WO2007018309A1 - Rbパスウェイ上の分子を指標とする化合物の評価方法及び分子診断方法 - Google Patents

Rbパスウェイ上の分子を指標とする化合物の評価方法及び分子診断方法 Download PDF

Info

Publication number
WO2007018309A1
WO2007018309A1 PCT/JP2006/315992 JP2006315992W WO2007018309A1 WO 2007018309 A1 WO2007018309 A1 WO 2007018309A1 JP 2006315992 W JP2006315992 W JP 2006315992W WO 2007018309 A1 WO2007018309 A1 WO 2007018309A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
protein
cell
expression
cells
Prior art date
Application number
PCT/JP2006/315992
Other languages
English (en)
French (fr)
Inventor
Tomohiro Eguchi
Hidehito Kotani
Original Assignee
Banyu Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Banyu Pharmaceutical Co., Ltd. filed Critical Banyu Pharmaceutical Co., Ltd.
Priority to JP2007529644A priority Critical patent/JPWO2007018309A1/ja
Priority to EP06782726A priority patent/EP1916301A4/en
Priority to CA002618657A priority patent/CA2618657A1/en
Publication of WO2007018309A1 publication Critical patent/WO2007018309A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds

Definitions

  • the present invention relates to a novel use of a gene belonging to a group of genes whose transcription is regulated by the tumor suppressor gene Rb. More specifically, the present invention relates to a method for evaluating a compound targeting a gene belonging to the gene group and the use of the gene as a tumor marker. Background technology
  • Rb known as a tumor suppressor gene, functions as a very important cell cycle regulator.
  • Rb regulates the transition from the G1 phase to the S phase of the cell cycle through several transcription factors including E2F.
  • Mammalian cells normally remain stationary in the GO phase, enter the G1 phase with growth stimulation, and progress through the cell cycle in the order of S phase, G2 phase, and M phase.
  • Rb is thought to have a function of stopping the cell cycle in the G1 phase and stopping the DNA synthesis in the S phase when the cell cycle progresses abnormally.
  • the Rb protein stops the cell cycle in the G1 phase by binding to E2F, which is necessary for the start of the S phase, and blocking its action.
  • Rb is not phosphorylated in the quiescent state, but when it is phosphorylated by CDK kinase in the middle of G1, it loses its activity and cannot bind to E2F.
  • E2F functions and the cell cycle progresses to S phase.
  • the activity of Rb is regulated by the action of CDK2, CDK4, and CDK6.
  • the series of cell cycle regulatory pathways centering on Rb is called the Rb pathway. When an abnormality occurs in this pathway, an abnormality also occurs in the cell cycle, leading to tissue canceration through abnormal cell proliferation. For example, there is a report that if the Rb-E2F pathway fails to function normally, the progression to S phase occurs (Non-patent Document 1).
  • Non-Patent Document 1 Genes & Development Vol. 11, page 1479 (1997) Disclosure of invention
  • the present invention has been made in view of the above-described problems of the prior art, and is a molecule present on the Rb pathway, which is a molecule that can be used as a drug discovery target or tumor marker for an anticancer drug, and the molecule. It is an object of the present invention to provide a method that makes it possible to evaluate the obtained compounds (candidate compounds for anticancer agents).
  • the method for evaluating a compound of the present invention is a method for evaluating a compound effective for treating cancer
  • the method for evaluating a compound of the present invention is a method for evaluating a compound effective for treating cancer
  • IL-8 IL-8 receptor
  • ECT2 MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, CCNE2, FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2,
  • a gene selected from the group consisting of HCAP-C, BUB1, NEK2, CCNA2 and KIF18A or a gene functionally equivalent to the gene is introduced, and a protein that is a transcription product of the gene is introduced.
  • a step of preparing a cell to be expressed a step of bringing a test compound into contact with the cell, a step of measuring the activity of an intracellular signaling substance generated by the contact, and a case where the activity and the test compound are not contacted Comparing the activity of the intracellular signaling substance, and detecting a change in the activity of the intracellular signaling substance caused by contact with the test compound.
  • the method for evaluating a compound of the present invention is a method for evaluating a compound effective for treating cancer
  • IL_8, IL-8 receptor ECT2, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, CCNE2, FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2, HCAP- C, BUB1, NEK2, CCNA2 and KIF18A selected from the group consisting of any one gene or a gene functionally equivalent to the gene, and a cell expressing a protein that is a transcription product of the gene
  • a step of preparing, a step of bringing the test compound into contact with the cell, a step of measuring the expression level of an intracellular signaling substance via the protein, and the intracellular level when the expression level and the test compound are not contacted Comparing the expression level of the signal transduction substance and detecting a change in the expression level of the intracellular signal transduction substance caused by contact with the test compound.
  • the gene is IL-8.
  • IL-8 receptor or ECT2 is preferably used.
  • the method for evaluating a compound of the present invention is a method for evaluating a compound effective for cancer treatment.
  • the test compound is IL-8, IL-8 receptor, ECT2, CCNE2, FEN1, CENPE, KIF20A, CDC25C
  • IL-8 IL-8 receptor or ECT2 is preferably used as the protein.
  • the present invention includes a compound isolated by any of the above-described methods for evaluating a compound.
  • the molecular diagnostic method for cancer of the present invention includes IL-8, IL-8 receptor, ECT2, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, CCNE2, FEN1, HMGB2 in a test tissue or a test cell. , CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2, HCAP-C, BUB1, NEK2, CCNA2, and KIF18A. And comparing the expression level of the gene functionally equivalent to the expression level of the gene with the expression level of the corresponding gene in normal tissue or normal cells. And determining whether the gene expression level in the test tissue or test cell is significantly higher than the gene expression level in normal tissue or normal cells.
  • IL-8, IL-8 receptor or ECT2 is preferably used as the gene.
  • the molecular diagnostic method of the present invention comprises IL_8, IL-8 receptor, ECT2, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, CCNE2, FEN1, HMGB2, CENPE, KIF20A in a test tissue or a test cell.
  • IL_8 receptor ECT2, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, CCNE2, FEN1, HMGB2, CENPE, KIF20A in a test tissue or a test cell.
  • IL-8 IL-8 receptor or ECT2 protein is preferably used as the protein.
  • the cancer is preferably a cancer caused by a molecular abnormality on Rb or Rb pathway.
  • the genes belonging to the gene group to be measured are all genes present on the Rb pathway, and accurate diagnosis can be made for such cancers.
  • tumor markers for detecting cancers having abnormalities in Rb or Rb pathway molecules of the present invention are IL-8, IL-8 receptor, ECT2, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, CCNE2 , FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2, HCAP-C, BUB1, NEK2, CCNA2 and KIF18A, or the protein The protein is functionally equivalent to the protein. Further, tumor markers for detecting cancer having an abnormality in a molecule on Rb or Rb.
  • Pathway of the present invention are IL-8, IL-8 receptor, ECT2, MCM2, MCM3, C4, MCM5, MCM6, MCM7. , CCNE2, FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2, HCAP-C, BUB1, NEK2, CCNA2 and KIF18A It is a gene or a gene functionally equivalent to the gene.
  • the method for detecting a target gene of the anticancer agent of the present invention comprises the steps of preparing Rb expression-suppressed cells in which Rb expression is suppressed by RNA interference using Rb-expressing cells; A step of measuring the expression level, and a step of comparing the expression level with the expression level of the gene in Rb-expressing cells.
  • the Rb-expressing cells is preferably a U- 2 0S, HCT116 or the He P G2.
  • the means for suppressing Rb expression in Rb expression-suppressed cells is preferably by RNA interference, and the siRNAs used for RNA interference are preferably the sequence set forth in SEQ ID NO: 27. . By using such a sequence, Rb expression-suppressed cells can be prepared more reliably.
  • the method for evaluating a compound using the Rb expression-suppressed cell of the present invention comprises the steps of preparing an Rb expression-suppressed cell in which Rb expression is suppressed using the Rb-expressing cell, and an Rb expression-suppressed cell and an Rb-expressing cell. A step of contacting a test compound with the test compound, a step of measuring the activity of an intracellular signaling substance produced by the contact, and a step of comparing the activity of the Rb expression-suppressed cell and the Rb-expressing cell. And
  • the method for evaluating a compound using the Rb expression-suppressed cell of the present invention comprises the steps of preparing an Rb expression-suppressed cell in which Rb expression is suppressed using the Rb-expressing cell, and the Rb expression-suppressed cell and Rb-expressing cell A step of contacting a test compound, a step of measuring an expression level of a cell line information transfer substance generated by the contact, and a step of comparing the expression level in Rb expression-suppressed cells and Rb-expressing cells. It is characterized by.
  • the Rb-expressing cells preferably a U-2 0S, HCT116 or the He P G2.
  • the means for suppressing Rb expression in Rb expression-suppressed cells is by RNA interference, and that the siRNAs used for RNA interference are preferably the sequence set forth in SEQ ID NO: 27.
  • the siRNAs used for RNA interference are preferably the sequence set forth in SEQ ID NO: 27.
  • FIG. 1 shows the results of confirming suppression of Rb expression in cells into which Rb shRNA was introduced.
  • FIG. 2 is a diagram showing the results of confirming Rb expression suppression in cells transfected with Rb shRNA by reporter assay using E2F inhibitory activity as an index.
  • FIG. 3 shows the results of confirming the effect on the cell cycle when Rb knockdown cells (cells into which only a vector was introduced and treated with DMSO) were treated with doxorubicin.
  • FIG. 4 shows the results of confirming the effect on the cell cycle when Rb knockdown cells (cells into which only a vector was introduced and treated with ⁇ doxorubicin for 24 hours) were treated with doxorubicin.
  • FIG. 5 shows the results of confirming the effect on the cell cycle when Rb knockdown cells (cells into which only the vector was introduced and treated with ⁇ doxorubicin for 48 hours) were treated with doxorubicin.
  • FIG. 6 shows the results of confirming the effect on the cell cycle when Rb knockdown cells (cells with Rb shRNA introduced and treated with DMSO) were treated with doxorubicin.
  • FIG. 7 shows the results of confirming the effect on the cell cycle when Rb knockdown cells (cells introduced with Rb shRNA and treated with ⁇ doxorubicin for 24 hours) were treated with doxorubicin.
  • FIG. 8 shows the results of confirming the effect on the cell cycle when Rb knockdown cells (cells introduced with Rb shRNA and treated with ⁇ doxorubicin for 48 hours) were treated with doxorubicin.
  • FIG. 9 shows the results of confirming IL-8 expression at the mRNA level in Rb knockdown cells.
  • FIG. 10 is a diagram showing the results of confirming IL-8 expression in Rb knockdown cells at the protein level.
  • Figure 11 shows: The expression of various genes whose expression levels fluctuate in Rb knockdown cells. It is a figure which shows the result confirmed using the microarray.
  • FIG. 12 shows a group of genes whose expression levels fluctuate in Rb knockdown cells and control cell cycle progression.
  • the upper column shows the gene group that controls the progression of G1 / S in the cell cycle, and the lower column shows the gene group that controls the progression of G2 / M.
  • Figure 13 shows the results of examining the interaction between the ECT2 promoter and E2F.
  • Figure 14 shows the results of an examination of the interaction between the ECT2 promoter and E2F.
  • Fig. 15 shows the results of confirming that Rb inhibits the progression of G2 / M phase via ECT2. '' Best mode for carrying out the invention
  • the genes according to the present invention include IL-8 (Accession No. _000584: SEQ ID NO: 1), IL-8 receptor (Accession No, orchid—000634 (IL-8RA): SEQ ID NO: 2 and hiring—001557 (IL -SRB); SEQ ID NO: 3), ECT2 (Accession No. ⁇ — 018098: SEQ ID NO: 4), MCM2 (Accession No. ⁇ _004526: SEQ ID NO: 5), MCM3 (Accession No .: 002388: SEQ ID NO: 6) , C 4 (Accession No. ⁇ —182746: SEQ ID NO: 7), MCM5 (Accession No.
  • ⁇ — 001790 SEQ ID NO: 16), CDCA8 (Accession No. Ranichi 0181 01: SEQ ID NO: 17), KIF11 (Accession No. ⁇ —004523: SEQ ID NO: 18), HCAP-E (Accession No. awakening—006444: SEQ ID NO: 19), HCAP-G (Accession No. : SEQ ID NO: 2 0), KNTC2 (Accession No. ⁇ ichi 006101: SEQ ID NO: 2 1), HCAP-C (Accession No. ⁇ —005496: SEQ ID NO: 2 2), BUB1 (Accession No.
  • the gene according to the present invention includes a gene having substitution, deletion, addition or insertion of one or more bases as long as it has a physiological function equivalent to that of the gene.
  • the sequence of the gene is not particularly limited as long as it is a gene encoding a powerful protein, but the homology is preferably 50% or more, more preferably 70% or more, 80% or more is more preferable, and 90% or more (for example, 9 1, 9 2, 9 3, 9 4, 9 5, 9 6, 9 7, 9 8, 9 9% or more) Is particularly preferred.
  • the gene according to the present invention also includes a nucleic acid that hybridizes with the gene under stringent conditions.
  • hybridize under stringent conditions means that two nucleic acid fragments are expressed in Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor (1989), 9. 47-9. 62 and 11. 45-11. This means that they are hybridized with each other under the conditions of high predisposition described in 61-61. More specifically, for example, there may be mentioned conditions of performing hybridization with 6.0 X SSC at about 45 ° C and then washing with 2. OxSSC at 50 ° C.
  • the salt concentration in the wash process should be selected, for example, from about 2.0xSSC, 50 ° C as low stringency to about 0.2 X SSC, 50 ° C as high stringency. Can do. Furthermore, the temperature of the cleaning process is about 22 at low stringency conditions.
  • the protein which is a transcription product of the gene according to the present invention, has a physiological function equivalent to that of the protein. If any, ones with one or more base substitutions, deletions, additions or insertions are also included.
  • the sequence of the protein is not particularly limited, but the homology is preferably 50% or more, 70 ° /. Or more, more preferably 80% or more, 90% or more (for example, 9 1, PT / JP2006 Polish 92
  • IL-8 IL-8 receptor
  • ECT2 MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, CCNE2, FENls HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP -
  • G KNTC2, HCAP-C, BUB1, NEK2, CCNA2 and KIF18A
  • Rb controls the expression of downstream genes via the transcription factor E2F, etc., but the genes listed above are thought to be regulated by Rb under the control of Rb.
  • Rb is known as a tumor suppressor gene, it is thought to be responsible for the ability to suppress cancer, that is, normal cell proliferation through the regulation of the expression of the above gene group. Therefore, this gene group can be used as a tumor marker for detecting cancer caused by an abnormality in a molecule on Rb or Rb pathway, and can also be used as a drug discovery target molecule for an anticancer agent.
  • the “abnormality of the molecule on the Rb or Rb pathway” means a base deletion (eg, nonsense mutation) in the Rb gene or a gene on the Rb pathway (eg, E2F, CDK family, etc.).
  • Substitution for example, missense mutation, point mutation
  • insertion for example, frame shift, etc.
  • frame shift etc.
  • the cause of functional abnormality is not particularly limited, and any of these May be the cause.
  • Rb proteins or proteins on the Rb pathway include cases where the transcriptional activity of these proteins is reduced or reduced, or transcription does not occur at all. It does not show any abnormalities, but the encoded gene also includes mutations.
  • retinoblastoma which is known to be involved in Rb (Birth Defects Orig. Art. Ser., 18th, 689, 1982: New Eng. J. Med., 321 ⁇ , 1689, 1989), Pinaloma (Arch. Ophthal., 102, 257, 1984), osteogenic sarcoma (Ophthalmologica, 175, 185, 1977) Can be mentioned.
  • test tissue in the present invention refers to a tissue that can be extracted from a living body to be tested for cancer.
  • the type is not particularly limited as long as it is a cancer tissue that needs to examine the involvement of Rb or a tissue that is recognized as needing a cancer diagnosis.
  • tissues include, for example, neuroblastoma, retinoblastoma, brain tumor, head and neck cancer, pituitary adenoma, glioma, auditory schwannoma, oral cavity cancer, pharyngeal cancer, laryngeal cancer, thyroid cancer, breast Adenoma, mesothelioma, breast cancer, lung cancer, gastric cancer, esophageal cancer, colon cancer, liver cancer, knee cancer, vaginal endocrine tumor, biliary tract cancer, penile cancer, vulva cancer, renal pelvic cancer, renal pain, testicular cancer, Prostate cancer, bladder cancer, uterine cancer, chorionic disease, vaginal cancer, ovarian cancer, fallopian tube cancer, ovarian germ cell tumor, skin cancer, mycosis fungoides, malignant melanom
  • test cell in the present invention is a tissue that can be extracted from a living body to be examined for cancer, and it is necessary to examine cells derived from a cancer tissue that needs to examine the involvement of Rb, or to diagnose cancer.
  • the type is not particularly limited as long as it is a cell derived from a tissue that is recognized as being.
  • force cells include neuroblastoma, retinoblastoma, brain tumor, head and neck cancer, pituitary adenoma, glioma, acoustic schwannoma, oral cavity cancer, pharyngeal cancer, laryngeal cancer, thyroid cancer, Thymoma, mesothelioma, breast cancer, lung cancer, gastric cancer, esophageal cancer, colon cancer, liver cancer, pancreas cancer, vaginal endocrine tumor, biliary tract cancer, penile cancer, vulva cancer, renal pelvic cancer, kidney cancer, testicular cancer Prostate cancer, bladder cancer, uterine cancer, chorionic disease vaginal cancer, ovarian cancer, fallopian tube cancer, ovarian germ cell tumor, skin cancer, mycosis fungoides, malignant melanoma, soft tissue sarcoma, bone tumor, malignant lymphoma, Examples include cells from leukemia, myelodysplastic syndrome, multiple my
  • IL-8, IL-8 receptor ECT2, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, CCNE2, FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2, Using HCAP-C, BUB1, NEK2, CCNA2 or KIF18A gene or protein, it is possible to evaluate compounds that act on genes or proteins belonging to these gene groups or protein groups.
  • a method for detecting the action on the gene or protein belonging to these gene group or protein group a method for detecting specific binding of the test compound to the protein belonging to the protein group (for example, binding that causes inhibition of enzyme activity).
  • a method for detecting the expression level of a gene changed by contact with a test compound and a method for detecting the activity of intracellular signal transduction caused by the contact. The following is explained in order 06 315992
  • the method for evaluating a compound of the present invention comprises the steps of introducing any one gene belonging to a gene group, preparing a cell that expresses the gene, contacting the test compound with the cell, and And a step of detecting specific binding of the test compound.
  • the second compound evaluation method of the present invention comprises a step of introducing any one gene belonging to a gene group, preparing a cell that expresses the gene, and contacting the test compound with the cell.
  • the test compound is not particularly limited.
  • natural compounds, organic compounds, inorganic compounds, single compounds such as proteins, peptides, etc., compound libraries, gene library expression products, cell extracts examples include cell culture supernatants, fermented microorganism products, marine organism extracts, plant extracts, prokaryotic cell extracts, eukaryotic single cell extracts or animal cell extracts.
  • the test sample can be appropriately labeled and used as necessary. Examples of the label include a radiolabel and a fluorescent label. In addition to the above test sample, a mixture of a plurality of these test samples is also included. .
  • a cell expressing the gene may be prepared by a method known to those skilled in the art, and a specific method is not particularly limited, and for example, the following method can be used. That is, it is prepared by cloning a nucleic acid comprising a gene or a part thereof into an expression vector containing a suitable promoter and transcriptional regulatory element, and introducing a vector having the cloned nucleic acid into a host cell.
  • the vector is not particularly limited as long as it can be used as an expression vector.
  • PCMV-Tag for example, PCMV-Tag, pcDNA3.1, pBlueBacHis2, pCI-neo, pcDNAI, pMClneo, pXTl, pSG5, pEFl / V5-HisB, pCR2.1, pETll, Lgtll or pCR3.1.
  • an expression vector into which a nucleic acid comprising the gene or a part thereof has been introduced is introduced into a host cell. 6 315992
  • a powerful host cell is not particularly limited as long as it is a commonly used rice for gene expression, and may be any of animal cells, insect cells, plant cells, and microorganisms.
  • C0S1, C0S7, CH0, image / 3T3, 293, Raji, CV11 , C1271, MRC- 5, CPAE, include HeLa, 2 9 3T or Sf9.
  • the method for introducing the expression vector into the host cell is not particularly limited as long as it is a known method. Specifically, for example, electroporation, calcium phosphate method, DEAE-dextran method, lipofection method or gene Guns.
  • a test compound is brought into contact with the cell expressing the gene thus prepared.
  • the contacting method is not particularly limited, and for example, if any one protein belonging to the protein group has been purified, it can be carried out by adding a test sample to the purified sample. Moreover, if it is a state expressed in a cell or a state extracted in a cell extract, it can be carried out by adding a test sample to the cell culture solution or the cell extract, respectively.
  • the test sample is a protein
  • a vector containing a DNA encoding the protein is introduced into a cell in which the protein is expressed, or a cell extract in which the protein is expressed It is also possible to carry out by adding to.
  • the binding between the protein and the test compound is a receptor protein such as IL-8 receptor.
  • detection by a label attached to the bound compound for example, the amount of binding is determined by radioactivity or fluorescence intensity). Detection).
  • the expression level and activity of the molecule (including the protein) on the signal transduction pathway caused by the signal transduction is used as an index. You can also.
  • the method for measuring the expression level is not particularly limited, and examples thereof include Northern blotting, Western blotting, and DNA chip.
  • expression level in the present invention refers to the absolute amount or relative amount of a transcription product of a gene encoding a protein present on the information transmission pathway via the protein.
  • the gene includes either DNA or mRNA.
  • the “expression level” refers to the absolute or relative amount of the translation product of the protein present on the information transmission pathway via the protein.
  • the activity measurement method is not particularly limited, and a suitable method can be selected depending on the type of molecule to be measured.
  • isolated proteins can also be used directly for compound evaluation.
  • this is a method in which a test compound is brought into contact with a protein, and then a change in the activity of the protein caused by the contact is detected.
  • the contact method is not particularly limited. Specifically, for example, the contact method is performed by mixing in a solution such as a buffer solution (phosphate buffer solution, etc.), or the protein is immobilized on the membrane. The method of making it contact with a test compound on a membrane is mentioned. Next, the change in protein activity caused by the contact is detected.
  • a solution such as a buffer solution (phosphate buffer solution, etc.)
  • phosphate buffer solution phosphate buffer solution, etc.
  • a desired method may be selected depending on the nature of the protein used. For example, in the case of IL-8, a method for detecting binding activity to the IL-8 receptor, neutrophil migration, and the like. It can be detected by Atsey (Site Force In Experimental Method, pages 87-93, 1997, Yodosha).
  • ECT2 the ability of ECT2 to increase GTP-bound RhoA and CDC42 is evaluated by measuring the activity of RhoA to inhibit the test compound binding to ECT2 and inhibiting its binding activity. can do. Further, it is possible to cell cycle to inhibit the activity of ECT2 is utilized to stop the Mitosis, evaluated by Mitosis arrest assay the inhibition of ECT 2.
  • Table 1 shows to which of the methods for evaluating the compounds of the present invention the genes belonging to the gene group according to the present invention can be applied.
  • Type indicates the function of a gene in vivo
  • Boding indicates a method for evaluating a compound by binding a molecule and a test compound, among the methods for evaluating a compound of the present invention
  • “Signal” indicates a method for evaluating a compound using the intracellular signal transduction caused by contact of a test compound as an index among the methods for evaluating the compound of the present invention.
  • “Activity” indicates the relationship between a protein molecule and a test compound. A method for evaluating a compound using the activity caused by contact as an index is shown.
  • the activity of the protein in the presence of the test compound is lower than the binding activity (control) in the absence of the test compound.
  • the test compound is determined to be an antagonist having an activity of inhibiting the binding between the protein of the present invention and the ligand.
  • Antagoest suppresses the physiological activity of ligands and analogs for proteins.
  • Such antagonists may suppress the abnormal growth of cells due to abnormal function of molecules on Rb or Rb pathway, and they are drugs for the treatment of cancer caused by abnormalities in the signal transduction system via Rb. Useful as a composition.
  • the method for evaluating a compound of the present invention can screen for a substance that promotes or inhibits Rb pathway signal transduction and transcriptional regulation. That is, by evaluating a plurality of test compounds by the method described above, a compound that functions as an agonist or an antagonist can be selected. As a result of such selection, if the change is suppressed as compared to the change in downstream signal transmission when the ligand and its analog are allowed to act in the absence of the test compound, the test compound is The compound belonging to the protein group is judged to be a compound that inhibits signal transduction downstream of one of the proteins. Conversely, if the test compound enhances intracellular signal transduction, the compound is determined to be a compound that promotes signal transmission after binding of the test compound to the protein. Compounds selected by such screening methods are useful for the treatment and diagnosis of cancers caused by dysfunction of molecules on Rb or Rb pathways. It is effective.
  • the ligand used for PET can be evaluated by the above-described method for evaluating a compound of the present invention.
  • PET observes biological functions non-invasively by radiolabeling a substance that exists in the body, such as water, oxygen, glucose, and amino acids, or a ligand for the target receptor and administering it to the body.
  • the method is used in research and clinical practice.
  • the feature of PET is that it enables function-specific imaging depending on the ligand used as a tracer, and the development of new tracers is indispensable for elucidating unknown biological functions and diagnosing diseases.
  • the method for evaluating a compound of the present invention by applying a PET ligand candidate substance as a test compound, the substance can be evaluated in vitro. '(2) Compound obtained by compound evaluation method
  • a compound obtained by the method for evaluating a compound of the present invention is also included in the present invention.
  • Such compounds are not particularly limited in their properties, and include, for example, natural compounds, organic compounds, inorganic compounds, single compounds such as proteins and peptides, antibodies, antisenses, RNAi or ribozymes.
  • the compound obtained by the method for evaluating a compound of the present invention is used as a medicine for humans or other animals, it is formulated by a known pharmaceutical method in addition to directly administering these substances to a patient. Can also be administered.
  • tablets, capsules, elixirs, or microcapsules as required, or aseptic solutions or suspensions with water or other pharmaceutically acceptable liquids, as appropriate It can be used parenterally in the form of liquid injections.
  • a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspending agent, surfactant, stabilizer, flavoring agent, excipient, vehicle It may be formulated by combining with appropriate preservatives, binders, etc. in a unit dosage form generally accepted for pharmaceutical practice.
  • Additives that can be mixed into tablets and capsules include, for example, binders such as gelatin, corn starch, tragacanth gum, gum arabic, occlusion agents such as crystalline cellulose, corn starch, gelatin, and alginic acid. Leavening agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin ⁇ 15992
  • a flavoring agent such as an agent, peppermint, coconut oil or cherry is used.
  • the above material can further contain a liquid carrier such as fats and oils.
  • Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • aqueous solutions for injection include physiological saline, isotonic solutions containing glucose and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride salt.
  • isotonic solutions containing glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride salt.
  • alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM) and HC0-50 may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent. Also combined with buffer, such as phosphate buffer, sodium acetate buffer, soothing agent, such as hydrochloric acid pro-in, stabilizer, such as benzyl alcohol, phenol, antioxidant Also good.
  • buffer such as phosphate buffer, sodium acetate buffer
  • soothing agent such as hydrochloric acid pro-in
  • stabilizer such as benzyl alcohol, phenol, antioxidant Also good.
  • the prepared injection is usually filled into a suitable ampoule.
  • arterial injection, intravenous injection, subcutaneous injection, etc., as well as intranasal, transbronchial, intramuscular, percutaneous, or oral administration to patients are performed by methods known to those skilled in the art. Yes.
  • the dose varies depending on the weight and age of the patient, the administration method, etc., but a person skilled in the art can appropriately select an appropriate dose.
  • the compound can be encoded by DNA, it may be possible to incorporate the DNA into a gene therapy vector and perform gene therapy.
  • the dose and administration method vary depending on the patient's weight, age, symptoms, etc., but can be appropriately selected by those skilled in the art.
  • the dose of the compound varies depending on the symptoms, but in the case of oral administration, it is generally about 0.1 to 100 mg per day, preferably about 1.0 to 50 mg in an adult (with a body weight of 60 kg) More preferred is considered to be about 1.0 to 20 mg.
  • the single dose When administered parenterally, the single dose varies depending on the subject of administration, target organ, symptoms, and administration method. For example, in the form of injection, it is usually used in adults (weight 60 kg). In general, it is considered convenient to administer about 0.01 to 30 mg per day, preferably about 0.1 to 20 mg, more preferably about 0.1 to 1 Omg by intravenous injection. 2006/315992
  • the first aspect of the molecular diagnostic method for cancer of the present invention is that IL-8, IL-8 receptor, ECT2, MCM2, MCM3, MCM4 in a test tissue or a test cell.
  • MCM5, MCM6, MCM7, CCNE2, FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2, HCAP-C, BUB1, NEK2, CCNA2 and KIF18A A step of measuring the expression level of any one of the genes, and a step of comparing the expression level of the gene with the expression level of the corresponding gene in a normal tissue or normal cell. And determining whether the gene expression level in the test cell is significantly higher than the gene expression level in normal tissue or normal cells.
  • the second aspect of the molecular diagnostic method for cancer of the present invention includes IL-8, IL-8 receptor, ECT2, MCM2, MCM3, MCM4, MCM5, MCM6 in a test tissue or a test cell.
  • One of the proteins selected from the group consisting of MCM7, CCNE2, FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP_E, HCAP-G, KNTC2, HCAP-C, BUB1, NEK2, CCNA2 and KIF18A
  • a step of measuring the expression level of the protein and a step of comparing the expression level of the protein with the expression level of the corresponding protein in the normal tissue or normal cell.
  • the expression of the protein in the test tissue or test cell Determining whether or not the amount is significantly greater than the amount of protein expressed in normal tissue or normal cells.
  • the expression level of any one gene belonging to a gene group or a transcription product thereof is measured in a test tissue or a test cell.
  • the method for measuring the expression level of a gene or protein is not particularly limited.
  • a method of performing RT-PCR using cDNA extracted from a test tissue or test cell as a saddle examples include a method using a microarray on which genes are plotted, and a northern blot.
  • the gene / protein group according to the present invention includes IL-8 which is a secreted protein, IL-8 which is a receptor protein on the cell membrane, ECT2 which is an intracellular signal transduction molecule, and the like. What is necessary is just to select a suitable method suitably according to the molecular species.
  • the “expression level” of a gene or protein refers to the absolute or relative amount of a gene transcript or protein. In the case of a relative amount, the expression level in a normal tissue described later What is necessary is just to determine the expression level of the said gene in relative comparison with.
  • the expression level of the gene measured by the above method is compared with the expression level of the corresponding gene in normal tissue or normal cells.
  • the “normal tissue or normal cell” is not particularly limited as long as it is a tissue or cell to be compared with the test tissue or test cell, and even if it is derived from a healthy person, a cancer patient It may be derived from. It may also be normal tissue or normal cells present in the vicinity of the cancer tissue.
  • the expression level of the target gene expressed in the test tissue or cell is compared with the expression level of the gene expressed in the normal tissue or cell (corresponding gene), but the absolute amount of the expression level may be compared. You may calculate the relative value by comparison.
  • the method for determining the significance is not particularly limited, but may be tested using a statistical method known to those skilled in the art.
  • the expression level of the gene in the test tissue or test cell is compared with that in the normal tissue or normal cell, the expression level is found to be high or low in the test tissue or test cell with a significant difference. It can be judged that there is a possibility that the expression of Rb in the test tissue or test cell is abnormal and cancerous. Therefore, it is possible to diagnose cancers that are known to be associated with Rb. -(4) Tumor marker
  • Tumor marker for detecting cancer having abnormality in a molecule on Rb or Rb pathway of the present invention One first embodiment is IL-8, IL-8 receptor, ECT2, MCM2, MCM3 MCM4, MCM5, MCM6, MCM7 , CCNE2, FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2, HCAP-C, BUB1, NEK2, CCNA2 and KIF18A It is characterized by including. .
  • the second aspect of the tumor marker for detecting cancer having an abnormality in a molecule on Rb or Rb pathway of the present invention is IL-8, IL-8 receptor, ECT2, MCM2, MCM3, MCM4, MCM5, MCM6. , MCM7, CCNE2, FEN1, HMGB2, CENPE, KIF20A, CDC25C, CDCA8, KIF11, HCAP-E, HCAP-G, KNTC2, HCAP-C, BUB1, NEK2, CCNA2 and KIF18A JP2006 / 315992
  • Tumor markers are substances that are produced in large quantities by tumor cells and are not normally detected and are also called tumor-associated antigens. Furthermore, autoantibodies against the antigens can be used as tumor markers because they are generated only after the antigens are similarly produced. In addition, tumorous cells may produce large amounts of hormones, enzymes, specific low molecular weight compounds, etc., all of which are useful for detecting the presence of cancer / serious tumors.
  • the gene belonging to the gene group according to the present invention is a gene whose expression increases when the expression of the Rb gene is suppressed, and can be used as a tumor marker.
  • the mode of use as a tumor marker is as follows. First, the expression level of any one gene belonging to the gene group or its transcription product in the test tissue or test cell is measured.
  • the method for measuring the expression level of a gene or protein is not particularly limited. For example, in the case of a gene, a method of performing RT-PCR using cDNA extracted from a test tissue or test cell as a saddle, Examples include a method using a microarray on which genes are plotted, and a Northern plot.
  • a method of measuring the concentration of the protein contained in blood collected from a subject can be mentioned.
  • the gene group according to the present invention includes the secretory protein IL-8, the receptor protein IL-8 on the cell membrane, the intracellular signal transduction molecule ECT2, etc.
  • a suitable method may be selected accordingly.
  • any one of genes and proteins belonging to the gene group may be detected, but two or more may be detected. By using two or more types of molecules as detection targets, more accurate diagnosis is possible.
  • the expression level of the gene measured by the above method is compared with the expression level of the corresponding gene in normal tissue or normal cells.
  • the origin of the “normal tissue or normal cell” is not particularly limited as long as it is a tissue or cell to be compared with the test tissue or test cell. ⁇
  • the absolute amount of the expression level may be compared. You can also calculate the relative value by comparison.
  • the gene expression level in normal cells is significantly higher.
  • the method for determining the significance is not particularly limited, but may be tested using a statistical method known to those skilled in the art.
  • the normal tissue is used every time it is used as a tumor marker. It is not necessary to compare with the expression level in normal cells, and the tumor can be determined by measuring only the expression level in the test tissue or test cell.
  • the tumor to be detected by the tumor marker of the present invention is not particularly limited as long as it is a B-heavy tumor caused by the Rb or Rb pathway molecule, and specifically, for example, retinoblast Tumors, pineromas or osteogenic sarcomas. ,
  • Rb expression was suppressed by RNA interference using Rb-expressing cells.
  • RNA interference refers to a phenomenon in which double-stranded RNA introduced into a cell suppresses the expression of a gene having the same sequence and suppresses the synthesis of the protein encoded by the gene.
  • RNA interference is generated using siRNAs targeting Rb to prepare cells in which Rb expression is suppressed.
  • the siRNA to be used is not particularly limited as long as it is a sequence capable of suppressing the expression of Rb, but an Rb-specific sequence is preferable.
  • the base length is preferably 21 to 27 bases, more preferably 21 to 23 bases.
  • the effect of introducing siRNAs is known to be from several days to one week.
  • the inventors have succeeded in constantly suppressing the expression of Rb by introducing siRNAs into cells using a specific expression vector.
  • the method for introducing siRNAs is not particularly limited as long as Rb expression is suppressed by RNA interference, but it is preferable to use gene transfer using a vector that constantly suppresses Rb expression.
  • examples of the vector to be used include pSuperior-puro, pENTR / U6, and pENTR / Hl / TO. .
  • the “desired gene” refers to a candidate gene targeted by an anticancer agent, but in this step, a specific scavenger gene may be selected sequentially, and a DNA chip on which the candidate gene is plotted is used. You can consider it comprehensively.
  • the method for measuring the expression level is not particularly limited, and specific examples include DNA chip, Northern plotting or PCR.
  • genes whose expression levels are different between the two cells are molecules that are affected by the amount or activity of Rb in vivo, that is, molecules on the signal transduction pathway via Rb.
  • Such molecules are molecules that are closely involved in cell carcinogenesis, that is, cell proliferation and cell cycle, and can suppress cancer by suppressing or enhancing the function of the molecule. There is a possibility. In other words, by using such a molecule as a target for an anticancer drug, it is possible to develop a therapeutic agent that suppresses cancer / tumor caused by a molecular abnormality on the Kb or Rb pathway.
  • the first aspect of the method for evaluating a compound using the Rb expression-suppressed cell of the present invention is to prepare an Rb expression-suppressed cell in which the Rb expression is suppressed by RNA interference using the Rb expression cell;
  • the step of bringing a test compound into contact with the Rb expression-suppressing cell and the Rb-expressing cell, the step of measuring the activity of the intracellular signaling substance produced by the contact, and the activity of the Rb expression-suppressing cell and the Rb-expressing cell are compared. And a process.
  • the second aspect of the method for evaluating a compound using the Rb expression-suppressing cell of the present invention is as follows. 6 315992
  • a step of preparing an Rb expression-suppressed cell in which expression of the Rb is suppressed by RNA interference using the expression cell a step of bringing a test compound into contact with the Rb expression-suppressed cell and the Rb-expressing cell, and a cell generated by the contact
  • a step of measuring the expression level of the internal signaling substance a step of comparing the expression level in Rb expression-suppressing cells and Rb-expressing cells.
  • an Rb expression-suppressed cell in which the expression of the Rb is suppressed by RNA interference is prepared using the Rb-expressing cell.
  • the siRNA to be used is not particularly limited as long as it is a sequence capable of suppressing the expression of Rb, but is preferably an Rb-specific sequence.
  • the base length is preferably 21 to 27 bases, more preferably 21 to 23 bases.
  • the effect of introduction of siRNAs is about several days to one week, but the present inventors have made it permanent by introducing siRNAs into cells using a specific expression vector. In addition, it has succeeded in suppressing the expression of Rb.
  • the method for introducing siRNAs is not particularly limited as long as Rb expression is suppressed by RNA interference, but it is preferable to use gene transfer using a vector that constantly suppresses Rb expression.
  • examples of the vector to be used include pSuperior-puro, pENTR / U6, and pENTR / Hl / TO.
  • test compound is brought into contact with the Rb expression-suppressed cells and the Rb-expressing cells.
  • the contact method is not particularly limited, and can be carried out, for example, by adding a test sample to a cell culture solution or cell extract and mixing them.
  • the activity of an intracellular signaling substance produced by contact is measured.
  • a signal enters the cell when the test compound is brought into contact with the cell.
  • the activity of intracellular signaling substances is measured for each of the Rb expression-suppressing cells and Rb-expressing cells, and whether there is a difference in the activity depending on the presence or absence or strength of Rb expression.
  • a suitable method may be selected as appropriate depending on the substance to be measured. If the target of measurement is a phosphorylating enzyme, the activity can be measured by performing a kinase assay.
  • the expression level of an intracellular signaling substance generated by contact is measured. That is, the expression level of intracellular signaling substances is measured for each of Rb expression-suppressed cells and Rb-expressing cells.
  • the method for measuring the expression level is not particularly limited, but can be measured, for example, by Northern blotting, PCR or a DNA chip.
  • the activity of the cell signaling information substance in Rb expression-suppressed cells and Rb-expressing cells is compared. If the activity of the Rb expression-suppressed cell is similar to the activity of the Rb-expressing cell as a result of comparing the activities, the test compound suppresses the canceration of the cell and contributes to normal Rb-mediated signal transduction. It can be judged that it is a compound.
  • U-2 OS shRb cells were established by introducing the pSuperior-puro. ShRb vector into U-2 OS cells having wild-type Rb as described below.
  • the shRNA vector for Rb knockdown was prepared by inserting the following oligo DNA, 5-GCAGTTGACCTAGATGAGATTCAAGAGATCTCATCTAGGTCAACTGC-3 (SEQ ID NO: 27) into pSuperior-puro. (OligoEngine).
  • the pSuperior-puro. ShRb vector was introduced into U-20S cells with wild type Rb using Funege 6. The introduced cells were cultured for 24 hours and then cultured so that the number of cells was about 1/50, and cultured for about 2 weeks in the presence of 1.0 ⁇ g / ml puromycin. The cells that formed the mouthpiece were isolated by the cylinder cloning method. Established Rb The knockdown cell is hereinafter referred to as U-2 OS shRb.
  • RNAs from U-2 OS cells and U-2 OS shRb cells using RNeasy kit (Qiagen).
  • cDNA was prepared using Taqman Reverse Transcription Reagents (Applied Biosysteras). Taq-man RT-PCR was performed using the prepared cDNA in a saddle shape to quantify the amount of Rb mRNA in each cell.
  • a reporter plasmid that undergoes transcriptional control through the Rb / E2F pathway and a pl6 expression plasmid were introduced into U-20S cells and U-2 OS shRb cells using Funege 6, and the reporter gene was detected 48 hours later.
  • the activity of a SEAP was measured using Reporter Assay Kit-SEAP- (Toyobo). That is, Rb knockdown was confirmed by utilizing the fact that the reporter activity was suppressed in Rb + cells but the reporter activity was not suppressed in Rb- cells. Reporter activity was corrected by Lucif erase.
  • the reporter activity was suppressed in the control cells that were Rb +, but the reporter activity was not suppressed in U-2 OS shRb. This result was similar to that of Saos-2 cells used as Rb-control.
  • U-20S cells and U-2 OS shRb cells were treated with 10 nM doxorubicin.
  • Cells were harvested after 24 to 48 hours, and the DNA of the cells was stained with Cycle TESTTM PLUS DNA Reagent Kit (Becton Dickinson) and analyzed using flow cytometry. As shown in Figs. 24 hours later, both cells were arrested in G2 / M phase. However, at 48 hours after treatment, U-20S was arrested in the G2 / M phase, whereas U-2 OS shRb did not maintain G2 / M arrest. From this, U-2 OS shRb 5992
  • the cells were thought to have an abnormal regulation of G2 / M phase progression due to the inactivation of Rb function.
  • Fig. 3 shows cells that have only been introduced with vector and treated with DMS0
  • Fig. 4 shows cells that have only been transfected with vector and treated with ⁇ doxorubicin for 24 hours
  • Fig. 5 shows cells that have only been introduced with vector and treated with ⁇ doxorubicin for 48 hours
  • Figure 6 shows Rb shRNA-introduced cells treated with DMS0
  • Figure 7 shows Rb shRNA-introduced cells treated with ⁇ doxonorubicin for 24 hours
  • Fig. 8 shows Rb shRNA-introduced cells treated with ⁇ doxorubicin for 48 hours.
  • the experimental results are shown. In addition, it shows in which cell cycle each cell is maintained under each condition.
  • an angiogenesis-related gene (interleukin 8: IL 8 ) was increased 7-fold or more in U-20S shRb cells.
  • U-20S cells and U-2 OS shRb cells were seeded in the same number.
  • the culture supernatant was collected 72 hours after seeding, and the amount of IL8 protein in each cell was measured with a Human IL-8 Immunoassay kit (Quantkine).
  • Figure 9 shows the results obtained by Taq-man PCR
  • Figure 10 shows the results obtained by ELISA. Also, it was used LnCap that as a control, the expression of DU-1 45 and IL8 expression of IL 8 are known to be high is known to be less.
  • IL8 expression was increased to a physiologically high level.
  • Rb affects the extracellular environment through the expression of angiogenesis-related genes and promotes tumor formation.
  • Genomic DNA extracted from U-2 OS cells was made into a saddle shape and 1000 bps was amplified by PCR from the transcription start point of ECT2 gene.
  • a reporter plasmid with the ECT2 promoter inserted was constructed.
  • the constructed plasmid is referred to as pGL3 ECT2.
  • the pGL3 ECT2 and E2F1 expression plasmids were introduced into U-2 OS cells using Funege 6. After 24 hours, the activity of the reporter gene luciferase was measured using the Steady-Glo Lucif erase Assay System (Promega). Repo ⁇ "activity was corrected by Renilla luciferase.
  • Chromatin Immunoprecipitation (ChIP) Assay Kit (Upstate biotechnology) was used.
  • the binding of transcription factor and promoter was cross-linked by treating U-2 OS cells with formaldehyde.
  • the cells were then lysed and the cross-linked chromatin was cut by sonication to a DNA size of approximately 500 bp.
  • Soluble chromatin prepared in this way was immunoprecipitated with E2F1 and E2F4 antibodies.
  • the presence of the ECT2 promoter in the immunoprecipitated chromatin fraction was quantified by PCR.
  • the following primers were used for PCR. -
  • CCNA2 negative Rev. 5,-GATACCATAATTTGTACTTGGCCA-3, (SEQ ID NO: 3 1)
  • ECT2 promoter Fw 5,-GTCCAGAGTTATATTGGCAC 3, (SEQ ID NO: 3 2)
  • Figure 13 shows the reporter assembly results for the ECT2 promoter. Positive Similar to the CDC6 promoter with known Rb / E2F regulation used as a control, the transcriptional activity of the ECT2 promoter was enhanced by E2F1. To show that this result is direct, the binding of ECT2 promoter and E2F was examined by ChIP assay. As shown in Fig. 14, it was confirmed that the promoter cross-linked to E2F contains the promoter of ECT2.
  • molecules existing on the Rb pathway which can be used as drug targets or tumor markers for anticancer agents, and compounds using the molecules ( It is possible to provide a method that enables the evaluation of anti-cancer drug candidate compounds), and to provide therapeutic and diagnostic agents for tumors and cancers caused by abnormalities in the molecules present on Rb or Rb pathways.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本発明は、Rbパスウェイ上に存在する分子であって、抗癌剤の創薬標的又は腫瘍マーカーとして使用しうる分子及び当該分子を使用した化合物(抗癌剤候補化合物)の評価を可能とする方法を提供することを目的とする。IL-8、IL-8受容体、ECT2、MCM2、MCM3、MCM4、MCM5、MCM6、MCM7、CCNE2、FEN1、HMGB2、CENPE、KIF20A、CDC25C、CDCA8、KIF11、HCAP-E、HCAP-G、KNTC2、HCAP-C、BUB1、NEK2、CCNA2又はKIF18A遺伝子又はタンパク質と被検化合物の相互作用を検出する化合物の評価方法により上記目的の達成が可能となる。

Description

明 細 書
Rbパスウェイ上の分子を指標とする化合物の評価方法及び分子診断方法 技 術 分 野
本発明は、 癌抑制遺伝子 Rbが転写調節する遺伝子群に属する遺伝子の新規用途に 関する。 より具体的には、 当該遺伝子群に属する遺伝子を標的とする化合物の評価 方法及び当該遺伝子の腫瘍マ一力一としての使用に関する。 背 景 技 術
癌抑制遺伝子として知られる Rbは、 非常に重要な細胞周期の調節因子として機能 している。すなわち、 Rbは、 E2Fをはじめとするいくつかの転写制御因子を介して細 胞周期の G1期から S期への移行を調節する。 哺乳動物の細胞は、通常、 GO期にて静止 しており、 増殖刺激に伴って G1期に入り、 順に、 S期、 G2期、 M期と細胞周期が進行 する。 Rbは、 細胞周期の進行に異常を来たした場合に、 細胞周期を G1期で停止させ 、 S期の DNA合成を停止させる機能を有すると考えられている。
: ^体的には、 Rbタンパク質は、 S期の開始に必要な E2Fと結合してその働きを阻止 することにより細胞周期を G1期に止める。 Rbは、 静止状態ではリン酸化されていな いが、 G1期中期に CDKキナーゼによりリン酸化を受けると活性を失い、 E2Fへの結合 ができなくなる。 その結果、 E2Fが機能し、 細胞周期が S期へと進行する。 Rbは、 CD K2、 CDK4及び CDK6の作用を受けて活性調節がなされるが、 Rbを中心としたこれら一 連の細胞周期の調節パスウェイを Rbパスウェイという。 このパスウェイに異常が生 じると細胞周期にも異常が生じ、 細胞の異常増殖を通じて組織の癌化を来たす。 例 えば、 Rb— E2Fパスウェイが正常に機能しなくなると S期への進行が生じるとの報告 がある (非特許文献 1 ) 。
このように、 細胞周期と癌化との関連は非常に強く、 Rbパスウェイ上の分子をは じめとする多くの細胞周期関連の分子を抗癌剤の標的分子とした創薬が盛んに進め られている。 (非特許文献 1 ) Genes & Development 第 11卷、 1479頁 (1997年) 発 明 の 開 示
しかしながら、 より有効な抗癌剤や癌診断マーカーを得るため、 新たな作用機作 の抗癌剤や未知の癌診断マーカーが望まれているのが現状であった。
本発明は、 上記従来技術の有する課題に鑑みてなされたものであり、 Rbパスゥェ ィ上に存在する分子であって、 抗癌剤の創薬標的又は腫瘍マーカーとして使用しう る分子及び当該分子を使用した化合物 (抗癌剤候補化合物) の評価を可能とする方 法を提供することを目的とする。
本発明者らは、 上記目的を達成すべく鋭意研究を重ねた結果、 IL- 8、 ECT2をはじ め種々の分子が、 Rbの活性に応じてその発現を増減させることを見出し、 本発明を 兀成し 7こ。
すなわち、 本発明の化合物の評価方法は、 癌の治療に有効な化合物の評価方法.で あって、
IL- 8、 IL-8受容体、 ECT2、 CCNE2、 FEN1、 KIF20A、 CDC25C、 KIF11、 BUB1、 NEK2、 CCNA2及ぴ KIF18Aからなる群より選択されるレ、ずれか一つの遺伝子又は該遺伝子と 機能的に同等な遺伝子を導入し、 該遺伝子の転写産物であるタンパク質を発現する 細胞を調製する工程と、 当該細胞に被検化合物を接触させる工程と、 当該タンパク 質に対する該被検化合物の特異的結合を検出する工程と、を含むことを特徴とする。 また、 本発明の化合物の評価方法は、 癌の治療に有効な化合物の評価方法であつ て、
IL- 8、 IL- 8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP- G、 KNTC2、 HCAP - C、 BUB1、 NEK2、 CCNA2及ぴ KIF18Aからなる群より選択されるいずれか一つの遺伝子又 は該遺伝子と機能的に同等な遺伝子を導入し、. 該遺伝子の転写産物であるタンパク 質を発現する細胞を調製する工程と、 当該細胞に被検化合物を接触させる工程と、 当該接触により生じた細胞内情報伝達物質の活性を測定する工程と、 当該活性と被 検化合物を接触させない場合の細胞内情報伝達物質の活性とを比較し、 被検化合物 の接触によって生じる細胞内情報伝達物質の活性の変化を検出する工程と、 を含む 6 315992
3
ことを特徴とする。
さらに、 本発明の化合物の評価方法は、 癌の治療に有効な化合物の評価方法であ つて、
IL_8、 IL- 8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP- G、 KNTC2、 HCAP - C、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれか一つの遺伝子又 は該遺伝子と機能的に同等な遺伝子を導入し、 該遺伝子の転写産物であるタンパク 質を発現する細胞を調製する工程と、 当該細胞に被検化合物を接触させる工程と、 当該タンパク質を介した細胞内情報伝達物質の発現レベルを測定する工程と、 当該 発現レベルと被検化合物を接触させない場合の細胞内情報伝達物質の発現レベルと を比較し、 被検化合物の接触によって生じる細胞内情報伝達物質の発現レベルの変 化を検出する工程と、 を含むことを特徴とする。
ここで、前記 3つの態様の化合物の評価方法においては、前記遺伝子として、 IL - 8
、 IL - 8受容体又は ECT2が好適に用いられる。
また、 本発明の化合物の評価方法は、 癌の治療に有効な化合物の評価方法であつ て、被検化合物を、 IL- 8、 IL- 8受容体、 ECT2、 CCNE2、 FEN1、 CENPE、 KIF20A、 CDC25C
、 CDCA8、 KIF11、 KNTC2、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択され るいずれか一つのタンパク質に接触させる工程と、 接触による該タンパク質の活性 の変化を検出する工程と、 を含むことを特徴とする
ここで、前記の化合物の評価方法においては、前記タンパク質として、 IL - 8、 IL-8 受容体又は ECT2が好適に用いられる。
さらに、 本発明には、 上記いずれかの化合物の評価方法によって単離された化合 物も含まれる。
また、本発明の癌の分子診断方法は、被検組織又は被検細胞における、 IL-8、 IL-8 受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6, MCM7, CCNE2、 FEN1、 HMGB2, CENPE 、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP- G、 KNTC2、 HCAP- C、 BUB1、 NEK2、 CCNA2及ぴ KIF18Aからなる群より選択されるレ、ずれか一つの遺伝子又は該遺伝子と 機能的に同等な遺伝子の発現量を測定する工程と、 当該遺伝子の発現量と正常組織 又は正常細胞における対応遺伝子の発現量とを比較する工程と、 比較した結果、 被 検組織又は被検細胞における遺伝子の発現量が正常組織又は正常細胞における遺伝 子の発現量より有意に多いか杏かを判断する工程と、 を含む癌の分子診断方法。 ここで、 前記分子診断方法においては、 前記遺伝子として、 IL - 8、 IL-8受容体又 は ECT2が好適に用いられる。
さらに、 本発明の分子診断方法は、 被検組織又は被検細胞における、 IL_8、 IL-8 受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE 、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP-G、 KNTC2、 HCAP-C, BUB1、 NEK2、 CCNA2及ぴ KIF18Aからなる群より選択される!/、ずれか一つのタンパク質又は該タン パク質と機能的に同等なタンパク質の発現量を測定する工程と、 当該タンパク質の 発現量と正常組織又は正常細胞における対応タンパク質の発現量とを比較する工程 と、 比較した結果、 被検組織又は被検細胞におけるタンパク質の発現量が正常組織 又は正常細胞におけるタンパク質の発現量より有意に多レ、か否かを判断する工程と、 を含むことを特徴とする。
ここで、 前記分子診断方法においては、 前記タンパク質として、 IL-8、 IL- 8受容 体又は ECT2タンパク質が好適に用いられる。
また、 前記の 2つの態様の分子診断方法においては、 前記癌が Rb又は Rbパスゥ エイ上の分子の異常に起因する癌であることが好ましい。 各分子診断方法において 測定の対象となる遺伝子群に属する遺伝子は、いずれも Rbパスウェイ上に存在する 遺伝子であり、 このような癌を対象とした正確な診断が可能となる。
また、 .本発明の Rb又は Rbパスウェイ上の分子に異常を有する癌を検出する腫瘍 マーカーは、 IL- 8、 IL- 8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2 、 FEN1、 HMGB2, CENPE, KIF20A, CDC25C、 CDCA8、 KIF11、 HCAP-E、 HCAP- G、 KNTC2, HCAP-C, BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれか一つの タンパク質又は該タンパク質と機能的に同等なタンパク質であることを特徴とする。 さらに、 本発明の Rb又は Rb.パスウェイ上の分子に異常を有する癌を検出する腫 瘍マーカーは、 IL- 8、 IL-8受容体、 ECT2、 MCM2、 MCM3、 C 4, MCM5, MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE, KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP- G、 KNTC2 、 HCAP - C、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれか一つ の遺伝子又は該遺伝子と機能的に同等な遺伝子であることを特徴とする。 また、 本発明の抗癌剤の標的遺伝子の検出方法は、 Rb発現細胞を用いて RNA干渉 により該 Rbの発現が抑制された Rb発現抑制細胞を調製する工程と、 当該細胞にお いて所望の遺伝子の発現量を測定する工程と、当該発現量と Rb発現細胞における該 遺伝子の発現量を比較する工程と、 を含むことを特徴とする。 ここで、前記 Rb発現 細胞が、 U- 2 0S、 HCT116又は HePG2であることが好ましい。 また、 Rb発現抑制細胞 において Rbの発現を抑制する手段が RNA干渉によるものであることが好ましく、さ らに RNA干渉に用いる siRNAsが配列番号 2 7に記載の配列であることが好ましレ、。 かかる配列を用いることにより、より確実に Rb発現抑制細胞を調製することができ る。
また、 本発明の Rb発現抑制細胞を用いた化合物の評価方法は、 Rb発現細胞を用 いて Rbの発現が抑制された Rb発現抑制細胞を調製する工程と、 Rb発現抑制細胞及 ぴ Rb発現細胞に被検化合物を接触させる工程と、接触により生じた細胞内情報伝達 物質の活性を測定する工程と、 Rb発現抑制細胞及ぴ Rb発現細胞における該活性を 比較する工程と、 を含むことを特徴とする。
さらに、 本発明の Rb発現抑制細胞を用いた化合物の評価方法は、 Rb発現細胞を 用いて Rbの発現が抑制された Rb発現抑制細胞を調製する工程と、 Rb発現抑制細胞 及び Rb発現細胞に被検化合物を接触させる工程と、接触により生じた細胞內情報伝 達物質の発現レベルを測定する工程と、 Rb発現抑制細胞及ぴ Rb発現細胞における 該発現レベルを比較する工程と、 を含むことを特徴とする。 ここで、 前記 2つの態 様の Rb発現抑制細胞を用いた化合物の評価方法において、前記 Rb発現細胞が、 U-2 0S、 HCT116又は HePG2であることが好ましい。 また、 Rb発現抑制細胞において Rb の発現を抑制する手段が RNA干渉によるものであることが好ましく、さらに前記 RNA 干渉に用いる siRNAsが配列番号 2 7に記載の配列であることが好ましレ、。かかる配 列を用いることにより、 より確実に Rb発現抑制細胞を調製することができる。 本発明によれば、 Rbパスゥヱイ上に存在する分子であって、 抗癌剤の創薬標的又 は腫瘍マーカーとして使用しうる分子及び当該分子を使用した化合物 (抗癌剤候補 化合物) の評価を可能とする方法を提供することが可能となる。従って、 Rb又は Rb パスウェイ上に存在する分子の異常によって生じる腫瘍や癌の治療剤や診断薬を提 供することが可能となる。 JP2006/315992
6 図面の簡単な説明
図 1は、 Rb shRNAを導入した細胞における Rbの発現抑制を確認した結果を 示す図である。
図 2は、 Rb shRNAを導入した細胞における Rbの発現抑制を E2Fの阻害活性 を指標にレポーターアツセィにより確認した結果を示す図である。
図 3は、 Rbノックダウン細胞 (ベクターのみを導入し DMSO処理した細胞) をドキソルビシンで処理した際の細胞周期に及ぼす影響を確認した結果を示す図で ある。
図 4は、 Rbノックダウン細胞 (ベクターのみを導入し ΙΟηΜ ドキソルビシン で 24時間処理した細胞) をドキソルビシンで処理した際の細胞周期に及ぼす影響 を確認した結果を示す図である。
図 5は、 Rbノックダウン細胞 (ベクターのみを導入し ΙΟηΜ ドキソルビシン で 48時間処理した細胞) をドキソルビシンで処理した際の細胞周期に及ぼす影響 を確認した結果を示す図である。
図 6は、 Rbノックダウン細胞 (Rb shRNAを導入し DMSOで処理した細胞) をドキソルビシンで処理した際の細胞周期に及ぼす影響を確認した結果を示す図で ある。
図 7は、 Rbノックダウン細胞 (Rb shRNAを導入し ΙΟηΜ ドキソルビシンで 24時間処理した細胞)をドキソルビシンで処理した際の細胞周期に及ぼす影響を確 認した結果を示す図である。
図 8は、 Rbノックダウン細胞 (Rb shRNAを導入し ΙΟηΜ ドキソルビシンで 48時間処理した細胞)をドキソルビシンで処理した際の細胞周期に及ぼす影響を確 認した結果を示す図である。
図 9は、' Rbノックダゥン細胞における IL-8の発現を mRNA レベルで確認し た結果を示す図である。
図 1 0は、 Rbノックダウン細胞における IL-8の発現をタンパク質レベルで確 認した結果を示す図である。
図 1 1は、: Rbノックダウン細胞において発現量が変動する種々の遺伝子を、マ イクロアレイを用いて確認した結果を示す図である。
図 1 2は、 Rbノックダウン細胞において発現量が変動し、細胞周期の進行を制 御する遺伝子群を示す図である。 上欄は細胞周期の G1/Sの進行を制御する遺伝子 群を、 下欄は G2/Mの進行を制御する遺伝子群を示す。
図 1 3は、 ECT2プロモーターと E2Fとの相互作用について検討した結果を示 す図である。
図 1 4は、 ECT2プロモーターと E2Fとの相互作用について検討した結果を示 す図である。
図 1 5は、 Rbが ECT2を介して G2/M期の進行を阻害していることを確認し た結果を示す図である。 ' 発明を実施するための最良の形態
以下、 本発明の好適な実施形態について詳細に説明する。
先ず、 本発明にかかる用語について説明する。
本発明にかかる遺伝子は、 IL- 8 (Accession No.應_000584:配列番号 1 ) 、 IL - 8 受容体 (Accession No,蘭— 000634 (IL- 8RA) :配列番号 2及び雇— 001557 (IL-SRB) ; 配列番号 3 ) 、 ECT2 (Accession No.丽— 018098:配列番号 4 ) 、 MCM2 (Accession No. 麵_004526:配列番号 5 ) 、 MCM3 (Accession No. 應— 002388:配列番号 6 ) 、 C 4 (Accession No. 匪— 182746:配列番号 7 ) 、 MCM5 (Accession No.蘭— 006739:配列 番号 8 ) 、 MCM6 (Accession No.顧—005915:配列番号 9 ) 、 MCM7 (Accession No. 應— 005916:配列番号 1 0 ) 、 CCNE2 (Accession No. NM_004702:配列番号 1 1 ) 、 FEN1 (Accession No. NM_004111:配列番号 1 2 ) 、 HMGB2 (Accession No. 匪一 002129 :配列番号 1 3 ) 、 CENPE (Accession No. 匪一 001813:配列番号 1 4 ) 、 KIF20A ( Accession No. 匪— 005733:配列番号 1 5 ) 、 CDC25C (Accession No. 讓— 001790: 配列番号 1 6 )、 CDCA8 (Accession No. 蘭一 018101:配列番号 1 7 )、 KIF11 (Accession No. 麵—004523:配列番号 1 8 ) 、 HCAP-E (Accession No. 醒— 006444:配列番号 1 9 ) 、 HCAP-G (Accession No. 應— 022346:配列番号 2 0 ) 、 KNTC2 (Accession No. 匪一 006101:配列番号 2 1 ) 、 HCAP-C (Accession No. 匪— 005496:配列番号 2 2 ) 、 BUB1 (Accession No. 蘭— 004336:配列番号 2 3 ) 、 NEK2 (Accession No. NM— 002497 :配列番号 2 4 ) 、 CCNA2 (Accession No. 應_001237:配列番号 2 5 ) 及び I0F18A (Accession No. M— 031217:配列番号 2 6 ) からなる群より選択される。 これらの 遺伝子の由来となる生物種は特に限定されず、 例えば、 ヒ ト、 サル、 マウス、 ラッ ト、 ィヌ又はゥサギが挙げられる。 中でも、 評価される化合物の投与対象がヒ トで あることからヒ ト遺伝子であることが好ましい。
また、 本発明に係る前記の遺伝子には、 当該遺伝子と同等の生理機能を有するも のであれば 1又は 2以上の塩基の置換、 欠失、 付加又は挿入がある遺伝子も含まれ る。 ここで、 当該遺伝子としては、 力かるタンパク質をコードする遺伝子であれば その配列は特に制限されないが、 相同性が 5 0 %以上であることが好ましく、 7 0 %以上であることがより好ましく、 8 0 %以上であることがさらに好ましく、 9 0 %以上 (例えば、 9 1、 9 2、 9 3、 9 4、 9 5、 9 6、 9 7、 9 8、 9 9 %以上 ) であることが特に好ましい。
また、 本発明に係る前記の遺伝子には、 当該遺伝子とストリンジヱントな条 下 でハイブリダィズする核酸も含まれる。 ここで、 「ストリンジェントな条件でハイ ブリダィズする」 とは、 二つの核酸断片が、 Molecular Cloning: A Laboratory Manual、第 2版、 コールドスプリングハーバー (1989)、 9. 47 - 9. 62及び 11. 45- 11. 61 に記載されたハイプリダイゼーシヨン条件下で、 相互にハイプリダイズすることを 意味する。 より具体的には、 例えば、 約 45°Cにて 6. 0 X SSCでハイブリダィゼーシ ョンを行った後に、 50°Cにて 2. OxSSCで洗浄する条件が挙げられる。 ストリンジェ ンシー選択のため、 洗浄工程における塩濃度を、 例えば低ストリンジェンシーとし ての約 2. 0xSSC、 50°Cから、 高ストリンジエンシーとしての約 0. 2 X SSC、 50°Cまで 選択することができる。 さらに、 洗浄工程の温度を低ストリンジエンシー条件の室 温、約 22。Cから、高ストリンジエンシー条件の約 65°Cまで上昇させることができる また、 本発明に係る前記の遺伝子の転写産物であるタンパク質には、 当該タンパ ク質と同等の生理機能を有するものであれば 1又は 2以上の塩基の置換、 欠失、 付 加又は挿入があるものも含まれる。 ここで、 当該タンパク質の配列は特に制限され ないが、 相同性が 5 0 %以上であることが好ましく、 7 0 °/。以上であることがより 好ましく、 8 0 %以上であることがさらに好ましく、 9 0 %以上 (例えば、 9 1、 P T/JP2006磨 92
9
9 2、 9 3、 9 4、 9 5、 9 6、 9 7、 9 8、 9 9 %以上) であることが特に好ま しレ、。
本発明者らは、 IL-8、 IL - 8受容体、 ECT2、 MCM2、 MCM3、 MCM4, MCM5、 MCM6、 MCM7 、 CCNE2、 FENls HMGB2, CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP - G、 KNTC2、 HCAP-C, BUB1、 NEK2、 CCNA2及ぴ KIF18A (以下、 場合により、 単に 「遺伝子 群」 又は 「タンパク質群」 という。 ) の遺伝子の発現量が Rbの発現量と相関関係を 有することを見出した。 すなわち、 Rbは、 転写因子である E2F等を介して下流の遺 伝子の発現制御を司るが、上に列挙した遺伝子群はその制御を受け Rbに転写調節さ れると考えられる。 前述の遺伝子群は、 いずれも血管新生関連遺伝子、 macrotubule attachment, spindle checkpoint, cytokinesis, 細胞周期関連遺伝子のいずれ力'に 分類され、 Rbの発現調節、発現誘導されることによりその機能を発揮する。 Rbは癌 抑制遺伝子として知られるが、 前記の遺伝子群の発現調節を介して癌の抑制能、 す なわち、 正常な細胞増殖を司っていると考えられる。 従って、 この遺伝子群は、 Rb 又は Rbパスウェイ上の分子の異常に起因する癌を検出する腫瘍マーカーとして利用 可能であり、 また、 抗癌剤の創薬標的分子として利用可能である。 ここで、 本発明 に係る 「Rb又は Rbパスウェイ上の分子の異常」 とは、 Rb遺伝子又は Rbパスウェイ 上の遺伝子 (例えば、 E2F、 CDKファミリ一等) における塩基の欠失 (例えばナンセ ンス変異) 、置換(例えば、 ミスセンス変異、 ポイントミューテーシヨン)、挿入、 フレームシフト等を原因とするものが考えられるが、 -本発明の対象としては、 機能 異常の原因は特に限定されず、 これらのいずれが原因となっていてもよい。
また、 Rbタンパク質又は Rbパスウェイ上のタンパク質の機能異常の具体例とし ては、 これらのタンパク質の転写活性が低下又は活性ィヒする場合や、 転写が全く起 こらない場合が挙げられるが、 活性には異常を認めないがコードされる遺伝子には 変異を生じている場合も含まれる。 具体的には、 例えば、 Rb との関与が知られてい る網膜芽細胞腫 (Birth Defects Orig. Art. Ser.、 第 18卷、 689頁、 1982年: New Eng. J. Med.、第 321卷、 1689頁、 1989年)、ピネロ一マ (Pinealoma) (Arch. Ophthal. 、 第 102卷、 257頁、 1984年) 、 骨原性肉腫 (Ophthalmologica, 第 175卷、 185頁 、 1977年) が挙げられる。
本発明における 「被検組織」 とは、 癌の検査対象となる生体から抽出可能な組織 T/JP2006/315992
10
であり、 Rbの関与を検討する必要のある癌組織や、 癌診断の必要があると認められ る組織であればその種類は特に限定されない。 かかる組織の例としては、 例えば、 神経芽腫、網膜芽細胞腫、脳腫瘍、頭頸部癌、 下垂体腺腫、神経膠腫、聴神経鞘腫、 口腔が癌、 咽頭癌、 喉頭癌、 甲状腺癌、 胸腺腫、 中皮腫、 乳癌、 肺癌、 胃癌、 食道 癌、 大腸癌、.肝臓癌、 膝臓癌、 陴内分泌腫瘍、 胆道癌、 陰茎癌、 外陰癌、 腎盂尿管 癌、 腎臓痛、 精巣癌、 前立腺癌、 膀胱癌、 子宮癌、 絨毛性疾患、 膣癌、 卵巣癌、 卵 管癌、 卵巣胚^胞腫瘍、 皮膚癌、 菌状息肉症、 悪性黒色腫、 軟部肉腫、 骨腫瘍、 悪 性リンパ腫、 白血病、 骨髄異形成症候群、 多発性骨髄腫、 リンパ浮腫由来の組織が 挙げられる。
また、 本発明における 「被検細胞」 も同様に、 癌の検査対象となる生体から抽出 可能な組織であり、 Rbの関与を検討する必要のある癌組織由来の細胞や、 癌診断の 必要があると認められる組織由来の細胞であればその種類は特に限定されない。 か 力 細胞の例としては、 例えば、 神経芽腫、 網膜芽細胞腫、 脳腫瘍、 頭頸部癌、 下 垂体腺腫、神経膠腫、聴神経鞘腫、 口腔が癌、 咽頭癌、喉頭癌、 甲状腺癌、胸腺腫、 中皮腫、 乳癌、 肺癌、 胃癌、 食道癌、 大腸癌、 肝臓癌、 瞵臓癌、 睥内分泌腫瘍、 胆 道癌、 陰茎癌、外陰癌、 腎盂尿管癌、 腎臓癌、精巣癌、 前立腺癌、膀胱癌、 子宮癌、 絨毛性疾患 膣癌、 卵巣癌、 卵管癌、 卵巣胚細胞腫瘍、 皮膚癌、 菌状息肉症、 悪性 黒色.腫、 軟部肉腫、 骨腫瘍、 悪性リンパ腫、 白血病、 骨髄異形成症候群、 多発性骨 髄腫、 リンパ浮腫由来の細胞が挙げられる。 '
( 1 ) .化合物の評価
IL- 8、 IL- 8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP- G、 KNTC2、 HCAP - C、 BUB1、 NEK2、 CCNA2又は KIF18A遺伝子又はタンパク質を用いて、 これら遺伝子群又 はタンパク質群に属する遺伝子又はタンパク質に作用する化合物の評価をすること ができる。 これら遺伝子群又はタンパク質群 属する遺伝子又はタンパク質に対す る作用を検出する方法として、 被検化合物のタンパク質群に属するタンパク質に対 する特異的結合 (例えば、 酵素活性の阻害を生じる結合) を検出する方法、 被検化 合物の接触によって変化した遺伝子の発現量を検出する方法、 及び、 当該接触によ つて生じた細胞内情報伝達の活性を検出する方法が挙げられる。 以下、 順に説明す 06 315992
11
る。 . ' . 先ず、 被検化合物のタンパク質群に属するタンパク質に対する特異的結合を検出 することにより、 被検化合物を評価する方法について説明する。
本発明の化合物の評価方法は、遺伝子群に属するいずれか一つの遺伝子を導入し、 当該遺伝子を発現する細胞を調製する工程と、 当該細胞に被検化合物を接触させる 工程と、 当該遺伝子に対する当該被検化合物の特異的結合を検出する工程と、 を含 むことを特徴とする。
また、 本発明の第 2の化合物の評価方法は、 遺伝子群に属するいずれか一つの遺 伝子を導入し、 当該遺伝子を発現する細胞を調製する工程と、 当該細胞に被検化合 物を接触させる工程と、 当該接触により生じた細胞内情報伝達物質の活性を測定す る工程と、 当該活性と被検化合物を接触させない場合の該細胞内情報伝達物質の活 性とを比較する工程と、 を含むことを特徴とする。
被検化合物としては、 特に制限はなく、 例えば、 天然化合物、 有機化合物、 無機 化合物、 タンパク質、 ペプチド等の単一化合物、 並びに、 化合物ライブラリー、 遺 伝子ライブラリーの発現産物、 細胞抽出物、 細胞培養上清、 発酵微生物産生物、 海 洋生物抽出物、 植物抽出物、 原核細胞抽出物、 真核単細胞抽出物若しくは動物細胞 抽出物等を挙げることができる。 上記被検試料は必要に応じて適宜標識して用いる ことができる。 標識としては、 例えば、 放射標識、 蛍光標識等を挙げることができ る。 また、 上記被検試料に加えて、 これらの被検試料を複数種混合した混合物も含 まれる。.
また、 前記遺伝子を発現する細胞は、 当業者が公知の方法で調製すればよく、 具 体的な方法としては特に制限はないが、 例えば以下の方法によることができる。 す なわち、 遺伝子又はその一部からなる核酸を好適なプロモーター及ぴ転写調節ェレ メントを含む発現ベクターにクローユングし、 クローニングされた核酸を有するベ クターを宿主細胞に導入することにより調製する。ここで、前記べクターとしては、 発現ベクターとして利用可能なものであれば特に限定されないが、例えば、 PCMV - Ta g 、 pcDNA3. 1、 pBlueBacHis2、 pCI - neo、 pcDNAI、 pMClneo, pXTl、 pSG5、 pEFl/V5-HisB 、 pCR2. 1、 pETll、 ; L gtll又は pCR3. 1が挙げられる。
次に、 前記遺伝子又はその一部からなる核酸が導入された発現ベクターを宿主細 6 315992
12
胞に導入する。 力かる宿主細胞としては、 遺伝子の発現に通常使用されるもめであ れば特に限定されず、 動物細胞、 昆虫細胞、 植物細胞、 微生物のいずれであっても よく、 具体的には、 例えば、 C0S1、 C0S7、 CH0、 画 /3T3、 293、 Raji、 CV11、 C1271、 MRC- 5、 CPAE、 HeLa、 293T又は Sf9が挙げられる。 また、 発現ベクターを宿主細胞 に導入する方法としては、 公知の方法であれば特に限定されないが、 具体的には、 例えば、 エレクトロポレーシヨン、 リン酸カルシウム法、 DEAE-デキストラン法、 リ ポフエクション法又は遺伝子銃が挙げられる。
次に、 このようにして調製した前記遺伝子を発現する細胞に被検化合物を接触さ せる。 接触させる方法としては特に制限はなく、 例えば、 タンパク質群に属するい ずれか一つのタンパク質が精製された状態であれば、 精製標品に被検試料を添加す ることにより行うことができる。 また、 細胞内に発現した状態又は細胞抽出液内に 発現した状態であれば、 それぞれ、 細胞の培養液又は当該細胞抽出液に被検試料を 添加することにより行うことができる。被検試料がタンパク質の場合には、例えば.、 当該タンパク質をコードする DNAを含むベクターを、 前記タンパク質が発現してい る細胞へ導入する、 または当該ベクターを当該タンパク質が発現している細胞抽出 液に添加することで行うことも可能である。
前記タンパク質と被検化合物との結合は、 IL - 8受容体のような受容体タンパク質 であれば、 例えば、 結合した化合物に付された標識による検出 (例えば、 結合量を 放射活性や蛍光強度による検出) による方法が挙げられる。 また、 タンパク質群に 属するいずれか一つのタンパク質が細胞内シグナル伝達に関与する分子である場合、 シグナル伝達によって生じたシグナル伝達パスウェイ上の分子 (当該タンパク質も 含む) の発現レベルや活性を指標にすることもできる。 ここで、 当該発現レベルを 指標とする場合、 発現レベルの測定法は特に制限されないが、 例えば、 ノーザンブ ロッテイング、 ウェスタンブロッテイング又は DNAチップが挙げられる。 ここで、 本発明における 「発現レベル」 .とは、 前記タンパク質を介した情報伝達パスウェイ 上に存在するタンパク質をコードする遺伝子の転写産物の絶対量又は相対量をいう。 この場合、 当該遺伝子には DNA又は mRNAのいずれもが含まれる。 また、発現の検出 対象がタンパク質の場合、 その 「発現レベル」 とは、 前記タンパク質を介した情報 伝達経路上に存在するタンパク質の翻訳産物の絶対量又は相対量をいう。 また、 シ 歸 15992
13
グナル伝達上の分子の活性を指標にする場合、 活性測定方法は特に制限されず、 測 定の対象となる分子の種類によつて好適な方法を選択すればよレ、。
一方、 単離されたタンパク質を化合物の評価に直接使用することもできる。 すな わち、 被検化合物をタンパク質に接触させ、 次に、 接触によって生じた当該タンパ ク質の活性の変化を検出する方法である。
かかる接触の方法としては特に制限はなく、 具体的には、 例えば、 緩衝液 (リン 酸緩衝液等) 等の溶液中で混合することにより接触させる方法や、 タンパク質をメ ンプレン上に固定し、 メンブレン上で被検化合物と接触させる方法が挙げられる。 次に、 接触によって生じたタンパク質の活性の変化を検出する。
タンパク質の活性測定方法としては、 使用するタンパク質の性質により所望の方 法を選択すればよく、 例えば IL- 8の場合、 IL- 8受容体に対する結合活性を検出す る方法や、 好中球遊走アツセィ (サイト力イン実験法、 87- 93頁、 1997年、 羊土社 ) により検出することができる。 また、 ECT2の場合、 ECT2が GTP結合型の RhoAや CDC42を増加させること力ゝら、被検化合物が ECT2に結合してその結合活性を阻害す ることを RhoAの活性を測定することにより評価することができる。 また、 ECT2の 活性を阻害すると細胞周期が Mitosisに止まることを利用し、 ECT2の阻害を Mitosis arrest assayにより評価することができる。
本発明にかかる遺伝子群に属する遺伝子が、 それぞれ本発明の化合物の評価方法 のいずれに適用可能であるかを表 1に示す。 表 1において、 「種類」 は遺伝子の生 体内での機能を示し、 「結合」 は本発明の化合物の評価方法のうち、 分子と被検化 合物の結合により化合物を評価する方法を示し、 「シグナル」 は本発明の化合物の 評価方法のうち、 被検化合物の接触によって生じた細胞内情報伝達を指標に化合物 の評価をする方法を示し、 「活性」 はタンパク質分子と被検化合物との接触によつ て生じた活性を指標に化合物を評価する方法を示す。
(表 1 ) .
遺伝子 種類 化合物の評価
口 情報伝達 活性
IL-8 分泌タン'、'ク ο Ο ο
IL-8受容体 受容体 〇 〇 〇
EGT2 GDP/GTP交換因子 ο ο 〇
MCM2 DNA binding X 〇 X
MCM3 DNA binding X 〇 X
CM4 DNA binding X 〇 . X 2006/315992
14
Figure imgf000015_0001
以上のように、 本発明の化合物の評価方法により化合物の評価を行った結果、 被 検化合物の存在下におけるタンパク質の活性が、 被検化合物の非存在下における結 合活性 (対照) より低い値を示した場合には、 当該被検化合物は、 本発明に係るタ ンパク質とリガンドとの結合を阻害する活性を有するアンタゴニス トと判定される。 アンタゴエストは、 タンパク質に対するリガンド及ぴそのアナログが有する生理活 性を抑制する。 このようなアンタゴニス トは、 Rb又は Rbパスウェイ上の分子の機 能異常による細胞の異常増殖を抑える可能性があり、 Rbを介したシグナル伝達系の 異常に起因する癌の治療等のための医薬組成物として有用である。
また、 本発明の化合物の評価方法により、 Rbパスウェイのシグナル伝達、 転写調 節を促進又は阻害する物質のスクリーユングを行うことができる。 すなわち、 上述 した方法によって複数の被検化合物を評価することにより、 ァゴニスト又はアンタ ゴニストとして機能する化合物を選択することができる。 かかる選択の結果、 被検 化合物非存在下においてリガンド及びそのアナログを作用させた場合の下流へのシ グナル伝達の変化と比較して、 その変化が抑制されれば、 当該被検化合物は、 タン パク質群に属するレ、ずれか一つのタンパク質の下流へのシグナル伝達を阻害する化 合物であると判定される。逆に、被検化合物が細胞内シグナル伝達を増強させれば、 当該化合物は、 当該タンパク質への被検化合物結合後のシグナノレ伝達を促進する化 合物であると判定される。 このようなスクリーユング方法によって選択された化合 物は、 Rb又は Rbパスウェイ上の分子の機能異常に起因する癌の治療及び診断に有 効である。
また、 上述した本発明の化合物の評価方法により、 PET (positron emission tomography) に用いるリガンドの評価を行うことができる。 PET は、 水、 酸素、 ブ ドウ糖、 アミノ酸といった生体内に存在する物質あるいは目的とする受容体に対す るリガンドを放射線標識して体内に投与することにより、 非侵襲的に生体機能を観 察する方法であり、.研究や臨床において利用されている。 PET の特徴は、 トレーサ 一として用いるリガンドに依存した機能特異的なイメージングを可能にする点にあ り、新たなトレーサーの開発は未知の生体機能の解明や疾患の診断に不可欠である。 本発明の化合物の評価方法によれば、 被検化合物として PETリガンド候補物質を適 用することにより、 当該物質のインビト口での評価を行うことが可能となる。 ' ( 2 ) 化合物の評価方法によって得られた化合物
また、 本発明の化合物の評価方法によって得られた化合物も本発明に含まれる。 このような化合物としては、 その性状は特に制限はなく、 例えば、 天然化合物、 .有 機化合物、 無機化合物、 タンパク質、 ペプチド等の単一化合物、 抗体、 アンチセン ス、 RNAi又はリボザィムが挙げられる。
本発明の化合物の評価方法で得られた化合物をヒトゃ他の動物の医薬として使用 する場合には、 これらの物質自体を直接患者に投与する以外に、 公知の製剤学的方 法により製剤化して投与を行うことも可能である。 例えば、 必要に応じて糖衣を施 した錠剤、 カプセル剤、 エリキシル剤、 マイクロカプセル剤として経口的に、 ある いは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、 又は懸濁液剤の 注射剤の形で非経口的に使用できる。 例えば、 薬理学上許容される担体若しくは媒 体、 具体的には、 滅菌水や生理食塩水、 植物油、 乳化剤、 懸濁剤、 界面活性剤、 安 定剤、 香味剤、 賦形剤、 べヒクル、 防腐剤、 結合剤等と適宜組み合わせて、 一般に 認められた製薬実施に要求される単位用量形態で混和することによって製剤化する ことが考えられる。
錠剤、 カプセル剤に混和することができる添加剤としては、 例えば、 ゼラチン、 コーンスターチ、 トラガントガム、 アラビアゴムのような結合剤、 結晶性セルロー スのような武形剤、 コーンスターチ、 ゼラチン、 アルギン酸のような膨化剤、 ステ ァリン酸マグネシゥムのような潤滑剤、 ショ糖、 乳糖又はサッカリンのような甘味 歸 15992
16
剤、 ペパーミント、 ァカモノ油又はチェリーのような香味剤が用いられる。 調剤単 位形態がカプセルである場合には、 上記の材料にさらに油脂のような液状担体を含 有することができる。 注射のための無菌組成物は注射用蒸留水のようなべヒクルを 用いて通常の製剤実施に従つて処方することができる。
注射用の水溶液としては、 例えば生理食塩水、 ブドウ糖やその他の補助薬を含む 等張液、 例えば D -ソルビトール、 D-マンノース、 D-マンニトール、 塩ィ匕ナトリウム が挙げられ、 適当な溶解補助剤、 例えばアルコール、 具体的にはエタノール、 ポリ アルコール、 例えばプロピレングリコール、 ポリエチレングリコール、 非イオン性 界面活性剤、 例えばポリソルベート 80 (TM) 、 HC0 - 50と併用してもよい。
油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸べンジル、 ベンジルアルコールと併用してもよい。 また、 緩衝剤、 例えばリン酸塩緩衝液、 酢 酸ナトリウム緩衝液、 無痛化剤、 例えば、 塩酸プロ力イン、 安定剤、 例えばべンジ ルアルコール、 フヱノ '一ル、 酸化防止剤と配合してもよい。 調製された注射液は通 常、 適当なアンプルに充填させる。
患者への投与は、 例えば、 動脈內注射、 静脈内注射、 皮下注射などのほか、 鼻腔 内的、 経気管支的、 筋内的、 経皮的、 または経口的に当業者に公知の方法により行 いうる。 投与量は、 患者の体重や年齢、 投与方法などにより変動するが、 当業者で あれば適当な投与量を適宜選択することが可能である。 また、 当該化合物が DNAに よりコードされうるものであれば、 当該 DNAを遺伝子治療用ベクターに組込み、 遺 伝子治療を行うことも考えられる。 投与量、 投与方法は、 患者の体重や年齢、 症状 などにより変動するが、 当業者であれば適宜選択することが可能である。
化合物の投与量は、 症状により差異はあるが、 経口投与の場合、 一般的に成人 ( 体重 60kgとして) においては、 1日あたり約 0. 1から 100mg、 好ましくは約 1. 0か ら 50mg、 より好ましくは約 1. 0から 20mgであると考えられる。
非経口的に投与する場合は、.その 1回の投与量は投与対象、 対象臓器、 症状、 投 与方法によっても異なるが、例えば注射剤の形では通常成人 (体重 60kgとして) に おいては、 通常、 1 日当り約 0. 01から 30mg、 好ましくは約 0. 1から 20mg、 より好 ましくは約 0. 1から 1 Omg程度を静脈注射により投与するのが好都合であると考えら れる。 2006/315992
17
( 3 ) 癌の分子診断方法 ' 本発明の癌の分子診断方法の第 1の態様は、被検組織又は被検細胞における、 IL - 8 、 IL- 8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2 、 CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP- G、 KNTC2、 HCAP- C、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれか一つの遺伝子の発現量 を測定する工程と、 .当該遺伝子の発現量と正常組織又は正常細胞における対応遺伝 '子の発現量とを比較する工程と、 比較した結果、 被検組織又は被検細胞における遺 伝子の発現量が正常組織又は正常細胞における遺伝子の発現量より有意に多いか否 かを判断する工程と、 を含むことを特徴とする。
また、 本発明の癌の分子診断方法の第 2の態様は、 被検組織又は被検細胞におけ る、 IL- 8、 IL-8受容体、 ECT2、 MCM2、 MCM3、 MCM4, MCM5、 MCM6、 MCM7、 CCNE2、 FEN1 、 HMGB2、 CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP_E、 HCAP-G、 KNTC2、 HCAP- C 、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれか一つのタンパ ク質の発現量を測定する工程と、 当該タンパク質の発現量と正常組織又は正常細胞 における対応タンパク質の発現量とを比較する工程と、 比較した結果、 被検組織又 は被検細胞におけるタンパク質の発現量が正常組織又は正常細胞におけるタンパク 質の発現量より有意に多いか否かを判断する工程と、 を含むことを特徴とする。 本発明において、 先ず、 被検組織又は被検細胞における、 遺伝子群に属するいず れか一つの遺伝子又はその転写産物であるタンパク質の発現量を測定する。 遺伝子 又はタンパク質の発現量の測定の方法としては特に制限はないが、 例えば、 遺伝子 の場合であれば、 被検組織又は被検細胞から抽出した cDNAを铸型として RT - PCRを 行う方法、 前記遺伝子がプロットされたマイクロアレイを用いる方法、 ノーザンブ ロットが挙げられる。 また、 タンパク質の場合であれば、 例えば、 被検体より採取 した血液中に含まれる当該タンパク質の濃度を測定する方法が挙げられる。 本発明' に係る遺伝子 ·タンパク質群には分泌タンパ 質である IL - 8、 細胞膜上の受容体タ ンパク質である IL- 8、細胞内シグナル伝達分子である ECT2等が含まれているので、 その分子種に応じて適宜好適な方法を選択すればよい。
ここで、 遺伝子又はタンパク質の 「発現量」 とは、 遺伝子転写産物又はタンパク 質の絶対量又は相対量をいい、 相対量の場合は、 後述する正常組織における発現量 との相対的な比較において当該遺伝子の発現量を決定すればよい。
次に、 上記の方法により測定した遺伝子の発現量と正常組織又は正常細胞におけ る対応遺伝子の発現量とを比較する。
ここで、 「正常組織又は正常細胞」 とは、 被検組織又は被検細胞と比較の対象と なる組織又は細胞であればその由来は特に限定されず、 健常人由来であっても癌患 者由来であってもよい。 また、 癌組織の近辺に存在する正常組織又は正常細胞であ つてもよレヽ。
本工程においては、 被検組織又は細胞に発現する対象遺伝子と正常組織又は細胞 に発現する遺伝子 (対応遺伝子) の発現量を比較するが、 発現量の絶対量を比較し てもよく、 また、 比較による相対値を算出してもよい。 ' 次に、 比較した結果、 被検組織又は被検細胞における遺伝子の発現量が正常組織 又は正常細胞における遺伝子の発現量より有意に多いか否かを判断する。 前記の有 意差の判断手法としては特に制限はないが、 当業者に公知の統計学的手法を用いて 検定すればよい。
被検組織又は被検細胞と、 正常組織又は正常細胞における前記遺伝子の発現量の 比較の結果、 有意差をもって被検組織又は被検細胞において発現が高い又ば低いと 認められた場合には当該被検組織又は被検細胞における Rbの発現に異常が生じてお り、 癌化している可能性があると判断できる。 従って、 Rbとの関連が知られている 癌の診断が可能となる。 - ( 4 ) 腫瘍マーカー
本発明の Rb又は Rbパスウェイ上の分子に異常を有する癌を検出する腫瘍マーカ 一の第 1の態様は、 IL- 8、 IL-8受容体、 ECT2、 MCM2、 MCM3 MCM4、 MCM5、 MCM6、 MCM7 、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP- G、 KNTC2、 HCAP - C、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれ か一つのタンパク質を含むことを特徴とする。.
また、 本発明の Rb又は Rbパスウェイ上の分子に異常を有する癌を検出する腫瘍 マーカーの第 2の態様は、 IL- 8、 IL- 8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6 、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11、 HCAP- E、 HCAP - G 、 KNTC2、 HCAP- C、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいず JP2006/315992
19
れか一つの遺伝子を含むことを特徴とする。
腫瘍マーカーは腫瘍細胞が多量に産生する物質であり、 通常では検出されない物 質で腫瘍関連抗原とも呼ばれる。 さらに、 当該抗原に対する自己抗体も、 同様に抗 原が産生されてはじめて、 生成するので腫瘍マーカーとなり得る。 その他、 腫瘍化 した細胞が多量のホルモン、 酵素、 特定の低分子化合物等を産生することもあり、 これらは、 いずれも癌 · 重瘍の存在を検出するのに有用である。 本発明にかかる遺 伝子群に属する遺伝子は、 Rb遺伝子の発現が抑制された場合に発現が増加する遺伝 子であり、 腫瘍マーカーとして利用可能である。
腫瘍マーカーとしての利用の態様は、 先ず、 被検組織又は被検細胞における、 遺 伝子群に属するいずれか一つの遺伝子又はその転写産物であるタンパク質の発現量 を測定する。 遺伝子又はタンパク質の発現量の測定の方法としては特に制限はない 力 例えば、 遺伝子の場合であれば、 被検組織又は被検細胞から抽出した c DNAを 铸型として RT - PCRを行う方法、前記遺伝子がプロットされたマイクロアレイを用い る方法、 ノーザンプロットが挙げられる。 また、 タンパク質の場合であれば、 例え ば、 被検体より採取した血液中に含まれる当該タンパク質の濃度を測定する方法が 挙げられる。 本発明に係る遺伝子 'タンパク質群には分泌タンパク質である IL - 8、 細胞膜上の受容体タンパク質である IL- 8、 細胞内シグナル伝達分子である ECT2等 が食まれているので、 その分子種に応じて適宜好適な方法を選択すればよい。 ここ で、 当該遺伝子群に属する遺伝子 ·タンパク質のいずれか 1種を検出の対象として も良いが、 2種以上を検出対象としてもよい。 2種以上の分子を検出対象とするこ とにより、 より正確な診断が可能となる。
次に、 上記の方法により測定した遺伝子の発現量と正常組織又は正常細胞におけ る対応遺伝子の発現量とを比較する。 ここで、 「正常組織又は正常細胞」 とは、 被 検組織又は被検細胞と比較の対象となる組織又は細胞であればその由来は特に限定 されない。 ·
また、 被検組織又は細胞に発現する対象遺伝子と正常糸且織又は細胞に発現する遺 伝子 (対応遺伝子) の発現量を比較する際、 発現量の絶対量を比較してもよく、 ま た、 比較による相対値を算出してもよレ、。
次に、 比較した結果、 被検組織又は被検細胞における遺伝子の発現量が正常組織 JP2006/315992
20
又は正常細胞における遺伝子の発現量より有意に多いか否かを判断する。 前記の有 意差の判断手法としては特に制限はないが、 当業者に公知の統計学的手法を用いて 検定すればよい。
被検組織又は被検細胞と、 正常組織又は正常細胞における前記遺伝子の発現量の 比較の結果、 有意差をもって被検組織又は被検細胞において発現が高い又は低いと 認められた場合には当該被検組織又は被検細胞における Rbの発現に異常が生じてお り、 癌化している可能性があると判断できる。 従って、 Rbとの関連が知られている 癌の診断が可能となる。
なお、 被検組織又は被検細胞における遺伝子の発現量が顕著に多い場合や、 正常 組織における当該遺伝子の発現量が既知である場合には、 腫瘍マーカーとしての使 用の度に正常 a織又は正常細胞での発現量との比較を行う必要はなく、 被検組織又 は被検細胞における発現量のみを測定して腫瘍の判定を行うこともできる。
本発明の腫瘍マーカーの検出対象となる腫瘍としては、 Rb又は Rbパスウェイ.上 の分子が原因となって生じる B重瘍であれば特に限定されないが、 具体的には、 例え ば、 網膜芽細胞腫、 ピネロ一マ又は骨原性肉腫が挙げられる。 ,
( 5 ) 抗癌剤の標的遺伝子の検出方法
本発明の検出方法は、 Rb発現細胞を用いて RNA干渉により該 Rbの発現が抑制さ れた. Rb発現抑制細胞を調製する工程と、当該細胞において所望の遺.伝子の発現量を 測定する工程と、当該発現量と Rb発現細胞における該遺伝子の発現量を比較するェ 程と、 を含むことを特徴とする。
「RNA干渉」 とは、 細胞に導入された二本鎖 RNA力 それと同じ配列を持つ遺伝 子の発現を抑制し、 当該遺伝子にコードされているタンパク質の合成を抑制する現 象をいう。 本発明の検出方法においては、 先ず、 Rbを標的とする siRNAsを用いて RNA干渉を生じさせ、 Rbの発現を抑制した細胞を調製する。 調製の方法としては特 に制限はなぐ、当業者に公知の方法によって実施すればょレ、。ここで、使用する siRNAs としては、 Rbの発現を抑制可能な配列であればその配列は特に限定されないが、 Rb 特異的な配列であることが好ましい。 また、塩基長が 21〜27塩基であることが好ま しく、 21〜23塩基であることがより好ましい。
また、 siRNAsの導入の効果は数日〜 1週間程度であることが知られているが、 本 発明者らは特定の発現べクターを使用して siRNAsを細胞内へ導入することにより恒 常的に Rbの発現を抑制することに成功している。本発明の検出方法においては、 RNA 干渉により Rbの発現が抑制されていれば siRNAsの導入方法は特に限定されないが、 恒常的に Rbの発現が抑制されるベクターを用いた遺伝子導入によることが好ましい 。ここで、用いるベクターとしては、例えば、 pSuperior- puro、 pENTR/U6、 pENTR/Hl/TO が挙げられる。 . ·
こうして調製された Rb発現抑制細胞は、 癌抑制遺伝子である Rbの発現及び機能 が抑制されている。
次に、 Rb発現抑制細胞と Rb発現細胞とにおける所望の遺伝子の発現量を測定す る。 「所望の遺伝子」 とは、 抗癌剤の標的とする候補遺伝子をいうが、 本工程にお いては、 特定の候捕遺伝子を逐次選択してもよく、 また、 候補遺伝子をプロットし た DNAチップを用レ、て網羅的に検討してもよレ、。
また、 発現量の測定の方法としては特に制限はないが、 具体的には、 ^!lえば、 DNA チップ、 ノーザンプロッティング又は PCRが挙げられる。
次に、 前工程で測定した Rb発現抑制細胞と Rb発現細胞における遺伝子の発現量 を比較する。 比較した結果、 両細胞間で発現量が相違している遺伝子は生体内で Rb の発 ξ¾量又は活性に影響を受けている分子、 すなわち、 Rbを介した情報伝達経路上 の分子である。 かかる分子 (遺伝子、 タンパク質) は細胞の癌化、 すなわち細胞増 殖や細胞周期に密接に関与する分子であり、 当該分子の機能を抑制又は増強するこ とにより、 癌化を抑制することが可能となる可能性がある。 すなわち、 このような 分子を抗癌剤の標的とすることにより、 Kb又は Rbパスウェイ上の分子の異常によ つて生じた癌 ·腫瘍を抑える治療剤を開発することが可能となる。
( 6 ) Rb発現抑制細胞を用いた化合物の評価方法
本発明の Rb発現抑制細胞を用いた化合物の評価方法の第 1の態様は、 Rb発現細 胞を用いて RNA干渉により該 Rbの発現が抑制された Rb発現抑制細胞を調製するェ 程と、 Rb発現抑制細胞及び Rb発現細胞に被検化合物を接触させる工程と、 接触に より生じた細胞内情報伝達物質の活性を測定する工程と、 Rb発現抑制細胞及び Rb 発現細胞における該活性を比較する工程と、 を含むことを特徴とする。
また、 本発明の Rb発現抑制細胞を用いた化合物の評価方法の第 2の態様は、 Rb 6 315992
22
発現細胞を用いて RNA干渉により該 Rbの発現が抑制された Rb発現抑制細胞を調製 する工程と、 Rb発現抑制細胞及ぴ Rb発現細胞に被検化合物を接触させる工程と、 接触により生じた細胞内情報伝達物質の発現レベルを測定する工程と、 Rb発現抑制 細胞及ぴ Rb発現細胞における該発現レベルを比較する工程と、を含むことを特徴と · する。
本発明の Rb発現抑制細胞を用いた化合物の評価方法においては、 先ず、 Rb発現 細胞を用いて RNA干渉により該 Rbの発現が抑制された Rb発現抑制細胞を調製する。 調製の方法としては特に制限はなく、当業者に公知の方法によって実施すればよい。 ここで、 使用する siRNAs としては、 Rbの発現を抑制可能な配列であればその配列 は特に限定されないが、 Rb特異的な配列であることが好ましい。 また、塩基長が 21 〜27塩基であることが好ましく、 21〜23塩基であることがより好ましい。
また、 siRNAsの導入の効果は数日〜 1週間程度であることが知られているが、 本 発明者らは特定の発現ベクターを使用して siRNAsを細胞内へ導入することにより,恒 常的に Rbの発現を抑制することに成功している。本発明の検出方法においては、 RNA 干渉により Rbの発現が抑制されていれば siRNAsの導入方法は特に限定されないが、 恒常的に Rbの発現が抑制されるベクターを用いた遺伝子導入によることが好ましい 。ここで、用いるベクターとしては、例えば、 pSuperior - puro、 pENTR/U6、 pENTR/Hl/TO が げられる。
こうして調製された Rb発現抑制細胞は、 癌抑制遺伝子である Rbの発現及び機能 が抑制されている。
次に、 Rb発現抑制細胞及び Rb発現細胞に被検化合物を接触させる。 かかる接触 の方法としては特に制限はなく、 例えば、 細胞の培養液又は細胞抽出液に被検試料 を添加し、 混合することにより実施できる。
次に、本発明の Rb発現抑制細胞を用いた化合物の評価方法の第 1の態様において は、 接触により生じた細胞内情報伝達物質の活性を測定する。 細胞に被検化合物を 接触させることにより細胞内にシグナルが入る。 本工程においては、 Rb発現抑制細 胞及ぴ Rb発現細胞それぞれについて、 細胞内情報伝達物質の活性を測定し、 Rbの 発現の有無又は強弱によって活性に相違があるかどうかを検討する。 活性測定の方 法は、測定の対象となる物質に応じて適宜好適な方法を選択すればよいが、例えば、 測定の対象がリン酸化酵素であれば、 キナーゼァッセィを行うことにより活性を測 定することができる。
また、本発明の Rb発現抑制細胞を用いた化合物の評価方法の第 2の態様において は、 接触により生じた細胞内情報伝達物質の発現レベルを測定する。 すなわち、 Rb 発現抑制細胞及ぴ Rb発現細胞それぞれについて、細胞内情報伝達物質の発現レベル を測定する。 発現レベルの測定の方法としても特に制限はないが、 例えば、 ノーザ ンブロッテイング、 PCR又は DNAチップにより測定することができる。
次に、本発明の Rb発現抑制細胞を用いた化合物の評価方法の第 1の態様において は、 Rb発現抑制細胞及び Rb発現細胞における細胞內情報伝達物質の活性を比較す る。 活性を比較した結果、 Rb発現抑制細胞における活性と Rb発現細胞における活 性が近似する場合には、 当該被検化合物は細胞の癌化を抑制し、正常な Rbを介した 情報伝達に寄与する化合物であると判断できる。
(実施例) . - 以下、 実施例に基づいて本発明をより具体的に説明するが、 本発明は、 以下の実 施例に限定されるものではない。
(Rbノックダゥン細胞の樹立と細胞の評価)
Rb が regulateする新たなパスウェイを明らかにするために、 同一の genetic backgroundを持ちながら Rb遺伝子の statusのみが異なる細胞のペアを樹立するこ とを試みた。 具体的には、 下記のとおり、 野生型 Rb を持つ U - 2 OS 細胞に pSuperior-puro. shRbベクターを導入することで、 U- 2 OS shRb細胞を樹立した。
(Rbノックダウン用 stiRNAベクタ一の構築)
Rb ノ ッ ク ダ ウ ン用 shRNA ベ ク タ ー は下記オ リ ゴ D N A 、 5 -GCAGTTGACCTAGATGAGATTCAAGAGATCTCATCTAGGTCAACTGC-3、 (配列番号 2 7 ) を pSuperior - puro. (OligoEngine)に揷入することにより調製した。
(Rbノックダゥン細胞の作成)
野生型 Rbを持つ U- 2 0S細胞に pSuperior- puro. shRbベクターを Funege 6を用い て導入した。 導入した細胞を 24時間培養後、 細胞数が約 50分の 1になるように培 養し、 1. 0 μ g/mlピュー口マイシン (puromycin) 存在下で約 2週間培養した。 コ口 ユーを形成した細胞を、 シリンダークロー ング法により単離した。 樹立した Rb ノックダウン細胞を以下 U - 2 OS shRbと記す。
(mRNAの発現レベルでの Rb'ノックダウンの確認)
U-2 OS細胞及び U - 2 OS shRb細胞から RNeasy kit (Qiagen社)を用いて RNAを抽 出し 7こ。 抽出した RNAを用いて Taqman Reverse Transcription Reagents (Applied Biosysteras社)を用レ、て cDNAを調製した。調製した cDNAを錶型にして Taq- man RT-PCR を行うことで、 それぞれの細胞中の Rb mRNA量を定量した。
図 1に示すとおり、 ベクターのみを導入したコントロールと比較して、 樹立した 細胞における Rbの発現は 90%以上抑制されていることが確認できた。
(E2Fレポーターァッセィを利用した Rbノックダウンの確認)
U-2 0S細胞と U-2 OS shRb細胞に、 Rb/E2F経路により'転写制御を受けるレポ タ 一プラスミ ドと pl6発現プラスミドを Funege 6を用いて導入し、 48時間後にレポ 一ター遺伝子である SEAPの活性を Reporter Assay Kit - SEAP- (東洋紡社)を用いて 測定した。 すなわち、 Rb+の細胞ではレポーターの活性が抑制されるが、 Rb-の細胞 ではレポーターの活性が抑制されないことを利用して Rbのノックダウンを確認した 。 レポーター活性は Lucif eraseにより補正した。
図 2に示すとおり、 Rb +であるコント口ール細胞ではレポーター活性が抑制され たが、 U - 2 OS shRbではレポーター活性が抑制されなかった。 この結果は、 Rb-のコ ントロールとして使用した、 Saos- 2細胞と同程度であった。
(Rbノックダウン細胞に対する DNA damaging agen ドキソルビシン(doxorubicin ) の効果)
Rbの機能としては細胞周期の進行を正しく制御していることが知られている。 そ こで、 Rbノックダウンによる細胞周期への影響を調べた。
先ず、 U- 2 0S細胞及び U- 2 OS shRb細胞を 10nM ドキソルビシンで処理した。 24 時間及ぴ 48時間後に細胞を回収し、 細胞の DNAを Cycle TESTTM PLUS DNA Reagent Kit (Becton Dickinson社)により染色し、 フローサイトメ トリーを用いて解析した 図 3〜図 8に示すとおり、処理後 24時間では両細胞共に G2/M期に arrestされた 。 し力 し、 処理後 48時間では U - 2 0Sは G2/M期に arrestされているのに対して、 U - 2 OS shRbは G2/M arrestが維持されていなかった。 このことから、 U - 2 OS shRb 5992
25
細胞は Rbの機能の不活ィヒにより、 G2/M期進行の制御機能が異常になっていると考 えられた。
なお、図 3はベクターのみを導入し DMS0処理した細胞、図 4はベクターのみを導 入し ΙΟηΜドキソルビシンで 24時間処理した細胞、図 5はベクターのみを導入し ΙΟηΜ ドキソノレビシンで 48時間処理した細胞、 図 6は Rb shRNAを導入し DMS0で処理した 細胞、 図 7は Rb shRNAを導入し ΙΟηΜドキソノレビシンで 24時間処理した細胞、 図 8 は Rb shRNAを導入し ΙΟηΜドキソルビシンで 48時間処理した細胞を用いた実験結果 を示す。 また、 各条件下において、 各細胞がどの細胞周期に維持されているかを表
2に示す。
(表 2 ) '
Figure imgf000026_0001
(Rb knockdown細胞の発現プロフアイルの解析)
Rb異常による癌化のメカニズムを解析するため、 マイクロアレイにより U- 2 0S 細胞及び U- 2 OS shRb細胞の発現プロフアイルを比較した。
具体的には、対数増殖期の U - 2 0S細胞と U - 2 OS shRb細胞から RNeasy kit (Qiagen 社)を用いて RNAを抽出した。 また、 両細胞を 10 nM ドキソルビシンにより 24時間 処理した後の RNA も同様に抽出した。 抽出した RNA を逆転写した後、 Microarray Analysis Suite (Af.fymetrix社)を用いて解析した。
その結果、 血管新生関連遺伝子である(インターロイキン 8 : IL8)の発現が U- 2 0S shRb細胞において 7倍以上上昇していた。
また、 樹立した細胞の解析から、 U- 2 OS shRb細胞は G2/M期進行の制御機能が異 常になつていた。 そこで、 Rbによる G2/M期の進行のメカニズムを明らかにするこ とを試みた。 すなわち、 10nMのドキソルビシンで 24時間処理したときの両細胞の 発現プロファイルをマイクロアレイにより比較した。
その結果、 図 1 1に示すように、 U- 20S細胞では発現が減少するが、 U- 2 OS shRb では発現が減少しない遺伝子群が見つかった。 図 1 2に示すように、 これらの遺伝 子は G1/Sの進行を制御する遺伝子群と G2/Mの進行を制御する遺伝子群より構成さ れていた。 この中には Rbによる制御が報告されていない、 microtubule attachment に関連する KIF11、 chromosome condensationに fc)連する HCAP - G、 spindle checkpoint に関連する CDCA8、 cytokinesisiに関連する ECT2、 KIF20Aが含まれていた。 このこ とから、 Rbはこれらの分子の発現を調節することで、 M期の進行を制御しているこ とが明らかとなった。 また、 ECT2 は癌遺伝子であることも知られているため、 Rb 異常による癌化の新たなメカニズムが明らかとなった。 ' ■ (発現変化の見られた遺伝子 (IL8) の解析)
1 . mRNAレベルでの IL8の定量
U - 2 0S細胞と U - 2 OS shRb細胞から RNeasy kitを用いて RNAを抽出した。 抽出 した RNAを用レヽて Taqman Reverse Transcription Reagents (Applied Biosystems 社)を用いて cDNAを調製した。 調製した cDNAを铸型にして Taq-man RT-PCRを行う ことで、 それぞれの細胞中の IL8 mRNA量を定量した。
2 . タンパク質レベルでの IL8の定量 .
U - 2 0S細胞と U-2 OS shRb細胞を同じ細胞数、 播種した。 播種後 72時間後に培 養上清を回収し、 Human IL-8 Immunoassay kit (Quantkine社)によりそれぞれの細 胞中の IL8タンパク量を測定した。
図 9に Taq- man PCRによつて得られた結果を、 図 1 0に ELISAによつて得られた 結果を示す。また、コントロールとして、 IL8の発現が高いことが知られている DU-145 と IL8の発現が低いことが知られている LnCapを使用した。
その結果、 IL8の発現は生理的に高いレベルにまで上昇していた。 従来、 Rbの機 能は細胞内での増殖制御であると考えられていた。 今回の結果から、 Rbは血管新生 関連遺伝子の発現を介して細胞外環境に対して影響を与え、 腫瘍の形成を促進して いることが分かった。
(発現変化の見られた遺伝子 (ECT2) の解析)
本解析で示された遺伝子が Rb/E2Fにより regulationされているかを ECT2に注目 して検証した。
1 . ECT2プロモーターを挿入したレポータープラスミドの構築
U-2 OS細胞から抽出したゲノム DNAを錄型にして、 ECT2遺伝子の転写開始点から 1000 bpsを PCRにより增幅した。増幅した DNAを pGL3ベクターに挿入することで、 ECT2プロモーターを挿入したレポータープラスミ ドを構築した。 以下、 構築したプ ラスミ ドを pGL3 ECT2と記す。
2 . ECT2プロモーターの Rb/E2F regulationの証明
U-2 OS細胞に pGL3 ECT2と E2F1発現プラスミドを Funege 6を用いて導入した。 24時間後にレポーター遺伝子であるルシフェラーゼの活性を Steady- Glo Lucif erase Assay System (Promega社)を用いて測定した。レポ ^"ター活性は Renilla luciferase により補正した。
3 . ECT2プロモーター領域への E2F結合の証明
Chromatin Immunoprecipitation (ChIP) Assay Kit (Upstate biotechnology社) を用いて行った。 U- 2 OS細胞をホルムアルデヒドで処理することにより、 転写因子 とプロモーターの結合をクロスリンクした。 その後、 細胞を溶解し、 クロスリンク されたクロマチンを超音波処理により約 500 bpの DNAサイズに裁断した。 このよう にして調製した可溶性クロマチンを、 E2F1及び E2F4抗体で免疫沈降した。 免疫沈 降したクロマチン分画中に、 ECT2 promoterが存在しているかを PCR法にて定量し た。 PCRには下記のプライマーを使用した。 ―
ポジティブコントローノレ
CCNA2. promoter Fw. : 5' - CGCTTTCATTGGTCCATTTC - 3 ' (配列番号 2 8 )
CCNA2 promoter Rev. : 5' - CCGGCCAAAGAATAGTCGTA- 3 ' (配列番号 2 9 )
ネガティブコントローノレ
CCNA2 negative Fw. : 5' -AATCTGTAACAATGAAAGACTGCC-3 ' (配列番号 3 0 )
CCNA2 negative Rev. : 5, - GATACCATAATTTGTACTTGGCCA- 3, (配列番号 3 1 )
ECT2プロモーター
ECT2 promoter Fw. : 5, - GTCCAGAGTTATATTGGCAC 3, (配列番号 3 2 )
ECT2 promoter Rev. : 5, - AACAGCAACAATGAATTTCTC- 3 ' (配列番号 3 3 ) 。
図 1 3に、 ECT2プロモーターのレポーターアツセィの結果を示す。 ポジティブコ ントロールとして使用した Rb/E2F regulationが知られている CDC6プロモーターと 同様に、 ECT2プロモーターは E2F1によって転写活性が亢進した。 この結果が直接 的なものであることを示すため、 ChIP assayにより ECT2プロモーターと E2Fとの 結合を調べた。.図 1 4に示すとおり、 E2Fとクロスリンクしたプロモーターには ECT2 · のプロモーターが含まれていることが確認できた。
(ECT2の細胞周期の進行に与える効果)
以上の結果より、Rbは ECT2等の G2/M期関連遺伝子の発現を抑制することで、 G2/M 期の進行を阻害していると考えられた。 これを証明するために、 U - 2 OS shRb細胞 をドキソルビシン処理すると同時に、 siRNAにより ECT2を阻害し、細胞周期を Flow cytometryで調べた。 具体的には、 U_2 OS shRb細胞に ECT2に対する siRNAをトラ ンスフエクシヨンした。 その 24時間後に 10nMドキソルビシンを添加し、 添加後 24 時間及び 48時間の細胞を回収した。 細胞の DNAを Cycle TESTTM PLUS DNA Reagent Kit (Becton Dickinson cat# ; 340242)により染色し、 フローサイトメトリーを用い て角军析した。
図 1 5に示すとおり、 コントロールである Luc siRNAをトランスフエクシヨンし た細胞では 24時間と比べて 48時間において G2/M期が減少するのに対して、 ECT2 阻害下では 48時間でも G2/M期の減少がなく G2/M期の進行が阻害されていることが 分かった。 産業上の利用可能性
以上説明したように、 本発明の化合物の評価方法等によれば、 Rbパスウェイ上に 存在する分子であって、 抗癌剤の創薬標的又は腫瘍マーカーとして使用しうる分子 及び当該分子を使用した化合物 (抗癌剤候補化合物) の評価を可能とする方法を提 供することが可能となり、 Rb又は Rbパスウェイ上に存在する分子の異常によって 生じる腫瘍や癌の治療剤や診断薬を提供することが可能となる。

Claims

請 求 の 範 囲
1 . 癌の治療に有効な化合物の評価方法であって、
IL-8、 IL-8受容体、 ECT2、 CCNE2、 FEN1、 KIF20A、 CDC25C、 KIF11、 BUB1、 5 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれか一つの遺伝子又 は該遺伝子と機能的に同等な遺伝子を導入し、 該遺伝子の転写産物であるタンパク 質を発現する細胞を調製する工程と、
• 該細胞に被検化合物を接触させる工程と、
該タンパク質に対する該被検化合物の特異的結合を検出する工程と、 を含むこと 10 を特徴とする化合物の評価方法。
2 . 癌の治療に有効な化合物の評価方法であって、
IL-8、 IL-8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7.、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A、 CDC25C, CDCA8、 KIFll、 HCAP-E, HCAP-G, KNTC2、 HCAP-C、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群 15 より選択されるいずれか一つの遺伝子又は該遺伝子と機能的に同等な遺伝子を導入 し、 該遺伝子の転写産物であるタンパク質を発現する細胞を調製する工程と、 該細胞に被検化合物を接触させる工程と、
該接触により生じた細胞内情報伝達物質の活性を測定する工程と、
該活性と被検化合物を接触させなレ、場合の細胞内情報伝達物質の活性とを比較し、 0 被検化合物の接触によって生じる細胞内情報伝達物質の活性の変化を検出する工程 と、 を含むことを特徴とする化合物の評価方法。
3 . 癌の治療に有効な化合物の評価方法であって、
IL-8、 IL-8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 ' CCNE2、 FEN1、 HMGB2、 CENPE, KIF20A、 CDC25C, CDCA8、 KIF11、 HCAP'E、 5 HCAP-G, KNTC2、 HCAP-C, BUB1、 NEK2、 CCNA2及び KIF18Aからなる群 より選択されるレ、ずれか一つの遺伝子又は該遺伝子と機能的に同等な遺伝子を導入 し、 該遺伝子の転写産物であるタンパク質を発現する細胞を調製する工程と、 該細胞に被検化合物を接触させる工程と、' 該タンパク質を介した細胞内情報伝達物質の発現レベルを測定する工程と、 該発現レベルと被検化合物を接触させなレ、場合の細胞内情報伝達物質の発現レべ ルとを比較し、 被検化合物の接触によって生じる細胞内情報伝達物質の発現レベル の変化を検出する工程と、 を含むことを特徴とする化合物の評価方法。
4 . 前記遺伝子が IL-8、 IL-8受容体又は ECT2である、 請求項 1〜 3のいずれ か一項に記載の化合物の評価方法。
5 . 癌の治療に有効な化合物の評価方法であって、
被検化合物を、 IL-8、 IL-8受容体、 ECT2、 CCNE2、 FEN1、 CENPE、 KIF20A, CDC25C, CDCA8、 KIF11、 KNTC2、 BUB1、 NEK2、 CCNA2及ぴ KIF18Aか らなる群より選択されるいずれか一つのタンパク質又は該タンパク質と機能的に同 等なタンパク質に接触させる工程と、
接触による該タンパク質の活性の変化を検出する工程と、 を含むことを特徴とす る化合物の評価方法。
6 . 前記タンパク質が IL-8、 IL-8受容体又は ECT2である、 請求項 5に記載の 化合物の評価方法。
7 . 請求項 1〜6のいずれか一項に記載の化合物の評価方法により単離されたこ とを特徴とする化合物。
8 . 被検組織又は被検細胞における、 IL-8、IL-8受容体、 ECT2、MCM2、MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A, CDC25C, CDCA8, KIF11、 HCAP-E, HCAP-G, KNTC2、 HCAP-C, BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれか一つの遺伝子又 は薛遺伝子と機能的に同等な遺伝子の発現量を測定する工程と、
該遺伝子の発現量と正常組織又は正常細胞における対応遺伝子の発現量とを比較 する工程と、
比較した結果、 被検組織又は被検細胞における遺伝子の発現量が正常組織又は正 常細胞における遺伝子の発現量より有意に多いか否かを判断する工程と、 を含む癌 の分子診断方法。
9 . 前記遺伝子が、 IL-8、 IL-8受容体又は ECT2である、 請求項8に記載の癌の 分子診断方法。
1 0 . 被検組織又は被検細胞における、 IL-8、IL-8受容体、 ECT2、MCM2、MCM3、. MCM4、 MCM5、 MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A、 CDC25C, CDCA8、 KIF11, HCAP-E、 HCAP-G, KNTC2、 HCAP-C、 BUB1、 NEK2、 CCNA2及び KIF18Aからなる群より選択されるいずれか一つのタンパク
5 質又は該タンパク質と機能的に同等なタンパク質の発現量を測定する工程と、
該タンパク質の発現量と正常組織又は正常細胞における対応タンパク質の発現量 とを比較する工程と、
比較した結果、 被検組織又は被検細胞におけるタンパク質の発現量が正常組織又 • は正常細胞におけるタンパク質の発現量より有意に多いか否かを判断する工程と、 10 を含む癌の分子診断方法。 '
1 1 . 前記タンパク質が、 IL-8、 IL-8受容体又は ECT2タンパク質である、 請求 項 1 0に記載の癌の分子診断方法。
1 2 . 前記癌が Rb又は Rbパスウェイ上の分子の異常に起因する癌である、請求 項 8〜 1 1のいずれか一項に記載の癌の分子診断方法。
15 1 3 . IL-8、 IL-8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2, FEN1、 HMGB2, CENPE、 KIF20A、 CDC25C、 CDCA8、 KIF11, HCAP-E、 HCAP-G, KNTC2, HCAP'C、 BUB1、 NEK2、 CCNA2及び KIF18A からなる群より選択されるいずれか一つのタンパク質又は該タンパク質と機能的に 同等なタンパク質である、 Rb又は Rbパスウェイ上の分子に異常を有する癌を検出
20 する腫瘍マーカー。
1 4 . IL-8、 IL-8受容体、 ECT2、 MCM2、 MCM3、 MCM4、 MCM5、 MCM6、 MCM7、 CCNE2、 FEN1、 HMGB2、 CENPE、 KIF20A、 CDC25C、 CDCA8, KIF11、 HCAP-E, HCAP-G, KNTC2、 HCAP-C, BUB1、 NEK2、 CCNA2及び KIF18A からなる群より選択されるレ、ずれか一つの遺伝子又は該遺伝子と機能的に同等な遺
25 伝子である、 .Rb又は Rbパスゥヱイ上の分子に異常を有する癌を検出する腫瘍マー カー。
1 5 . Rb発現細胞を用いて RNA干渉により該 Rbの発現が抑制された Rb発現 抑制細胞を調製する工程と、
該細胞において所望の遺伝子の発現量を測定する工程と、 該発現量と Rb発現細胞における該遺伝子の発現量を比較する工程と、 を含む抗 癌剤の標的遺伝子の検出方法。
1 6 . 前記 Rb発現細胞が、 U-2 OS、 HCT116又は HepG2である、 請求項 1 5 に記載の標的遺伝子の検出方法。
5 1 7 . 前記 RNA干渉に用いる siRNAsが配列番号 2 7に記載の配列である、 請 求項 1 5又は 1 6に記載の標的遺伝子の検出方法。
1 8 . Rb発現細胞を用いて: bの発現が抑制された Rb発現抑制細胞を調製する 工程と、
• Rb発現抑制細胞及び Rb発現細胞に被検化合物を接触させる工程と、
10 接触により生じた細胞内情報伝達物質の活性を測定する工程と、
Rb発現抑制細胞及び Rb発現細胞における該活性を比較する工程と、 を含む、化 合物の評価方法。
1 9 . Rb発現細胞を用いそ Rbの発現が抑制された Rb発現抑制細胞を調製する 工程と、
15 . Rb発現抑制細胞及ぴ Rb発現細胞に被検化合物を接触させる工程と、
接触により生じた細胞内情報伝達物質の発現レベルを測定する工程と、
Rb発現抑制細胞及び Rb発現細胞における該発現レベルを比較する工程と、を含 む、 化合物の評価方法。
2 0 . Rb発現抑制細胞において Rbの発現を抑制する手段が RNA干渉によるも 20 のである、 請求項 1 8又は 1 9に記載の化合物の評価方法。
2 1 . 前記 Rb発現細胞が、 U-2 OS、 HCT116又は HepG2である、 請求項 1 8 〜2 0のいずれか一項に記載の標的遺伝子の検出方法。
2 2 . 前記 RNA干渉に用レ、る siRNAsが配列番号 2 7に記載の配列である、 請 求項 1 8〜 2 1のいずれか一項に記載の標的遺伝子の検出方法。
PCT/JP2006/315992 2005-08-11 2006-08-08 Rbパスウェイ上の分子を指標とする化合物の評価方法及び分子診断方法 WO2007018309A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007529644A JPWO2007018309A1 (ja) 2005-08-11 2006-08-08 Rbパスウェイ上の分子を指標とする化合物の評価方法及び分子診断方法
EP06782726A EP1916301A4 (en) 2005-08-11 2006-08-08 METHOD OF EVALUATING A COMPOUND USING A MOLECULE ON THE RB WAY AS INDEX AND A MOLECULAR DIAGNOSTIC PROCESS
CA002618657A CA2618657A1 (en) 2005-08-11 2006-08-08 Method for evaluating compound using molecule on the rb pathway as index and molecular diagnostic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-232971 2005-08-11
JP2005232971 2005-08-11

Publications (1)

Publication Number Publication Date
WO2007018309A1 true WO2007018309A1 (ja) 2007-02-15

Family

ID=37727478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315992 WO2007018309A1 (ja) 2005-08-11 2006-08-08 Rbパスウェイ上の分子を指標とする化合物の評価方法及び分子診断方法

Country Status (4)

Country Link
EP (1) EP1916301A4 (ja)
JP (1) JPWO2007018309A1 (ja)
CA (1) CA2618657A1 (ja)
WO (1) WO2007018309A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113495A1 (ja) * 2008-03-12 2009-09-17 財団法人ヒューマンサイエンス振興財団 肝癌特異的発現遺伝子による肝癌の検査方法並びに肝癌の治療及び予防剤
JP2012533071A (ja) * 2009-07-16 2012-12-20 エフ.ホフマン−ラ ロシュ アーゲー 癌マーカーとしてのフラップエンドヌクレアーゼ−1
RU2551238C2 (ru) * 2013-08-02 2015-05-20 Федеральное государственное бюджетное образовательное учреждение "Медико-генетический научный центр" Российской академии медицинских наук Способ индукции апоптоза клеток злокачественной опухоли колоректального рака и средство для его осуществления

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151731A1 (en) * 2009-06-26 2010-12-29 University Of Utah Research Foundation Materials and methods for the identification of drug-resistant cancers and treatment of same
WO2012090479A1 (en) * 2010-12-28 2012-07-05 Oncotherapy Science, Inc. Mcm7 as a target gene for cancer therapy and diagnosis
ES2911415T3 (es) 2015-06-08 2022-05-19 Arquer Diagnostics Ltd Métodos y kits
CN107771285A (zh) 2015-06-08 2018-03-06 阿奎尔诊断有限公司 方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045431A1 (fr) * 1997-04-08 1998-10-15 Banyu Pharmaceutical Co., Ltd. Gene associe a la metastase cancereuse
JP2000189171A (ja) * 1998-12-25 2000-07-11 Banyu Pharmaceut Co Ltd 新規なグアノシン三リン酸(gtp)結合タンパク質共役型のレセプタ―タンパク質
JP2001211885A (ja) * 2000-02-02 2001-08-07 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
JP2004518413A (ja) * 2000-10-12 2004-06-24 エクセリクシス・インコーポレイテッド ヒトect2と使用方法
JP2004201674A (ja) * 2002-08-21 2004-07-22 Takeda Chem Ind Ltd 新規タンパク質および癌の予防・治療剤
JP2005095166A (ja) * 2003-08-28 2005-04-14 Sumitomo Pharmaceut Co Ltd 炎症性腸疾患の疾患マーカーおよびその利用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024935A1 (en) * 1996-12-06 1998-06-11 Urocor, Inc. Diagnosis of disease state using mrna profiles
US20030096781A1 (en) * 2001-08-31 2003-05-22 University Of Southern California IL-8 is an autocrine growth factor and a surrogate marker for Kaposi's sarcoma

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045431A1 (fr) * 1997-04-08 1998-10-15 Banyu Pharmaceutical Co., Ltd. Gene associe a la metastase cancereuse
JP2000189171A (ja) * 1998-12-25 2000-07-11 Banyu Pharmaceut Co Ltd 新規なグアノシン三リン酸(gtp)結合タンパク質共役型のレセプタ―タンパク質
JP2001211885A (ja) * 2000-02-02 2001-08-07 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
JP2004518413A (ja) * 2000-10-12 2004-06-24 エクセリクシス・インコーポレイテッド ヒトect2と使用方法
JP2004201674A (ja) * 2002-08-21 2004-07-22 Takeda Chem Ind Ltd 新規タンパク質および癌の予防・治療剤
JP2005095166A (ja) * 2003-08-28 2005-04-14 Sumitomo Pharmaceut Co Ltd 炎症性腸疾患の疾患マーカーおよびその利用

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR, pages: 947 - 962
ARCH. OPHTHAL., vol. 102, 1984, pages 257
BIRTH DEFECTS ORIG. ART. SER, vol. 18, 1982, pages 689
BRUMMELKAMP T.R. ET AL.: "A system for stable expression of short interfering RNAs in mammalian cells", SCIENCE, vol. 296, no. 5567, 2002, pages 550 - 553, XP002225638 *
CYTOKINE EXPERIMENT METHODS, 1997, pages 87 - 93
EGUCHI T. ET AL.: "Rb Knockdown Saibo o Mochiita Shinki Rb regulatory pathway no Kaiseki", NIHON GAN GAKKAI GAKUJUTSU SOKAI KIJI, vol. 64TH, 15 August 2005 (2005-08-15), pages 191 - 192 (PP1-0386), XP003008083 *
GENES & DEVELOPMENT, vol. 11, 1997, pages 1479
NEW ENG. J. MED., vol. 321, 1989, pages 1689
OPHTHALMOLOGICA, vol. 175, 1977, pages 185
See also references of EP1916301A4 *
SEMIZAROV D. ET AL.: "siRNA-mediated gene silencing: a global genome view", NUCLEIC ACIDS RES., vol. 32, no. 13, 2004, pages 3836 - 3845, XP002404760 *
ZHANG J. ET AL.: "Rb regulates proliferation and rod photoreceptor development in the mouse retina", NAT. GENET., vol. 36, no. 4, 2004, pages 351 - 360, XP003008082 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113495A1 (ja) * 2008-03-12 2009-09-17 財団法人ヒューマンサイエンス振興財団 肝癌特異的発現遺伝子による肝癌の検査方法並びに肝癌の治療及び予防剤
JPWO2009113495A1 (ja) * 2008-03-12 2011-07-21 財団法人ヒューマンサイエンス振興財団 肝癌特異的発現遺伝子による肝癌の検査方法並びに肝癌の治療及び予防剤
JP2012533071A (ja) * 2009-07-16 2012-12-20 エフ.ホフマン−ラ ロシュ アーゲー 癌マーカーとしてのフラップエンドヌクレアーゼ−1
RU2551238C2 (ru) * 2013-08-02 2015-05-20 Федеральное государственное бюджетное образовательное учреждение "Медико-генетический научный центр" Российской академии медицинских наук Способ индукции апоптоза клеток злокачественной опухоли колоректального рака и средство для его осуществления
RU2551238C9 (ru) * 2013-08-02 2016-04-10 Федеральное государственное бюджетное учреждение "Медико-генетический научный центр" Российской академии медицинских наук Способ индукции апоптоза клеток злокачественной опухоли колоректального рака и средство для его осуществления

Also Published As

Publication number Publication date
JPWO2007018309A1 (ja) 2009-02-19
CA2618657A1 (en) 2007-02-15
EP1916301A1 (en) 2008-04-30
EP1916301A4 (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP6446381B2 (ja) c−MAFを用いた前立腺がん転移の診断、予後診断および処置のための方法
CN108192972B (zh) 用于乳腺癌转移的诊断、预后和治疗的方法
US10188630B2 (en) Methods for identifying and using inhibitors of casein kinase 1 epsilon isoform for inhibiting the growth and/or proliferation of MYC-driven tumor cells
WO2007018309A1 (ja) Rbパスウェイ上の分子を指標とする化合物の評価方法及び分子診断方法
JP2016518815A (ja) 転移性がんの診断、予後、および処置の方法
Chen et al. Modulation of IFN-γ receptor 1 expression by AP-2α influences IFN-γ sensitivity of cancer cells
TWI816712B (zh) 癌促進因子表現抑制劑的有效成分之篩選用試藥及其篩選方法、癌之預防或治療劑的有效成分之篩選用試藥及其篩選方法、癌促進因子表現抑制劑及癌之預防或治療劑
JP2023504786A (ja) 抗がん効果増進のためのERRγ抑制剤を有効成分として含む組成物の用途
EP2436694B1 (en) Novel gpcr protein and use of same
US11510911B2 (en) Method for prediction of susceptibility to sorafenib treatment by using SULF2 gene, and composition for treatment of cancer comprising SULF2 inhibitor
JPWO2006013862A1 (ja) Cdk4阻害剤に対する薬剤感受性の予測方法
JP5395246B2 (ja) 乳癌および卵巣癌の治療薬、検出方法ならびに検出用キット
EP3042955A1 (en) Use of rhoa in cancer diagnosis and inhibitor screening
ES2379918B1 (es) Método para el diagnóstico, pronóstico y tratamiento de la metástasis de cáncer de mama.
JP2009502113A (ja) 乳癌を治療するための組成物および方法
JPWO2008026584A1 (ja) PKC−iotaを用いた化合物の評価方法
WO2020174478A1 (en) Diagnosis and treatment of medulloblastoma
US20230288399A1 (en) Method for screening colorectal cancer metastasis inhibitor
KR102458499B1 (ko) 기미 예방 또는 치료용 조성물 및 그의 스크리닝 방법
WO2012034076A2 (en) Etv1 as a diagnostic, prognostic and therapeutic target for gastrointestinal stromal tumors
KR101996141B1 (ko) Bcar4 엑손 4 또는 이를 포함하는 융합 유전자를 이용하는 종양 진단용 조성물
KR101921525B1 (ko) 전립선암의 호르몬 불응성 출현을 예측하는 진단 바이오마커
TWI546075B (zh) 以微小去氧核醣核酸為基礎用於抗大腸直腸癌及大腸直腸癌預後的方法
JP2012080777A (ja) ネフローゼ症候群の検査方法、並びにネフローゼ症候群の予防又は治療薬およびそのスクリーニング方法
WO2006132401A1 (ja) Rsk1を用いた化合物の評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529644

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2618657

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006782726

Country of ref document: EP