WO2007023197A1 - Larguerillos de material compuesto con bulbo - Google Patents

Larguerillos de material compuesto con bulbo Download PDF

Info

Publication number
WO2007023197A1
WO2007023197A1 PCT/ES2005/070123 ES2005070123W WO2007023197A1 WO 2007023197 A1 WO2007023197 A1 WO 2007023197A1 ES 2005070123 W ES2005070123 W ES 2005070123W WO 2007023197 A1 WO2007023197 A1 WO 2007023197A1
Authority
WO
WIPO (PCT)
Prior art keywords
stringer
reinforcement
stringers
shape
foot
Prior art date
Application number
PCT/ES2005/070123
Other languages
English (en)
French (fr)
Inventor
Pedro Luis MUÑOZ ROYO
Francisco Escobar Benavides
Augusto Perez Pastor
Ignacio POBLACIÓN GARCÍA
Original Assignee
Airbus España, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus España, S.L. filed Critical Airbus España, S.L.
Priority to CA2619767A priority Critical patent/CA2619767C/en
Priority to PCT/ES2005/070123 priority patent/WO2007023197A1/es
Priority to BRPI0520507-7A priority patent/BRPI0520507A2/pt
Priority to CNA2005800519012A priority patent/CN101300124A/zh
Priority to EP05782608A priority patent/EP1967353A4/en
Priority to US11/267,052 priority patent/US20070039284A1/en
Publication of WO2007023197A1 publication Critical patent/WO2007023197A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/28Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of materials not covered by groups E04C3/04 - E04C3/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/064Stringers; Longerons
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0054Fuselage structures substantially made from particular materials
    • B64C2001/0072Fuselage structures substantially made from particular materials from composite materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the invention relates to composite stringers (carbon fiber or glass fiber with thermosetting or thermoplastic resin), in the form of T, J or I, which are used to stiffen composite panels and, more particularly, of the used in the aeronautical industry.
  • stringers are used, which provide the panel with sufficient rigidity to support the loads without increasing the weight of Ia structure.
  • T-shaped stringers For the manufacture of T-shaped stringers (see Fig. 1) a flat laminate is first made, then said laminate is bent to obtain an L-shaped profile. The T-shaped configuration is then achieved by gluing two shaped profiles of L. Another possibility (see Fig 2) is to fold the laminate to obtain a C-shaped profile. The T-shaped configuration is achieved by gluing two C-shaped profiles and cutting in half.
  • E elastic modulus
  • the only way to increase the flexural stiffness of the stringer (El) is to increase the thickness (and therefore the weight) thereof.
  • the head of the soul is very sensitive to damage because delaminations can be produced that separate the two L-shaped profiles (or the two C-shaped profiles).
  • the leg of the stringer has to be wide enough due to reparability considerations, which causes the weight to increase without having a significant increase in inertia.
  • the I-shaped stringers (see Fig. 4) are more efficient, but their manufacturing process is complicated, two C-shaped stringers must be glued and reinforced with 0 tapes on the foot and the head to avoid detachment, Io which makes its manufacture more complicated, in addition the problem of tolerance to the damage of the edges of the stringer in the form of I is not solved, nor that to increase the stiffness of the stringer it is necessary to increase the thickness of the foot.
  • the stringers in the form of ⁇ give enough torsional stiffness, but their assembly is complicated, the tooling costs increase because a tool is necessary for its manufacture and also adds problems to the inspectability and the reparability of the interior area.
  • the J-shaped stringers (see Fig. 6) are less effective than the I-shaped stringers and also their manufacturing process is more complicated.
  • T-shaped stringers in which it is possible to solve the inconvenience of increasing the stiffness of the material (the elastic limit, E) of the areas farthest from the foot without increasing the thickness of the entire stringer, these methods consist in introducing several layers of composite material between the profiles in L (See fig 7).
  • the present invention proposes a composite stringer (carbon fiber or fiberglass with thermosetting or thermoplastic resin) to stiffen composite panels formed by a joint foot with the panel and a structural element or core that at the opposite end to the foot and between layers of material, includes a structural reinforcement formed by unidirectional high modulus fibers, of the same material as the stringer or one compatible with it.
  • stringer should be understood as any longitudinal structural element for aircraft components such as a bar or a stiffener.
  • Said structural reinforcement consists of a laminate or structural element of high embedded module, inserted or interleaved in folded edge to optimize or provide greater strength or stiffening capacity.
  • the stringer can have, among others, the shape of T 1 J and I and in all of them the final part of the structural element is in the form of a bulb with layers of composite material surrounding the reinforcement.
  • This bulb Ie provides the stringer with greater stiffness and greater tolerance to damage than that of conventional stringers saving weight.
  • the invention also proposes a manufacturing process for a bulb stringer of the aforementioned characteristics comprising the following steps: a) providing a flat laminate of composite material formed by layers of carbon fiber or glass fiber with thermosetting or thermoplastic resin; b) folding the laminate by the method (presses, rollers, inflatable tool etc.) and the appropriate way (continuous, semi-continuous, etc.) according to the desired shape of the stringer; c) introduce the reinforcement, with the appropriate means to vary the width and shape thereof as well as the height of the stringer; d) give the final form to the stringer, either of constant section or of variable section, optimized.
  • Figures 1-7 show cross sections of stringers known in the art in the form of T, I and J and diagrams of their manufacturing process.
  • Figures 8, 9 and 10 show respectively cross sections of stringers according to the invention in the form of T, I and J.
  • Figure 11 shows the method of obtaining stringers according to the present invention.
  • Figures 12 and 13 show stringers according to the invention compared with known stringers in the form of T.
  • stringers 11 are formed by the following parts: a soul 13 which is the slender part and normal to the foot (or the panel) thereof, a foot 15 which is the part that is in contact with the panel (not shown) and serves of means of union between panel and stringer, and a reinforcement 17 disposed at the end of the soul 13 opposite to the foot 15, configuring a final part in the form of a bulb.
  • a flat laminate of composite material 41 is formed, formed by layers of carbon fiber or glass fiber with thermosetting or thermoplastic resin.
  • step b) said laminate is folded defining the two parts 43, 45 that will constitute the foot 15 and the two parts 47, 49 that will constitute the soul 13.
  • This bending can be done in different ways, for example rollers can be used that by successive rotations make the forming of in a continuous or semi-continuous way, or by means of inflatable tools that make the necessary pressure to perform the bending.
  • step c) the reinforcement 17 integrated between the parts 47, 49 of the core 13 is introduced.
  • the means for embedding the laminate can be controlled to vary the width, shape and narrowing thereof.
  • stage d) the final form is given to the stringer.
  • This final form can have a constant section or, on the contrary, it can also be optimized by means of variable geometry sections, but with the final part 19 in the form of a bulb.
  • a method of feeding a length of this structural element (laminate) within the aforementioned laminate or stiffener preform is also proposed.
  • the structural reinforcement 17 is formed by unidirectional fibers, of the same material as that used for the manufacture of the stringer 11 or of another material compatible with it, of high modulus that are introduced integrated between the two folded layers of the laminate.
  • the main mission of the unidirectional fibers that form the reinforcement 17 is to increase the rigidity of the material in the areas furthest from the foot 15 of the stringer 11 as well as the total inertia of the stringer 11 (this is what we call structural responsibility). With this configuration, it is also possible to increase the tolerance to damage of said stringer 11, because the realization thereof is done continuously.
  • the stiffness of the stringer 11 increases considerably.
  • the reinforcement 17 does not appreciably vary the area of the stringer 11 but it does contribute significantly to the inertia and rigidity. This would allow obtaining stringers of equal stiffness but less area (weight).
  • stringers 11 are especially useful in areas where a lot of flexural rigidity is required (the high) without a significant penalty in terms of the weight of the structure, because we are increasing the inertia in an area whose elastic modulus is very high, in addition we are removing layers of carbon fiber or fiberglass with thermosetting or thermoplastic resin from foot, where they are not very effective, to put them in a more remote area, where their effectiveness increases.
  • the main mission of the stringers is to stiffen the composite panels, therefore it is also convenient to compare a stiffened panel 51 with this type of stringers 11 with a stiffened panel 51 with conventional stringers 53 as illustrated in Figures 12 and 13, it can be seen that, depending on the type of failure that is affecting the stringer assembly plus panel, the weight savings that can be achieved with this type of stringers 11, compared to the stringer assembly plus panel with conventional T-shaped stringers varies.
  • the type of failure that affects the stringer plus panel assembly is mainly due to general buckling or resistance, we can have a weight saving of around 10-15%, instead when the type of main failure that affects the panel assembly plus Larguerillo is the local buckling of the panel, the weight savings are lower.
  • Another additional advantage is that we are manufacturing a stiffener in an integrated manner, thus reducing the number of parts to be manufactured, and eliminating the co-curing process of the different parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

Larguerillo (11, 21, 31) de material compuesto para rigidizar paneles de material compuesto, particularmente de los utilizados en la industria aeronáutica que está formado por un pie (15) de unión con el panel y un elemento estructural (13, 23, 33) con un refuerzo estructural (17, 27, 37) en el extremo opuesto al pie (15) formado por fibras unidireccionales de alto módulo, del mismo material que el larguerillo ú otro material compatible con él. La invención también se refiere a un procedimiento para la fabricación del larguerillo.

Description

LARGUERILLOS DE MATERIAL COMPUESTO CON BULBO
CAMPO DE LA INVENCIÓN
La invención se refiere a los larguerillos de material compuesto (fibra de carbono o fibra de vidrio con resina termoestable o termoplástica), con forma de T, J ó I, que se utilizan para rigidizar paneles de material compuesto y, más particularmente, de los utilizados en Ia industria aeronáutica.
ANTECEDENTES DE LA INVENCIÓN
Para conseguir paneles que sean capaces de soportar cargas en su plano (especialmente de compresión y cortadura) sin tener que aumentar el espesor de dichos paneles se usan larguerillos, que proporcionan al panel Ia rigidez suficiente para soportar las cargas sin aumentar extraordinariamente el peso de Ia estructura.
Cuando los larguerillos son de material compuesto las formas más usuales de los mismos suelen ser en forma de T,C,Ω,I,J,U.
Para Ia fabricación de larguerillos en forma de T (ver Fig. 1 ) se realiza primero un laminado plano, después dicho laminado se dobla para obtener un perfil en forma de L. La configuración en forma de T se consigue después pegando dos perfiles en forma de L. Otra posibilidad (ver Fig 2) es doblar el laminado para obtener un perfil en forma de C. La configuración en forma de T se consigue pegando dos perfiles en forma de C y cortando por Ia mitad. En estos larguerillos al ser fabricados a partir de un laminado plano y uniforme, no podemos aumentar Ia rigidez del material (módulo elástico, E) de las zonas más alejadas del pie (que dan más inercia) para obtener mayor rigidez (El), y tampoco podemos subir Ia altura del larguerillo de manera indefinida por problemas de estabilidad. Por Io tanto, el único modo de aumentar Ia rigidez a flexión del larguerillo (El) es aumentar el espesor (y por tanto el peso) del mismo. Además en estos larguerillos fabricados pegando dos perfiles, Ia cabeza del alma es muy sensible al daño porque se pueden producir delaminaciones que separen los dos perfiles en forma de L (o los dos perfiles en forma de C).
Existen otros métodos de fabricación de los larguerillos en forma de T (ver fig 3) con los que se consigue solucionar los problemas de sensibilidad al daño, consistentes en el doblado del laminado por Ia mitad para conseguir Ia forma en T sin tener que pegar perfiles en forma de L. Pero no consiguen resolver el inconveniente de aumentar Ia rigidez del material (el límite elástico,
E) de las zonas más alejadas del pie sin aumentar el espesor de todo el larguerillo.
Otro problema que tampoco consiguen resolver es el siguiente: el pie del larguerillo tiene que ser Io suficientemente ancho por consideraciones de reparabilidad, Io cual hace que aumente el peso sin tener un aumento significativo de Ia inercia. Los larguerillos en forma de I (ver Fig. 4) son más eficientes, pero su proceso de fabricación es complicado, hay que pegar dos larguerillos en forma de C y reforzar con cintas a 0 en el pie y Ia cabeza para evitar despegados, Io cual hace más complicada su fabricación, además no se resuelve el problema de tolerancia al daño de los bordes del larguerillo en forma de I, ni que para aumentar Ia rigidez del larguerillo haya que aumentar el espesor del pie.
Al igual que sucede con los larguerillos en forma de T también hay métodos de fabricación de larguerillos en forma de I en los cuales no hay que pegar perfiles en forma de C (métodos de fabricación por doblado/conformado)
(ver fig 5), pero tampoco resolvemos el problema de aumentar Ia rigidez a flexión (El) en las zonas alejadas del pie sin aumentar el espesor de éste.
Los larguerillos en forma de Ω dan bastante rigidez a torsión, pero su montaje es complicado, aumentan los costes de utillaje porque hace falta un útil para su fabricación y además añade problemas a Ia inspeccionabilidad y Ia reparabilidad de Ia zona interior. Los larguerillos en forma de J (ver Fig. 6) son menos efectivos que los larguerillos en forma de I y además su proceso de fabricación es más complicado.
Hay que señalar que en Ia fabricación de algunos de los larguerillos mencionados se suele añadir un "roving" (cintas unidireccionales a 0o) en las zonas de unión del alma con las alas. Este "roving" no tiene responsabilidades estructurales, y su única misión es rellenar los huecos que se producen en estas partes, evitando así que se generen puntos de concentración de resina.
También hay métodos para conseguir larguerillos en forma de T en los que se consigue solucionar el inconveniente de aumentar Ia rigidez del material (el límite elástico, E) de las zonas más alejadas del pie sin aumentar el espesor de todo el larguerillo, estos métodos consisten en introducir varias capas de material compuesto entre los perfiles en L (Ver fig 7).
Con estos métodos podemos aumentar el módulo elástico del alma del larguero sin aumentar el espesor del pie del mismo, pero no se consigue resolver el grave problema de sensibilidad al daño, de hecho el problema se agrava porque con esta configuración Ia zona sensible a sufrir delaminaciones tiene dos uniones, con Io que Ia posibilidad de que se produzcan delaminaciones aumenta.
SUMARIO DE LA INVENCIÓN
La presente invención propone un larguerillo de material compuesto (fibra de carbono o fibra de vidrio con resina termoestable o termoplástica) para rigidizar paneles de material compuesto formado por un pie de unión con el panel y un elemento estructural ó alma que en el extremo opuesto al pie y entre capas de material, incluye un refuerzo estructural formado por fibras unidireccionales de alto módulo, del mismo material que el larguerillo ó uno compatible con el. - A -
A los efectos de Ia presente invención, debe entenderse por larguerillo cualquier elemento estructural longitudinal para componentes de aviones tal como una barra o un rigidizador.
El mencionado refuerzo estructural consiste en un laminado o elemento estructural de alto módulo embebido, insertado o intercalado en borde doblado para optimizar o proporcionar mayor resistencia o capacidad de rigidización.
El larguerillo puede tener, entre otras, forma de T1J e I y en todas ellas Ia parte final del elemento estructural tiene forma de bulbo con capas de material compuesto rodeando el refuerzo. Ese bulbo Ie proporciona al larguerillo una mayor rigidez y una mayor tolerancia al daño que Ia de los larguerillos convencionales consiguiendo ahorrar peso.
La invención también propone un proceso de fabricación de un larguerillo con bulbo de las características mencionadas que comprende las siguientes etapas: a) proporcionar un laminado plano de material compuesto formado por capas de fibra de carbono o fibra de vidrio con resina termoestable o termoplástica; b) doblar el laminado mediante el método (prensas, rodillos, útil inflable etc..) y Ia manera (continua, semicontinua, etc..) apropiadas según Ia forma deseada del larguerillo; c) introducir el refuerzo, con los medios adecuados para variar el ancho y Ia forma del mismo así como Ia altura del larguerillo; d) dar Ia forma final al larguerillo, ya sea de sección constante como de sección variable, optimizada. Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que se acompañan. BREVE DESCRIPCIÓN DE LOS DIBUJOS
Las Figuras 1-7 muestran secciones transversales de larguerillos conocidos en Ia técnica en forma de T, I y J y esquemas de su procedimiento de fabricación.
Las Figuras 8, 9 y 10 muestran respectivamente secciones transversales de larguerillos según Ia invención en forma de T, I y J.
La Figura 11 muestra el procedimiento de obtención de larguerillos según Ia presente invención. Las Figuras 12 y 13 muestran larguerillos según Ia invención comparados con larguerillos conocidos en forma de T.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Nos referiremos en primer término a larguerillos 11 con forma de T.
Estos larguerillos 11 están formados por las siguientes partes: un alma 13 que es Ia parte esbelta y normal al pie (o al panel) del mismo, un pie 15 que es Ia parte que está en contacto con el panel (no representado) y sirve de medio de unión entre panel y larguerillo, y un refuerzo 17 dispuesto en el extremo del alma 13 opuesto al pie 15, configurando una parte final con forma de bulbo.
Siguiendo Ia Figura 11 puede observarse que el larguerillo se fabrica en varias etapas.
Se parte, en Ia etapa a) de un laminado plano de material compuesto 41 , formado por capas de fibra de carbono o fibra de vidrio con resina termoestable o termoplástica.
En Ia etapa b) se dobla dicho laminado definiendo las dos partes 43, 45 que constituirán el pié 15 y las dos partes 47, 49 que constituirán el alma 13.
Este doblado puede realizarse por diferentes maneras, por ejemplo se pueden utilizar rodillos que mediante sucesivas rotaciones realicen el conformado de una manera continua o semicontinua, o mediante útiles inflables que realicen Ia presión necesaria para realizar el doblado.
En Ia etapa c) se introduce el refuerzo 17 integrado entre las partes 47, 49 del alma 13. Los medios para embeber el laminado pueden ser controlados para variar el ancho, Ia forma y el estrechamiento del mismo.
En Ia etapa d) se da Ia forma final al larguerillo. Esta forma final puede tener sección constante o por el contrario también puede optimizarse mediante secciones de geometría variable, pero con Ia parte final 19 en forma de bulbo. También se propone un método de alimentación de una longitud de este elemento estructural (laminado) dentro del ya mencionado laminado o preforma del rigidizador.
El refuerzo estructural 17 está formado por fibras unidireccionales, del mismo material que el usado para Ia fabricación del larguerillo 11 o de otro material compatible con él, de alto módulo que se introducen integradas entre las dos capas dobladas del laminado. La misión principal de las fibras unidireccionales que forman el refuerzo 17 es aumentar Ia rigidez del material en las zonas más alejadas del pie 15 del larguerillo 11 así como Ia inercia total del larguerillo 11 (a esto es a Io que llamamos tener responsabilidad estructural). Con esta configuración se consigue, adicionalmente, aumentar Ia tolerancia al daño de dicho larguerillo 11 , porque Ia realización del mismo se hace de manera continua.
Si se agrupan a 0o capas de fibra de carbono o fibra de vidrio con resina termoestable o termoplástica en el refuerzo 17 aumenta considerablemente Ia rigidez del larguerillo 11. El refuerzo 17 no varía apreciablemente el área del larguerillo 11 pero si que contribuye apreciablemente a Ia inercia y rigidez. Esto permitiría obtener larguerillos de igual rigidez pero menor área (peso).
Estos larguerillos 11 son especialmente útiles en las zonas en las que se necesite mucha rigidez a flexión (El alto) sin una penalización importante en cuanto al peso de Ia estructura, porque estamos aumentando Ia inercia en una zona cuyo módulo elástico es muy alto, además estamos quitando capas de fibra de carbono o fibra de vidrio con resina termoestable o termoplástica del pie, donde no son muy efectivas, para ponerlas en una zona más alejada, donde su eficacia aumenta.
Si se compara este tipo de larguerillos 11 con larguerillos en forma de T, se puede llegar a obtener reducciones de peso en torno al 15-20% obteniendo Ia misma EA y con una rigidez a flexión (El) igual o incluso hasta un 15% superior.
Como se ha dicho en párrafos anteriores, Ia misión principal de los larguerillos es rigidizar los paneles de material compuesto, por tanto también es conveniente comparar un panel 51 rigidizado con este tipo de larguerillos 11 con un panel rigidizado 51 con larguerillos convencionales 53 como se ilustra en las Figuras 12 y 13, pudiéndose observar que, dependiendo del tipo de fallo que esté afectando al conjunto larguerillo más panel, el ahorro en peso que se puede llegar a conseguir con este tipo de larguerillos 11 , en comparación con el conjunto larguerillo más panel con larguerillos convencionales en forma de T varía. Cuando el tipo de fallo que afecta al conjunto larguerillo más panel sea principalmente por pandeo general o por resistencia podemos llegar a tener un ahorro en peso en torno al 10-15%, en cambio cuando el tipo de fallo principal que afecta al conjunto panel más larguerillo es el pandeo local del panel, el ahorro en peso es menor. En este tipo de fallo el pie del larguerillo 15 está dando apoyo al panel y Ia inercia y Ia rigidez (El) no son tan importantes. Por tanto en las zonas en las que el modo de fallo sea por pandeo local del panel, se recomienda añadir un suplemento 57 en el pie 15 del larguerillo para no debilitar el pie 15 del larguerillo (ver figura 13).
Por su parte, con este tipo de larguerillos 11 se consigue una mejor tolerancia al daño porque, al tener el refuerzo 17 integrado dentro del larguerillo, Ia fabricación es mucho más robusta y se disminuye notablemente Ia probabilidad de que se produzcan delaminaciones. No hay discontinuidades en Ia capa exterior del mismo en las que se puedan iniciar dichas delaminaciones, No hay discontinuidades porque el laminado plano de material compuesto 41 , formado por capas de fibra de carbono o fibra de vidrio con resina termoestable o termoplástica, con el que se fabrica rodea al refuerzo 17 con Io que Ia discontinuidad que genera queda en el interior del propio larguerillo 11 , impidiendo que se produzcan delaminaciones por impacto en Ia capa exterior.
Otra ventaja adicional es que estamos fabricando un rigidizador de manera integrada, reduciendo por tanto el número de partes a fabricar, y eliminando el proceso de co-curado de las distintas partes.
Lo dicho anteriormente es aplicable a larguerillos 21 con forma de I, constituidos por un pie 15, un elemento estructural formado por un alma 24 y dos alas laterales 25, 26 y con un refuerzo 27 dispuesto entre capas de las alas laterales 25, 26 de manera éstas tengan forma de bulbo alargado. También es aplicable a larguerillos 31 con forma de J, constituidos por un pie 15, un elemento estructural formado por un alma 34 y un ala lateral 35 y con un refuerzo 37 está dispuesto entre capas del ala lateral 35 de manera que ésta tenga forma de bulbo alargado.
Se consigue con ello obtener las mismas ventajas que con los larguerillos convencionales en cuanto a Ia versatilidad de los mismos debido a Ia posibilidad de utilización de más de una sección transversal dependiendo de las necesidades existentes.
En Ia realización preferente que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones

Claims

REIVINDICACIONES
1.- Larguerillo (1 1 , 21 , 31 ) de material compuesto para rigidizar paneles de material compuesto formado por un pie (15) de unión con el panel y un elemento estructural (13, 23, 33), caracterizado porque en el extremo opuesto al pie (15) y entre capas de material, el elemento estructural (13, 23, 33) incluye un refuerzo estructural (17, 27, 37) formado por fibras unidireccionales de alto módulo, del mismo material que el larguerillo ú otro material compatible con él.
2.- Larguerillo (1 1 ) según Ia reivindicación 1 caracterizado porque tiene forma de T, estando formado el elemento estructural por un alma (13), y porque el refuerzo (17) está dispuesto de manera que Ia parte final (19) tenga forma de bulbo redondeado.
3.- Larguerillo (21 ) según Ia reivindicación 1 caracterizado porque tiene forma de I, estando formado el elemento estructural (23) por un alma (24) y dos alas laterales (25, 26), y porque el refuerzo (27) está dispuesto entre capas de las alas laterales (25, 26) de manera éstas tengan forma de bulbo alargado.
4.- Larguerillo (31 ) según Ia reivindicación 1 caracterizado porque tiene forma de J, estando formado el elemento estructural (33) por un alma (34) con un ala lateral (35) y porque el refuerzo (37) está dispuesto entre capas del ala lateral (35) de manera que ésta tenga forma de bulbo alargado.
5.- Proceso de fabricación de un larguerillo según las reivindicaciones 1-
4, caracterizado porque comprende las siguientes etapas: a) proporcionar un laminado plano de material compuesto formado por capas de fibra de carbono o fibra de vidrio con resina termoestable o termoplástica; b) doblar el laminado plano de manera apropiada según Ia forma deseada del larguerillo; c) introducir el refuerzo; d) dar Ia forma final al larguerillo.
6.- Proceso de fabricación de un larguerillo según Ia reivindicación 5 caracterizado porque:
- en Ia etapa b) se dobla el laminado plano (41 ) para formar un larguerillo en forma de T definiendo las dos partes (43, 45) que constituirán el pié (15) y las dos partes (47, 49) que constituirán el alma (13);
- en Ia etapa c) se introduce el refuerzo (17) entre las partes (47, 49) del alma (13).
- en etapa d) se da Ia forma final al larguerillo con Ia parte final (19) en forma de bulbo redondeado.
PCT/ES2005/070123 2005-08-19 2005-08-19 Larguerillos de material compuesto con bulbo WO2007023197A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2619767A CA2619767C (en) 2005-08-19 2005-08-19 Stringers made of a composite material with a bulb
PCT/ES2005/070123 WO2007023197A1 (es) 2005-08-19 2005-08-19 Larguerillos de material compuesto con bulbo
BRPI0520507-7A BRPI0520507A2 (pt) 2005-08-19 2005-08-19 vigas de material composto com bulbo
CNA2005800519012A CN101300124A (zh) 2005-08-19 2005-08-19 具有球状物的由复合材料制成的纵梁
EP05782608A EP1967353A4 (en) 2005-08-19 2005-08-19 COMPOSITE LURES COMPRISING A BULB
US11/267,052 US20070039284A1 (en) 2005-08-19 2005-11-04 Stringers made of a composite material with a bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/070123 WO2007023197A1 (es) 2005-08-19 2005-08-19 Larguerillos de material compuesto con bulbo

Publications (1)

Publication Number Publication Date
WO2007023197A1 true WO2007023197A1 (es) 2007-03-01

Family

ID=37766215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070123 WO2007023197A1 (es) 2005-08-19 2005-08-19 Larguerillos de material compuesto con bulbo

Country Status (6)

Country Link
US (1) US20070039284A1 (es)
EP (1) EP1967353A4 (es)
CN (1) CN101300124A (es)
BR (1) BRPI0520507A2 (es)
CA (1) CA2619767C (es)
WO (1) WO2007023197A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135962A1 (es) 2008-05-08 2009-11-12 Applus Servicios Tecnologicos, S.L. Equipo y método para obtener perfiles de material compuesto y perfil obtenido mediante dicho método
RU2457113C2 (ru) * 2007-03-30 2012-07-27 Эйрбас Оператионс Гмбх Способ производства конструктивного элемента
RU2491203C2 (ru) * 2007-04-30 2013-08-27 Эйрбас Оперейшнз Лимитед Усиленная панель из композиционного материала, содержащая стрингер и первую и вторую стенки, обшивка воздушного судна и способ изготовления усиленной панели из композиционного материала
RU2740669C2 (ru) * 2016-09-13 2021-01-19 Зе Боинг Компани Элемент жёсткости с открытым каналом

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924378B1 (fr) * 2007-03-29 2010-01-01 Carbone Forge Procede de fabrication par moulage d'une piece composite thermoplastique.
DE102007015518A1 (de) * 2007-03-30 2008-10-02 Airbus Deutschland Gmbh Verfahren zur Herstellung von Profilteilen
US9254619B2 (en) 2008-05-28 2016-02-09 The Boeing Company Method and apparatus for fabricating variable gauge, contoured composite stiffeners
US8551382B2 (en) * 2008-05-28 2013-10-08 The Boeing Company Modified blade stiffener and fabrication method therefor
US8465613B2 (en) 2011-08-24 2013-06-18 The Boeing Company Method and apparatus for fabricating variable gauge, contoured composite stiffeners
GB0819159D0 (en) * 2008-10-20 2008-11-26 Airbus Uk Ltd Joint between aircraft components
ES2382765B1 (es) * 2009-06-29 2013-05-03 Airbus Operations, S.L. Diseño de cuadernas de aeronave
US20110039057A1 (en) * 2009-08-17 2011-02-17 The Boeing Company Laminated composite rod and fabrication method
US9016042B2 (en) * 2011-05-20 2015-04-28 Rohr, Inc. Reinforcement members for aircraft propulsion system components configured to address delamination of the inner fixed structure
US9387628B2 (en) 2011-08-24 2016-07-12 The Boeing Company Method and apparatus for fabricating composite stringers
CN104411480B (zh) 2012-06-29 2016-10-05 空中客车营运有限公司 具有倒圆的腹板端部的t型纵梁及其制造方法
US10479475B2 (en) 2013-08-09 2019-11-19 The Boeing Company Composite stringer beam joint structure of an aircraft
US9505354B2 (en) * 2013-09-16 2016-11-29 The Boeing Company Carbon fiber reinforced polymer cargo beam with integrated cargo stanchions and c-splices
US20150217850A1 (en) * 2014-02-06 2015-08-06 The Boeing Company Laminated i-blade stringer
EP3018051A1 (en) * 2014-11-06 2016-05-11 Airbus Operations GmbH Structural component and method for producing a structural component
US9937998B2 (en) * 2015-02-19 2018-04-10 Rohr, Inc. Method for manufacturing a nacelle strake
DE102015211670A1 (de) * 2015-06-24 2016-12-29 Airbus Operations Gmbh Verfahren und Vorrichtung zur Serienfertigung von Bauteilen aus einem faserverstärkten Verbundmaterial
US10369740B2 (en) 2015-07-09 2019-08-06 The Boeing Company Method of forming a contoured hat stiffener
CN108943760B (zh) * 2017-12-14 2020-09-08 中航复合材料有限责任公司 一种复合材料j形地板梁毛坯的成型工装及成型方法
US11701737B2 (en) 2019-09-10 2023-07-18 Qingdao Cimc Reefer Trailer Co., Ltd. Friction-stir-welded sheet-and-post sidewall
EP4107058A4 (en) * 2020-02-17 2023-11-22 Saab Ab CURVED AEROSPACE PROFILE ARTICLE AND METHOD FOR MANUFACTURING THE ARTICLE
FR3129203B1 (fr) * 2021-11-18 2024-05-24 Safran Nacelles Panneau composite ouvert rigide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995081A (en) * 1974-10-07 1976-11-30 General Dynamics Corporation Composite structural beams and method
FR2408448A1 (fr) * 1977-11-14 1979-06-08 Celtite Sa Perfectionnements aux procedes de fabrication de profiles en resines polyesters armees
US4177306A (en) * 1976-05-19 1979-12-04 Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung Laminated sectional girder of fiber-reinforced materials
US4379798A (en) * 1981-01-12 1983-04-12 Mcdonnell Douglas Corporation Integral woven reinforcement for structural components
US4492607A (en) * 1983-02-22 1985-01-08 Rockwell International Corporation Method for producing integrally stiffened fiber reinforced plastic panels
US5171510A (en) * 1988-06-08 1992-12-15 Aerospatiale Societe Nationale Industrielle Method of producing a frame made of a composite material, especially for the fuselage of an aircraft
JP2004352187A (ja) 2003-05-30 2004-12-16 Kawasaki Heavy Ind Ltd 板状構造体、補強材及び板状構造体の製造方法
US20040265536A1 (en) 2003-05-30 2004-12-30 Toshikazu Sana Method and apparatus for shaping section bar made of composite material and shaped product and I-shaped stringer thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336708A (en) * 1964-11-16 1967-08-22 Robert D Rambelle Shoring member for use as temporary support of concrete slabs
US4361996A (en) * 1979-12-20 1982-12-07 Levolor Lorentzen, Inc. Ceiling renovation system
US4736564A (en) * 1986-10-08 1988-04-12 Alcan Aluminum Corporation Conversion ceiling pan and system
US5311719A (en) * 1992-11-18 1994-05-17 Chicago Metallic Corporation Metal panels for accessible concealed ceiling system
DE19529476C2 (de) * 1995-08-11 2000-08-10 Deutsch Zentr Luft & Raumfahrt Flügel mit schubsteifen Flügelschalen aus Faserverbundwerkstoffen für Luftfahrzeuge
CN1322242C (zh) * 1996-03-19 2007-06-20 株式会社日立制作所 摩擦焊接用结构体
DE19730381C1 (de) * 1997-07-16 1998-08-20 Deutsch Zentr Luft & Raumfahrt Strukturelemente mit großen unidirektionalen Steifigkeiten
US6308481B1 (en) * 1999-02-19 2001-10-30 Jack Goldberg Cosmetic enhancement of overpass structure
US6871600B2 (en) * 2001-02-09 2005-03-29 Trn Business Trust Pultruded panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995081A (en) * 1974-10-07 1976-11-30 General Dynamics Corporation Composite structural beams and method
US4177306A (en) * 1976-05-19 1979-12-04 Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung Laminated sectional girder of fiber-reinforced materials
FR2408448A1 (fr) * 1977-11-14 1979-06-08 Celtite Sa Perfectionnements aux procedes de fabrication de profiles en resines polyesters armees
US4379798A (en) * 1981-01-12 1983-04-12 Mcdonnell Douglas Corporation Integral woven reinforcement for structural components
US4492607A (en) * 1983-02-22 1985-01-08 Rockwell International Corporation Method for producing integrally stiffened fiber reinforced plastic panels
US5171510A (en) * 1988-06-08 1992-12-15 Aerospatiale Societe Nationale Industrielle Method of producing a frame made of a composite material, especially for the fuselage of an aircraft
JP2004352187A (ja) 2003-05-30 2004-12-16 Kawasaki Heavy Ind Ltd 板状構造体、補強材及び板状構造体の製造方法
US20040265536A1 (en) 2003-05-30 2004-12-30 Toshikazu Sana Method and apparatus for shaping section bar made of composite material and shaped product and I-shaped stringer thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIU M.C.-Y.: "Composite Airframe Structures", vol. 3RD ED., 2000, CONMILIT PRESS, HONG KONG, ISBN: 962-7128-06-6, article "Practical Design Information and Data", pages: 59 - 60, XP008087341 *
See also references of EP1967353A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457113C2 (ru) * 2007-03-30 2012-07-27 Эйрбас Оператионс Гмбх Способ производства конструктивного элемента
RU2491203C2 (ru) * 2007-04-30 2013-08-27 Эйрбас Оперейшнз Лимитед Усиленная панель из композиционного материала, содержащая стрингер и первую и вторую стенки, обшивка воздушного судна и способ изготовления усиленной панели из композиционного материала
WO2009135962A1 (es) 2008-05-08 2009-11-12 Applus Servicios Tecnologicos, S.L. Equipo y método para obtener perfiles de material compuesto y perfil obtenido mediante dicho método
RU2740669C2 (ru) * 2016-09-13 2021-01-19 Зе Боинг Компани Элемент жёсткости с открытым каналом

Also Published As

Publication number Publication date
EP1967353A4 (en) 2011-03-23
US20070039284A1 (en) 2007-02-22
CA2619767C (en) 2013-05-28
CA2619767A1 (en) 2007-03-01
BRPI0520507A2 (pt) 2009-05-12
CN101300124A (zh) 2008-11-05
EP1967353A1 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
WO2007023197A1 (es) Larguerillos de material compuesto con bulbo
ES2352941B1 (es) Estructura integrada de aeronave en material compuesto
ES2939654T3 (es) Carrocería para un vehículo ferroviario
US6110567A (en) Composite structural panel having a face sheet reinforced with a channel stiffener grid
US6173925B1 (en) Skin-rib structure
US20120121854A1 (en) Composite-material structure and aircraft main wing and aircraft fuselage provided with the same
US9133818B2 (en) Wind turbine blade
JP5808111B2 (ja) 航空機用複合材構造体、これを備えた航空機主翼および航空機胴体
US10940936B2 (en) Stringer with plank ply and skin construction for aircraft
ES2341114T3 (es) Procedimiento de fabricacion de un elemento estructural alargado con figurado para la rigidizacion de una estructura de panel y un procedimiento de fabricacion de una estructura de panel rigida integrada con al menos un elemento de rigidizacion alargado de rigidizacion alargado.
ES2396328B1 (es) Fuselaje de aeronave en material compuesto y procedimientos para su fabricación.
CN102481972B (zh) 一种用于制造飞机机身隔间的机身隔间部分目的的壳体段
US9957032B2 (en) Fibre composite component, winglet and aircraft with a fibre composite component
JP2010524770A (ja) 航空機の翼−胴体組立体
JP2012162147A5 (es)
WO2008108826A3 (en) Composite aircraft structures with hat stiffeners
ES2711153T3 (es) Refuerzos en forma de sección en U profunda con almas inclinadas y método para hacer dichos refuerzos
ES2396843B1 (es) Disposición de interfaz entre dos componentes de una estructura de una aeronave usando una pieza intermedia.
ES2619478T3 (es) Larguerillo
WO2010149806A1 (es) Rigidización de la raíz de pala de un aerogenerador
WO2009112694A3 (fr) Pièce structurale courbe en matériau composite et procède de fabrication d'une telle pièce
CN104859839A (zh) 复合结构元件和抗扭箱
EP2942269B1 (en) Method for manufacturing a load bearing structure and such a load bearing structure
CN104724279A (zh) 用于飞行器升力面的前缘
ES2940644T3 (es) Segmentos de techo para el techo de una carrocería

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580051901.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005782608

Country of ref document: EP

Ref document number: 2619767

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005782608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0520507

Country of ref document: BR

Kind code of ref document: A2