WO2007026390A1 - スキャン型露光装置 - Google Patents

スキャン型露光装置 Download PDF

Info

Publication number
WO2007026390A1
WO2007026390A1 PCT/JP2005/015690 JP2005015690W WO2007026390A1 WO 2007026390 A1 WO2007026390 A1 WO 2007026390A1 JP 2005015690 W JP2005015690 W JP 2005015690W WO 2007026390 A1 WO2007026390 A1 WO 2007026390A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure apparatus
optical system
mask
exposure
scanning
Prior art date
Application number
PCT/JP2005/015690
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Shigetoshi Sugawa
Kimio Yanagida
Kiwamu Takehisa
Original Assignee
Tadahiro Ohmi
Shigetoshi Sugawa
Kimio Yanagida
Kiwamu Takehisa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadahiro Ohmi, Shigetoshi Sugawa, Kimio Yanagida, Kiwamu Takehisa filed Critical Tadahiro Ohmi
Priority to PCT/JP2005/015690 priority Critical patent/WO2007026390A1/ja
Publication of WO2007026390A1 publication Critical patent/WO2007026390A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Definitions

  • the present invention relates to an exposure apparatus used in an exposure process during the manufacture of a semiconductor integrated circuit (also referred to as a semiconductor chip), and more particularly to the structure of a scan type exposure apparatus.
  • a semiconductor integrated circuit also referred to as a semiconductor chip
  • Exposure devices can be classified according to the type of exposure light source used.
  • An exposure device using a KrF excimer laser with a wavelength of 248 nm is called a KrF exposure device, and an exposure device using an ArF excimer laser with a wavelength of 193 nm is called an ArF exposure device.
  • the exposure apparatus has a method in which the mask and the wafer are scanned in opposite directions during the exposure to perform force exposure, which is called a scanning type exposure apparatus (commonly called a scanner).
  • a scanning type exposure apparatus commonly called a scanner.
  • the type KrF exposure apparatus and the scanning type ArF exposure apparatus are sometimes called a KrF scanner and an ArF scanner.
  • the mask is four times the pattern on the wafer (that is, the size of the pattern drawn on the mask) It is 4 times the circuit pattern size of the semiconductor chip exposed.
  • the maximum exposure area on the wafer by these scanners is generally 33mm (length in the scanning direction) x 26mm (direction perpendicular to the scanning direction, that is, the length in the step direction).
  • the length in the step direction is the width that the laser beam is irradiated during exposure, and while maintaining this width, the exposure is performed while moving 33 mm in the scan direction.
  • it is called an exposure width.
  • the drawing area on the mask being 132 mm in the scanning direction means that the length of scanning at a constant speed (hereinafter referred to as a constant speed stroke) is 132 mm or more as the scanning stroke on the mask stage. .
  • the entire stroke is about 140 to 150 mm because the scan at the time of deceleration just before reversal and the scan at acceleration just after reversal are added.
  • the space between the lens closest to the wafer and the wafer among many lenses constituting the reduction projection optical system is filled with a liquid so that the reduction projection optical
  • An apparatus called an immersion optical system that improves the resolution performance by increasing the numerical aperture (NA) of the system is being studied.
  • NA means NA on the wafer 3 side in the reduction projection optical system 1 as shown in FIG.
  • an ArF immersion exposure apparatus what is applied to an ArF exposure apparatus is called an ArF immersion exposure apparatus, and it is pointed out in Non-Patent Document 1, for example, that the resolution performance can be improved by filling the space between the lens and the wafer with pure water. ing.
  • the exposure apparatus hereinafter, dry type
  • NA is approximately 1.4 times the refractive index, so the resolution inversely proportional to NA is reduced (resolution performance is improved). Therefore, in the dry type, the maximum NA is said to be about 0.95, but when the immersion optical system is applied, it becomes possible to exceed 1.2. This means that the resolution is improved.
  • Non-Patent Document 1 SEMICON Japan 2002, Technical programs for the semiconductor eq uipment and materials industries ⁇ Brother 3—15-3—16
  • An object of the present invention is to provide a scanning exposure apparatus in which throughput is not reduced even when a reduction projection optical system composed of a small-diameter lens that can be manufactured at low cost is used, and in particular, an ArF immersion optical system is used. This is to realize cost reduction of the exposure apparatus.
  • the reduction projection optical system has a reduction ratio higher than 1Z4 and a mask stage having a constant velocity stroke longer than 132 mm in the scanning direction. is there.
  • a high reduction ratio is a value with a magnification smaller than 1/4.
  • the exposure width on the wafer can be reduced, it is not necessary to increase the lens diameter even with a high NA.
  • the area of the exposure area that can be exposed in one scan is reduced, so that a large-sized semiconductor chip close to 33 X 26 mm cannot be exposed with one scan, and the exposure is reduced.
  • the number of chips that can be exposed in one scan is reduced, which results in a problem of reduced throughput.
  • a reduction ratio of the reduction projection optical system is set to 1Z8, and a mask stage having a constant velocity stroke of 528 mm or more in the scanning direction is used.
  • a length of 66 mm in the scanning direction in the exposure area on the wafer can be secured.
  • the area is 856 square mm, and the same area as before can be secured.
  • the reduction ratio of the reduction projection optical system is set to 1Z6, the mask stage force has a constant velocity stroke of 297 mm or more in the scanning direction.
  • the length in the scanning direction in the exposure area on the wafer can be secured at 49.5 mm.
  • the area is 856 square mm, and the same area as before can be secured.
  • a mask that is longer in the scanning direction than the conventional quadruple mask is used in the present invention.
  • the mask is shorter in the step direction, a mask is formed on both long sides in the scanning direction. Supporting the mask will increase the itchiness of the mask due to its own weight.
  • the scan type exposure apparatus of the present invention can manufacture a high-throughput scan type exposure apparatus equipped with a high NA lens at low cost.
  • the scan type exposure apparatus uses an ArF immersion optical system having an NA of about 1.2. It can be offered at a low price.
  • FIG. 1 is a diagram showing a configuration of a scanning exposure apparatus 100 of the present invention.
  • FIG. 2 is a diagram for explaining NA in a reduction projection optical system.
  • FIG. 3 is a graph showing the relationship between NA and lens diameter in a reduction projection optical system.
  • FIG. 4 is a diagram for explaining a conventional exposure region and a case for exposing a plurality of chips in one scan.
  • FIG. 5 (a) and (b) are diagrams for explaining two exposure regions according to an embodiment of the present invention.
  • FIG. 6 is a diagram for explaining an example of the specifications of a scanning exposure apparatus.
  • FIG. 7 is a diagram showing a relationship among an optical system, a chip size, and the number of exposed chips.
  • FIG. 8 is a graph showing the relationship between the optical system shown in FIG. 7 and the amortization cost of the exposure apparatus per chip.
  • FIG. 1 is a block diagram of a scanning exposure apparatus 100 of the present invention.
  • the laser device that is the exposure light source and the beam shaper of the laser beam are omitted.
  • the laser beam for exposure forms an elongated laser beam irradiation region 103 for one of the four circuit patterns 109 indicated by thin oblique lines in the mask 102 placed on the mask stage 101. Is irradiated.
  • the pattern in the laser light irradiation area 103 is reduced to 1Z8 by the reduction projection optical system 104 and projected onto the wafer 105 placed on the wafer stage 106. Note that a resist is coated on the wafer 105 in advance.
  • the mask 102 reciprocates in the X direction (scan direction) within the mask stage 101, and the wafer 105 reciprocates in the X direction within the wafer stage 106 and in the direction opposite to the mask 102.
  • the circuit pattern 109 is projected onto the pattern projection unit 107, and the circuit pattern 109 is reduced and exposed on the wafer 105.
  • the reduction projection optical system 104 having a reduction ratio of 1Z8 is used! /, So the mask 102 can be called an 8x mask. it can
  • the uniform speed stroke length of the scan on the mask stage 101 is about 530 mm, which is about four times longer than about 140 mm of the conventional scanning exposure apparatus. It is.
  • the length (scan direction, X direction) of 528 mm can be covered as the size of the drawing area (area including all circuit patterns) in the mask 102.
  • 66 mm is ensured in the X direction of the exposure area on the wafer 105 formed by the reduction projection optical system 104, which is twice the exposure area of 33 mm of the conventional scanning exposure apparatus. Can be covered.
  • the width of the drawing area of the mask 102 (the length in the step direction and the Y direction) is 104 mm, which is the same as the conventional quadruple mask, so that the wafer formed by the reduction projection optical system 104 1 05
  • the Y-direction of the exposure area in this case is 13mm, which is 1Z2 in the case of a conventional scanning exposure apparatus.
  • the area of the exposure area is 858 square mm, which is the same area as in the case of a conventional scanning exposure apparatus having a 1 Z4 reduction projection optical system.
  • FIG. 5A shows the size on the wafer 105 described above.
  • FIG. 5 (a) when the 1Z8 reduction projection optical system is used, the exposure area of 8 chips arranged in a row is exposed by one scan.
  • FIG. 4 shows a conventional exposure area corresponding to 8 chips.
  • the area force for pattern drawing of one chip of about 7 X 11 mm in size is included in either exposure area. .
  • the scanning exposure apparatus 100 uses a 1Z8 reduction projection optical system 104, and the width force in the Y direction in the drawing region of the mask 102 is the same as the width in the Y direction of the conventional quadruple mask. 104mm. This is because the exposure width on the wafer 105 can be reduced to 1Z2 as compared with the conventional case shown in FIG. 4, so that the diameter of each lens constituting the reduction projection optical system 104 is only 1Z2. Therefore, these lenses can be easily manufactured and manufactured at low cost.
  • the mask stage 101 may be configured so that the uniform speed stroke when scanning the mask 102 is 297 mm or more.
  • the size of the chip that can be exposed can be slightly increased.
  • the reduction ratio of the reduction projection optical system is preferably 1Z6 or 1Z8, especially as the reduction ratio higher than the conventional 1Z4. This is because the calculation of data processing at the time of mask pattern formation is simplified. Therefore, it may be 1Z10 or 1Z12 with a higher reduction ratio.
  • an all-refractive type is preferable because it is easy to manufacture, but a catadioptric type may also be used. Even in this case, by increasing the reduction ratio, the lens diameter of the refracting portion can be reduced, and the device price can be reduced.
  • the reduction ratio of the reduction projection optical system when the reduction ratio of the reduction projection optical system is 1Z8, it has a constant velocity stroke of 528 mm or more in the scanning direction. If this is done, the area of the exposure area exposed by one scan will not be reduced compared to the case of using a reduction projection optical system having a conventional reduction ratio of 1Z4. Thus, it was found that the device depreciation cost per chip does not increase if it is about 264mm, which is half that in the scanning direction.
  • the price of the scanning exposure apparatus of the present invention is assumed as follows based on the fact that an ArF exposure apparatus currently marketed by an exposure apparatus maker is about 2 billion yen.
  • the ArF immersion exposure system has a more complicated structure than the current ArF exposure system, so the price of this system will be about 3 billion yen if the reduction magnification of the reduction projection optical system is 1Z4, which is the same as before. It is predicted.
  • the reduction ratio of the reduction projection optical system is 1Z8, the length of the exposure area in the scanning direction is also halved. 16.5 mm is 2 billion yen, and twice that is 33 mm, 2.2 billion yen, 4 If it is doubled 66mm, it will be about 2.4 billion yen.
  • we calculated the equipment depreciation cost per chip assuming that the equipment amortization period was 3 years and the overall utilization rate was 60%.
  • the specification of the exposure apparatus used as a basis for calculating the cost is the same as the highest performance apparatus of the current ArF exposure apparatus as shown in FIG.
  • the number of exposure chips required in the calculation process assumes that 90% of the total area of a 300 mm diameter wafer is filled with chips.
  • the number of chips relative to the top size was calculated as shown in FIG.
  • FIG. 7 when using a reduction projection optical system that has a reduction ratio of 1Z4 and can expose an exposure area of 33 X 26 mm as in the past, 30 chips of 5 mm square are provided. , 20 6mm square chips can be exposed.
  • a reduction projection optical system having a reduction ratio of 1Z8 and an exposure area of 16.5 ⁇ 13 mm is used, only 6 and 4 5 and 6 mm square chips can be exposed, respectively. Can not.
  • the throughput of the exposure apparatus was obtained.
  • the amortization period of 3 years was used to calculate the amortization cost of the exposure equipment per chip.
  • the calculation results are shown in FIG. 8 corresponding to the optical system shown in FIG.
  • the exposure area length is 66 mm
  • the cost of a conventional exposure apparatus with a reduction ratio of 1/4 is lower, and when the length is 33 mm, It turned out to be equivalent cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 本発明のスキャン型露光装置100では、マスク102におけるレーザ光照射領域103内のパターンは、縮小投影光学系104によって、1/8に縮小されてウエハステージ106に載せられたウエハ105上に投影される。マスクステージ101におけるスキャンの等速度ストローク長は約530mmと従来の露光装置の約140mmに対して、4倍程度長くなっている。これによって、マスク102内の描画領域の大きさとして、長さ528mmがカバーできるようになる。これによって、縮小投影光学系104によって形成されるウエハ105での露光領域のX方向は、66mmが確保される。

Description

明 細 書
スキャン型露光装置
技術分野
[0001] 本発明は、半導体集積回路 (半導体チップとも言われる。)の製造時の露光工程で 用いられる露光装置に関し、特にスキャン型露光装置の構造に関する。
背景技術
[0002] 一般に、露光工程では、回路パターンが描かれたマスク(レチクルと呼ばれることも ある。 )を用いてレジストが塗布されたウェハ上に回路パターンを描画させる(パター ン露光と呼ばれる。)必要があり、そのための装置が露光装置と呼ばれる。また、露光 装置は、用いられる露光光源の種類で分類でき、波長 248nmの KrFエキシマレー ザを用いた露光装置は KrF露光装置、波長 193nmの ArFエキシマレーザを用いた 露光装置は ArF露光装置と呼ばれる。
[0003] 更に、露光装置には露光中にマスクとウェハとを互いに反対方向にスキャンさせな 力 露光する方式があり、これはスキャン型露光装置 (通称、スキャナ)と呼ばれてお り、スキャン型 KrF露光装置、及びスキャン型 ArF露光装置は、 KrFスキャナ、及び ArFスキャナと呼ばれることもある。
[0004] これらのスキャナでは、通常、縮小率 1Z4の縮小投影光学系が用いられているた め、マスクはウェハ上のパターンの 4倍(即ち、マスク上に描画されるパターンのサイ ズ力 ウェハに露光する半導体チップの回路パターンサイズの 4倍)になっている。ま た、これらのスキャナによるウェハ上での最大露光領域は、一般に 33mm (スキャン 方向の長さ) X 26mm (スキャン方向に直交する方向、すなわちステップ方向の長さ) であるのが普通であり、この関係で、マスク上の描画領域(半導体チップの回路パタ ーンが描かれた領域)のサイズは、 132mm (スキャン方向) X 104mm (ステップ方向 )になっている。すなわち、露光領域の面積は 33 X 26 = 858平方 mmになる。なお、 ステップ方向の長さは、露光中にレーザ光が照射される幅であり、この幅を保ったま ま、スキャン方向に 33mm移動させながら露光することから、 26mmのステップ方向 における幅のことを、ここでは、露光幅と呼ぶ。 [0005] また、マスク上の描画領域がスキャン方向に 132mmということは、マスクステージに おけるスキャンのストロークとして、等速度にスキャンする長さ(以下、等速度ストローク と呼ぶ。)が 132mm以上になる。なお、実際のスキャンでは、反転直前の減速時と反 転直後の加速時のスキャンが加わるため、全体のストロークは 140〜 150mm程度で ある。
[0006] 一方、露光装置の解像性能を上げるために、縮小投影光学系を構成する多数のレ ンズのうち最もウェハに近いレンズと、ウェハとの間を液体で満たして、縮小投影光 学系の開口数 (NA)を大きくすることで、解像性能を向上する液浸光学系と呼ばれる 装置が検討されている。
[0007] 一般に NAは、図 2に示したように、縮小投影光学系 1において、ウェハ 3側の NA のことをさす。例えば、 ArF露光装置に適用したものは ArF液浸露光装置と呼ばれ、 レンズとウェハとの間を純水で満たすことで、解像性能を向上できることが、例えば、 非特許文献 1において指摘されている。非特許文献 1によれば、レンズとウェハとの 間に満たされる純水の屈折率が約 1. 4であるため、通常の空気 (あるいは窒素)で満 たされる露光装置 (以下、ドライ型と呼ぶ。)の場合より、 NAが屈折率倍の約 1. 4倍 に大きくなることから、 NAに反比例する解像度が小さくなる (解像性能が高くなる)。 したがって、ドライ型では NAの最大は約 0. 95が限界と言われているのに対して、液 浸光学系を適用すると、 1. 2以上も可能になる。このことは、解像度が向上することを 意味している。
[0008] 非特許文献 1: SEMICON Japan 2002、 Technical programs for the semiconductor eq uipment and materials industries ^弟 3— 15〜3— 16
発明の開示
発明が解決しょうとする課題
[0009] 図 2に示されるように、一般に NAを大きくしょうとすると、 Θが大きくなるため、縮小 投影光学系を構成するレンズ (図 2の縮小投影光学系 1の中に斜線で示された部材) の口径を大きくする必要がある。ところが、レンズの価格はレンズ硝材の体積に比例 すると言われているため、レンズ径の 3乗に比例して価格が増大する。その結果、 Ar F液浸光学系においては、 NAが 1を越えるような場合、巨大なレンズが必要になるた め、レンズコストが増大する。具体的には、図 3に示すように、大きな NAを得るために は、レンズ口径が大きくする必要があり、且つ、レンズコストも急激に上昇する。
[0010] 特に NAとして、図 3に示したように、ドライ型では不可能な 0. 95以上が実現可能と 言われている液浸光学系を適用する場合、レンズコストの増大の結果、装置価格が 著しく高騰することが問題であった。
[0011] 本発明の目的は、安価に製造できる小口径レンズから成る縮小投影光学系を用い ても、スループットが低下しないスキャン型露光装置を提供することであり、特に ArF 液浸光学系を用いた露光装置のコスト低減を実現することである。
課題を解決するための手段
[0012] 前記目的を達成するために、縮小投影光学系の縮小率が 1Z4よりも高い縮小率を 有し、且つ、スキャン方向に 132mmより長い等速度ストロークを有するマスクステー ジを備えたものである。なお、高い縮小率とは、倍率が 1/4より小さい値のことである
[0013] この構成によれば、ウェハ上の露光幅を小さくできるため、高 NAでもレンズ径が大 きくしなくても良い。ところが、露光幅が小さくなると、 1回のスキャンで露光できる露光 領域の面積が小さくなることから、 33 X 26mmに近い大面積の半導体チップが 1スキ ヤンで露光できなくなるだけでなぐ小さくなつた露光幅に収まるような小面積の半導 体チップに対しても、 1スキャンで露光できるチップ数が減ることから、スループットが 低下することが問題になる。
[0014] そこで、本発明では、従来のマスクステージの等速度ストロークである 132mmよりも 十分長 、ストロークを有するマスクステージを備えることで、ウェハ上で 1スキャンによ る露光領域の面積を、従来の露光装置と同等にすることができるため、スループット の低下を抑制できる。
[0015] 例えば、図 5 (a)に示したように、本発明では、縮小投影光学系の縮小率を 1Z8に すると共に、スキャン方向に 528mm以上の等速度ストロークを有するマスクステージ を使用する。この構成により、ウェハ上での露光領域におけるスキャン方向の長さを 6 6mmを確保できる。その結果、露光幅が 1Z2 ( = (lZ8)Z(lZ4) )の 13mmと小 さくなつても、面積的には 856平方 mmとなり、従来と同様の面積が確保できる。 [0016] 一方、図 5 (b)に示したように、縮小投影光学系の縮小率を 1Z6にする場合は、マ スクステージ力 スキャン方向に 297mm以上の等速度ストロークを有するようにする ことで、ウェハ上での露光領域におけるスキャン方向の長さを 49. 5mmを確保できる 。その結果、露光幅が273 (= (1 6) 7 (174) )の17. 3mmと小さくなつても、面 積的には 856平方 mmとなり、従来と同様の面積が確保できる。
[0017] し力も、本発明では、従来の 4倍マスクに比べて、スキャン方向に長いマスクを利用 することになるが、ステップ方向には短くなるため、スキャン方向の両側の長辺でマス クを支えることで、自重によるマスクの橈みが大きくなることもな 、。
発明の効果
[0018] 本発明のスキャン型露光装置は、高 NAレンズを搭載した高スループットのスキャン 型露光装置が安価に製造でき、特に NAが 1. 2程度の ArF液浸光学系を適用した 露光装置を低価格で提供できるようになる。
図面の簡単な説明
[0019] [図 1]本発明のスキャン型露光装置 100の構成を示す図である。
[図 2]縮小投影光学系における NAを説明するための図である。
[図 3]縮小投影光学系の NAとレンズ径の関係を示すグラフである。
[図 4]従来の露光領域を説明すると共に、 1回のスキャンで複数のチップを露光する 場合を説明する図である。
[図 5] (a)及び (b)は、それぞれ本発明の実施例に係る 2つの露光領域を説明する図 である。
[図 6]スキャン型露光装置の仕様の一例を説明する図である。
[図 7]光学系、チップサイズ、及び、露光チップ数の関係を示す図である。
[図 8]図 7に示された光学系とチップ当りの露光装置の償却費との関係を示すグラフ である。
符号の説明
[0020] 1 縮小投影光学系
2 マスク
3 ウェハ 100 スキャン型露光装置
101 マスクステージ
102 マスク
103 レーザ光照射領域
104 縮小投影光学系
105 ウェハ
106 ウエノ、ステージ
107 パターン投影部
109 回路パターン
発明を実施するための最良の形態
[0021] 以下、本発明の実施形態を、図面を用いて説明する。
[0022] 本発明の実施例を、図 1を用いて説明する。図 1は本発明のスキャン型露光装置 1 00の構成図である。ただし、但し、露光光源であるレーザ装置やレーザ光のビーム 整形器などは省略されている。露光するためのレーザ光は、マスクステージ 101に載 せられたマスク 102における細斜線で示された 4個の回路パターン 109の 1つに対し て、細長い形状のレーザ光照射領域 103を形成するように照射される。レーザ光照 射領域 103内のパターンは、縮小投影光学系 104によって、 1Z8に縮小されてゥェ ハステージ 106に載せられたウェハ 105上に投影される。なお、ウェハ 105上には予 めレジストが塗布されている。
[0023] マスク 102はマスクステージ 101内で X方向(スキャン方向)に往復移動し、ウェハ 1 05はウェハステージ 106内で X方向に、マスク 102と反対方向に往復移動する。これ らのスキャン露光によって、回路パターン 109がパターン投影部 107に投影されて、 ウェハ 105上に回路パターン 109が縮小露光される。
[0024] 以上のように、図示されたスキャン型露光装置 100では、 1Z8の縮小率を有する縮 小投影光学系 104が用いられて!/、るため、マスク 102は 8倍マスクと呼ぶことができる
[0025] 本実施例では、マスクステージ 101におけるスキャンの等速度ストローク長は約 530 mmとなっており、従来のスキャン型露光装置の約 140mmに対して、 4倍程度長くな つている。これによつて、マスク 102内の描画領域(全ての回路パターンが含まれる領 域)の大きさとして、長さ (スキャン方向、 X方向) 528mmがカバーできるようになる。こ の構成によれば、縮小投影光学系 104によって形成されるウェハ 105での露光領域 の X方向は、 66mmが確保されるようになり、従来のスキャン型露光装置の 33mmの 2倍の露光領域をカバーすることができる。
[0026] 一方、マスク 102の描画領域の幅(ステップ方向、 Y方向の長さ)は 104mmであり、 従来の 4倍マスクと同じであるため、縮小投影光学系 104によって形成されるウェハ 1 05での露光領域の Y方向は 13mmと従来のスキャン型露光装置の場合の 1Z2にな る。ところ力 X方向に 66mmであるため、露光領域の面積は 858平方 mmになり、 1 Z4の縮小投影光学系を有する従来のスキャン型露光装置の場合と同じ面積になる
[0027] 図 5 (a)には、上記したウェハ 105上でのサイズが示されている。図 5 (a)からも明ら かな通り、 1Z8の縮小投影光学系を使用した場合、一回のスキャンにより、一列に配 列された 8チップ分の露光領域が露光される。他方、図 4には、 8チップ分に対応する 従来の露光領域が示されている。図 5 (a)及び図 4の斜線で示された領域からも明ら かな通り、約 7 X 11mmのサイズの 1チップ分がパターン描画される領域力 どちらの 露光領域中に合計 8個含まれる。
[0028] 本発明では、図 5 (a)に示された 8チップ分の露光領域が 1スキャンで露光されるこ とから、本発明では、従来の場合に比べて、スループットが低下しない。更に、本実 施例に係るスキャン型露光装置 100は、 1Z8の縮小投影光学系 104を用いており、 マスク 102の描画領域における Y方向の幅力 従来の 4倍マスクの Y方向の幅と同じ 104mmである。このことは、ウェハ 105上での露光幅を図 4に示された従来の場合 に比較して、 1Z2に小さくできるため、縮小投影光学系 104を構成する各レンズの 口径は 1Z2で済む。したがって、これらのレンズの製造が容易になり、安価に製作で きる。
[0029] 一方、図 1に示したスキャン型露光装置 100において、縮小投影光学系 104に 1Z
6の縮小率のものを用いた場合、マスク 102をスキャンさせる際の等速度ストロークが 297mm以上となるようにマスクステージ 101を構成すればよい。その結果、ウェハ 1 05上の露光領域の面積は、 297Z6 X (104/6) =858となり、従来のスキャン型露 光装置と同じ面積にできる。なお、これに関しては、図 5 (b)に示してあるように、露光 できるチップのサイズを多少大きくできる。
[0030] また、以上に説明したように、本発明のスキャン型露光装置では、縮小投影光学系 の縮小率が従来の 1Z4よりも高い縮小率として、特に 1Z6か 1Z8の場合が好まし いが、その理由は、マスクのパターン形成時のデータ処理の計算が簡単になるから である。したがって、さらに高い縮小率の 1Z10でも 1Z12でもよい。
[0031] また、本発明のスキャン型露光装置の縮小投影光学系としては、全屈折型が製作 が容易で好ましいが、反射屈折型のものでも良い。その場合も、縮小率を上げること で、屈折部のレンズ径を小さくでき、装置価格を低減できる。
[0032] ところで、以上に説明したように、本発明のスキャン型露光装置において、縮小投 影光学系の縮小率を 1Z8とした場合は、スキャン方向に 528mm以上の等速度スト ロークを有するようにすれば、 1回のスキャンによって露光される露光領域の面積が 従来の 1Z4の縮小率を有する縮小投影光学系を用いた場合に比べて低減しないた め、スループットが低下しないが、以下に説明するように、スキャン方向に、その半分 の 264mm程度あれば、チップ当たりの装置償却費用が増大しないことが判明した。
[0033] 先ず、本発明のスキャン型露光装置の価格として、現在、露光機メーカから市販さ れている ArF露光装置が約 20億円であることを基づいて、以下のように仮定する。 A rF液浸露光装置では、現在の ArF露光装置よりも構造が複雑になるため、この装置 価格として、縮小投影光学系の縮小倍率が従来と同様の 1Z4とした場合は 30億円 程度になることが予測される。また、縮小投影光学系の縮小率を 1Z8とした場合に、 露光領域のスキャン方向の長さも半分となる 16. 5mmとすると、 20億円、その 2倍の 33mmとすると、 22億円、 4倍の 66mmとすると、 24億円程度になるものと考えられる 。この予測に基づいて、装置償却期間を 3年、総合的な稼働率を 60%として、チップ 当たりの装置償却費用を算出し、上記した結果を得ることが出来た。
[0034] 具体的に云えば、費用算出の基となる露光装置の仕様としては、図 6に示したよう な現在の ArF露光装置の最高性能の装置と同等とした。また、算出過程で必要な露 光チップ数には、直径 300mmのウェハの全面積の 90%がチップで埋まるとして、チ ップサイズに対するチップ数を図 7に示したように算出した。図 7からも明らかな通り、 従来のように、 1Z4の縮小率を有し、 33 X 26mmの露光領域を露光することができ る縮小投影光学系を使用した場合、 5mm角のチップを 30個、 6mm角のチップを 20 個露光できる。一方、 1Z8の縮小率を有し、 16.5 X 13mmの露光領域を有する縮 小投影光学系を用 、た場合には、 5及び 6mm角のチップをそれぞれ 6個及び 4個し か露光することができない。
[0035] しかしながら、本発明のように、 1Z8の縮小率を有し、且つ、 33 X 13mmの露光領 域を有する縮小投影光学系を使用した場合、及び、 1Z8の縮小率を有し、且つ、 66 X 13mmの露光領域を有する縮小投影光学系を使用した場合、それぞれ、 5mm角 のチップを 15個及び 30個露光することができる。同様に、 6mm角のチップを前者で は 8個、後者では 16個露光することができる。
[0036] このことを考慮して、露光装置のスループットを求めた。ここでは、償却期間を 3年と して、チップ当たりの露光装置の償却費用を算出した。その算出結果が図 7に示され た光学系方式に対応して、図 8に示されている。図 8からも明らかなように、露光領域 の長さが 66mmになると、縮小率 1/4の従来の露光装置による費用よりも、安くなり 、さらに、長さが 33mmの場合には、従来と同等のコストになることが判明した。
[0037] 以上説明したことにより、本発明のスキャン型露光装置において、縮小投影光学系 の縮小率を 1Z8とした場合、露光領域の面積が従来と同じになるまで長くする必要 はなぐ長さは 33mmあればよい。すなわち、マスクステージにおいては、等速度スト ロークの長さとしては、 33 X 8 = 264mm以上あれば、コスト的にも従来と同等にでき る。

Claims

請求の範囲
[1] 縮小投影光学系を用いたスキャン型露光装置において、前記縮小投影光学系の 縮小率が 1Z4よりも高い縮小率を有し、かつ前記スキャン型露光装置におけるマス クステージ力 スキャン方向に 132mmより長い等速度ストロークを有することを特徴と するスキャン型露光装置。
[2] 前記スキャン型露光装置が ArF液浸光学系型露光装置であることを特徴とする請 求項 1のスキャン型露光装置。
[3] 前記縮小投影光学系の縮小率が 1Z6であり、かつ前記マスクステージが、スキヤ ン方向に 396mm以上の等速度ストロークを有することを特徴とする請求項 1または 2 のスキャン型露光装置。
[4] 前記縮小投影光学系の縮小率が 1Z8であり、かつ前記マスクステージが、スキヤ ン方向に 528mm以上の等速度ストロークを有することを特徴とする請求項 1または 2 のスキャン型露光装置。
[5] スキャン方向と当該スキャン方向と直角にステップ方向とを備えたマスクにおいて、
4つ以上のパターン領域を前記スキャン方向に一列に配列したことを特徴とするマス ク。
[6] 請求項 5において、前記パターン領域の前記ステップ方向の長さはスキャン型露光 装置における照射領域のステップ方向の長さに実質的に等しいことを特徴とするマス ク。
PCT/JP2005/015690 2005-08-30 2005-08-30 スキャン型露光装置 WO2007026390A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015690 WO2007026390A1 (ja) 2005-08-30 2005-08-30 スキャン型露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015690 WO2007026390A1 (ja) 2005-08-30 2005-08-30 スキャン型露光装置

Publications (1)

Publication Number Publication Date
WO2007026390A1 true WO2007026390A1 (ja) 2007-03-08

Family

ID=37808498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015690 WO2007026390A1 (ja) 2005-08-30 2005-08-30 スキャン型露光装置

Country Status (1)

Country Link
WO (1) WO2007026390A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196513A (ja) * 1990-11-28 1992-07-16 Nikon Corp 投影露光装置および走査露光方法
JPH04277612A (ja) * 1991-03-06 1992-10-02 Nikon Corp 投影露光装置及び投影露光方法
JPH0831736A (ja) * 1994-05-09 1996-02-02 Nikon Corp 照明光学装置
JPH097933A (ja) * 1995-06-19 1997-01-10 Nikon Corp 投影露光装置及び投影露光方法
JPH10321498A (ja) * 1997-05-15 1998-12-04 Nikon Corp 投影露光装置及び該装置を使用した露光方法
WO1999031717A1 (fr) * 1997-12-12 1999-06-24 Nikon Corporation Procede d'exposition par projection et graveur a projection
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196513A (ja) * 1990-11-28 1992-07-16 Nikon Corp 投影露光装置および走査露光方法
JPH04277612A (ja) * 1991-03-06 1992-10-02 Nikon Corp 投影露光装置及び投影露光方法
JPH0831736A (ja) * 1994-05-09 1996-02-02 Nikon Corp 照明光学装置
JPH097933A (ja) * 1995-06-19 1997-01-10 Nikon Corp 投影露光装置及び投影露光方法
JPH10321498A (ja) * 1997-05-15 1998-12-04 Nikon Corp 投影露光装置及び該装置を使用した露光方法
WO1999031717A1 (fr) * 1997-12-12 1999-06-24 Nikon Corporation Procede d'exposition par projection et graveur a projection
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection

Similar Documents

Publication Publication Date Title
JP4927912B2 (ja) ステップアンドスキャンシステムを使用するウェハ全幅走査
US4977426A (en) Projection exposure apparatus
JP4482531B2 (ja) リソグラフィ装置およびデバイス製造方法
CN1612051A (zh) 光刻装置和器件制造方法
TW200421047A (en) Exposure apparatus and method
KR20010051439A (ko) 전사장치용 가스 플러싱 시스템
JP2006216733A (ja) 露光装置、光学素子の製造方法及びデバイス製造方法
IL174923A (en) A method of producing a template on a substrate layer
JP2001358057A (ja) 照明装置及びそれを用いた走査型露光装置
JP2006278820A (ja) 露光方法及び装置
JP4090449B2 (ja) リソグラフィック投影装置及びデバイス製造方法
JP2004087987A (ja) 露光装置及び方法、並びに、デバイス製造方法
JP4303192B2 (ja) リソグラフィ装置およびデバイス製造方法
TWI269119B (en) Lithographic apparatus and device manufacturing method
US20180174839A1 (en) Lithography Patterning with Sub-Resolution Assistant Patterns and Off-Axis Illumination
US7119035B2 (en) Method using specific contact angle for immersion lithography
WO2007026390A1 (ja) スキャン型露光装置
TWI285788B (en) Lithographic apparatus, illumination system, and optical element for rotating an intensity distribution
JP2004226661A (ja) 3次元構造形成方法
JP6371869B2 (ja) リソグラフィ装置を修正する方法
JP2006093318A (ja) Euv露光装置、euv露光方法及び反射型マスク
JP2007258638A (ja) 液侵露光方法および液侵露光装置
JP2005209769A (ja) 露光装置
JP2005243725A (ja) スキャン型露光装置
JP2005310942A (ja) 露光装置、露光方法、及びそれを用いたデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05776824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP