WO2007032117A1 - 表示素子の駆動方法 - Google Patents

表示素子の駆動方法 Download PDF

Info

Publication number
WO2007032117A1
WO2007032117A1 PCT/JP2006/308269 JP2006308269W WO2007032117A1 WO 2007032117 A1 WO2007032117 A1 WO 2007032117A1 JP 2006308269 W JP2006308269 W JP 2006308269W WO 2007032117 A1 WO2007032117 A1 WO 2007032117A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
display element
driving
silver
pixel
Prior art date
Application number
PCT/JP2006/308269
Other languages
English (en)
French (fr)
Inventor
Noriyuki Kokeguchi
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007535379A priority Critical patent/JP4905353B2/ja
Publication of WO2007032117A1 publication Critical patent/WO2007032117A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/38Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using electrochromic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0254Control of polarity reversal in general, other than for liquid crystal displays
    • G09G2310/0256Control of polarity reversal in general, other than for liquid crystal displays with the purpose of reversing the voltage across a light emitting or modulating element within a pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms

Definitions

  • the present invention relates to a method for driving an electrochemical display element using dissolution and precipitation of silver.
  • V a (memory type) reflective display that uses external light and does not consume power for image retention is known! It is hard to say that it has sufficient performance.
  • the method using a polarizing plate such as a reflective liquid crystal has a low reflectance of about 40%, making it difficult to display white, and many of the manufacturing methods used to manufacture the constituent members are not easy.
  • the polymer dispersed liquid crystal requires a high voltage and uses the difference in refractive index between organic substances, so that the contrast of the obtained image is not sufficient.
  • polymer network type liquid crystals have problems such as high voltage and the need for complex TFT circuits to improve memory performance.
  • a display element based on electrophoresis requires a high voltage of 10 V or more, and there is a concern about durability due to electrophoretic particle aggregation.
  • the display element is a cell that can be driven at a low voltage of 3V or less.
  • the display cell has a sufficient color quality of black or color (yellow, magenta, cyan, blue, green, red, etc.) to ensure sufficient memory.
  • black or color yellow, magenta, cyan, blue, green, red, etc.
  • a complicated film configuration such as a vapor deposition film is necessary.
  • an electrodeposition (hereinafter abbreviated as ED) method using dissolution or precipitation of a metal or a metal salt is known.
  • the ED method can be driven at a low voltage of 3 V or less, and has advantages such as a simple cell configuration, excellent black-white contrast and black quality, and various methods have been disclosed (for example, patent documents). See 1-3.)
  • Patent Document 1 U.S. Pat.No. 4,240,716
  • Patent Document 2 Japanese Patent No. 3428603
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-241227
  • the present invention has been made in view of the above problems, and an object of the present invention is to drive a display element that has a simple member configuration, can be driven at a low voltage, has a high display contrast, and has reduced white reflectance fluctuations. It is to provide a method.
  • Driving a display element having an electrolyte containing silver or a compound containing silver in a chemical structure between the counter electrodes, and driving the counter electrode so as to cause dissolution and precipitation of silver A method for driving a display element, wherein the driving method includes a voltage application pulse in a forward direction and a voltage application pulse in a reverse direction exceeding a deposition overvoltage in writing or erasing one pixel.
  • Equation (6) Deposition overvoltage (V) ⁇ Mv ⁇ Deposition overvoltage (V) + l. 5V
  • the surface roughness of at least one electrode surface of the counter electrode is 0.001 / zm or more and 2.0 m or less according to JIS B0601. Display element drive method.
  • the electrolyte contains at least one compound represented by the following general formula (1) or (2) and at least one compound represented by the following general formula (3) or (4) 6.
  • the display element driving method according to any one of 1 to 5, wherein the force is any one of 1 to 5.
  • L represents an oxygen atom or CH
  • R to R represent a hydrogen atom, an alkyl group, an alkyl group, respectively.
  • R and R are each a hydrogen atom, an alkyl group, an alkyl group, an aryl group, a cycloal;
  • R and R each represents a substituted or unsubstituted hydrocarbon group. However, including S atom
  • the atom is not S. ]
  • M represents a hydrogen atom, a metal atom, or a quaternary ammonia.
  • Z represents a nitrogen-containing heterocycle.
  • n represents an integer of 0 to 5
  • R represents a hydrogen atom, a halogen atom, an alkyl group, an aryl
  • the molar concentration of halogen ions or halogen atoms contained in the electrolyte is [X] (mol Zkg)
  • the total molar concentration of silver or silver contained in the electrolyte in the chemical structure is [Ag
  • the present invention it is possible to provide a method for driving a display element that can be driven with a simple member configuration, a low voltage, has a high display contrast, and has a reduced white reflectance variation.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a display element of the present invention.
  • FIG. 2 is a cross-sectional view showing the cell structure of the ED display element of the present invention.
  • FIG. 3 is a basic circuit diagram of a TFT for voltage-driving the ED display element of the present invention.
  • FIG. 4 is a circuit diagram of a TFT for current-driving the ED display element of the present invention.
  • FIG. 5 is a circuit diagram of a TFT for current-driving an ED display element using the potential control means of the present invention.
  • FIG. 6 is a circuit diagram of a TFT using CMOS as the potential control means of FIG.
  • FIG. 7 is a circuit diagram of a TFT for current-driving an ED display element using the rewrite specifying means, the potential control means, and the power cutoff means of the present invention.
  • FIG. 8 is a circuit diagram of a TFT using an N-type TFT as the potential control means of FIG.
  • FIG. 9 is a voltage waveform of Conventional Example 1 for driving an ED display element.
  • FIG. 10 is a voltage waveform of Conventional Example 2 for driving an ED display element.
  • FIG. 11 is an example of a voltage waveform of the present invention 1 for driving an ED display element.
  • 12 An example of a voltage waveform of the present invention 2 for driving an ED display element.
  • the present inventor has an electrolyte containing silver or a compound containing silver in the chemical structure between the counter electrodes, and is capable of dissolving and depositing silver.
  • a driving method of a display element that performs a driving operation of the counter electrode so as to be generated. It has been found that by including the voltage application pulse, it is possible to realize a display element with high display contrast and reduced white reflectance variation.
  • the display element of the present invention has an electrolyte layer containing silver or a compound containing silver in the organic structure between the counter electrodes, and drives the counter electrode so as to cause dissolution and precipitation of silver. It is an ED display element that operates.
  • Silver or a compound containing silver in the chemical structure according to the present invention includes, for example, silver oxide, sulfur sulfate It is a general term for compounds such as silver, metallic silver, silver colloidal particles, halogenated silver, silver complex compounds, and silver ions. It is a solid state, a solubilized state in a liquid, a gas state, a neutral state, a -Charge state species such as on-state and cationic are not particularly limited.
  • FIG. 1 is a schematic cross-sectional view showing the basic configuration of the display element of the present invention.
  • the display device of the present invention holds an electrolyte (also referred to as an electrolyte layer) 22 between a pair of counter electrodes 21 and 24, and applies a voltage or a current from the power source 23 to the counter electrode 21.
  • an electrolyte also referred to as an electrolyte layer
  • a dissolution reaction or precipitation reaction of silver contained in the electrolyte 22 occurs, and a display state is changed by utilizing a difference in optical properties of light transmission and absorption of a compound containing silver. It is an element.
  • the display element driving method according to claim 1 of the present invention includes a voltage application pulse in the forward direction and a voltage application pulse in the reverse direction exceeding the deposition overvoltage in writing or erasing one pixel.
  • the electrolytic deposition dissolution type display element of the present invention the electric field due to the difference in the gap between the counter electrodes, the mass transfer due to ion diffusion or convection, the action of the electrolyte additive, the fluctuation of the external applied voltage, etc. For this reason, nonuniformity of the spatial current density in the vicinity of the electrode generally occurs. If the display element is repeatedly driven without compensating for this non-uniformity, the dissolution or precipitation reaction proceeds excessively locally, and the formation of coarse silver and electrode deterioration tend to occur. When the generated coarse silver is released from the surface force of the electrode and cannot inject electrons, the coarse silver is stably present in the electrolyte, resulting in a decrease in white reflectance during white display.
  • the display element of the present invention which is particularly excellent in memory performance, it becomes a serious problem.
  • a viologen-type electrochromic display element having a relatively low memory property for example, the product due to the excessive reaction is spontaneously returned to a reset state with time and is not a serious problem.
  • As an action of the present invention by applying a voltage in the reverse direction, only the protruding reaction site with a high current density can be canceled by the reverse reaction, and it is repeatedly driven by improving the reaction homogeneity for each driving operation. The generation of coarse silver at the time can be prevented.
  • FIGS. 9 to 14 show examples of voltage waveforms applied to the display element of the present invention shown in FIG.
  • the voltage shown in FIGS. 9 to 14 is applied to the pixel electrode 21 with the Com electrode 24 in FIG. 1 as OV.
  • the voltage waveform will be described below.
  • FIG. 9 shows the voltage waveform of Conventional Example 1.
  • tO period is OV
  • the remaining period of one pixel is 0V
  • step up to a voltage exceeding the deposition overvoltage Vd (1.2V). It falls to 0V after 800ms. Maintain 0V for the remaining period of one pixel.
  • t7 period is +0.35 V for 200 ms
  • the remaining period of one pixel is 0V
  • FIG. 11 shows drive voltage waveforms according to the first aspect of the present invention.
  • t2 period is -0.3 V for 50ms
  • the remaining period of one pixel is ov
  • Precipitation overvoltage Starts up to a voltage exceeding Vd, and after 700ms, decreases to -0.3V. Return to OV after 50ms.
  • FIG. 12 shows drive voltage waveforms according to the second aspect of the present invention.
  • tO period is OV
  • the intermediate voltage between + Vd and 0V is 800ms.
  • the tlO period is -0.3 V for 50 ms.
  • the remaining period of one pixel is OV
  • Precipitation overvoltage Starts up to a voltage exceeding Vd (1.2V) in steps, and after 50ms, drops to an intermediate voltage between Vd and 0V. After 800ms, it will fall to -0.3V. Return to 0V after 50ms.
  • FIG. 13 shows drive voltage waveforms of the present invention 3.
  • the remaining period of one pixel is 0V
  • FIG. 14 shows the drive voltage waveform of the fourth invention. [0044] tO period is OV
  • t2 period is -0.3 V for 20 ms
  • t4 period is -0.3 V for 20ms
  • t5 period is + 0.5V for 250ms
  • the remaining period of one pixel is OV
  • Precipitation overvoltage Step up to a voltage exceeding Vd (2.0 V), and then drop to -0.3 V after 50 ms. After 50ms, step up to a voltage that does not exceed Vd (0.5V), and after 250ms, it will fall to -0.3V. After 20ms, repeat the operation from t3 to t4 twice. Finally, return to 0V.
  • the period, voltage, and number of pulses can be appropriately changed within a range satisfying the present invention.
  • the driving method satisfies the expression (5).
  • Equation (5) 0. 0001 Sw / Sb ⁇ 0.2
  • SwZSb When SwZSb is less than 0.0001, the rewriting time is fast enough. It is not possible to give enough electricity to erase coarse silver, and when SwZSb is more than 0.2, coarse Efficient power for erasing silver The part necessary for an image is excessively erased, resulting in a delay in writing time, so that a sufficient effect cannot be obtained.
  • the present invention is characterized in that the maximum voltage Mv (V) of the voltage application pulse in the forward direction exceeding the deposition overvoltage satisfies the equation (6).
  • Equation (6) Deposition overvoltage (V) ⁇ Mv (V) ⁇ Deposition overvoltage (V) + l. 5V
  • Mv is below the deposition overvoltage, a long writing time is required to obtain a sufficient black display.
  • Mv is a deposition overvoltage of +1.5 V or more, the compound coexisting in the electrolyte is decomposed and the durability of the device deteriorates.
  • the surface roughness of at least one electrode surface of the counter electrode is JI
  • S B0601 is characterized in that it is 0.OOl / z m or more and 2.0 m or less.
  • Surface roughness force ⁇
  • FIG. 2 is a cross-sectional view showing the cell structure of the ED display element of the present invention.
  • the display element of the present invention includes a TFT substrate 34, a transparent electrode 33, and an ED display unit sandwiched between the substrates.
  • a plurality of source lines 43 and a plurality of gate lines (not shown) (42 in FIG. 3) are wired on the matrix.
  • a region surrounded by the source line 43 and the gate line (42 in Fig. 3) corresponds to one pixel.
  • one switching TFT is formed by the gate electrode 45 connected to the gate line (42 in FIG. 3), the source electrode 46 connected to the source line 43, the drain electrode 47 and the semiconductor layer 48 !, The The drain electrode 47 is connected to the pixel electrode 21 through the contact hole 32.
  • the pixel electrode 21 is opposed to the Com electrode 24 via an ED display portion 22 composed of an ion conductive white scattering layer 31.
  • the distance between the pixel electrode 21 which is the counter electrode and the Com electrode 24 is 1 ⁇ m or more and 40 ⁇ m or less.
  • the area ratio is 1 to 1 for the black image of one pixel, and 1.3 to 3.5 for the Com electrode 24.
  • the semiconductor layer 48 is turned off, the source electrode 46 and the drain electrode 47 become non-conductive, the drain electrode voltage drops, and the pixel electrode 21 and the Com electrode are disconnected. No voltage is applied, and the display color before application is maintained due to the memory characteristics of the ED element.
  • the precipitated silver can be dissolved and returned to white display.
  • a TFT circuit for driving the ED display element of the present invention will be described.
  • FIG. 3 shows a basic circuit configuration
  • a gate line driving circuit and a source line driving circuit (both not shown) for selecting each pixel are provided on the end side of the gate line 42 and the end side of the source line 43, respectively.
  • a signal control unit (not shown) for controlling the gate line driving circuit and the source line driving circuit is provided.
  • a gate signal is applied to a predetermined gate line 42 by a gate line driving circuit controlled by the signal control unit.
  • the gate signal is applied to the gate electrode 45 of the switching TFT 44, and the TFT 44 is turned on.
  • the source signal applied to a predetermined source line 43 is also applied to the pixel electrode 21 via the drain electrode 47 and the source electrode 46 of the TFT 44, and when the Com electrode 24 is grounded, the source signal voltage is applied to the ED display section 22.
  • black silver is deposited on the ED display side of the electrode 24, and black display becomes possible.
  • FIG. 4 is different from the voltage drive circuit of FIG. 3 in that display is performed by the current drive circuit.
  • a power supply line (Vdd) formed along the source line 43 and a TFT 51 for supplying current from the power supply line (Vdd) to the display unit 22 are formed in each pixel. ing.
  • the gate electrode 52 of the TFT 51 is connected to the drain electrode 47 of the TFT 44, the source electrode 53 of the TFT 51 is connected to the power supply line (Vdd), and the drain electrode 54 of the TFT 51 is connected to the display unit 22.
  • the power supply line (Vdd) is, for example, 1.5 V for black display and 1.5 V for white display. It is better to supply power divided into two types.
  • the frame rate gradation method is suitable.
  • TFT44 and TFT51 are N-type TFTs, that is, TFTs using electrons as carriers, a-Si can be used for the semiconductor layer (48 in Fig. 2), and they are created in the same process. it can.
  • the power supply line (Vdd) does not necessarily have to be formed along the source line 43, but may be formed along the gate line 42 so that power can be supplied to each pixel. Get ready! /.
  • FIG. 5 shows a current driving circuit as in the above embodiment in which each pixel is provided with a switching means and potential control means.
  • an N-type switching TFT 44 is used as the switching means
  • a CMOS 61 composed of a P-type TFT and an N-type TFT is used as the potential control means.
  • the input end of the CMOS 61 is connected to the drain electrode 47 of the TFT 44, and the output end of the CMOS 61 is connected to the display unit 22.
  • the oxidation-reduction reaction can be performed at higher speed, and gradation display by the voltage gradation method can be performed by the potential control means.
  • CMOS 61 is used in the present embodiment, polysilicon is used for the TFT semiconductor layer (48 in FIG. 2). Therefore, there are effects such as power consumption can be suppressed and peripheral drive circuits can be integrally formed.
  • the semiconductor layer of TFT44 for switching (48 in Fig. 2) can also be made of polysilicon.
  • FIG. 6 shows a pixel provided with switching means and potential control means as in FIG.
  • the difference from Fig. 5 is that two P-type or N-type TF T71s are used as potential control means instead of CMOS! / (Shown for N-type in the figure! /) . Therefore, since it can be manufactured using a-Si without using polysilicon for the semiconductor layer of TFT, it has effects such as easy manufacturing. Since all of these TFTs formed for each pixel are N-type TFTs, it is only necessary to use a-Si for the semiconductor layer. Therefore, each pixel has a mixture of P-type and N-type TFTs. In comparison, an increase in the manufacturing process can be suppressed.
  • FIG. 7 shows a current driving circuit as in the above embodiment in which each pixel is provided with a switching means, a rewrite designation means, a potential control means, and a power shut-off means.
  • switching TFT44 is used as the switching means, and rewriting N-type TFT81 and capacitor 82 are used as the designation means, CMOS83 is used as the potential control means, and two N-type TFT84 are used as the power cutoff means.
  • the gate electrode of TFT81 is connected to the word line 85 running in parallel with the gate line 42, the source electrode of TFT81 is connected to the source line 43, the drain electrode of TFT81 is connected to the capacitor 82, and each gate of TFT84 is connected. Connect to the electrode.
  • the source electrode of TFT84 is connected to each of two power supply lines (Vdd) (Vss).
  • the drain electrode of TFT84 is connected to any of the P-type TFT and N-type TFT constituting CMOS83, the input terminal of CMOS83 is connected to the drain electrode 47 of TFT44, and the output terminal of CMOS83 is connected to the display unit 22. .
  • Vdd power supply lines
  • Vss power supply lines
  • FIG. 8 shows a configuration in which each pixel is provided with switching means, rewrite designation means, potential control means, and power shut-off means, as in FIG.
  • P-type or N-type TFT91 is used as the potential control means in CMOS83 (N-type is shown in the figure! /). Therefore, since it can be manufactured using a-Si without using polysilicon for the semiconductor layer of TFT, it has an effect such as easy manufacturing. Since these TFTs formed for each pixel are all N-type TFTs, it is only necessary to use a-Si for the semiconductor layer, so it is manufactured in comparison with the P-type and N-type TFTs in each pixel. Increase in processes Can be suppressed.
  • power supply lines (Vdd) and (Vss) are shown, and the ends of the power supply lines are connected to a power source.
  • the power supply capacity may decrease due to the wiring resistance as the power supply is further away. Therefore, the power supply capacity may be prevented from decreasing by connecting both ends of the power supply line to the power supply or connecting adjacent power supply lines to each other via one or more connection points. At that time, if the connection points are ladder-shaped, power can be supplied even if one of the power supply lines is disconnected.
  • the electrolyte layer contains a porous white scatterer together with the electrolyte.
  • the porous white scattering layer according to the present invention is preferably formed by applying and drying a water admixture of an aqueous polymer and a white pigment that is substantially insoluble in the electrolyte solvent.
  • Examples of the white pigment applicable in the present invention include titanium dioxide (anatase type or rutile type), barium sulfate, calcium carbonate, acid aluminum oxide, zinc oxide, acid magnesium oxide, and zinc hydroxide. , Magnesium hydroxide, magnesium phosphate, magnesium phosphate, alkaline earth metal salt, talc, kaolin, zeolite, acid clay, glass, organic compounds such as polyethylene, polystyrene, acrylic resin, ionomer, ethylene-acetic acid Bulle copolymer resin, benzoguanamine resin, urea formalin resin, melamine-formalin resin, polyamide resin, etc. are used alone or in combination, or with voids that change the refractive index in the particles. Also good.
  • titanium dioxide, zinc oxide, and zinc hydroxide are preferably used among the white particles. Also, surface treatment with inorganic oxide (Al 2 O, A10 (OH), SiO, etc.)
  • titanium dioxide titanium dioxide, which has been treated with organic substances such as trimethylolethane, triethanolamine acetate, and trimethylcyclosilane can be used.
  • aqueous polymer that is substantially insoluble in the electrolyte solvent according to the present invention include water-soluble polymers and polymers dispersed in an aqueous solvent.
  • the water-soluble compound according to the present invention includes proteins such as gelatin and gelatin derivatives, or cellulose derivatives, natural compounds such as polysaccharides such as starch, gum arabic, dextran, pullulan and carrageenan, and polybules. Synthetic polymer compounds such as alcohol, polypyrrole pyrrolidone, acrylamide polymer and derivatives thereof are listed. Examples of gelatin derivatives include acetylenic gelatin, phthalic gelatin, polyalkyl alcohol derivatives, terminal alkyl group-modified polyvinyl alcohol, terminal mercapto group modified polyvinyl alcohol, and cellulose derivatives as hydroxyethyl cellulose and hydroxypropyl cellulose. And carboxymethyl cellulose.
  • proteins such as gelatin and gelatin derivatives, or cellulose derivatives, natural compounds such as polysaccharides such as starch, gum arabic, dextran, pullulan and carrageenan, and polybules. Synthetic polymer compounds such as alcohol, polypyrrole
  • a homopolymer of styrene monomers or a copolymer of butyl monomers with each other or other butyl monomers (for example, sodium methacrylate, ammonium methacrylate, potassium acrylate, etc.) is also used. Two or more of these binders can be used in combination.
  • gelatin and gelatin derivatives, or polybutyl alcohol or derivatives thereof can be preferably used.
  • Polymers dispersed in an aqueous solvent include natural rubber latex and styrene butadiene rubber.
  • thermosetting resins in which a system resin, a vinyl series resin, or the like is dispersed in an aqueous solvent.
  • aqueous polyurethane resin described in JP-A-10-76621.
  • Substantially insoluble in the electrolyte solvent as used in the present invention is defined as a state where the dissolved amount per kg of the electrolyte solvent is Og or more and 10 g or less at a temperature of 20 ° C to 120 ° C. ,
  • the amount of dissolution can be determined by a known method such as a gravimetric method, a component quantification method using a liquid chromatogram or a gas chromatogram.
  • the aqueous mixture of the aqueous compound and the white pigment according to the present invention preferably has a form in which the white pigment is dispersed in water according to a known dispersion method.
  • the mixing ratio of the water-based compound Z white pigment is more preferably in the range of 0.3 to 0.05, more preferably 1 to 0.01 in terms of volume ratio.
  • the medium to which the water mixture of the aqueous compound and the white pigment according to the present invention is applied may be at any position as long as it is on the constituent element between the counter electrodes of the display element, but at least one of the counter electrodes is present. It is preferable to apply on one electrode surface.
  • a method for applying to a medium include, for example, a coating method, a liquid spraying method, a spraying method via a gas phase, a method of flying droplets using vibration of a piezoelectric element, such as a piezo ink jet head, Examples include bubble jet (registered trademark) type ink jet heads that eject droplets using thermal heads that use bumping, and spray methods that spray liquids by air pressure or liquid pressure.
  • the application method can be appropriately selected from known application methods. For example, air doctor 1 ⁇ co 1 ⁇ ta ' ⁇ , blur 1 ⁇ doc 1 ⁇ ta' ⁇ ", mouth , Doko 1 ⁇ "' ⁇ ”, Knife Co ⁇ ⁇ "Ta' ⁇ ”, Squeeze: ⁇ "Ta ' ⁇ ”
  • the water mixture of the water-based compound and the white pigment applied on the medium according to the present invention may be dried by any method as long as water can be evaporated. For example, heating from a heat source, a heating method using infrared light, a heating method using electromagnetic induction, and the like can be given. The water evaporation may be performed under reduced pressure.
  • Porous as used in the present invention means that a water mixture of the water-based compound and white pigment is applied on an electrode and dried to form a porous white scattering material, and then a silver white material is formed on the scattering material.
  • a water mixture of the water-based compound and white pigment is applied on an electrode and dried to form a porous white scattering material, and then a silver white material is formed on the scattering material.
  • an electrolyte solution containing a compound containing silver in the chemical structure it can be sandwiched between counter electrodes, and a potential difference can be applied between the counter electrodes to cause silver dissolution and precipitation. This refers to the state of penetration that can be moved between.
  • the aqueous compound is subjected to a curing reaction with a curing agent during or after the aqueous mixture described above is applied or dried.
  • hardeners used in the present invention include, for example, US Pat. No. 4,678,739, column 41, 4,791,042, JP-A-59-116655, Examples thereof include hardeners described in 62-245261, 61-18942, 61-249054, 61-245153, and JP-A-4-218044. More specifically, aldehyde hardeners (formaldehyde, etc.), aziridine hardeners, epoxy hardeners, vinylsulfone hardeners (N, ⁇ '-ethylene-bis (vinylsulfo-luacetamido) ethane, etc.
  • ⁇ -methylol hardeners dimethylol urea, etc.
  • boric acid metaboric acid
  • polymer hardeners compounds described in JP-A-62-234157.
  • gelatin it is preferable to use a vinyl sulfone type hardener or a chlorotriazine type hardener alone or in combination.
  • a boron-containing compound such as boric acid or metaboric acid.
  • These hardeners are used in an amount of 0.001 to lg, preferably 0.005 to 0.5 g, per lg of the aqueous compound. It is also possible to adjust the humidity during the heat treatment or curing reaction to increase the film strength.
  • the electrolyte is represented by at least one compound represented by the general formula (1) or (2) and the general formula (3) or the general formula (4). It is preferred to contain at least one of the following compounds.
  • L represents an oxygen atom or CH
  • R to R are each a hydrogen atom.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, and a pentadecyl group.
  • an aryl group for example, a phenyl group, a naphthyl group, etc.
  • a cycloalkyl group for example, a cyclopentyl group, a cyclohexyl group, etc.
  • alkoxyalkyl group for example, a 13-methoxyethyl group, ⁇ -methoxypropyl
  • alkoxy group such as a group include a methoxy group, an ethoxy group, a propyloxy group, a pentoxy group, a hexyloxy group, an octyloxy group, and a dodecyloxy group.
  • R and R are each a hydrogen atom, an alkyl group, an alkyl group, an alkyl group, an alkyl group,
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, and the like.
  • aryl group for example, a phenyl group, a naphthyl group, etc.
  • a cycloalkyl group for example, a cyclopentyl group, a cyclohexyl group, etc.
  • alkoxyalkyl group for example,! 3-methoxyethyl group, ⁇ -methoxypropyl group
  • alkoxy group examples include methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group and the like.
  • the compounds represented by the general formulas (1) and (2) according to the present invention are one type of electrolyte solvent.
  • the compound is further added as long as the object effects of the present invention are not impaired.
  • Another solvent can be used in combination.
  • the solvent that can be used in the present invention includes J. A. Riddick, W. B. Bunger, T. K. 3 ⁇ 4akano, Organic solvents, 4tn.
  • the electrolyte solvent may be a single type or a mixture of solvents.
  • a mixed solvent containing ethylene carbonate is preferred. Addition of ethylene carbonate The amount is preferably 10% by mass or more and 90% by mass or less of the total electrolyte solvent mass.
  • the electrolyte solvent is a mixed solvent having a mass ratio of propylene carbonate Z ethylene carbonate of 7Z3 to 3Z7. If the propylene carbonate ratio is larger than 7Z3, the ionic conductivity is inferior and the response speed decreases, and if it is smaller than 3Z7, the electrolyte tends to precipitate at low temperatures.
  • R and R each represents a substituted or unsubstituted hydrocarbon group
  • these include aromatic linear groups or branched groups. Further, these hydrocarbon groups may contain one or more nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, and halogen atoms. However, when a ring containing an S atom is formed, an aromatic group is not taken. Also, the atoms adjacent to S atoms of R and R are not S.
  • Examples of the group that can be substituted for the hydrocarbon group include an amino group, a gua-dino group, a quaternary ammonium group, a hydroxyl group, a halogen compound, a carboxylic acid group, a carboxylate group, and an amide.
  • silver or a compound containing silver is soluble by coexisting with a compound containing a chemical structural species that interacts with silver, such as a coordinate bond with silver or a weak covalent bond with silver. It is common to use a means for converting into a product.
  • the thioether group is also useful as a silver solvent, and has an effect on the coexisting compound, as the chemical structural species include a halogen atom, a mercapto group, a carboxyl group, and an imino group. It is characterized by high solubility in a small amount of solvent.
  • Exemplified Compound 3-2 is particularly preferable from the viewpoint that the objective effects of the present invention can be fully exhibited.
  • M represents a hydrogen atom, a metal atom or a quaternary ammonium.
  • Z represents a nitrogen-containing heterocyclic ring.
  • n represents an integer of 0 to 5
  • R represents a hydrogen atom, a halogen atom,
  • They may be connected to each other or may form a condensed ring.
  • Examples of the metal atom represented by M in the general formula (4) include Li, Na, K, Mg, Ca, Zn, Ag, and the like, and examples of the quaternary ammonia include, for example, NH, N (CH), N (CH),
  • Examples of the nitrogen-containing heterocycle represented by Z in the general formula (4) include a tetrazole ring, a triazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, an indole ring, A xazole ring, a benzoxazole ring, a benzimidazole ring, a benzothiazole ring, a benzoselenazole ring, a naphthoxazole ring and the like can be mentioned.
  • halogen atom represented by R in the general formula (4) examples include a fluorine atom, a chlorine atom,
  • alkyl group examples include, for example, methyl, ethyl, propinole, i-propyl, butyl, t-butinole, pentinole, cyclopentyl, hexinole, cyclohexyl, octyl, dodecyl, hydroxyethyl. , Methoxyethyl, trifluoromethyl, benzyl and the like.
  • aryl group examples include each group such as phenyl and naphthyl.
  • alkylcarbonamide group examples include acetylethylamino, propio-amino. Examples of each group include butyroylamino.
  • Examples of the arylcarbonamide group include benzoylamino, and examples of the alkylsulfonamide group include methanesulfonylamino group and ethanesulfonylamino group.
  • Arylsulfonamide group examples thereof include a benzenesulfo-lumino group, a toluenesulfo-lumino group, etc.
  • examples of the aryloxy group include phenoxy
  • examples of the alkylthio group include, for example, methylthio, ethylthio, butylthio and the like.
  • arylthio group examples include, for example, a furothio group, a tolylthio group, and the like
  • alkyl strength rubamoyl group examples include, for example, methylcarbamoyl, dimethylcarbamoyl, ethylcarbamoyl, jetylcarbamoyl, dibutylcarbamoyl, and the like.
  • aryl groups such as phenylcarbcarbyl, methylphenolcarbamoyl, ethylphenolcarbamoyl, benzylphenolcarbamoyl, and the like.
  • alkylsulfamoyl group examples include methylsulfamoyl, dimethylsulfamoyl, ethylsulfamoyl, jetylsulfamoyl, dibutylsulfamoyl, piperidylsulfamoyl, morpholylsulfamoyl, and the like.
  • arylsulfamoyl groups include, for example, phenylsulfamoyl, methylphenolsulfamoyl, ethylphenylsulfamoyl, benzylphenolsulfamoyl, and the like.
  • alkylsulfol groups include: , Methanesulfol group, ethanesulfol group, etc., and as arylsulfol group, for example, each group such as phenolsulfur, 4-chlorophenol, p-toluenesulfol, etc.
  • alkoxycarbonyl group examples include each group such as methoxycarbol, ethoxycarbol, and butoxycarbonyl.
  • aryloxycarbonyl group include phenoxycarbo ol.
  • carbocycle group include acetyl, propiool, butyroyl, and the like.
  • Examples of the allylcarbole group include a benzoyl group, an alkylbenzoyl group, and the like. Examples include acetyloxy, propio-loxy, butyroyloxy and the like, and examples of the heterocyclic group include oxazole ring, thiazole ring, triazole ring, selenazole ring, tetrazole ring, oxadiazole ring, thiadiazole ring, thiadiazole ring, and the like.
  • Gin ring, Triazine ring, Benzoxazole ring, Benz examples thereof include a thiazole ring, an indolenine ring, a benzselenazole ring, a naphthothiazole ring, a triazaindolizine ring, a diazaindolizine ring, and a tetraazaindolizine ring group. These substituents further include those having a substituent.
  • Exemplified Compounds 4-12 and 4-18 are particularly preferable from the viewpoint that the objective effects of the present invention can be fully exhibited.
  • the molar concentration of halogen ions or halogen atoms contained in the electrolyte is [X] (mole Zkg), and silver or silver contained in the electrolyte is contained in the chemical structure.
  • the total molar concentration of silver is [Ag] (mol Zkg)
  • the halogen atom in the present invention means an iodine atom, a chlorine atom, a bromine atom, or a fluorine atom.
  • [X] Z [Ag] is greater than 0.01, X— ⁇ X X is easily cross-acidified with black silver to dissolve black silver, reducing the memory performance.
  • the molar concentration of halogen atoms is preferably as low as possible relative to the molar concentration of silver. In the present invention, 0 ⁇ [X] / [Ag] ⁇ 0.001 is more preferable.
  • the total molar concentration of each halogen species is preferably [I] ⁇ [Br] ⁇ [CI] ⁇ [F] from the viewpoint of improving the memory property.
  • a known silver salt compound such as a silver complex with diacetates can be used.
  • the concentration of silver ions contained in the electrolyte according to the present invention is preferably 0.2 mol Zkg ⁇ [Ag] ⁇ 2.0 mol Zkg. If the silver ion concentration is less than 0.2 mol Zkg, the silver solution becomes dilute and the driving speed is delayed.If it exceeds 2 mol Zkg, the solubility deteriorates and precipitation tends to occur during low-temperature storage, which is disadvantageous. is there.
  • the electrolyte when the electrolyte is a liquid, the following compounds can be included in the electrolyte.
  • Tetraethylammonium perchlorate Tetrabutylammonium perchlorate, Houfutsui tetraethylammonium, tetrabutylammonium borofluoride, tetraptylammonium
  • the supporting electrolyte is a solid
  • the following compounds exhibiting electron conductivity and ion conductivity can be contained in the electrolyte.
  • F-containing compounds such as LaF, TlSn F and CeF
  • Li salts such as Li SO, Li SiO and Li PO, ZrO
  • Examples include compounds such as ICI, RbCuCI, LiN, LiNI, and LiNBr.
  • a gel electrolyte can also be used as the supporting electrolyte.
  • the oil gelling agents described in paragraph numbers [0057] to [0059] of JP-A-11 185836 can be used.
  • a thickener can be used for the electrolyte.
  • gelatin gum arabic, poly (bulal alcohol), hydroxyethyl cellulose, hydroxypropenoresenorelose, cenololose acetate, cenololose Acetate butyrate, poly (vinyl pyrrolidone), poly (alkylene glycol), casein, starch, poly (acrylic acid), poly (methyl methacrylic acid), poly (butyl chloride), poly (methacrylic acid), copoly (styrene) Anhydrous maleic acid), copoly (styrene monoacrylonitrile), copoly (styrene butadiene), poly (bullacetal) (eg, poly (bulformal) and poly (bulbutyral)), poly (ester), poly (urethane) ), Phenoxy resin, poly (salt) Julidene), poly (epoxides), poly (carbonates), poly (vinolea
  • thickeners may be used in combination of two or more. Further, compounds described on pages 71 to 75 of JP-A-64-13546 can be mentioned. Among these, compounds preferably used are polyhydric alcohols, polybulur pyrrolidones, hydroxypropyl celluloses, polyalkylene glycols from the viewpoint of compatibility with various additives and improved dispersion stability of white particles. It is. [0132] [Other additives]
  • auxiliary layers such as a protective layer, a filter layer, an antihalation layer, a crossover light cut layer, a knocking layer, and the like.
  • a constituent layer containing a hole transport material can be provided.
  • hole transporting materials include aromatic amines, triphenylene derivatives, oligothiophene compounds, polypyrroles, polyacetylene derivatives, polyphenylene vinylene derivatives, polychelene vinylene derivatives, polythiophene derivatives, polyarine phosphorus. Derivatives, polytoluidine derivatives, Cul, CuSCN, CuInSe, Cu (ln, Ga) Se, CuGaSe,
  • Examples of the substrate that can be used in the present invention include polyolefins such as polyethylene and polypropylene, polycarbonates, cellulose acetate, polyethylene terephthalate, polyethylene dinaphthalene dicarboxylate, polyethylene naphthalates, polyvinyl chloride, and polyimide.
  • Synthetic plastic films such as polyvinylacetals and polystyrene can also be preferably used. Syndiotactic polystyrenes are also preferred. These can be obtained, for example, by the methods described in JP-A-62-117708, JP-A-1-46912, and JP-A-1-178505.
  • a metal substrate such as stainless steel, a paper support such as noita paper and resin coated paper, and a support provided with a reflective layer on the plastic film, disclosed in JP-A-62-253195 (pages 29-31).
  • a support it has been cited those forces s described.
  • Those described in RD No. 17643, page 28, RD No. 18716, page 647, right column to 648 page, left column, and RD No. 307105, page 879 can also be preferably used.
  • those subjected to curling wrinkles by heat treatment of Tg or less as in US Pat. No. 4,141,735 can be used.
  • these support Surface treatment may be performed on the body surface for the purpose of improving the adhesion between the support and the other constituent layers.
  • glow discharge treatment ultraviolet irradiation treatment, corona treatment, and flame treatment can be used as the surface treatment.
  • the support described in pages 44 to 149 of publicly known technology No. 5 (issued by Aztec Co., Ltd. on March 22, 1991) can also be used.
  • a glass substrate or epoxy resin in which glass is kneaded can be used.
  • the counter electrodes is a metal electrode.
  • the metal electrode for example, known metal species such as platinum, gold, silver, copper, aluminum, zinc, nickel, titanium, bismuth, and alloys thereof can be used.
  • the metal electrode is advantageous for maintaining the reduced state of silver or silver, which has a silver or silver content of 80% or more, even though a metal having a work function close to the redox potential of silver in the electrolyte is preferred. It is also excellent in preventing electrode contamination.
  • an electrode manufacturing method an existing method such as a vapor deposition method, a printing method, an inkjet method, a spin coating method, or a CVD method can be used.
  • At least one of the counter electrodes is a transparent electrode.
  • the transparent electrode is not particularly limited as long as it is transparent and conducts electricity.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • Tin Oxide FTO
  • ITO Indium Tin Oxide
  • Zinc Oxide Platinum, Gold, Silver, Rhodium, Copper Chromium
  • carbon aluminum, silicon, amorphous silicon
  • BSO bismuth silicon oxide
  • an ITO film may be deposited on the substrate by a masking method using a sputtering method or the like, or after the entire ITO film is formed, it may be patterned by a photolithography method.
  • the surface resistance value is preferably 100 ⁇ well or less, more preferably 10 ⁇ well or less.
  • the thickness of the transparent electrode is not particularly limited, but is generally 0.1-20 / ⁇ ⁇ .
  • a sealant In the display element of the present invention, a sealant, a columnar structure, and spacer particles can be used as necessary.
  • the sealing agent is for sealing so as not to leak outside, and is also called a sealing agent.
  • Epoxy resin, urethane resin, acrylic resin, vinyl acetate resin, enthiol system Curing types such as thermosetting, photo-curing, moisture-curing, and anaerobic-curing can be used, such as resin, silicone-based resin, and modified polymer resin.
  • the columnar structure imparts strong self-holding property (strength) between the substrates, and is, for example, a columnar body, a square columnar body, and a columnar body arranged in a predetermined pattern such as a lattice arrangement.
  • Columnar structures such as elliptical columnar bodies and trapezoidal columnar bodies can be mentioned. Alternatively, stripes arranged at a predetermined interval may be used.
  • This columnar structure can maintain an appropriate interval between the substrates, such as an evenly spaced arrangement that is not a random array, an array in which the interval gradually changes, and an array in which a predetermined arrangement pattern is repeated at a constant period. It is preferable that the arrangement is considered so as not to disturb the display. If the ratio of the area occupied by the columnar structure in the display area of the display element is 1 to 40%, a practically sufficient strength as a display element can be obtained.
  • a spacer for uniformly holding the gap between the substrates.
  • the spacer include spheres made of resin or inorganic oxide.
  • a fixed spacer whose surface is coated with thermoplastic resin is also preferably used.
  • the spacers may be replaced with the spacers. Only the space holding member may be used.
  • the diameter of the spacer is equal to or less than the height of the columnar structure, preferably equal to the height. When the columnar structure is not formed, the spacer diameter corresponds to the thickness of the cell gap.
  • a sealant, a columnar structure, an electrode pattern, and the like can be formed by a screen printing method.
  • a screen printing method a screen on which a predetermined pattern is formed is placed on an electrode surface of a substrate, and a printing material (a composition for forming a columnar structure, such as a photocurable resin) is placed on the screen. Then, the squeegee is moved at a predetermined pressure, angle, and speed. Thereby, the printing material is transferred onto the substrate through the pattern of the screen. Next, the transferred material is heat-cured and dried.
  • the resin material is not limited to a photo-curable resin.
  • Thermosetting resin such as resin and acrylic resin can also be used.
  • Thermoplastic resins include polyvinyl chloride resin, polysalt vinylidene resin, polyvinyl acetate resin, polymethacrylate resin resin, polyacrylate resin resin, polystyrene resin, polyamide resin, polyethylene Resin, Polypropylene resin, Fluorine resin, Polyurethane resin, Polyacrylonitrile resin, Polybule ether resin, Polybule ketone resin, Polyether resin, Polyvinylpyrrolidone resin, Saturated polyester resin, Polycarbonate resin, Examples include chlorinated polyether resin. It is desirable to use the resin material in a paste form by dissolving the resin in a suitable solvent.
  • a spacer is provided on at least one of the substrates as desired, and the pair of substrates are overlapped with the electrode formation surfaces facing each other.
  • An empty cell is formed.
  • a pair of stacked substrates is heated while being pressed from both sides, whereby the display cells are obtained.
  • an electrolyte composition may be injected between substrates by a vacuum injection method or the like.
  • the electrolyte composition may be dropped on one substrate, and the liquid crystal composition may be sealed simultaneously with the bonding of the substrates.
  • the display element of the present invention it is preferable to perform a driving operation in which black silver is deposited by applying a voltage equal to or higher than the deposition overvoltage and black silver is continuously deposited by applying a voltage equal to or lower than the deposition overvoltage.
  • the writing energy can be reduced, the driving circuit load can be reduced, and the writing speed as a screen can be improved.
  • overvoltage exists in electrode reactions in the field of electrochemistry. For example, overvoltage is explained in detail on page 121 of “Introduction to Chemistry and Electrochemistry of Electron Transfer” (published by Asakura Shoten in 1996).
  • the display element of the present invention can also be regarded as an electrode reaction between the electrode and silver in the electrolyte, it can be easily understood that overvoltage exists even in silver dissolution precipitation. Since the magnitude of the overvoltage is governed by the exchange current density, it is possible to continue the black silver precipitation by applying a voltage below the precipitation overvoltage after the black silver is formed as in the present invention. It is estimated that the electron injection is easier with less extra electrical energy. [0147] [Apply product]
  • the display element of the present invention can be used in an electronic book field, an ID card-related field, a public-related field, a transportation-related field, a broadcasting-related field, a settlement-related field, a distribution logistics-related field, and the like.
  • door keys student ID cards, employee ID cards, various membership cards, convenience store cards, department store cards, vending machine cards, gas station cards, subway and railway cards, buses Cards, cash cards, credit cards, highway cards, driver's licenses, hospital examination cards, electronic medical records, health insurance cards, Basic Resident Registers, passports, electronic books, etc.
  • An ITO film (sheet resistance value 10 ⁇ / ⁇ ) was formed on a glass substrate according to a known method to obtain a transparent electrode (electrode 1).
  • electrode 2 A TFT element shown in FIG. 2 was prepared on a glass substrate according to a known method.
  • the electrode 21 was a 70 m square and the number of pixels was 300 pixels x 300 pixels.
  • an acidic solution is added in an aqueous solution containing 2% by mass of gelatin.
  • the electrode 3 was produced by drying for 1 hour.
  • Electrolyte 1 is applied onto electrode 3 and allowed to stand for 30 minutes so that electrolyte 1 is sufficiently soaked that bubbles do not enter the white scattering layer. Produced. The size of one pixel was set to 130 / zm square, and the deposition overvoltage was 1. OV.
  • Display element 2 was produced in the same manner as display element 1, except that dimethyl sulfoxide of display element 1 was changed to propylene carbonate. The deposition overvoltage was 0.9V.
  • Display element 3 was produced in the same manner as display element 1, except that the sodium iodide of display element 1 was changed to the exemplified compound (43). The deposition overvoltage was 0.8V.
  • Display element 3 was produced in the same manner as display element 1, except that the sodium iodide of display element 1 was changed to the exemplary compound (5-2). The deposition overvoltage was 0.7V.
  • Display element 5 was produced in the same manner as display element 4 except that dimethyl sulfoxide of display element 4 was changed to propylene carbonate. The deposition overvoltage was 0.7V.
  • Display element 6 was produced in the same manner as display element 5 except that the silver iodide of display element 5 was changed to silver p-toluenesulfonate. The deposition overvoltage was 0.6V.
  • Figure 3 of the present invention blackening-2V 800ms (white) (Display element driving method 6)
  • the 550 nm reflectance W1 of display element 1 in the white display state was determined.
  • the 550 nm reflectance W2 in the white display state was similarly obtained, and the reflectance ratio W2ZW1 was calculated.
  • the reflectance ratio was similarly calculated by changing the display element and the driving method. The closer W2ZW1 is to 1, the less the white reflectance changes.
  • Table 1 It can be seen that the configuration of the present invention is excellent. Further, when the display element driving methods 1 to 6 were applied during whitening, the same effects of the present invention as in Table 1 were obtained.

Abstract

 本発明は、簡便な部材構成、低電圧で駆動可能で、表示コントラストが高く、白反射率変動が低減された表示素子の駆動方法を提供する。この表示装置の駆動方法は、対向電極間に、銀、または銀を化学構造中に含む化合物を含有する電解質を有し、銀の溶解析出を生じさせるように該対向電極の駆動操作を行う表示素子の駆動方法であって、該駆動法が、1画素の書き込みまたは消去において、析出過電圧を超える順方向への電圧印加パルスと逆方向への電圧印加パルスを含むことを特徴とする。

Description

表示素子の駆動方法
技術分野
[0001] 本発明は、銀の溶解析出を利用した電気化学的な表示素子の駆動方法に関する 背景技術
[0002] 近年、パーソナルコンピューターの動作速度の向上、ネットワークインフラの普及、 データストレージの大容量化と低価格ィ匕に伴い、従来紙への印刷物で提供されたド キュメントゃ画像等の情報を、より簡便な電子情報として入手、電子情報を閲覧する 機会が益々増大している。
[0003] この様な電子情報の閲覧手段として、従来の液晶ディスプレイや CRT、また近年で は、有機 ELディスプレイ等の発光型が主として用いられているが、特に、電子情報が ドキュメント情報の場合、比較的長時間にわたってこの閲覧手段を注視する必要があ り、これらの行為は必ずしも人間に優しい手段とは言い難ぐ一般に発光型のディス プレイの欠点として、フリッカーで目が疲労する、持ち運びに不便、読む姿勢が制限 され、静止画面に視線を合わせる必要が生じる、長時間読むと消費電力が嵩む等が 知られている。
[0004] これらの欠点を補う表示手段として、外光を利用し、像保持の為に電力を消費しな V、 (メモリー性)反射型ディスプレイが知られて!/、る力 下記の理由で十分な性能を有 しているとは言い難い。
[0005] すなわち、反射型液晶等の偏光板を用いる方式は、反射率が約 40%と低く白表示 に難があり、また構成部材の作製に用いる製法の多くは簡便とは言い難い。また、ポ リマー分散型液晶は高い電圧を必要とし、また有機物同士の屈折率差を利用してい るため、得られる画像のコントラストが十分でない。また、ポリマーネットワーク型液晶 は電圧高いことと、メモリー性を向上させるために複雑な TFT回路が必要である等の 課題を抱えている。また、電気泳動法による表示素子は、 10V以上の高い電圧が必 要となり、電気泳動性粒子凝集による耐久性に懸念がある。また、エレクト口クロミック 表示素子は、 3V以下の低電圧で駆動が可能である力 黒色またはカラー色 (イエロ 一、マゼンタ、シアン、ブルー、グリーン、レッド等)の色品質が十分でなぐメモリー性 を確保するため表示セルに蒸着膜等の複雑な膜構成が必要などの懸念点がある。
[0006] これら上述の各方式の欠点を解消する表示方式として、金属または金属塩の溶解 析出を利用するエレクトロデポジション (以下 EDと略す)方式が知られている。 ED方 式は、 3V以下の低電圧で駆動が可能で、簡便なセル構成、黒と白のコントラストや 黒品質に優れる等の利点があり、様々な方法が開示されている (例えば、特許文献 1 〜3参照。)。
[0007] 本発明者は、上記各特許文献に開示されている技術を詳細に検討した結果、従来 技術では、表示素子の繰り返し駆動時に、電極より遊離して電解酸化できない黒ィ匕 銀が生成して白反射率に変動が生じ、白表示を暗くしてしまう課題があることが判明 した。
特許文献 1 :米国特許第 4, 240, 716号明細書
特許文献 2:特許第 3428603号公報
特許文献 3:特開 2003 - 241227号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、上記課題に鑑みなされたものであり、その目的は、簡便な部材構成、低 電圧で駆動可能で、表示コントラストが高ぐ白反射率変動が低減された表示素子の 駆動方法を提供することにある。
課題を解決するための手段
[0009] 1.対向電極間に、銀、または銀を化学構造中に含む化合物を含有する電解質を有 し、銀の溶解析出を生じさせるように該対向電極の駆動操作を行う表示素子の駆動 方法であって、該駆動法が、 1画素の書き込みまたは消去において、析出過電圧を 超える順方向への電圧印加パルスと逆方向への電圧印加パルスを含むことを特徴と する表示素子の駆動方法。
2.前記駆動方法が、式 (5)を満たすことを特徴とする 1に記載の表示素子の駆動方 法。 [0010] 式(5) 0. 0001 く Sw/Sb < 0. 2
Sb · '順方向への電圧印加パルスの電圧 (V) X印加時間(s)の積分値 Sw ·逆方向への電圧印加パルスの電圧 (V) X印加時間(s)の積分値
3.前記析出過電圧を超える順方向への電圧印カロパルスの最大電圧 Mv(V)力 式 ( 6)を満たすことを特徴とする 1又は 2に記載の表示素子の駆動方法。
[0011] 式(6) 析出過電圧(V) < Mv < 析出過電圧(V) + l. 5V
4.前記順方向への電圧印加パルスが析出過電圧以下の電圧パルスを含むことを特 徴とする 1〜3のいずれ力 1項に記載の表示素子の駆動方法。
5.前記対向電極の少なくとも一方の電極表面の表面粗さが、 JIS B0601で 0. 001 /z m以上、 2. 0 m以下であることを特徴とする 1〜4のいずれ力 1項に記載の表示 素子の駆動方法。
6.前記電解質が、下記一般式(1)または(2)で表される化合物の少なくとも 1種と、 下記一般式 (3)または (4)で表される化合物の少なくとも 1種とを含有することを特徴 とする 1〜5のいずれ力 1項に記載の表示素子の駆動方法。
[0012] [化 1] 一般式 (1 )
Figure imgf000005_0001
[0013] 〔式中、 Lは酸素原子または CHを表し、 R〜Rは各々水素原子、アルキル基、アル
2 1 4
ケニル基、ァリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基 を表す。〕
[0014] [化 2] 一般式 (2》
R5— O— C— O— R6
0 [0015] 〔式中、 R、 Rは各々水素原子、アルキル基、ァルケ-ル基、ァリール基、シクロアル
5 6
キル基、アルコキシアルキル基またはアルコキシ基を表す。〕
一般式 (3)
R S— R
7 8
〔式中、 R、 Rは各々置換または無置換の炭化水素基を表す。ただし、 S原子を含む
7 8
環を形成する場合には、芳香族基をとることはない。また、 R、 Rの S原子に隣接す
7 8
る原子は Sではない。〕
[0016] [化 3] 一般式 (4)
Figure imgf000006_0001
[0017] 〔式中、 Mは水素原子、金属原子または 4級アンモ-ゥムを表す。 Zは含窒素複素環 を表す。 nは 0〜5の整数を表し、 Rは水素原子、ハロゲン原子、アルキル基、ァリー
9
ル基、アルキルカルボンアミド基、ァリールカルボンアミド基、アルキルスルホンアミド 基、ァリールスルホンアミド基、アルコキシ基、ァリールォキシ基、アルキルチオ基、ァ リールチオ基、アルキル力ルバモイル基、ァリール力ルバモイル基、力ルバモイル基 、アルキルスルファモイル基、ァリールスルファモイル基、スルファモイル基、シァノ基 、アルキルスルホ-ル基、ァリールスルホ-ル基、アルコキシカルボ-ル基、ァリール ォキシカルボ-ル基、アルキルカルボ-ル基、ァリールカルボ-ル基、ァシルォキシ 基、カルボキシル基、カルボ-ル基、スルホ-ル基、アミノ基、ヒドロキシ基または複素 環基を表し、 nが 2以上の場合、それぞれの Rは同じであってもよぐ異なってもよく、
9
お互いに連結して縮合環を形成してもよい。〕
7.前記電解質に含まれるハロゲンイオンまたはハロゲン原子のモル濃度を [X] (モ ル Zkg)とし、前記電解質に含まれる銀または銀を化学構造中に含む化合物の銀の 総モル濃度を [Ag] (モル Zkg)としたとき、下式(1)で規定する条件を満たすことを 特徴とする 1〜6のいずれ力 1項に記載の表示素子の駆動方法。
[0018] 式(1)
Figure imgf000007_0001
8.前記表示素子の駆動方法がアクティブマトリックス駆動であることを特徴とする 1〜 7の 、ずれか 1項に記載の表示素子の駆動方法。
9.前記アクティブマトリックス駆動を行う画素駆動回路が各画素毎にスイッチング手 段を有することを特徴とする 8に記載の表示素子の駆動方法。
10.前記アクティブマトリックス駆動を行う画素駆動回路が各画素毎に書き換え指定 手段を有することを特徴とする 8又は 9に記載の表示素子の駆動方法。
11.前記アクティブマトリックス駆動を行う画素駆動回路が各画素毎に電位制御手段 を有することを特徴とする 8〜 10のいずれか 1項に記載の表示素子駆動方法。
12.前記アクティブマトリックス駆動を行う画素駆動回路が各画素毎に電源遮断手段 を有することを特徴とする 8〜11のいずれか 1項に記載の表示素子駆動方法。 発明の効果
[0019] 本発明によれば、簡便な部材構成、低電圧で駆動可能で、表示コントラストが高ぐ 白反射率変動が低減された表示素子の駆動方法を提供することができる。
図面の簡単な説明
[0020] [図 1]本発明の表示素子の基本的な構成を示す概略断面図である。
[図 2]本発明の ED表示素子のセルの構造を示す断面図である。
[図 3]本発明の ED表示素子を電圧駆動する TFTの基本的な回路図である。
[図 4]本発明の ED表示素子を電流駆動する TFTの回路図である。
[図 5]本発明の電位制御手段を用いて ED表示素子を電流駆動する TFTの回路図 である。
[図 6]図 5の電位制御手段に CMOSを用いた TFTの回路図である。
[図 7]本発明の書き換え指定手段、電位制御手段、電源遮断手段を用いて ED表示 素子を電流駆動する TFTの回路図である。
[図 8]図 7の電位制御手段に N型 TFTを用いた TFTの回路図である。
[図 9]ED表示素子を駆動する従来例 1の電圧波形である。
[図 10]ED表示素子を駆動する従来例 2の電圧波形である。
[図 11]ED表示素子を駆動する本発明 1の電圧波形の例である。 圆 12]ED表示素子を駆動する本発明 2の電圧波形の例である。
圆 13]ED表示素子を駆動する本発明 3の電圧波形の例である。
圆 14]ED表示素子を駆動する本発明 4の電圧波形の例である。
符号の説明
21 画素電極
22 ED表示部
24 じ om電極
34 TFT基板
42 ゲート線
43 ソース線
45 ゲート電極
46 ソース電極
47 ドレイン電極
48 半導体層
発明を実施するための最良の形態
[0022] 以下、本発明を実施するための最良の形態について詳細に説明する。
[0023] 本発明者は、上記課題に鑑み鋭意検討を行った結果、対向電極間に、銀、または 銀をィ匕学構造中に含む化合物を含有する電解質を有し、銀の溶解析出を生じさせる ように該対向電極の駆動操作を行う表示素子の駆動方法であって、該駆動法が、 1 画素の書き込みまたは消去において、析出過電圧を超える順方向への電圧印加パ ルスと逆方向への電圧印加パルスを含むことで、表示コントラストが高ぐ白反射率変 動が低減された表示素子を実現できることを見出し、本発明に至った次第である。
[0024] 以下、本発明の表示素子の詳細について説明する。
[0025] 本発明の表示素子は、対向電極間に、銀、または銀をィ匕学構造中に含む化合物を 含有する電解質層を有し、銀の溶解析出を生じさせるように対向電極の駆動操作を 行う ED方式の表示素子である。
[0026] 〔銀または銀をィ匕学構造中に含む化合物〕
本発明に係る銀または銀を化学構造中に含む化合物とは、例えば、酸化銀、硫ィ匕 銀、金属銀、銀コロイド粒子、ハロゲンィ匕銀、銀錯体化合物、銀イオン等の化合物の 総称であり、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、 ァ-オン性、カチオン性等の荷電状態種は、特に問わない。
[0027] 〔セルの基本構成〕
図 1は、本発明の表示素子の基本的な構成を示す概略断面図である。
[0028] 図 1において、本発明の表示装置は、一対の対向電極 21と 24の間に電解質 (電解 質層ともいう) 22を保持し、電源 23から対向電極 21に電圧または電流を印加するこ とにより、電解質 22中に含まれる銀の溶解反応、または析出反応を生じさせ、銀を含 む化合物の光の透過、吸収の光学的性質の違いを利用して表示状態を変更する表 示素子である。
[0029] 本発明の請求の範囲第 1項の表示素子駆動方法は、 1画素の書き込みまたは消去 において、析出過電圧を超える順方向への電圧印加パルスと逆方向への電圧印加 パルスを含むことを特徴とする。
[0030] 本発明の電解析出溶解型の表示素子においては、対向電極間ギャップの相違に よる電場、イオンの拡散または対流に伴う物質移動、電解質添加剤の作用、外部印 加電圧のゆらぎ等の理由から、電極近傍の空間電流密度の不均一性が一般的に生 じる。この不均一性を補償しないまま表示素子の繰り返し駆動を行なうと、局部的に 溶解または析出反応が過度に進行し、粗大銀の生成や、電極の劣化が生じやすい。 生成した粗大銀が電極表面力 遊離して電子注入が行なえなくなると、粗大銀が電 解質中に安定で存在し、白表示時の白反射率の低下を招く。本発明の特にメモリー 性に優れる表示素子の場合は深刻な課題となる。メモリー性が比較的低 、例えばビ ォロゲン系のエレクト口クロミック表示素子の場合は、前記過度の反応による生成物 は経時により自発的にリセット状態に戻り深刻な課題とはなりにくい。本発明の作用と しては、逆方向への電圧印加により、電流密度が高い突出した反応部位のみを逆反 応でキャンセルでき、 1駆動操作毎の反応均質性を向上させることにより、繰り返し駆 動時の粗大銀の生成が防止できる。
[0031] 図 9〜14は図 1の本発明の表示素子に印加する電圧波形の例を示している。
[0032] 図 1の Com電極 24を OVとして画素電極 21に図 9〜 14に示した電圧を印加する。 以下に電圧波形について説明する。
[0033] 従来例 1の電圧波形を図 9に示す。
[0034] tO期間は OV
tl期間は + 1. 2Vを 800ms
1画素の残り期間は 0V
tl期間の先頭で析出過電圧 Vdを越える電圧(1. 2V)までステップ状に立ち上げる。 800ms後に 0Vまで立ち下げる。 1画素の残り期間は 0Vを保つ。
[0035] 従来例 2の駆動電圧波形を図 10に示す。
[0036] tO期間は 0V
tl期間は + 0. 2Vを 200ms
t2期間は—0. IVを 50ms
t3期間は + 0. 25 Vを 200ms
t4期間は—0. IVを 50ms
t5期間は + 0. 3 Vを 200ms
t6期間は— 0. IVを 50ms
t7期間は + 0. 35 Vを 200ms
t8期間は— 0. IVを 50ms
t9期間は + 0. 4 Vを 200ms
tlO期間は—0. IVを 50ms
1画素の残り期間は 0V
最大振幅 V 力 SVdを越えない電圧で階段状の複数パルスを印加する。まず、 tl期 間の先頭で 0. 2Vまでパルス状に立ち上げる。 200ms後に—0. IVまで立ち下げる 。 50ms後に t3期間の先頭で 0. 25Vまで立ち上げる。以下、 +電圧、—電圧を交互 に印加する。 1画素の残り期間は 0Vを保つ。
[0037] 本発明 1の駆動電圧波形を図 11に示す。
[0038] tO期間は 0V
tl期間は + 1. 2Vを 700ms
t2期間は—0. 3 Vを 50ms 1画素の残り期間は ov
析出過電圧 Vdを越える電圧までステップ状に立ち上げ、 700ms後、—0. 3Vまで立 ち下げる。 50ms後に、 OVに戻す。
[0039] 本発明 2の駆動電圧波形を図 12に示す。
[0040] tO期間は OV
tl期間は + 1. 2Vを 50ms
t2期間は + Vdと 0Vとの中間の電圧を 800ms
tlO期間は—0. 3 Vを 50ms
1画素の残り期間は OV
析出過電圧 Vdを越える電圧(1. 2V)までステップ状に立ち上げ、 50ms後、 Vdと 0V の中間電圧まで立ち下げる。 800ms後、 -0. 3Vまで立ち下げる。 50ms後に 0Vに 戻す。
本発明 3の駆動電圧波形を図 13に示す。
to期間は 0V
tl期間は + 1. 2Vを 200ms
t2期間は 0. 3Vを 50ms
t3期間は + 1. 2Vを 200ms
t4期間は 0. 3Vを 50ms
t5期間は + 1. 2Vを 200ms
t6期間は 0. 3Vを 50ms
t7期間は + 1. 2Vを 200ms
t8期間は 0. 3Vを 50ms
1画素の残り期間は 0V
1. 2Vから—0. 3Vを振幅とするパルスを複数印加する。先ず、析出過電圧 Vdを越 える電圧(1. 2V)まで立ち上げ、 200ms後、—0. 3Vまで立ち下げる。 50ms後に再 び Vdを越える電圧(1. 2V)まで立ち上げる。 tl〜t2期間の動作を 3回繰り返す。最 後は 0Vに戻す。
[0043] 本発明 4の駆動電圧波形を図 14に示す。 [0044] tO期間は OV
tl期間は + 2. OVを 50ms
t2期間は—0. 3 Vを 20ms
t3期間は + 0. 5Vを 250ms
t4期間は—0. 3 Vを 20ms
t5期間は + 0. 5Vを 250ms
t6期間は— 0. 3 Vを 20ms
t7期間は + 0. 5Vを 250ms
t8期間は— 0. 3 Vを 20ms
1画素の残り期間は OV
析出過電圧 Vdを越える電圧(2. 0V)までステップ状に立ち上げ、 50ms後に— 0. 3 Vまで立ち下げる。 50ms後に、 Vdを越えない電圧(0. 5V)までステップ状に立ち上 げ、 250ms後に—0. 3Vまで立ち下げる。 20ms後に t3〜t4期間の動作を 2回繰り 返す。最後は 0Vに戻す。
[0045] 前記期間、電圧、パルス数は本発明を満たす範囲において、適宜変更することが できる。
[0046] また、本発明にお ヽては、駆動方法が、式 (5)を満たすことを特徴とする。
[0047] 式(5) 0. 0001 く Sw/Sb < 0. 2
Sb · '順方向への電圧印力!]パルスの電圧 (V) X印加時間(s)の積分値
Sw ·逆方向への電圧印加パルスの電圧 (V) X印加時間(s)の積分値
SwZSbが 0. 0001以下の場合は、書き換え時間は高速になる力 粗大銀を消去す るのに十分な電気量を与えることができず、また、 SwZSbが 0. 2以上の場合は、粗 大銀の消去は十分である力 本来画像として必要な部分も過大に消去してしまい、 書き込み時間の遅延を招 、てしまうため十分な効果が得られな 、。
[0048] また、本発明においては、析出過電圧を超える順方向への電圧印加パルスの最大 電圧 Mv (V)が、式 (6)を満たすことを特徴とする。
[0049] 式 (6) 析出過電圧 (V) < Mv(V) < 析出過電圧 (V) + l. 5V
Mvが析出過電圧以下では、十分な黒表示を得るのに長時間な書き込み時間が必 要であり、また、 Mvが析出過電圧 + 1. 5V以上では、電解質に共存する化合物の分 解が生じて素子の耐久性が劣化してしまう不具合点がある。
[0050] また、本発明においては、対向電極の少なくとも一方の電極表面の表面粗さが、 JI
S B0601で 0. OOl /z m以上、 2. 0 m以下であることを特徴とする。表面粗さ力^).
001 μ mに満たない場合は、元々電流密度分布の均一性が高いので本発明の効果 の度合いは小さいが、電極研磨等の電極作製に複雑なプロセスが必要となり、また、 表面粗さが 2. 0 mを上回る場合は、逆反応キャンセルの寄与が大きすぎ、書き込 み時間の遅延を招く不具合がある。
[0051] 図 2は、本発明の ED表示素子のセルの構造を示す断面図である。
[0052] 本発明の表示素子は TFT基板 34と透明電極 33と、両基板に挟まれた ED表示部
22から構成されている。
[0053] TFT基板 34には、複数のソース線 43と図示しない複数のゲート線(図 3の 42)がマ トリックス上に配線されている。ソース線 43とゲート線(図 3の 42)に囲まれた領域が 1 つの画素に相当する。各画素では、ゲート線(図 3の 42)に接続されたゲート電極 45 ,ソース線 43に接続されたソース電極 46, ドレイン電極 47と半導体層 48で 1つのス イッチング TFTが形成されて!、る。ドレイン電極 47はコンタクトホール 32で画素電極 21に接続されて!、る。画素電極 21はイオン伝導性白色散乱層 31からなる ED表示 部 22を介して Com電極 24に対向して!/、る。
[0054] 対向電極である画素電極 21と Com電極 24との距離は 1 μ m以上 40 μ m以下であ る。また、その面積比は 1画素の黒化像が 1に対して Com電極 24は 1. 3〜3. 5であ る。
[0055] ここで本発明の表示素子の動作について説明する。
[0056] 外部の駆動回路力 ゲート線(図 3の 42)を経由してゲート電極 45に電圧を印加す ると、半導体層 48はオン状態になり、ソース電極 46とドレイン電極 47間は導通する。 ソース電極 46にはソース線 43を経由して外部カゝら電圧 (例えば、 Vss)が印加されて V、るのでドレイン電極 47は Vss電圧になる。 Vss電圧はコンタクトホールを通じて画素 電極 21に印加される。一方、 Com電極 24をグランド電位に接続しておけば、画素電 極 21と Com電極 24の間には Vss電圧が力かるため、電極 24の ED表示部側に黒ィ匕 銀が析出し、黒表示が可能となる。
[0057] 一方、ゲート電極にグランド電位を印加すれば、半導体層 48はオフとなり、ソース 電極 46とドレイン電極 47間は非導通となり、ドレイン電極の電圧は下がり、画素電極 21と Com電極間には電圧は印加せず、 ED素子のメモリ性のため印加前の表示色 が維持される。
[0058] また、黒ィ匕銀析出時とは反対の極性の電圧印加により析出銀を溶解させ白表示に もどすことができる。
[0059] 〔駆動回路〕
本発明の ED表示素子を駆動する TFT回路について説明する。
[0060] 図 3は、基本的な回路構成である。
[0061] ED表示素子には各画素を選択するためのゲート線駆動回路とソース線駆動回路( 共に不図示)がそれぞれゲート線 42の端部側とソース線 43の端部側に設けられ、こ のゲート線駆動回路とソース線駆動回路を制御する信号制御部 (不図示)が設けら れている。信号制御部により制御されたゲート線駆動回路により、所定のゲート線 42 にゲート信号が印加される。ゲート信号はスイッチング用 TFT44のゲート電極 45に 印加され TFT44はオン状態になる。一方、所定のソース線 43に印加されたソース信 号が TFT44のソース電極 46力もドレイン電極 47を経て画素電極 21に加えられ、 Co m電極 24をグランドとすると ED表示部 22にソース信号電圧が印加され、電極 24の E D表示部側に黒ィ匕銀が析出し、黒表示が可能となる。
[0062] 図 4は、図 3の電圧駆動回路によるものと異なり、電流駆動回路により表示を行うも のである。スイッチング用の TFT44の他に、ソース線 43に沿って形成された電力供 給線 (Vdd)、表示部 22にこの電力供給線 (Vdd)より電流を供給するための TFT51 が各画素に形成されている。 TFT51のゲート電極 52は TFT44のドレイン電極 47に 、 TFT51のソース電極 53は電力供給線 (Vdd)に、 TFT51のドレイン電極 54は表 示部 22にそれぞれ接続する。
[0063] このような電流駆動回路により、図 3のものに比べ、表示部 22へより大きな電流を供 給することができ、酸ィ匕還元反応をより高速に行うことができる。なお本実施形態の場 合、電力供給線 (Vdd)には例えば黒表示用の 1. 5Vと白表示用の 1. 5Vのように 、 2種類に振り分けた電力供給を行うのがよい。また階調表示を行う場合には、フレー ムレート階調法が適して 、る。
[0064] なお、 TFT44と TFT51は共に N型の TFT、つまり電子をキャリアとする TFTからな るため、共に半導体層(図 2の 48)に a— Siを用いることができ、同一工程で作成でき る。また電力供給線 (Vdd)は必ずしもソース線 43に沿って形成されている必要はな ぐゲート線 42に沿って形成されていてもよぐ何れにしろ、各画素に電力を供給でき るようになって!/、ればよ!/、。
[0065] 図 5は、前記の実施形態のような電流駆動回路において、各画素にスイッチング手 段と、電位制御手段とを設けたものを示している。具体的には、スイッチング手段とし て N型のスイッチング用 TFT44を用い、電位制御手段として P型 TFTと N型 TFTか らなる CMOS61を用いている。 CMOS61の入力端は TFT44のドレイン電極 47と 接続し、 CMOS61の出力端は表示部 22へ接続している。このようにすることで、酸 化還元反応をより高速に行うことができ、電位制御手段により電圧階調法による階調 表示も行うことがでる。なお本実施形態において CMOS61を用いているため、 TFT の半導体層(図 2の 48)にポリシリコンを用いることになる。したがって、消費電力を抑 えたり、周辺の駆動回路を一体に形成することが可能となるなどの効果を有する。ま たスイッチング用 TFT44の半導体層(図 2の 48)もポリシリコンで作成することができ る。
[0066] 図 6は、図 5と同様に各画素にスイッチング手段と電位制御手段を設けたものを示し ている。図 5と異なる点は、電位制御手段として CMOSではなぐ P型或は N型の TF T71を 2つ用いて!/、る点である(図では N型のものを示して!/、る)。したがって TFTの 半導体層にポリシリコンを用いなくとも a— Siを用いて製造することができるので、製造 が容易などの効果を有する。なお画素ごとに形成されたこれら TFTが総て N型の TF Tであるため、共に半導体層に a— Siを用いればよいので、各画素に P型、 N型の TF Tが混在するものに比べ製造工程の増加を抑えることができる。
[0067] 図 7は、前記の実施形態のような電流駆動回路において、各画素にスイッチング手 段と、書き換え指定手段と、電位制御手段と、電源遮断手段とを設けたものを示して いる。具体的には、スイッチング手段としてスイッチング用 TFT44を用い、書き換え 指定手段として N型の TFT81とコンデンサ 82、電位制御手段として CMOS83、電 力遮断手段として 2つの N型 TFT84を用いている。 TFT81のゲート電極はゲート線 42と平行に走るワード線 85に接続し、 TFT81のソース電極はソース線 43に接続し、 TFT81のドレイン電極はコンデンサ 82に接続すると共に、 TFT84のそれぞれのゲ ート電極に接続する。 TFT84のソース電極は、 2本の電力供給線 (Vdd) (Vss)の何 れカと各々接続している。 TFT84のドレイン電極は、 CMOS83を構成する P型 TFT と N型 TFTの何れ力と各々接続し、 CMOS83の入力端は TFT44のドレイン電極 47 と接続し、 CMOS83の出力端は表示部 22へ接続する。これにより、ワード線 85とソ ース線 43により選択された各画素において、書き換えが必要力否かが指定され、書 き換えが必要と指定された画素においては、電力供給が行われ、書き換えが不要と 指定された画素にお 、ては、電力供給が行われな 、こととなる。
[0068] ED表示素子の場合、所謂表示のメモリ性を有して!/、るため、対応する画素の表示 が前回の選択時と同じであれば、そのままの表示を保持しておいた方が消費電力の 低減につながる。そこで各画素に書き換え指定手段と、電力遮断手段とを設けること で、前回選択時の表示状態と今回選択時の表示状態に変化がなければ、書き換え 指定手段により、書き換え不要と指示し、電力遮断手段において電力の供給を遮断 する。前回選択時の表示状態と今回選択時の表示状態に変化があれば、書き換え 指定手段により、書き換え必要と指示し、電力遮断手段において電力の供給を遮断 しない。このようにすれば、 ED表示素子における消費電力の低減を図ることができる 。なお本実施形態においても CMOS83を用いているため、 TFTの半導体層にポリ シリコンを用いることになる。
[0069] 図 8は、図 7と同様に各画素にスイッチング手段と、書き換え指定手段と、電位制御 手段と、電源遮断手段とを設けたものを示している。図 7と異なる点は、電位制御手 段として CMOS83ではなぐ P型或は N型の TFT91を用いている点である(図では N型のものを示して!/、る)。したがって TFTの半導体層にポリシリコンを用いなくとも a — Siを用いて製造することができるので、製造が容易などの効果を有する。なお画素 ごとに形成されたこれら TFTが総て N型の TFTであるため、共に半導体層に a— Siを 用いればよいので、各画素に P型、 N型の TFTが混在するものに比べ製造工程の増 加を抑えることができる。
[0070] なお、図 4から図 8に示した回路図において、電力供給線 (Vdd)、 (Vss)が示され ており、この電力供給線の端部は電源へと接続する。この場合電源力も遠ざかるほど 配線抵抗により電力供給能力が低下する恐れがある。そこで電力供給線の両端を電 源へ接続したり、隣り合う電力供給線同士を 1箇所以上の結線ポイントを介して互い に接続したりして、電力供給能力の低下を防止してもよい。その際結線ポイントを梯 子状にしておけば、電力供給線のうちの 1本が断線したとしても、電力供給が可能と なる。
[0071] 〔多孔質白色散乱層〕
本発明の表示素子においては電解質層に電解質と共に多孔質白色散乱物を含有 することちでさる。
[0072] 本発明に係る多孔質白色散乱層は、電解質溶媒に実質的に溶解しない水系高分 子と白色顔料との水混和物を塗布乾燥して形成されていることが好ましい。
[0073] 本発明で適用可能な白色顔料としては、例えば、二酸化チタン (アナターゼ型ある いはルチル型)、硫酸バリウム、炭酸カルシウム、酸ィ匕アルミニウム、酸化亜鉛、酸ィ匕 マグネシウムおよび水酸化亜鉛、水酸化マグネシウム、リン酸マグネシウム、リン酸水 素マグネシウム、アルカリ土類金属塩、タルク、カオリン、ゼォライト、酸性白土、ガラ ス、有機化合物としてポリエチレン、ポリスチレン、アクリル榭脂、アイオノマー、ェチレ ン—酢酸ビュル共重合榭脂、ベンゾグアナミン榭脂、尿素 ホルマリン榭脂、メラミン —ホルマリン榭脂、ポリアミド榭脂などが単体または複合混合で、または粒子中に屈 折率を変化させるボイドを有する状態で使用されてもよい。
[0074] 本発明では、上記白色粒子の中でも、二酸化チタン、酸化亜鉛、水酸化亜鉛が好 ましく用いられる。また、無機酸化物 (Al O、 A10 (OH)、 SiO等)で表面処理した
2 3 2
二酸化チタン、これらの表面処理に加えて、トリメチロールェタン、トリエタノールァミン 酢酸塩、トリメチルシクロシラン等の有機物処理を施した二酸ィ匕チタンを用いることが できる。
[0075] これらの白色粒子のうち、高温時の着色防止、屈折率に起因する素子の反射率の 観点から、酸ィ匕チタンまたは酸ィ匕亜鉛を用いることがより好ましい。 [0076] 本発明に係る電解質溶媒に実質的に溶解しない水系高分子としては、水溶性高分 子、水系溶媒に分散した高分子を挙げることができる。
[0077] 本発明に係る水溶性ィ匕合物としては、ゼラチン、ゼラチン誘導体等の蛋白質または セルロース誘導体、澱粉、アラビアゴム、デキストラン、プルラン、カラギーナン等の多 糖類のような天然化合物や、ポリビュルアルコール、ポリビュルピロリドン、アクリルアミ ド重合体やそれらの誘導体等の合成高分子化合物が挙げられる。ゼラチン誘導体と しては、ァセチルイ匕ゼラチン、フタルイ匕ゼラチン、ポリビュルアルコール誘導体として は、末端アルキル基変性ポリビニルアルコール、末端メルカプト基変性ポリビニルァ ルコール、セルロース誘導体としては、ヒドロキシェチルセルロース、ヒドロキシプロピ ルセルロース、カルボキシメチルセルロース等が挙げられる。更に、リサーチ 'ディスク ロージャ一及び特開昭 64— 13546号の(71)頁〜(75)頁に記載されたもの、また、 米国特許第 4, 960, 681号、特開昭 62— 245260号等に記載の高吸水性ポリマー 、すなわち COOMまたは SO M (Mは水素原子またはアルカリ金属)を有するビ
3
-ルモノマーの単独重合体またはこのビュルモノマー同士もしくは他のビュルモノマ 一(例えばメタクリル酸ナトリウム、メタクリル酸アンモ-ゥム、アクリル酸カリウム等)との 共重合体も使用される。これらのバインダーは 2種以上組み合わせて用いることもで きる。
[0078] 本発明にお 、ては、ゼラチン及びゼラチン誘導体、または、ポリビュルアルコールも しくはその誘導体を好ましく用いることができる。
[0079] 水系溶媒に分散した高分子としては、天然ゴムラテックス、スチレンブタジエンゴム
、ブタジエンゴム、二トリルゴム、クロロプレンゴム、イソプレンゴム等のラテックス類、ポ リイソシァネート系、エポキシ系、アクリル系、シリコーン系、ポリウレタン系、尿素系、 フエノール系、ホルムアルデヒド系、エポキシ ポリアミド系、メラミン系、アルキド系榭 脂、ビニル系榭脂等を水系溶媒に分散した熱硬化性榭脂を挙げることができる。これ らの高分子のうち、特開平 10— 76621号に記載の水系ポリウレタン榭脂を用いること が好ましい。
[0080] 本発明でいう電解質溶媒に実質的に溶解しないとは、 20°Cから 120°Cの温度に おいて、電解質溶媒 lkgあたりの溶解量が Og以上、 10g以下である状態と定義し、 重量測定法、液体クロマトグラムやガスクロマトグラムによる成分定量法等の公知の方 法により溶解量を求めることができる。
[0081] 本発明に係る水系化合物と白色顔料との水混和物は、公知の分散方法に従って 白色顔料が水中分散された形態が好ましい。水系化合物 Z白色顔料の混合比は、 容積比で 1〜0. 01が好ましぐより好ましくは、 0. 3〜0. 05の範囲である。
[0082] 本発明に係る水系化合物と白色顔料との水混和物を塗布する媒体は、表示素子 の対向電極間の構成要素上であればいずれの位置でもよいが、対向電極の少なくと も 1方の電極面上に付与することが好ましい。媒体への付与の方法としては、例えば 、塗布方式、液噴霧方式、気相を介する噴霧方式として、圧電素子の振動を利用し て液滴を飛翔させる方式、例えば、ピエゾ方式のインクジェットヘッドや、突沸を利用 したサーマルヘッドを用いて液滴を飛翔させるバブルジェット (登録商標)方式のイン クジェットヘッド、また空気圧や液圧により液を噴霧するスプレー方式等が挙げられる
[0083] 塗布方式としては、公知の塗布方式より適宜選択することができ、例えば、エアード クタ1 ~~コ1 ~~タ' ~~、ブレ1 ~~ドコ1 ~~タ' ~"、口、 ドコ1 ~" ' ~"、ナイフコ^ ~"タ' ~"、スクイズ: ~"タ' ~"
、含浸コ1 ~~ ' ~~ リノ 1 ~~スロ1 ~~ラ' ~"コ1 ~" ' ~"、卜ランスファ1 ~~口1 ~~ラ1 ~~コ1 ~~タ' ~~、力' ~~テ ンコ1 ~~タ. ~~、タブノレ口1 ~"ラ1 ~"コ1 ~"タ. ~"、スライドホッノ 1 ~~コ1 ~~タ. ~~ - クラビアコ1 ~~タ. ~~ - キスローノレコーター、ビードコーター、キャストコ一ター、スプレイコ一ター、カレンダー ーター、押し出しコーター等が挙げられる。
[0084] 本発明に係る媒体上に付与した水系化合物と白色顔料との水混和物の乾燥は、 水を蒸発できる方法であればいかなる方法であってもよい。例えば、熱源からの加熱 、赤外光を用いた加熱法、電磁誘導による加熱法等が挙げられる。また、水蒸発は 減圧下で行ってもよい。
[0085] 本発明でいう多孔質とは、前記水系化合物と白色顔料との水混和物を電極上に塗 布乾燥して多孔質の白色散乱物を形成した後、該散乱物上に、銀または銀をィ匕学 構造中に含む化合物を含有する電解質液を与えた後に対向電極で挟み込み、対向 電極間に電位差を与え、銀の溶解析出反応を生じさせることが可能で、イオン種が 電極間で移動可能な貫通状態のことを言う。 [0086] 本発明の表示素子では、上記説明した水混和物を塗布乾燥中または乾燥後に、 硬化剤により水系化合物の硬化反応を行うことが好ましい。
[0087] 本発明で用いられる硬膜剤の例としては、例えば、米国特許第 4, 678, 739号の 第 41欄、同第 4, 791, 042号、特開昭 59— 116655号、同 62— 245261号、同 61 — 18942号、同 61— 249054号、同 61— 245153号、特開平 4— 218044号等に 記載の硬膜剤が挙げられる。より具体的には、アルデヒド系硬膜剤(ホルムアルデヒド 等)、アジリジン系硬膜剤、エポキシ系硬膜剤、ビニルスルホン系硬膜剤 (N, Ν' - エチレン—ビス(ビニルスルホ-ルァセタミド)エタン等)、 Ν—メチロール系硬膜剤(ジ メチロール尿素等)、ほう酸、メタほう酸あるいは高分子硬膜剤(特開昭 62— 234157 号等に記載の化合物)が挙げられる。水系化合物としてゼラチンを用いる場合は、硬 膜剤の中で、ビニルスルホン型硬膜剤やクロロトリアジン型硬膜剤を単独または併用 して使用することが好ましい。また、ポリビュルアルコールを用いる場合はホウ酸ゃメ タホウ酸等の含ホウ素化合物の使用が好まし 、。
[0088] これらの硬膜剤は、水系化合物 lg当たり 0. 001〜lg、好ましくは 0. 005-0. 5g が用いられる。また、膜強度を上げるため熱処理や、硬化反応時の湿度調整を行うこ とも可能である。
[0089] 本発明の表示素子においては、電解質が、前記一般式(1)または(2)で表される 化合物の少なくとも 1種と、前記一般式 (3)または一般式 (4)で表される化合物の少 なくとも 1種とを含有することが好ま 、。
[0090] はじめに、本発明に係る一般式(1)で表される化合物について説明する。
[0091] 前記一般式(1)において、 Lは酸素原子または CHを表し、 R〜Rは各々水素原
2 1 4
子、アルキル基、ァルケ-ル基、ァリール基、シクロアルキル基、アルコキシアルキル 基またはアルコキシ基を表す。
[0092] アルキル基としては、例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 te rt ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリデシル基、テ トラデシル基、ペンタデシル基等、ァリール基としては、例えば、フエニル基、ナフチ ル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロへキシル基等 、アルコキシアルキル基として、例えば、 13ーメトキシェチル基、 γ—メトキシプロピル 基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルォキシ基、ぺ ンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ドデシルォキシ基等を挙げ ることがでさる。
[0093] 以下、本発明に係る一般式(1)で表される化合物の具体例を示すが、本発明では これら例示する化合物にのみ限定されるものではない。
[0094] [化 4]
― 1
Figure imgf000021_0001
[0095] 次 、で、本発明に係る一般式 (2)で表される化合物につ 、て説明する。
[0096] 前記一般式(2)にお!/、て、 R、 Rは各々水素原子、アルキル基、ァルケ-ル基、ァ
5 6
リール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基を表す。
[0097] アルキル基としては、例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 te rt ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリデシル基、テ トラデシル基、ペンタデシル基等、ァリール基としては、例えば、フエニル基、ナフチ ル基等、シクロアルキル基としては、例えば、シクロペンチル基、シクロへキシル基等 、アルコキシアルキル基として、例えば、 !3ーメトキシェチル基、 γ—メトキシプロピル 基等、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルォキシ基、ぺ ンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ドデシルォキシ基等を挙げ ることがでさる。
[0098] 以下、本発明に係る一般式 (2)で表される化合物の具体例を示すが、本発明では これら例示する化合物にのみ限定されるものではない。
[0099] [化 5] 2-1 2—2 2-3
z0
Figure imgf000022_0001
[0100] 上記例示した一般式(1)及び一般式(2)で表される化合物の中でも、特に、例示 化合物(1— 1)、(1— 2)、 (2— 3)が好ましい。
[0101] 本発明に係る一般式(1)、 (2)で表される化合物は電解質溶媒の 1種であるが、本 発明の表示素子においては、本発明の目的効果を損なわない範囲でさらに別の溶 媒を併せて用いることができる。具体的には、テトラメチル尿素、スルホラン、ジメチル スルホキシド、 1, 3 ジメチル一 2—イミダゾリジノン、 2— (Ν—メチル)一2 ピロリジ ノン、へキサメチルホスホルトリアミド、 Ν—メチルプロピオンアミド、 Ν, Ν ジメチルァ セトアミド、 Ν メチルァセトアミド、 Ν, Νジメチルホルムアミド、 Ν メチルホルムアミド 、ブチロニトリル、プロピオ二トリル、ァセトニトリル、ァセチルアセトン、 4—メチル—2 ペンタノン、 2—ブタノール、 1ーブタノール、 2—プロパノール、 1 プロパノール、 エタノール、メタノール、無水酢酸、酢酸ェチル、プロピオン酸ェチル、ジメトキシエタ ン、ジエトキシフラン、テトラヒドロフラン、エチレングリコール、ジエチレングリコール、 トリエチレングリコールモノブチルエーテル、水等が挙げられる。これらの溶媒の内、 凝固点が 20°C以下、かつ沸点が 120°C以上の溶媒を少なくとも 1種含むことが好 ましい。
[0102] さらに本発明で用いることのできる溶媒としては、 J. A. Riddick, W. B. Bunger, T. K. ¾akano, Organic solvents , 4tn
ed. , John Wiley & Sons (1986)、 Y. Marcus, 'Ion Solvation", John Wiley & Sons (1985)、 C. Reichardt, "Solvents and Solvent Effects i n Chemistry", 2nd ed. , VCH (1988)、 G. J. Janz, R. P. T. Tomkins, "No naqueous Electorlytes HandbooK , Vol. 1, Academic Press (1972)【こ 載の化合物を挙げることができる。
[0103] 本発明において、電解質溶媒は単一種であっても、溶媒の混合物であってもよい 力 エチレンカーボネートを含む混合溶媒が好ましい。エチレンカーボネートの添カロ 量は、全電解質溶媒質量の 10質量%以上、 90質量%以下が好ましい。特に好まし V、電解質溶媒は、プロピレンカーボネート Zエチレンカーボネートの質量比が 7Z3 〜3Z7の混合溶媒である。プロピレンカーボネート比が 7Z3より大きいとイオン伝導 性が劣り応答速度が低下し、 3Z7より小さ 、と低温時に電解質が析出しやすくなる。
[0104] 本発明の表示素子においては、上記一般式(1)または(2)で表される化合物と共 に、前記一般式(3)で表される化合物を用いることが好ま 、。
[0105] 前記一般式(3)にお 、て、 R、 Rは各々置換または無置換の炭化水素基を表し、
7 8
これらには芳香族の直鎖基または分岐基が含まれる。また、これらの炭化水素基で は、 1個以上の窒素原子、酸素原子、リン原子、硫黄原子、ハロゲン原子を含んでも 良い。ただし、 S原子を含む環を形成する場合には、芳香族基をとることはない。また 、 R、 Rの S原子に隣接する原子は Sではない。
7 8
[0106] 炭化水素基に置換可能な基としては、例えば、アミノ基、グァ -ジノ基、 4級アンモ -ゥム基、ヒドロキシル基、ハロゲンィ匕合物、カルボン酸基、カルボキシレート基、アミ ド基、スルフィン酸基、スルホン酸基、スルフェート基、ホスホン酸基、ホスフェート基、 ニトロ基、シァノ基等を挙げることができる。
[0107] 一般に、銀の溶解析出を生じさせるためには、電解質中で銀を可溶ィ匕することが必 要である。例えば、銀と配位結合を生じさたり、銀と弱い共有結合を生じさせるような、 銀と相互作用を示す化学構造種を含む化合物等と共存させて、銀または銀を含む 化合物を可溶ィ匕物に変換する手段を用いるのが一般的である。前記化学構造種とし て、ハロゲン原子、メルカプト基、カルボキシル基、イミノ基等が知られている力 本発 明においては、チォエーテル基も銀溶剤として、有用に作用し、共存化合物への影 響が少なぐ溶媒への溶解度が高い特徴がある。
[0108] 以下、本発明に係る一般式 (3)で表される化合物の具体例を示すが、本発明では これら例示する化合物にのみ限定されるものではない。
[0109] 3— 1 : CH SCH CH OH
3 2 2
3- 2 :HOCH CH SCH CH OH
2 2 2 2
3- 3 :HOCH CH SCH CH SCH CH OH
2 2 2 2 2 2
3-4 :HOCH CH SCH CH SCH CH SCH CH OH 3-5:HOCH CH SCH CH OCH CH OCH CH SCH CH OH
2 2 2 2 2 2 2 2 2 2
3-6:HOCH CH OCH CH SCH CH SCH CH OCH CH OH
2 2 2 2 2 2 2 2 2 2
3-7:H CSCH CH COOH
3 2 2
3-8:HOOCCH SCH COOH
2 2
3-9:HOOCCH CH SCH CH COOH
2 2 2 2
3-10:HOOCCH SCH CH SCH COOH
2 2 2 2
3-ll:HOOCCH SCH CH SCH CH SCH CH SCH COOH
2 2 2 2 2 2 2 2
3-12:HOOCCH CH SCH CH SCH CH(OH)CH SCH CH SCH CH C
2 2 2 2 2 2 2 2 2 2
OOH
3-13:HOOCCH CH SCH CH SCH CH (OH) CH (OH) CH SCH CH SC
2 2 2 2 2 2 2 2
H CH COOH
2 2
3— 14:H CSCH CH CH NH
3 2 2 2 2
3— 15:H NCH CH SCH CH NH
2 2 2 2 2 2
3— 16:H NCH CH SCH CH SCH CH NH
2 2 2 2 2 2 2 2
3-17:H CSCH CH CH(NH )COOH
3 2 2 2
3— 18:H NCH CH OCH CH SCH CH SCH CH OCH CH NH
2 2 2 2 2 2 2 2 2 2 2 2
3— 19:H NCH CH SCH CH OCH CH OCH CH SCH CH NH
2 2 2 2 2 2 2 2 2 2 2 2
3-20:H NCH CH SCH CH SCH CH SCH CH SCH CH NH
2 2 2 2 2 2 2 2 2 2 2 2
3-21: HOOC (NH ) CHCH CH SCH CH SCH CH CH(NH )COOH
2 2 2 2 2 2 2 2
3 - 22 : HOOC (NH ) CHCH SCH CH OCH CH OCH CH SCH CH(NH )
2 2 2 2 2 2 2 2 2 2
COOH
3 - 23 : HOOC (NH ) CHCH OCH CH SCH CH SCH CH OCH CH(NH )
2 2 2 2 2 2 2 2 2 2
COOH
3-24:HN( = 0)CCH SCH CH OCH CH OCH CH SCH C( = 0)NH
2 2 2 2 2 2 2 2 2 2
3-25:HN(0 = )CCH SCH CH SCH C(0 = )NH
2 2 2 2 2 2
3— 26 : H NHN (O = ) CCH SCH CH SCH C( = 0) NHNH
2 2 2 2 2 2
3-27:H C(0 = )NHCH CH SCH CH SCH CH NHC(0 = )CH
3 2 2 2 2 2 2 3
3— 28: H NO SCH CH SCH CH SCH CH SO NH
2 2 2 2 2 2 2 2 2 2 3- 29:: NaO SCH CH CH SCH CH SCH CH CH SO Na
3 2 2 2 2 2 2 2 2 3
3- 30: : H CSO NHCH CH SCH CH SCH CH NHO SCH
3 2 2 2 2 2 2 2 2 3
3- 31: : H N (NH) CSCH CH SC (NH) NH · 2HBr
2 2 2 2
3- 32: : H (NH)CSCH CH OCH CH OCH CH SC(NH)NH -2HC1
2 2 2 2 2 2 2 2
3- 33: : HN(NH) CNHCH CH SCH CH SCH CH NHC (NH)NH -2HBr
2 2 2 2 2 2 2 2
3- 34: : [(CH ) NCH CH SCH CH SCH CH N(CH ) ]2+-2Cl"
[0110] [化 6]
3-35 3-36
3
Figure imgf000025_0001
3-39 3-40
Figure imgf000025_0002
3-41 3-42
Figure imgf000025_0003
[0111] [化 7] 3-43 3-44
Figure imgf000026_0001
3-45
Figure imgf000026_0002
3-46 3—47
Figure imgf000026_0003
[0112] 上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点 から、特に例示化合物 3— 2が好ましい。
[0113] 次 、で、本発明に係る一般式 (4)で表される化合物につ 、て説明する。
[0114] 前記一般式 (4)にお 、て、 Mは水素原子、金属原子または 4級アンモニゥムを表す
。 Zは含窒素複素環を表す。 nは 0〜5の整数を表し、 Rは水素原子、ハロゲン原子、
9
アルキル基、ァリール基、アルキルカルボンアミド基、ァリールカルボンアミド基、アル キルスルホンアミド基、ァリールスルホンアミド基、アルコキシ基、ァリールォキシ基、 アルキルチオ基、ァリールチオ基、アルキル力ルバモイル基、ァリール力ルバモイル 基、力ルバモイル基、アルキルスルファモイル基、ァリールスルファモイル基、スルフ ァモイル基、シァノ基、アルキルスルホ-ル基、ァリールスルホ-ル基、アルコキシ力 ルボニル基、ァリールォキシカルボ-ル基、アルキルカルボ-ル基、ァリールカルボ -ル基、ァシルォキシ基、カルボキシル基、カルボ-ル基、スルホ-ル基、アミノ基、 ヒドロキシ基または複素環基を表し、 nが 2以上の場合、それぞれの Rは同じであって
9
もよぐ異なってもよぐお互いに連結して縮合環を形成してもよい。
[0115] 一般式(4)の Mで表される金属原子としては、例えば、 Li、 Na、 K、 Mg、 Ca、 Zn、 Ag等が挙げられ、 4級アンモ-ゥムとしては、例えば、 NH、 N (CH )、 N (C H ) 、
4 3 4 4 9 4
N (CH ) C H 、 N (CH ) C H 、 N (CH ) CH C H等が挙げられる。
3 3 12 25 3 3 16 33 3 3 2 6 5
[0116] 一般式 (4)の Zで表される含窒素複素環としては、例えば、テトラゾール環、トリァゾ ール環、イミダゾール環、ォキサジァゾール環、チアジアゾール環、インドール環、ォ キサゾール環、ベンゾォキサゾール環、ベンズイミダゾール環、ベンゾチアゾール環 、ベンゾセレナゾール環、ナフトォキサゾール環等が挙げられる。
一般式 (4)の Rで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、
9
臭素原子、ヨウ素原子等が挙げられ、アルキル基としては、例えば、メチル、ェチル、 プロピノレ、 i—プロピル、ブチル、 tーブチノレ、ペンチノレ、シクロペンチル、へキシノレ、 シクロへキシル、ォクチル、ドデシル、ヒドロキシェチル、メトキシェチル、トリフルォロメ チル、ベンジル等の各基が挙げられ、ァリール基としては、例えば、フエ-ル、ナフチ ル等の各基が挙げられ、アルキルカルボンアミド基としては、例えば、ァセチルァミノ 、プロピオ-ルアミ入ブチロイルァミノ等の各基が挙げられ、ァリールカルボンアミド 基としては、例えば、ベンゾィルァミノ等が挙げられ、アルキルスルホンアミド基として は、例えば、メタンスルホニルァミノ基、エタンスルホニルァミノ基等が挙げられ、ァリ 一ルスルホンアミド基としては、例えば、ベンゼンスルホ -ルァミノ基、トルエンスルホ -ルァミノ基等が挙げられ、ァリールォキシ基としては、例えば、フエノキシ等が挙げ られ、アルキルチオ基としては、例えば、メチルチオ、ェチルチオ、ブチルチオ等の 各基が挙げられ、ァリールチオ基としては、例えば、フ -ルチオ基、トリルチオ基等 が挙げられ、アルキル力ルバモイル基としては、例えば、メチルカルバモイル、ジメチ ルカルバモイル、ェチルカルバモイル、ジェチルカルバモイル、ジブチルカルバモイ ル、ピベリジルカルバモイル、モルホリルカルバモイル等の各基が挙げられ、ァリール 力ルバモイル基としては、例えば、フエ-ルカルバモイル、メチルフエ-ルカルバモイ ル、ェチルフエ-ルカルバモイル、ベンジルフエ-ルカルバモイル等の各基が挙げら れ、アルキルスルファモイル基としては、例えば、メチルスルファモイル、ジメチルスル ファモイル、ェチルスルファモイル、ジェチルスルファモイル、ジブチルスルファモイ ル、ピベリジルスルファモイル、モルホリルスルファモイル等の各基が挙げられ、ァリ 一ルスルファモイル基としては、例えば、フエ-ルスルファモイル、メチルフエ-ルスル ファモイル、ェチルフエ-ルスルファモイル、ベンジルフエ-ルスルファモイル等の各 基が挙げられ、アルキルスルホ-ル基としては、例えば、メタンスルホ-ル基、ェタン スルホ -ル基等が挙げられ、ァリールスルホ-ル基としては、例えば、フエ-ルスルホ -ル、 4 クロ口フエ-ルスルホ -ル、 p—トルエンスルホ-ル等の各基が挙げられ、 アルコキシカルボ-ル基としては、例えば、メトキシカルボ-ル、エトキシカルボ-ル、 ブトキシカルボニル等の各基が挙げられ、ァリールォキシカルボニル基としては、例 えばフエノキシカルボ-ル等が挙げられ、アルキルカルボ-ル基としては、例えば、ァ セチル、プロピオ-ル、ブチロイル等の各基が挙げられ、ァリールカルボ-ル基として は、例えば、ベンゾィル基、アルキルベンゾィル基等が挙げられ、ァシルォキシ基とし ては、例えば、ァセチルォキシ、プロピオ-ルォキシ、ブチロイルォキシ等の各基が 挙げられ、複素環基としては、例えば、ォキサゾール環、チアゾール環、トリァゾール 環、セレナゾール環、テトラゾール環、ォキサジァゾール環、チアジアゾール環、チア ジン環、トリアジン環、ベンズォキサゾール環、ベンズチアゾール環、インドレニン環、 ベンズセレナゾール環、ナフトチアゾール環、トリアザインドリジン環、ジァザインドリジ ン環、テトラァザインドリジン環基等が挙げられる。これらの置換基はさらに置換基を 有するものを含む。
[0118] 次に、一般式 (4)で表される化合物の好ましい具体例を示すが、本発明はこれらの 化合物に限定されるものではない。
[0119] [化 8]
Figure imgf000028_0001
[0120] [化 9]
4-9 4- 10 —11
4
Figure imgf000029_0001
4-15 4- 16 4-17
4
Figure imgf000029_0002
[0121] 上記例示した各化合物の中でも、本発明の目的効果をいかんなく発揮できる観点 から、特に例示化合物 4—12、 4—18が好ましい。
[0122] 本発明の表示素子においては、電解質に含まれるハロゲンイオンまたはハロゲン 原子のモル濃度を [X] (モル Zkg)とし、前記電解質に含まれる銀または銀を化学構 造中に含む化合物の銀の総モル濃度を [Ag] (モル Zkg)としたとき、下式(1)で規 定する条件を満たすことが好まし ヽ。
[0123] 式(1)
Figure imgf000029_0003
本発明でいうハロゲン原子とは、ヨウ素原子、塩素原子、臭素原子、フッ素原子のこ とをいう。 [X]Z[Ag]が 0. 01よりも大きい場合は、銀の酸化還元反応時に、 X—→X が生じ、 Xは黒ィ匕銀と容易にクロス酸ィ匕して黒ィ匕銀を溶解させ、メモリー性を低下さ
2
せる要因の 1つになるので、ハロゲン原子のモル濃度は銀のモル濃度に対してでき るだけ低い方が好ましい。本発明においては、 0≤[X] / [Ag]≤0. 001がより好ま しい。ハロゲンイオンを添加する場合、ハロゲン種については、メモリー性向上の観 点から、各ハロゲン種モル濃度総和が [I] < [Br] < [CI] < [F]であることが好ましい
[0124] [電解質 銀塩]
本発明の表示素子においてはヨウ化銀、塩化銀、臭化銀、酸化銀、硫化銀、クェン 酸銀、酢酸銀、ベヘン酸銀、 p—トルエンスルホン酸銀、メルカプト類との銀塩、ィミノ ジ酢酸類との銀錯体、等の公知の銀塩ィ匕合物を用いることができる。これらの中でノヽ ロゲンやカルボン酸や銀との配位性を有する窒素原子を有しない化合物を銀塩とし て用いるのが好ましぐ例えば、 p トルエンスルホン酸銀が好ましい。
[0125] 本発明に係る電解質に含まれる銀イオン濃度は、 0. 2モル Zkg≤ [Ag]≤2. 0モ ル Zkgが好ましい。銀イオン濃度が 0. 2モル Zkgより少ないと希薄な銀溶液となり駆 動速度が遅延し、 2モル Zkgよりも大きいと溶解性が劣化し、低温保存時に析出が 起きやすくなる傾向にあり不利である。
[0126] [電解質材料]
本発明の表示素子において、電解質が液体である場合には、以下の化合物を電 解質中に含むことができる。カリウム化合物として KC1、 KI、 KBr等、リチウム化合物と して LiBF、 LiCIO、 LiPF、 LiCF SO等、テトラアルキルアンモ-ゥム化合物として
4 4 6 3 3
過塩素酸テトラエチルアンモ-ゥム、過塩素酸テトラプチルアンモ-ゥム、ホウフツイ匕 テトラエチルアンモ-ゥム、ホウフッ化テトラブチルアンモ-ゥム、テトラプチルアンモ
-ゥムハライド等が挙げられる。また、特開 2003— 187881号公報の段落番号〔006 2〕〜〔0081〕に記載の溶融塩電解質組成物も好ましく用いることができる。さらに、 I" /\ Bv /Bv
3 3 キノン Zハイドロキノン等の酸ィ匕還元対になる化合物を用いること ができる。
[0127] また、支持電解質が固体である場合には、電子伝導性やイオン伝導性を示す以下 の化合物を電解質中に含むことができる。 [0128] パーフルォロスルフォン酸を含むフッ化ビュル系高分子、ポリチォフェン、ポリア-リ ン、ポリピロール、トリフエニルァミン類、ポリビュル力ルバゾール類、ポリメチルフエ- ルシラン類、 Cu S、 Ag S、 Cu Se、 AgCrSe等のカルコゲ -ド、 CaF、 PbF、 SrF
2 2 2 2 2 2 2
、 LaF、 TlSn F、 CeF等の含 F化合物、 Li SO、 Li SiO、 Li PO等の Li塩、 ZrO
3 2 5 3 2 4 4 4 3 4 2
、 CaO、 Cd O、 HfO、 Y20、 Nb O、 WO、: Bi O、 AgBr、 Agl、 CuCl、 CuBr、
2 3 2 3 2 5 3 2 3
CuBrゝ Cul、 Lil、 LiBrゝ LiCl、 LiAlCl、 LiAlF、 AgSBr、 C H NHAg I、 Rb Cu
4 4 5 5 5 6 4 1
I CI 、 Rb Cu CI 、 LiN、 Li NI、 Li NBr等の化合物が挙げられる。
6 7 13 3 7 10 5 2 6 3
[0129] また、支持電解質としてゲル状電解質を用いることもできる。電解質が非水系の場 合、特開平 11 185836号公報の段落番号〔0057〕〜〔0059〕に記載のオイルゲ ル化剤を用いことができる。
[0130] [電解質添加の増粘剤]
本発明の表示素子においては、電解質に増粘剤を用いることができ、例えば、ゼラ チン、アラビアゴム、ポリ(ビュルアルコール)、ヒドロキシェチルセルロース、ヒドロキシ プロピノレセノレロース、セノレロースアセテート、セノレロースアセテートブチレート、ポリ(ビ -ルピロリドン)、ポリ(アルキレングリコール)、カゼイン、デンプン、ポリ(アクリル酸)、 ポリ(メチルメタクリル酸)、ポリ(塩化ビュル)、ポリ(メタクリル酸)、コポリ(スチレン 無 水マレイン酸)、コポリ(スチレン一アクリロニトリル)、コポリ(スチレン ブタジエン)、 ポリ(ビュルァセタール)類(例えば、ポリ(ビュルホルマール)及びポリ(ビュルブチラ 一ル))、ポリ(エステル)類、ポリ(ウレタン)類、フエノキシ榭脂、ポリ (塩ィ匕ビユリデン) 、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(ビニノレアセテート)、セノレロースェ ステル類、ポリ(アミド)類、疎水性透明バインダーとして、ポリビニルブチラール、セル ロースアセテート、セノレロースアセテートブチレート、ポリエステノレ、ポリカーボネート、 ポリアクリル酸、ポリウレタン等が挙げられる。
[0131] これらの増粘剤は 2種以上を併用して用いてもよい。また、特開昭 64— 13546号 公報の 71〜75頁に記載の化合物を挙げることができる。これらの中で好ましく用いら れる化合物は、各種添加剤との相溶性と白色粒子の分散安定性向上の観点から、ポ リビュルアルコール類、ポリビュルピロリドン類、ヒドロキシプロピルセルロース類、ポリ アルキレングリコール類である。 [0132] [その他の添加剤]
本発明の表示素子の構成層には、保護層、フィルタ一層、ハレーション防止層、ク ロスオーバー光カット層、ノ ッキング層等の補助層を挙げることができ、これらの補助 層中には、各種の化学増感剤、貴金属増感剤、感光色素、強色増感剤、カプラー、 高沸点溶剤、カプリ防止剤、安定剤、現像抑制剤、漂白促進剤、定着促進剤、混色 防止剤、ホルマリンス力ベンジャー、色調剤、硬膜剤、界面活性剤、増粘剤、可塑剤 、スベリ剤、紫外線吸収剤、ィラジェーシヨン防止染料、フィルタ一光吸収染料、防ば い剤、ポリマーラテックス、重金属、帯電防止剤、マット剤等を、必要に応じて含有さ せることができる。
[0133] 上述したこれらの添加剤は、より詳しくは、リサーチディスクロージャー(以下、 RDと 略す)第 176卷 ItemZ 17643 ( 1978年 12月)、同 184卷 ItemZ 18431 ( 1979年 8 月)、同 187卷 ItemZ 18716 (1979年 11月)及び同 308卷 ItemZ308119 (1989 年 12月)に記載されている。
[0134] これら三つのリサーチ 'ディスクロージャーに示されている化合物種類と記載箇所を 以下に掲載した。
添カロ剤 RD17643 RD18716 RD308119
頁 分類 頁 分類 頁 分類
化学増感剤 23 III 648右上 96 III
増感色素 23 IV 648〜649 996〜8 IV
減感色素 23 IV 998 IV
染料 25〜26 VIII 649〜650 1003 VIII
現像促進剤 29 XXI 648右上
カプリ抑制剤 ·安定剤
24 IV 649右上 1006〜7 VI
増白剤 24 V 998 V
硬膜剤 26 X 651左 1004〜5 X
界面活性剤 26〜7 XI 650右 1005〜6 XI
帯電防止剤 27 XII 650右 1006〜7 XIII 可塑剤 27 XII 650右 1006 XII
スベリ剤 27 XII
マット剤 28 XVI 650右 1008へ -9 XVI
バインダー 26 XXII 1003' 〜4 IX
支持体 28 XVII 1009 XVII
[層構成]
本発明の表示素子の対向電極間の構成層について、更に説明する。
[0136] 本発明の表示素子に係る構成層として、正孔輸送材料を含む構成層を設けること ができる。正孔輸送材料として、例えば、芳香族ァミン類、トリフエ-レン誘導体類、ォ リゴチォフェン化合物、ポリピロール類、ポリアセチレン誘導体、ポリフエ-レンビ-レ ン誘導体、ポリチェ-レンビ-レン誘導体、ポリチォフェン誘導体、ポリア-リン誘導 体、ポリトルイジン誘導体、 Cul、 CuSCN、 CuInSe、 Cu (ln, Ga) Se、 CuGaSe、
2 2
Cu 0、 CuSゝ CuGaS、 CuInS、 CuAlSe、 GaPゝ NiO、 CoO、 FeO、 Bi O、 Mo
2 2 2 2 2 3
O、 Cr O等を挙げることができる。
2 2 3
[0137] [基板]
本発明で用いることのできる基板としては、例えば、ポリエチレンやポリプロピレン等 のポリオレフイン類、ポリカーボネート類、セルロースアセテート、ポリエチレンテレフタ レート、ポリエチレンジナフタレンジカルボキシラート、ポリエチレンナフタレート類、ポ リ塩化ビニル、ポリイミド、ポリビニルァセタール類、ポリスチレン等の合成プラスチック フィルムも好ましく使用できる。また、シンジォタクチック構造ポリスチレン類も好ましい 。これらは、例えば、特開昭 62— 117708号、特開平 1—46912号、同 1— 178505 号の各公報に記載されている方法により得ることができる。更に、ステンレス等の金属 製基盤や、ノ イタ紙、及びレジンコート紙等の紙支持体ならびに上記プラスチック フィルムに反射層を設けた支持体、特開昭 62— 253195号(29〜31頁)に支持体と して記載されたもの力 s挙げられる。 RDNo. 17643の 28頁、同 No. 18716の 647頁 右欄から 648頁左欄及び同 No. 307105の 879頁に記載されたものも好ましく使用 できる。これらの支持体には、米国特許第 4, 141, 735号のように Tg以下の熱処理 を施すことで、巻き癖をつきに《したものを用いることができる。また、これらの支持 体表面を支持体と他の構成層との接着の向上を目的に表面処理を行っても良い。本 発明では、グロ一放電処理、紫外線照射処理、コロナ処理、火炎処理を表面処理と して用いることができる。更に公知技術第 5号(1991年 3月 22日ァズテック有限会社 発行)の 44〜149頁に記載の支持体を用いることもできる。更に RDNo. 308119の 1009頁やプロダクト 'ライセシング 'インデックス、第 92卷 P108の「Supports」の項 に記載されているものが挙げられる。その他に、ガラス基板や、ガラスを練りこんだェ ポキシ榭脂を用いることができる。
[0138] [電極]
本発明の表示素子においては、対向電極の少なくとも 1種が金属電極であることが 好ましい。金属電極としては、例えば、白金、金、銀、銅、アルミニウム、亜鉛、 -ッケ ル、チタン、ビスマス、及びそれらの合金等の公知の金属種を用いることができる。金 属電極は、電解質中の銀の酸化還元電位に近い仕事関数を有する金属が好ましぐ 中でも銀または銀含有率 80%以上の銀電極力 銀の還元状態維持の為に有利であ り、また電極汚れ防止にも優れる。電極の作製方法は、蒸着法、印刷法、インクジェッ ト法、スピンコート法、 CVD法等の既存の方法を用いることができる。
[0139] また、本発明の表示素子は、対向電極の少なくとも 1種が透明電極であることが好 ましい。透明電極としては、透明で電気を通じるものであれば特に制限はない。例え ば、 Indium Tin Oxide (ITO :インジウム錫酸化物)、 Indium Zinc Oxide (IZO :インジウム亜鉛酸ィ匕物)、酸化スズ (FTO)、酸化インジウム、酸化亜鉛、白金、金、 銀、ロジウム、銅、クロム、炭素、アルミニウム、シリコン、アモルファスシリコン、 BSO ( Bismuth Silicon Oxide)等が挙げられる。電極をこのように形成するには、例え ば、基板上に ITO膜をスパッタリング法等でマスク蒸着するか、 ITO膜を全面形成し た後、フォトリソグラフィ法でパターユングすればよい。表面抵抗値としては、 100 ΩΖ 口以下が好ましぐ 10 ΩΖ口以下がより好ましい。透明電極の厚みは特に制限はな いが、 0. 1〜20 /ζ πιであるのが一般的である。
[0140] [表示素子のその他の構成要素]
本発明の表示素子には、必要に応じて、シール剤、柱状構造物、スぺーサ一粒子 を用いることができる。 [0141] シール剤は外に漏れないように封入するためのものであり封止剤とも呼ばれ、ェポ キシ榭脂、ウレタン系榭脂、アクリル系榭脂、酢酸ビニル系榭脂、ェンーチオール系 榭脂、シリコーン系榭脂、変性ポリマー榭脂等の、熱硬化型、光硬化型、湿気硬化型 、嫌気硬化型等の硬化タイプを用いることができる。
[0142] 柱状構造物は、基板間の強!ヽ自己保持性 (強度)を付与し、例えば、格子配列等 の所定のパターンに一定の間隔で配列された、円柱状体、四角柱状体、楕円柱状 体、台形柱状体等の柱状構造物を挙げることができる。また、所定間隔で配置された ストライプ状のものでもよい。この柱状構造物はランダムな配列ではなぐ等間隔な配 列、間隔が徐々に変化する配列、所定の配置パターンが一定の周期で繰り返される 配列等、基板の間隔を適切に保持でき、且つ、画像表示を妨げないように考慮され た配列であることが好ま 、。柱状構造物は表示素子の表示領域に占める面積の割 合が 1〜40%であれば、表示素子として実用上十分な強度が得られる。
[0143] 一対の基板間には、該基板間のギャップを均一に保持するためのスぺーサ一が設 けられていてもよい。このスぺーサ一としては、榭脂製または無機酸化物製の球体を 例示できる。また、表面に熱可塑性の榭脂がコーティングしてある固着スぺーサーも 好適に用いられる。基板間のギャップを均一に保持するために柱状構造物のみを設 けてもよいが、スぺーサー及び柱状構造物をいずれも設けてもよいし、柱状構造物に 代えて、スぺーサ一のみをスペース保持部材として使用してもよい。スぺーサ一の直 径は柱状構造物を形成する場合はその高さ以下、好ましくは当該高さに等しい。柱 状構造物を形成しない場合はスぺーサ一の直径がセルギャップの厚みに相当する。
[0144] [スクリーン印刷]
本発明においては、シール剤、柱状構造物、電極パターン等をスクリーン印刷法で 形成することもできる。スクリーン印刷法は、所定のパターンが形成されたスクリーンを 基板の電極面上に被せ、スクリーン上に印刷材料 (柱状構造物形成のための組成物 、例えば、光硬化性榭脂など)を載せる。そして、スキージを所定の圧力、角度、速度 で移動させる。これによつて、印刷材料がスクリーンのパターンを介して該基板上に 転写される。次に、転写された材料を加熱硬化、乾燥させる。スクリーン印刷法で柱 状構造物を形成する場合、榭脂材料は光硬化性榭脂に限られず、例えば、エポキシ 榭脂、アクリル榭脂等の熱硬化性榭脂ゃ熱可塑性榭脂も使用できる。熱可塑性榭脂 としては、ポリ塩化ビニル榭脂、ポリ塩ィ匕ビユリデン榭脂、ポリ酢酸ビニル榭脂、ポリメ タクリル酸エステル榭脂、ポリアクリル酸エステル榭脂、ポリスチレン榭脂、ポリアミド榭 脂、ポリエチレン榭脂、ポリプロピレン榭脂、フッ素榭脂、ポリウレタン榭脂、ポリアタリ ロニトリル榭脂、ポリビュルエーテル榭脂、ポリビュルケトン樹脂、ポリエーテル榭脂、 ポリビニルピロリドン榭脂、飽和ポリエステル榭脂、ポリカーボネート榭脂、塩素化ポリ エーテル榭脂等が挙げられる。榭脂材料は榭脂を適当な溶剤に溶解するなどしてぺ 一スト状にして用いることが望まし 、。
[0145] 以上のようにして柱状構造物等を基板上に形成した後は、所望によりスぺーサーを 少なくとも一方の基板上に付与し、一対の基板を電極形成面を対向させて重ね合わ せ、空セルを形成する。重ね合わせた一対の基板を両側カゝら加圧しながら加熱する ことにより、貼り合わせて、表示セルが得られる。表示素子とするには、基板間に電解 質組成物を真空注入法等によって注入すればよい。あるいは、基板を貼り合わせる 際に、一方の基板に電解質組成物を滴下しておき、基板の貼り合わせと同時に液晶 組成物を封入するようにしてもょ ヽ。
[0146] [表示素子駆動方法]
本発明の表示素子においては、析出過電圧以上の電圧印加で黒ィ匕銀を析出させ 、析出過電圧以下の電圧印加で黒ィ匕銀の析出を継続させる駆動操作を行なうことが 好ましい。この駆動操作を行なうことにより、書き込みエネルギーの低下や、駆動回路 負荷の低減や、画面としての書き込み速度を向上させることができる。一般に電気化 学分野の電極反応において過電圧が存在することは公知である。例えば、過電圧に ついては「電子移動の化学 電気化学入門」(1996年 朝倉書店刊)の 121ページ に詳しい解説がある。本発明の表示素子も電極と電解質中の銀との電極反応と見な すことができるので、銀溶解析出においても過電圧が存在することは容易に理解でき る。過電圧の大きさは交換電流密度が支配するので、本発明のように黒ィ匕銀が生成 した後に析出過電圧以下の電圧印加で黒ィ匕銀の析出を継続できるということは、黒 化銀表面の方が余分な電気エネルギーが少なく容易に電子注入が行なえると推定 される。 [0147] [商品適用]
本発明の表示素子は、電子書籍分野、 IDカード関連分野、公共関連分野、交通 関連分野、放送関連分野、決済関連分野、流通物流関連分野等の用いることができ る。具体的には、ドア用のキー、学生証、社員証、各種会員カード、コンビニストアー 用カード、デパート用カード、自動販売機用カード、ガソリンステーション用カード、地 下鉄や鉄道用のカード、バスカード、キャッシュカード、クレジットカード、ハイウェー力 ード、運転免許証、病院の診察カード、電子カルテ、健康保険証、住民基本台帳、 パスポート、電子ブック等が挙げられる。
実施例
[0148] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定される ものではない。
実施例 1〔表示素子 1の作製〕
(電解液 1の作製)
ジメチルスルホキシド 2. 5g中に、ヨウ化ナトリウム 90mg、ヨウ化銀 75mgを加えて完 全に溶解させた後にポリビュルピロリドン(平均分子量 15000)を 150mg加えて 120 °Cに加熱しながら 1時間攪拌し、電解液 1を得た。
(電極 1の作製)
ガラス基板状に ITO膜 (シート抵抗値 10 Ω /Π)を公知の方法に従って形成し透明 電極 (電極 1)を得た。(電極 2の作製)ガラス基板上に図 2に示す TFT素子を公知の 方法従って作製した。尚電極 21は 70 m角の方形とし、画素数は 300画素 X 300 画素とした。
(電極 3の作製)
周辺部を平均粒子径 40 μ mのガラス製球形ビーズを体積分率が 10%含むォレフィ ン系封止剤を縁取りした電極 2の上に、ゼラチン 2質量%を含む水溶液中に酸ィ匕チタ ン 20質量%を超音波分散機にて分散させた水混和液を、ワイヤーバーで 100 m 塗布し、その後 15°Cで 30分間乾燥して水を蒸発させた後、 45°C雰囲気中で 1時間 乾燥させて、電極 3作製した。
(表示素子 1の作製) 電極 3上に電解液 1を付与し、 30分間放置して電解液 1を白色散乱層に気泡が入ら ないように十分染み込ませた後、電極 1を被せて加熱押圧して、表示素子 1を作製し た。 1画素の大きさは 130 /z m角と設定し、析出過電圧は 1. OVであった。
(表示素子 2の作製)
表示素子 1のジメチルスルホキシドをプロピレンカーボネートに変更した以外は表示 素子 1と同様にして表示素子 2を作製した。析出過電圧は 0. 9Vであった。
(表示素子 3の作製)
表示素子 1のヨウ化ナトリウムを例示化合物 (4 3)に変更した以外は表示素子 1と同 様にして表示素子 3を作製した。析出過電圧は 0. 8Vであった。
(表示素子 4の作製)
表示素子 1のヨウ化ナトリウムを例示化合物(5— 2)に変更した以外は表示素子 1と同 様にして表示素子 3を作製した。析出過電圧は 0. 7Vであった。
(表示素子 5の作製)
表示素子 4のジメチルスルホキシドをプロピレンカーボネートに変更した以外は表示 素子 4と同様にして表示素子 5を作製した。析出過電圧は 0. 7Vであった。
(表示素子 6の作製)
表示素子 5のヨウ化銀を p トルエンスルホン酸銀に変更した以外は表示素子 5と同 様にして表示素子 6を作製した。析出過電圧は 0. 6Vであった。
(表示素子駆動法 1)
従来例 1図 (黒化) - > - 1. 2V 800ms (白ィ匕)
(表示素子駆動法 2)
従来例 2図 (黒化) - 2V 800ms (白ィ匕)
(表示素子駆動法 3)
本発明 1図 (黒化) - 2V 800ms (白ィ匕)
(表示素子駆動法 4)
本発明 2図 (黒化) - 2V 800ms (白ィ匕)
(表示素子駆動法 5)
本発明 3図 (黒化) - 2V 800ms (白ィ匕) (表示素子駆動法 6)
本発明 4図(黒化) → -1.2V 800ms (白化)
(評価 1)
ミノルタ製分光測色計 CM— 3700dを用 Vヽて表示素子 1の白表示状態の 550nm 反射率 W1を求めた。次に、表示素子 1を駆動方法 1で 1000回駆動させた後、同様 に白表示状態の 550nm反射率 W2を求め、反射率比 W2ZW1を算出した。表中に 示すように表示素子と駆動方法をかえ、同様に反射率比を算出した。 W2ZW1が 1 に近いほど、白反射率の変動が少ないことを示す。結果を表 1に示す。本発明の構 成が優れていることが分かる。また、表示素子駆動法 1〜6を白化時に適用したところ 表 1と同様の本発明効果が得られた。
[表 1] 試料 表 素子 駆動波形 反射率
番号 変動比
1 1 1 0.56 比較例
2 2 2 0.57 比較例
3 3 1 0.58 比較例
4 4 1 0.57 比較例
5 5 1 0.59 比較例
6 6 1 0.63 比較例
7 1 3 0.73 本発明
8 1 4 0.81 本発明
9 1 5 0,77 本発明
10 1 6 0.83 本発明
Π 2 6 0.85 本発明
12 3 6 0.84 本発明
13 4 6 0.86 本発明
14 5 6 0.95 本発明
15 6 6 0.98 本発明

Claims

請求の範囲
[1] 対向電極間に、銀、または銀を化学構造中に含む化合物を含有する電解質を有し、 銀の溶解析出を生じさせるように該対向電極の駆動操作を行う表示素子の駆動方法 であって、該駆動法が、 1画素の書き込みまたは消去において、析出過電圧を超える 順方向への電圧印加パルスと逆方向への電圧印加パルスを含むことを特徴とする表 示素子の駆動方法。
[2] 前記駆動方法が、式 (5)を満たすことを特徴とする請求の範囲第 1項に記載の表示 素子の駆動方法。
式(5) 0. 0001 く Sw/Sb < 0. 2
Sb · '順方向への電圧印加パルスの電圧 (V) X印加時間(s)の積分値 Sw ·逆方向への電圧印加パルスの電圧 (V) X印加時間(s)の積分値
[3] 前記析出過電圧を超える順方向への電圧印加パルスの最大電圧 Mv(V)力 式 (6) を満たすことを特徴とする請求の範囲第 1項又は第 2項に記載の表示素子の駆動方 法。
式 (6) 析出過電圧 (V) < Mv < 析出過電圧 (V) + l. 5V
[4] 前記順方向への電圧印加パルスが析出過電圧以下の電圧パルスを含むことを特徴 とする請求の範囲第 1項〜第 3項のいずれか 1項に記載の表示素子の駆動方法。
[5] 前記対向電極の少なくとも一方の電極表面の表面粗さが、 JIS B0601で 0. 001 m以上、 2. 0 m以下であることを特徴とする請求の範囲第 1項〜第 4項のいずれか
1項に記載の表示素子の駆動方法。
[6] 前記電解質が、下記一般式(1)または (2)で表される化合物の少なくとも 1種と、下 記一般式 (3)または (4)で表される化合物の少なくとも 1種とを含有することを特徴と する請求の範囲第 1項〜第 5項のいずれか 1項に記載の表示素子の駆動方法。
[化 1] 一般式 (1 )
Figure imgf000040_0001
〔式中、 Lは酸素原子または CHを表し、 R〜Rは各々水素原子、アルキル基、アル
2 1 4
ケニル基、ァリール基、シクロアルキル基、アルコキシアルキル基またはアルコキシ基 を表す。〕
[化 2]
—般式 (2>
s -0-C-0-R6
0
〔式中、 R、 Rは各々水素原子、アルキル基、ァルケ-ル基、ァリール基、シクロアル
5 6
キル基、アルコキシアルキル基またはアルコキシ基を表す。〕
一般式 (3)
R S— R
7 8
〔式中、 R、 Rは各々置換または無置換の炭化水素基を表す。ただし、 S原子を含む
7 8
環を形成する場合には、芳香族基をとることはない。また、 R、 R
7 8の S原子に隣接す る原子は Sではない。〕
[化 3] 一般式 (4)
MS Nノ、 (¾>n
〔式中、 Mは水素原子、金属原子または 4級アンモ-ゥムを表す。 Zは含窒素複素環 を表す。 nは 0〜5の整数を表し、 Rは水素原子、ハロゲン原子、アルキル基、ァリー
9
ル基、アルキルカルボンアミド基、ァリールカルボンアミド基、アルキルスルホンアミド 基、ァリールスルホンアミド基、アルコキシ基、ァリールォキシ基、アルキルチオ基、ァ リールチオ基、アルキル力ルバモイル基、ァリール力ルバモイル基、力ルバモイル基 、アルキルスルファモイル基、ァリールスルファモイル基、スルファモイル基、シァノ基 、アルキルスルホ-ル基、ァリールスルホ-ル基、アルコキシカルボ-ル基、ァリール ォキシカルボ-ル基、アルキルカルボ-ル基、ァリールカルボ-ル基、ァシルォキシ 基、カルボキシル基、カルボ-ル基、スルホ-ル基、アミノ基、ヒドロキシ基または複素 環基を表し、 nが 2以上の場合、それぞれの Rは同じであってもよぐ異なってもよく、
9
お互いに連結して縮合環を形成してもよい。〕
[7] 前記電解質に含まれるハロゲンイオンまたはハロゲン原子のモル濃度を [X] (モル/ kg)とし、前記電解質に含まれる銀または銀を化学構造中に含む化合物の銀の総モ ル濃度を [Ag] (モル Zkg)としたとき、下式 (1)で規定する条件を満たすことを特徴と する請求の範囲第 1項〜第 6項のいずれか 1項に記載の表示素子の駆動方法。 式 (1)
Figure imgf000042_0001
[8] 前記表示素子の駆動方法がアクティブマトリックス駆動であることを特徴とする請求の 範囲第 1項〜第 7項のいずれか 1項に記載の表示素子の駆動方法。
[9] 前記アクティブマトリックス駆動を行う画素駆動回路が各画素毎にスイッチング手段を 有することを特徴とする請求の範囲第 8項に記載の表示素子の駆動方法。
[10] 前記アクティブマトリックス駆動を行う画素駆動回路が各画素毎に書き換え指定手段 を有することを特徴とする請求の範囲第 8項又は第 9項に記載の表示素子の駆動方 法。
[11] 前記アクティブマトリックス駆動を行う画素駆動回路が各画素毎に電位制御手段を有 することを特徴とする請求の範囲第 8項〜第 10項のいずれか 1項に記載の表示素子 の駆動方法。
[12] 前記アクティブマトリックス駆動を行う画素駆動回路が各画素毎に電源遮断手段を有 することを特徴とする請求の範囲第 8項〜第 11項のいずれか 1項に記載の表示素子 の駆動方法。
PCT/JP2006/308269 2005-09-14 2006-04-20 表示素子の駆動方法 WO2007032117A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535379A JP4905353B2 (ja) 2005-09-14 2006-04-20 表示素子の駆動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-266664 2005-09-14
JP2005266664 2005-09-14

Publications (1)

Publication Number Publication Date
WO2007032117A1 true WO2007032117A1 (ja) 2007-03-22

Family

ID=37864720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308269 WO2007032117A1 (ja) 2005-09-14 2006-04-20 表示素子の駆動方法

Country Status (2)

Country Link
JP (1) JP4905353B2 (ja)
WO (1) WO2007032117A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063698A1 (ja) * 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. 画像表示装置および電気化学表示装置
WO2009096213A1 (ja) * 2008-01-30 2009-08-06 Konica Minolta Holdings, Inc. 表示装置
WO2009104489A1 (ja) * 2008-02-22 2009-08-27 コニカミノルタホールディングス株式会社 表示装置、表示装置の制御方法
JP2009217220A (ja) * 2008-03-13 2009-09-24 Konica Minolta Holdings Inc 電気化学表示装置
EP2124098A1 (en) * 2007-02-21 2009-11-25 Konica Minolta Holdings, Inc. Display element driving method
JP2010113053A (ja) * 2008-11-05 2010-05-20 Konica Minolta Holdings Inc 表示装置
WO2010067681A1 (ja) * 2008-12-08 2010-06-17 コニカミノルタホールディングス株式会社 電気化学表示素子の駆動方法
JP2010164751A (ja) * 2009-01-15 2010-07-29 Konica Minolta Holdings Inc 表示装置および表示装置の故障検出方法
JP2010217274A (ja) * 2009-03-13 2010-09-30 Konica Minolta Holdings Inc 電気化学表示素子の駆動方法、および表示装置
WO2010146957A1 (ja) * 2009-06-16 2010-12-23 コニカミノルタホールディングス株式会社 電気化学表示素子の駆動方法および情報表示装置
JP4780255B1 (ja) * 2010-03-24 2011-09-28 コニカミノルタホールディングス株式会社 電気化学表示素子
WO2021215122A1 (ja) * 2020-04-24 2021-10-28 パナソニック株式会社 調光素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273052A (en) * 1975-12-15 1977-06-18 Seiko Epson Corp Device for operating electrochromics indicator
JPH10274790A (ja) * 1997-01-31 1998-10-13 Sony Corp 光学装置及びその製造方法
WO2004049052A1 (ja) * 2002-11-28 2004-06-10 Konica Minolta Holdings, Inc. 表示素子、表示装置及び表示装置の製造方法
JP2005284148A (ja) * 2004-03-30 2005-10-13 Sony Corp 電気化学表示装置および電気化学表示方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273052A (en) * 1975-12-15 1977-06-18 Seiko Epson Corp Device for operating electrochromics indicator
JPH10274790A (ja) * 1997-01-31 1998-10-13 Sony Corp 光学装置及びその製造方法
WO2004049052A1 (ja) * 2002-11-28 2004-06-10 Konica Minolta Holdings, Inc. 表示素子、表示装置及び表示装置の製造方法
JP2005284148A (ja) * 2004-03-30 2005-10-13 Sony Corp 電気化学表示装置および電気化学表示方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124098A4 (en) * 2007-02-21 2011-07-27 Konica Minolta Holdings Inc METHOD FOR CONTROLLING OPTICAL ELEMENT
EP2124098A1 (en) * 2007-02-21 2009-11-25 Konica Minolta Holdings, Inc. Display element driving method
JP5083307B2 (ja) * 2007-02-21 2012-11-28 コニカミノルタホールディングス株式会社 表示素子の駆動方法
US8264423B2 (en) 2007-02-21 2012-09-11 Konica Minolta Holdings, Inc. Method of driving display element
WO2009063698A1 (ja) * 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. 画像表示装置および電気化学表示装置
WO2009096213A1 (ja) * 2008-01-30 2009-08-06 Konica Minolta Holdings, Inc. 表示装置
WO2009104489A1 (ja) * 2008-02-22 2009-08-27 コニカミノルタホールディングス株式会社 表示装置、表示装置の制御方法
JP5381720B2 (ja) * 2008-02-22 2014-01-08 コニカミノルタ株式会社 表示装置、表示装置の制御方法
JP2009217220A (ja) * 2008-03-13 2009-09-24 Konica Minolta Holdings Inc 電気化学表示装置
JP2010113053A (ja) * 2008-11-05 2010-05-20 Konica Minolta Holdings Inc 表示装置
JPWO2010067681A1 (ja) * 2008-12-08 2012-05-17 コニカミノルタホールディングス株式会社 電気化学表示素子の駆動方法
JP4557095B2 (ja) * 2008-12-08 2010-10-06 コニカミノルタホールディングス株式会社 電気化学表示素子の駆動方法
WO2010067681A1 (ja) * 2008-12-08 2010-06-17 コニカミノルタホールディングス株式会社 電気化学表示素子の駆動方法
US8686988B2 (en) 2008-12-08 2014-04-01 Konica Minolta Holdings, Inc. Method for driving electrochemical display element
JP2010164751A (ja) * 2009-01-15 2010-07-29 Konica Minolta Holdings Inc 表示装置および表示装置の故障検出方法
JP2010217274A (ja) * 2009-03-13 2010-09-30 Konica Minolta Holdings Inc 電気化学表示素子の駆動方法、および表示装置
JP4666118B2 (ja) * 2009-06-16 2011-04-06 コニカミノルタホールディングス株式会社 電気化学表示素子の駆動方法および情報表示装置
WO2010146957A1 (ja) * 2009-06-16 2010-12-23 コニカミノルタホールディングス株式会社 電気化学表示素子の駆動方法および情報表示装置
JP4780255B1 (ja) * 2010-03-24 2011-09-28 コニカミノルタホールディングス株式会社 電気化学表示素子
WO2011118373A1 (ja) * 2010-03-24 2011-09-29 コニカミノルタホールディングス株式会社 電気化学表示素子
WO2021215122A1 (ja) * 2020-04-24 2021-10-28 パナソニック株式会社 調光素子

Also Published As

Publication number Publication date
JPWO2007032117A1 (ja) 2009-03-19
JP4905353B2 (ja) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4905353B2 (ja) 表示素子の駆動方法
JP5083307B2 (ja) 表示素子の駆動方法
US7751111B2 (en) Display element
JP4569142B2 (ja) 表示素子
JP5003485B2 (ja) 表示素子
JP4876921B2 (ja) 表示素子
JP4968061B2 (ja) 表示素子及びその駆動方法
WO2007058063A1 (ja) 表示素子及びその製造方法
JP4968062B2 (ja) 表示素子
WO2007142025A1 (ja) 表示素子
JP4876544B2 (ja) 表示素子
JP2006227488A (ja) 表示素子
WO2007145100A1 (ja) 表示素子
JP2007199147A (ja) 表示素子
WO2008056510A1 (fr) Élément d&#39;affichage
JP4569425B2 (ja) 表示素子
JP2007025219A (ja) 表示素子
JP2007025218A (ja) 表示素子の作製方法
JP2007192980A (ja) 表示素子
JP2008026454A (ja) 表示素子
JP4946365B2 (ja) 表示素子及びその製造方法
JP2008185684A (ja) 表示素子
JP2008003279A (ja) 表示素子
JP2007264382A (ja) 多孔質白色散乱層の形成方法及び表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007535379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06732127

Country of ref document: EP

Kind code of ref document: A1