WO2007029416A1 - 坩堝式連続溶解炉 - Google Patents

坩堝式連続溶解炉 Download PDF

Info

Publication number
WO2007029416A1
WO2007029416A1 PCT/JP2006/313779 JP2006313779W WO2007029416A1 WO 2007029416 A1 WO2007029416 A1 WO 2007029416A1 JP 2006313779 W JP2006313779 W JP 2006313779W WO 2007029416 A1 WO2007029416 A1 WO 2007029416A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
melting
molten metal
type continuous
melted
Prior art date
Application number
PCT/JP2006/313779
Other languages
English (en)
French (fr)
Inventor
Tamio Okada
Tadao Sasaki
Katsuyuki Shirakawa
Ryouichi Kishida
Shinnosuke Takeuchi
Longyun Piao
Original Assignee
Nippon Crucible Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co., Ltd. filed Critical Nippon Crucible Co., Ltd.
Publication of WO2007029416A1 publication Critical patent/WO2007029416A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • F27B14/143Heating of the crucible by convection of combustion gases

Definitions

  • the present invention relates to a crucible continuous melting furnace for melting non-ferrous metals such as aluminum, copper, and zinc.
  • a conventional non-ferrous metal melting furnace using a melting crucible furnace is a “batch type” in which one melting crucible is arranged in a furnace built in a cylindrical shape and the melting crucible is heated by a heating panner.
  • the present applicant has proposed a crucible type continuous melting furnace that continuously forms a molten metal by indirectly heating a material to be melted contained in a crucible (for example, , See Patent Literature 1).
  • this crucible type continuous melting furnace includes a melting crucible furnace 101 including a melting crucible 104, and the melting crucible is supplied by the combustion gas supplied to the melting crucible furnace 101. 104 is heated.
  • the material to be melted a such as an aluminum ingot supplied to the melting crucible 101 via the preheating tower 100 is sequentially melted from the portion immersed in the molten metal b, and the transfer section 105 is formed by increasing the liquid level of the molten metal b. Then, it is continuously supplied to the holding crucible 107 of the holding crucible furnace 102.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-130948
  • the material to be melted a has a different melting point, for example.
  • components that complete dissolution at low temperatures for example, eutectic Si, Cu, Zn, etc.
  • Components that do not e.g., hypereutectic Si, Fe, Mn, Cr, etc. that form solid solutions or composites with aluminum
  • the component composition of the molten metal c stored in the holding crucible 107 becomes different from the component composition of the material to be melted a, which may cause problems such as component segregation.
  • an object of the present invention is to provide a crucible type continuous melting furnace capable of supplying a high-quality molten metal.
  • the object of the present invention includes a melting crucible in which a material to be melted is accommodated, and a heating panner that melts the material to be melted by heating the melting crucible,
  • a crucible type continuous melting furnace having a molten metal discharge port for supplying the molten metal to the outside, wherein the molten metal discharge port is formed at the lowermost part in the melting crucible, and the generated molten metal is This is achieved by a crucible type continuous melting furnace configured so as not to be substantially stored in the melting crucible.
  • a plurality of the heating panners can be arranged along the outer peripheral direction of the melting crucible. Further, it may be configured to further include a preheating pan that is disposed above the heating pan and preheats the material to be melted.
  • the melting crucible is preferably a graphite crucible.
  • the crucible type continuous melting furnace further includes a holding crucible for holding the molten metal supplied from the melting crucible, and a heat retaining pan for maintaining the temperature of the molten metal held in the holding crucible.
  • the melting crucible may have a structure in which a vent hole is formed in an upper portion.
  • the vent hole is preferably inclined obliquely downward from the outside toward the inside.
  • the molten metal discharge direction of the molten metal discharge loca is obliquely downward. It is preferable that they are arranged as described above.
  • the melting crucible can be supported so that the upper end opening is inclined, and it is preferable that the upper end opening is provided with a crucible intermediate piece made of a wedge-shaped cylindrical body in a side view. ,.
  • a high-quality molten metal can be supplied.
  • FIG. 1 is a cross-sectional view of a crucible type continuous melting furnace according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a crucible type continuous melting furnace according to another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a crucible type continuous melting furnace according to still another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a modification of the melting crucible and the crucible intermediate piece in the crucible type continuous melting furnace shown in FIG. 3.
  • FIG. 5 is a cross-sectional view of a crucible type continuous melting furnace according to still another embodiment of the present invention.
  • FIG. 6 is a sectional view of a conventional crucible type continuous melting furnace.
  • FIG. 1 is a cross-sectional view of a crucible type continuous melting furnace according to an embodiment of the present invention.
  • the crucible type continuous melting furnace includes a preheating tower 31 that accommodates a material to be melted a and a melting crucible furnace 11 provided below the preheating tower 31.
  • the cylindrical preheating tower 31 includes an open / close lid 33 in which an exhaust port 34 is formed.
  • a thermocouple 35 for detecting the temperature of the combustion gas passing through the exhaust port 34 is attached to the opening / closing lid 33.
  • the opening / closing lid 33 can be opened and closed by an automatic opening / closing mechanism (not shown) provided with a driving device.
  • the preheating tower 31 has a carriage 36 attached to the lower part thereof, and is configured to be movable on a rail 39 installed in the melting crucible furnace 11.
  • the material to be melted a in addition to non-ferrous metal ingots such as aluminum, zinc, and copper alloys, scrap materials such as retina, chips, empty cans, and sashes are subjected to pressure processing to reduce the volume. These include non-metallic materials with parts such as iron, rubber, and plastic.
  • the material to be melted a is an alloy composed of two or more metal components having different melting points (for example, a hypereutectic Si content or a high melting point high specific gravity metal (Fe , Mn, etc.) are particularly suitable in the case of an aluminum alloy having a high content.
  • the melting crucible furnace 11 is provided with a melting crucible chamber 12, and the upper part is constituted by a furnace lid 14.
  • the melting crucible chamber 12 consists of a cylindrical space formed of lightweight heat insulating material. It communicates with the inside of the preheating tower 31 through the opening of the lid 14.
  • An annular recess 16 formed by cutting out the inner wall surface of the melting crucible furnace 11 is provided in the upper part of the melting crucible chamber 12.
  • the melting crucible furnace 11 includes a melting crucible 71 mounted on a crucible base 72 and a heating panner 3 provided on a side wall.
  • the melting crucible 71 has a preheating tower 31 directly above it. It is arranged to be located at.
  • the melting crucible 71 is a graphite crucible having excellent durability, oxidation resistance, heat resistance and thermal conductivity.
  • the material to be melted a has a low melting point, zinc or the like, It can also be composed of iron or pig iron with excellent thermal conductivity.
  • the melting crucible 71 is provided with a molten metal discharge port 74 for discharging a molten metal generated by melting the material to be melted a.
  • the molten metal discharge port 74 is formed at the lowermost part of the melting crucible 71, and the molten metal generated in the melting crucible 71 is not substantially stored in the melting crucible 71, It is configured to be discharged through 74.
  • substantially not stored means that it is actually difficult to form the molten metal discharge port 74 so that the molten metal b is not stored in the melting crucible 71 at all. This is intended to include cases where molten metal of less than the extent is stored.
  • the molten metal discharged from the molten metal discharge port 74 can be continuously supplied to the outside through a transfer unit 75 connected to the molten metal discharge port 74.
  • the transfer unit 75 is made of a material having good thermal conductivity, and is preferably made of metal such as iron, pig iron, and stainless steel. It may be formed from a refractory ceramic material such as silicon. Further, a ceramic coating agent may be applied to the transfer unit 75.
  • the heating pan 3 is installed at the lower part of the side wall of the melting crucible furnace 11 so that the combustion gas swirls around the crucible base 72.
  • the crucible type continuous melting furnace includes a holding crucible furnace 51 provided adjacent to the melting crucible furnace 11.
  • the holding crucible furnace 51 includes a holding crucible chamber 52, and an upper part is constituted by a pressing lid 54.
  • the holding crucible furnace 51 includes a holding crucible 76 placed on a crucible stand 77 and a holding panner 5 attached to the side wall, and the molten metal supplied from the melting crucible furnace 11 is held. It is stored in the crucible 76 (reference c).
  • the holding crucible 76 is, for example, a graphite crucible, and can be made of iron or iron depending on the application.
  • the holding crucible chamber 52 is a cylindrical space cover formed of a lightweight heat insulating material, and is communicated with the melting crucible chamber 12 via the communication portion 81, and the combustion gas of the holding panner 5 After the holding crucible 76 is heated, it is supplied to the melting crucible chamber 12 via the communication portion 81.
  • the crucible type continuous melting furnace operates as follows.
  • the preheating tower 31 is moved so that the upper side of the melting crucible furnace 11 is opened, and the melting crucible 71 is moved into the melting crucible 71. After supplying the material to be melted a, the preheating tower 31 is set back above the melting crucible furnace 11. Next, after opening the opening / closing lid 33 and supplying the material to be melted a to the preheating tower 31, the heating panner 3 is operated to start melting of the material to be melted a.
  • Combustion gas injected by the operation of the heating pan 3 heats the lower portion of the melting crucible 71 and melts the material to be melted a to generate molten metal.
  • the injected combustion gas swirls and rises in the melting crucible chamber 12 and is then discharged from the exhaust port 34 through the melting crucible 71 and the preheating tower 31.
  • the molten metal discharge port 74 is formed at the lowermost part in the melting crucible 71, and the molten metal generated in the melting crucible 71 is substantially stored in the melting crucible 71.
  • the molten material a is supplied to the holding crucible 76 via the molten metal discharge port 74 and the transfer section 75, and the melting of the material to be melted a is mainly performed with the inner wall surface of the melting crucible 71 rather than being immersed in the molten metal as in the prior art. It is performed by contact.
  • the wall temperature of the melting crucible 71 by adjusting the amount of combustion of the heating panner 3, it is possible to surely dissolve components with a high melting temperature, not just those with a low melting temperature,
  • the component composition of the molten metal c stored in the crucible 76 for use can be made to substantially match the component composition of the material to be melted a.
  • the material to be melted a is heated by indirect heating through the melting crucible 71, efficient heat transfer heating is performed and the dissolved components are transferred from the melting crucible 71 to the holding crucible. Since it is quickly supplied to the crucible 76, the temperature of the molten metal supplied to the holding crucible 76 can be maintained at a low temperature, and the generation of inclusions and the absorption of hydrogen gas can be suppressed only by the generation of oxides. ⁇ U can be.
  • the holding crucible furnace 51 is not necessarily required as in the present embodiment, and may be another container provided separately. In this case, the holding crucible furnace 51 is not always necessary.
  • the melting crucible 71 is a graphite crucible as in the present embodiment, whereby the thermal energy of the heating pan 3 can be efficiently transmitted to the material to be melted a. It can promote the generation of molten metal.
  • a plurality of heating panners 3 may be arranged along the outer circumferential direction of melting crucible 71.
  • heating pan 3 is heated to injection port 3a formed on the inner wall surface of melting crucible furnace 11 in FIG. Pana can be placed. Accordingly, local heating of the melting crucible 71 can be prevented and the melting crucible 71 can be heated uniformly, and the melting of the melting crucible 71 can be prevented and the molten metal can be generated reliably.
  • the temperature of the combustion gas in the preheating tower 31 gradually increases. Therefore, by detecting the temperature of the combustion gas by the thermocouple 35, it is possible to recognize the timing of charging the melted material a. Further, the material to be melted a can be automatically charged into the preheating tower 31 based on the temperature detection of the combustion gas. For example, when the temperature of the combustion gas exceeds a set range (for example, 500 ° C.), an automatic opening / closing mechanism (not shown) stops the heating burner 3 and opens the opening / closing lid 33 to cover the opening from the opening of the preheating tower 31. After the melting material a is automatically charged, the opening / closing lid 33 may be closed and the heating panner 3 may be operated again.
  • a set range for example, 500 ° C.
  • the melting crucible of the present embodiment may be configured to further include a preheating panner 4 as shown in FIG.
  • the preheating burner 4 is disposed above the heating burner 3 and is installed on the upper side wall of the melting crucible furnace 11 so that the material to be melted a can be preheated efficiently.
  • the preheating partner 4 is preferably provided in the recess 16 formed in the melting crucible chamber 12 so that the internal pressure of the melting crucible chamber 12 does not increase excessively in the vicinity of the outer wall surface of the melting crucible 71.
  • the material to be melted a is preheated by the combustion gas of the preheating burner 4 in addition to the combustion gas of the heating burner 3. Therefore, melting in the melting crucible 71 can be facilitated.
  • Preheating Pana 4 instead of being provided in the melting crucible furnace 11, it may be provided in the preheating tower 31. By this, the material to be melted a is directly preheated with a combustion amount that does not cause rapid oxidation of the material to be melted a. can do.
  • the melting crucible 71 shown in FIG. 2 is made of a refractory material sandwiched between the lower surface of the furnace lid 14 via a cushioning material and a heat-resistant adhesive (not shown).
  • a cylindrical crucible intermediate joint 73 is provided.
  • a combustion gas ventilation hole 73a is formed in the side wall of the crucible intermediate joint 73. This ventilation hole 73a is provided from the outside so that the combustion gas introduced into the melting crucible 71 is guided downward. It consists of a plurality of inclined holes that are inclined obliquely downward.
  • the air hole 73a has a small diameter so that the material to be melted a is not locally heated and oxidized, and so that the material to be melted a is not spilled out of the melting crucible 71. It is preferable to form a large number.
  • the material of the crucible intermediate 73 is the same material as the graphite crucible, silicon carbide (SiC), silicon nitride (Si N), sialon (Si N -A1 O solid solution) excellent in oxidation resistance and wear resistance, and Melting
  • a sintered or sintered body such as quartz, and also from the economical point of view alumina-silica (Al O -Si
  • refractory 2 series It is possible to apply refractory 2 series, and it can be selected according to the type of melted material a and operating conditions.
  • the melting crucible 71 includes the crucible intermediate joint 73 having the vent holes 73a, so that the material to be dissolved a accommodated in the melting crucible 71 is placed inside the melting crucible 71. It can be dissolved reliably and efficiently.
  • the melting crucible 71 shown in FIG. 2 has a crucible joint 73 having a vent hole 73a as a separate body. However, by forming a vent hole in the upper side wall of the melting crucible 71, the melting crucible 71 A crucible intermediate joint having a vent hole may be integrated.
  • the melting crucible 71 shown in FIG. 1 is arranged such that the molten metal discharge port 74 extends in the horizontal direction.
  • the molten metal can be discharged obliquely downward by placing it on the crucible base 72 via the support 72 a formed. According to such a configuration, the molten metal generated in the melting crucible 71 is smoothly discharged due to its own weight due to the melt discharge port 74 force, so that the remaining of the molten metal in the melting crucible 71 can be avoided more reliably. be able to.
  • a crucible intermediate 731 having a cylindrical body force in a side view is provided at the upper end opening.
  • a crucible middle joint 731 By providing such a crucible middle joint 731, it is possible to secure a sufficient amount of material to be melted.
  • the gap between the upper edge of the crucible intermediate 731 and the lower surface of the furnace lid 14 is maintained appropriately, and elasticity is provided so that the melting crucible 71 can be securely held on the inclined support 72a.
  • the holding body (not shown) which has can be interposed in several places.
  • a vent hole may be formed in the melting crucible 71 and the crucible intermediate 731 shown in FIG.
  • a plurality of vent holes 71a are formed above the horizontal line H at the time of placing on the upper side wall of the melting crucible 71, and a plurality of passages are formed on the entire side wall of the crucible intermediate 731.
  • the vent holes 71a and 731a are inclined holes inclined obliquely downward from the horizontal direction when the melting crucible 71 is placed, similarly to the vent hole 73a of the crucible intermediate joint 73 shown in FIG.
  • This inclination angle is preferably larger than 0 ° and smaller than 45 °.
  • the crucible-type continuous melting furnace provided with the melting crucible 71 and the crucible intermediate joint 731 shown in FIG. 3 or FIG. 4 can also be provided with the preheating partner 4 similarly to the configuration shown in FIG.
  • FIG. 5 shows a structure in which a preheating panner 4 is provided in a crucible type continuous melting furnace in which a melting crucible 71 having vent holes 71a and 731a and a crucible intermediate joint 731 are arranged in a melting crucible chamber 12, and The material to be melted a can be preheated by 4 to promote melting in the melting crucible 71.
  • a cushion material, a heat-resistant adhesive (V, not shown) or the like can be interposed between the crucible intermediate 731 and the furnace lid 14.
  • the present invention will be described in more detail using examples and comparative examples.
  • the configuration other than the melting crucible is the same size as shown in Table 1.
  • the melting crucible has a configuration in which the example has an inner diameter of 684 mm and a height of 330 mm, and a molten metal discharge port (inner diameter of 100 mm) is provided at the bottom, while a comparative example has an inner diameter of 762 mm and a height of 530 mm.
  • the melting outlet (100mm inner diameter) is 200mm from the bottom.
  • the melting crucible of the example is a non-hot water storage type, while the melting crucible of the comparative example stores 80kg of molten metal. It was configured to be able to.
  • the material to be melted As the material to be melted, a commercially available ingot that also has ADC12 material was used.
  • the components used in the examples and comparative examples satisfy the JIS standard and are shown in Table 2.
  • the combustion amount of the heating and holding panners was set to 140,000 kcal / h and 110,000 kcalZh, respectively.
  • About 6 to 8 pieces (about 30 to 40 kg) of materials to be melted were introduced automatically every 10 minutes after the start of pouring, and the molten metal was continuously supplied to the holding crucible furnace at a pouring rate of about 150 kgZh. .
  • both the examples and the comparative examples were maintained at a low temperature of 590 to 600 ° C, and the molten metal was reduced to about 690 in the holding crucible. Heated at ° C.
  • the components of the molten metal supplied to the holding crucible are almost the same as the components of the material to be melted in the examples.
  • Cu (copper) and Zn (zinc) increase compared to the material to be dissolved
  • Fe (iron) and Mn (manganese) decrease. It can be seen that there is a component change.

Abstract

 被溶解材aが収容される溶解用坩堝71と、溶解用坩堝71を加熱して被溶解材aを溶解する加熱バーナ3とを備え、溶解用坩堝71は、生成された溶湯を外部に供給するための溶湯排出口74を有する坩堝式連続溶解炉であって、溶湯排出口74は、溶解用坩堝71内の最下部に形成されており、生成された溶湯が溶解用坩堝71内に実質的に貯留されないように構成されている。この坩堝式連続溶解炉によれば、高品質の溶湯を供給することができる。

Description

明 細 書
坩堝式連続溶解炉
技術分野
[0001] 本発明は、アルミニウム、銅、亜鉛等の非鉄金属溶解用の坩堝式連続溶解炉に関 する。
背景技術
[0002] 従来の溶解用坩堝炉による非鉄金属溶解炉は、円筒形に築炉された炉の中に 1個 の溶解用坩堝を配置し、その溶解用坩堝を加熱パーナにより加熱する「バッチ型」の ものが主流であつたが、本出願人は、坩堝に収容された被溶解材を間接加熱するこ とにより、溶湯を連続的に形成する坩堝式連続溶解炉を提案している (例えば、特許 文献 1参照)。
[0003] この坩堝式連続溶解炉は、図 6に示すように、溶解用坩堝 104を備える溶解用坩 堝炉 101を備えており、溶解用坩堝炉 101に供給された燃焼ガスにより溶解用坩堝 104が加熱される。予熱タワー 100を介して溶解用坩堝 101に供給されたアルミ-ゥ ムインゴット等の被溶解材 aは、溶湯 bに浸漬されている部分から順次溶解され、溶湯 bの液面上昇により移送部 105を経て保持用坩堝炉 102の保持用坩堝 107に連続 的に供給される。
特許文献 1:特開 2000— 130948号公報
発明の開示
発明が解決しょうとする課題
[0004] 上述した従来の坩堝式連続溶解炉は、溶解用坩堝 104の内部に一定量の溶湯 b が常に貯留された状態となり、被溶解材 aは、この溶湯 bに浸漬されて溶解するよう〖こ 構成されている。このため、溶解用坩堝炉 101に供給された燃焼ガスの熱エネルギ 一は、専ら被溶解材 aの溶解に消費され、溶湯 bの温度は上昇せずに被溶解材 aの 融点 (液相線)近傍に維持されることになり、被溶解材 aの溶解は、この溶湯 bの温度 で行われる。
[0005] このように、溶湯 bの温度が低温に維持されるため、被溶解材 aが例えば融点の異 なる 2種以上の金属成分力 なるアルミニウム合金の場合に、低温で溶解を終了する 成分 (例えば、共晶 Siや、 Cu、 Zn等)は早期に溶解する一方、高温にならないと溶 解を終了しない成分 (例えば、過共晶 Siや、アルミニウムとの固溶体やィ匕合物を形成 する Fe、 Mn、 Cr等)は、溶解が遅れかつ比重が大きいので、溶解用坩堝 104内に 沈降或いは残留する。この結果、保持用坩堝 107に貯留される溶湯 cの成分組成が 被溶解材 aの成分組成と異なるものになり、成分偏析などの問題を生じるおそれがあ つた o
[0006] そこで、本発明は、高品質の溶湯を供給することができる坩堝式連続溶解炉の提 供を目的とする。
課題を解決するための手段
[0007] 本発明の前記目的は、被溶解材が収容される溶解用坩堝と、該溶解用坩堝を加熱 して前記被溶解材を溶解する加熱パーナとを備え、前記溶解用坩堝は、生成された 溶湯を外部に供給するための溶湯排出口を有する坩堝式連続溶解炉であって、前 記溶湯排出口は、前記溶解用坩堝内の最下部に形成されており、生成された溶湯 が前記溶解用坩堝内に実質的に貯留されな!/ヽように構成されて!ヽる坩堝式連続溶 解炉により達成される。
[0008] この坩堝式連続溶解炉にお!ヽて、前記加熱パーナは、前記溶解用坩堝の外周方 向に沿って複数配置された構成にすることができる。また、前記加熱パーナよりも上 方に配置され、前記被溶解材を予熱する予熱パーナを更に備えた構成にすることも できる。
[0009] また、前記溶解用坩堝は、黒鉛坩堝であることが好ま ヽ。
[0010] また、前記坩堝式連続溶解炉は、前記溶解用坩堝から供給された溶湯を保持する 保持用坩堝と、該保持用坩堝に保持された溶湯を保温する保温パーナとを更に備え ることちでさる。
[0011] また、前記溶解用坩堝は、上部に通気孔が形成された構成にすることができる。こ の場合、前記通気孔は、外部から内部に向けて斜め下方に傾斜することが好ましい
[0012] また、前記溶解用坩堝は、前記溶湯排出ロカもの溶湯排出方向が斜め下方となる ように配置されることが好ましい。この場合、前記溶解用坩堝は、上端開口が傾斜す るように支持されることが可能であり、前記上端開口に、側面視楔状の筒体からなる 坩堝中継ぎが設けられて 、ることが好ま 、。
発明の効果
[0013] 本発明の坩堝式連続溶解炉によれば、高品質の溶湯を供給することができる。
図面の簡単な説明
[0014] [図 1]本発明の一実施形態に係る坩堝式連続溶解炉の断面図である。
[図 2]本発明の他の実施形態に係る坩堝式連続溶解炉の断面図である。
[図 3]本発明の更に他の実施形態に係る坩堝式連続溶解炉の断面図である。
[図 4]図 3に示す坩堝式連続溶解炉における溶解用坩堝及び坩堝中継ぎの変形例 を示す断面図である。
[図 5]本発明の更に他の実施形態に係る坩堝式連続溶解炉の断面図である。
[図 6]従来の坩堝式連続溶解炉の断面図である。
符号の説明
[0015] a 被溶解材
b, c 溶湯
3 加熱パーナ
4 予熱ノ ーナ
5 保持用パーナ
11 溶解用坩堝炉
12 溶解用坩堝室
14 炉蓋
15 ガイド部
31 予熱タワー
33 開閉蓋
34 排気口
51 保持用坩堝炉
52 保持用坩堝室 70 円筒部材
71 溶解用坩堝
71a 通気孔
73, 731 坩堝中継ぎ
73a, 731a 通気孔
74 溶湯排出口
76 保持用坩堝
81 連通部
発明を実施するための最良の形態
[0016] 以下、本発明の実態形態について添付図面を参照して説明する。各実施形態の 図面において、同様の構成部分には同一の符号を付すことにより、重複した説明を 省略する。
[0017] 図 1は、本発明の一実施形態に係る坩堝式連続溶解炉の断面図である。図 1に示 すように、この坩堝式連続溶解炉は、被溶解材 aを収容する予熱タワー 31及び予熱 タワー 31の下方に設けられた溶解用坩堝炉 11を備えている。
[0018] 円筒状の予熱タワー 31は、排気口 34が形成された開閉蓋 33を上部に備えている 。開閉蓋 33には、排気口 34を通過する燃焼ガスの温度を検知する熱電対 35が取り 付けられている。開閉蓋 33の開閉は、駆動装置を備えた自動開閉機構 (図示せず) により行うことができる。また、予熱タワー 31は、下部に台車 36が取り付けられており 、溶解用坩堝炉 11に設置されたレール 39上を移動可能に構成されて 、る。
[0019] 被溶解材 aとしては、アルミニウム、亜鉛、銅合金等の非鉄金属インゴットの他、リタ 一ン材、切粉、空き缶、サッシ等のスクラップ材ゃそれらを加圧加工して減容化したも の、及び、鉄、ゴム、プラスチック等の部品類が付いた非金属材等が挙げられる。本 実施形態の坩堝式連続溶解炉は、被溶解材 aが、融点の異なる 2種以上の金属成分 力 なる合金 (例えば、過共晶 Siの含有量や、高融点'高比重の金属 (Fe、 Mn等) の含有量が高いアルミニウム合金など)の場合に、特に好適である。
[0020] 溶解用坩堝炉 11は、溶解用坩堝室 12を備えており、上部が炉蓋 14により構成さ れている。溶解用坩堝室 12は、軽量断熱材で形成された円筒状の空間からなり、炉 蓋 14の開口部を介して予熱タワー 31の内部と連通している。溶解用坩堝室 12の上 部には、溶解用坩堝炉 11の内壁面を切り欠いてなる環状の凹部 16が設けられてい る。
[0021] また、溶解用坩堝炉 11は、坩堝台 72に載置された溶解用坩堝 71と、側壁に設け られた加熱パーナ 3を備えており、溶解用坩堝 71は、予熱タワー 31が直上に位置す るように配置されている。溶解用坩堝 71は、本実施形態では、耐久性、耐酸化性、 耐熱性及び熱伝導性に優れた黒鉛坩堝として 、るが、被溶解材 aが融点の低 、亜 鉛等の場合には、熱伝導性に優れた鉄ゃ铸鉄等から構成することもできる。
[0022] 溶解用坩堝 71は、被溶解材 aを溶解することにより生成された溶湯を排出するため の溶湯排出口 74を備えている。溶湯排出口 74は、溶解用坩堝 71内の最下部に形 成されており、溶解用坩堝 71内で生成された溶湯は、溶解用坩堝 71内に実質的に 貯留されずに、溶湯排出口 74を介して排出されるように構成されている。ここで、「実 質的に貯留されずに」とは、溶解用坩堝 71内に溶湯 bが全く貯留されな ヽように溶湯 排出口 74を形成することは実際上困難であることから、 2L程度以下の溶湯が貯留さ れる場合も含む趣旨である。
[0023] 溶湯排出口 74から排出された溶湯は、溶湯排出口 74に連結された移送部 75を介 して外部に連続的に供給することができる。移送部 75は、熱伝導性が良好な材質か ら形成されており、鉄、铸鉄、ステンレス等の金属製であることが好ましぐその他、黒 鉛坩堝と同様の耐火材、アルミナや炭化珪素等の耐火セラミックス材等から形成され ていてもよい。また、移送部 75に、セラミック質のコーティング剤を塗布してもよい。
[0024] 加熱パーナ 3は、燃焼ガスが坩堝台 72の周囲を旋回するように、溶解用坩堝炉 11 の側壁下部に設置されている。
[0025] また、坩堝式連続溶解炉は、溶解用坩堝炉 11に隣接して設けられた保持用坩堝 炉 51を備えている。保持用坩堝炉 51は、保持用坩堝室 52を備え、上部が押さえ蓋 54により構成されている。保持用坩堝炉 51は、坩堝台 77に載置された保持用坩堝 76と、側壁に取り付けられた保持用パーナ 5とを備えており、溶解用坩堝炉 11から供 給された溶湯は、保持用坩堝 76に貯留される (符号 c)。保持用坩堝 76は、例えば 黒鉛坩堝であり、用途に応じて鉄ゃ铸鉄等にすることもできる。 [0026] 保持用坩堝室 52は、軽量断熱材で形成された円筒状の空間カゝらなり、連通部 81 を介して溶解用坩堝室 12に連通されており、保持用パーナ 5の燃焼ガスは、保持用 坩堝 76を加熱した後、連通部 81を経て溶解用坩堝室 12に供給される。
[0027] 以上の構成により、本発明に係る坩堝式連続溶解炉は次のように作動する。
[0028] 本発明に係る坩堝式連続溶解炉により被溶解材 aを溶解する場合、まず、溶解用 坩堝炉 11の上方が開放されるように予熱タワー 31を移動させ、溶解用坩堝 71内に 被溶解材 aを供給した後、予熱タワー 31を溶解用坩堝炉 11の上方に戻して設置す る。次に、開閉蓋 33を開いて被溶解材 aを予熱タワー 31に供給した後、加熱パーナ 3を作動させて被溶解材 aの溶解を開始する。
[0029] 加熱パーナ 3の作動により噴射された燃焼ガスは、溶解用坩堝 71の下部を加熱し 、内部の被溶解材 aを溶解して溶湯を生成する。噴射された燃焼ガスは、溶解用坩 堝室 12を旋回上昇した後、溶解用坩堝 71及び予熱タワー 31の内部を経て排気口 3 4から排出される。
[0030] 本実施形態においては、溶湯排出口 74が溶解用坩堝 71内の最下部に形成され ており、溶解用坩堝 71内で生成された溶湯は、溶解用坩堝 71内に実質的に貯留さ れずに、溶湯排出口 74及び移送部 75を介して保持用坩堝 76に供給され、被溶解 材 aの溶解は、従来のように溶湯への浸漬ではなぐ主として溶解用坩堝 71の内壁 面との接触により行われる。したがって、加熱パーナ 3の燃焼量を調整して溶解用坩 堝 71の壁面温度を制御することにより、溶解温度の低い成分だけでなぐ溶解温度 の高い成分も確実に溶解することができるので、保持用坩堝 76に貯留される溶湯 c の成分組成を、被溶解材 aの成分組成にほぼ一致させることができる。
[0031] また、被溶解材 aの加熱は、溶解用坩堝 71を介した間接加熱により行われるので、 効率的な伝熱加熱が行われると共に、溶解した成分が溶解用坩堝 71から保持用坩 堝 76に速やかに供給されるので、保持用坩堝 76に供給される溶湯の温度を低温に 維持することができ、酸ィ匕物の発生だけでなぐ介在物の生成や水素ガスの吸収を 抑帘 Uすることができる。
[0032] これらの結果、保持用坩堝 76に品質の高い溶湯 cを供給することができ、高歩留ま り化、省エネルギー化を図ることができる。溶解用坩堝炉 11からの溶湯の供給先は、 必ずしも本実施形態のように保持用坩堝炉 51である必要はなぐ別途設けられた他 の容器などであってもよい。この場合、保持用坩堝炉 51は必ずしも必要ではない。
[0033] 溶解用坩堝 71は、本実施形態のように黒鉛坩堝であることが好ましぐこれによつ て、加熱パーナ 3の熱エネルギーを被溶解材 aに効率良く伝達することができ、溶湯 の生成を促すことができる。
[0034] また、加熱パーナ 3は、溶解用坩堝 71の外周方向に沿って複数配置してもよぐ例 えば、図 1における溶解用坩堝炉 11の内壁面に形成された噴射口 3aに加熱パーナ を配置することができる。これによつて、溶解用坩堝 71の局所的な加熱を防止して均 一に加熱することができ、溶解用坩堝 71の破損を防止しつつ、溶湯の生成を確実に 行うことができる。
[0035] 被溶解材 aの溶解が進むにつれて、予熱タワー 31内における被溶解材 aの量が徐 々に減少すると、予熱タワー 31内における燃焼ガスの温度がしだいに上昇する。し たがって、熱電対 35により燃焼ガスの温度を検知することにより、被溶解材 aの投入 のタイミングを認識することができる。更に、燃焼ガスの温度検出に基づいて、被溶解 材 aを予熱タワー 31に自動投入するように構成することもできる。例えば、燃焼ガスの 温度が設定範囲 (例えば、 500°C)を超えると、図示しない自動開閉機構が、加熱バ ーナ 3を停止させて開閉蓋 33を開き、予熱タワー 31の開口部から被溶解材 aを自動 投入した後、開閉蓋 33を閉じて、加熱パーナ 3を再び作動させるように構成してもよ い。
[0036] 本実施形態の溶解用坩堝においては、図 2に示すように、予熱パーナ 4を更に設け た構成にしてもよい。予熱パーナ 4は、加熱パーナ 3よりも上方に配置されており、被 溶解材 aを効率よく予熱できるように、溶解用坩堝炉 11の側壁上部に設置されている 。予熱パーナ 4は、溶解用坩堝 71の外壁面と近接して溶解用坩堝室 12の内圧が過 度に上昇しないように、溶解用坩堝室 12に形成した凹部 16に設けることが好ましい
[0037] 図 2に示す溶解用坩堝によれば、予熱パーナ 4を作動させることにより、被溶解材 a は、加熱パーナ 3の燃焼ガスに加えて、予熱パーナ 4の燃焼ガスにより予熱されるた め、溶解用坩堝 71の内部における溶解を容易にすることができる。予熱パーナ 4は、 溶解用坩堝炉 11に設ける代わりに予熱タワー 31に設けてもよぐこれによつて、被溶 解材 aの急激な酸化が進行しな ヽ程度の燃焼量で、被溶解材 aを直接予熱すること ができる。
[0038] また、図 2に示す溶解用坩堝 71は、炉蓋 14の下面との間にクッション材及び耐熱 性接着剤 ( ヽずれも図示せず)等を介して挟持された、耐火物からなる円筒状の坩堝 中継ぎ 73を備えている。坩堝中継ぎ 73の側壁には、燃焼ガスの通気孔 73aが形成 されており、この通気孔 73aは、溶解用坩堝 71に導入される燃焼ガスが下方に向け て案内されるように、外部から内部に向けて斜め下方に傾斜する複数の傾斜孔から なる。通気孔 73aは、被溶解材 aが局部的に過熱されて酸ィ匕されないように、又、細 力 、被溶解材 aが溶解用坩堝 71の外部にこぼれ落ちないように、直径が小さいもの を多数形成するのが好まし 、。
[0039] 坩堝中継ぎ 73の材質は、黒鉛坩堝と同じ材質や、耐酸化性ゃ耐摩耗性に優れた 炭化珪素(SiC)、窒化珪素(Si N ) ,サイアロン (Si N -A1 O固溶体)及び溶融
3 4 3 4 2 3
石英等の焼成体又は焼結体、更に、経済性の点からはアルミナ—シリカ (Al O -Si
2 3
O )
2系耐火物の適用が可能であり、被溶解材 aの種類や操業条件等に応じて選択す ることがでさる。
[0040] このように、溶解用坩堝 71が、通気孔 73aを有する坩堝中継ぎ 73を備える構成に することで、溶解用坩堝 71に収容された被溶解材 aを溶解用坩堝 71の内部におい て確実且つ効率よく溶解させることができる。図 2に示す溶解用坩堝 71は、通気孔 7 3aを有する坩堝中継ぎ 73を別体として備える構成にしているが、溶解用坩堝 71の 上部側壁に通気孔を形成することにより、溶解用坩堝と通気孔を有する坩堝中継ぎ とが一体化された構成にすることもできる。
[0041] また、図 1に示す溶解用坩堝 71は、溶湯排出口 74が水平方向に延びるように配置 されているが、図 3に示すように、溶解用坩堝 71を、上面が傾斜面とされた支持体 72 aを介して坩堝台 72に載置するなどして、溶湯の排出方向を斜め下方とすることもで きる。このような構成によれば、溶解用坩堝 71で生成された溶湯が、溶湯排出口 74 力も自重によりスムーズに排出されるため、溶解用坩堝 71内への溶湯の残存を、より 確実に回避することができる。 [0042] 図 3に示す溶解用坩堝 71は、上端開口が傾斜するように支持されており、この上端 開口に、側面視楔状の筒体力もなる坩堝中継ぎ 731が設けられている。このような坩 堝中継ぎ 731を設けることによって、被溶解材の収容量を十分確保することができる 。坩堝中継ぎ 731の上縁と炉蓋 14の下面との間には、隙間を適正に維持すると共に 、傾斜した支持体 72a上に溶解用坩堝 71を確実に保持することができるように、弾性 を有する保持体 (図示せず)を複数箇所に介在させることができる。
[0043] 図 3に示す溶解用坩堝 71及び坩堝中継ぎ 731には、通気孔を形成してもよい。例 えば、図 4に示すように、溶解用坩堝 71の側壁上部における載置時の水平ライン H よりも上方に、複数の通気孔 71aを形成すると共に、坩堝中継ぎ 731の側壁全体に 複数の通気孔 731aを形成することにより、被溶解材の収容量を低下させることなぐ 加熱パーナ 3の燃焼ガスを溶解用坩堝 71内に導入して、被溶解材を効率良く溶解さ せることができる。この結果、溶解し易い成分のみが先に排出されてしまう不具合を 解消することができる。
[0044] 通気孔 71a, 731aは、図 2に示す坩堝中継ぎ 73の通気孔 73aと同様に、溶解用坩 堝 71の載置時において、水平方向よりも斜め下方に傾斜する傾斜孔であることが好 ましぐこの傾斜角は、 0° より大きく 45° より小さいことが好ましい。これにより、溶解 用坩堝 71及び坩堝中継ぎ 731の内部全体に燃焼ガスを導入し易くなり、被溶解材 a の溶解をより効率良く行うことができる。
[0045] 図 3または図 4に示す溶解用坩堝 71及び坩堝中継ぎ 731を備えた坩堝式連続溶 解炉についても、図 2に示す構成と同様に、予熱パーナ 4を備えることができる。図 5 は、通気孔 71a, 731aを備える溶解用坩堝 71及び坩堝中継ぎ 731が溶解用坩堝室 12に配置された坩堝式連続溶解炉において、予熱パーナ 4を設けた構成を示して おり、予熱パーナ 4により被溶解材 aを予熱して、溶解用坩堝 71内での溶解を促すこ とができる。図 5において、坩堝中継ぎ 731と炉蓋 14との間には、クッション材及び耐 熱性接着剤 (V、ずれも図示せず)等を介在させることができる。
実施例
[0046] 以下、実施例及び比較例を用いて、本発明を更に詳細に説明する。ただし、本発 明が本実施例に限定されるものではない。 [0047] 図 1に示す実施例の構成と、図 6に示す比較例の構成において、溶解用坩堝以外 の構成は、いずれも表 1に示すように同じ大きさとした。溶解用坩堝は、実施例が、口 内径 684mm、高さ 330mmで、溶湯排出口(内径 100mm)が最下部に設けられた 構成であるのに対し、比較例が、口内径 762mm、高さ 530mmで、溶湯排出口(内 径 100mm)が底面から 200mmの位置に設けられた構成にしており、実施例の溶解 用坩堝が非貯湯型である一方、比較例の溶解用坩堝は溶湯を 80kg貯湯できるよう に構成した。
[0048] [表 1]
Figure imgf000012_0001
[0049] 被溶解材としては、 ADC12材カもなる市販のインゴットを使用した。その成分は、 実施例及び比較例に用いた 、ずれも JIS規格を満足するものであり、表 2に示す通り である。このインゴットを、予熱タワーが満杯となるように 50本 (約 250kg)投入した後 、加熱パーナ及び保持パーナの燃焼量を、それぞれ 14万 kcal/h、 11万 kcalZh に設定した。出湯開始後、約 10分毎に、 6〜8本 (約 30〜40kg)の被溶解材を自動 投入することにより、約 150kgZhの出湯速度で溶湯を保持用坩堝炉に連続的に供 給した。保持用坩堝炉に供給される溶湯の温度を移送部において測定したところ、 実施例及び比較例のいずれも、 590〜600°Cの低温に維持されており、保持用坩堝 において、溶湯を約 690°Cで加熱保持した。
[0050] 溶湯の供給開始から 7時間後に、保持用坩堝に貯留されている溶湯の成分を測定 した。成分分析には、発光分光金属分析器(Solartron Analytical社製「Metalscan 25 00」)を使用し、溶湯を均一に撹拌した後にサンプリングを行った。この結果を表 2に 示す。
[0051] [表 2] 成分 (重量13 /0)
S ί C u M g Z n F e M n 実 被溶解材 10.8 2.30 0.20 0.61 0.58 0.22
例 7hr後貯湯 11.0 2.40 0.20 0.63 0.57 0.20 比 被溶解材 10.5 2.22 0.18 0.55 0.65 0.25
例 7hr後貯湯 10.9 2.59 0.20 0.71 0.49 0.15 表 2の結果力も明らかなように、保持用坩堝に供給された溶湯の各成分は、実施例 においては被溶解材の各成分とほぼ同じであり、品質が良好に維持されているのに 対し、比較例においては、 Cu (銅)、 Zn (亜鉛)が被溶解材に比べて増加する一方、 Fe (鉄)、 Mn (マンガン)については減少しており、成分変化が生じていることがわか る。

Claims

請求の範囲
[1] 被溶解材が収容される溶解用坩堝と、該溶解用坩堝を加熱して前記被溶解材を溶 解する加熱パーナとを備え、前記溶解用坩堝は、生成された溶湯を外部に供給する ための溶湯排出口を有する坩堝式連続溶解炉であって、
前記溶湯排出口は、前記溶解用坩堝内の最下部に形成されており、生成された溶 湯が前記溶解用坩堝内に実質的に貯留されな!/ヽように構成されて!ヽる坩堝式連続 溶解炉。
[2] 前記加熱パーナは、前記溶解用坩堝の外周方向に沿って複数配置されている請求 項 1に記載の坩堝式連続溶解炉。
[3] 前記加熱パーナよりも上方に配置され、前記被溶解材を予熱する予熱パーナを更に 備える請求項 1に記載の坩堝式連続溶解炉。
[4] 前記溶解用坩堝は、黒鉛坩堝である請求項 1に記載の坩堝式連続溶解炉。
[5] 前記溶解用坩堝から供給された溶湯を保持する保持用坩堝と、該保持用坩堝に保 持された溶湯を保温する保温パーナとを更に備える請求項 1に記載の坩堝式連続溶 解炉。
[6] 前記溶解用坩堝は、上部に通気孔が形成されている請求項 1に記載の坩堝式連続 溶解炉。
[7] 前記通気孔は、外部から内部に向けて斜め下方に傾斜する請求項 6に記載の坩堝 式連続溶解炉。
[8] 前記溶解用坩堝は、前記溶湯排出ロカもの溶湯排出方向が斜め下方となるように配 置されて!ヽる請求項 1に記載の坩堝式連続溶解炉。
[9] 前記溶解用坩堝は、上端開口が傾斜するように支持され、前記上端開口に、側面視 楔状の筒体力 なる坩堝中継ぎが設けられている請求項 8に記載の坩堝式連続溶 解炉。
PCT/JP2006/313779 2005-09-01 2006-07-11 坩堝式連続溶解炉 WO2007029416A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-253371 2005-09-01
JP2005253371 2005-09-01

Publications (1)

Publication Number Publication Date
WO2007029416A1 true WO2007029416A1 (ja) 2007-03-15

Family

ID=37835544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313779 WO2007029416A1 (ja) 2005-09-01 2006-07-11 坩堝式連続溶解炉

Country Status (1)

Country Link
WO (1) WO2007029416A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138969A (ja) * 2006-12-04 2008-06-19 Denso Corp 保持炉制御装置
JP2009222239A (ja) * 2008-03-13 2009-10-01 Tokyo Yogyo Co Ltd 坩堝台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288474A (ja) * 1992-04-09 1993-11-02 Kosaka Nenshiyouro Seisakusho:Yugen 金属溶解保持炉
JPH0791844A (ja) * 1993-09-27 1995-04-07 Meichiyuu Seiki Kk 金属溶解方法および溶解炉
JPH1030884A (ja) * 1996-07-15 1998-02-03 Nippon Rutsubo Kk 坩堝炉型アルミニウム溶解装置
JPH10332272A (ja) * 1997-06-03 1998-12-15 Nippon Rutsubo Kk 坩堝炉を原型とした低融点金属の連続溶解保持装置
JP2000130948A (ja) * 1998-10-23 2000-05-12 Nippon Crucible Co Ltd アルミニウムインゴット等の溶解保持炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288474A (ja) * 1992-04-09 1993-11-02 Kosaka Nenshiyouro Seisakusho:Yugen 金属溶解保持炉
JPH0791844A (ja) * 1993-09-27 1995-04-07 Meichiyuu Seiki Kk 金属溶解方法および溶解炉
JPH1030884A (ja) * 1996-07-15 1998-02-03 Nippon Rutsubo Kk 坩堝炉型アルミニウム溶解装置
JPH10332272A (ja) * 1997-06-03 1998-12-15 Nippon Rutsubo Kk 坩堝炉を原型とした低融点金属の連続溶解保持装置
JP2000130948A (ja) * 1998-10-23 2000-05-12 Nippon Crucible Co Ltd アルミニウムインゴット等の溶解保持炉

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138969A (ja) * 2006-12-04 2008-06-19 Denso Corp 保持炉制御装置
JP2009222239A (ja) * 2008-03-13 2009-10-01 Tokyo Yogyo Co Ltd 坩堝台

Similar Documents

Publication Publication Date Title
WO2006132309A1 (ja) 坩堝式連続溶解炉
KR100439547B1 (ko) 알루미늄괴(塊)의 용해 유지로
EP1784515B1 (en) Process and equipment for the treatment of loads or residues of non-ferrous metals and their allows
US4615511A (en) Continuous steelmaking and casting
CN1251827C (zh) 熔融金属供给容器
WO2007029416A1 (ja) 坩堝式連続溶解炉
JPH0253492B2 (ja)
RU2360010C2 (ru) Печная установка и способ расплавления металлического или металлсодержащего сырья
JPH02225630A (ja) 加熱溶解方法
CN101233081B (zh) 碳热法
EP1091011A3 (en) Hot dipping apparatus
WO1997030320A1 (fr) Appareil et procede de prechauffage de dechets metalliques a base de fer
RU69975U1 (ru) Роторная наклонная печь
JP4403452B2 (ja) 被溶解材の溶解方法
JP5550730B2 (ja) 金属材料を溶融するシステムとそれに用いる可動炉床
GB2216640A (en) Scrap melting furnace
CN100365136C (zh) 用于传送冶金成分改进的熔融金属的方法和设备
RU2260074C1 (ru) Способ очистки ковшей для выливки и транспортировки алюминия
JPH11320079A (ja) 坩堝炉式取鍋
JP4362712B2 (ja) 坩堝式溶解保持炉
JPH0791844A (ja) 金属溶解方法および溶解炉
WO1983000165A1 (en) A furnace for melting metal swarf
JP2002181460A (ja) 移動式予熱タワー付き坩堝炉
JPH08233468A (ja) 加熱溶解装置
JP3982389B2 (ja) 横吹き精錬炉の操業方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP