WO2007034842A1 - Nmr検出セル、nmr測定方法及びnmr測定用装置 - Google Patents

Nmr検出セル、nmr測定方法及びnmr測定用装置 Download PDF

Info

Publication number
WO2007034842A1
WO2007034842A1 PCT/JP2006/318650 JP2006318650W WO2007034842A1 WO 2007034842 A1 WO2007034842 A1 WO 2007034842A1 JP 2006318650 W JP2006318650 W JP 2006318650W WO 2007034842 A1 WO2007034842 A1 WO 2007034842A1
Authority
WO
WIPO (PCT)
Prior art keywords
nmr
measurement
measurement sample
solution
tube
Prior art date
Application number
PCT/JP2006/318650
Other languages
English (en)
French (fr)
Inventor
Shinya Ohki
Original Assignee
Japan Advanced Institute Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute Of Science And Technology filed Critical Japan Advanced Institute Of Science And Technology
Priority to US12/067,365 priority Critical patent/US8013603B2/en
Priority to JP2007536537A priority patent/JPWO2007034842A1/ja
Publication of WO2007034842A1 publication Critical patent/WO2007034842A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/30Sample handling arrangements, e.g. sample cells, spinning mechanisms
    • G01R33/307Sample handling arrangements, e.g. sample cells, spinning mechanisms specially adapted for moving the sample relative to the MR system, e.g. spinning mechanisms, flow cells or means for positioning the sample inside a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/087Structure determination of a chemical compound, e.g. of a biomolecule such as a protein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4633Sequences for multi-dimensional NMR

Definitions

  • NMR detection cell NMR measurement method and apparatus for NMR measurement
  • the present invention relates to an efficient measurement method by solution NMR.
  • a filler capable of adsorbing a sample is provided in the sample flow path in the NMR probe, and the sample is adsorbed in a state where the sample is adsorbed.
  • Some perform measurement Patent Document 1.
  • the filler is provided in the sample flow path for the purpose of concentration and diffusion prevention of a small amount of sample, and there is no disclosure about the screening method.
  • Patent Document 2 there is a technique for performing NMR measurement by immobilizing a target polymer substance on a solid phase
  • This technology immobilizes a target polymer substance on a solid phase in a liquid environment and measures it by NMR, or immobilizes the target polymer substance on a solid phase in a liquid environment, and then combines candidate compounds.
  • the result of the interaction between the two was measured by NMR.
  • the interaction process between the two cannot be measured by NMR, and further, high-throughput screening by continuous supply of candidate compounds cannot be performed, and the sample can be measured efficiently. It was far from being.
  • Patent Document 1 JP 2002-139558
  • Patent Document 2 JP-A-2004-138545
  • a problem to be solved is a method for efficiently measuring an action caused by a change in the external environment of a measurement sample in real time by NMR, and an NMR measurement that enables the method.
  • NMR detection cell and NMR measurement device For NMR detection cell and NMR measurement device.
  • the present invention fixes the measurement sample in the medium and continuously changes the external environment of the immobilized measurement sample.
  • the most important feature is to provide an NMR measurement method in which a measurement sample is measured in real time by solution NMR under conditions.
  • the present invention has the following power.
  • An NMR detection cell for a solution NMR apparatus 1) a liquid supply pipe that communicates outside the magnet for NMR measurement, 2) a waste liquid pipe that communicates outside the magnet for NMR measurement, 3) connected to the liquid supply pipe and the waste liquid pipe
  • An NMR detection cell for a solution NMR apparatus having an analysis tube capable of being filled with a solid support.
  • a solution NMR measurement apparatus having the NMR detection cell for solution NMR apparatus according to 5 or 6 above.
  • a liquid supply pipe capable of supplying a solution or candidate interaction substance for changing the external environment of the immobilized measurement sample
  • the present invention has the following power.
  • Example 5 External environment change factors include the addition of coexisting substances, non-addition or concentration change, addition of amphiphilic reagents, non-addition or concentration change, solvent pH change, salt concentration change, denaturant addition, The method according to any one of 1 to 4 above, which is an additive-free or concentration change, or a combination of any two or more thereof.
  • fixation method is a method in which the following force is also selected, and the solid phase carrier is filled in the analysis tube portion of the NMR detection cell.
  • the measurement sample is chemically bonded to the solid phase carrier.
  • the measurement sample is supplemented with a solid support having a high degree of freedom.
  • An NMR detection cell for a solution NMR apparatus which is 1) a liquid feed pipe that communicates outside the magnet for NMR measurement, 2) a waste liquid pipe that communicates outside the magnet for NMR measurement, and 3) connected to the liquid feed pipe and the waste liquid pipe
  • An NMR tube for a solution NMR apparatus having an analytical tube capable of being filled with a solid support. Out Senole.
  • a solution NMR measurement device comprising the NMR detection cell for solution NMR device according to item 13 or 14 above.
  • a liquid supply pipe capable of supplying a solution or candidate interaction substance for changing the external environment of the immobilized measurement sample
  • the NMR measurement method of the present invention can continuously change the external environment of the measurement sample, and can efficiently analyze the interaction process between the measurement sample and the candidate interaction substance. There is an advantage that the three-dimensional structure change of the protein can be tracked in real time.
  • the present invention is an NMR measurement method characterized by improving an NMR detection cell in an NMR detection part (NMR probe) in an NMR measurement magnet of a solution NMR measurement apparatus.
  • any method can be used as long as it is a method used for ordinary solution NMR.
  • a high-field NMR measurement device equipped with a low-temperature probe is considered to have sufficient measurement sensitivity.
  • the NMR detection cell for the solution NMR measurement device of the present invention is compatible with the NMR detection cell of the conventional NMR measurement device, and the liquid feeding tube, the analysis tube, and the waste liquid tube part are detachable. The type that inserts the upper force of the NMR magnetic field is preferred. [0009] NMR detection cell
  • the NMR detection cell comprises: 1) a liquid feeding pipe (101) leading to the outside of the NMR measuring magnet, 2) a waste liquid pipe (103) leading to the outside of the NMR measuring magnet, and 3) the liquid feeding pipe and the waste liquid pipe. It comprises an analysis tube (102) that can be connected and filled with a solid support (Fig. 1). Furthermore, the analysis tube is filled with a solid phase carrier (204), the outlet end of the liquid feeding tube is inserted into the inlet end of the analytical tube, and the inlet end of the waste liquid tube is inserted into the outlet end of the analytical tube. (Fig. 2). In addition, the liquid supply pipe and the waste liquid pipe are sealed to the inserted end and the analysis pipe by an appropriate method. In addition, install a packing to prevent liquid leakage.
  • a filter (205) is provided on the inlet side (insertion side) and Z or outlet side (discharge side) of the analysis tube to prevent the measurement sample from flowing into the waste pipe or from diffusing into the liquid feed pipe.
  • it may be an NMR detection cell having a plurality of waste liquid tubes to supply a plurality of candidate interacting substances to the measurement sample at the same time or to change a plurality of external environmental factors simultaneously! /.
  • the material of the NMR detection cell and the length and inner diameter of each tube may be the same as those of the liquid feeding tube, waste liquid tube, and analysis tube in the NMR detection cell used in a conventional solution NMR measurement apparatus. Thereby, it has reciprocity with the NMR detection cell used in the conventional apparatus for measuring solution NMR. That is, the NMR detection cell in the NMR measurement magnet of the conventional solution NMR measurement apparatus can be removed and the NMR detection cell of the present invention can be introduced. Specifically, the analysis tube can be easily attached and detached by screwing the joint that connects the analysis tube, the liquid supply tube, and Z or the waste liquid tube.
  • Examples of the measurement sample of the present invention include proteins, polypeptides, nucleic acids, sugars, glycoproteins, glycolipids, fatty acids, derivatives thereof, covalent conjugates and complexes.
  • a polypeptide having an amino acid residue strength of 40 to 1000 is preferably used.
  • nucleic acids, sugars, glycoproteins, glycolipids, and fatty acids preferably have a molecular weight of 1000 or more and 100,000 or less.
  • one or more amino acid residues are added to the N-terminus or C-terminus of a naturally occurring protein, or a part thereof, and an artificially produced polypeptide, and a naturally occurring protein.
  • one or several amino acids may be deleted, substituted or added in the amino acid sequence of these proteins or polypeptides.
  • the entire molecule may be labeled with a stable isotope such as 13 C or 15 N, or a stable isotope label may be introduced specifically for the site of interest.
  • the medium of the present invention is generally an aqueous solution that is brought into contact with a measurement sample.
  • the aqueous solution may be any solution as long as it is used for NMR measurement and retains its three-dimensional structure when the measurement sample is protein. Specifically, pure water, classical buffers (glycine, acetic acid, phosphoric acid, strength codylic acid, imidazole, etc.), Good buffers (Tris, Bis—Tris, Mes, HEPES, CHES, etc.), and protease inhibitors (AEBSF, leupeptin, EDTA, pepstatin A, etc.), polyhydroxyl compounds (sucrose, glycerol, polyethylene glycol, etc.), SH group protecting agents, antioxidants (2- mercaptoethanol, dithiothreitol, etc.) , The above aqueous solutions containing surfactants (octyldarcoside, dodecylmaltoside, CHAPS, TritonX-100, etc.), lipid
  • the external environment of the present invention means the environment around the measurement sample.
  • the external environmental change factor of the present invention is the addition of coexisting substances, non-addition or concentration change, addition of denaturing agent, non-addition or concentration change, addition of amphiphilic reagent, non-addition or concentration change, medium This means that a change in pH, a change in salt concentration, a change in the medium itself, or a combination of any two or more of these occurs.
  • the coexisting substance is a candidate interaction substance for the measurement sample.
  • the candidate interaction substance of the present invention means a substance that causes some kind of interaction with the measurement sample.
  • the interaction means a bond by a covalent bond, a hydrophobic bond, a hydrogen bond, a van der Waals bond, an electrostatic force, or the like to the measurement sample, but is not particularly limited.
  • Specific interactions include the agonist, antagonist, and reverse key against the action of the measurement sample. It means substances such as gonists, inhibitors, and promoters. Also included are binding reactions with measurement samples, synthesis reactions of new substances, and decomposition reactions resulting from the above effects.
  • the solid phase carrier of the present invention is not particularly limited as long as it can perform solution NMR measurement.
  • resin and inorganic compounds such as glass, ceramics, latex, and metal (however, non-magnetic compounds) And the like).
  • the solid phase may have any shape as long as it can be used for solution NMR, but a particulate shape such as beads is preferably exemplified. Specific examples of scab are shown below.
  • resin used in combinatorial chemistry TetaGel, Polystyrene Resin, ArgoGel, 2-Chlorotrityl Resin, Kaiser Oxime Resin, Phosphine Resin, Rink-amide Resin, Thiom ethyl Resin, Merrifield Resin, Wang Resin, etc.
  • the particle size of the solid phase carrier thus prepared may be the particle size normally used for a solid phase carrier.
  • solid phase carrier due to the relationship between the solid phase carrier and the sample to be measured, an antibody for antigen, avidin or streptavidin for piotin, a hormone (for example, insulin) for a hormone receptor (for example, insulin receptor), a lectin.
  • solid phase carriers include corresponding sugar chains.
  • the solid phase carrier may be filled by any method as long as the solid phase carrier can be filled in the analysis tube.
  • a tube or the like is connected to the inlet end of the analysis tube.
  • a buffer solution containing a solid phase carrier is put into the tube or the like, and the solid phase carrier contained in the buffer solution is introduced into the analysis tube through the tube or the like.
  • the buffer solution in the analysis tube is discharged from the outlet end of the analysis tube.
  • the measurement sample when the measurement sample is in a gel form, the measurement sample may be directly introduced into an analysis tube filled with a solid phase carrier.
  • a filter and packing may be installed to prevent leakage of gel-like measurement sample and Z or liquid leakage.
  • Immobilization of a measurement sample is to immobilize a protein or the like as a measurement sample on a solid phase carrier by using chemical bonds, affinity bonds, and antigen-antibody reactions.
  • the immobilization method is preferably performed on the solid phase carrier packed in the analysis tube of the NMR detection cell. As a result, the external environment of the measurement sample can be continuously changed. The following means can be applied.
  • the linker can be cross-linked with its SH group, for example.
  • the linker can be cross-linked with its SH group, for example.
  • Preferred is a compound in which one end reacts with an SH group and the other end reacts with any of an OH group, a COOH group, and an NH group.
  • a linker for example,
  • Examples thereof include dicarboxylic acid, aminocarboxylic acid, bismaleimide compound, bishalocarbole compound, halocarbolemaleimide compound, dithiomaleimide, dithiocarboxylic acid and maleimide carboxylic acid.
  • the spacer is not particularly limited as long as it is between the measurement sample and the linker and can adjust the length between the surface of the solid support and the measurement sample.
  • the spacer is not limited to polyoxyethylene, polypeptide, polysaccharide, albumin, and antibody. Substances that have one or a combination of these selected can be used. Recombinants can be used for albumin and antibodies.
  • the measurement sample is chemically bonded to the solid phase carrier.
  • a reactive group for forming a bond with the introduced substituent on the surface of the solid phase carrier exists in the measurement sample.
  • the reactive group is not particularly limited as long as it is a functional group that forms a chemical bond with the reactive functional group of the solid phase carrier described above, but an amino group, a carboxylic acid group, a hydroxyl group, a thiol group, an aldehyde group, It is preferable to select appropriately from epoxy groups, alkyl halides, silyl halides and the like according to the reactive functional group of the solid phase carrier.
  • the types of chemical bonds generated are amide bonds, ester bonds, thioester bonds, ether bonds, thioether bonds, alkylamino bonds, imino bonds.
  • Silyl ether bonds and the like are preferable, but amide bonds and thioether bonds are particularly preferable.
  • the reaction reagent for forming the chemical bond can be appropriately selected according to the bond.
  • the measurement sample is supplemented with a solid support having a high degree of freedom.
  • the solid phase carrier is a carrier with a high degree of freedom
  • NMR measurement is possible without using a linker or spacer for the measurement sample.
  • a better measurement result can be obtained by combining with the above-described linker 1 'spacer.
  • the carrier having a high degree of freedom include vesicles, micelles, protein polymers, polymer polymers, and the like. Specifically, vesicles (ribosomes), recombinant albumin polymers, latex particles, polymer gels, particularly meshes. Examples of the structure are a high molecular weight gel and a polysaccharide.
  • the endoplasmic reticulum is a particle composed of an artificial lipid membrane, and is formed as a lipid bilayer such as phospholipid, glycoglycolipid, cholesterol, etc. .
  • a surfactant removal method such as a surfactant removal method, a hydration method, an ultrasonic method, a reverse phase distillation method, a freeze-thaw method, an ethanol injection method, an extrusion method, and a high-pressure emulsification method are applied.
  • Recombinant albumin produced by a known genetic engineering technique can be used and is not particularly limited. For example, recombinant albumin produced using yeast as a host at a practical level is suitable. Albuminization (polymerization) of albumin is known.
  • the polymer gel is prepared in a network structure and can be prepared, for example, by finely polymerizing a polymer obtained by polymerizing lactic acid and / or glycolic acid.
  • dextran is a suitable carrier.
  • a linker can be combined with a sample to be measured by an amine coupling.
  • any method can be used as long as it is a method used for ordinary solution NMR.
  • COSY, TOCSY, NOESY, ROESY, etc. for homogeneous multidimensional NMR measurements, and HS QC ⁇ HMQC ⁇ CH—COSY ⁇ CBCANH, CBCA (CO) NH, HNCO, HN (CA) CO, HNHA ⁇ H (CACO) NH ⁇ HCACO, 15N— edited NOESY-HSQC, 13 C edited NOESY— HSQC, 13C / 15N- edited HMQC— NOESY— HM QC, 13C / 13C- edited HMQC-NOES Y-HMQC, 15N / 15N-edite d HSQC—NOESY—HSQC
  • the apparatus for solution NMR measurement of the present invention has a support capable of fixing a measurement sample in a medium in an NMR detection cell which is an NMR detection part in an NMR measurement magnet, and is a fixed measurement. It has means that can continuously change the external environment of the sample.
  • the configuration of the solution NMR measurement apparatus consists of 1) an analytical tube filled with a solid phase carrier that can immobilize the measurement sample in the medium, and 2) a solution or candidate for changing the external environment of the immobilized measurement sample. It has a liquid supply pipe that can supply active substances, and 3) a waste liquid pipe that can waste solution or candidate interaction substances.
  • the NMR detection cell has a plurality of liquid waste pipes or a filter is installed on the insertion side or Z or discharge side of the analysis tube.
  • the solution NMR measurement apparatus of the present invention can be obtained.
  • the external environment of the measurement sample is continuously measured, which is impossible with conventional solution NMR measurement, which is not only the identification of the substance that interacts with the measurement sample.
  • 1) Follow the intermediate process of protein folding, 2) follow the process of interaction between the sample and interacting substance, and 3) Release the immobilized sample.
  • 4) High-throughput screening of candidate interaction substances that interact with the measurement sample, 5) Orientation of the molecular arrangement of the measurement sample in a certain direction.
  • an NMR detection cell with multiple liquid waste tubes is used, multiple external environmental factors can be changed simultaneously, so solution NMR measurement can be performed in a powerful external environment that could not be measured in the past.
  • shim adjustment using the sample (a fine adjustment to increase the magnetic field homogeneity of the NMR device required for high-quality NMR spectrum measurement) is possible. Adjustment) is considered difficult. For that purpose, shim adjustment is unnecessary by attaching the shim with the same type of aqueous solution type and attaching the NMR detection cell filled with the measurement sample.
  • the measurement time can be measured in a short time by using non-linear measurement, DFT, and Hadamard conversion method on the indirect observation axis side, and the measurement sample can be monitored in real time.
  • a method for identifying the signal of the NMR spectrum a commonly used method known per se is used.
  • the measurement sample is fixed to the solid support in the analysis tube of the NMR detection cell. Subsequently, an interacting substance that interacts with the measurement sample is supplied to the immobilized measurement sample through the liquid feeding tube.
  • real-time NMR measurement is performed on the change process of the three-dimensional structure of the measurement sample due to the coexistence of the measurement sample and the interacting substance. Specifically, the interacting substance is continuously supplied to the measurement sample little by little, and changes due to the continuous supply are measured in real time.
  • the measurement sample is fixed to a solid support in the analysis tube of the NMR detection cell, and NMR measurement is performed. Subsequently, a solvent capable of releasing the solid phase carrier force is supplied to the immobilized measurement sample through a liquid feeding tube, and NMR measurement of the measurement sample not immobilized is performed. Then, by comparing the results of both NMR measurements, it is possible to detect which part of the measurement sample contributes to the fixation.
  • the measurement sample is fixed to the solid support in the analysis tube of the NMR detection cell. Subsequently, for example, by changing the flow rate of the supplied solution, the molecular arrangement of the measurement sample is oriented in a certain direction, and NMR measurement is performed on the orientation state.
  • a tube was connected to the inlet end of the analysis tube. Next, a buffer solution containing a resin as a solid phase carrier was put into the tube, and the resin contained in the buffer solution was introduced into the analysis tube through the tube or the like. The buffer solution in the analysis tube was discharged from the outlet end of the analysis tube.
  • the resin used was a commercially available resin capable of specific binding to GST.
  • the outlet end of the liquid feeding tube was inserted into the inlet end of the analysis tube filled with the resin, and then the inlet end of the waste liquid tube was inserted into the outlet end of the analysis tube.
  • filters were installed on the inlet side (insertion side) and outlet side (discharge side) of the analysis tube.
  • a knock for preventing liquid leakage was installed on the inlet side (insertion side) of the analysis tube.
  • Fusion protein ⁇ GST (Dartathione S-transferase) and signal
  • the transfer protein calmodulin is the linker (LVPRGSAM- (GGGGS)-LEVLFQGPH:
  • the protein (GST-linker-calmodulin) ⁇ bound via column number 1) was introduced into the NMR detection cell for solution NMR measurement prepared in Example 1. Next, the NMR detection cell for solution NMR measurement was set in an NMR magnetic field. Subsequently, solution NMR measurement was performed under the conditions of 25 degrees and 1024 points.
  • the 1 H signal of the main chain amide group of the signal transduction protein calmodulin was detected (Reference figure 3). That is, the fusion protein GST was bound to the resin as the solid phase carrier, and the signal transduction protein calmodulin was present in the liquid phase in the analysis tube via the linker. Furthermore, the spectrum of the main chain amide group of the signal transduction protein calmodulin was detected with high sensitivity.
  • the industrial applicability of the present invention is that the NMR measurement method of the present invention can continuously change the external environment of the measurement sample, and the interaction between the measurement sample and the candidate interaction substance is efficient. It is possible to provide an analysis of the process of protein and to be able to track changes in protein conformation in real time.

Abstract

 本発明の課題は、NMRの測定において、効率的にNMRでリアルタイムに測定する方法及び該方法を可能とするNMR測定用NMR検出セル、NMR測定用装置の提供である。  詳しくは、NMR測定用磁石内のNMR検出部分であるNMR検出セルにおいて、測定試料を媒体中で固定化し、固定化された測定試料の外部環境を連続的に変化させた条件下で、測定試料を溶液NMRでリアルタイムに測定するNMR測定方法を見出し、本発明を完成させた。

Description

明 細 書
NMR検出セル、 NMR測定方法及び NMR測定用装置
技術分野
[0001] 本発明は、溶液 NMRによる効率的な測定方法に関する。
また、本出願は、参照によりここに援用されるところ、 日本特許出願番号 2005-2728 87からの優先権を請求する。
背景技術
[0002] ポストゲノム時代の現在、個々の生体分子の立体構造を決定することが盛んに行わ れているが、今後は、これら生体分子間の相互作用、それに伴う構造変化の研究が 益々重要となると考えられ、その研究のための手法開発が必要となっている。このよう な研究の手法の一つとして NMR測定が有用である。
し力しながら、 1000種類の低分子化合物の中から目的タンパク質と相互作用する物 質を見つけ出す場合、タンパク質と 10種の低分子化合物を混合した溶液を用いて 1 次スクリーニングを行ったとしても 100検体の試料調製と 100回の NMR測定'解析が必 要であり、この操作を繰り返し実行するには多大の時間と労力を費やさねばならな 、 この作業の効率ィ匕を図るためには NMR測定用装置の自動サンプルチェンジャー の利用が考えられる力 これは試料交換の手間を省略できるだけであり、タンパク質 の使用量、試料調製の負担、測定時間は全く軽減されない。
また、溶液 NMR測定法としては、ゲル相 NMR法や液体クロマトグラフィー NMR法 等がある力 タンパク質の構造変化特にフォールデイングの中間過程の追跡には不 十分である。
[0003] 本願の先行する NMR技術を使い測定試料を測定する技術としては、 NMRプロ一 ブ内の試料流路内に試料を吸着しうる充填剤を設け、試料を吸着させた状態で NM R測定を行うものがある(特許文献 1)。しかし、この系では、試料流路内に充填剤を 設けるのは、微量試料の濃縮、拡散防止のためであり、スクリーニング方法について はいつさいの開示がない。 また、本願の先行する NMR技術を使 ヽ標的高分子物質を測定する技術としては、 固相に標的高分子物質を固定ィ匕して NMR測定を行うものがある(特許文献 2)。この 技術は、液体環境下で固相に標的高分子物質を固定化し、これを NMRで測定、或 いは液体環境下で固相に標的高分子物質を固定ィ匕し、さらに候補ィ匕合物を添加し て両者の相互作用の結果を NMR測定するというものであった。しかし、この系では、 両者の相互作用の過程を NMR測定することはできず、さらに連続的な候補ィ匕合物 の供給によるハイスループットスクリーニングも行うことはできず、試料を効率的に測 定するにはほど遠いものであった。
特許文献 1:特開 2002-139558
特許文献 2:特開 2004-138545
発明の開示
発明が解決しょうとする課題
[0004] 解決しょうとする問題点は、 NMRの測定にぉ 、て、測定試料の外部環境変化によ る作用を効率的に NMRでリアルタイムに測定する方法及び該方法を可能とする NM R測定用 NMR検出セル、 NMR測定用装置の提供である。
課題を解決するための手段
[0005] 本発明は、 NMR測定用磁石内の NMR検出部分である NMR検出セルにおいて、 測定試料を媒体中で固定ィ匕し、固定化された測定試料の外部環境を連続的に変化 させた条件下で、測定試料を溶液 NMRでリアルタイムに測定する NMR測定方法を 提供することを最も主要な特徴とする。
すなわち本発明は以下力もなる。
「1. NMR測定用磁石内の NMR検出セル中において、測定試料を媒体中で固定 化し、固定化された測定試料の外部環境を連続的に変化させた条件下で、測定試 料を溶液 NMRで測定する溶液 NMR測定方法。
2.測定試料を固定ィ匕する方法が、測定試料を固相担体で吸着させることである前 項 1に記載の溶液 NMR測定方法。
3.外部環境の変化が、固定化された測定試料の存在する媒体における変化であ る前項 1又は 2に記載の方法。 4.外部環境の変化が、 NMR測定用磁石内の NMR検出セルの送液管と廃液管 によって行われる前項 1〜3の何れか一に記載の方法。
5.溶液 NMR装置用 NMR検出セルであって、 1) NMR測定用磁石外に通じる送 液管、 2) NMR測定用磁石外に通じる廃液管、 3)該送液管及び該廃液管に連結可 能でありかつ固相担体を充填可能な分析管、を有する溶液 NMR装置用 NMR検出 セル。
6.分析管の挿入側及び Z又は排出側にフィルターが設置された前項 5に記載の 溶液 NMR装置用 NMR検出セル。
7.前項 5又は 6に記載の溶液 NMR装置用 NMR検出セルを有する溶液 NMR測 定用装置。
8.溶液 NMR測定用装置であって、
1)測定試料を媒体中で固定ィ匕可能な固相担体を充填した分析管、
2)固定化された測定試料の外部環境を変化させるための溶液又は候補相互作用物 質を供給可能な送液管、
3)溶液又は候補相互作用物質を廃液可能な廃液管、
を有する NMR測定用装置。
9.上記分析管が、脱着可能である前項 7又は 8に記載の装置。
10.分析管の挿入側及び Z又は排出側にフィルターが設置された前項 7〜9の何 れか一に記載の装置。
11.溶液 NMR測定をリアルタイムで測定する方法であって、
1)測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する工程、
2)測定試料の外部環境を連続的に変化させるために、送液管により外部環境の変 化の要因を含む溶液を供給する工程、
3) 2)の外部環境の変化の工程中に、測定試料の溶液 NMR測定する工程、 を含む方法。
12.測定試料がタンパク質であって、固定化された測定試料の外部環境を連続的 に変化させることによって、タンパク質のフォールデイングの中間過程を追跡する前 項 11に記載の方法。 13.候補相互作用物質のハイスループットスクリーニング方法であって、
1)測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する工程、
2)候補相互作用物質を送液管により固定化された測定試料に供給する工程、
3)測定試料と候補相互作用物質の相互作用を溶液 NMR測定する工程、
4)測定試料と候補相互作用物質の結合のみが解離するような溶媒を送液管から供 給し、候補相互作用物質を測定試料から解離させ、続いて、廃液管を通して NMR 検出セル力 排除する工程、
5) 2) 4)の工程を繰り返す工程、
を含む方法。」
より詳しくは、本発明は以下力もなる。
「1. NMR測定用磁石内の NMR検出セル中において、測定試料を媒体中で固定 化し、固定化された測定試料の外部環境を連続的に変化させた条件下で、測定試 料を溶液 NMRで測定する溶液 NMR測定方法。
2.測定試料を固定ィ匕する方法が、測定試料を固相担体で吸着させることである前 項 1に記載の溶液 NMR測定方法。
3.外部環境の変化が、固定化された測定試料の存在する媒体における変化であ る前項 1又は 2に記載の方法。
4.外部環境の変化が、 NMR測定用磁石内の NMR検出セルの送液管と廃液管 によって行われる前項 3に記載の方法。
5.外部環境の変化の要因が、共存物質の添加、不添加もしくは濃度変化、両親媒 性の試薬の添加、不添加もしくは濃度変化、溶媒 pHの変化、塩濃度の変化、変性 剤の添加、不添加もしくは濃度変化、又はこれらのいずれか 2以上の組み合わせで ある前項 1〜4の何れか一に記載の方法。
6.共存物質が、測定試料に対する候補相互作用物質である前項 1〜5の何れか 一に記載の方法。
7.固定ィ匕方法が、以下力も選ばれる方法であって、 NMR検出セルの分析管部位 に固相担体を充填する前項 1〜6の何れか一に記載の方法。
1)固相担体と結合性を有しかつ十分な自由度を有するリンカ一を保持する測定試料 を、固相担体とリンカ一を介して結合する。
2)測定試料を、固相担体と化学的に結合する。
3)測定試料を、自由度が高い固相担体で補足する。
8. 自由度が高い固相担体が、デキストラン又は網目構造の高分子ゲルである前項 7に記載の方法。
9.溶液 NMR測定をリアルタイムで測定する方法であって、
1)測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する工程、
2)測定試料の外部環境を連続的に変化させるために、送液管により外部環境の変 化の要因を含む溶液を供給する工程、
3) 2)の外部環境の変化の工程中に、測定試料の溶液 NMR測定する工程、 を含む前項 1〜8の何れか一に記載の方法。
10.測定試料がタンパク質であって、固定化された測定試料の外部環境を連続的 に変化させることによって、タンパク質のフォールデイングの中間過程を追跡する前 項 1〜9の何れか一に記載の方法。
11.候補相互作用物質のハイスループットスクリーニング方法であって、
1)測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する工程、
2)候補相互作用物質を送液管により固定化された測定試料に供給する工程、
3)測定試料と候補相互作用物質の相互作用を溶液 NMR測定する工程、
4)測定試料と候補相互作用物質の結合のみが解離するような溶媒を送液管から供 給し、候補相互作用物質を測定試料から解離させ、続いて、廃液管を通して NMR 検出セル力 排除する工程、
5) 2) 4)の工程を繰り返す工程、
を含む前項 1〜9の何れか一に記載の方法。
12.固定化された測定試料の外部環境を連続的に変化させることによって、測定 試料の分子配列を一定方向に配向させる前項 1〜9の何れか一に記載の方法。
13.溶液 NMR装置用 NMR検出セルであって、 1) NMR測定用磁石外に通じる 送液管、 2) NMR測定用磁石外に通じる廃液管、 3)該送液管及び該廃液管に連結 可能でありかつ固相担体を充填可能な分析管、を有する溶液 NMR装置用 NMR検 出セノレ。
14.分析管の挿入側及び Z又は排出側にフィルターが設置された前項 13に記載 の溶液 NMR装置用 NMR検出セル。
15.前項 13又は 14に記載の溶液 NMR装置用 NMR検出セルを有する溶液 NM R測定用装置。
16.溶液 NMR測定用装置であって、
1)定試料を媒体中で固定ィ匕可能な固相担体を充填した分析管、
2)固定化された測定試料の外部環境を変化させるための溶液又は候補相互作用物 質を供給給可能な送液管、
3)溶液又は候補相互作用物質を廃液可能な廃液管、
を有する NMR測定用装置。
17.上記分析管が、脱着可能である前項 15又は 16に記載の装置。
18.分析管の挿入側及び Z又は排出側にフィルターが設置された前項 15〜 17の 何れか一に記載の装置。」
発明の効果
[0007] 本発明の NMR測定方法は、連続的に測定試料の外部環境の変化が可能であり、 効率的な測定試料と候補相互作用物質の相互作用の過程の解析が可能であり、さ らにタンパク質の立体構造変化をリアルタイムに追跡可能であるという利点がある。 発明を実施するための最良の形態
[0008] 本発明は、溶液 NMR測定用装置の NMR測定用磁石内において、 NMR検出部 分 (NMRプローブ)内の NMR検出セルを改良することを特徴とする NMR測定方法 である。
本発明における NMR測定法は、通常の溶液 NMRに用いられる方法であれば如 何なる方法も用いることができる。特に低温プローブを装着した高磁場 NMR測定用 装置であれば十分な測定感度を得られるものと考える。本発明の溶液 NMR測定用 装置用 NMR検出セルは、従来の NMR測定用装置の NMR検出セルとの互換性を 考慮し、送液管、分析管、廃液管部位は、各々脱着可能で、特に NMR磁場の上方 力も差し込む型が好まし 、。 [0009] NMR検出セル
本発明における NMR検出セルは、 1) NMR測定用磁石外に通じる送液管(101) 、 2) NMR測定用磁石外に通じる廃液管(103)、 3)該送液管及び該廃液管に連結 可能でありかつ固相担体を充填可能な分析管(102)を含んでなる(図 1)。さらに、分 析管に固相担体を充填し ( 204)、送液管の出口端部は分析管の入口端部内に挿入 され、廃液管の入口端部は分析管の出口端部内に挿入される(図 2)。また、送液管 及び廃液管は適切な方法で、挿入された端部と分析管にシールされる。さらに、液 漏れ防止用のパッキンを設置する。
好ましくは、分析管の入口側 (挿入側)及び Z又は出口側 (排出側)に、測定試料 が廃液管に流出する又は測定試料が送液管に拡散するのを防ぐためのフィルター( 205)を設置することができる。さらに、複数の候補相互作用物質を、同時に測定試 料に供給するために、又は複数の外部環境の要因を同時に変化させるために、複数 の送廃液管を有する NMR検出セルであってもよ!/、。
また、 NMR検出セルの材質並びに各管の長さ及び内径は、従来の溶液 NMR測 定用装置に用いられる NMR検出セルにおける送液管、廃液管、分析管と同様で良 い。これにより、従来の溶液 NMR測定用装置に使用される NMR検出セルと相互性 を有する。すなわち、従来の溶液 NMR測定用装置の NMR測定用磁石内の NMR 検出セルを取り外し、本発明の NMR検出セルを導入することができる。詳しくは、分 析管と送液管及び Z若しくは廃液管を連結するジョイント部分をねじ状にすれば、分 析管を容易に脱着可能である。
[0010] 測定試料
本発明の測定試料は、タンパク質、ポリペプチド、核酸、糖、糖タンパク質、糖脂質 、脂肪酸、これらの誘導体、共有結合体および複合体等が挙げられる。ポリペプチド は 40以上 1000以下のアミノ酸残基力もなるものが好ましく用いられる。また、核酸、 糖、糖タンパク質、糖脂質、脂肪酸としては分子量が 1000以上 10万以下のものが 好ましい。具体的には、天然に存在するタンパク質、またはその一部、さらに人工的 に産生されたポリペプチド、および天然に存在するタンパク質の N末端または C末端 に 1以上のアミノ酸残基が付加されているタンパク質などが含まれるが、これらに限ら ず、この場合、これらのタンパク質またはポリペプチドのアミノ酸配列において、 1若し くは数個のアミノ酸が、欠失、置換若しくは付加されていてもよい。
測定試料の標識は、分子全体を13 Cや15 N等の安定同位体で標識してもよいし、又 は注目する部位に対して特異的に安定同位体標識を導入してもよい。
[0011] 媒体
本発明の媒体は、測定試料と接触される水溶液が一般的である。水溶液は、 NMR 測定に用いられ、かつ測定試料がタンパク質の場合、その立体構造を保持するもの であれば如何なるものであってもよい。具体的には、純水、古典的緩衝液 (グリシン、 酢酸、リン酸、力コジル酸、イミダゾール等)、 Good緩衝液(Tris、 Bis—Tris、 Mes、 HEPES、 CHES等)、およびプロテアーゼ阻害剤(AEBSF、ロイぺプチン、 EDTA 、ぺプスタチン A等)、多水酸基性ィ匕合物(ショ糖、グリセロール、ポリエチレングリコー ル等)、 SH基保護剤、酸化防止剤(2— mercaptoethanol、 dithiothreitol等)、界 面活性剤(ォクチルダルコシド、ドデシルマルトシド、 CHAPS, TritonX—100等)、 脂質(DPC、 DHPC等)、有機溶媒(グリセロール、プロパノール、 TFE、 DMSO等) 等を含む上記水溶液、およびこれらを安定同位体標識したものも含む水溶液等が挙 げられる。しかし、上記に限定されるものではない。
[0012] 外部環境
本発明の外部環境とは、測定試料の周辺の環境を意味する。また、本発明の外部 環境の変化の要因は、共存物質の添加、不添加もしくは濃度変化、変性剤の添加、 不添加もしくは濃度変化、両親媒性の試薬の添加、不添加もしくは濃度変化、媒体 の pHの変化、塩濃度の変化、媒体自体の変化、又はこれらのいずれか 2以上の組 み合わせが起こることを意味する。ここで、共存物質とは、測定試料に対する候補相 互作用物質である。
[0013] 候補相互作用物質
本発明の候補相互作用物質は、測定試料となんらかの相互作用をもたらす物質を 意味する。相互作用とは、測定試料に対して、共有結合、疎水結合、水素結合、ファ ンデルワールス結合、および静電力等による結合を意味するが、特に限定されない。 具体的な相互作用としては、測定試料の作用に対しァゴニスト、アンタゴ-スト、逆ァ ゴニスト、インヒビター、プロモーターになるような物質等を意味する。また、上記作用 の結果生じることによる、測定試料との結合反応、新たな物質の合成反応、分解反応 も含まれる。
固相担体
本発明の固相担体は、溶液 NMR測定を行え得るものであれば、特に制限はない 力 例えば、榭脂、ならびにガラス、セラミックス、ラテックスおよび金属などの無機化 合物 (ただし非磁性ィ匕合物に限る)等が挙げられる。固相の形状はこれを溶液 NMR に用いることができれば如何なるものでもよいが、ビーズ等の粒子状のものが好適に 例示される。榭脂の具体例は以下に示す。例えば、コンビナトリアルケミストリーに利 用される榭脂 [TentaGel, Polystyrene Resin, ArgoGel, 2 - Chlorotrityl Re sin, Kaiser Oxime Resin, Phosphine Resin, Rink— amide Resin, Thiom ethyl Resin, Merrifield Resin, Wang Resin等(SIGMA、 Aldrich社等) ]、 亜鉛イオンキレート榭脂 [Chelating FF (Amersham社)等]、 Glutathione固定 ィ匕樹月旨 [Glutathione Sepharose 4B、 Glutathione Sepharose 4FF ( Amer sham社)、 GST'bind resin (Novagen社)等]、 IgG抗体固定化セファロース榭脂 [Protein G Plus/Protein A—Agarose (Novagen社)、 BPV—l (AUl)Affi nity Matrix, HA. 11 Affinity Matrix, FLAG Affinity Matrix, 6— His Affinity Matrix, c— myc Affinity Matrix, Polyoma Virus Medi urn T Antigen Affinity Matrix (CO VANCE社), ANTI-FLAG Ml or M2 Affinity gel (Sigma— Aldrich社)、アミロース榭脂 [Amylose resin ( Novagen社)等]、ストレプトァクチン結合榭脂 [StrepTactinSepharose、 StrepTa ctin POROS (Sigma Genosys社)等]、ストレプトアビジン結合榭脂 [Streptavi din— CPG (CPG社)、 Streptavidin Sepharose High Performance (Amers ham社)、 SoftLink resin、 TetraLink resin (Promega社)等]、カノレモジュリン 固定化榭脂 [Calmodulin— affinity resin (Stratagene社)等]、キチン榭脂 [Chi tin resin (New England Biolabs社)等]、レクチン結合榭脂 [Lentil Lectin Sepharose 4B (Amersham社)等]、コンカナパリン A結合榭脂 [ConA Sepharo se 4B (Amersham社)等]、 S—タンパク固定化榭脂 [S— protein agarose (No &8611社)等]、核酸固定化榭脂[?0^ (八) Sepharose 4B, Poly (U) Sephar ose 4B, Poly (C) Type6 (Amersham社)等]が挙げられる力 これらに限らな い。
このようにして調製される固相担体の粒子径は、通常固相担体に用いられる粒子径 で良い。
また、固相担体と測定試料の関係から、抗原に対しては抗体、ピオチンに対しては アビジンあるいはストレプトアビジン、ホルモン受容体(例えばインスリン受容体)に対 してはホルモン (例えばインスリン)、レクチンに対しては対応する糖鎖、などが固相担 体の例として挙げられる。
[0015] 固相担体の充填方法
固相担体の充填方法は、固相担体を分析管に充填できる方法であれば、いずれの 方法でも良い。
例としては、分析管の入口端部にチューブ等を接続する。次に、固相担体を含む 緩衝液を該チューブ等に入れ、緩衝液中に含まれる固相担体を、該チューブ等を介 して分析管に導入する。なお、分析管中の緩衝液は、分析管の出口端部から排出す る。
また、測定試料がゲル状の場合には、測定試料は直接固相担体を充填した分析管 に導入しても良い。なお、ゲル状の測定試料を流出しないようにフィルター及び Z又 は液漏れを防止するためにパッキンを設置しても良 、。
[0016] 測定試料の固定化方法
測定試料の固定化とは、固相担体に測定試料であるタンパク質等をィ匕学結合、親 和性結合、抗原抗体反応を利用して固定させることである。固定ィ匕方法は、 NMR検 出セルの分析管に充填された上記固相担体上に行うことが好ましい。これにより、連 続的な測定試料の外部環境変化が可能となる。また、以下のような手段が適用でき る。
1)測定試料に、固相担体と結合性を有しかつ十分な自由度を有するリンカ一を付 加する。
リンカ一は、測定試料がペプチド等の場合、例えばその SH基と架橋できるものであ るものが利用できる。好ましくは片末端が SH基と反応し、もう片末端が OH基、 COOH 基、 NH基のいずれかと反応する化合物である。このようなリンカ一としては、例えば、
2
ジカルボン酸、アミノカルボン酸、ビスマレイミド化合物、ビスハロカルボ-ル化合物、 ハロカルボ-ルマレイミド化合物、ジチオマレイミド、ジチォカルボン酸およびマレイミ ドカルボン酸等が例示される。スぺーサ一は、測定試料とリンカ一間にあって固相担 体表面と測定試料間の長さを調節できるものであれば特に限定されないが、ポリオキ シエチレン、ポリペプチド、多糖、アルブミン、及び抗体から選ばれる 1又はこれらの 複数の組み合わせ力もなる物質を利用できる。アルブミンや抗体は組換体が利用で きる。
2)測定試料を、固相担体と化学的に結合する。
測定試料を固相担体と化学的に結合するには、測定試料に、固相担体表面の導 入置換基と結合を形成するための反応活性基が存在する。反応活性基は、先に示し た固相担体の反応性官能基と化学結合を形成する官能基であれば特に種類は問わ ないが、アミノ基、カルボン酸基、水酸基、チオール基、アルデヒド基、エポキシ基、ァ ルキルハライド、シリルノヽライド等の中から固相担体の反応性官能基に応じて適宜選 択するのが好ましい。生じたィ匕学結合の種類としては、アミド結合、エステル結合、チ ォエステル結合、エーテル結合、チォエーテル結合、アルキルアミノ結合、ィミノ結合
、シリルエーテル結合等が好ましいが、特にアミド結合、チォエーテル結合が好まし い。また、該化学結合を形成する為の反応試薬は、その結合に応じて適宜選択する ことができる。
3)測定試料を、自由度が高い固相担体で補足する。
固相担体が自由度の高い担体であれば、測定試料にリンカ一'スぺーサ一等を使 わずとも NMR測定は可能である。しかし、上記記載したリンカ一'スぺーサ一等と組 み合わせることでより良い測定結果を得ることができる。自由度が高い担体としては、 小胞体、ミセル、蛋白質重合体、高分子重合体などが例示され、具体的には小胞体 (リボソーム)、組換えアルブミン重合体、ラテックス粒子、高分子ゲル特に網目構造 の高分ゲル、多糖類が例示される。小胞体 (リボソーム)は脂質人工膜で構成される 粒子でリン脂質、グリセ口糖脂質、コレステロール等力 脂質二重層としてつくられる 。その調製には、界面活性剤除去法、水和法、超音波法、逆相蒸留法、凍結融解法 、エタノール注入法、押し出し法、及び高圧乳化法等広く公知方法が適用される。組 換えアルブミンは、既知の遺伝子工学的手法により製造されたものが利用でき特に 制限されない。例えば、実用化レベルにある宿主として酵母を用いて生産される組換 えアルブミンは好適である。アルブミンの微粒子化 (重合体化)は公知である。高分子 ゲルは網目構造に調製されており、例えば乳酸及び/又はグリコール酸等を重合ィ匕 して得られる高分子を微粒子化して調製できる。又、多糖類としては、デキストランは 好適な担体であり、例えばァミンカップリングでリンカ一と測定試料ィ匕合物をィ匕学的 に結合させることができる。
[0017] 測定方法
本発明における NMR測定方法は、通常の溶液 NMRに用いられる方法であれば 如何なる方法も用いることができる。具体的には、同種核多次元 NMR測定として、 C OSY、 TOCSY、 NOESY、 ROESY等であり、異種核多次元 NMR測定法としては、 HS QCゝ HMQCゝ CH— COSYゝ CBCANH、 CBCA (CO) NH、 HNCO、 HN (CA) CO、 HNHAゝ H (CACO) NHゝ HCACO、 15N— edited NOESY-HSQC, 13 C edited NOESY— HSQC、 13C/15N- edited HMQC— NOESY— HM QC、 13C /13C- edited HMQC - NOES Y - HMQC, 15N/15N-edite d HSQC—NOESY—HSQC等があるが特に限定されない。
[0018] 溶液 NMR測定用装置
本発明の溶液 NMR測定用装置は、 NMR測定用磁石内の NMR検出部分である NMR検出セル中において、測定試料を媒体中で固定ィ匕可能な担体を有し、かつ固 定化された測定試料の外部環境を連続的に変化させることが可能な手段を有するも のである。
溶液 NMR測定用装置の構成は、 1)測定試料を媒体中で固定化可能な固相担体 を充填した分析管、 2)固定化された測定試料の外部環境を変化させるための溶液 又は候補相互作用物質を供給可能な送液管、 3)溶液又は候補相互作用物質を廃 液可能な廃液管、を有するものである。好ましくは、複数の送廃液管を有する又は、 分析管の挿入側若しくは Z又は排出側にフィルターが設置されている NMR検出セ ルを有する。
また、従来の溶液 NMR測定用装置の NMR測定用磁石内の NMR検出セルを取 り外し、本発明の NMR検出セルを導入することにより、本発明の溶液 NMR測定用 装置とすることができる。
[0019] 本発明の実施態様
本発明の NMR測定方法では、以下の実施態様によれば、測定試料と相互作用す る物質の同定だけではなぐ従来の溶液 NMR測定では不可能であった、測定試料 の外部環境を連続的に変化させることによる、 1)タンパク質のフォールデイングの中 間過程を追跡すること、 2)測定試料と相互作用物質の相互作用の過程を追跡するこ と、 3)固定化された測定試料を遊離させること、 4)測定試料と相互作用する候補相 互作用物質のハイスループットスクリーニングすること、 5)測定試料の分子配列を一 定方向に配向させること、が可能である。さらに、複数の送廃液管を有する NMR検 出セルを用いれば、複数の外部環境の要因を同時に変化させることができるので、 従来では測定することができな力つた外部環境で溶液 NMR測定を行うことができる さらに、完全な水溶液状態ではない測定試料を使用する場合には、該試料を用い たシム調整(高品質の NMRスペクトル測定に必要な NMR装置の磁場均一度を高 めるための微調整)が困難であると考えられる。そのために、あら力じめ同型の水溶 液タイプでシムを合わせておき、測定試料を充填した NMR検出セルを装着すること で、シム調整を不要とすることができる。
また、測定時間は、間接観測軸側の non-linear測定、 DFT、 Hadamard変換法を利 用することにより短時間測定を可能にし、リアルタイムで測定試料をモニターすること ができる。 NMRスペクトルのシグナルの特定方法は、それ自体既知の通常用いられ る方法が用いられる。
[0020] 1)タンパク質のフォールデイングの中間過程を追跡することを可能とする測定方法 測定試料であるタンパク質を NMR検出セルの分析管中の固相担体に固定ィ匕する 。続いて、タンパク質の立体構造に影響を与える例えば変性剤を送液管カゝら固定ィ匕 された測定試料に供給する。ここで変性剤の濃度を徐々に上げることにより、測定試 料の立体構造を徐々に変化させ、その変化の過程をリアルタイムで NMR測定を行う 。また、送液管からの送液を止めて測定を行うこともできる。カロえて、測定試料に対し て様々な変性剤を供給することにより、最適な測定試料のフォールデイング環境条件 のスクリーニングもするができる。なお、供給された変性剤を含む溶液は、廃液管を 通して NMR測定用磁石外に廃液される。
[0021] 2)測定試料と相互作用物質の相互作用の過程を追跡することを可能とする測定方 法
測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する。続いて、測定試 料と相互作用する相互作用物質を送液管により、固定化された測定試料に供給する 。ここで、測定試料と相互作用物質が共存することによる測定試料の立体構造の変 化過程をリアルタイムで NMR測定を行う。詳しくは、相互作用物質を少しずつ連続 的に測定試料に供給し、その連続的な供給による変化をリアルタイムで NMR測定を 行う。
さらに、相互作用物質と相互作用した測定試料に、新たに相互作用する物質を、送 液管を通して供給することによって、二段階さらには複数段階の相互作用する物質 の解析ちすることができる。
また、変化したシグナルが測定試料のどの部位であるかを特定することによれば、 測定試料の相互作用物質が結合している部位を特定することもできる。
[0022] 3)固定化された測定試料を遊離させることを可能とする測定方法
測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕して、 NMR測定を行う 。続いて、固定化された測定試料に固相担体力 遊離させることができる溶媒を送液 管により供給して、固定ィ匕されていない測定試料の NMR測定を行う。そして、両 NMR 測定の結果を比較することにより、測定試料のどの部位が固定ィ匕に寄与しているかを 検出することができる。
これにより、固定化されているときには測定できず、遊離すると測定可能になるとい う性質を利用した新規な NMR測定方法を行うことができる。
[0023] 4)測定試料と相互作用する候補相互作用物質のハイスループットスクリーニング 測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する。続いて、候補相 互作用物質を送液管により、固定化された測定試料に供給する。ここで、測定試料と 候補相互作用物質が共存することによる測定試料の立体構造変化の NMR測定又 は立体構造変化の過程をリアルタイムで NMR測定を行う。続いて、測定試料と候補 相互作用物質の結合のみが解離するような溶媒を送液管力 供給し、候補相互作用 物質を測定試料から解離させ、さらに、廃液管を通して NMR検出セル力 排除する 。続いて、候補相互作用物質を送液管から供給し、 NMR測定を行う。以上のような 工程を繰り返すことで、候補相互作用物質をノヽィスループットにスクリーニングするこ とがでさる。
[0024] 5)測定試料の分子配列を一定方向に配向させることを可能とする測定方法
測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する。続いて、例えば 供給する溶液の流速を変化させることにより、測定試料の分子配列を一定方向に配 向させ、その配向状態に対し NMR測定を行う。
[0025] 以下、本発明を実施例によりさらに具体的に説明するが、下記の実施例は本発明 についての具体的認識を得る一助とみなすべきものであり、本発明の範囲は下記の 実施例により何ら限定されるものではない。
実施例 1
[0026] 固相担体が充填された溶液 NMR測定用 NMR検出セルの製造
分析管の入口端部にチューブを接続した。次に、固相担体であるレジンを含む緩 衝液を該チューブに入れ、緩衝液中に含まれるレジンを、該チューブ等を介して分 析管に導入した。分析管中の緩衝液は分析管の出口端部カゝら排出した。なお、レジ ンは GSTに特異的結合可能な性質を持つ市販のものを使用した。
次に、送液管の出口端部をレジンが充填された分析管の入口端部に挿入し、続い て、廃液管の入口端部を該分析管の出口端部に挿入した。また、分析管の入口側( 挿入側)及び出口側 (排出側)にフィルターを設置した。さらに、分析管の入口側 (挿 入側)に液漏れ防止用のノ ッキンを設置した。
実施例 2
[0027] 本発明の溶液 NMR測定用 NMR検出セルを用いての測定方法
測定試料である融合タンパク質 {GST (ダルタチオン Sトランスフェラーゼ)とシグナル 伝達タンパク質カルモジュリンがリンカ一(LVPRGSAM- (GGGGS) - LEVLFQGPH:配
4
列番号 1)を介して結合したタンパク質 (GST-リンカ一-カルモジュリン) }を実施例 1で 製造した溶液 NMR測定用 NMR検出セルに導入した。次に、該溶液 NMR測定用 NMR検出セルを NMR磁場にセットした。続いて、 25度、ポイント数 1024条件下で溶 液 NMR測定を行った。
[0028] ^-^N HSQC測定結果
シグナル伝達タンパク質カルモジュリンの主鎖アミド基の1 Hシグナル検出ができた( 参照図 3)。すなわち、融合タンパク質の GSTが固相担体であるレジンに結合し、シグ ナル伝達タンパク質カルモジュリンはリンカ一を介して分析管中の液相に存在した。 さらに、シグナル伝達タンパク質カルモジュリンの主鎖アミド基のスペクトルが高感度 に検出することができた。
[0029] ^-^N HSQC測定結果
シグナル伝達タンパク質カルモジュリンの主鎖アミド基の1 H-15Nシグナル検出がで きた (参照図 4)。すなわち、融合タンパク質の GSTが固相担体であるレジンに結合し 、シグナル伝達タンパク質カルモジュリンはリンカ一を介して分析管中の液相に存在 した。さらに、シグナル伝達タンパク質カルモジュリンの主鎖アミド基のスペクトルが検 出することができた。
[0030] 以上の測定結果より、送液管力 の溶媒供給等による測定試料の外部環境を連続 的に変化させれば、 1)タンパク質のフォールデイングの中間過程を追跡すること、 2) 測定試料と相互作用物質の相互作用の過程を追跡すること、 3)固定化された測定 試料を遊離させること、 4)測定試料と相互作用する候補相互作用物質のハイスルー プットスクリーニングすること、が可能であることがわ力つた。
産業上の利用可能性
[0031] 本発明の産業上の利用可能性は、本発明の NMR測定方法は連続的に測定試料 の外部環境の変化が可能であり、効率的な測定試料と候補相互作用物質の相互作 用の過程の解析が可能であり、さらにタンパク質の立体構造変化をリアルタイムに追 跡可能であるということが提供できることにある。
図面の簡単な説明 [0032] [図 1]溶液 NMR装置用 NMR検出セルの概要図
[図 2]固相担体が充填した溶液 NMR装置用 NMR検出セルの図
[図 3]シグナル伝達タンパク質カルモジュリンでの1 Hシグナル検出の結果
[図 4]シグナル伝達タンパク質カルモジュリンでの1 H-15Nシグナル検出の結果 符号の説明
[0033] 101:送液管
102:分析管
103:廃液管
204:固相担体
205:フィルター

Claims

請求の範囲
[I] NMR測定用磁石内の NMR検出セル中において、測定試料を媒体中で固定ィ匕し、 固定化された測定試料の外部環境を連続的に変化させた条件下で、測定試料を溶 液 NMRで測定する溶液 NMR測定方法。
[2] 測定試料を固定ィ匕する方法が、測定試料を固相担体で吸着させることである請求項
1に記載の溶液 NMR測定方法。
[3] 外部環境の変化が、固定化された測定試料の存在する媒体における変化である請 求項 1又は 2に記載の方法。
[4] 外部環境の変化が、 NMR測定用磁石内の NMR検出セルの送液管と廃液管によつ て行われる請求項 1〜3の何れか一に記載の方法。
[5] 溶液 NMR装置用 NMR検出セルであって、 1) NMR測定用磁石外に通じる送液管
、 2) NMR測定用磁石外に通じる廃液管、 3)該送液管及び該廃液管に連結可能で ありかつ固相担体を充填可能な分析管、を有する溶液 NMR装置用 NMR検出セル
[6] 分析管の挿入側及び Z又は排出側にフィルターが設置された請求項 5に記載の溶 液 NMR装置用 NMR検出セル。
[7] 請求項 5又は 6に記載の溶液 NMR装置用 NMR検出セルを有する溶液 NMR測定 用装置。
[8] 溶液 NMR測定用装置であって、
1)測定試料を媒体中で固定ィ匕可能な固相担体を充填した分析管、
2)固定化された測定試料の外部環境を変化させるための溶液又は候補相互作用物 質を供給可能な送液管、
3)溶液又は候補相互作用物質を廃液可能な廃液管、
を有する NMR測定用装置。
[9] 上記分析管が、脱着可能である請求項 7又は 8に記載の装置。
[10] 分析管の挿入側及び Z又は排出側にフィルターが設置された請求項 7〜9の何れか 一に記載の装置。
[I I] 溶液 NMR測定をリアルタイムで測定する方法であって、 1)測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する工程、
2)測定試料の外部環境を連続的に変化させるために、送液管により外部環境の変 化の要因を含む溶液を供給する工程、
3) 2)の外部環境の変化の工程中に、測定試料の溶液 NMR測定する工程、 を含む方法。
[12] 測定試料がタンパク質であって、固定化された測定試料の外部環境を連続的に変化 させることによって、タンパク質のフォールデイングの中間過程を追跡する請求項 11 に記載の方法。
[13] 候補相互作用物質のハイスループットスクリーニング方法であって、
1)測定試料を NMR検出セルの分析管中の固相担体に固定ィ匕する工程、
2)候補相互作用物質を送液管により固定化された測定試料に供給する工程、
3)測定試料と候補相互作用物質の相互作用を溶液 NMR測定する工程、
4)測定試料と候補相互作用物質の結合のみが解離するような溶媒を送液管から供 給し、候補相互作用物質を測定試料から解離させ、続いて、廃液管を通して NMR 検出セル力 排除する工程、
5) 2) 4)の工程を繰り返す工程、
を含む方法。
PCT/JP2006/318650 2005-09-20 2006-09-20 Nmr検出セル、nmr測定方法及びnmr測定用装置 WO2007034842A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/067,365 US8013603B2 (en) 2005-09-20 2006-09-20 NMR-detecting cell, NMR-measuring method, and NMR-measuring apparatus
JP2007536537A JPWO2007034842A1 (ja) 2005-09-20 2006-09-20 Nmr検出セル、nmr測定方法及びnmr測定用装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-272887 2005-09-20
JP2005272887 2005-09-20

Publications (1)

Publication Number Publication Date
WO2007034842A1 true WO2007034842A1 (ja) 2007-03-29

Family

ID=37888885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318650 WO2007034842A1 (ja) 2005-09-20 2006-09-20 Nmr検出セル、nmr測定方法及びnmr測定用装置

Country Status (3)

Country Link
US (1) US8013603B2 (ja)
JP (1) JPWO2007034842A1 (ja)
WO (1) WO2007034842A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111387B2 (ja) * 2012-04-13 2017-04-12 日本電子株式会社 Nmr測定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507441A (ja) * 1996-04-04 1999-06-29 バリアン・アソシエイツ・インコーポレイテッド Nmr用の流管
JP2002139558A (ja) * 2000-10-31 2002-05-17 Shimadzu Corp 核磁気共鳴装置
JP2003139831A (ja) * 2001-10-29 2003-05-14 National Institute Of Advanced Industrial & Technology 二重管構造型磁気共鳴試料容器
JP2004093187A (ja) * 2002-08-29 2004-03-25 Nippon Steel Corp 核磁気共鳴法を用いた多孔質炭素系材料の評価方法
JP2004138545A (ja) * 2002-10-18 2004-05-13 Mitsubishi Chemicals Corp Nmr測定方法および該方法に用いるための構造物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4855393A (en) * 1992-09-10 1994-03-29 New York University Polypeptides of g-coupled receptor proteins, and compositions and methods thereof
JPH08223310A (ja) 1995-02-17 1996-08-30 Fujitsu Ltd 送出レベル設定回路及びこれを用いたモデム装置
US6177798B1 (en) * 1999-07-27 2001-01-23 Varian, Inc. Flow-through NMR probe having a replaceable NMR flow tube
US6396274B1 (en) * 1999-11-05 2002-05-28 Varian, Inc. Dual-function NMR probe
RU2166751C1 (ru) * 2000-03-09 2001-05-10 Никитин Петр Иванович Способ анализа смеси биологических и/или химических компонентов с использованием магнитных частиц и устройство для его осуществления
AU2002220167A1 (en) * 2000-12-01 2002-06-11 Protasis Corporation Steep solvent gradient nmr analysis method
DE60234821D1 (de) * 2001-03-09 2010-02-04 Mitsubishi Chem Medience Corp Messverfahren für vollblut
DE10225958B3 (de) * 2002-06-12 2004-03-04 Bruker Biospin Ag Vorrichtung zur Positionierung eines mit einer Messsubstanz gefüllten länglichen Probenröhrchens relativ zu einem NMR-Empfangsspulensystem
US6917201B2 (en) * 2002-12-09 2005-07-12 Varian, Inc. Squashed liquid NMR sample tubes and RF coils
JP2005315744A (ja) * 2004-04-28 2005-11-10 Canon Inc 検出素子、検出装置、および素子と試薬を含む検出用キット
US7145340B2 (en) * 2004-11-04 2006-12-05 Broker Biospin Corporation NMR spectrometer with flowthrough sample container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507441A (ja) * 1996-04-04 1999-06-29 バリアン・アソシエイツ・インコーポレイテッド Nmr用の流管
JP2002139558A (ja) * 2000-10-31 2002-05-17 Shimadzu Corp 核磁気共鳴装置
JP2003139831A (ja) * 2001-10-29 2003-05-14 National Institute Of Advanced Industrial & Technology 二重管構造型磁気共鳴試料容器
JP2004093187A (ja) * 2002-08-29 2004-03-25 Nippon Steel Corp 核磁気共鳴法を用いた多孔質炭素系材料の評価方法
JP2004138545A (ja) * 2002-10-18 2004-05-13 Mitsubishi Chemicals Corp Nmr測定方法および該方法に用いるための構造物

Also Published As

Publication number Publication date
US20100264919A1 (en) 2010-10-21
US8013603B2 (en) 2011-09-06
JPWO2007034842A1 (ja) 2009-03-26

Similar Documents

Publication Publication Date Title
Alexovič et al. Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications
Willats et al. Sugar‐coated microarrays: A novel slide surface for the high‐throughput analysis of glycans
US6649419B1 (en) Method and apparatus for protein manipulation
US20040126890A1 (en) Biomolecule open channel solid phase extraction systems and methods
JP2002533726A (ja) 結合のための小有機分子リガンドの同定
Li et al. Bioinspired saccharide–saccharide interaction and smart polymer for specific enrichment of sialylated glycopeptides
US20180280972A1 (en) Integrated Modular Unit Containing One or More Analyte Concentrator-Microreactor Devices To Be Coupled To A Cartridge-Cassette and Methods of Operation
EP1151288A1 (en) Enzyme-linked immuno-magnetic electrochemical biosensor
CN110275022A (zh) 传染病筛查及乙肝表面抗原定量的试剂盒及应用
US20070048795A1 (en) Immunoaffinity separation and analysis compositions and methods
WO2007034842A1 (ja) Nmr検出セル、nmr測定方法及びnmr測定用装置
WO1989009088A1 (en) Paralog affinity chromatography
CN109061198A (zh) 抑制素a检测试剂盒及其制备方法
Li et al. Fabrication of a protein microarray by fluorous-fluorous interactions
Shilova et al. High molecular weight neoglycoconjugates for solid phase assays
US20150111787A1 (en) Digital microfluidic chips for automated hydrogen deuterium exchange (hdx) ms analysis
US10408826B2 (en) Chemical analysis apparatus, pretreatment apparatus, and chemical analysis method
EP1731908B1 (en) Method of biosubstance trapping, structural analysis or/and identification with use of a labeling substance
JP4147083B2 (ja) Nmr測定方法および該方法に用いるための構造物
Melles et al. Electroimmobilization of proinsulin C-peptide to a quartz crystal microbalance sensor chip for protein affinity purification
WO2005010528A1 (ja) 非特異的物質の除去方法
Nakamura et al. Quartz crystal microbalance sensor targeting low molecular weight compounds using oligopeptide binder and peptide-immobilized latex beads
US20040259073A1 (en) Charge perturbation signature methods and devices for membrane analysis
Liu et al. Computationally assisted design of molecularly imprinted polymers for the detection of estrone
JP2006098342A (ja) 異常プリオンの電気化学的検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536537

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12067365

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798156

Country of ref document: EP

Kind code of ref document: A1