight force of the measuring head 110 acting in the z-direction. The coincidence of the lines of force in the center of gravity of the measuring head 110 has the advantage that even with a jerky translational movement of the measuring head 110, no torques act on the measuring head, so that undesired tilting of the measuring head 110 is advantageously avoided in an advantageous manner.
Figur 2 zeigt eine Draufsicht einer pneumatisch gelagerten Messvorrichtung, welche den in Figur 1 dargestellten Messkopf 110 aufweist, der nunmehr mit dem Bezugszeichen 210 gekenn- zeichnet ist. Der Messkopf 210, der u. a. einen Sensor 211 und ein pneumatisches Element 212 mit zwei Einlassöffnungen 215 aufweist, ist mittels eines Federelements 230 an einem Positioniersystem 220 befestigt. Die Art der Befestigung und die durch das Federelement 230 verbliebenden Freiheitsgrade hinsichtlich einer Bewegung des Messkopfes 210 sind oben anhand von Figur 1 im Detail erläutert. Somit ist der Mess- köpf 210 durch eine entsprechende Ansteuerung des Positio¬ niersystems 220 innerhalb eines bestimmten Arbeitsbereiches parallel zu der x-y-Ebene frei positionierbar. Das Positio¬ niersystem 220 weist zu diesem Zweck auf zwei gegenüberlie¬ genden Seiten eine x-Führung 221 auf, an der das Federelement 230 mittels eines nicht dargestellten Antriebs entlang der x- Richtung verschiebbar ist. Der Messkopf 210 ist entlang des Federelements 230 mittels eines ebenfalls nicht dargestellten Antriebs entlang der y-Richtung verschiebbar.FIG. 2 shows a plan view of a pneumatically mounted measuring device which has the measuring head 110 shown in FIG. 1, which is now identified by the reference numeral 210. The measuring head 210, which includes a sensor 211 and a pneumatic element 212 with two inlet openings 215, is connected by means of a spring element 230 to a Positioning system 220 attached. The type of fastening and the degrees of freedom remaining by the spring element 230 with respect to a movement of the measuring head 210 are explained in detail above with reference to FIG. Thus, the measurement is Kopf 210 by a corresponding control of the positio ¬ niersystems 220 within a certain working area parallel to the xy plane can be positioned freely. The positio ¬ niersystem 220 has for this purpose two gegenüberlie ¬ constricting pages on one X-guide 221, on which the spring element 230 is displaceable by means of a not shown driving along the x direction. The measuring head 210 is displaceable along the spring element 230 by means of a drive (also not shown) along the y-direction.
Um die für die Erzeugung eines Luftkissens zwischen Messkopf 210 und einem darunter liegenden Substrat erforderliche Druckluft bereitzustellen, ist ein Druckluftgenerator 250 vorgesehen. Der Druckluftgenerator 250 ist gemäß dem hier beschriebenen Ausführungsbeispiel an dem Rahmen des Positio- niersystems 220 befestigt. Zur Reduzierung von auf dem Mess¬ kopf 210 übertragenden Vibrationen ist zwischen dem Druckluftgenerator 250 und dem Positioniersystem 220 ein vibrati- onsdämpfendes Material vorgesehen (nicht dargestellt) . Das pneumatische Element 212 wird über flexible Druckluftleitun- gen 251 mit Druckluft versorgt.In order to provide the compressed air required for the generation of an air cushion between the measuring head 210 and an underlying substrate, a compressed air generator 250 is provided. The compressed air generator 250 is attached to the frame of the positioning system 220 according to the embodiment described here. To reduce on the measuring head 210 ¬ transmitted vibrations 250 and the positioning system 220, a vibration-onsdämpfendes material is provided between the compressed air generator (not shown). The pneumatic element 212 is supplied with compressed air via flexible compressed air lines 251.
Figur 3a zeigt gemäß einem weiteren Ausführungsbeispiel der Erfindung eine vorteilhafte Aufhängung eines Sensors 311, welche Aufhängung eine freie Kippbewegung des Sensors 311 um einen virtuellen Drehpol VP ermöglicht. Die Aufhängung um- fasst eine obere Koppelplatte 331, welche mittels eines nicht dargestellten Flächen-Positioniersystems innerhalb eines Arbeitsbereiches positioniert wird, der parallel zu der zu vermessenden Oberfläche eines Substrates 390 liegt. Die obere Koppelplatte 331 ist entlang einer z-Richtung zumindest innerhalb eines bestimmten Auslenkungsbereiches frei ver¬ schiebbar. Damit wird die Höhenlage des Sensors 311 bzw. die Höhenlage der oberen Koppelplatte 331 durch die Höhe eines Luftkissens bestimmt, welches sich zwischen dem Substrat 390 und einem neben dem Sensor 390 angeordneten pneumatischen Element (nicht dargestellt) ausbildet.FIG. 3 a shows, according to a further exemplary embodiment of the invention, an advantageous suspension of a sensor 311, which suspension allows a free tilting movement of the sensor 311 about a virtual rotation pole VP. The suspension comprises an upper coupling plate 331, which is positioned by means of a surface positioning system, not shown, within a working area which is parallel to the surface of a substrate 390 to be measured. The upper coupling plate 331 is slidable along a z-direction, at least within a certain range of deflection free ver ¬. Thus, the altitude of the sensor 311 and the Height of the upper coupling plate 331 determined by the height of an air cushion, which forms between the substrate 390 and a sensor arranged next to the 390 pneumatic element (not shown).
Die Aufhängung umfasst ferner eine untere Koppelplatte 333, welche mit dem Sensor 311 verbunden ist. Die beiden Koppel¬ platten 331 und 333 sind über zwei starre Stäbe 332a und 332b miteinander verbunden, deren Enden jeweils in einem Kugelge- lenk 334 gelagert sind. Zwei Kugelgelenke 334 befinden sich an der Unterseite der oberen Koppelplatte 331. Zwei Kugelge¬ lenke 334 befinden sich an der Oberseite der unteren Koppelplatte 333.The suspension further comprises a lower coupling plate 333, which is connected to the sensor 311. The two coupling ¬ plates 331 and 333 are connected together by two rigid rods 332a and 332b, the ends of each of steering in a ball joints are mounted 334th Two ball joints 334 are located on the underside of the upper coupling plate 331. Two Kugelge ¬ joints 334 are located at the top of the lower coupling plate 333rd
Es wird darauf hingewiesen, dass die Aufhängung auch ohne untere Koppelplatte 333 realisiert werden kann. In diesem Fall befinden sich die beiden unteren Kugelgelenke 334 unmittelbar an dem Sensor 311.It should be noted that the suspension can be realized without lower coupling plate 333. In this case, the two lower ball joints 334 are located directly on the sensor 311.
In der in Figur 3a dargestellten Situation, in der sich der Sensor in seiner Ausgangslage befindet, sind die beiden starren Stäbe 332a und 332b zueinander symmetrisch zu einer Symmetrieachse 338 angeordnet. Die beiden unteren Kugelgelen¬ ke 334 sind in einem Abstand 1 voneinander angeordnet. Der Sensor 311 hat zusammen mit der an dem Sensor 311 angebrachten unteren Koppelplatte 333 entlang der z-Richtung eine Höhe d.In the situation shown in FIG. 3 a, in which the sensor is in its initial position, the two rigid rods 332 a and 332 b are arranged symmetrically with respect to one another to an axis of symmetry 338. The two lower ball joints ¬ ke 334 are arranged at a distance 1 from each other. The sensor 311, along with the lower coupling plate 333 attached to the sensor 311, has a height d along the z-direction.
In Figur 3b ist der Fall schematisch dargestellt, bei dem der Sensor 311 (nicht dargestellt) aus seiner Ausgangslage ver¬ kippt ist. Die Aufhängung ist dabei abhängig von der Höhe d insbesondere hinsichtlich der Lage der oberen Kugelgelenke 334, hinsichtlich der Länge der beiden starren Stäbe 332a und 332b und hinsichtlich des Abstandes 1 derart dimensioniert, dass sich der Sensor um den virtuellen Drehpol verkippt. Auf diese Weise kann gewährleistet werden, dass sich der Sensor 311 auch bei einer welligen Substratoberfläche stets optimal, d.h. mit dem vorgegebenen Abstand an die Substratoberfläche anschmiegt .FIG. 3b schematically illustrates the case in which the sensor 311 (not shown) is tilted out of its initial position. The suspension is dependent on the height d, in particular with regard to the position of the upper ball joints 334, dimensioned in terms of the length of the two rigid rods 332a and 332b and with respect to the distance 1 such that the sensor tilts around the virtual pivot pole. In this way it can be ensured that the sensor 311 always optimally, even with a wavy substrate surface, ie, conforming to the substrate surface at the predetermined distance.
Es wird darauf hingewiesen, dass anhand der beiden zweidimen- sionalen Darstellungen in den Figuren 3a und 3b lediglich die prinzipielle Wirkweise der Aufhängung des Sensors 311 ver¬ deutlicht ist. Um eine freie Kippbewegung um beliebige virtu¬ elle Drehachsen zu gewährleisten, welche Drehachsen parallel zu der zu vermessenden Substratoberfläche und damit parallel zu der x-y-Ebene orientiert sind, kann eine Aufhängung mit drei starren Stäben verwendet werden. Die drei starren Stäbe sind dann bevorzugt ebenfalls symmetrisch um die Symmetrie¬ achse 338 der Sensoraufhängung im Raum angeordnet.It should be noted that and 3b only the fundamental mode of action of the suspension of the sensor is interpreting light 311 ver ¬ means of the two two-dimensional representations in the figures 3a. In order to ensure a free tilting movement about any virtu ¬ elle axes of rotation, which axes of rotation are oriented parallel to the substrate surface to be measured and thus parallel to the xy plane, a suspension with three rigid rods can be used. The three rigid rods are then preferably also arranged symmetrically about the symmetry ¬ axis 338 of the sensor suspension in space.
Figur 4 zeigt ein Messsystem mit vier zu einer Messzeile aneinander gereihten Messköpfen 410a, 410b, 410c und 410d. Den Messköpfen 410a, 410b, 410c und 410d ist jeweils ein Positioniersystem zugeordnet, mit dem der entsprechende Messkopf innerhalb einer x-y-Ebene positioniert werden kann. Alternativ und besonders vorteilhaft sind zumindest einige der Messköpfe 410a, 410b, 410c und 410d entlang der x- und entlang der y-Richtung fest miteinander verbunden. Die Messköpfe 410a, 410b, 410c und 410d sind auf alle Fälle unabhän¬ gig voneinander entlang der z-Richtung verschiebbar und jeweils um einen virtuellen Drehpol an der Unterseite der Messköpfe 410a, 410b, 410c und 410d frei verkippbar.FIG. 4 shows a measuring system with four measuring heads 410a, 410b, 410c and 410d arranged next to one another. The measuring heads 410a, 410b, 410c and 410d are each assigned a positioning system with which the corresponding measuring head can be positioned within an xy plane. Alternatively and particularly advantageously, at least some of the measuring heads 410a, 410b, 410c and 410d are firmly connected to one another along the x and along the y direction. The measuring heads 410a, 410b, 410c and 410d inde ¬ z-direction are in any case gig apart along the movable and respectively about a virtual center of rotation on the underside of the measuring heads 410a, 410b, 410c and 410d freely tiltable.
Infolge einer nicht dargestellten Luftlagerung der Messköpfe 410a, 410b, 410c und 410d auf dem Substrat 490, welches eine in Figur 4 übertrieben start dargestellte Welligkeit auf¬ weist, und der freien Verkippbarkeit können sich die einzel¬ nen Messköpfe 410a, 410b, 410c bzw. 410d jeweils optimal an die gewellte Substratoberfläche anschmiegen. Um dies zu verdeutlichen, sind die Ausgangslagen der Messkopf-Mittel- achsen vor einem Anschmiegen an die gewellte Substratoberflä¬ che dargestellt und mit den Bezugszeichen 416a, 416b, 416c bzw. 416d versehen. Die Endlagen der Messkopf-Mittelachsen nach einem Anschmiegen an die gewellte Substratoberfläche sind mit den Bezugszeichen 417a, 417b, 417c bzw. 417d verse¬ hen .As a result, an unillustrated air bearing of the measuring heads 410a, 410b, 410c and 410d on the substrate 490, which has a waviness shown exaggerated in Figure 4 start to ¬, and the free tilting capability can the single ¬ NEN measuring heads 410a, 410b, 410c or 410d each optimally cling to the corrugated substrate surface. To illustrate this, the starting points are the measuring head center lines shown in front of a nestle against the corrugated Substratoberflä ¬ surface and provided with the reference numerals 416a, 416b, 416c or 416d. The end positions of the measuring head center axes according to one nestling to the corrugated substrate surface by the reference numerals 417a, 417b, 417c or 417d hen ¬ verse.
Bei dem in Figur 4 dargestellten Zustand sind die Messköpfe 410a und 410b im Vergleich zu ihrer Ausgangslage entgegen dem Uhrzeigersinn verkippt. Der Messkopf 410c ist nicht verkippt und der Messkopf 410d ist im Vergleich zu seiner Ausgangslage im Uhrzeigersinn verkippt. In the state shown in FIG. 4, the measuring heads 410a and 410b are tilted counterclockwise in comparison to their initial position. The measuring head 410c is not tilted and the measuring head 410d is tilted in a clockwise direction compared to its initial position.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
100 Messvorrichtung100 measuring device
110 Messkopf 111 Sensor110 measuring head 111 sensor
112 pneumatisches Element112 pneumatic element
113 Luftkanal113 air duct
114 Auslassöffnung / Düse114 outlet opening / nozzle
115 Einlassöffnung 130 Federelement115 inlet opening 130 spring element
190 Substrat190 substrate
195 Luftströmung195 air flow
196 Luftspalt196 air gap
210 Messkopf210 measuring head
211 Sensor211 sensor
212 pneumatisches Element 215 Einlassöffnung212 pneumatic element 215 inlet opening
220 Positioniersystem 221 x-Führung220 Positioning system 221 x guide
230 Federelement230 spring element
250 Druckluftgenerator250 compressed air generator
251 Druckluftleitung (flexibel)251 compressed air line (flexible)
311 Sensor311 sensor
331 obere Koppelplatte331 upper coupling plate
332a starrer Stab332a rigid rod
332b starrer Stab332b rigid rod
333 untere Koppelplatte 334 Kugelgelenk333 lower coupling plate 334 ball joint
338 Symmetrieachse338 symmetry axis
390 Substrat390 substrate
VP virtueller DrehpolVP virtual rotary pole
1 Abstand zwischen unteren Kugelgelenken d Dicke von Sensor plus untere Koppelplatte a, b, c, d Messkopf a, b, c, d Mittelachse Ausgangslage a, b, c, d Mittelachse Endlage Substrat (stark gekrümmt) 1 Distance between lower ball joints d Thickness of sensor plus lower coupling plate a, b, c, d Measuring head a, b, c, d Center axis Starting position a, b, c, d Center axis End position Substrate (strongly curved)

Claims

Patentansprüche claims
1. Messvorrichtung zum Inspizieren einer Oberfläche eines1. Measuring device for inspecting a surface of a
Substrates (190) mit • einem Messkopf (110), aufweisend einen Sensor (111) zur Erfassung der Oberfläche und ein neben dem Sensor (111) angeordnetes pneumatisches Element (112), welches eine Ein¬ lassöffnung (115) und zumindest eine nach unten gerichtete Auslassöffnung (114) umfasst, • einem Flächen-Positioniersystem (220), eingerichtet zum präzisen Positionieren des Messkopfes (110, 210) innerhalb einer x-y-Ebene oberhalb des Substrates (190), undSubstrate (190) with • a measuring head (110) comprising a sensor (111) for detecting the surface and disposed adjacent said sensor (111) pneumatic element (112) having an A ¬ outlet opening (115) and at least one downwardly directed outlet opening (114), • a surface positioning system (220) arranged for precise positioning of the measuring head (110, 210) within an xy plane above the substrate (190), and
• einer Drucklufterzeugungseinrichtung (250), welche mit der• a compressed air generating device (250), which with the
Einlassöffnung (115, 215) pneumatisch gekoppelt ist, so dass bei einer Beaufschlagung des pneumatischen Elements (112, 212) mit Druckluft der Messkopf (110, 210) in einer vorbestimmten Höhe über dem Substrat (190) positionierbar ist .Inlet opening (115, 215) is pneumatically coupled, so that when a loading of the pneumatic element (112, 212) with compressed air, the measuring head (110, 210) is positioned at a predetermined height above the substrate (190).
2. Messvorrichtung nach Anspruch 1, zusätzlich mit einer Koppeleinrichtung (130, 230), welche zwischen dem Flächen-Positioniersystem (220) und dem Messkopf (110, 210) angeordnet ist.2. Measuring device according to claim 1, additionally comprising a coupling device (130, 230) which is arranged between the surface positioning system (220) and the measuring head (110, 210).
3. Messvorrichtung nach Anspruch 2, wobei die Koppeleinrichtung (130) derart ausgebildet ist, dass der Messkopf (110) entlang einer zu der x-y-Ebene senkrechten z-Richtung zumindest innerhalb eines bestimmten Bewegungsbereiches frei verschiebbar ist.3. Measuring device according to claim 2, wherein the coupling device (130) is designed such that the measuring head (110) is freely displaceable along a z-direction perpendicular to the x-y plane at least within a certain range of motion.
4. Messvorrichtung nach einem der Ansprüche 2 bis 3, wobei die Koppeleinrichtung (130) derart ausgebildet ist, dass der Messkopf (110) zumindest innerhalb eines bestimmten Winkelbereiches um eine Achse (VP) frei verkippbar ist, welche Achse (VP) parallel zu der x-y-Ebene orientiert ist. 4. Measuring device according to one of claims 2 to 3, wherein the coupling device (130) is formed such that the measuring head (110) at least within a certain angular range about an axis (VP) is freely tiltable, which axis (VP) parallel to the xy-level oriented.
5. Messvorrichtung nach Anspruch 4, wobei die Koppeleinrichtung aufweist5. Measuring device according to claim 4, wherein the coupling device comprises
• ein oberes Koppelelement (331), welches in starrer Weise mit dem pneumatischen Element verbunden ist, und• An upper coupling element (331), which is rigidly connected to the pneumatic element, and
• ein unteres Koppelelement (333), welches über eine gelenki¬ ge Aufhängung mit dem oberen Koppelelement (331) verbunden ist .• A lower coupling element (333), which is connected via a gelenki ¬ ge suspension with the upper coupling element (331).
6. Messvorrichtung nach Anspruch 5, wobei die gelenkige Aufhängung zumindest zwei Stäbe (332a, 332b) umfasst, deren obere Enden mit dem oberen Koppelelement (331) und deren untere Enden mit dem unteren Koppelelement (333) in jeweils einem Kugelelement (334) verbunden sind.6. Measuring device according to claim 5, wherein the articulated suspension comprises at least two rods (332 a, 332 b), whose upper ends connected to the upper coupling element (331) and whose lower ends to the lower coupling element (333) in each case a ball element (334) are.
7. Messvorrichtung nach einem der Ansprüche 1 bis 6, wobei das pneumatische Element (112) um den Sensor (111) herum angeordnet ist.A measuring device according to any one of claims 1 to 6, wherein the pneumatic element (112) is disposed around the sensor (111).
8. Messvorrichtung nach einem der Ansprüche 1 bis 7, wobei die zumindest eine Auslassöffnung (114) eine Luftdüse ist, welche derart ausgebildet ist, dass die Geschwindigkeit von austretender Luft zumindest annähernd8. Measuring device according to one of claims 1 to 7, wherein the at least one outlet opening (114) is an air nozzle, which is designed such that the speed of escaping air at least approximately
Schallgeschwindigkeit erreicht.Sound velocity reached.
9. Messvorrichtung nach einem der Ansprüche 1 bis 8, wobei der Sensor (111) ein optisches, ein kapazitives und/oder ein induktives Sensorelement aufweist.9. Measuring device according to one of claims 1 to 8, wherein the sensor (111) comprises an optical, a capacitive and / or an inductive sensor element.
10. Messsystem zum Inspizieren einer Oberfläche eines Substrates mit zumindest zwei Messvorrichtungen (100) nach einem der Ansprüche 1 bis 9, welche derart zueinander angeordnet sind, dass die jeweiligen Sensoren entlang einer Messzeile angeordnet sind. 10. Measuring system for inspecting a surface of a substrate with at least two measuring devices (100) according to one of claims 1 to 9, which are arranged to each other such that the respective sensors are arranged along a measuring line.
PCT/EP2006/066505 2005-09-27 2006-09-19 Measurement apparatus and measurement system for inspection of a surface of a substrate WO2007036461A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800354527A CN101273245B (en) 2005-09-27 2006-09-19 Measurement apparatus and measurement system for inspection of a surface of a substrate
KR1020087009810A KR101338028B1 (en) 2005-09-27 2006-09-19 Measurement apparatus and measurement system for inspection of a surface of a substrate
JP2008532726A JP4940242B2 (en) 2005-09-27 2006-09-19 Measuring system for inspecting the surface of a substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005046154.9 2005-09-27
DE102005046154A DE102005046154B4 (en) 2005-09-27 2005-09-27 Measuring device and measuring system for inspecting a surface of a substrate

Publications (1)

Publication Number Publication Date
WO2007036461A1 true WO2007036461A1 (en) 2007-04-05

Family

ID=37546888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/066505 WO2007036461A1 (en) 2005-09-27 2006-09-19 Measurement apparatus and measurement system for inspection of a surface of a substrate

Country Status (5)

Country Link
JP (1) JP4940242B2 (en)
KR (1) KR101338028B1 (en)
CN (1) CN101273245B (en)
DE (1) DE102005046154B4 (en)
WO (1) WO2007036461A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2092350A2 (en) * 2006-11-16 2009-08-26 Siemens Aktiengesellschaft Measuring device and measuring method for inspecting the surface of a substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012002884A1 (en) * 2012-02-14 2013-08-14 Giesecke & Devrient Gmbh Method and device for contactless testing of a flat security document
DE112015001061T5 (en) * 2014-04-03 2016-12-01 Hitachi High-Technologies Corporation analyzer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854156A (en) * 1989-01-03 1989-08-08 Systems Research Laboratories, Inc. Pneumatic surface-following control system
EP0511399A1 (en) * 1990-11-20 1992-11-04 Fanuc Ltd. Equipment for controlling digitizing
WO2002061369A1 (en) * 2001-01-23 2002-08-08 Daprox Ab Method and arrangement for positioning a sensor head for measuring while object is moving
US20040150707A1 (en) * 2003-10-27 2004-08-05 Micronic Laser Systems Ab Apparatus for measuring the physical properties of a surface and a pattern generating apparatus for writing a pattern on a surface

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229280A (en) * 1975-08-30 1977-03-04 Shimadzu Corp Flaw detecting machine for seam pipes
JPS5926055A (en) * 1982-08-02 1984-02-10 Mitsubishi Electric Corp Detecting head for flaw detection
JPS616764U (en) * 1984-06-18 1986-01-16 三菱重工業株式会社 Air servo type profiling device
JPS616764A (en) * 1984-06-20 1986-01-13 Tokico Ltd Terminal equipment
CN85104875B (en) * 1985-06-26 1988-08-10 株式会社三豐制作所 Coordinate measuring machine
DE3612914A1 (en) * 1986-04-17 1987-10-22 Heidelberger Druckmasch Ag DEVICE FOR MEASURING THE THICKNESS OF PAPER OR THE LIKE
DD260032B5 (en) * 1987-04-22 1994-06-09 Kba Planeta Ag densitometer
US4824248A (en) * 1987-12-21 1989-04-25 Environmental Research Institute Of Michigan Stabilized sensor device
JPH0314409A (en) * 1989-05-31 1991-01-23 Nippon Steel Corp Outer peripheral paper windup roll
JPH0642169Y2 (en) * 1989-06-27 1994-11-02 横河電機株式会社 Position fixing mechanism of smooth gloss meter
JP2903554B2 (en) * 1989-08-31 1999-06-07 日本電気株式会社 Multi-beam magneto-optical head device
JPH0388153U (en) * 1989-12-26 1991-09-09
JPH0552512A (en) * 1991-08-27 1993-03-02 Ntn Corp Interferometer
JPH05307023A (en) * 1992-04-30 1993-11-19 Japan Energy Corp Inspection device
CN2127490Y (en) * 1992-06-26 1993-02-24 刘纪 Pneumatic position measuring probe
DE4343810C1 (en) * 1993-12-22 1995-04-20 Roland Man Druckmasch Photoelectric measuring head
CN2191410Y (en) * 1994-03-05 1995-03-08 赵玉山 Measuring head for pneumatic measurer
US5616853A (en) * 1995-03-29 1997-04-01 Kyocera Corporation Measuring machine for measuring object
JPH08327561A (en) * 1995-06-05 1996-12-13 Nippon Sheet Glass Co Ltd Device for inspecting continuous sheet-shaped object for defect
JP2001296278A (en) * 2000-04-13 2001-10-26 Nkk Corp Metal body inspection device
JP3575008B2 (en) * 2001-07-31 2004-10-06 大成建設株式会社 Concrete condition measuring device
JP4009595B2 (en) * 2003-01-20 2007-11-14 株式会社日立国際電気 Pattern defect inspection apparatus and pattern defect inspection method
JP2006242860A (en) * 2005-03-04 2006-09-14 Oht Inc Inspection device and inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854156A (en) * 1989-01-03 1989-08-08 Systems Research Laboratories, Inc. Pneumatic surface-following control system
EP0511399A1 (en) * 1990-11-20 1992-11-04 Fanuc Ltd. Equipment for controlling digitizing
WO2002061369A1 (en) * 2001-01-23 2002-08-08 Daprox Ab Method and arrangement for positioning a sensor head for measuring while object is moving
US20040150707A1 (en) * 2003-10-27 2004-08-05 Micronic Laser Systems Ab Apparatus for measuring the physical properties of a surface and a pattern generating apparatus for writing a pattern on a surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2092350A2 (en) * 2006-11-16 2009-08-26 Siemens Aktiengesellschaft Measuring device and measuring method for inspecting the surface of a substrate

Also Published As

Publication number Publication date
CN101273245B (en) 2010-09-01
JP4940242B2 (en) 2012-05-30
JP2009510419A (en) 2009-03-12
KR20080066690A (en) 2008-07-16
DE102005046154A1 (en) 2007-03-29
DE102005046154B4 (en) 2008-07-03
KR101338028B1 (en) 2013-12-09
CN101273245A (en) 2008-09-24

Similar Documents

Publication Publication Date Title
DE19947001B4 (en) Instrument for measuring the surface contour
EP2972419B1 (en) Crossmember unit for a test apparatus for printed circuit boards, and test apparatus having said crossmember unit
WO2017025230A1 (en) Positioning device for a parallel tester for testing printed circuit boards and parallel tester for testing printed circuit boards
DE4132308C2 (en) Automatic inner diameter measuring apparatus and its zero adjustment
DE4207201C2 (en) Leveling method and device
DE3801813C2 (en)
DE3740070A1 (en) TURN SLEWING DEVICE FOR TEST COOKING OF COORDINATE MEASURING DEVICES
DE10129706A1 (en) Contact arm for electronic device testing apparatus, has diaphragm cylinder to adjust relative pressing pressure from driving mechanism to holding head
EP1955009A1 (en) Device for determining a measurement variable in a measurement object
EP1825216A1 (en) Device for measuring parts by triangulation sensors and an evaluation unit for determining
EP0426095A2 (en) Coordinate measuring machine
DE19933475A1 (en) Sensor for making three-dimensional measurements of workpieces arranged on layout or measurement table
WO2010054623A2 (en) Method for positioning and/or guiding at least one random processing head for the metallization of thin substrates at a defined distance above the substrate surface
EP2112458B1 (en) Method and device for testing the dimensional accuracy of drum brake linings
WO2007036461A1 (en) Measurement apparatus and measurement system for inspection of a surface of a substrate
DE19708762A1 (en) Convertible device for carrying and positioning components
EP0802393A2 (en) Measuring device for measuring the dimension of workpieces
DE102006012374B4 (en) scratcher
WO1998042171A2 (en) Method and device for gauging a device for producing electrical components
DE3539720A1 (en) ADAPTER FOR A PCB TEST DEVICE
WO1991017028A1 (en) Process for cutting out a blank
DE2239553B2 (en) DRAWING AND / OR PRESSURE TESTING MACHINE
DE102006054088A1 (en) Measuring device and measuring method for inspecting a surface of a substrate
EP1260304B1 (en) Workpiece holder
EP0877259A2 (en) Apparatus for testing an electric circuit board comprising contact points and conductor lines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680035452.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008532726

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087009810

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06806780

Country of ref document: EP

Kind code of ref document: A1