WO2007029786A1 - ノイズキャンセル機能付きa/d変換器 - Google Patents

ノイズキャンセル機能付きa/d変換器 Download PDF

Info

Publication number
WO2007029786A1
WO2007029786A1 PCT/JP2006/317772 JP2006317772W WO2007029786A1 WO 2007029786 A1 WO2007029786 A1 WO 2007029786A1 JP 2006317772 W JP2006317772 W JP 2006317772W WO 2007029786 A1 WO2007029786 A1 WO 2007029786A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
azd
output
amplifier circuit
input
Prior art date
Application number
PCT/JP2006/317772
Other languages
English (en)
French (fr)
Inventor
Shoji Kawahito
Original Assignee
National University Corporation Shizuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Shizuoka University filed Critical National University Corporation Shizuoka University
Priority to US12/066,059 priority Critical patent/US7598896B2/en
Publication of WO2007029786A1 publication Critical patent/WO2007029786A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/162Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in a single stage, i.e. recirculation type

Definitions

  • the present invention relates to an AZD modification having a random noise reduction function included in an output signal of a CMOS image sensor.
  • Cyclic AZD converters are known as systems that operate at relatively high speed with a relatively small circuit scale and are suitable for high resolution! / Traditionally known!
  • Figure 1 shows an example of a circuit that turns. This circuit amplifies the unit circuit by a factor of 2 and adds or subtracts the reference voltage depending on the result of the comparator. By connecting the unit circuits in two stages in cascade and returning the output to the input, A / D conversion of 2 bits per clock can be performed. If the AZD conversion is repeated 5 times, a 10-bit AZD conversion result is obtained.
  • Non-Patent Document 1 Since such a cyclic AZD converter uses a relatively simple circuit, as shown in Non-Patent Document 1, an array of cyclic AZD transformations can be integrated in a column of an image sensor array.
  • Patent Document 1 discloses a circuit capable of performing noise cancellation and cyclic AZD conversion using one amplifier as shown in FIG.
  • Non-Patent Document 2 describes a method of reducing random noise and canceling noise in a pixel unit by canceling main components of random noise using an amplifier having a large gain. Yes.
  • Patent Document 3 a digital value of cyclic AZD conversion of a voltage signal including noise is stored in a first register, and a digital value of cyclic AZD conversion of a voltage signal including noise and a voltage signal including noise is stored. Is stored in the second register for these operations. Cancel the noise more.
  • Patent Document 4 the input terminal of the parallel AZD converter circuit is selectively connected to either the signal input terminal or the output terminal of the operational amplifier by the switch.
  • One end of each capacitor of the capacitor array is connected to the common line, and the other end of each of these capacitors is connected to any one of the input terminal, reference voltage terminal, or ground terminal of the AZD conversion circuit via each switch. Connected selectively.
  • Patent Document 5 describes a sample Z hold circuit that uses a differential amplifier circuit.
  • Patent Document 1 JP 2005-136540 A
  • Patent Document 2 U.S. Pat.No. 6,128,039
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-25189
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-53610
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-158432
  • Non-Patent Document 1 S. Decker, RD Mcgrath, K. Brehmer, CG Sodini, ⁇ A 256 x 256 CMOS imaging array with wide dynamic range pixels and column p arallel digital output ", IEEE J. Solid— State Circuits, vol. 33, no. 12, pp. 20 81-2091, Dec. 1998.
  • Non-Patent Document 2 N. Kawai, S. Kawahito, "Noise analysis of high gain low noise column readout circuits for CMOS image sensors, IEEE Trans. Electron Devices, vol.51, no.2, pp.185—194 (2004 ).
  • Non-Patent Document 1 requires three amplifiers per channel, together with an amplifier for canceling noise generated in the pixel portion of the image sensor. For this reason, the area occupied by the circuit is large and the power consumption is large.
  • the circuit for cyclic A / D conversion of Non-Patent Document 1 and Patent Document 1 is integrated in the column of the image sensor array, a very large capacitor cannot be integrated. For this reason, the circuit is easily affected by random noise, so the noise level is high even if the resolution is high.
  • the circuit described in Patent Document 2 reduces random noise. For the purpose of reducing it.
  • Patent Document 3 digitally cancels noise. Further, the cyclic AZD transformation of Patent Document 4 uses an array of capacitors having one end connected to a common line and a parallel AZD conversion circuit, and the parallel AZD conversion circuit requires a large area. . Further, Patent Document 5 describes a sample Z hold circuit, and does not describe a cyclic AZD variation.
  • One aspect of the present invention is to perform random noise reduction and AZD conversion without increasing the scale of the circuit by incorporating a random noise reduction function into the circuit of the AZD converter. This is particularly useful as an AZD converter integrated in a CMOS image sensor column. Furthermore, another aspect of the present invention is that a single circuit can perform noise cancellation and AZD conversion on two input signals in order to reduce the mounting area.
  • CMOS image sensor column has been reported, but none of them can effectively reduce random noise and perform AZD conversion.
  • high-resolution AZD conversion can be performed while greatly reducing random noise without complicating the circuit.
  • the noise level of the CMOS image sensor is now approaching that of a CCD image sensor!
  • What determines the superiority of CM OS image sensors is that low-noise readout is achieved by effectively using the column processing, which is an advantage of CMOS.
  • no practical solution has been reported yet.
  • Yet another aspect of the present invention is a technology that can increase the CMOS image sensor to an area of low noise performance exceeding that of the CCD image sensor.
  • AZD conversion is performed while effectively reducing random noise by an AZD converter arranged in a column of a CMOS image sensor.
  • the AZD transformation according to the present invention applies a second voltage level force to a signal in which a first voltage level including a noise component and a second voltage level in which a significant signal component is superimposed on the noise component appear in order.
  • a voltage level of 1 It is.
  • This AZD converter has a first stage amplifying means (6) for amplifying an input signal, and a first level for storing the voltage level of the output of the first stage amplifying means generated by the first voltage level.
  • the second stage amplifying means (1) that amplifies the difference from the voltage, the comparator (2, 3) connected to the output of the second stage amplifying stage, and the comparison result of the comparator
  • a DZA conversion unit (5) switching means for switching the connection of the first and second capacitors, and a control unit for controlling opening and closing of the switching means.
  • the AZD transformation performs the second operation on a signal in which a first voltage level including a noise component and a second voltage level in which a significant signal component is superimposed on the noise component appear alternately. It has a noise cancellation function that subtracts the first voltage level from the voltage level.
  • the A ZD converter includes an amplifying means (1) for amplifying an input signal, a first capacitor (C1) for storing the voltage level of the output of the amplifying means generated by the first voltage level, and a second voltage.
  • the AZD converter according to the present invention includes a third capacitor (C3) connected between the input terminal of the AZD converter and the input of the amplification means, and the input and output of the amplification means (1). Controls the connection of the fourth capacitor (C5), which is connected between them, and determines the gain of the amplification means by the capacitance ratio with the third capacitor, and the third and fourth capacitors (C5) and the amplification means (1). Further switching means can be provided.
  • the amplification means (1) is a MOS amplification circuit in which the polarity of the output signal is inverted with respect to the polarity of the input signal.
  • the third capacitor (C3) is connected between the input terminal of the AZD transformer and the input terminal of the MOS amplifier circuit.
  • a fourth capacitor (C5) is connected to the input terminal of the MOS amplifier circuit and the output terminal of the MOS amplifier circuit.
  • One end of the first capacitor (C1) and one end of the second capacitor (C2) are sequentially connected to the output terminal of the MOS amplifier circuit so as to store the first voltage level and the second voltage level, respectively. Thereafter, one end of the first capacitor and the second capacitor are connected to each other to form a series circuit of the first and second capacitors. Connect one end of the series circuit to the input terminal of the MOS amplifier circuit and connect the other end of the series connection to the ground potential to cancel the noise.
  • the third capacitor (C3) is connected to the input terminal and the output terminal of the MOS amplifier circuit.
  • the cyclic AZD transformation includes a first face and a second face, and the cyclic AZD transformation is performed by repeating the first and second faces.
  • one terminal of the first capacitor (C1) is connected to the output terminal of the MOS amplifier circuit, and in the second phase, a DZA converter that provides a reference voltage for DZA conversion Change the part.
  • the other terminal of the first capacitor (C1) is connected to the ground potential, and in the second phase, it is switched to the input terminal of the MOS amplifier circuit.
  • the amplifying means (1) is a differential input-differential output MOS amplifier circuit.
  • the third capacitor (C3) is connected between the input terminal of the AZD converter and the negative input terminal of the MOS amplifier circuit.
  • the fourth capacitor (C5) is connected to the negative input terminal of the MOS amplifier circuit and the positive output terminal of the MOS amplifier circuit.
  • the positive input terminal of the MOS amplifier circuit and the negative output terminal of the MOS amplifier circuit are short-circuited and connected to a DC potential, and the first capacitor (C1) and the second capacitor (C2) are connected to the MOS amplifier circuit.
  • the positive output terminal is sequentially connected to store the first voltage level and the second voltage level, respectively. Then, connect one end of the first capacitor (C1) and the second capacitor (C2) to the negative input terminal and positive input terminal of the MOS amplifier circuit, respectively.
  • noise cancellation is performed by connecting the other ends of the first capacitor (CI) and the second capacitor (C2).
  • the third capacitor (C3) is connected to the negative input terminal and the positive output terminal of the MOS amplifier circuit.
  • the cyclic AZD transformation includes first and second faces, and the cyclic AZD transformation is performed by repeating the first face and the second face.
  • one terminal of the first capacitor (C1) and one terminal of the second capacitor (C2) are connected to the positive output terminal and the negative output terminal of the MOS amplifier circuit, respectively.
  • the other terminal of the first capacitor (C1) and the other terminal of the second capacitor (C2) are connected to the ground potential, and in the second phase, the negative input of the MOS amplifier circuit Switch to the terminal and positive input terminal respectively.
  • the fourth capacitor (C5) when used for cyclic A / D conversion, it is connected between the input terminal and the output terminal of the MOS amplifier circuit. It is preferable to reduce the number of switching elements.
  • the AZD conversion according to the present invention includes a first input terminal for receiving one of the first and second series of signals, a second input terminal for receiving the other, A third capacitor (C3) connected between the input terminal and the first input of the amplification means (1), the first input of the amplification means (1) and the first output of the amplification means (1) And a fourth capacitor (C5) that determines the gain of the amplification means based on the capacitance ratio with the third capacitor, and the second input terminal and the second input of the amplification means (1) A capacitance ratio between the fifth capacitor (C4) connected between the second input of the amplifying means (1) and the second output of the amplifying means (1) and the third capacitor.
  • the amplifying means (1) includes a differential amplifier having two input terminals and two output terminals, and has first and second modes whose modes can be switched. In the first mode, the differential amplifier operates as an amplifier circuit with differential input and differential output for cyclic AZD conversion, and in the second mode. The differential amplifier operates as two single-ended amplifiers for noise canceling operation by connecting the common source of the differential amplifier to a fixed potential.
  • the first and second series of signals are applied to the first and second pixel columns of an image sensor pixel array including a plurality of pixels arranged in rows and columns. Each connected first and second column line force can also be provided.
  • an A ZD transform that performs random noise reduction and AZD conversion without increasing the scale of the circuit by incorporating the random noise reduction function into the circuit of the AZD converter. Is done.
  • FIG. 1 is a diagram showing a cyclic AZD converter in the prior art.
  • FIG. 2 is a diagram showing a conventional amplifier-shared cyclic AZD modification having a noise canceling function.
  • FIG. 3 A drawing showing an example of a cyclic AZD variant with a noise reduction function.
  • FIG. 4 is a drawing showing another example of a cyclic AZD converter having a noise reduction function.
  • FIG. 5 is a drawing showing an example of an AZD converter in which the cyclic AZD converter shown in FIG. 4 is partially changed.
  • FIG. 6 This figure shows the main steps of the operation of a cyclic AZD converter with a noise reduction function.
  • FIG. 7 is a diagram showing an example of an image sensor in which the array of the circuit of FIG. 4 is arranged in the column of the image sensor array and the image sensor array and the array of AZD change are integrated.
  • FIG. 8 is a drawing showing the operation timing of the circuit of FIG.
  • FIG. 9 is a drawing showing an example of a single AZD converter for AZD converting signals from two pixel columns of an image sensor array.
  • 10 is a drawing showing the main steps of the operation of the circuit of FIG.
  • FIG. 11 is a drawing showing a circuit example of an internal amplifier used in FIG. 9.
  • FIG. 12 is a drawing showing the operation timing of the circuit of FIG.
  • FIG. 13 is a diagram showing the relationship between the noise cancellation performance using a single stage, the noise cancellation performance using a double stage, and the gain of a column amplifier. Explanation of symbols
  • canceling noise (reset noise and fixed pattern noise) generated in the pixel using a single amplifier, and the dominant random noise component generated by the amplifier And cancel AZD conversion with high resolution. Examples of the present invention are shown below. Symbols beginning with symbol ⁇ are controls. When the control signal force is i ", the switch controlled by the control signal is turned on. When the control signal force is 0", the switch controlled by the control signal is turned off. These control signals are generated in synchronization with a control signal for transferring photocharges from the image array to the outside, and are generated by a control signal generator.
  • the present invention provides a signal in which a first voltage level including a noise component and a second voltage level in which a significant signal component is superimposed on the noise component appear in order, such as an output signal of a CMOS image sensor force. It is suitable for the process.
  • the circuit ADO shown in Fig. 3 includes an amplification stage AMP and an AZD conversion stage ADC that receives the output and performs cyclic AZD conversion.
  • the amplification stage AMP of this circuit has an inverting amplifier 6 and two capacitors Cpl and Cp2.
  • the capacitor Cp2 is connected between the input 6a and the output 6b of the inverting amplifier 6, and the capacitor Cpl is connected between the input IN and the input 6a of the inverting amplifier 6.
  • the input signal Vin is provided to the input 6a of the inverting amplifier 6 via the capacitor Cpl.
  • the gain G in this amplification stage AMP is given by CplZCp2.
  • As the inverting amplifier 6, an operational amplifier circuit having an inverting input and a non-inverting output can be used.
  • the inverting amplifier 6 can also be a MOS amplifier circuit, for example.
  • the output OUT of the amplification stage AMP generates a first signal in response to a voltage level indicating a noise level, and has a voltage level including both the generated signal and the noise level in response to signal light. In response, a second signal is generated.
  • the AZD conversion stage ADC samples the first and second signals from the output OUT of the amplification stage AMP into the capacitor C1 and the capacitor C2, respectively. Sampling to capacitor C1 uses the switch ( ⁇ ) SW
  • the switch ( ⁇ ) is turned on by the control signal ⁇ , and the control signal ⁇ 1
  • switches ( ⁇ 1) 55 and 57 are turned on by the control signal ⁇ 1.
  • switches ( ⁇ 2) 41 and 43 are turned off by control signal ⁇ 2.
  • the subsequent operation for example, the operation of cyclic AZD conversion will be described in the second embodiment.
  • the control signal ⁇ R is for initializing the charges of the capacitors Cp2, C3 and C4. This initialization is performed using the switches SW, 33, and 35 connected between both ends of the capacitors Cp2, C3, and C4, respectively. Switch SW force Bypass amplification stage if desired
  • FIG. 4 shows a circuit example of a cyclic AZD converter having a noise reduction function corresponding to the second embodiment.
  • Amplifier 1 is provided as an amplifying means.
  • comparison circuit comparative 2, 3 COMP is connected to the output of amplifier 1
  • decoder 4 is connected to comparison circuit (comparators 2, 3) COMP.
  • DAC DZA conversion circuit
  • the array of this circuit AD1 is integrated in the column of the image sensor array as shown in FIG. 7 and operated in parallel.
  • Figure 6 shows the principle of the noise reduction operation by the circuit in Fig. 4 and the subsequent cyclic AZD conversion operation, including the signal readout operation of the pixel part of the image sensor array.
  • V in Fig. 4 is referred to as GND. Calculation as amplifier 1
  • An operational amplifier circuit can include an inverting input la, a non-inverting input 1b, an inverting output lc, and a non-inverting output Id.
  • AD1 is given the reset level VR from the pixel in the i-th row, and the received signal is sampled in the capacitor C3.
  • the charges of the capacitors C5 and C4 are reset, and Vcom is provided to the input lc of the amplifier 1 through the switch 49.
  • the output value of amplifier 1 is stored in capacitor C1 so that the circuit connection shown in step (b) of FIG. 6 is obtained (the switch is turned off by control signal ⁇ 2d).
  • Capacitor C5 is connected between input la and output lb of amplifier 1. One end of the capacitor C1 is connected to the output lb of the amplifier 1 through the switch 41 !, and the other end of the capacitor C1 is connected to Vcom through the switch 45. Switch 49 on the input lc of amplifier 1 Via Vcom. Switches 33 and 35 are opened in response to the change of control signal ⁇ .
  • Switch 39 is opened in response to the change of control signal ⁇ .
  • step (c) of FIG. 6 the circuit connection shown in step (c) of FIG. 6 is made, and the signal level VS of the pixel portion is given to the input IN of the circuit AD1.
  • Signal level VS is unconnected via capacitor C3.
  • the voltage stored in capacitor C2 is ideally
  • V V-V
  • Equation 3 It is expressed as (V s -V R ) + V nc + V n2 .
  • the circuit AD2 shown in FIG. 5 does not include the switches 37 and 53 included in the circuit AD1 and connected to one end of the capacitor C5. Therefore, the circuit AD2 is simpler than the circuit AD1.
  • Capacitor C3 and capacitor C5 are connected in parallel during cyclic AZ D conversion.
  • some switches can be omitted.
  • step (d) of Fig. 6 The circuit connection shown in step (d) of Fig. 6 is made, and in preparation for cyclic AZD conversion, the inverting input la and the non-inverting output lb are set so that the capacitor C3 becomes the feedback capacitance of the amplifier 1. Is connected between the inverting input lc and the non-inverting output Id so that the capacitor C4 becomes the feedback capacitance of the amplifier 1, and the inputs la and lc of the amplifier 1 and the outputs lb and Id are connected respectively. Short-circuit to initialize capacitors C3 and C4. The capacitor C1 stores the voltage Voutl, and the capacitor C2 stores the voltage Vout2. This circuit In connection, the initialization of the charges on capacitors C3 and C4 is performed by switch 3 in response to control signal ⁇ .
  • One ends of the capacitors Cl and C2 are connected to the inverting input 1a and the non-inverting input lc of the amplifier 1 through the switches 55 and 57, respectively, and the other ends of the capacitors Cl and C2 are floating.
  • the capacitor C1 holds the voltage Voutl
  • the capacitor C2 holds the voltage Vout2.
  • control signal ⁇ so that the circuit connection shown in step (f) of FIG.
  • the differential output signal of amplifier 1 is stored in capacitors CI and C2.
  • the voltage level from the output of amplifier 1 is determined by the comparator circuit (comparators 2, 3) COMP.
  • the output values (d0, dl) of the comparators 2 and 3 are coded by the decoder 4.
  • step (g) of Fig. 6 the voltage value corresponding to the judgment result of comparators 2 and 3 is DAC (digital 'analog transformation) 5 is the other end of capacitors C1 and C2. Can be used to calculate the following equation.
  • step (g) the switches 55 and 57 are turned on in response to the clock ⁇ 1, and one ends of the capacitors C1 and C2 are connected to the inverting input la and the non-inverting input lc of the amplifier 1, and the capacitor C1 and In response to clock ⁇ 2d, switches 41 and 43 are turned off and the feedback path is disconnected so that the other end of C2 can receive the signal from DAC5.
  • step (f) and step (g) in Fig. 6 as many times as necessary provides the AZD conversion result with the required resolution.
  • capacitor C1 is connected to the output of amplifier 1, such as a MOS amplifier, and the charge corresponding to voltage Vout is charged.
  • the capacitor C3 is initially charged with the charge Q3.
  • one end of the capacitor C 1 is connected to the inverting input of the amplifier 1 such as a MOS amplifier.
  • the other end of capacitor C1 is switched to DAC5. If the reference voltage of the DAC is Vdac, the terminal voltage of the capacitor C1 changes to the Vout force Vdac, so the capacitor C1 is charged!
  • FIG. 8 shows an operation timing chart of the circuit AD1 of FIG. FIG. 8 also shows the correspondence between the operation steps shown in FIG. 6 and the values of the control signals.
  • FIG. 8 is a timing diagram showing an operation for reading out the signal for the first row of the i-th row of the pixel array and performing noise cancellation and AZD conversion, and shows the operation of the circuit for that one column.
  • Figure 8 shows the image shown in Figure 7.
  • the control signal Si pixel selection signal
  • Ri potential reset control signal of the floating diffusion layer of the pixel part
  • TXi charge transfer control signal from the photodiode part
  • (dl d0) is the output value of the two comparators, which takes the following values:
  • ⁇ , ⁇ , ⁇ ⁇ is "1" when (dl d0) is (0 1), (1 1), (0 0), and "0" otherwise ⁇ ⁇ becomes “1” due to the charge transfer of capacitors CI and C2 during the operation in step (e) of Fig. 6.
  • the cyclic AZD conversion is performed in the step ( By repeating the operations of f) and (g), it is determined in order from the upper bit, and when N-bit AZD conversion is performed, it is repeated N— 2 times N— Second step in Fig. 6 (g) The least significant bit is determined and output for the operation in step 1. Then, the comparator output (dl dO) is returned to (0 1) ⁇ cR is the initialization of the comparator for that purpose. This is a pulse, and when it is input, (dl dO) is initialized to (0 1).
  • the AZD conversion result for each round obtained by the cyclic AZD conversion is stored in the data register 15 in the block diagram of FIG. 7, and is read out after the AZD conversion by horizontal scanning.
  • the data takes three values each time. That is, it is a redundant expression. After these are read out by horizontal scanning, they are converted into non-redundant representation binary numbers and output by the redundant representation non-redundant representation conversion unit. Redundant representations
  • Non-redundant representation conversion circuits may be arranged in columns, but the circuit scale of the columns increases.
  • FIG. 7 shows an example of a CMOS image sensor.
  • Each pixel has a frame for converting light into electric charge. It includes an photodiode PDi and several MOS transistors T1 to T4.
  • the transfer of charge is controlled by the transistor T1 responding to the control signal TXi
  • the charge initialization is controlled by the transistor T2 responding to the control signal Ri
  • the pixel is selected by the transistor T3 responding to the control signal Si. Is controlled.
  • Transistor T4 responds to the potential at junction J1 between transistors T1 and T2.
  • reset noise is generated in response to the reset operation.
  • the voltage output from each pixel includes fixed pattern noise unique to each pixel. Random noise is generated by elements connected to the input of the AZD converter.
  • Each pixel is arranged in a matrix, and a signal is transmitted to one of the cyclic analog-digital conversion circuits 14 with noise cancellation arranged in the column by a signal line extending along the column in the drawing.
  • a vertical shift register 11 supplies control signals Ri, Si, and TXi supplied to the pixels 13 constituting the image array 12, and the photocharge obtained in each pixel is converted to a cyclic analog with a noise canceling function.
  • the signal is transmitted to the digital conversion circuit 14.
  • the cyclic analog-to-digital conversion circuit array 14 with a noise canceling cell function includes a plurality of basic circuits and can process signals of each pixel power in parallel.
  • the processed signal is latched in the data register 15 and transmitted to the output terminal by a control signal from the horizontal shift register 16. Thereafter, the processed signal is processed in the redundant expression non-redundant expression conversion circuit 17 as necessary.
  • a 1-input 1-output inverting amplifier circuit can be used for this AZD converter.
  • FIG. 9 shows a third embodiment, which is an AZD converter that performs noise cancellation of signals from two columns in parallel and sequentially performs cyclic AZD conversion on these signals.
  • the circuit AD3 itself in Figure 9 is more complex than the circuit AD1 in Figure 4.
  • the circuit AD3 in FIG. 9 only needs to be laid out using the width of two columns of pixels! Therefore, even when the pixel size is smaller, the circuit AD3 can be used as compared with the circuit AD1 in FIG.
  • an amplifier 21 with a differential operation switching function is used as an amplifier.
  • FIG. 10 shows a drawing for explaining the operation of the circuit AD3 of FIG. Figure 11 is used in Figure 9.
  • a circuit example of the differential operation switching function amplifier 21 used is shown below.
  • the amplifier circuit A1 shown in FIG. 11 has a differential input difference including a current source transistor M2, loads M3, M4, M5, M6, and drive transistors M7, M8.
  • the amplifier circuit A1 includes two common source amplifiers 21e, 21f (including transistors M3, M4, M7 and transistors M5, M6, M8) Amplifier).
  • the voltage at the common source point COMMON of the differential circuit is the fixed potential Vbn3.
  • the output operating point is stabilized using the common-mode signal feedback shown in FIG.
  • common-mode feedback is not required, so the transistor Ml receiving the control signal SED allows the nMOS for the tail current source for differential input and differential output. Set the transistor gate to low level (eg 0 volts) and cut off the current source transistor M2.
  • the switch ( ⁇ CM) SW, SW is controlled by the control signal ⁇ CM.
  • the common mode signal is fed back via CM3, CM1, and CM2.
  • control signal SED is applied for 1 and the amplifier circuit A1 is set so that it becomes a circuit of two common source amplifiers.
  • switch 71a, 71b is turned on using the control signal to connect inverting input 21a and non-inverting output 21b of amplifier 21 so that circuit AD3 has the circuit connection shown in step (a) of FIG. At the same time, the non-inverting input 21c and the inverting output 21d are connected. Since switch 79a, 79b, 79c, 79d is turned on using control signal ⁇ 0, A voltage V is applied to a given node. Switch 75a, 75b, using control signal ⁇ Od
  • the two inputs Vinl and Vin2 of the circuit AD3 are given the reset level VRA of the pixel column with the pixel in the i-th row and, for example, the reset level VRB of the adjacent column. These reset levels VR A and VRB are sampled on capacitors C3 and C4, respectively. Since the switch 81a, 81b is turned on using the control signal ⁇ 02, one end forces of the capacitors CA1, CB1 are connected to the non-inverted output 21b and the inverted output 21d, respectively.
  • the switches 71a and 71b are turned off in response to the change of the control signal so that the circuit AD3 has the circuit connection shown in step (b) of FIG.
  • the output voltages of the two amplifiers 21e and 21f in the amplifier 21 are stored in the capacitors CIA and C1B through the switches 81a and 8 lb (the switch is turned off by the control signal ⁇ 02).
  • switches 83a and 83b are turned on using the control signal ⁇ 01, one ends of the capacitors CA2 and CB2 are connected to the non-inverted output 21b and the inverted output 21d, respectively.
  • the signal levels VSA and VSB of the two columns of the pixel section are applied to the two inputs Vinl and Vin2 of the circuit AD3, respectively.
  • the output voltages of the two amplifiers at that time are stored in capacitors C2A and C2B via switches 83a and 83b (switch is turned off by control signal ⁇ 01).
  • step (e) of FIG. 10 Prior to the cancel operation, as shown in step (d) of FIG. 10, the switches 71a and 71b are turned on using the control signal to connect the inputs 21a and 21c of the amplifier 21 and the outputs 21b and 21d, respectively. Initialize the charge across the capacitors C3 and C4.
  • step (e) of FIG. 10 the difference between the voltage stored in the capacitor C1A and the voltage stored in the capacitor C2A is first obtained. By this operation, the amplifier 21 generates a signal from which random noise has been canceled. Cyclic AZD conversion is performed on the output value of amplifier 21 by repeating the operations shown in steps (f) and (g) of Fig. 10 using capacitors C3, C4, C1A, and C2A.
  • step (f) one ends of capacitors C1A and C2A are connected to outputs 21b and 21d of amplifier 21 via switches 84a and 84b that respond to control signal ⁇ 2d, respectively.
  • the other ends of the capacitors C1A and C2A are connected to each other via the switch 73.
  • step (g) one ends of capacitors C1A and C2A are connected to the output of DAC5, respectively.
  • step (d) of FIG. 10 first, the charges of the capacitors C3 and C4 are initialized using the switches 71a and 71b according to the control signal. One ends of capacitors C1B and C2B are connected to inputs 21a and 21c of the amplifier 21 through switches 89a and 89b, respectively.
  • step (e) of FIG. 10 capacitors C1B and C2B are connected via switch 87, and the stored charges are transferred to capacitors C3 and C4 via switches 89a and 89b, respectively.
  • the amplifier 21 generates a signal in which the random noise component sampled by the amplifier 21 is canceled.
  • steps (f) and (g) in FIG. 10 for the output value of the amplifier 21, cyclic AZD conversion is executed.
  • Figure 12 shows an example of the actual control signal waveform in Figure 10.
  • the switch provided at one end of the capacitor C5 can be omitted.
  • FIG. 13 recently, this has been actually measured to examine its effect. As a result, it has been found that extremely high noise reduction is possible.
  • the horizontal axis represents the gain of the column amplifier, and the vertical axis represents the input converted noise voltage.
  • Reference symbol C S indicates a noise cancellation cap in single stage, and reference symbol C indicates double step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

A/D変換器は、差動入力-差動出力アンプ1に複数のスイッチを介して接続されたキャパシタC1,C2,C3,C4,C5を備える。キャパシタC5はアンプ1のゲインを決定する。キャパシタC1にリセットレベルを格納すると共に、キャパシタC2に信号レベルを格納する。キャパシタC1の一方の端子およびキャパシタC2の一方の端子を各差動入力に接続すると共にキャパシタC1,C2の他方の端子同士をお互いに接続することにより、アンプ1は、リセットレベルと信号レベルとの差分信号を生成する。差動入力-差動出力アンプ1に複数のスイッチを介して接続されたキャパシタC1,C2,C3,C4を切り替えて、この差分信号の巡回型A/D変換を行って、ランダムノイズが軽減されたA/D変換値を得る。

Description

ノイズキャンセル機能付き AZD変換器
技術分野
[0001] この発明は、 CMOSイメージセンサの出力信号に含まれるランダムノイズ低減機能 を有する AZD変 に関する。
背景技術
[0002] 巡回型 AZD変換器は、比較的少ない回路規模で比較的高速に動作し、高分解 能に適する方式として知られて!/、る。従来から知られて!/ヽる回路の例を図 1に示す。 この回路は、単位回路の 1段あたり 2倍の増幅を行い、比較器の結果によって、参照 電圧を足すまたは引く動作を行う。単位回路を 2段縦続に接続して、その出力を入力 に戻すことで、 1クロックあたり 2ビットの A/D変換を行うことができる。 AZD変換を 5 回繰り返せば、 10ビットの AZD変換結果が得られる。
このような巡回型 AZD変換器は比較的簡単な回路を用いるので、非特許文献 1に 示されるように、巡回型 AZD変 の配列をイメージセンサアレイのカラムに集積 化できる。
特許文献 1には、図 2に示すような 1つのアンプを用いて、ノイズキャンセルと巡回型 AZD変換を行うことができる回路が開示されている。
[0003] 非特許文献 2には、利得の大きなアンプを用いて、ランダムノイズの主要な成分をキ ヤンセルすることで、ランダムノイズを低減する共に、画素部のノイズキャンセルを行う 方法が記載されている。
特許文献 2に記載された回路では、 2段構成のノイズキャンセル回路を用いて固定 パターンノイズを低減している。また、この回路では第 1段目のアンプの入出力間に 接続された容量には、スィッチのようなアクティブデバイスは一切用いないことを特徴 としている。
特許文献 3では、ノイズを含む電圧信号の巡回型 AZD変換のディジタル値を第 1 のレジスタに記憶すると共に、信号光に応じた電圧信号およびノイズを含む電圧信 号の巡回型 AZD変換のディジタル値を第 2のレジスタに記憶して、これらの演算に よりノイズをキャンセルして 、る。
[0004] 特許文献 4の巡回型 AZD変換器では、並列型 AZD変換回路の入力端子は、ス イッチにより選択的に信号入力端子またはオペアンプの出力端子のいずれかに接続 される。コンデンサアレイのコンデンサの一端は共にコモンラインに接続されると共に 、これらのコンデンサの他端は、それぞれのスィッチを介して、 AZD変換回路の入 力端子、基準電圧端子、またはグランド端子のいずれかに選択的に接続される。特 許文献 5には、差動増幅回路を用いるサンプル Zホールド回路が記載されている。
[0005] 特許文献 1 :特開 2005— 136540号公報
特許文献 2 :米国特許第 6, 128, 039号明細書
特許文献 3:特開 2006 - 25189号公報
特許文献 4:特開 2001— 53610号公報
特許文献 5 :特開 2003— 158432号公報
非特許文献 1 : S. Decker, R. D. Mcgrath, K. Brehmer, C. G. Sodini, 〃A 256 x 256 CMOS imaging array with wide dynamic range pixels and column p arallel digital output", IEEE J. Solid— State Circuits, vol. 33, no. 12, pp. 20 81-2091, Dec. 1998.
非特許文献 2 : N. Kawai, S. Kawahito, "Noise analysis of high gain low noise column readout circuits for CMOS image sensors , IEEE Trans. Electron Devices, vol.51, no.2, pp.185— 194 (2004).
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、非特許文献 1に記載された回路では、イメージセンサの画素部で発 生するノイズキャンセルのためのアンプと合わせて、 1チャネルあたり、 3つのアンプが 必要であるので、このための回路の占有面積が大きぐまた消費電力が大きくなる。 非特許文献 1および特許文献 1の巡回型 A/D変換のための回路をイメージセン サアレイのカラムに集積する場合、あまり大きなキャパシタを集積することができない 。このため、回路がランダムノイズの影響を受けやすくなるので、分解能は高くできて も、ノイズレベルが大きい。また、特許文献 2に記載された回路は、ランダムノイズを低 減することを目的にはして ヽな ヽ。
特許文献 3の巡回型 AZD変換器は、ディジタル的にノイズをキャンセルして ヽる。 また、特許文献 4の巡回型 AZD変 は、コモンラインに接続された一端を有する コンデンサのアレイと、並列型 AZD変換回路とを用いており、並列型 AZD変換回 路が大きな面積を必要とする。さらに、特許文献 5にはサンプル Zホールド回路が記 載されており、巡回型 AZD変 は記載されていない。
本発明の一側面は、ランダムノイズ低減の機能を AZD変換器の回路のなかに組 み込むことで回路の規模を大きくすることなぐランダムノイズ低減と AZD変換とを行 うものである。これは特に、 CMOSイメージセンサのカラムに集積ィ匕する AZD変換 器として有用である。さらに、本発明の別の側面は、実装面積を減らすために、 1つ の回路で 2つの入力信号に対してノイズキャンセルと AZD変換とを行えるようにした ものである。
これまで、 CMOSイメージセンサのカラムに集積ィ匕する AZD変^ ^は 、ろ 、ろと報 告されているが、ランダムノイズを効果的に低減すると共に AZD変換を行えるものは なかった。本発明の更なる別の側面は、回路を複雑にすることなぐランダムノイズを 大きく低減しながら、高い分解能の AZD変換が行える点である。現在 CMOSィメー ジセンサのノイズレベルは CCDイメージセンサに近づ!/ヽて 、ると言われて!/、る。 CM OSイメージセンサの優位性を決定づけるものは、 CMOSの利点であるカラムでの処 理を有効に利用して、低雑音の読み出しを実現することである。しかし、いまだその 実用的な解は報告されていない。本発明のまた更なる別の側面は、 CMOSイメージ センサを CCDイメージセンサを超える低ノイズ性能の領域まで高めることができる技 術である。
本発明の更なるまた別の側面は、 CMOSイメージセンサのカラムに配置した AZD 変換器により、ランダムノイズを効果的に低減しながら AZD変換を行う。
課題を解決するための手段
本発明に係る AZD変翻は、ノイズ成分を含む第 1の電圧レベルとノイズ成分に 有意な信号成分が重畳した第 2の電圧レベルとが順に現れる信号に対して、第 2の 電圧レベル力 第 1の電圧レベルを差し弓 Iくノイズキャンセル機能を有する AZD変 である。この AZD変換器は、入力信号を増幅する第 1段目の増幅手段 (6)と、 第 1の電圧レベルによって生じた第 1段目の増幅手段の出力の電圧レベルを記憶す る第 1のキャパシタ (C1)と、第 2の電圧レベルによって生じた第 1段目の増幅手段の 出力の電圧レベルを記憶する第 2のキャパシタ (C2)と、第 1のキャパシタの電圧と第 2 のキャパシタの電圧との差を増幅する第 2段目の増幅手段 (1)と、第 2段目の増幅手 段の出力に接続される比較器 (2, 3)と、比較器の比較結果により制御される DZA変 換部 (5)と、第 1及び第 2のキャパシタを接続換えするためのスイッチング手段と、スィ ツチング手段の開閉を制御する制御部とを備える。第 1及び第 2のキャパシタの接続 をスイッチング手段を用いて変更することにより、第 1及び第 2のキャパシタをノイズキ ヤンセルのために用いられると共に、 AZD変換のために用いる。
[0008] 本発明に係る AZD変翻は、ノイズ成分を含む第 1の電圧レベルとノイズ成分に 有意な信号成分が重畳した第 2の電圧レベルとが交互に現れる信号に対して、第 2 の電圧レベルから第 1の電圧レベルを差し引くノイズキャンセル機能を有する。この A ZD変換器は、入力信号を増幅する増幅手段 (1)と、第 1の電圧レベルによって生じ た増幅手段の出力の電圧レベルを記憶する第 1のキャパシタ (C1)と、第 2の電圧レべ ルによって生じた増幅手段の出力の電圧レベルを記憶する第 2のキャパシタ (C2)と、 増幅手段の出力に接続される比較器 (2, 3)と、比較器の比較結果により制御される DZA変換器 (5)と、第 1及び第 2のキャパシタを増幅手段 (1)の入力と DZA変換部( 5)との間に接続換えするためのスイッチング手段と、スイッチング手段の開閉を制御 する制御部とを備える。第 1及び第 2のキャパシタの接続をスイッチング手段を用いて 増幅手段 (1)の入力と DZA変 (5)との間に変更することにより、第 1のキャパシタ の電圧と第 2のキャパシタの電圧との差を増幅手段の出力として得るとともに、第 1及 び第 2のキャパシタを巡回型 AZD変換のために用いる。
[0009] 本発明に係る AZD変換器は、該 AZD変換器の入力端子と増幅手段の入力との 間に接続される第 3のキャパシタ (C3)と、増幅手段 (1)の入力と出力の間に接続され、 第 3のキャパシタとの容量比により増幅手段の利得を決定する第 4のキャパシタ (C5) と、第 3および第 4のキャパシタ (C5)並びに増幅手段 (1)の接続を制御する別のスィ ツチング手段とをさらに備えることができる。 [0010] 本発明に係る AZD変翻では、増幅手段 (1)は、入力信号の極性に対して出力 信号の極性が反転する MOS増幅回路である。 MOS増幅回路を増幅器として用い るときには、第 3のキャパシタ (C3)が AZD変^^の入力端子と MOS増幅回路の入 力端子の間に接続される。第 4のキャパシタ (C5)が MOS増幅回路の入力端子と MO S増幅回路の出力端子に接続される。第 1のキャパシタ (C1)の一端と第 2のキャパシ タ (C2)の一端は、第 1の電圧レベルと第 2の電圧レベルをそれぞれ記憶するように 順次に MOS増幅回路の出力端子に接続され、その後第 1のキャパシタと第 2のキヤ パシタの一端同士を接続して第 1および第 2のキャパシタの直列回路を形成する。直 列回路の一端を MOS増幅回路の入力端子に接続すると共に直列接続の他端を接 地電位に接続してノイズキャンセルを行う。
[0011] MOS増幅回路をノイズキャンセルされた信号のための巡回型 AZD変換のために 用いるときには、第 3のキャパシタ (C3)を MOS増幅回路の入力端子と出力端子に接 続する。巡回型 AZD変換は第 1のフェースと第 2のフェースを含み、巡回型 AZD変 換は第 1および第 2のフェースを繰り返すことによって行われる。第 1のフェーズにお いて第 1のキャパシタ (C1)の一方の端子を MOS増幅回路の出力端子に接続すると 共に、第 2のフェーズにお 、て DZA変換の為の参照電圧を提供する DZA変換部 につなぎ換える。第 1のフェーズにおいて第 1のキャパシタ (C 1)の他方の端子を接地 電位に接続すると共に、第 2のフェーズにおいて MOS増幅回路の入力端子とにつ なぎ換える。
[0012] 本発明に係る AZD変翻では、増幅手段 (1)は、差動入力—差動出力の MOS増 幅回路である。 MOS増幅回路を増幅器として用いるときには、第 3のキャパシタ (C3) が AZD変換器の入力端子と MOS増幅回路の負入力端子との間に接続される。第 4のキャパシタ (C5)が MOS増幅回路の負入力端子と MOS増幅回路の正出力端子 に接続される。さらに MOS増幅回路の正入力端子と MOS増幅回路の負出力端子 は短絡されて、直流電位に接続されるとともに、第 1のキャパシタ (C1)と第 2のキャパ シタ (C2)は MOS増幅回路の正出力端子に、第 1の電圧レベルと第 2の電圧レベル をそれぞれ記憶するように順次接続される。その後、第 1のキャパシタ (C1)と第 2のキ ャパシタ (C2)の一端をそれぞれ MOS増幅回路の負入力端子及び正入力端子に接 続し、かつ第 1のキャパシタ (CI)と第 2のキャパシタ (C2)の他端同士を接続することに よりノイズキャンセルを行う。
[0013] ノイズキャンセルされた信号のための巡回型 AZD変換のために MOS増幅回路を 用いるときには、第 3のキャパシタ (C3)を MOS増幅回路の負入力端子と正出力端子 に接続する。第 5のキャパシタ (C4)を MOS増幅回路の負入力端子と正出力端子に 接続する。巡回型 AZD変換は第 1および第 2のフェースを含み、巡回型 AZD変換 は第 1のフェースと第 2のフェースを繰り返すことによって行われる。第 1のフェーズに おいて、第 1のキャパシタ (C1)の一方の端子と第 2のキャパシタ (C2)の一方の端子 をそれぞれ MOS増幅回路の正出力端子及び負出力端子に接続すると共に、第 2の フェーズにおいて DZA変換の為の参照電圧を提供する DZA変換部につなぎ換え る。第 1のフェーズにおいて第 1のキャパシタ (C1)の他方の端子と第 2のキャパシタ( C2)の他方の端子を接地電位に接続すると共に、第 2のフェーズにお 、て MOS増幅 回路の負入力端子及び正入力端子にそれぞれつなぎ換える。
[0014] 本発明に係る AZD変 では、巡回型 A/D変換のために第 4のキャパシタ (C5) が用いられるとき、 MOS増幅回路の入力端子と出力端子の間に接続されることによ りスイッチング素子を減らしてなることが好ま 、。
[0015] 本発明に係る AZD変翻は、第 1および第 2の系列の信号のうち一方を受けるた めの第 1の入力端子並びに他方を受けるための第 2の入力端子と、第 1の入力端子 と増幅手段 (1)の第 1の入力との間に接続される第 3のキャパシタ (C3)と、増幅手段 (1 )の第 1の入力と増幅手段 (1)の第 1の出力の間に接続され、第 3のキャパシタとの容 量比により増幅手段の利得を決定する第 4のキャパシタ (C5)と、第 2の入力端子と増 幅手段 (1)の第 2の入力との間に接続される第 5のキャパシタ (C4)と、増幅手段 (1)の 第 2の入力と増幅手段 (1)の第 2の出力の間に接続され、第 3のキャパシタとの容量比 により増幅手段の利得を決定する第 6のキャパシタ (C6)と、第 1の電圧レベルと第 2の 電圧レベルを記憶するための 2つのキャパシタ (C1B, C2B)と、を備える。増幅手段 (1 )は、 2つの入力端子と 2つの出力端子を有する差動アンプを含むと共にモード切替 可能な第 1および第 2のモードを有している。第 1のモードでは差動アンプは巡回型 AZD変換のために差動入力 差動出力の増幅回路として動作し、第 2のモードで は差動アンプは該差動アンプの共通ソースを固定電位に接続することによりノイズキ ヤンセル動作のために 2つのシングルエンドアンプとして動作する。
[0016] 本発明に係る AZD変翻では、第 1および第 2の系列の信号は、行および列に配 置された複数の画素を含むイメージセンサ画素アレイの第 1および第 2の画素列にそ れぞれ接続された第 1および第 2のカラムライン力も提供されることができる。
発明の効果
[0017] 本発明によれば、ランダムノイズ低減の機能を AZD変換器の回路のなかに組み込 むことで回路の規模を大きくすることなぐランダムノイズ低減と AZD変換とを行う A ZD変 が提供される。
図面の簡単な説明
[0018] 本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して 進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らか になる。
[図 1]従来技術における巡回型 AZD変換器を示す図面である。
[図 2]従来技術における、ノイズキャンセル機能をもつアンプ共有型巡回型 AZD変 を示す図面である。
[図 3]ノイズ低減機能をもつ巡回型 AZD変^^の一例を示す図面である。
[図 4]ノイズ低減機能をもつ巡回型 AZD変換器の別の例を示す図面である。
[図 5]図 4に示す巡回型 AZD変換器を部分的に変更した AZD変換器の例を示す 図面である。
[図 6]ノイズ低減機能を持つ巡回型 AZD変換器の動作の主要ステップを示す図面 である。
[図 7]図 4の回路のアレイをイメージセンサアレイのカラムに配置して、イメージセンサ アレイと AZD変^^のアレイとを集積ィ匕したイメージセンサの一例を示す図面であ る。
[図 8]図 6の回路の動作タイミングを示す図面である。
[図 9]イメージセンサアレイの 2画素列からの信号を AZD変換するための単一の AZ D変換器の一例を示す図面である。 [図 10]図 9の回路の動作の主要ステップを示す図面である。
[図 11]図 9に使用する内部アンプの回路例を示す図面である。
[図 12]図 10の回路の動作タイミングを示す図面である。
[図 13]図 13は、シングルステージを用 、るノイズキャンセル性能およびダブルステー ジを用いるノイズキャンセル性能とカラム増幅器の利得との関係を示す図面である。 符号の説明
[0019] 1··· 差動入力 差動出力アンプ
2, 3··· 比較器
4··· テコーダ
5··· デジタル アナログ変翻 (D AC)
6— 反転増幅器
11··· 垂直シフトレジスタ
12··· イメージアレイ
13··· 画素
14··· ノイズキャンセル機能付巡回型アナログ―デジタル変換器 (ADC)
15··· データレジスタ
16··· 水平シフトレジスタ
17··· 冗長表現 非冗長表現変換器
21··· 差動動作切換え機能付アンプ
発明を実施するための最良の形態
[0020] 本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考 慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発 明の AZD変翻に係る実施の形態を説明する。可能な場合には、同一の部分には 同一の符号を付する。
[0021] 容量を接続するスィッチのオンオフを制御すると共に、 1つのアンプを使って画素 部で発生するノイズ (リセットノイズと固定パターンノイズ)のキャンセルと、アンプで発 生する支配的なランダムノイズ成分のキャンセルとを行うと共に、高 、分解能の AZD 変換を行う。本発明の実施例を以下に示す。なお、シンボル φで始まる記号は制御 信号を表しており、制御信号力 i"のときに、その制御信号により制御されるスィッチ はオンとなり、制御信号力 0"のときに、その制御信号により制御されるスィッチはォ フとなる。これらの制御信号は、イメージアレイから光電荷を外部に転送する制御信 号と同期して発生されるものであり、制御信号発生器により発生される。
[0022] この発明は、 CMOSイメージセンサ力 の出力信号のように、ノイズ成分を含む第 1 の電圧レベルと、ノイズ成分に有意な信号成分が重畳した第 2の電圧レベルが順に 現れるような信号の処理に好適である。
[0023] (第 1の実施例)
図 3に示す回路 ADOは、増幅段 AMPと、その出力を受けて巡回型 AZD変換を 行う AZD変換段 ADCとを備える。この回路の増幅段 AMPは、反転増幅器 6と 2つ のキャパシタ Cpl, Cp2とを有している。キャパシタ Cp2は反転増幅器 6の入力 6aと出 力 6bとの間に接続され、キャパシタ Cplは、入力 INと反転増幅器 6の入力 6aとの間 に接続されている。入力信号 Vinはキャパシタ Cplを経由して反転増幅器 6の入力 6a に提供される。この増幅段 AMPにおける利得 Gは CplZCp2で与えられる。反転増 幅器 6として、反転入力および非反転出力を有する演算増幅回路を用いることができ る。反転増幅器 6は、例えば MOS増幅回路力もなることができる。
[0024] 増幅段 AMPの出力 OUTは、ノイズレベルを示す電圧レベルに応答して第 1の信 号を生成すると共に、信号光に応答する生成される信号およびノイズレベルの両方 を含む電圧レベルに応答して第 2の信号を生成する。 AZD変換段 ADCは、増幅段 AMPの出力 OUTからの第 1および第 2の信号をキャパシタ C1およびキャパシタ C2 にそれぞれサンプリングする。キャパシタ C1へのサンプリングは、スィッチ( φ )SW
OS s を介して行われる。スィッチ( φ )は制御信号 φ によりオンとし、また制御信号 φ 1
IN OS OS
によりスィッチ(φ 1)をターンオンする。同様に、キャパシタ C2へのサンプリングがスィ ツチ(φ ) SW を介して行われる。スィッチ(φ )は制御信号 φ によりオンとし、
OR RIN OR OR
また制御信号 φ 1によりスィッチ(φ 1)55、 57をターンオンする。この期間中、制御信 号 φ 2によりスィッチ( φ 2)41、 43はターンオフする。この後の動作、例えば巡回型 A ZD変換の動作は、実施例 2において説明する。
[0025] なお、制御信号 φ Rはキャパシタ Cp2, C3及び C4の電荷を初期化するためのもの であり、この初期化は、キャパシタ Cp2, C3及び C4の両端間にそれぞれ接続されたス イッチ SW 、 33、 35を用いて行われる。スィッチ SW 力 所望により増幅段をバイ
Rl BP
パスするために増幅段 AMPの入力 INと出力ととの間に接続されて!、る。
[0026] (第 2の実施例)
回路 AD1で、増幅動作を行うと共に巡回型の AZD変換を行う第 2の実施例を説 明する。図 4は、第 2の実施例に対応するノイズ低減機能をもった巡回型 AZD変換 器の回路例を示している。増幅手段としてアンプ 1が設けられ、 AZD変換用に比較 回路(比較器 2, 3)COMPがアンプ 1の出力に接続されており、デコーダ 4が比較回 路(比較器 2, 3)COMPに接続されている。さらに、巡回型の DZA変換用に DZA 変換回路 (DAC) 5がアンプ 1の入力にキャパシタ Cl、 C2を介して接続されている。 この回路 AD1のアレイを、図 7に示すようにイメージセンサアレイのカラムに集積化し 、並列に動作させる。図 6は、イメージセンサアレイの画素部の信号の読み出し動作 も含めて、図 4の回路によるノイズ低減動作と引き続く巡回型 AZD変換動作の原理 を示す。図 6の説明では、図 4の V を GNDとして参照する。アンプ 1として、演算
COM
増幅器回路を含むことができ、この演算増幅器回路は、反転入力 la、非反転入力 1 b、反転出力 lc、および非反転出力 Idを有する。
[0027] まず、図 6のステップ (a)に示される回路接続となるようにし、回路 AD1の入力 IN
AD1 に i行目の画素からのリセットレベル VRを与え、受けた信号をキャパシタ C3にサンプ ルする。キャパシタ C5、 C4の電荷はリセットされると共に、アンプ 1の入力 lcにスイツ チ 49を介して Vcomが提供される。制御信号 φ 、 φ 、 φ 、 φ 、 φ を用いてスイツ
Od R 2 2d 0
チ 31、 37、 33、 35、 39、 41、 43、 45、 47、 49をターンオンさせる。
[0028] サンプル完了後、回路 AD1の入力 IN にリセットレベル VRを引き続き与えると共
AD1
に、図 6のステップ (b)に示される回路接続となるようにして、アンプ 1の出力値をキヤ パシタ C1に記憶する(制御信号 φ 2dによりスィッチをオフする)。この動作は非常に 重要である。アンプ 1の出力電圧を Voutlとすると、理想的には、 Voutl = 0である。キ ャパシタ C5はアンプ 1の入力 laと出力 lbとの間に接続される。キャパシタ C1の一端 はスィッチ 41を介してアンプ 1の出力 lbに接続されて!、ると共に、キャパシタ C 1の他 端はスィッチ 45を介して Vcomに接続されている。アンプ 1の入力 lcにスィッチ 49を 介して Vcomが提供される。制御信号 φ の変化に応答してスィッチ 33、 35を開く。
R
制御信号 Φ の変化に応答してスィッチ 39を開く。
2
[0029] 次いで、図 6のステップ (c)に示される回路接続となるようにし、回路 AD1の入力 IN に画素部の信号レベル VSを与える。信号レベル VSはキャパシタ C3を介してアン
AD1
プ 1の入力 laに加えられる。これに応答してアンプ 1の出力電圧は Vout2に変化する 。この出力電圧 Vout2をキャパシタ C2に記憶する(制御信号 φ 01によりスィッチ 51を オフする)。制御信号 Φ に従ってスィッチ 41、 43を開くと共に制御信号 φ に応答
2d 01 してスィッチ 51を閉じて、キャパシタ C2の一端がアンプ 1の出力 lbに接続されると共 に、キャパシタ C2の他端がスィッチ 47を介して Vcomに提供される。アンプ 1の入力 lcにスィッチ 49を介して Vcomが提供される。
[0030] キャパシタ C2に記憶された電圧は、理想的には、
[数 1]
C
t OUT2 ~ ~ (r S ~ ^ R (1 ) と表される。つまり、信号レベル VS,リセットレベル VRに共通な成分(画素部のノイズ 成分)が差し引かれ消えて、その差が、キャパシタ C3とキャパシタ C5の比で増幅され る (キャパシタ C3と C5のキャパシタンス比を C3ZC5 = Gとすると、シンボル Gはゲイ ンを表すこととなる)。従って、理想的には、キャパシタ C1に記憶された電圧信号は不 要である力 大事なことは、出力電圧 Voutl, Vout2には、アンプ等が発生するノイズ が重畳している点である。そのノイズは、出力電圧 Voutl, Vout2共通に存在する成 分 Vncと、独立に存在する成分 (Vnl, Vn2)がある。ノイズ成分 Vnl、 Vn2は時間的に 変動する。
[0031] すなわち、ノイズ成分を考慮に入れた実際の出力は、
[数 2]
V = V - V
V OUT] ' nc ^ ' n\ (2)
[数 3] (Vs - VR) + Vnc + Vn2 と表される。
従って、図 6のステップ (e)を参照しながら後ほど説明される動作によって、出力電 圧 Vout2と出力電圧 Voutlとの差が求めれる。その差は、
[数 4]
Figure imgf000014_0001
と表される。このような処理によって、ノイズが低減できるかどうかは、それぞれのノィ ズの大きさによる力 実際、キャパシタンス C3とキャパシタンス C5の比率を大きくした 高 、利得の増幅器におけるノイズを計算してみると、ノイズ成分 Vncが支配的である 。式 (4)には、ノイズ成分 Vncが含まれない。
[0033] 図 5に示される回路 AD2は、回路 AD1に含まれキャパシタ C5の一端に接続された スィッチ 37、 53を含まず、これ故に、回路 AD2は回路 AD1に比べて簡素である。増 幅時には利得 G = C5/C3となるようにキャパシタ C5, C3が接続される。巡回型 AZ D変換時にはキャパシタ C3とキャパシタ C5とを並列接続する。キャパシタ C3およびキ ャパシタ C5のキャパシタンスは、これらのキャパシタ C3、 C5の合成キャパシタンスが C1に等しくなるように設定されている。増幅時の利得を Gとすると、キャパシタンス C3 = G X C1/(1 + G), C5 = C1Z(1 + G)に設定する。キャパシタ Cl、 C3、 C5のキヤ パシタンスが、ある関係を満たすとき、一部のスィッチを省略できる。
[0034] 図 4に示す回路 AD1における巡回型 AZD変換動作を次に説明する。図 6のステ ップ (d)に示される回路接続となるようにし、巡回型 AZD変換の準備であり、キャパ シタ C3がアンプ 1の帰還容量になるように反転入力 laと非反転出力 lbとの間に接続 されると共に、キャパシタ C4がアンプ 1の帰還容量になるように反転入力 lcと非反転 出力 Idとの間に接続されおり、アンプ 1の入力 la、 lcと出力 lb、 Idをそれぞれショ ートしてキャパシタ C3, C4の電荷の初期化を行う。キャパシタ C1には、電圧 Voutlが 記憶されており、キャパシタ C2には電圧 Vout2がそれぞれ記憶されている。この回路 接続では、キャパシタ C3, C4の電荷の初期化は、制御信号 φ に応答するスィッチ 3
R
3、 35〖こより行われる。制御信号 φ 、 φ に応答して、スィッチ 55、 57、 61をターン
1 Od
オンする。キャパシタ Cl、 C2の一端はスィッチ 55、 57を介してアンプ 1の反転入力 1 aおよび非反転入力 lcにそれぞれ接続されると共に、キャパシタ Cl、 C2の他端はフ ローテイングである。キャパシタ C1には、電圧 Voutlが保持され、キャパシタ C2には 電圧 Vout2が保持される。
[0035] 図 6のステップ (e)を参照しながら、出力電圧 Vout2と出力電圧 Voutlとの差を求める 動作が説明される。キャパシタ CI, C2の他端を互いに接続することによって、これら のキャパシタ CI, C2に記憶された電荷の差分がキャパシタ C3と C4に転送される。容 量値の関係じ1 =じ2 =じ3 =じ4が満たされてぃれば、電荷が均等に転送されて、そ の差動アンプの出力には、式(4)に示されるように、 VS— VR+Vn2— Vnlに相当す る差電圧 V =V — V が現れる。キャパシタ CI, C2の一端 (接地点側)がァ
DIFF OUT2 OUT1
ンプ 1の反転入力 laおよび非反転入力 lcにスィッチ 55、 57を介して接続される。キ ャパシタ CI, C2の他端がスィッチ 59を介して互いに接続される。
[0036] その後、このアンプ 1の出力に現れた電圧 V に対して、巡回型の AZD変換を
DIFF
行う。まず、図 6のステップ (f)に示される回路接続となるように、制御信号 φ 、
2d φ に 2 応答してスィッチ 41、 43、 39をターンオンし、制御信号 φ 、 φ に応答してスィッチ
1 DO
55、 57、 59をターンオフする。このステップでは、キャパシタ CI, C2にアンプ 1の差 動出力信号を記憶する。これと共に、アンプ 1の出力からの電圧レベルの判定を比較 回路(比較器 2, 3)COMPによって行う。比較器 2, 3の出力値 (d0、 dl)はデコーダ 4により、コードィ匕される。
[0037] 図 6のステップ (g)に示される回路接続のようにし、比較器 2, 3の判定結果に応じた 電圧値を DAC (ディジタル 'アナログ変翻) 5がキャパシタ C1と C2の他端に提供す ることによって、次式の演算が行える。
[数 5]
AVOUT ( + 1) = 2AVOUT ( ) - D(i) x V (5) ここで、 AVout(i)は、巡回型 AZD変換における i回目の出力差電圧であり、 D(i)は 比較器の出力のディジタルコードであり、電圧信号 VREF=VRP—VRNは、 DAC5の 参照電圧である。ステップ (g)では、クロック φ 1に応答してスィッチ 55、 57をターンォ ンして、キャパシタ C1と C2の一端がアンプ 1の反転入力 laおよび非反転入力 lcに 接続されると共に、キャパシタ C1と C2の他端が DAC5からの信号を受けられるように 、クロック φ 2dに応答してスィッチ 41、 43をターンオフしフィードバック経路を切断す る。図 6のステップ (f)とステップ (g)を必要な回数繰り返すことによって、必要な分解能 の AZD変換結果が提供される。
[0038] このように、 1つのアンプを使って、容量を接続するスィッチのオン Zオフを制御す ることにより、画素部で発生するノイズ (リセットノイズと固定パターンノイズ)のキャンセ ルと、アンプで発生する支配的なランダムノイズ成分をキャンセルできると共に、高い 分解能の AZD変換が行える。
[0039] ここで、理解を容易にするために巡回型 AZD変換回路の基本動作を説明する。
巡回型 A/D変換動作の最初に、キャパシタ C1を MOS増幅器といったアンプ 1の出 力に接続し、電圧 Voutに対応する電荷を充電する。キャパシタ C1とキャパシタ C3が それぞれ電荷 Ql, Q3を格納し、 Ql = Cl XVout, Q3 = C3 X Voutが満たされる。す なわち、キャパシタ C3には、最初に電荷 Q3が充電されている。その後、キャパシタ C 1の一端を MOS増幅器といったアンプ 1の反転入力に接続する。また、キャパシタ C1 の他端は DAC5に接続を替える。 DACの参照電圧を Vdacとすると、キャパシタ C1の 端子電圧は Vout力 Vdacに変化するので、キャパシタ C1に充電されて!、る電荷の 変化は、 AQ1 = C1 X (Vout— Vdac)となり、この変化分がキャパシタ C3に転送される 。その結果、 MOS増幅器 1の出力電圧は、 Vout(i+l) = (Q3 + AQl)ZC3 = ((Cl + C3) XVout(i)— Cl XVdac)ZC3に変化する。この式は、関係式 C1 = C3が満たされ れば、 Vout(i+l) = 2 XVout(i)— Vdacと書き換えられるので、巡回型 AZD変換の基 本演算 (入力電圧を 2倍に増幅して DAC5の参照値を引く)を提供できる。
[0040] 図 8は、図 4の回路 AD1の動作タイミングチャートを示している。また、図 8には、図 6に示した動作ステップと各制御信号の値の対応も示している。図 8は、画素アレイの i行目の 1行分の信号を読み出してノイズキャンセルと AZD変換を行う動作を示すタ イミング図であり、その 1列分の回路の動作を示している。図 8は、図 7に示された、画 素部の i行目への制御信号 Si (画素選択信号)、 Ri (画素部の浮遊拡散層の電位のリ セット制御信号)、 TXi (フォトダイオード部からの電荷転送制御信号)も示して 、る。
[0041] 図 8において、(dl d0)は 2つの比較器の出力値であり、これは以下のような値をとる
[数 6] 1 1) ( /4 く Vout)
) = (0 1) (- ' ≤ V < VREF /4) (6)
(0 0) (Voul < - ^ /4)
(dl d0) = (O 1), (1 1), (0 0)のとき、式 (5)の Diは、それぞれ、 0, 1, 1の値をとる
[0042] ϋθ, ϋΡ, φ ϋΝは、 (dl d0)がそれぞれ (0 1), (1 1), (0 0)のときに" 1Ίこなり、 それ以外のときは、 "0 "となる。 φ ΟΟは、図 6のステップ (e)における動作のときにも、キ ャパシタ CI, C2の電荷の転送のために" 1 "となる。巡回型 AZD変換は、図 6のステ ップ (f)と (g)の動作を繰り返すことによって上位ビットから順に決定されて 、き、 Nビット の AZD変換を行う場合では N— 2回繰り返される。 N— 2回目の図 6のステップ (g)に おける動作に対して最下位ビットが決定され、また出力される。その後は、比較器の 出力 (dl dO)を (0 1)に戻しておく。 φ cRは、そのための比較器の初期化パルスであり 、これが投入されると、 (dl dO)が (0 1)に初期化される。
なお、図 4における信号 VRCN, VRCPは、 VRCP— VRCN=VREFZ4が得られる ようにに設定される。
[0043] 巡回型 AZD変換によって得られた各回ごとの AZD変換結果は、図 7のブロック 図のデータレジスタ 15に格納され、水平走査によって、 AZD変換後に読み出される 。そのデータは、各回ごとに、 3値を取る。すなわち冗長表現になっている。これらを、 水平走査で読み出したあと、冗長表現 非冗長表現変換部において、非冗長表現 の 2進数に変換して出力する。冗長表現 非冗長表現変換回路は、カラムに並べて も良いが、カラムの回路規模が大きくなる。
[0044] 図 7は CMOSイメージセンサの一例であり、各画素は光を電荷に変換するためのフ オトダイオード PDiと、いくつかの MOSトランジスタ T1〜T4とを備える。また、制御信 号 TXiに応答するトランジスタ T1より電荷の移動が制御され、制御信号 Riに応答す るトランジスタ T2より電荷の初期化が制御され、制御信号 Siに応答するトランジスタ T 3より画素の選択が制御される。トランジスタ T4はトランジスタ T1と T2との接続点 J1の 電位に応答する。各画素では、リセット動作に応答してリセットノイズが発生される。ま た、各画素から出力される電圧には、画素毎に固有の固定パターンノイズが含まれる 。また、ランダムノイズは、 AZD変換器の入力に繋がる素子等により発生される。各 画素はマトリクス状に配置され、図面において列に沿って延びる信号線により、カラム に配置されたノイズキャンセルつき巡回型アナログ デジタル変換回路 14の一つへ 信号が伝送される。
[0045] 図 7において、垂直シフトレジスタ 11はイメージアレイ 12を構成する画素 13に与え られる制御信号 Ri, Si, TXiを供給し、各画素において得られた光電荷をノイズキヤ ンセル機能付き巡回型アナログ デジタル変換回路 14へ信号を伝送する。ノイズキ ヤンセル機能付き巡回型アナログ デジタル変換回路アレイ 14は複数の基本回路 を含み、また各画素力もの信号を並列に処理できる。処理された信号は、データレジ スタ 15にラッチされ、水平シフトレジスタ 16からの制御信号により出力端に伝送され る。この後に、処理された信号は、必要に応じて冗長表現 非冗長表現変換回路 17 において処理がなされる。
なお、増幅手段のアンプ 1として差動入力 差動出力の MOS増幅回路の例を説 明したが、 1入力 1出力の反転増幅回路を本 AZD変換器のために使用できる。
[0046] (第 3の実施例)
図 9は、第 3の実施例であり、 2列からの信号のノイズキャンセルを並列に行い、そ れらの信号に対して順に、巡回型 AZD変換を行う AZD変換器である。図 9の回路 AD3そのものは、図 4の回路 AD1に比べて複雑になっている。しかしながら、図 9の 回路 AD3を画素 2列分の幅を使ってレイアウトすればよ!、ので、画素サイズがより小 さい場合にも図 4の回路 AD 1に比較して利用できる。図 9に示される回路においては 、アンプとして、差動動作切換え機能付アンプ 21を使用する。
[0047] 図 10は、図 9の回路 AD3の動作を説明する図面を示す。また、図 11は、図 9に使 用する差動動作切換え機能付アンプ 21の回路例 Alを示す。図 11に示された増幅 回路 A1は、制御信号 SEDが〃0 "であるとき、電流源トランジスタ M2と、負荷 M3、 M4 、 M5、 M6と、駆動トランジスタ M7、 M8とを含む差動入力 差動出力アンプとして 動作すると共に、制御信号 SED力 1"であるとき、増幅回路 A1は、 2つのコモンソース 増幅器 21e、 21f (トランジスタ M3、 M4、 M7を含む増幅器とトランジスタ M5、 M6、 M8を含む増幅器)として動作する。 2つのコモンソース増幅器では、差動回路の共 通のソース点 COMMONの電圧が固定電位 Vbn3の電位である。制御信号 SEDに 応じてトランジスタ Ml、 M9により回路動作が変更されることを利用して、 2つの信号 に対して、 2つのコモンソース増幅器とキャパシタを用いて同時にノイズキャンセルを 行い。それぞれを差動回路形式の巡回型 AZD変換によって AZD変換を行う。また 、実用上の回路では固定電位 Vbn3として接地電位を用いると、配線を減らせる。
[0048] なお、差動入力 差動出力の増幅回路のための動作モードでは、図 11に示した 同相モード信号帰還を用いて出力の動作点を安定させる。 2つのソース接地のシン ダルエンドアンプのための動作モードでは、同相モード帰還は不要であるので、制御 信号 SEDを受けるトランジスタ Mlによって、差動入力 差動出力のためのテール電 流源用の nMOSトランジスタのゲートをロウレベル(例えば 0ボルト)にして、電流源トラ ンジスタ M2をカットオフさせて!/、る。
同相モード時の初期期間に、制御信号 φ CMによりスィッチ( φ CM)SW 、 SW
CM1 CM2
、 SW をオンとし、出力の基準動作点信号 VCOM及び直流バイアス Vbnlを同相
CM3
モード信号帰還用キャパシタ C 、C に与える。その後スィッチ(φ CM) SW 〜
CM1 CM2 CM1
SW をオフとすることにより、直流点が安定した後に、キャパシタ c 、c を経
CM3 CM1 CM2 由して同相モード信号の帰還がなされる。
[0049] 画素部のノイズキャンセルは、まず、制御信号 SEDを" 1Ίこし、 2つのコモンソースァ ンプの回路となるように増幅回路 A1を設定する。図 10の説明では、図 9の V とし
COM
て GNDを用いる。また、回路 AD3が図 10のステップ (a)に示される回路接続となるよ うに、制御信号 を用いてスィッチ 71a、 71bをターンオンさせて、アンプ 21の反転 入力 21aと非反転出力 21bを接続すると共に、非反転入力 21cと反転出力 21dを接 続する。制御信号 Φ 0を用いてスィッチ 79a、 79b、 79c、 79dをターンオンするので、 所定のノードに電圧 V が与えられる。制御信号 φ Odを用いてスィッチ 75a、 75b、
COM
75c、 75dをターン才ンすると共にスィッチ 77a、 77b, 77c, 77dをターン才フする。 回路 AD3の 2つの入力 Vinl、 Vin2には、 i行目の画素のある画素列のリセットレべ ル VRAと、例えばその隣の列のリセットレベル VRBを与える。これらリセットレベル VR A、 VRBをキャパシタ C3、 C4にそれぞれサンプルする。制御信号 φ 02を用いてスィ ツチ 81a、 81bをターンオンするので、キャパシタ CA1、 CB1の一端力 ぞれぞれ、 非反転出力 21bおよび反転出力 21dに接続される。
[0050] サンプル完了後、回路 AD3が図 10のステップ (b)に示される回路接続となるように 、制御信号 の変化に応答してスィッチ 71a、 71bをターンオフする。アンプ 21内 の 2つのアンプ 21e、 21fの出力電圧をスィッチ 81a、 8 lbを介してキャパシタ CIAと キャパシタ C1Bに記憶する(制御信号 φ 02によりスィッチをオフ)。
[0051] 次いで、回路 AD3が図 10のステップ (c)に示される回路接続となるように、
制御信号 Φ 01を用いてスィッチ 83a、 83bをターンオンするので、キャパシタ CA2、 CB2の一端が、それぞれ、非反転出力 21bおよび反転出力 21dに接続される。回路 AD3の 2つの入力 Vinl、 Vin2に画素部の 2つの列の信号レベル VSA、 VSBをそれ ぞれ与える。そのときの 2つのアンプの出力電圧をスィッチ 83a、 83bを介してキャパ シタ C2Aと C2Bに記憶する(制御信号 φ 01によりスィッチをオフ)。
[0052] キャパシタ C2A, C2Bに記憶された電圧 Voutpと Voutnは、理想的には、それぞれ [数 7]
J <mtp _ _ SA - I RA (?)
[数 8]
Figure imgf000020_0001
と表される。つまり、画素部のノイズがキャンセルされ、容量比で増幅がなされる。これ らの信号に含まれるサンプルされたランダムノイズ成分をさらにキャンセルすることで 低雑音の信号読み出しが可能となる。 [0053] その原理は、図 4を参照して行われた説明と同じである。このキャンセル動作は、図 10のステップ (e)の動作でなされる。キャンセル動作に先立って、図 10のステップ(d) に示されるように、制御信号 を用いてスィッチ 71a、 71bをターンオンしてアンプ 2 1の入力 21a、 21cと出力 21b、 21dをそれぞれ接続すると共に、キャパシタ C3、 C4 の両端の電荷を初期化する。スィッチ 85a、 85bを介してキャパシタ C1A、 C2Aの一 端はアンプ 21の入力 21a、 21cにそれぞれ接続される。制御信号 φ DOを用いてスィ ツチ 87をターンオンする。図 4に対する説明と同様、図 10のステップ (e)においてまず キャパシタ C1Aに記憶された電圧とキャパシタ C2Aに記憶された電圧との差分を求め る。この動作によって、ランダムノイズがキャンセルされた信号をアンプ 21が生成する 。アンプ 21の出力値に対して、キャパシタ C3、 C4、 C1A、 C2Aを用いて、図 10のス テツプ (f)と (g)に示された動作を繰り返すことによって、巡回型 AZD変換が実行され る。まず、図 9の入力 VMに与えられた入力信号に対する巡回型 AZD変換が実行 される。ステップ (f)では、制御信号 φ 2dに応答するスィッチ 84a、 84bを介してキヤ パシタ C1A、 C2Aの一端がそれぞれ、アンプ 21の出力 21b、 21dにそれぞれ接続さ れる。キャパシタ C1A、 C2Aの他端はスィッチ 73を介して互いに接続される。ステツ プ (g)では、キャパシタ C1A、 C2Aの一端は DAC5の出力にそれぞれ接続される。
[0054] その後、再び、図 10のステップ (d)の動作に戻り、図 9の入力 Vin2の入力信号に対 する巡回型 AZD変換を行う。図 10のステップ (d)においてまずキャパシタ C3, C4の 電荷を制御信号 に応じたスィッチ 71a、 71bを用いて初期化する。スィッチ 89a、 89bを介してキャパシタ C1B、 C2Bの一端はアンプ 21の入力 21a、 21cにそれぞれ 接続されている。
[0055] 次に、制御信号 φ 03を用いてスィッチ 91をターンオンする。図 10のステップ (e)に 示すようにキャパシタ C1B, C2Bをスィッチ 87を介して接続して、記憶されている電荷 をそれぞれキャパシタ C3, C4にスィッチ 89a、 89bを介して転送する。この動作によ つて、アンプ 21にサンプルされるランダムノイズ成分をキャンセルした信号をアンプ 2 1が生成される。アンプ 21の出力値に対して図 10のステップ (f)と (g)を繰り返すことで 、巡回型 AZD変換が実行される。
実際の図 10の制御信号の波形の例を図 12に示す。 この回路 AD3においても、図 5に示したのと同様に、キャパシタ C5の一端に設けら れたスィッチを省略することができる。
AZD変換部において 1. 5ビット変換を行う回路を用いるものとして説明したが、通 常の 1ビット変換や 2ビット変換であっても適用可能である。
[0056] 図 13に示されるように、最近、これを実際に測定してその効果を調べている。その 結果、極めて高いノイズ低減が可能であることがわかっている。図 13では、横軸は、 カラム増幅器の利得を示し、縦軸は入力換算ノイズ電圧を示している。参照符号 C S はシングルステージにおけるノイズキャンセル制帽を示し、参照符号 Cはダブルステ
D
ージにおけるノイズキャンセル制帽を示す。利得 20倍以上では、本実施の形態にお V、て用いられるダブルステージにおけるノイズキャンセル性能がシングルステージに おけるノイズキャンセル性能よりも優れる。
[0057] 好適な実施の形態において本発明の原理を図示し説明してきた力 本発明は、そ のような原理力 逸脱することなく配置および詳細において変更され得ることは、当 業者によって認識される。本実施の形態では、例えば、半導体レーザといった半導 体光素子を説明したけれども、本発明は、本実施の形態に開示された特定の構成に 限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から 来る全ての修正および変更に権利を請求する。
産業上の利用可能性
[0058] CMOSイメージセンサからの出力信号のように、ノイズ成分を含む第 1の電圧レべ ルと、ノイズ成分に有意な信号成分が重畳した第 2の電圧レベルが交互に現れるよう な信号に対して、この発明の実施の形態を適用すると、回路を複雑にすることなぐラ ンダムノイズを大きく低減しながら、高 、分解能の AZD変換が行える。

Claims

請求の範囲
[1] ノイズ成分を含む第 1の電圧レベルとノイズ成分に有意な信号成分が重畳した第 2 の電圧レベルとが交互に現れる信号に対して、前記第 2の電圧レベルから前記第 1 の電圧レベルを差し引くノイズキャンセル機能を有する AZD変^^であって、 入力信号を増幅する増幅手段 (1)と、
第 1の電圧レベルによって生じた前記増幅手段の出力の電圧レベルを記憶する第 1のキャパシタ (C1)と、
第 2の電圧レベルによって生じた増幅手段の出力の電圧レベルを記憶する第 2の キャパシタ (C2)と、
前記増幅手段の出力に接続される比較器 (2, 3)と、
該比較器の比較結果により制御される DZA変 (5)と、
前記第 1及び第 2のキャパシタを前記増幅手段 (1)の入力と DZA変換部 (5)との間 に接続換えするためのスイッチング手段と、
該スイッチング手段の開閉を制御する制御部と
を備え、
前記第 1及び第 2のキャパシタの接続をスイッチング手段を用いて前記増幅手段 (1 )の入力と前記 DZA変 (5)との間に変更することにより、前記第 1のキャパシタの 電圧と前記第 2のキャパシタの電圧との差を前記増幅手段の出力として得るとともに 、前記第 1及び第 2のキャパシタを巡回型 AZD変換のために用いることを特徴とす る AZD変^^。
[2] ノイズ成分を含む第 1の電圧レベルとノイズ成分に有意な信号成分が重畳した第 2 の電圧レベルとが交互に現れる信号に対して、前記第 2の電圧レベルから前記第 1 の電圧レベルを差し引くノイズキャンセル機能を有する AZD変^^であって、 入力信号を増幅する第 1段目の増幅手段 (6)と、
前記第 1の電圧レベルによって生じた前記第 1段目の増幅手段の出力の電圧レべ ルを記憶する第 1のキャパシタ (C1)と、
前記第 2の電圧レベルによって生じた前記第 1段目の増幅手段の出力の電圧レべ ルを記憶する第 2のキャパシタ (C2)と、 前記第 1のキャパシタの電圧と前記第 2のキャパシタの電圧との差を増幅する第 2 段目の増幅手段 (1)と、
該第 2段目の増幅手段の出力に接続される比較器 (2, 3)と、
該比較器の比較結果により制御される DZA変換部 (5)と、
前記第 1及び第 2のキャパシタを接続換えするためのスイッチング手段と、 該スイッチング手段の開閉を制御する制御部と
を備え、
前記第 1及び第 2のキャパシタの接続を前記スイッチング手段を用いて変更するこ とにより、前記第 1及び第 2のキャパシタをノイズキャンセルのために用いられると共に 、 AZD変換のために用いることを特徴とする AZD変^^。
[3] 前記 AZD変換器の入力端子と前記増幅手段の入力との間に接続される第 3のキ ャパシタ (C3)と、
前記増幅手段 (1)の出力と前記入力の間に接続され、前記第 3のキャパシタとの容 量比により前記増幅手段の利得を決定する第 4のキャパシタ (C5)と、
前記第 3および第 4のキャパシタ (C3、 C5)並びに前記増幅手段 (1)の接続を制御 する別のスイッチング手段と
をさらに備えてなる請求項 1に記載の AZD変^^。
[4] 前記増幅手段 (1)は、入力信号の極性に対して出力信号の極性が反転する MOS 増幅回路であり、
該 MOS増幅回路を増幅器として用いるときには、前記第 3のキャパシタ (C3)が当 該 AZD変換器の前記入力端子と前記 MOS増幅回路の入力端子の間に接続され 、前記第 4のキャパシタ (C5)が前記 MOS増幅回路の前記入力端子と前記 MOS増 幅回路の出力端子との間に接続され、前記第 1のキャパシタ (C1)の一端と前記第 2 のキャパシタ (C2)の一端は、前記第 1の電圧レベルと前記第 2の電圧レベルをそれ ぞれ記憶するように順次前記 MOS増幅回路の前記出力端子に接続され、その後前 記第 1のキャパシタと前記第 2のキャパシタの前記一端同士を接続して前記第 1およ び第 2のキャパシタの直列回路を形成して、該直列回路の一端を前記 MOS増幅回 路の前記入力端子に接続すると共に該直列接続の他端を接地電位に接続してノィ ズキャンセルを行い、
該 MOS増幅回路をノイズキャンセルされた信号のための巡回型 AZD変換のため に用いるときには、前記第 3のキャパシタ (C3)を前記 MOS増幅回路の前記入力端 子と前記出力端子に接続し、
前記巡回型 AZD変換は第 1および第 2のフェースを含み、前記巡回型 AZD変換 は前記第 1のフェースと前記第 2のフェースを繰り返すことによって行われ、
前記第 1のキャパシタ (C 1)の一方の端子を前記第 1のフェーズにお 、て前記 MOS 増幅回路の前記出力端子に接続すると共に、前記第 2のフェーズにおいて DZA変 換の為の参照電圧を提供する前記 DZA変換部につなぎ換え、
前記第 1のキャパシタ (C 1)の他方の端子を前記第 1のフェーズにお 、て接地電位 に接続すると共に、前記第 2のフェーズにおいて前記 MOS増幅回路の前記入力端 子につなぎ換える、ことを特徴とする請求項 3に記載の AZD変^^。
前記増幅手段 (1)は、差動入力 差動出力の MOS増幅回路であり、
該 MOS増幅回路を増幅器として用いるときには、前記第 3のキャパシタ (C3)が当 該 AZD変換器の前記入力端子と前記 MOS増幅回路の負入力端子との間に接続 され、前記第 4のキャパシタ
(C5)が前記 MOS増幅回路の前記負入力端子と前記 M OS増幅回路の正出力端子との間に接続され、さらに前記 MOS増幅回路の前記正 入力端子と前記 MOS増幅回路の負出力端子は短絡されて、直流電位に接続される とともに、前記第 1のキャパシタ (C1)と前記第 2のキャパシタ (C2)は前記 MOS増幅回 路の前記正出力端子に、第 1の電圧レベルと第 2の電圧レベルをそれぞれ記憶する ように順次接続され、その後、前記第 1のキャパシタ (C1)と前記第 2のキャパシタ (C2) の一端をそれぞれ前記 MOS増幅回路の前記負入力端子及び前記正入力端子に 接続し、かつ前記第 1のキャパシタ (C1)と前記第 2のキャパシタ (C2)の他端同士を接 続することによりノイズキャンセルを行い、
ノイズキャンセルされた信号のための巡回型 AZD変換のために前記 MOS増幅回 路を用いるときには、第 3のキャパシタ (C3)を前記 MOS増幅回路の前記負入力端子 と前記正出力端子に接続し、前記第 5のキャパシタ (C4)を前記 MOS増幅回路の前 記負入力端子と前記正出力端子に接続し、 前記巡回型 AZD変換は第 1のフェースと第 2のフェースを含み、前記巡回型 AZ D変換は前記第 1および第 2のフェースを繰り返すことによって行われ、
前記第 1のキャパシタ (C1)の一方の端子と前記第 2のキャパシタ (C2)の一方の端 子をそれぞれ前記第 1のフェーズにおいて前記 MOS増幅回路の前記正出力端子 及び前記負出力端子に接続すると共に、前記第 2のフェーズにおいて DZA変換の 為の参照電圧を提供する DZA変換部につなぎ換え、
前記第 1のキャパシタ (C1)の他方の端子と前記第 2のキャパシタ (C2)の他方の端 子を接地電位に前記第 1のフェーズにおいて接続すると共に、前記第 2のフェーズに おいて前記 MOS増幅回路の前記負入力端子及び前記正入力端子にそれぞれつ なぎ換える、ことを特徴とする請求項 3に記載の AZD変^^。
[6] 前記巡回型 AZD変換のために前記第 4のキャパシタ (C5)が用いられるとき、これ により前記 MOS増幅回路の前記入力端子と前記出力端子の間に接続されることに よりスイッチング素子を減らしてなることを特徴とする請求項 4または請求項 5に記載 の AZD変換器。
[7] 第 1および第 2の系列の信号のうち一方を受けるための第 1の入力端子並びに他方 を受けるための第 2の入力端子と、
前記第 1の入力端子と前記増幅手段 (1)の第 1の入力との間に接続される第 3のキ ャパシタ (C3)と、
前記増幅手段 (1)の前記第 1の入力と前記増幅手段 (1)の第 1の出力の間に接続さ れ、前記第 3のキャパシタとの容量比により前記増幅手段の利得を決定する第 4のキ ャパシタ (C5)と、
前記第 2の入力端子と前記増幅手段 (1)の第 2の入力との間に接続される第 5のキ ャパシタ (C4)と、
前記増幅手段 (1)の前記第 2の入力と前記増幅手段 (1)の第 2の出力の間に接続さ れ、前記第 3のキャパシタとの容量比により前記増幅手段の利得を決定する第 6のキ ャパシタ (C6)と、
前記第 1の電圧レベルと前記第 2の電圧レベルを記憶するための 2つのキャパシタ( C1B, C2B)と、を備え、 前記増幅手段 (1)は、 2つの入力端子と 2つの出力端子を有する差動アンプを含む と共にモード切替可能な第 1および第 2のモードを有しており、前記第 1のモードでは 前記差動アンプは巡回型 AZD変換のために差動入力 差動出力の増幅回路とし て動作し、前記第 2のモードでは前記差動アンプは該差動アンプの共通ソースを固 定電位に接続することによりノイズキャンセル動作のために 2つのシングルエンドアン プとして動作する、請求項 1に記載の AZD変換器。
前記第 1および第 2の系列の信号は、行および列に配置された複数の画素を含む イメージセンサ画素アレイの第 1および第 2の画素列にそれぞれ接続された第 1およ び第 2のカラムライン力 提供される、請求項 7に記載の AZD変^^。
PCT/JP2006/317772 2005-09-07 2006-09-07 ノイズキャンセル機能付きa/d変換器 WO2007029786A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/066,059 US7598896B2 (en) 2005-09-07 2006-09-07 A/D converter with noise cancel function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-258724 2005-09-07
JP2005258724 2005-09-07

Publications (1)

Publication Number Publication Date
WO2007029786A1 true WO2007029786A1 (ja) 2007-03-15

Family

ID=37835901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317772 WO2007029786A1 (ja) 2005-09-07 2006-09-07 ノイズキャンセル機能付きa/d変換器

Country Status (2)

Country Link
US (1) US7598896B2 (ja)
WO (1) WO2007029786A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782324B1 (ko) * 2006-02-03 2007-12-06 삼성전자주식회사 씨모스 이미지 센서의 아날로그 디지털 변환기 및 아날로그디지털 변환 방법
JP5138490B2 (ja) * 2008-07-17 2013-02-06 ルネサスエレクトロニクス株式会社 サンプル・ホールド回路及びデジタルアナログ変換回路
WO2011142452A1 (ja) * 2010-05-14 2011-11-17 国立大学法人静岡大学 A/d変換器
US8766832B1 (en) * 2012-11-05 2014-07-01 Xilinx, Inc. Background calibration scheme for analog-to-digital converters
JP6230370B2 (ja) * 2013-10-25 2017-11-15 オリンパス株式会社 信号読み出し回路および信号読み出し回路の制御方法
US9831864B2 (en) * 2014-05-30 2017-11-28 Cypress Semiconductor Corporation Programmable switched capacitor block
US9998105B2 (en) * 2014-05-30 2018-06-12 Cypress Semiconductor Corporation Programmable switched capacitor block
JP6436022B2 (ja) * 2015-09-03 2018-12-12 株式会社デンソー A/d変換器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136540A (ja) * 2003-10-29 2005-05-26 National Univ Corp Shizuoka Univ A/d変換アレイ及びイメージセンサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212486A (en) * 1991-12-26 1993-05-18 At&T Bell Laboratories Cyclic analog-to-digital converter
US6128039A (en) * 1999-01-11 2000-10-03 Omnivision Technologies, Inc. Column amplifier for high fixed pattern noise reduction
JP3458812B2 (ja) 1999-06-01 2003-10-20 株式会社デンソー 巡回型a/d変換器
US6535157B1 (en) * 2001-09-07 2003-03-18 Motorola, Inc. Low power cyclic A/D converter
JP3497495B2 (ja) 2001-11-21 2004-02-16 株式会社半導体理工学研究センター サンプルホールド回路
JP4366501B2 (ja) 2004-07-08 2009-11-18 国立大学法人静岡大学 ディジタルノイズキャンセル機能をもつイメージセンサ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136540A (ja) * 2003-10-29 2005-05-26 National Univ Corp Shizuoka Univ A/d変換アレイ及びイメージセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASE M. ET AL.: "A 19.5b dynamic range CMOS image sensor with 12b column-parallel cyclic A/D converters", SOLID-STATE CIRCUITS CONFERENCE, 2005. DIGEST OF TECHNICAL PAPERS. ISSCC. 2005 IEEE INTERNATIONAL, vol. 1, 6 February 2005 (2005-02-06), pages 350 - 351, AND 603, XP003003906 *

Also Published As

Publication number Publication date
US7598896B2 (en) 2009-10-06
US20090102695A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
EP2571169B1 (en) A/d converter
US8553112B2 (en) A/D converter and readout circuit
WO2007029786A1 (ja) ノイズキャンセル機能付きa/d変換器
US7683819B2 (en) Analog-to-digital converting circuit
US7224306B2 (en) Analog-to-digital converter in which settling time of amplifier circuit is reduced
US20080068237A1 (en) Multi-bit pipeline analog-to-digital converter having shared amplifier structure
JP4366501B2 (ja) ディジタルノイズキャンセル機能をもつイメージセンサ
WO2005041419A1 (ja) A/d変換アレイ及びイメージセンサ
JP5339454B2 (ja) 巡回型アナログ・ディジタル変換器
WO2012111821A1 (ja) A/d変換器、イメージセンサデバイス及びアナログ信号からディジタル信号を生成する方法
US7408496B2 (en) Method, apparatus and system sharing an operational amplifier between two stages of pipelined ADC and/or two channels of signal processing circuitry
WO2009131018A1 (ja) イメージセンサー用a/d変換器
US7248199B2 (en) Analog-to-digital converter
WO2018088476A1 (ja) A/d変換器
WO2011104761A1 (ja) パイプライン型a/dコンバータおよびa/d変換方法
JP4469988B2 (ja) ノイズキャンセル機能付きa/d変換器
JP4478798B2 (ja) オフセット低減機能をもつ巡回型a/d変換器、およびオフセット電圧を低減する方法
JP4328863B2 (ja) 巡回型a/d変換器およびイメージセンサ
JP4423427B2 (ja) アナログディジタル変換器およびイメージセンシング半導体デバイス
JP4121969B2 (ja) アナログデジタル変換器
JP2007288400A (ja) 増幅回路及びその応用回路
JP4093976B2 (ja) アナログデジタル変換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12066059

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06797632

Country of ref document: EP

Kind code of ref document: A1