WO2007032066A1 - ロッド型固体レーザ装置 - Google Patents

ロッド型固体レーザ装置 Download PDF

Info

Publication number
WO2007032066A1
WO2007032066A1 PCT/JP2005/016933 JP2005016933W WO2007032066A1 WO 2007032066 A1 WO2007032066 A1 WO 2007032066A1 JP 2005016933 W JP2005016933 W JP 2005016933W WO 2007032066 A1 WO2007032066 A1 WO 2007032066A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
type solid
laser medium
state laser
aperture
Prior art date
Application number
PCT/JP2005/016933
Other languages
English (en)
French (fr)
Inventor
Shuichi Fujikawa
Takafumi Kawai
Junji Kano
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2006519002A priority Critical patent/JP4910698B2/ja
Priority to PCT/JP2005/016933 priority patent/WO2007032066A1/ja
Priority to US10/590,191 priority patent/US20080225922A1/en
Priority to DE112005000610T priority patent/DE112005000610B4/de
Publication of WO2007032066A1 publication Critical patent/WO2007032066A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/0805Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers

Definitions

  • the present invention relates to a rod-type solid-state laser device that optically excites a rod-type solid-state laser medium to generate laser light and makes the laser light incident on an optical fiber to transmit the laser light.
  • an opening for limiting the beam diameter is provided on the optical axis of the laser beam, and the opening is transferred to the incident end face of the optical fiber (for example, Patent Document 1). , See Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-78190 (paragraphs 0022 to 0025, FIG. 1)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-209307 (paragraph 0019, FIG. 1)
  • the strength (focal length) of the thermal lens of the rod-type laser medium changes according to the laser output.
  • the eigenmode selected in the optical resonator provided to extract the light changed, and the focusing angle of the laser light incident on the optical fiber also changed according to the laser output.
  • the convergence angle of the laser light is generally preserved inside the optical fiber, so the divergence angle of the laser light emitted from the optical fiber also varies with the laser output corresponding to the convergence angle.
  • the converging angle of the laser light incident on the optical fiber 8 and the divergence angle of the laser light emitted from the optical fiber 8 indicate the angle ⁇ in FIG. Since the laser beam emitted from the optical fiber can be considered to have a beam waist diameter substantially equal to the core diameter of the optical fiber, the change in the divergence angle is equal to the change in the light collecting property. Therefore, in the conventional rod-type solid-state laser device, the light collecting property of the laser light emitted from the optical fiber is changed by the laser output.
  • a means for preventing the influence of the pointing fluctuation of the laser beam is provided, so that the laser beam to the optical fiber is detected when the pointing fluctuation of the laser beam occurs.
  • the convergence angle of the light changes, the divergence angle of the laser light emitted from the optical fiber further increases, and the light condensing performance decreases.
  • the laser light leaks from the optical fiber and a connector that supports both ends of the optical fiber.
  • the protective layer covering the optical fiber is heated to cause damage.
  • the present invention has been made in order to solve the problem of power, and even when the strength of the thermal lens of the rod-type solid laser medium is changed, the laser light incident on the optical fiber is changed.
  • a rod-type solid-state laser device capable of supplying a stable laser beam by preventing the optical fiber from being damaged even when the beam pointing of the laser beam is fluctuated For the purpose of that.
  • the laser light output from the symmetrical solid-type optical resonator including the rod-type solid-state laser medium, the partial reflection mirror, and the total reflection mirror is re-used.
  • V at an arbitrary position between an end face of the rod-type solid laser medium disposed adjacent to the partial reflector and facing the partial reflector, and a midpoint of the rod-type solid laser medium.
  • a first reference plane is set
  • a second reference plane is set at a position optically symmetric with respect to the first reference plane and the partial reflection mirror
  • the relay lens has the first reference plane It is arranged at a position for transferring to the first image surface and transferring the second reference surface onto the coupling lens.
  • the coupling lens is disposed at a position where the first image plane is transferred to the end face of the optical fiber.
  • the present invention is configured as described above, even when the focal length of the thermal lens of the rod-type solid laser medium varies, the beam diameter and beam on the coupling lens and the optical fiber incident end face are changed. If the position can be maintained almost constant and beam transmission by a stable and reliable optical fiber becomes possible, the light collecting power of the laser beam emitted from the optical fiber can be kept almost constant.
  • FIG. 1 is a schematic diagram showing a configuration of a rod-type solid-state laser device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a rod-type solid laser medium according to Embodiment 1 of the present invention.
  • FIG. 3 is a configuration diagram showing a symmetric stable optical resonator configured by arranging a partial reflection mirror composed of a plane mirror and a total reflection mirror on the rod-type solid laser medium in Embodiment 1 of the present invention.
  • FIG. 4 is a configuration diagram showing an optically equivalent symmetric stable optical resonator in which the symmetric stable optical resonator according to the first embodiment of the present invention is represented using two equivalent thermal lenses.
  • FIG. 5 is a configuration diagram showing an optically equivalent symmetric stable optical resonator in which the symmetric stable optical resonator according to the first embodiment of the present invention is represented by using a single equivalent thermal lens.
  • FIG. 6 is an explanatory diagram showing a mode shape of a laser beam in the symmetrical stable optical resonator according to the first embodiment of the present invention, that is, a beam propagation state.
  • FIG. 7 A mode of laser light in an optically equivalent symmetric stable optical resonator in which the symmetric stable optical resonator according to Embodiment 1 of the present invention is represented by using a single equivalent thermal lens. It is explanatory drawing which shows a shape, ie, a beam propagation state.
  • FIG. 8 is a graph showing a beam propagation state in the optical system designed based on Embodiment 1 of the present invention.
  • the bea It is a graph which shows 1 m focusing angle.
  • FIG. 10 is a schematic diagram showing a configuration of a rod-type solid-state laser device according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic diagram showing a configuration of a rod-type solid-state laser apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 A schematic diagram showing a configuration of a rod-type solid-state laser apparatus according to Embodiment 4 of the present invention.
  • FIG. 13 is a schematic diagram showing a configuration of a rod-type solid-state laser apparatus according to Embodiment 5 of the present invention.
  • FIG. 14 is a schematic diagram showing a configuration of a rod-type solid-state laser apparatus according to Embodiment 6 of the present invention.
  • FIG. 15 is a diagram for explaining a focusing angle of laser light incident on an optical fiber.
  • FIG. 1 is a schematic diagram showing a configuration of a rod-type solid-state laser device according to Embodiment 1 of the present invention.
  • 1 is a rod-type solid laser medium
  • 101 is a midpoint of the rod-type solid laser medium
  • 102 is an end face of the rod-type solid laser medium 1.
  • the solid laser medium 1 uses a YAG (yttrium aluminum garnet) crystal doped with Nd (neodymium) as an active medium.
  • 2 is a partial reflection mirror
  • 3 is a total reflection mirror
  • 4 is a laser beam.
  • the partial reflection mirror 2 and the total reflection mirror 3 constitute an optical resonator, and laser light is extracted from the rod-type solid laser medium 1 optically pumped using a lamp light source or a semiconductor laser.
  • An aperture 5 is disposed on the optical path of the laser beam 4 and has an aperture diameter substantially equal to the diameter of the rod type solid laser medium 1.
  • 6 is a relay lens having a focal length fl
  • 7 is a coupling lens having a focal length f2.
  • 8 represents an optical fiber
  • 81 represents an incident end face of the optical fiber.
  • the laser beam 4 that has passed through the aperture 5 is transmitted to the coupling lens 7 by the relay lens 6.
  • the laser beam 4 transmitted to the coupling lens 7 is condensed by the coupling lens 7 and enters the optical fiber 8 from the incident end face 81 of the optical fiber. Indicated by a dotted line is 9 in the excited rod-type solid-state laser medium 1 and the partial reflector 2 side from the middle point 101.
  • An equivalent thermal lens that represents a thin lens that is optically equivalent to the thermal lens component in the region
  • 10 represents a first image plane of a first transfer optical system to be described later.
  • the partial reflection mirror 2 and the total reflection mirror 3 having a plane mirror force are used, and the partial reflection mirror 2 and the total reflection mirror are located at positions Lm from the end face of the rod-type solid laser medium 1, respectively.
  • a symmetrical stable resonator is formed. Therefore, when the rod-type solid laser medium 1 is ideally pumped uniformly, the beam mode in the optical resonator is guaranteed to be symmetric with respect to the midpoint 101 of the rod-type solid laser medium 1.
  • the aperture 5 having an opening diameter substantially equal to the diameter of the rod-type solid laser medium 1 is positioned at a distance L2 from the partial reflector 2 at a position at a distance L1 from the partial reflector 2.
  • the relay lens 6 having a focal length fl is positioned at a distance L3 + L 4 from the relay lens 6, and the coupling lens 7 having a focal length f2 is positioned at a distance L5 from the coupling lens 7. Is arranged.
  • the principal surface position of the equivalent thermal lens 9 is located at a distance Ltl from the end face 102 of the rod-type solid-state laser medium 1.
  • the relay lens 6 and the coupling lens 7 constitute a first transfer optical system.
  • the principal surface of the equivalent thermal lens 9 is placed on the first image plane 10 by the relay lens 6. Transfer to. Further, the first image surface 10 is transferred to the incident end surface 81 of the optical fiber 8 serving as the second image surface by the coupling lens 7. Therefore, if the refractive index of the rod-type solid laser medium 1 is n, the first transfer optical system can be expressed as (1) by converting the distance Ltl from the rod end surface 102 to the principal surface of the equivalent thermal lens 9 into an optical distance. ) And the relationship given by (2) are satisfied.
  • the relay lens 6 constitutes a second transfer optical system, and the aperture 5 is transferred onto the coupling lens 7 by the relay lens 6. Therefore, the second transfer optical system satisfies the relationship given by Eq. (3). f2 L2 L3 + L4
  • FIG. 2 91 shown by a dotted line is a thin lens optically equivalent to the thermal lens component on the right side of the figure from the middle point 101 in the rod-type solid laser medium 1, and 92 is the left side of the figure from the middle point 101.
  • the hatched area indicated by the length Lpump represents the excitation area irradiated with the pumping light from the discharge lamp or the semiconductor laser, and both end portions of the rod-type solid laser medium 1 indicated by the length Lend represent the non-excited area. .
  • an ideal state is assumed in which the excitation density inside the excitation region is uniform.
  • the thermal lens of the rod type solid laser medium 1 is generated by a temperature distribution formed in the cross section of the rod type laser medium 1 due to heat generation of the rod type laser medium 1 itself accompanying excitation.
  • a mountain-shaped temperature distribution is formed in the rod cross section, where the temperature is high at the center and low at the outer edge.
  • the refractive index of 1 is approximately proportional to temperature
  • the refractive index distribution generated by the temperature distribution exhibits a converging action. This convergence effect is a phenomenon called a thermal lens.
  • the thermal lens in the region on the right side from the midpoint 101 has a thickness of LpumpZ2.
  • This thick thermal lens is replaced with a thin lens having the same focal length and optically equivalent.
  • the main surface of the equivalent thermal lens 91 is located at the midpoint of the actual thermal lens having a thickness. Therefore, the distance from the end of the excitation area indicated by Ltp to the principal surface of the equivalent thermal lens is given by Eq. (4).
  • Ltp L P ⁇ P (4) Therefore, from the end face position B of the rod-type solid-state laser medium 1 to the main surface of the equivalent thermal lens 91
  • the distance Ltl is expressed by equation (5) using the rod length Lrod and the excitation region length Lpump. ⁇ , Lrod Lpump,.
  • reference numeral 92 denotes an equivalent thermal lens located on the left side with respect to the midpoint 101 of the rod-type solid-state laser medium 1.
  • FIG. 3 is a diagram showing a position where the partial reflecting mirror 2 and the total reflecting mirror 3 having a plane mirror force are located at a distance Lm from the end face of the rod-type solid laser medium 1 on the rod-type solid laser medium 1 shown in FIG. 1 shows a configuration of a symmetric stable optical resonator arranged in the figure.
  • FIG. 4 is an optically equivalent symmetric stable optical resonator in which the symmetrical stable optical resonator shown in FIG. 3 is represented by using equivalent thermal lenses 91 and 92. As shown in FIG. 4, in the symmetric stable optical resonator represented by the equivalent thermal lenses 91 and 92, both of the equivalent thermal lenses 91 and 92 are located at the midpoint of the symmetric stable optical resonator.
  • the equivalent thermal lenses 91 and 92 having the same focal length arranged at the same position are a single thin lens having a focal length half that of the equivalent thermal lenses 91 and 92. Can be replaced with 93.
  • the principal surface force of the thin-walled lens 93 shown in FIG. 5 is also the partial reflector 2, and the optical distance to the total reflector 3 is the equivalent of the principal surface force of the equivalent thermal lens 91 shown in FIG.
  • the principal surface force of the thermal lens 92 is given as a free space of LtlZn + Lm.
  • FIG. 6 shows the mode shape of the laser beam in the symmetric stable optical resonator shown in FIG. 3, that is, the beam propagation state.
  • reference numeral 41 denotes the beam outline of the laser beam in the symmetric stable optical resonator.
  • FIG. 7 shows the mode shape of the laser beam, that is, the beam in the symmetrical stable optical resonator shown by replacing the thermal lens of the rod-type solid laser medium 1 shown in FIG. 5 with an optically equivalent thin lens. Indicates the propagation state.
  • reference numeral 42 denotes a laser beam profile of the laser beam in the symmetrical stable optical resonator
  • 43 denotes a laser beam profile of the laser beam emitted from the partial reflection mirror 2.
  • the symmetrical stable optical resonators shown in Fig. 6 and Fig. 7 use a flat mirror for the partial reflector 2 and the total reflector 3.
  • the wavefront of the laser light on the mirror 2 and the total reflection mirror 3 is always flat.
  • a beam waist is always formed on the partial reflection mirror 2 and the total reflection mirror 3.
  • the midpoint O of the resonator is located at the midpoint 101 inside the rod-type solid-state laser medium 1. Therefore, the aperture diameter that limits the beam diameter in the symmetric stable optical resonator is substantially equal to the diameter of the rod-type solid laser medium 1.
  • the beam diameter of the laser beam expands to the full aperture due to transverse multimode oscillation. Therefore, even when the thermal lens intensity of the rod-type solid laser medium 1, that is, the focal length of the thermal lens changes, the beam diameter of the laser beam at the midpoint 101 of the rod-type solid laser medium 1 is It is maintained approximately equal to the diameter of medium 1. That is, in FIG. 7, the beam diameter d on the main surface of the thin lens 93 is maintained substantially equal to the diameter of the rod-type solid-state laser medium 1 even if the focal length of the thermal lens changes. .
  • the beam waist is always formed on the partial reflection mirror 2.
  • the beam is emitted from the partial reflector 2 as shown in Fig. 7, and the beam at the position O 'after propagation of the distance LtlZn + Lm.
  • the diameter d ′ is also equal to the beam diameter phase at the resonator midpoint.
  • the beam diameter at the position 0, which is the distance LtlZn + Lm after exiting from the partial reflector 2 is always substantially equal to the diameter of the rod-type solid laser medium 1 regardless of the state of the thermal lens of the rod-type solid laser medium 1.
  • the object plane of the first transfer optical system is referred to as a first reference plane.
  • the first reference plane it is desirable that the beam diameter of the laser beam is substantially constant regardless of the thermal lens of the rod type solid laser medium. Therefore, in the present embodiment, the main surface of the equivalent thermal lens 91 in the rod type solid laser medium 1 is set as the first reference surface.
  • the position of the first reference plane that is optically symmetric with the partial reflector 2 as the midpoint is called the second reference plane.
  • the second reference plane corresponds to the position 0, in FIG. 7, and is the position where the beam diameter of the laser light is maintained substantially equal to the beam diameter on the first reference plane.
  • the aperture 5 is arranged on the second reference plane. In the present embodiment shown in FIG. 1, the distance L1 between the partial reflection mirror 2 and the aperture 5 is arranged to be equal to LtlZn + Lm as described above. That is,
  • the beam diameter and beam position of the laser beam on the aperture 5 are always kept substantially equal to the diameter of the rod-type solid laser medium 1 regardless of the state of the thermal lens of the rod-type solid laser medium 1. .
  • the first transfer optical system is used to transfer the main surface of the equivalent thermal lens 91 in the rod-type solid laser medium 1 onto the incident end surface 81 of the optical fiber 8.
  • the beam diameter is maintained substantially equal to the diameter of the rod-type solid laser medium 1 regardless of the state of the thermal lens, and the rod-type Since it is guaranteed that the laser beam exists inside the solid-state laser medium 1, the beam diameter and beam position on the incident end face 81 of the optical fiber 8 that is the image plane of the first transfer optical system are also rod-shaped. Regardless of the state of the thermal lens of the solid-state laser medium, it can always be kept constant.
  • the value of the transfer magnification Ml of the first transfer optical system may be appropriately determined according to the diameter of the rod-type solid laser medium 1 to be used and the core diameter of the optical fiber 8.
  • the transfer magnification Ml of the first transfer optical system is 0.072.
  • An aperture 5 having an opening diameter substantially equal to the diameter is disposed.
  • the aperture 5 is transferred onto the coupling lens 7 by using the second transfer optical system. For this reason, Regardless of the state of the thermal lens of the rod-type solid laser medium 1, the beam diameter on the aperture 5 is kept substantially equal to the diameter of the rod-type solid laser medium 1. Therefore, if there is no pointing variation in the laser light 4 emitted from the partial reflection mirror 2, the beam diameter of the laser light transmitted through the aperture 5 is almost constant regardless of the presence or absence of the aperture 5.
  • the beam diameter and beam position on the coupling lens 7 which is the image plane of the second transfer optical system can be guaranteed regardless of the state of the thermal lens of the rod-type solid laser medium.
  • the laser beam 4 positioned outside the aperture 5 aperture cannot pass through the aperture 5 and therefore passes through the aperture 5.
  • the laser light is always present within the aperture 5 aperture regardless of the pointing fluctuation.
  • the irradiation range of the laser light on the coupling lens 7 which is the image plane of the second transfer optical system is always included in the irradiation range when there is no pointing fluctuation. Therefore, the focusing angle of the laser light incident on the optical fiber 8 is also maintained at a substantially constant value.
  • the configuration is shown in which the aperture is arranged on the object surface of the second transfer optical system, which is the second reference surface, and the position of the beam is physically defined.
  • the beam diameter on the coupling lens 7 is substantially constant irrespective of the thermal lens regardless of the presence or absence of the aperture.
  • the pointing fluctuation is small and the optical fiber is small. If the fluctuation of the beam focusing angle on the bar is within an allowable range, the aperture may not be arranged on the object surface of the second transfer optical system. The same applies to the following embodiments.
  • the value of the transfer magnification M2 of the second transfer optical system may be appropriately determined according to the desired beam focusing angle to the optical fiber 8. For example, if the distance L5 from the coupling lens 7 to the fiber incident end face 81 is 50 mm and the focusing angle when the optical fiber 8 is incident is 0.220 rad, the focusing angle can be increased by setting the incident beam diameter to the coupling lens 8 to 10 mm. Can be approximately 0.20 rad.
  • the diameter d of the rod-type solid-state laser medium is 5 mm
  • the second reference plane Since the aperture diameter of the beam diameter d or aperture 5 at 5 mm is 5 mm
  • the transfer magnification M2 value of the second transfer optical system may be set to 2.0. This relationship is given by Eq. (9) when the half angle of the focusing angle is 0, as shown in Fig. 15.
  • the appropriate positions of the relay lens and the coupling lens can be calculated. For example, if the configuration of the resonator is known, Ltl, n, Lm, and L1 are known constants. If the size of the laser oscillator is fixed, L is also a known constant. Further, since the diameter of the solid laser medium and the diameter of the optical fiber are usually known, the transfer magnification Ml of the first transfer optical system is also a known constant. Therefore, in this case, there are seven variables, L2, L3, L4, L5, fl, f2, and M2, and the variable can be determined from the above seven equations.
  • each lens can be determined by giving freedom to the configuration of the resonator and using Ltl and Lm as variables.
  • FIG. 8 is a graph showing beam propagation conditions in the optical system designed based on the present embodiment.
  • the vertical axis represents the beam diameter
  • the horizontal axis represents the distance from the end face 102 of the rod-type solid laser medium 1.
  • 201 indicates a beam diameter at a low output, that is, a beam diameter at a relatively long focal length of the thermal lens
  • 202 indicates a beam diameter at a medium output, that is, at a medium focal length of the thermal lens.
  • a curve 203 is a curve representing the beam diameter at high output, that is, in a state where the focal length of the thermal lens is relatively short. The design example shown in Fig.
  • the beam diameter at the aperture 5 does not depend on the thermal lens, but is a rod-type solid laser. It can be seen that the diameter of medium 1 is approximately equal to 4 mm in diameter. Also on the first image plane 10 and the coupling lens 7 of the first transfer optical system, the beam diameter is constant regardless of the state of the thermal lens. Become. Since the incident beam diameter on the coupling lens 7 is always a constant value regardless of the thermal lens, the focusing angle of the laser light incident on the optical fiber 8 is also maintained at a substantially constant value.
  • FIG. 9 is a graph showing the beam focusing angle at the time of incidence of the optical fiber with respect to the laser output.
  • 301 indicates a beam focusing angle for an optical system designed based on the present embodiment
  • 302 indicates a beam focusing angle for a conventional optical system.
  • the laser output depends on the laser output.
  • the beam converging angle when the optical fiber is incident is kept substantially constant.
  • SI step index
  • the excitation region is clearly defined, and the thermal lens of rod-type solid laser medium 1 is assumed for an ideal state assuming a uniform excitation density in the excitation region.
  • the method of setting the arrangement of the optical system was shown.
  • the excitation region and non-excitation are caused by reflection or scattering of the excitation light in the rod-type solid laser medium 1.
  • the boundary with the domain is not clear.
  • the calculation method of the thermal lens main surface shown in this embodiment is only a guideline, and the equivalent thermal lens main surface, that is, the first reference surface may be set near the position given by Equation (5).
  • the same effect can be obtained even if the thermal lens main surface as the first reference surface is arbitrarily set within the range from the end surface 102 to the midpoint 101 of the rod-type solid-state laser medium 1.
  • the second reference plane is set at an optically symmetric position with the partial reflector 2 as the midpoint with respect to the equivalent thermal lens main surface position to be set, the first consisting of the relay lens 5 and the coupling lens 7 Using the transfer optical system, the principal surface of the equivalent thermal lens 9 is transferred and relayed to the incident end surface 81 of the optical fiber 8, and the second reference optical system comprising the relay lens 6 is used to connect the second reference surface to the coupling lens. 7 Transfer to the top. If necessary, an aperture 5 having an opening diameter substantially equal to the diameter of the rod-type solid laser medium 1 may be disposed on the second reference plane.
  • a relay lens and a coupling lens are used, and the first switch is used.
  • the lenses constituting the first transfer optical system and the second transfer optical system are a relay lens and a coupling lens. It is not limited to. For example, even if the equivalent lens formed by combining two lenses is regarded as a relay lens and the first and second transfer optical systems are configured, the same effect as in the present embodiment can be obtained. If the distance between the two lenses that make up the relay lens connected by force is changed, it is optically equivalent to changing the focal length of the relay lens. It is possible to easily change the optical path length while keeping the transfer magnification of the optical system constant.
  • the present embodiment even if a combination lens is used as a force coupling lens, which shows a configuration in which a single lens is used as a coupling lens, the same effect can be obtained, and the influence of spherical aberration can be reduced.
  • the adjustment margin of the fiber incident beam can be increased.
  • each of the relay lens and the coupling lens are each described as a single lens, but as described above, each of the relay lens and the coupling lens is composed of a plurality of lenses. Even so.
  • FIG. 10 (a) is a schematic diagram showing the configuration of the rod-type solid-state laser device according to Embodiment 2 of the present invention.
  • reference numeral 11 denotes an internal aperture, which is disposed inside the optical resonator at a distance La from the partial reflector 2.
  • the beam diameter of the laser beam in the optical resonator, the so-called transverse mode is limited by the internal aperture 11.
  • the laser beam diameter and the beam position in the internal aperture 10 are kept constant regardless of the state of the thermal lens of the rod-type solid laser medium 1. That is, the first reference plane in the present embodiment is the position of the internal aperture 11.
  • the aperture 5 having an aperture diameter substantially equal to that of the internal aperture 11 at a position optically symmetric with respect to the internal aperture 11 with the partial reflector 2 as a midpoint, that is, the second reference plane. Is arranged. That is, equation (11) is established.
  • the rod-type solid-state laser is also used in the aperture 5 due to the symmetry of the beam propagation. Regardless of the state of the thermal lens of medium 1, the beam diameter and beam position are kept substantially constant.
  • the first transfer optical system is configured by the relay lens 6 and the coupling lens 7 as in the first embodiment.
  • the internal aperture 11 is used as the object plane, and the internal aperture 11 is first transferred onto the first image plane 10 by the relay lens 6.
  • the first image plane 10 is reduced and relayed onto the incident end face 81 of the optical fiber 8 by the same coupling lens 7 as in the first embodiment.
  • the formula (2) can also be applied as it is in the present embodiment.
  • the second transfer optical system is configured by the relay lens 6 that is the same as in the first embodiment, and the aperture 5 is transferred onto the coupling lens 7 by the relay lens 6. . Therefore, the relationship of the expression (3) shown in the first embodiment can be applied to this embodiment as it is.
  • the transfer magnification Ml of the first transfer optical system is given by equation (7 ′).
  • the transfer magnification M2 of the second transfer optical system can be calculated according to the same equation (8) as in the first embodiment.
  • An appropriate value may be set for the beam focusing angle at the time of incidence.
  • the first transfer optical system since the beam diameter and the beam position on the object plane of the first transfer optical system are guaranteed by the internal aperture 11, the first transfer optical system
  • the beam diameter and the beam position of the laser beam 4 on the incident end surface 81 of the optical fiber 8 that is the image plane of the above can always be kept constant regardless of the state of the thermal lens of the rod-type solid laser medium 1.
  • the internal aperture 11 that is the first reference surface and the second reference surface that is optically symmetric with respect to the partial reflecting mirror 2 are substantially equal to the internal aperture 11.
  • An aperture 5 having an aperture diameter is disposed, and the aperture 5 is transferred onto the coupling lens 7 using the second transfer optical system.
  • the beam diameter on the aperture 5 is kept substantially equal to the aperture diameter of the internal aperture 11 regardless of the state of the thermal lens of the rod-type solid laser medium 1. Since the laser beam 4 located outside cannot pass through the aperture 5, even if a pointing fluctuation or the like occurs in the laser beam 4 emitted from the partial reflection mirror 2, the image plane of the second transfer optical system The beam diameter on the coupling lens 7 and the beam position are guaranteed.
  • the converging angle of the laser beam 4 incident on the optical fiber 8 is kept substantially constant regardless of the state of the thermal lens of the mouth-shaped solid-state laser medium 1, and the laser beam 4 emitted from the optical fiber 8 is also maintained. Therefore, a substantially constant light collecting property can be maintained regardless of the laser output.
  • the internal aperture 11 may be disposed between the rod-type solid laser medium 1 and the total reflection mirror 3 with the force disposed between the rod-type solid laser medium 1 and the partial reflection mirror 2. .
  • the laser beam in the resonator it is arranged on the side of the partial reflection mirror 2 away from the partial reflection mirror 2 by the same distance as the total reflection mirror 3, that is, the center of the rod-type solid laser medium 101.
  • it is equivalent to the case where it is arranged at a symmetrical position. For example, as shown in Fig.
  • the configuration in which a plane mirror is used as the partial reflection mirror 2 and the beam diameter inside the optical resonator is limited by the internal aperture 11 is not limited to the symmetrical resonator configuration.
  • the asymmetrical resonator if the aperture 5, the relay lens 6, the coupling lens 7, and the optical fiber 8 are arranged according to this embodiment, the same effect as this embodiment is obtained. Needless to say that the fruits are obtained.
  • FIG. 11 is a schematic diagram showing a configuration of a rod-type solid-state laser device according to Embodiment 3 of the present invention.
  • the first transfer optical system including the relay lens 6 and the coupling lens 7 is used to transfer the end face 102 of the rod-type solid laser medium 1 onto the first image plane 10 and The image surface 10 is transferred onto the incident end surface 81 of the optical fiber 8.
  • the second transfer optical system is configured by the same relay lens 6 as in the first and second embodiments, and the aperture 5 is transferred onto the coupling lens 7.
  • an aperture diameter substantially equal to the diameter of the rod-type solid laser medium 1 is set at an optically symmetrical position with the end surface 102 of the rod-type solid laser medium 1 and the partial reflection mirror 2 as a middle point.
  • An aperture 5 is provided. That is, the expression (11 ′) is established.
  • the end surface 102 of the rod-type solid laser medium 1 is set as the object surface of the first transfer optical system, that is, the first reference surface.
  • the change in beam diameter at the end face 102 of the rod-type solid-state laser medium 1 when the thermal lens is changed is compared with the principal surface of the equivalent thermal lens 9 of the first embodiment and the internal aperture 11 of the second embodiment.
  • the rod type solid laser medium 1 is smaller than the beam diameter change outside the rod type solid laser medium 1 unless the beam diameter is limited by the internal aperture 11 or the like. It is guaranteed to be in the end face 102.
  • the beam imaged on the incident end surface 81 of the optical fiber 8 by the first transfer optical system is assumed to be the maximum beam diameter on the rod end surface 102 which is the object surface, that is, the rod-type solid laser medium 1 When it is equal to the diameter, it is always located inside the beam imaged on the fiber entrance end face 81. It is guaranteed. As a result, it is possible to always maintain the laser beam 4 in the core of the optical fiber 8 at the incident end face 81 of the optical fiber 8 even when the thermal lens of the rod type solid laser medium 1 is changed.
  • the aperture 5 has a second reference surface that is optically symmetric with respect to the end surface 102 of the rod-type solid-state laser medium 1 that is the first reference surface, with the partial reflection mirror 2 being the midpoint. Therefore, the beam diameter on the aperture 5 is always guaranteed to be smaller than the diameter of the mouth-shaped solid-state laser medium 1 due to the symmetry of beam propagation.
  • the aperture diameter of the aperture 5 is set to be substantially equal to the diameter of the rod-type solid-state laser medium 1, even when a pointing fluctuation or the like occurs in the laser light 4, the bead on the coupling lens 7 The position of the beam is always kept constant, and the beam diameter is guaranteed to be always smaller than a certain value determined by the aperture diameter of the aperture 5 and the transfer magnification of the second transfer optical system.
  • the focusing angle of the laser light 4 incident on the optical fiber 8 is always kept below a certain value, and the laser light 4 emitted from the optical fiber 8 is also Therefore, it is possible to maintain a light condensing performance above a certain value regardless of the laser output.
  • FIG. 12 (a) is a schematic diagram showing the configuration of the rod-type solid-state laser device according to Embodiment 4 of the present invention.
  • la is the first rod-type solid-state laser medium arranged in the optical resonator composed of the partial reflection mirror 2 and the total reflection mirror 3 with plane mirror force
  • lb is the second mouth.
  • the first and second rod-type solid-state laser media la and 1b both have a length of Lrod.
  • the distance between the partial reflector 2 and the first rod-type solid laser medium la is Lm
  • the distance between the second solid-state laser medium lb and the total reflection mirror 3 is set to Lm to form a so-called periodic resonator.
  • the beam diameters in the first and second rod-type solid-state laser media la and lb In other words, the mode shape is the same as that when a single rod type solid laser medium 1 as shown in FIG. That is, the periodic resonator is configured.
  • a plurality of rod type solid-state laser media 1 can be used, and high output can be easily achieved while keeping the light condensing property constant.
  • the aperture 5, the relay lens 6, the coupling lens 7, and the incident end face 81 of the optical fin 8 are arranged on the same basis as in the first embodiment. That is, the principal surface of the equivalent thermal lens 9 located at a distance Ltl from the end face 102 of the first rod-type solid-state laser medium la is the first reference surface, and the first reference surface and the partial reflector 2 are the midpoints.
  • An aperture 5 having an aperture diameter substantially equal to the diameter of the rod-type solid-state laser medium la is disposed on the second reference plane, which is an optically symmetrical position.
  • the relay lens 6 and the coupling lens 7 constitute a first transfer optical system, and the principal surface of the equivalent thermal lens 9 is transferred onto the first image plane 10 by the relay lens 6 and the first image plane 10 is coupled to the coupling lens. 7 is transferred onto the incident end face 81 of the optical fiber 8.
  • the relay lens 6 constitutes a second transfer optical system, and the aperture 5 is transferred onto the coupling lens 7.
  • the first embodiment is used. If the aperture 5, the relay lens 6, the coupling lens 7, and the incident end face 81 of the optical fiber 8 are arranged in the same manner as in the first embodiment, the effect similar to that of the first embodiment can be obtained. High output can be easily achieved while maintaining constant light collection.
  • the configuration in which two rod-type solid laser media la and lb are arranged in a single optical resonator has been described.
  • the rod-type solid arranged in the optical resonator is shown.
  • the number of laser media 1 is not limited to this.
  • the number of rod-type solid laser medium 1 to be arranged in the optical resonator is selected, the distance between the partial reflector 2 and the adjacent rod-type solid laser medium 1 and the total reflector 3 and the adjacent rod-type solid-state laser medium 1 are set to Lm, and the distance between the opposing rod-type solid-state laser medium 1 is set to 2 Lm, it depends on the number of rod-type solid-state laser media 1. Therefore, a periodic resonator can be configured.
  • the rod-type solid-state laser adjacent to the partial reflector 2 as in the first embodiment is used.
  • Equivalent thermal lens with one medium la The main surface is shown as the object surface of the first transfer optical system.
  • the object surface of the first transfer optical system is not limited to this.
  • the first transfer is performed using the internal aperture 11 as the first reference plane.
  • the center 101 of the rod-type solid-state laser medium is defined as described in the second embodiment. Therefore, it can be considered equivalent to the case where the internal aperture 11 is arranged at a symmetrical position.
  • the end surface 102 of the rod-type solid-state laser medium la adjacent to the partial reflecting mirror 2 that is the same as in the third embodiment is used as the object surface of the first transfer optical system as the first reference surface, Similar effects can be obtained. In short, using the first reference surface at an appropriate position inside the optical resonator, the object surface of the first transfer optical system consisting of the relay lens 6 and the coupling lens 7 is set.
  • the image is transferred to one image plane, and the first image plane is further reduced and relayed onto the incident end face 81 of the optical fiber 8 by the coupling lens 7 and the object plane of the first transfer optical system set in the optical resonator.
  • an aperture 5 is installed at an optically symmetrical position with the partial reflection mirror 2 as a midpoint, and an aperture 5 that is the object surface of the second transfer optical system is formed by the second transfer optical system including the relay lens 6. , Transfer to the coupling lens 7.
  • Embodiment 5 is installed at an optically symmetrical position with the partial reflection mirror 2 as a midpoint, and an aperture 5 that is the object surface of the second transfer optical system is formed by the second transfer optical system including the relay lens 6. , Transfer to the coupling lens 7. Embodiment 5.
  • FIG. 13 is a schematic diagram showing a configuration of a rod-type solid-state laser device according to Embodiment 5 of the present invention.
  • three rod-type solid laser media la, lb, and lc are used, and only the third rod-type solid laser medium lc is separated from the partial reflection mirror 2 and the total reflection mirror 3.
  • the first and second rod-type solid-state laser media la and lb are used as amplifiers for amplifying the laser light emitted from the oscillator.
  • MOPA Master Oscillator Power Amplifier
  • the three rod-type solid-state laser media 1a, lb, and lc are arranged at equal intervals with a distance of 2Lm.
  • a partial reflecting mirror 2 having a plane mirror force is placed between the second rod-type solid laser medium lb and the third rod-type solid laser medium lc, and the plane mirror is located at a distance Lm from the third rod-type solid laser medium lc.
  • Powerful total reflection mirror 3 is provided.
  • a plurality of rod-type solid-state laser media 1 are In the rod-type solid-state laser device to be used, a plurality of rod-type solid-state laser media 1 are arranged at equal intervals of a distance of 2 Lm, and a total reflection mirror is located at a distance of Lm from the end face of the rod-type solid-state laser medium 1 arranged at the end.
  • the periodic MOPA configuration is a general configuration in a rod-type solid-state laser device using a plurality of rod-type solid-state laser media 1, and the number of rod-type solid-state laser media 1 arranged in the optical resonator, an amplifier
  • the number of rod-type solid-state laser media 1 used in the above may be selected according to the desired performance.
  • the end stage 102 of the last rod-type solid laser medium la from which the laser beam 4 is emitted is located at a distance Lm of 1Z2 with respect to the installation interval 2Lm of the rod-type solid laser medium la, lb, lc.
  • the third reference plane 2 ′ is set. With this third reference plane 2 'as the midpoint, the equivalent thermal lens 9 of the first rod-type solid-state laser medium la, which becomes the first reference plane, is located symmetrically with the 9 main surface, that is, at the second reference plane.
  • An aperture 5 having an opening substantially equal to the diameter of the rod-type solid-state laser medium la is installed.
  • the third reference surface has the same function as the partial reflection mirrors of Embodiments 1 to 4 when setting the second reference surface, the third reference surface is used as the virtual partial reflection mirror.
  • the first transfer optical system is configured by the relay lens 6 and the coupling lens 7 as in the first embodiment.
  • the principal surface of the equivalent thermal lens 9 of the rod-type solid laser medium la is formed by the relay lens 6.
  • the image is transferred onto the first image surface 10, and the first image surface 10 is reduced and transferred to the incident end surface 81 of the optical fiber 8 by the coupling lens 7.
  • the relay lens 6 constitutes a second transfer optical system, and the aperture 5 is transferred onto the coupling lens 7 by the relay lens 6.
  • the expressions (1) to (3) shown in the first embodiment can be applied as they are.
  • the periodicity of the mode shape in the rod-type solid-state laser medium 1 is kept substantially constant, so that the aperture 5 and the relay lens 6 are subjected to the same method as in the first embodiment. If the coupling lens 7 and the incident end face 81 of the optical fiber 8 are arranged, the same effect as in the first embodiment can be obtained. Can be planned. Note that when comparing the periodic resonator configuration shown in the fourth embodiment and the periodic MOPA configuration shown in the present embodiment, in the case of the periodic resonator configuration, all the rod-type solid laser media 1 are optically resonant.
  • the ratio of spontaneous emission in the extracted laser beam 4 is low and the beam waist position is fixed by the boundary condition of the optical resonator, it is excellent in condensing performance. Furthermore, there is an advantage that it is easy to generate the laser beam 4.
  • the stability condition of the optical resonator easily collapses due to variations in the pumping state among the rod-type solid-state laser media 1 and is not effective. The disadvantage is that stable oscillation is likely to occur.
  • the spontaneous emission light that is also generated by the amplifier force is easily amplified, so that the proportion of the spontaneous emission light in the laser light 4 increases, and the beam waist depends on the boundary condition of the optical resonator. Since the position is not fixed, there is a disadvantage that the light condensing performance is easily lowered. In addition, the low-intensity laser beam 4 has a disadvantage that the gain in the amplifier cannot be taken out sufficiently and the generation efficiency of the laser beam is lowered. On the other hand, even when the same number of rod-type solid-state laser media 1 as that of the periodic resonator optical resonator is used, the number of rod-type solid-state laser media 1 arranged in the optical resonator can be reduced. Therefore, there is an advantage that the laser beam 4 can be stably generated even if the excited state varies among the rod-type solid laser media 1.
  • the principal surface of the equivalent thermal lens 9 of the rod-type solid laser medium la located at the laser beam emission end is the first reference optical surface as the object surface of the first transfer optical system.
  • the force that shows the structure The object surface of the first transfer optical system is not limited to this.
  • an aperture 5 having an opening diameter substantially equal to the diameter of the rod-type solid laser medium la is disposed, and the end surface 102 of the rod-type solid laser medium la is a first reference light that is a first reference surface.
  • the method of setting the equivalent thermal lens 9 or the end face 102 of the rod-type solid laser medium la as the object plane of the first transfer optical system that is the first reference plane is shown.
  • the method of setting the object plane of the first transfer optical system is not limited to this.
  • the same effect can be obtained even if the reference heat lens principal surface is arbitrarily set within the range from the end face 102 to the midpoint 101 of the rod-type solid laser medium la.
  • the point is that it is optically symmetric with respect to the set equivalent thermal lens main surface position with the virtual partial reflection mirror 2 'as the midpoint, that is, approximately equal to the diameter of the rod-type solid laser medium 1 on the second reference surface.
  • An aperture 5 having an aperture diameter is disposed, and the main surface of the equivalent thermal lens 9 is transferred and relayed to the incident end surface 81 of the optical fiber 8 using the first transfer optical system including the relay lens 6 and the coupling lens 7. Furthermore, if the second transfer optical system comprising the relay lens 6 is used to transfer the aperture 5 onto the coupling lens 7, the thermal lens of the rod-type solid laser medium 1 changes or the laser light 4 Even when pointing fluctuations occur, the beam diameter and beam position on the coupling lens 7 are maintained substantially constant, and the beam diameter and beam position on the incident end face 81 of the optical fiber 8 are guaranteed. And light phi 8 by a stable beam transmission becomes possible and monitor, for the laser beam 4 for emitting optical fiber 8, as possible out to keep the light collecting substantially constant.
  • FIG. 14 (a) is a schematic diagram showing a configuration of a rod-type solid-state laser device according to Embodiment 6 of the present invention.
  • a plurality of rod-type solid laser media la, lb, and lc that are the same as those in the fifth embodiment are arranged at equal intervals, and a periodic MOPA configuration is employed.
  • the internal aperture 11 is inserted into the optical resonator composed of the partial reflection mirror 2 and the total reflection mirror 3 to limit the beam diameter of the laser light 4.
  • the mode shape in the first rod-type solid-state laser medium la is amplified only in the portion where the laser beam 4 passes.
  • the internal aperture 11 is installed at a distance La from the partial reflection mirror 2.
  • a method for arranging the optical system according to the present embodiment will be described.
  • a virtual partial reflection mirror 2 ′ is assumed at a position that is a distance Lm from the end face 102 of the last-stage rod-type solid-state laser medium la from which the same laser light 4 as in the fifth embodiment is emitted.
  • a virtual internal aperture 11 ′ is assumed here with the position of the distance La as the first reference plane in the direction of the first rod-type solid-state laser medium la from the virtual partial reflection mirror 2 ′.
  • An aperture 5 having an aperture diameter substantially equal to that of the internal aperture 11 is disposed here with the virtual partial reflection mirror 2 'as a midpoint and a position optically symmetrical with the virtual internal aperture 11' as a second reference plane.
  • the formula (11) shown in the second embodiment can be applied to the periodic MOPA configuration.
  • the first transfer optical system is configured by the relay lens 6 and the coupling lens 7 which are the same as those in the first embodiment, and first, the virtual internal aperture is transferred onto the first image plane 10 by the relay lens 6, The first image surface 10 is reduced and relayed to the incident end surface 81 of the optical fiber 8 by the coupling lens 7.
  • the relay lens 6 constitutes a second transfer optical system, and the aperture 5 is transferred onto the coupling lens 7 by the relay lens 6. Therefore, also in the present embodiment, the formula (2) shown in the second embodiment and the formula (2) to the formula (3) shown in the first embodiment can be applied.
  • the mode shape in the rod-type solid-state laser medium 1 is also used in the method of inserting the internal aperture 11 into the optical resonator and limiting the beam diameter. Since the periodicity is kept substantially constant, if the same effect as in the second embodiment can be obtained, it is possible to easily increase the output while maintaining a constant light condensing property with a force.
  • the configuration in which the internal aperture 11 is inserted only in the optical resonator and the beam diameter is limited is shown.
  • An aperture for limiting the beam diameter may be provided in the vicinity of an arbitrary rod type solid-state laser medium 1 used as a detector.
  • the rod-type solid-state laser device according to the present invention is suitable for an apparatus that transmits and processes laser light using one optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 対称安定型光共振器において、ロッド型固体レーザ媒質(1)の部分反射鏡(2)に対向する端面(102)と中点(101)との間の任意の位置に、第1の基準面を設定し、該基準面に対し、部分反射鏡(2)を中点として光学的に対称な位置に、ロッド型固体レーザ媒質(1)の直径と略等しい開口径を有するアパーチャ(5)を配し、該アパーチャ(5)と光ファイバ(8)との間に配設されたリレーレンズ(6)、ならびに結合レンズ(7)を用いて、第1の基準面を、光ファイバ(8)の入射端面上に転写リレーするとともに、該アパーチャ(5)をリレーレンズ(6)によって結合レンズ(7)上へ転写する。これにより、ロッド型固体レーザ媒質(1)の熱レンズの焦点距離や、レーザ光のポインティングが変動した場合であっても、安定かつ信頼性に優れた光ファイバによるビーム伝送を行うとともに、光ファイバを出射するレーザ光の集光性を一定に維持する。

Description

明 細 書
ロッド型固体レーザ装置
技術分野
[0001] この発明は、ロッド型の固体レーザ媒質を光励起しレーザ光を発生させるとともに、 該レーザ光を光ファイバへ入射させ、レーザ光の伝送を行うロッド型固体レーザ装置 に関する。
背景技術
[0002] 従来のロッド型固体レーザ装置においては、レーザビームの光軸上にビーム径を 制限する開口を設け、該開口を光ファイバの入射端面に転写する構成としていた (例 えば、特許文献 1、特許文献 2参照)。
[0003] 特許文献 1 :特開 2003— 78190号公報 (第 0022〜0025段落、第 1図)
特許文献 2 :特開 2003— 209307号公報 (第 0019段落、第 1図)
発明の開示
発明が解決しょうとする課題
[0004] 光ファイバを使用しレーザ光の伝送を行う従来のロッド型固体レーザ装置において は、レーザ出力に応じてロッド型レーザ媒質の熱レンズの強さ (焦点距離)が変化す るため、レーザ光を取り出すために設けられた光共振器中で選択される固有モード が変化し、光ファイバへ入射するレーザ光の集束角もレーザ出力に応じて変化して いた。ステップ屈折率型の光ファイバを使用する場合、光ファイバ内部でレーザ光の 集束角は概ね保存されるため、光ファイバを出射するレーザ光の発散角も、集束角 に対応してレーザ出力によって変化する。ここで、光ファイバ 8へ入射するレーザ光 の集束角および、光ファイバ 8から出射するレーザ光の発散角は、図 15における α の角度を示す。光ファイバを出射するレーザ光は、ビームウェスト径が光ファイバのコ ァ径と略等しく見なすことができるため、発散角の変化は集光性の変化に等しい。従 つて、従来のロッド型固体レーザ装置では、光ファイバから出射されるレーザ光の集 光性は、レーザ出力によって変化していた。
[0005] 上述のように、従来のロッド型固体レーザ装置においては、レーザ出力によって光 ファイバを出射するレーザ光の発散角、即ち集光性が変化するため、例えば、光ファ ィバの出射端^^光光学系からなる加工ヘッドに結合し、レーザ光を利用する場合、 加工ヘッドを通過するレーザ光の透過率が、レーザ出力によって変化するという問題 点があった。また集光光学系へ入射するレーザ光のビーム径も、レーザ出力によって 変化するため、集光光学系における収差の影響がレーザ出力によって異なり、集光 ビーム径もレーザ出力によって変化してしまうという問題点があった。
[0006] また従来のロッド型固体レーザ装置においては、レーザ光のポインティング変動の 影響を防止する手段が備えられて 、な力つたため、レーザ光のポインティング変動が 発生した場合、光ファイバへのレーザ光の集束角が変化し、光ファイバを出射するレ 一ザ光の発散角が更に増加、集光性が低下するという問題点があった。力!]えて、ボイ ンティング変動の発生によって、光ファイバへのレーザ光の集束角力 光ファイバの 許容 NAを超える場合には、光ファイバからレーザ光が漏洩し、光ファイバの両端部 を支持するコネクタや、光ファイバを被服する保護層を加熱し、損傷に至らしめるとい う問題点があった。
[0007] この発明は、力かる問題点を解決するためになされたものであり、ロッド型固体レー ザ媒質の熱レンズの強さが変化した場合であっても、光ファイバへ入射するレーザ光 の集束角を略一定に保ち、またレーザ光のビームポインティングが変動した場合であ つても光ファイバの損傷を防止し、安定にレーザ光を供給することが可能なロッド型 固体レーザ装置を提供することを目的として 、る。 課題を解決するための手段
[0008] この発明に係るロッド型固体レーザ装置においては、ロッド型固体レーザ媒質と部 分反射鏡及び全反射鏡カゝらなる対称安定型光共振器カゝら出力されたレーザ光を、リ レーレンズと結合レンズを用いて光ファイバへ入射するロッド型固体レーザ装置にお
V、て、前記部分反射鏡に隣接して配置されたロッド型固体レーザ媒質の前記部分反 射鏡に対向する端面と、このロッド型固体レーザ媒質の中点との間の任意の位置に 第 1の基準面を設定し、該第 1の基準面と、前記部分反射鏡に対し光学的に対称な 位置に第 2の基準面を設定し、前記リレーレンズは、前記第 1の基準面を第 1像面に 転写するとともに前記第 2の基準面を前記結合レンズ上に転写する位置に配置され 、前記結合レンズは、前記第 1像面を光ファイバ端面に転写する位置に配置されたも のである。
発明の効果
[0009] この発明は上述のごとく構成されているので、ロッド型固体レーザ媒質の熱レンズの 焦点距離が変動した場合であっても、結合レンズ、ならびに光ファイバ入射端面上に おけるビーム径、ビーム位置を略一定に維持し、安定かつ信頼性に優れた光フアイ バによるビーム伝送が可能になるば力りでなぐ光ファイバを出射するレーザ光の集 光性も略一定に保つことができる。
図面の簡単な説明
[0010] [図 1]この発明の実施の形態 1におけるロッド型固体レーザ装置の構成を示す模式図 である。
[図 2]この発明の実施の形態 1におけるロッド型固体レーザ媒質を示す模式図である
[図 3]この発明の実施の形態 1におけるロッド型固体レーザ媒質に、平面鏡からなる 部分反射鏡、および全反射鏡を配して構成した対称安定型光共振器を示す構成図 である。
[図 4]この発明の実施の形態 1における対称安定型光共振器を、 2つの等価熱レンズ を用いて表した光学的に等価な対称安定型光共振器を示す構成図である。
[図 5]この発明の実施の形態 1における対称安定型光共振器を、単一の等価熱レン ズを用いて表した光学的に等価な対称安定型光共振器を示す構成図である。
[図 6]この発明の実施の形態 1における対称安定型光共振器中におけるレーザ光の モード形状、即ちビーム伝播状態を示す説明図である。
[図 7]この発明の実施の形態 1における対称安定型光共振器を、単一の等価熱レン ズを用いて表した光学的に等価な対称安定型光共振器中におけるレーザ光のモー ド形状、即ちビーム伝播状態を示す説明図である。
[図 8]この発明の実施の形態 1に基づき設計した光学系中における、ビーム伝播状況 を示すグラフである。
[図 9]この発明の実施の形態 1における、レーザ出力に対する光ファイバ入射時のビ 一ム集束角を示すグラフである。
圆 10]この発明の実施の形態 2におけるロッド型固体レーザ装置の構成を示す模式 図である。
圆 11]この発明の実施の形態 3におけるロッド型固体レーザ装置の構成を示す模式 図である。
圆 12]この発明の実施の形態 4におけるロッド型固体レーザ装置の構成を示す模式 図である。
圆 13]この発明の実施の形態 5におけるロッド型固体レーザ装置の構成を示す模式 図である。
圆 14]この発明の実施の形態 6におけるロッド型固体レーザ装置の構成を示す模式 図である。
圆 15]光ファイバに入射するレーザ光の集束角を説明する図である。
発明を実施するための最良の形態
実施の形態 1.
図 1はこの発明の実施の形態 1におけるロッド型固体レーザ装置の構成を示す模式 図である。図 1において、 1はロッド型固体レーザ媒質、 101はロッド型固体レーザ媒 質 1の中点、 102はロッド型固体レーザ媒質 1の端面を表している。本実施の形態に おいて固体レーザ媒質 1には、活性媒質として Nd (ネオジゥム)がドープされた YAG (イットリウムアルミニウムガーネット)結晶を使用している。 2は部分反射鏡、 3は全反 射鏡、 4はレーザ光である。部分反射鏡 2、および全反射鏡 3により光共振器を構成 し、ランプ光源や半導体レーザを用いて光励起されたロッド型固体レーザ媒質 1より レーザ光を取り出す。 5はレーザ光 4の光路上に設置されたアパーチャで、ロッド型固 体レーザ媒質 1の直径と略等しい開口径を有する。 6は焦点距離 flを有するリレーレ ンズ、 7は焦点距離 f2を有する結合レンズである。 8は光ファイバ、 81は光ファイバの 入射端面を示している。アパーチャ 5を通過したレーザ光 4は、リレーレンズ 6によって 結合レンズ 7へ伝送される。結合レンズ 7へ伝送されたレーザ光 4は、結合レンズ 7〖こ よって集光され、光ファイバの入射端面 81より光ファイバ 8中へ入射する。点線で示 す 9は、励起されたロッド型固体レーザ媒質 1において、中点 101より部分反射鏡 2側 に位置する領域の熱レンズ成分と、光学的に等価な薄肉レンズを表す等価熱レンズ
、 10は後述する第 1転写光学系の第 1像面を表している。
[0012] 本実施の形態においては、平面鏡力 なる部分反射鏡 2、および全反射鏡 3を使 用し、それぞれロッド型固体レーザ媒質 1の端面から Lmなる位置に部分反射鏡 2、 全反射鏡 3を配すことによって、対称安定型共振器を構成している。従って、ロッド型 固体レーザ媒質 1が理想的に均一に励起されている場合、光共振器中でのビームモ ードは、ロッド型固体レーザ媒質 1の中点 101に対し対称性が保証される。
[0013] また本実施の形態においては、部分反射鏡 2より距離 L1なる位置に、ロッド型固体 レーザ媒質 1の直径と略等しい開口径を有するアパーチャ 5を、アパーチャ 5より距離 L2なる位置に、焦点距離 flを有するリレーレンズ 6を、リレーレンズ 6より距離 L3+L 4なる位置に、焦点距離 f2を有する結合レンズ 7を、結合レンズ 7より距離 L5なる位置 に、光ファイバ 8の入射端面 81を配置している。また等価熱レンズ 9の主面位置は、 ロッド型固体レーザ媒質 1の端面 102より Ltlなる距離に位置している。
[0014] 本実施の形態において、リレーレンズ 6、および結合レンズ 7は第 1転写光学系を構 成しており、まず等価熱レンズ 9の主面を、リレーレンズ 6によって第 1像面 10上に転 写する。更に第 1像面 10を、結合レンズ 7によって、第 2像面となる光ファイバ 8の入 射端面 81上へ転写する転写リレー構成としている。従って、ロッド型固体レーザ媒質 1の屈折率を nとすれば、ロッド端面 102から等価熱レンズ 9主面までの距離 Ltlを光 学距離に換算することによって、第 1転写光学系は、(1)式、および (2)式で与えられ る関係を満たしている。
— + Lm +LI + L2
また本実施の形態においては、リレーレンズ 6は第 2転写光学系を構成しており、ァ パーチヤ 5を、リレーレンズ 6によって結合レンズ 7上へ転写している。従って、第 2転 写光学系は、(3)式で与えられる関係を満たしている。 f2 L2 L3 +L4
[0016] 次に、図 2に示すロッド型固体レーザ媒質 1の模式図を使用し、本実施に形態にお いて重要な役割を占めるロッド型固体レーザ媒質 1の熱レンズについて詳細に説明 する。図 2中、点線で示す 91は、ロッド型固体レーザ媒質 1において、中点 101より図 中右側の熱レンズ成分と光学的に等価な薄肉レンズを、また 92は、中点 101より図 中左側の熱レンズ成分と光学的に等価な薄肉レンズを示して 、る。また長さ Lpump で示すハッチ領域は、放電ランプや半導体レーザによって励起光が照射される励起 領域を、長さ Lendで示すロッド型固体レーザ媒質 1の両端部分は、非励起領域を表 している。ここでは簡単のため、励起領域内部の励起密度が均一である理想的な状 態を想定する。
[0017] ロッド型固体レーザ媒質 1の熱レンズは、励起にともなうロッド型レーザ媒質 1自体 の発熱によって、ロッド型レーザ媒質 1の断面内に形成される温度分布によって発生 する。ロッド型レーザ媒質 1を励起した場合、ロッド断面内においては、中央部で温度 が高く外縁部で温度が低い山型の温度分布が形成される。ロッド型固体レーザ媒質
1の屈折率は、温度に略比例するため、温度分布によって発生した屈折率分布は収 斂作用を呈する。本収斂作用が熱レンズと呼ばれる現象である。本実施の形態にお いては、まずロッド型固体レーザ媒質 1の中点 101に対し、図 2中、右側の領域の熱 レンズについて考える。
[0018] 中点 101から右側の領域の熱レンズは、 LpumpZ2なる厚みを有している。この厚 みのある熱レンズを、焦点距離が等しく光学的に等価な薄肉レンズに置き換えたもの 力 点線で示す等価熱レンズ 91である。励起領域内において励起密度が均一であ る場合、等価熱レンズ 91の主面は、厚みのある実際の熱レンズの中点に位置する。 従って、 Ltpで示す励起領域端部カゝら等価熱レンズ主面までの距離は (4)式で与え られる。
Ltp = LP≡P ( 4 ) 従って、ロッド型固体レーザ媒質 1の端面位置 Bから、等価熱レンズ 91の主面までの 距離 Ltlは、ロッド長 Lrodと励起領域の長さ Lpumpを用いて(5)式で表される。 τ, Lrod Lpump , .
Ltl = ;—— - ( 5 )
2 4
なお図 2中、 92はロッド型固体レーザ媒質 1の中点 101に対し、左側に位置する等 価熱レンズを示して ヽる。
[0019] 図 3は、図 2において示したロッド型固体レーザ媒質 1に、平面鏡力 なる部分反射 鏡 2、および全反射鏡 3を、それぞれロッド型固体レーザ媒質 1の端面より、距離 Lm なる位置に配した対称安定型光共振器の構成を示している。図 4は、図 3で示した対 称安定型光共振器を、等価熱レンズ 91、 92を用いて表した光学的に等価な対称安 定型光共振器である。図 4に示すように、等価熱レンズ 91、 92で表した対称安定型 光共振器では、等価熱レンズ 91、 92の両者が対称安定型光共振器の中点に位置し ている。図 5に示すように、同一位置に配置された同一の焦点距離を有する等価熱レ ンズ 91、 92は、等価熱レンズ 91、 92の 2分の 1の焦点距離を有する単一の薄肉レン ズ 93で置き換えることができる。図 5に示す薄肉レンズ 93の主面力も部分反射鏡 2、 ならびに全反射鏡 3までの光学距離は、図 3に示す等価熱レンズ 91の主面力 部分 反射鏡 2までの光学距離、ならびに等価熱レンズ 92の主面力 全反射鏡 3までの光 学距離に等しぐロッド型固体レーザ媒質 1の屈折率 nを考慮すると、 LtlZn+Lmの 自由空間として与えられる。
[0020] 図 6は、図 3で示した対称安定型光共振器中におけるレーザ光のモード形状、即ち ビーム伝播状態を示している。図 6中、 41は、対称安定型光共振器中のレーザ光の ビーム外郭形状である。図 7は、図 5において示したロッド型固体レーザ媒質 1の熱レ ンズを光学的に等価な薄肉レンズで置き換えて示した対称安定型光共振器中にお けるレーザ光のモード形状、即ちビーム伝播状態を示している。図 7中、 42は対称安 定型光共振器中のレーザ光のビーム外郭形状、 43は部分反射鏡 2を出射するレー ザ光のビーム外郭形状を示している。ロッド型固体レーザ媒質が均一に励起された 理想的な対称安定型光共振器中では、共振器の中点に対し、モードの対称性が保 証される。また図 6、および図 7に示す対称安定型光共振器では、部分反射鏡 2、お よび全反射鏡 3に平面鏡を使用しているため、光共振器の境界条件から、部分反射 鏡 2、および全反射鏡 3上におけるレーザ光の波面は必ず平面になる。換言すると、 部分反射鏡 2、および全反射鏡 3上においては、必ずビームウェストが形成される。こ の結果、図 6、および図 7で示した対称安定型光共振器中では、中点においてビー ム径が最大となる。図 6で示すように、実際の対称安定型光共振器中では、共振器の 中点 Oはロッド型固体レーザ媒質 1の内部、中点 101に位置する。従って、対称安定 型光共振器中でビーム径を制限する開口径は、ロッド型固体レーザ媒質 1の直径に 略等しくなる。励起媒体中では横多モード発振によって、開口径一杯にまでレーザ 光のビーム径は広がる。従って、ロッド型固体レーザ媒質 1の熱レンズ強度、即ち熱 レンズの焦点距離が変化した場合であっても、ロッド型固体レーザ媒質 1の中点 101 におけるレーザ光のビーム径は、ロッド型固体レーザ媒質 1の直径に略等しく維持さ れる。すなわち、図 7においては、薄肉レンズ 93の主面でのビーム径 dは、熱レンズ の焦点距離が変化しても、ロッド型固体レーザ媒質 1の直径に略等しく維持されると いうことである。
[0021] また上述にように、本実施の形態においては、部分反射鏡 2に平面鏡を使用してい るため、部分反射鏡 2上において必ずビームウェストが形成される。自由空間中にお いては、ビームウェストの前後でビーム径の対称性が保証されるため、図 7に示すよう に部分反射鏡 2を出射し、距離 LtlZn+Lm伝播後の位置 O'におけるビーム径 d'も 、共振器中点におけるビーム径相等しくなる。この結果、部分反射鏡 2出射後、距離 LtlZn+Lmなる位置 0,におけるビーム径も、ロッド型固体レーザ媒質 1の熱レンズ の状態に依らず、常にロッド型固体レーザ媒質 1の直径に略等しく保たれる。
[0022] ここで、第 1転写光学系の物体面を第 1の基準面と呼ぶことにする。第 1の基準面に お!ヽてはレーザ光のビーム径カ ロッド型個体レーザ媒質の熱レンズに寄らず略一 定であることが望ましい。よって、本実施の形態では、ロッド型固体レーザ媒質 1中の 等価熱レンズ 91の主面を第 1の基準面に設定する。また、第 1の基準面の、部分反 射鏡 2を中点として光学的に対称な位置を第 2の基準面と呼ぶ。本実施の形態では 、第 2の基準面は図 7の 0,の位置にあたり、レーザ光のビーム径が第 1の基準面に おけるビーム径と略等しく維持される位置となる。本実施の形態においては、第 2の 基準面にアパーチャ 5を配置して 、る。 [0023] 図 1に示す本実施の形態においては、部分反射鏡 2とアパーチャ 5間の距離 L1が 上述したように LtlZn+Lmと等しくなるよう配置して 、る。即ち、
T _ Ltl T Lrodjl + Lpump/4 τ , 、
L\ =—— + Lm = !- ^ ^ ^^ + Lm ( 6 )
n n
従って、アパーチャ 5上でのレーザ光のビーム径、ビーム位置は、ロッド型固体レー ザ媒質 1の熱レンズの状態に依らず、常にロッド型固体レーザ媒質 1の直径と略等し く保たれる。
[0024] 本実施の形態においては、第 1転写光学系を用いて、ロッド型固体レーザ媒質 1中 の等価熱レンズ 91の主面を光ファイバ 8の入射端面 81上へ転写する構成としている 。第 1転写光学系の物体面に相当する等価熱レンズ 91の主面においては、熱レンズ の状態によらずビーム径はロッド型固体レーザ媒質 1の直径に略等しく維持され、且 つ、ロッド型固体レーザ媒質 1の内部に存在することが保証されるため、第 1転写光 学系の像面である光ファイバ 8の入射端面 81上での、ビーム径、ならびにビーム位 置についても、ロッド型固体レーザ媒質の熱レンズの状態に依らず、常に一定に保 つことができる。
[0025] 本実施の形態での第 1転写光学系の転写倍率 Mlと各光学素子間の距離との関 係は、(7)式で与えられる。
i i L3 L5 …
l =— X—— ( 7 )
— + Lm + Ll + L2 14
n
通常、第 1転写光学系の転写倍率 Mlの値は、使用するロッド型固体レーザ媒質 1の 直径、光ファイバ 8のコア径に応じて、適宜決めればよい。例えば、直径 5mmのロッ ド型固体レーザ媒質 1、コア径 0. 4mmの光ファイバ 8を使用する場合、光ファイバ 8 のコア径に対し、 90%基準にてレーザ光を入射させるのであれば、第 1の転写光学 系の転写倍率 Mlは 0. 072となる。
[0026] また本実施の形態においては、ロッド型固体レーザ媒質 1の等価熱レンズ 91の主 面と、部分反射鏡 2を中点として光学的に対称な位置に、ロッド型固体レーザ媒質 1 の直径と略等しい開口径を有するアパーチャ 5を配置している。そして、第 2転写光 学系を用いて、アパーチャ 5を結合レンズ 7上へ転写する構成としている。このため、 ロッド型固体レーザ媒質 1の熱レンズの状態に依らず、アパーチャ 5上でのビーム径 は、ロッド型固体レーザ媒質 1の直径と略等しく保たれる。よって、部分反射鏡 2を出 射するレーザ光 4にポインティング変動がなければ、アパーチャ 5を透過するレーザ 光のビーム径はアパーチャ 5の有無によらずほぼ一定である。これにより、第 2転写光 学系の像面である結合レンズ 7上におけるビーム径、ならびにビーム位置を、ロッド型 固体レーザ媒質の熱レンズの状態に依らず、保証することができる。また、部分反射 鏡 2を出射するレーザ光 4にポインティング変動があった場合、アパーチャ 5の開口よ り外側に位置するレーザ光 4は、アパーチャ 5を透過し得ないため、アパーチャ 5を透 過するレーザ光はポインティング変動に関係なく常にアパーチャ 5の開口の範囲内に 存在することとなる。これにより、第 2転写光学系の像面である結合レンズ 7上におけ るレーザ光の照射範囲は、常にポインティング変動の無い場合の照射範囲に含まれ る。よって、光ファイバ 8へ入射するレーザ光の集束角も略一定の値が維持される。
[0027] ところで上記では、第 2の基準面である第 2の転写光学系の物体面上にアパーチャ を配し、ビームの位置を物理的に規定する構成を示した。しかし、上述したようにボイ ンティングずれが無い場合は、アパーチャの有無に依らず、結合レンズ 7上のビーム 径は熱レンズに依らず略一定となるので、例えば、ポインティング変動が小さく光ファ ィバへのビーム集束角の変動が許容範囲であるならば、第 2の転写光学系の物体面 上にアパーチャを配置しな 、構成であってもかまわな 、。以下の実施の形態にお!ヽ ても同様である。
[0028] なお、本実施の形態における第 2転写光学系の転写倍率 M2と各光学素子間の距 離との関係は(8)式で与えられる。
, L3 + L4
M2 = ( 8 )
L2
また、通常、第 2転写光学系の転写倍率 M2の値は、所望する光ファイバ 8へのビー ム集束角に応じて適宜決めればよい。例えば、結合レンズ 7からファイバ入射端面 81 までの距離 L5を 50mmとし、光ファイバ 8入射時の集束角を 0. 20radとしたい場合、 結合レンズ 8への入射ビーム径を 10mmにすれば、集束角を概ね 0. 20radとするこ とができる。ここで、ロッド型固体レーザ媒質の直径 dを 5mmとすると、第 2の基準面 でのビーム径 d,またはアパーチャ 5の開口径は 5mmとなるので、第 2転写光学系の 転写倍率 M2の値は 2. 0に設定すればよい。この関係は、図 15に示したように集束 角の半角を 0とすると(9)式で与えられる。
… 2 x L5 tan 6l
M2 = ( 9 )
d
[0029] ここで、レンズ等の配置を決定する式は、(1)、 (2)、 (3)、 (7)、 (8)、(9)式と、光 学系のトータルの長さ Lを与える( 10)式の 7式である。
L = Ll + L2 + L3 + L4 + L5 ( 1 0 )
各種前提条件を用 、てこれらの式を解くことにより、リレーレンズおよび結合レンズの 適切な位置を算出することができる。例えば、共振器の構成は既知とすれば、 Ltl、 n 、 Lm、 L1は既知の定数となる。また、レーザ発振器の大きさも決まっているならば、 L も既知の定数となる。さらに、固体レーザ媒質の直径と光ファイバの径も通常既知で あるので、第 1転写光学系の転写倍率 Mlも既知の定数となる。よって、この場合、変 数は L2、 L3、 L4、 L5、 fl、 f2、 M2の 7つとなり、上記 7式から変数を決定することが できる。また、例えば、結合レンズやリレーレンズを他のレーザ装置と共用すべく焦点 距離 fl、 f2を固定したい場合は、光学系の長さに自由度を持たせるために(10)式を 削除したり、共振器の構成に自由度を持たせ Ltlや Lmを変数としたりすること等によ り、各レンズの配置を決定することができる。
[0030] 図 8は本実施の形態に基づき設計した光学系中における、ビーム伝播状況を示す グラフであり、縦軸はビーム直径を、横軸はロッド型固体レーザ媒質 1の端面 102から の距離を表している。図 8中、 201は低出力時、即ち熱レンズの焦点距離が比較的 長い状態におけるビーム直径を表す曲線、 202は中出力時、即ち熱レンズの焦点距 離が中程度でのビーム直径を表す曲線、 203は高出力時、即ち熱レンズの焦点距 離が比較的短い状態におけるビーム直径を表す曲線である。図 8に示す設計例は直 径 4mmのロッド型固体レーザ媒質 1を使用した際の光学系中のビーム伝播状況を 表しており、アパーチャ 5におけるビーム径は、熱レンズに依らずロッド型固体レーザ 媒質 1の直径 4mmに略等しくなつていることが分かる。また第 1転写光学系の第 1像 面 10、および結合レンズ 7上においても、熱レンズの状態に依らずビーム径は一定と なる。結合レンズ 7上における入射ビーム径カ 熱レンズに依らず常に一定の値とな るため、光ファイバ 8へ入射するレーザ光の集束角も略一定の値が維持される。
[0031] 図 9は、レーザ出力に対する光ファイバ入射時のビーム集束角を示すグラフである 。図 9中、 301は本実施の形態に基づき設計した光学系に対するビーム集束角、 30 2は従来の光学系に対するビーム集束角を示している。従来の光学系設計では、レ 一ザ出力の増加にともな 、、光ファイバ入射時のビーム集束角が低下して 、たのに 対し、本実施の形態に基づく光学系では、レーザ出力に依らず光ファイバ入射時の ビーム集束角は略一定に保たれて 、る。ステップインデックス (SI)型の光ファイバを 使用した場合、光ファイバ中においても、理想的にはビーム発散角が保存されるため 、本実施の形態に基づき光学系を設計すれば、光ファイバ 8を出射するレーザ光に つ!、ても、レーザ出力に依らず略一定の集光性を維持することができる。
[0032] 本実施の形態においては、励起領域が明確に規定されており、励起領域内におい て均一な励起密度を想定した理想的な状態に対し、ロッド型固体レーザ媒質 1の熱 レンズを想定し、光学系の配置を設定する方法を示した。しかし、実際にロッド型固 体レーザ媒質 1を放電ランプや半導体レーザを用いて励起した場合には、ロッド型固 体レーザ媒質 1内での励起光の反射、散乱等によって、励起領域と非励起領域との 境界は明確ではない。本実施の形態で示した熱レンズ主面の算定法はあくまで目安 であり、(5)式で与えられる位置近傍に等価熱レンズ主面すなわち第 1の基準面を設 定すればよい。例えば、ロッド型固体レーザ媒質 1の端面 102から中点 101までの範 囲内において、第 1の基準面となる熱レンズ主面を任意に設定しても、同様な効果を 得ることができる。要は設定する等価熱レンズ主面位置に対し、部分反射鏡 2を中点 として光学的に対称な位置に第 2の基準面を設定し、リレーレンズ 5、および結合レン ズ 7からなる第 1転写光学系を用いて等価熱レンズ 9の主面を光ファイバ 8の入射端 面 81に転写リレーするとともに、リレーレンズ 6からなる第 2転写光学系を用いて、第 2 の基準面を結合レンズ 7上へ転写すればよい。必要であれば、ロッド型固体レーザ媒 質 1の直径と略等しい開口径を有するアパーチャ 5を、第 2の基準面に配置すればよ い。
[0033] なお本実施の形態においては、リレーレンズおよび結合レンズを使用し、第 1の転 写光学系、および第 2の転写光学系を構成する実施例を示したが、第 1の転写光学 系、ならびに第 2の転写光学系を構成するレンズは、リレーレンズ、および結合レンズ の 2枚に限るものではない。例えば、 2枚のレンズの組合わせによって形成される等 価レンズをリレーレンズと見なし、第 1、および第 2の転写光学系を構成しても、本実 施の形態と同様な効果が得られるば力りでなぐリレーレンズを構成する 2枚のレンズ 間の距離を変化させれば、リレーレンズの焦点距離を変化させた場合と光学的に等 価であるため、第 1、第 2の転写光学系の転写倍率を一定に維持しながら、容易に光 路長を変更させることが可能になる。
また本実施の形態にぉ 、ては、結合レンズに単レンズを使用する構成を示した力 結合レンズに組レンズを使用しても同様な効果が得られるばかりでなぐ球面収差の 影響が低減され、ファイバ入射ビームの調整裕度を増加させることができる。
以下の実施の形態にぉ 、ても、リレーレンズおよび結合レンズをそれぞれ単レンズ で構成された装置にて説明を行うが、上記のように、リレーレンズまたは結合レンズを それぞれ複数のレンズにて構成してもよ 、。
[0034] 実施の形態 2.
図 10 (a)は、本発明の実施の形態 2におけるロッド型固体レーザ装置の構成を示 す模式図である。図 10 (a)において、 11は内部アパーチャであり、部分反射鏡 2より 距離 Laなる光共振器内部に配設されている。本実施の形態においては、光共振器 内のレーザ光のビーム径、所謂横モードを内部アパーチャ 11によって制限して 、る 。このため、内部アパーチャ 10におけるレーザ光ビーム径、ならびにビーム位置は、 ロッド型固体レーザ媒質 1の熱レンズの状態に依らず一定に保たれる。すなわち、本 実施の形態における第 1の基準面は内部アパーチャ 11の位置となる。
[0035] 本実施の形態においては、内部アパーチャ 11に対し、部分反射鏡 2を中点として 光学的に対称な位置すなわち第 2の基準面に、内部アパーチャ 11と略等しい開口 径を有するアパーチャ 5を配設している。即ち、(11)式が成り立つ。
L\ = La ( 1 1 )
部分反射鏡 2上では、光共振器の境界条件力 ビームウェストであることが保証され るため、ビーム伝播の対称性によって、アパーチャ 5においても、ロッド型固体レーザ 媒質 1の熱レンズの状態に依らず、ビーム径、およびビーム位置は略一定に保たれ る。
[0036] また本実施の形態においても、前記実施の形態 1と同じくリレーレンズ 6、および結 合レンズ 7で第 1転写光学系を構成している。但し、本実施の形態においては、内部 アパーチャ 11を物体面としており、まず内部アパーチャ 11を、リレーレンズ 6によって 第 1像面 10上に転写する。第 1像面 10については、前記実施の形態 1と同じぐ結合 レンズ 7によって光ファイバ 8の入射端面 81上へ縮小転写リレーしている。また本実 施の形態にぉ 、ては、内部アパーチャ 11を第 1転写光学系の物体面として 、るため 、前記実施の形態 1において示した第 1像面上での結像条件を示す(1)式は、 (1 ' ) 式のように変形される。 丄= _ 1 _ +丄 ( ! ' )
1 La + Ll + L2 Li なお、(2)式については、本実施の形態においてもそのまま適用することができる。ま た本実施の形態においても、前記実施の形態 1と同じぐリレーレンズ 6によって第 2 転写光学系を構成しており、アパーチャ 5は、リレーレンズ 6によって、結合レンズ 7上 へに転写される。従って、前記実施の形態 1で示した(3)式の関係は、本実施の形態 に対してもそのまま適用することができる。
[0037] 本実施の形態においては、第 1転写光学系の転写倍率 Mlは、(7' )式で与えられ る。
Μ\ = χ—— ( 7 )
La + Ll + L2 L4
また第 2転写光学系の転写倍率 M2は、前記実施の形態 1と同じぐ(8)式に従い計 算することができる。第 1転写光学系の転写倍率 Ml、第 2転写光学系の転写倍率 M 2については、内部アパーチャ 11の開口径に基づき、所望する光ファイバ 8の入射 端面 81上でのビーム径、光ファイバ 8入射時のビーム集束角に対し、適切な値に設 定すればよい。
[0038] 本実施の形態においては、第 1転写光学系の物体面上におけるビーム径、ならび にビーム位置が、内部アパーチャ 11によって保証されているため、第 1転写光学系 の像面である光ファイバ 8の入射端面 81上におけるレーザ光 4のビーム径、ならびに ビーム位置についても、ロッド型固体レーザ媒質 1の熱レンズの状態に依らず、常に 一定に保つことができる。
[0039] また本実施の形態においては、第 1基準面である内部アパーチャ 11と、部分反射 鏡 2を中点として光学的に対称な位置である第 2基準面に、内部アパーチャ 11と略 等しい開口径を有するアパーチャ 5を配置し、第 2転写光学系を用いて、アパーチャ 5を結合レンズ 7上へ転写する構成としている。このため、ロッド型固体レーザ媒質 1 の熱レンズの状態に依らず、アパーチャ 5上でのビーム径は、内部アパーチャ 11の 開口径と略等しく保たれることにカ卩え、アパーチャ 5の開口より外側に位置するレーザ 光 4は、アパーチャ 5を透過することができないため、部分反射鏡 2を出射するレーザ 光 4にポインティング変動等が発生した場合であっても、第 2転写光学系の像面であ る結合レンズ 7上におけるビーム径、ならびにビーム位置が保証される。この結果、口 ッド型固体レーザ媒質 1の熱レンズの状態に依らず、光ファイバ 8へ入射するレーザ 光 4の集束角は略一定に保たれ、光ファイバ 8を出射するレーザ光 4についても、レ 一ザ出力に依らず略一定の集光性を維持することができる。
[0040] ところで、上記においては内部アパーチャ 11をロッド型固体レーザ媒質 1と部分反 射鏡 2との間に配置した力 ロッド型固体レーザ媒質 1と全反射鏡 3の間に配置しても よい。この場合、共振器内のレーザビームの対称性により、部分反射鏡 2側に全反射 鏡 3と同様な距離だけ部分反射鏡 2からはなして配置した場合、すなわちロッド型固 体レーザ媒質の中心 101に対して、対称な位置に配置した場合と等価である。例え ば、図 10 (b)に示したように、内部アパーチャ 11を全反射鏡 3側で全反射鏡 3から La の距離に配置した場合、内部アパーチャ 11の効果は図 10 (a)と等価になる。よって 、光学系の配置は、図 10 (b)に示した様に図 10 (a)と同等に配置することで、同様な 効果が得られる。
[0041] なお本実施の形態に示すように、部分反射鏡 2に平面鏡を使用し、光共振器内部 のビーム径を内部アパーチャ 11で制限する構成については、対称型共振器構成に 限るものではなぐ非対称型共振器についても、本実施の形態に従い、アパーチャ 5 、リレーレンズ 6、結合レンズ 7、光ファイバ 8を配置すれば、本実施の形態と同様な効 果が得られることは言うまでもな 、。
[0042] 実施の形態 3.
図 11は、本発明の実施の形態 3におけるロッド型固体レーザ装置の構成を示す模 式図である。本実施の形態においては、リレーレンズ 6、ならびに結合レンズ 7からな る第 1転写光学系を用いて、ロッド型固体レーザ媒質 1の端面 102を第 1像面 10上に 転写するとともに、第 1像面 10を光ファイバ 8の入射端面 81上に転写している。また 前記実施の形態 1、 2と同じぐリレーレンズ 6により第 2転写光学系を構成し、ァパー チヤ 5を結合レンズ 7上へ転写する構成として 、る。
[0043] 本実施の形態においては、ロッド型固体レーザ媒質 1の端面 102と、部分反射鏡 2 を中点として光学的に対称な位置にロッド型固体レーザ媒質 1の直径と略等しい開 口径を有するアパーチャ 5を配設している。即ち、(11 ' )式が成り立つ。
L\ = Lm ( 1 1 ' )
従って、第 1像面上での結像条件は、(1")式のように与えられる。 fl Lm + Ll + L2 L3
なお光ファイバ 8の入射端面 8上での結像条件を与える(2)式、ならびに結合レンズ 7上での結像条件を与える(3)式については、本実施の形態に対してもそのまま適 用することができる。
[0044] 本実施の形態においては、ロッド型固体レーザ媒質 1の端面 102を、第 1転写光学 系の物体面すなわち第 1の基準面に設定している。ロッド型固体レーザ媒質 1の端面 102における、熱レンズが変化した際のビーム径の変化は、前記実施の形態 1の等 価熱レンズ 9主面、ならびに前記実施の形態 2の内部アパーチャ 11に比べやや大き くなるものの、内部アパーチャ 11等によりビーム径を制限する場合を除き、ロッド型固 体レーザ媒質 1外部でのビーム径の変化に比べ小さぐまたビームは常にロッド型固 体レーザ媒質 1の端面 102内にあることが保証される。このため、第 1転写光学系に よって光ファイバ 8の入射端面 81上に結像されるビームは、物体面であるロッド端面 102上で想定される最大ビーム径、即ちロッド型固体レーザ媒質 1の直径と等しくな つた場合に、ファイバ入射端面 81上に結像されるビームよりも、常に内側に位置する ことが保証される。この結果、ロッド型固体レーザ媒質 1の熱レンズが変化した場合で あっても光ファイバ 8の入射端面 81において、常にレーザ光 4を光ファイバ 8のコア内 咅〖こ維持することがでさる。
[0045] またアパーチャ 5は、第 1の基準面であるロッド型固体レーザ媒質 1の端面 102に対 し、部分反射鏡 2を中点として光学的に対称な位置である第 2の基準面に配置されて いるため、アパーチャ 5上でのビーム径については、ビーム伝播の対称性から常に口 ッド型固体レーザ媒質 1の直径よりも小さくなることが保証される。加えてアパーチャ 5 の開口径は、ロッド型固体レーザ媒質 1の直径と略等しく設定されているため、レー ザ光 4にポインティング変動等が発生した場合であっても、結合レンズ 7上におけるビ ームの位置は常に一定に保たれ、またビーム径はアパーチャ 5の開口径、ならびに 第 2転写光学系の転写倍率によって決まる一定の値よりも常に小さくなることが保証 される。この結果、ロッド型固体レーザ媒質 1の熱レンズの状態に依らず、光ファイバ 8へ入射するレーザ光 4の集束角は常に一定値以下に保たれ、光ファイバ 8を出射 するレーザ光 4についても、レーザ出力に依らず一定値以上の集光性を維持するこ とがでさる。
[0046] 実施の形態 4.
図 12 (a)は、本発明の実施の形態 4におけるロッド型固体レーザ装置の構成を示 す模式図である。図 12 (a)中、 laは、平面鏡力 なる部分反射鏡 2、全反射鏡 3によ つて構成した光共振器中に配置された第 1のロッド型固体レーザ媒質、 lbは第 2の口 ッド型固体レーザ媒質を示しており、第 1および第 2のロッド型固体レーザ媒質 la、 1 bはともに、 Lrodなる長さを有している。また本実施の形態においては、部分反射鏡 2と第 1のロッド型固体レーザ媒質 la間の距離を Lm、第 1のロッド型固体レーザ媒質 laと第 2のロッド型固体レーザ媒質 lb間の距離を 2Lm、第 2の固体レーザ媒質 lbと 全反射鏡 3間の距離を Lmに設定し、所謂周期型共振器を構成している。このため、 第 1および第 2の固体レーザ媒質 la、 lbが均等に励起されている理想的な条件にお いては、第 1、および第 2のロッド型固体レーザ媒質 la、 lb中のビーム径、換言する とモード形状は、例えば図 6に示すような単一のロッド型固体レーザ媒質 1を使用し、 対称安定型光共振器を構成した場合と同一になる。即ち、周期型共振器を構成すれ ば、複数のロッド型固体レーザ媒質 1を使用し、集光性を一定に保ちながら、容易に 高出力化を図ることができる。
[0047] 本実施の形態においても、アパーチャ 5、リレーレンズ 6、結合レンズ 7、光ファイノく 8 の入射端面 81については、前記実施の形態 1と同一基準で配置している。即ち、第 1のロッド型固体レーザ媒質 laの端面 102より距離 Ltlに位置する等価熱レンズ 9の 主面を第 1の基準面とし、この第 1の基準面と部分反射鏡 2を中点として光学的に対 称な位置である第 2の基準面にロッド型固体レーザ媒質 laの直径と略等しい開口径 を有するアパーチャ 5を配する。リレーレンズ 6と結合レンズ 7で第 1転写光学系を構 成し、等価熱レンズ 9の主面をリレーレンズ 6によって第 1像面 10上へ転写するととも に、第 1像面 10を結合レンズ 7によって、光ファイバ 8の入射端面 81上に転写する。 またリレーレンズ 6によって第 2転写光学系を構成し、アパーチャ 5を結合レンズ 7上 へ転写している。
[0048] 本実施の形態に示すように、単一の光共振器中に複数のロッド型固体レーザ媒質 1を配置し、周期型共振器を構成する場合であっても、前記実施の形態 1と同一の方 法にて、アパーチャ 5、リレーレンズ 6、結合レンズ 7、光ファイバ 8の入射端面 81を配 置すれば、前記実施の形態 1と同様な効果が得られるば力りでなぐ略一定の集光 性を維持しながら容易に高出力化を図ることができる。
[0049] なお本実施の形態においては、単一の光共振器中に 2本のロッド型固体レーザ媒 質 la、 lbを配置する構成について示したが、光共振器中に配置するロッド型固体レ 一ザ媒質 1の数はこれに限るものではない。例えば、所望するレーザ出力に応じて、 光共振器中へ配置するロッド型固体レーザ媒質 1の数を選定し、部分反射鏡 2と隣 接するロッド型固体レーザ媒質 1間の距離、ならびに全反射鏡 3と隣接するロッド型 固体レーザ媒質 1間の距離を Lmに設定するとともに、相対面するロッド型固体レー ザ媒質 1間の距離を 2Lmに設定すれば、ロッド型固体レーザ媒質 1の数に依らず、 周期型共振器を構成することができる。
[0050] また複数のロッド型固体レーザ媒質 1を単一の光共振器中に配置する本実施の形 態においては、前記実施の形態 1と同じぐ部分反射鏡 2に隣接するロッド型固体レ 一ザ媒質 laの等価熱レンズ 9主面を、第 1転写光学系の物体面とする構成を示した が、第 1転写光学系の物体面はこれに限るものではない。例えば、図 12 (b)に示した ように前記実施の形態 2と同じぐ光共振器中に内部アパーチャ 11を設置する構成 に対しては、内部アパーチャ 11を第 1の基準面として第 1転写光学系の物体面とす ることにより、前記実施の形態 2と同様な効果を得ることができる。図 12 (b)とは異なり 、ロッド型固体レーザ媒質 1と全反射鏡 3の間に内部アパーチャ 11を配置した場合、 実施の形態 2で述べたようにロッド型固体レーザ媒質の中心 101に対して、対称な位 置に内部アパーチャ 11を配置した場合と等価と考えればよい。また前記実施の形態 3と同じぐ部分反射鏡 2に隣接するロッド型固体レーザ媒質 laの端面 102を第 1の 基準面として第 1転写光学系の物体面とすれば、前記実施の形態 3と同様な効果を 得ることができる。要は光共振器内部の適当な位置に第 1の基準面をとして、リレーレ ンズ 6、および結合レンズ 7からなる第 1転写光学系の物体面を設定し、リレーレンズ 6によって該物体面を第 1像面に転写し、更に第 1像面を結合レンズ 7によって光ファ ィバ 8の入射端面 81上へ縮小転写リレーするとともに、光共振器中に設定された第 1 転写光学系の物体面に対し、部分反射鏡 2を中点として、光学的に対称な位置にァ パーチヤ 5を設置し、リレーレンズ 6からなる第 2転写光学系によって、第 2転写光学 系の物体面であるアパーチャ 5を、結合レンズ 7上へ転写する構成とすればょ 、。 実施の形態 5.
図 13は、本発明の実施の形態 5によるロッド型固体レーザ装置の構成を示す模式 図である。本実施の形態においては、 3本のロッド型固体レーザ媒質 la、 lb、 lcを使 用しており、第 3のロッド型固体レーザ媒質 lcのみを、部分反射鏡 2、および全反射 鏡 3からなる光共振器中に配置し、レーザ光を発生させる発振器として使用するととも に、第 1、第 2のロッド型固体レーザ媒質 la、 lbは、発振器から発せられたレーザ光 を増幅する増幅器として使用する所謂 MOPA (Master Oscillator Power Amp lifier)構成を採用して!/、る。本実施の形態にぉ ヽて 3本のロッド型固体レーザ媒質 1 a、 lb、 lcは、距離 2Lmをもって等間隔に配置されている。また第 2のロッド型固体レ 一ザ媒質 lbと第 3のロッド型固体レーザ媒質 lcの中間に平面鏡力 なる部分反射鏡 2を、第 3のロッド型固体レーザ媒質 lcより距離 Lmなる位置に平面鏡力 なる全反射 鏡 3を配設している。本実施の形態に示すように、複数のロッド型固体レーザ媒質 1を 使用するロッド型固体レーザ装置において、複数のロッド型固体レーザ媒質 1を距離 2Lmなる等間隔で配置し、末端に配置されたロッド型固体レーザ媒質 1の端面より距 離 Lmなる位置に全反射鏡 3を配設するとともに、任意のロッド型固体レーザ媒質 1の 中間に部分反射鏡 2を配設する周期型 MOPA構成を採用すれば、複数のロッド型 固体レーザ媒質 1が全て均等に励起されている理想的な条件においては、前記周期 型共振器の場合と同じぐ各ロッド型固体レーザ媒質 1中でのモード形状の周期性が 保存される。従って、本実施の形態に示す周期型 MOPA構成を使用しても、複数の ロッド型固体レーザ媒質 1を使用し、集光性を略一定に保ちながら、容易に高出力化 を図ることができる。周期型 MOPA構成については、複数のロッド型固体レーザ媒質 1を用いたロッド型固体レーザ装置においては一般的な構成であり、光共振器中に 配設するロッド型固体レーザ媒質 1の数、増幅器に用いるロッド型固体レーザ媒質 1 の数は、所望する性能に応じて選定すればよい。
次に本実施の形態、即ち周期型 MOPA構成に対する光学系の配置方法について 説明する。周期型 MOPA構成においては、レーザ光 4が出射する最終段のロッド型 固体レーザ媒質 laの端面 102より、ロッド型固体レーザ媒質 la、 lb、 lcの設置間隔 2Lmに対し 1Z2なる距離 Lmの位置に、第 3の基準面 2'を設定する。この第 3の基 準面 2'を中点とし、第 1の基準面となる第 1のロッド型固体レーザ媒質 laの等価熱レ ンズ 9主面と対称な位置すなわち第 2の基準面に、ロッド型固体レーザ媒質 laの直 径と略等しい開口を有するアパーチャ 5を設置する。すなわち、第 3の基準面は、第 2 の基準面を設定する際に実施の形態 1〜4の部分反射鏡と同様の作用を有すること となるので、第 3の基準面を仮想部分反射鏡と呼ぶ。以下、前記実施の形態 1と同じ ぐリレーレンズ 6、ならびに結合レンズ 7によって第 1転写光学系を構成し、まずリレ 一レンズ 6にてロッド型固体レーザ媒質 laの等価熱レンズ 9の主面を第 1像面 10上 へ転写するとともに、結合レンズ 7により第 1像面 10を光ファイバ 8の入射端面 81上 に縮小転写リレーする。力 tlえて、リレーレンズ 6は第 2転写光学系を構成しており、リレ 一レンズ 6によって、アパーチャ 5を結合レンズ 7上へ転写する。従って、本実施の形 態においても、前記実施の形態 1にして示した、(1)式乃至(3)式をそのまま適用す ることがでさる。 [0053] 周期 MOPA構成においても、ロッド型固体レーザ媒質 1中でのモード形状の周期 性が略一定に保存されるため、前記実施の形態 1と同一の方法にて、アパーチャ 5、 リレーレンズ 6、結合レンズ 7、光ファイバ 8の入射端面 81を配置すれば、前記実施の 形態 1と同様な効果が得られるば力りでなぐ略一定に集光性を維持しながら容易に 高出力化を図ることができる。なお、前記実施の形態 4にて示した周期共振器構成と 本実施の形態で示した周期 MOPA構成を比較すると、周期共振器構成の場合には 、全てのロッド型固体レーザ媒質 1が光共振器内部に配置されているため、取り出さ れるレーザ光 4中での自然放出光の割合が低いことに加え、光共振器の境界条件に よってビームウェスト位置が固定されるため、集光性に優れたレーザ光 4を発生させる ことが容易であるという長所がある。一方、光共振器中に多数のロッド型固体レーザ 媒質 1が配置されるため、各ロッド型固体レーザ媒質 1間の励起状態のばらつきによ つて、光共振器の安定条件が容易に崩れ、不安定発振を起こし易いという短所も内 在している。周期 MOPA構成については、増幅器力も発せられる自然放出光が容 易に増幅されるため、レーザ光 4中に占める自然放出光の割合が増加することにカロ え、光共振器の境界条件によってビームウェスト位置が固定されることがないため、 集光性が容易に低下するという短所がある。また低強度のレーザ光 4では増幅器中 の利得を十分に取り出すことができず、レーザ光の発生効率が低下するという短所も ある。一方、周期共振器光共振器と同一数のロッド型固体レーザ媒質 1を使用する場 合であっても、光共振器中に配置するロッド型固体レーザ媒質 1の数は少なくするこ とができるので、各ロッド型固体レーザ媒質 1間で、励起状態にばらつきが生じた場 合であっても、安定にレーザ光 4を発生させることができると 、う長所がある。
[0054] また本実施の形態においては、レーザ光の出射端に位置するロッド型固体レーザ 媒質 laの等価熱レンズ 9主面を、第 1の基準面である第 1転写光学系の物体面とす る構成を示した力 第 1転写光学系の物体面はこれに限るものではない。例えば、前 記実施の形態 3と同じぐ仮想部分反射鏡 2'を中点として、レーザ光の出射端に位 置するロッド型固体レーザ媒質 laの端面 102と対称な位置すなわち第 2の基準面に 、ロッド型固体レーザ媒質 laの直径と略等しい開口径を有するアパーチャ 5を配設す るとともに、ロッド型固体レーザ媒質 laの端面 102を第 1の基準面である第 1転写光 学系の物体面とし、光ファイバ 8の入射端面 81上へ転写リレーする構成とすれば、前 記実施の形態 3と同様な効果を得ることができる。
[0055] なお上記説明では、ロッド型固体レーザ媒質 laの等価熱レンズ 9、もしくは端面 10 2を、第 1の基準面である第 1転写光学系の物体面として設定する方法を示したが、 第 1転写光学系の物体面の設定方法はこれに限るものではない。例えば、ロッド型固 体レーザ媒質 laの端面 102から中点 101までの範囲内において、基準となる熱レン ズ主面を任意に設定しても、同様な効果を得ることができる。要は設定する等価熱レ ンズ主面位置に対し、仮想部分反射鏡 2'を中点として光学的に対称な位置すなわ ち第 2の基準面にロッド型固体レーザ媒質 1の直径と略等しい開口径を有するァパー チヤ 5を配置するとともに、リレーレンズ 6、および結合レンズ 7からなる第 1転写光学 系を用いて等価熱レンズ 9の主面を光ファイバ 8の入射端面 81に転写リレーするとと もに、リレーレンズ 6からなる第 2転写光学系を用いて、アパーチャ 5を結合レンズ 7上 へ転写する構成とすれば、ロッド型固体レーザ媒質 1の熱レンズが変化したり、レー ザ光 4にポインティング変動が発生した場合であっても、結合レンズ 7上におけるビー ム径、ビーム位置を略一定に維持するとともに、光ファイバ 8の入射端面 81上でのビ 一ム径、ビーム位置を保証し、光ファイバ 8による安定なビーム伝送が可能になるとと もに、光ファイバ 8を出射するレーザ光 4についても、集光性を略一定に保つことがで きる。
[0056] 実施の形態 6.
図 14 (a)は、本発明の実施の形態 6によるロッド型固体レーザ装置の構成を示す模 式図である。本実施の形態においても、前記実施の形態 5と同じぐ複数のロッド型 固体レーザ媒質 la、 lb、 lcを等間隔で配置し、周期 MOPA構成を採用している。 なお本実施の形態においては、部分反射鏡 2、ならびに全反射鏡 3から構成される 光共振器中に内部アパーチャ 11を挿入し、レーザ光 4のビーム径を制限して 、る。 増幅器として使用されるロッド型固体レーザ媒質 lb、 lc中においても、レーザ光 4が 通過する部分でのみ増幅作用を被るため、第 1のロッド型固体レーザ媒質 la中のモ ード形状が、増幅器中においても略保存される。本実施の形態においては、内部ァ パーチヤ 11は、部分反射鏡 2より距離 Laなる位置に設置されている。 [0057] 次に本実施の形態に対する光学系の配置方法について説明する。まず前記実施 の形態 5と同じぐレーザ光 4が出射する最終段のロッド型固体レーザ媒質 laの端面 102より距離 Lmなる位置に、仮想部分反射鏡 2'を想定する。次に仮想部分反射鏡 2'より第 1のロッド型固体レーザ媒質 laの方向で、距離 Laなる位置を第 1の基準面と してここに、仮想内部アパーチャ 11 'を想定する。仮想部分反射鏡 2'を中点とし、仮 想内部アパーチャ 11 'と光学的に対称な位置を第 2の基準面としてここに、内部アバ 一チヤ 11と略等しい開口径を有するアパーチャ 5を配置する。従って、周期 MOPA 構成に対しても、前記実施の形態 2にて示した(11)式を適用することができる。以下 、前記実施の形態 1と同じぐリレーレンズ 6、ならびに結合レンズ 7によって第 1転写 光学系を構成し、まずリレーレンズ 6にて仮想内部アパーチャを第 1像面 10上へ転 写するとともに、結合レンズ 7により第 1像面 10を光ファイバ 8の入射端面 81上に縮 小転写リレーする。また、リレーレンズ 6は第 2転写光学系を構成しており、リレーレン ズ 6によって、アパーチャ 5を結合レンズ 7上へ転写する。従って、本実施の形態にお いても、前記実施の形態 2にして示した( )式、前記実施の形態 1にて示した(2)乃 至(3)式を適用することができる。
[0058] また、図 14 (a)とは異なり、図 14 (b)に示したようにロッド型固体レーザ媒質 lcと全反 射鏡 3の間に内部アパーチャ 11を配置した場合、実施の形態 2で述べたように部分 反射鏡 2側に全反射鏡 3と同様な距離だけ部分反射鏡 2からはなして内部ァパーチ ャ 11を配置した場合と等価と考えればよい。すなわち、内部アパーチャ 11を全反射 鏡 3から Laの距離に配置した場合は、図 14 (b)に示したように、図 14 (a)と同様の配 置にて光学系の配置を決定すればょ 、。
[0059] 本実施の形態に示すように、周期 MOPA構成において、光共振器に内部ァパー チヤ 11を挿入し、ビーム径を制限する方式においても、ロッド型固体レーザ媒質 1中 でのモード形状の周期性が略一定に保存されるため、前記実施の形態 2と同様な効 果が得られるば力りでなぐ一定の集光性を維持しながら容易に高出力化を図ること ができる。
[0060] なお、本実施の形態では、光共振器中にのみ内部アパーチャ 11を挿入し、ビーム 径を制限する構成を示したが、光共振器に挿入する内部アパーチャ 11に加え、増幅 器として使用する任意のロッド型固体レーザ媒質 1の近傍に、ビーム径を制限するァ パーチヤを設けてもよい。例えば、仮想内部アパーチャ 11 'を設置する位置に、内部 アパーチャ 11と略等しい開口径を有する実際のアパーチャを設置すれば、増幅器と して使用するロッド型固体レーザ媒質中で発生したビームポインティング変動や、レ 一ザ光 4のビーム品質を劣化させる自然放出増幅光の影響を抑制し、更に安定かつ 信頼性の高い光ファイバ 8を用いたレーザ光 4の伝送が可能になる。
[0061] また上記説明では、ロッド型固体レーザ媒質として、 Nd (ネオジゥム)がドープされ た YAG (イットリウムアルミニウムガーネット)結晶を使用した構成にっ 、て示したが、 固体レーザ媒質の種類はこれに限るものではなぐ例えばリン酸ガラスゃバナデート 結晶等を使用した場合であっても、同様な効果が得られることは言うまでもな 、。 産業上の利用可能性
[0062] 本発明に係るロッド型固体レーザ装置は、光ファイバ一を用いてレーザ光を伝送し 加工を行う装置に適して 、る。

Claims

請求の範囲
[1] ロッド型固体レーザ媒質と部分反射鏡及び全反射鏡からなる対称安定型光共振器 力も出力されたレーザ光を、リレーレンズと結合レンズを用いて光ファイバへ入射する ロッド型固体レーザ装置において、
前記部分反射鏡に隣接して配置されたロッド型固体レーザ媒質の前記部分反射鏡 に対向する端面と、このロッド型固体レーザ媒質の中点との間の任意の位置に第 1の 基準面を設定し、
該第 1の基準面と、前記部分反射鏡に対し光学的に対称な位置に第 2の基準面を設 定し、
前記リレーレンズは、前記第 1の基準面を第 1像面に転写するとともに前記第 2の基 準面を前記結合レンズ上に転写する位置に配置され、
前記結合レンズは、前記第 1像面を光ファイバ端面に転写する位置に配置されたこと を特徴とするロッド型固体レーザ装置。
[2] 前記部分反射鏡に隣接して配置されたロッド型固体レーザ媒質の前記部分反射鏡 に対向する端面と、このロッド型固体レーザ媒質の中点との間で形成される熱レンズ と光学的に等価な薄肉レンズを想定し、この想定した薄肉レンズの主面の位置に前 記第 1の基準面を設定することを特徴とする請求の範囲 1に記載のロッド型固体レー ザ装置。
[3] 前記部分反射鏡に隣接して配置されたロッド型固体レーザ媒質の前記部分反射鏡 に対向する端面に、前記第 1の基準面を設定することを特徴とする請求の範囲 1に記 載のロッド型固体レーザ装置。
[4] 前記第 2の基準面の位置にアパーチャを配置したことを特徴とする請求の範囲 1〜
3いずれかに記載のロッド型固体レーザ装置。
[5] 前記アパーチャの開口径は、前記ロッド型固体レーザ媒質の直径と略等しいもので あることを特徴とする請求の範囲 4に記載のロッド型固体レーザ装置。
[6] 前記ロッド型固体レーザ媒質が単数であることを特徴とする請求の範囲 1に記載の ロッド型固体レーザ装置。
[7] 前記ロッド型固体レーザ媒質が複数であることを特徴とする請求の範囲 1に記載の ロッド型固体レーザ装置。
[8] ロッド型固体レーザ媒質と全反射鏡及び平面鏡である部分反射鏡からなる安定型 光共振器から出力されたレーザ光を、リレーレンズと結合レンズを用いて光ファイバ へ入射するロッド型固体レーザ装置において、
前記部分反射鏡と、前記部分反射鏡に隣接して配置されたロッド型固体レーザ媒質 の中点との間で、レーザ光のビーム径が前記ロッド型固体レーザ媒質の熱レンズに 依らず一定となる位置に第 1の基準面を設定し、
該第 1の基準面と、前記部分反射鏡に対し光学的に対称な位置に第 2の基準面を設 定し、
前記リレーレンズは、前記第 1の基準面を第 1像面に転写するとともに前記第 2の基 準面を前記結合レンズ上に転写する位置に配置され、
前記結合レンズは、前記第 1像面を光ファイバ端面に転写する位置に配置されたこと を特徴とするロッド型固体レーザ装置。
[9] 前記ロッド型固体レーザ媒質と前記部分反射鏡との間にビーム径を制限する内部 アパーチャを備え、
この内部アパーチャの位置に第 1の基準面を設定したことを特徴とする請求の範囲 8 に記載のロッド型固体レーザ装置。
[10] 前記ロッド型固体レーザ媒質と前記全反射鏡との間にビーム径を制限する内部ァ パーチヤを備え、
前記部分反射鏡からロッド型固体レーザ媒質側の、前記内部アパーチャと前記全反 射鏡間と略等しい距離に第 1の基準面を設定したことを特徴とする請求の範囲 8に記 載のロッド型固体レーザ装置。
[11] 前記第 2の基準面の位置にアパーチャを配置したことを特徴とする請求の範囲 8〜
10のいずれかに記載のロッド型固体レーザ装置。
[12] 前記アパーチャの開口径は、前記内部アパーチャの開口径と略等しいものであるこ とを特徴とする請求の範囲 11に記載のロッド型固体レーザ装置。
[13] 前記ロッド型固体レーザ媒質が単数であることを特徴とする請求の範囲 8〜: LOのい ずれかに記載のロッド型固体レーザ装置。
[14] 前記ロッド型固体レーザ媒質が複数であることを特徴とする請求の範囲 8〜10のい ずれかに記載のロッド型固体レーザ装置。
[15] 等間隔で配置された複数のロッド型固体レーザ媒質を備え、末端に配置されたロッ ド型固体レーザ媒質から、ロッド型固体レーザ媒質の配置間隔の略 1Z2の距離に、 平面鏡力 なる全反射鏡を配置し、任意のロッド型固体レーザ媒質間の略中点なる 位置に平面鏡力 なる部分反射鏡を配置して前記全反射鏡との間で光共振器を構 成し、この光共振器外のロッド型固体レーザ媒質を増幅器として使用して前記光共 振器から出射したレーザ光を増幅し、リレーレンズと結合レンズを用いてレーザ光を 光ファイバへ入射するロッド型固体レーザ装置において、
レーザ光出射側の末端に位置するロッド型固体レーザ媒質のレーザ光出射側の端 面から、前記ロッド型固体レーザ媒質の配置間隔の略 1Z2の距離に、仮想部分反 射鏡を想定し、
前記仮想部分反射鏡に隣接して配置されたロッド型固体レーザ媒質の前記仮想部 分反射鏡に対向する端面と、このロッド型固体レーザ媒質の中点との間の任意の位 置に第 1の基準面を設定し、
該第 1の基準面と、前記仮想部分反射鏡に対し光学的に対称な位置に第 2の基準 面を設定し、
前記リレーレンズは、前記第 1の基準面を第 1像面に転写するとともに前記第 2の基 準面を前記結合レンズ上に転写する位置に配置され、
前記結合レンズは、前記第 1像面を光ファイバ端面に転写する位置に配置されたこと を特徴とするロッド型固体レーザ装置。
[16] 前記仮想部分反射鏡に隣接するロッド型固体レーザ媒質の前記仮想部分反射鏡 に対向する端面と中点との間で形成される熱レンズと光学的に等価な薄肉レンズを 想定し、この想定した薄肉レンズの主面の位置に前記第 1の基準面を設定したことを 特徴とする請求の範囲 15に記載のロッド型固体レーザ装置。
[17] 前記仮想部分反射鏡に隣接するロッド型固体レーザ媒質の前記仮想部分反射鏡 に対向する端面に、前記第 1の基準面を設定したことを特徴とする請求の範囲 15に 記載のロッド型固体レーザ装置。
[18] 前記第 2の基準面の位置にアパーチャを配置したことを特徴とする請求の範囲 15 〜 17のいずれかに記載のロッド型固体レーザ装置。
[19] 前記アパーチャの開口径は、前記ロッド型固体レーザ媒質の直径と略等しいもので あることを特徴とする請求の範囲 18に記載のロッド型固体レーザ装置。
[20] 等間隔で配置された複数のロッド型固体レーザ媒質を備え、末端に配置されたロッ ド型固体レーザ媒質から、ロッド型固体レーザ媒質の配置間隔の略 1Z2の距離に、 平面鏡力 なる全反射鏡を配置し、任意のロッド型固体レーザ媒質間の略中点なる 位置に平面鏡力 なる部分反射鏡を配置して前記全反射鏡との間で光共振器を構 成し、この光共振器外のロッド型固体レーザ媒質を増幅器として使用して前記光共 振器から出射したレーザ光を増幅し、リレーレンズと結合レンズを用いてレーザ光を 光ファイバへ入射するロッド型固体レーザ装置において、
レーザ光出射側の末端に位置するロッド型固体レーザ媒質のレーザ光出射側の端 面から、前記ロッド型固体レーザ媒質の配置間隔の略 1Z2の距離に、仮想部分反 射鏡を想定し、
前記仮想部分反射鏡と、前記仮想部分反射鏡に隣接して配置されたロッド型固体レ 一ザ媒質の中点との間で、レーザ光のビーム径が前記ロッド型固体レーザ媒質の熱 レンズに依らず一定となる位置に第 1の基準面を設定し、
該第 1の基準面と、前記仮想部分反射鏡に対し光学的に対称な位置に第 2の基準 面を設定し、
前記リレーレンズは、前記第 1の基準面を第 1像面に転写するとともに前記第 2の基 準面を前記結合レンズ上に転写する位置に配置され、
前記結合レンズは、前記第 1像面を光ファイバ端面に転写する位置に配置されたこと を特徴とするロッド型固体レーザ装置。
[21] 前記光共振器中の前記部分反射鏡に隣接するロッド型固体レーザ媒質と前記部 分反射鏡間にビーム径を制限する内部アパーチャを備え、
前記仮想部分反射鏡からロッド型固体レーザ媒質側の、前記内部アパーチャと前記 部分反射鏡間と略等しい距離に第 1の基準面を設定したことを特徴とする請求の範 囲 20に記載のロッド型固体レーザ装置。
[22] 前記光共振器中の前記全反射鏡に隣接するロッド型固体レーザ媒質と前記全反 射鏡間にビーム径を制限する内部アパーチャを備え、
前記仮想部分反射鏡からロッド型固体レーザ媒質側の、前記内部アパーチャと前記 全反射鏡間と略等しい距離に第 1の基準面を設定したことを特徴とする請求の範囲 2
0に記載のロッド型固体レーザ装置。
[23] 前記第 2の基準面の位置にアパーチャを配置したことを特徴とする請求の範囲 20
〜22のいずれかに記載のロッド型固体レーザ装置。
[24] 前記アパーチャの開口径は、前記内部アパーチャの開口径と略等しいものであるこ とを特徴とする請求の範囲 23に記載のロッド型固体レーザ装置。
PCT/JP2005/016933 2005-09-14 2005-09-14 ロッド型固体レーザ装置 WO2007032066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006519002A JP4910698B2 (ja) 2005-09-14 2005-09-14 ロッド型固体レーザ装置
PCT/JP2005/016933 WO2007032066A1 (ja) 2005-09-14 2005-09-14 ロッド型固体レーザ装置
US10/590,191 US20080225922A1 (en) 2005-09-14 2005-09-14 Rod-Type Solid-State Laser System
DE112005000610T DE112005000610B4 (de) 2005-09-14 2005-09-14 Stabförmiges Festkörper-Lasersystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/016933 WO2007032066A1 (ja) 2005-09-14 2005-09-14 ロッド型固体レーザ装置

Publications (1)

Publication Number Publication Date
WO2007032066A1 true WO2007032066A1 (ja) 2007-03-22

Family

ID=37864672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016933 WO2007032066A1 (ja) 2005-09-14 2005-09-14 ロッド型固体レーザ装置

Country Status (4)

Country Link
US (1) US20080225922A1 (ja)
JP (1) JP4910698B2 (ja)
DE (1) DE112005000610B4 (ja)
WO (1) WO2007032066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084608A1 (ja) * 2011-12-07 2013-06-13 三菱電機株式会社 Co2レーザ装置およびco2レーザ加工装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2534598B (en) * 2015-01-29 2019-02-20 Laser Quantum Ltd Laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167754A (ja) * 1994-10-14 1996-06-25 Mitsubishi Electric Corp 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置
JP2001094177A (ja) * 1999-09-24 2001-04-06 Ishikawajima Harima Heavy Ind Co Ltd 固体レーザ光投射装置
JP2003078190A (ja) * 2001-09-05 2003-03-14 Toshiba Corp 光伝送装置、レーザ光発生・伝送装置及びレーザ加工装置
JP2004029229A (ja) * 2002-06-24 2004-01-29 Nec Corp ファイバ結合光学システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025446A (en) * 1988-04-01 1991-06-18 Laserscope Intra-cavity beam relay for optical harmonic generation
GB8912765D0 (en) * 1989-06-02 1989-07-19 Lumonics Ltd A laser
DE4102505A1 (de) * 1991-01-29 1992-08-06 Haas Laser Gmbh Laseranordnung
US5132980A (en) * 1991-02-13 1992-07-21 Coherent, Inc. Method and device for preconditioning a laser having a solid state gain medium
US5815626A (en) * 1994-10-14 1998-09-29 Mitsubishi Denki Kabushiki Kaisha Optical transmission device, solid state laser device, and laser beam processing device
DE19606555A1 (de) * 1996-02-22 1997-08-28 Laser Medizin Zentrum Ggmbh Oszillator-Lichtleiter-Verstärker Anordnung für Laserstrahlen
WO2002091533A1 (en) * 2001-05-07 2002-11-14 Mitsubishi Denki Kabushiki Kaisha Laser device, method of exciting the same, and laser processing machine
JP2003209307A (ja) 2002-01-15 2003-07-25 Mitsubishi Electric Corp 固体レーザ装置及び固体レーザ加工装置
JP4069894B2 (ja) * 2004-03-30 2008-04-02 三菱電機株式会社 固体レーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167754A (ja) * 1994-10-14 1996-06-25 Mitsubishi Electric Corp 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置
JP2001094177A (ja) * 1999-09-24 2001-04-06 Ishikawajima Harima Heavy Ind Co Ltd 固体レーザ光投射装置
JP2003078190A (ja) * 2001-09-05 2003-03-14 Toshiba Corp 光伝送装置、レーザ光発生・伝送装置及びレーザ加工装置
JP2004029229A (ja) * 2002-06-24 2004-01-29 Nec Corp ファイバ結合光学システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084608A1 (ja) * 2011-12-07 2013-06-13 三菱電機株式会社 Co2レーザ装置およびco2レーザ加工装置
JP5657139B2 (ja) * 2011-12-07 2015-01-21 三菱電機株式会社 Co2レーザ装置およびco2レーザ加工装置
US9059567B2 (en) 2011-12-07 2015-06-16 Mitsubishi Electric Corporation CO2 laser device and CO2 laser processing device

Also Published As

Publication number Publication date
US20080225922A1 (en) 2008-09-18
JP4910698B2 (ja) 2012-04-04
DE112005000610T5 (de) 2008-07-24
DE112005000610B4 (de) 2010-02-04
JPWO2007032066A1 (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
US6134258A (en) Transverse-pumped sLAB laser/amplifier
JP5124092B2 (ja) 複数のレーザ活性媒質を有するレーザ増幅器およびレーザ共振器
JPH03190293A (ja) スラブ型レーザ媒体
US7620092B2 (en) Multimode MOPA with thermal lens compensation
US20100226396A1 (en) Optical Arrangement For Pumping Solid-State Lasers
JP2007250951A (ja) ダブルクラッドファイバ及びそれを備えたファイバレーザ
US7813405B2 (en) Unstable disk resonator
US5907570A (en) Diode pumped laser using gain mediums with strong thermal focussing
JP2010034413A (ja) 固体レーザ装置
KR102128636B1 (ko) 개선된 시간적 콘트라스트를 갖는 레이저 펄스를 증폭시키기 위한 디바이스
KR20160126606A (ko) 레이저 증폭장치
WO2007032066A1 (ja) ロッド型固体レーザ装置
US5325390A (en) Correction of thermally-induced aberration in end-pumped solid-state lasers
JP2008028316A (ja) 伝送光学系
JP2725648B2 (ja) 固体レーザ励起方法及び固体レーザ装置
US20030118073A1 (en) Compact optical amplifier, a system incorporating the same, and an optical amplification method
JP6242917B2 (ja) ビーム反転モジュールおよびそのようなビーム反転モジュールを有する光パワー増幅器
JPH0563264A (ja) 半導体レーザ端面励起固体レーザ装置
JP2007123594A (ja) 光ファイバ型光増幅装置及びこれを用いた光ファイバ型レーザ装置
WO2000022702A1 (fr) Amplificateur de lumiere, dispositif et procede d'amplification de lumiere
US5838710A (en) Optical amplification device
JP3086090B2 (ja) ガスレーザ装置
JP2014229813A (ja) レーザ増幅器及びレーザ発振器
JPH10284775A (ja) 固体レーザ装置
JP2001007427A (ja) 固体レーザ光伝搬装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519002

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10590191

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050006107

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580051561.3

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 112005000610

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05783224

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607