WO2007018078A1 - プレートレット型カーボンナノファイバの選択的合成法 - Google Patents

プレートレット型カーボンナノファイバの選択的合成法 Download PDF

Info

Publication number
WO2007018078A1
WO2007018078A1 PCT/JP2006/315225 JP2006315225W WO2007018078A1 WO 2007018078 A1 WO2007018078 A1 WO 2007018078A1 JP 2006315225 W JP2006315225 W JP 2006315225W WO 2007018078 A1 WO2007018078 A1 WO 2007018078A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
catalyst
platelet
gas
layer
Prior art date
Application number
PCT/JP2006/315225
Other languages
English (en)
French (fr)
Inventor
Toshiaki Nishii
Satoshi Yamasaki
Naoto Masuyama
Original Assignee
Electric Power Development Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co., Ltd. filed Critical Electric Power Development Co., Ltd.
Priority to CN2006800277963A priority Critical patent/CN101233079B/zh
Priority to JP2007529496A priority patent/JP4762990B2/ja
Publication of WO2007018078A1 publication Critical patent/WO2007018078A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for selectively synthesizing high-purity platelet-type carbon nanofibers by vapor phase growth.
  • Carbon nanofibers are carbon-based materials that are expected to be used in various fields, and their crystal structures mainly include three types: platelet type, herringbone type, and tubular type. Be beaten!
  • the electrical properties, optical properties, and mechanical properties of carbon nanofibers vary depending on the structure. Depending on the application of carbon nanofiber, it may be necessary to selectively synthesize one of the crystal structures. . In particular, in the platelet type, since the end of the planar crystal that is the site is most exposed on the surface of the carbon nanofiber, the electrode of the battery or the electron emission source having the function of transferring electrons is used. Therefore, it is promising as a material for adsorbents such as gas molecules and fine metal particles, and the development of an industrial selective synthesis method is strongly desired.
  • CVD method a method according to a vapor phase growth method widely used for synthesis of carbon nanotubes or the like is frequently used.
  • Patent Document 1 JP 2002-83604 A
  • Patent Document 2 JP-A-2003-200052
  • Patent Document 3 JP 2004-277998 A
  • Patent Document 4 JP 2004-534914 A
  • Patent Document 5 Japanese Patent Laid-Open No. 2005-47763 and the like have been disclosed.
  • Patent Documents 1 to 5 can selectively synthesize only the platelet-type carbon nanofibers, and the obtained carbon nanofibers are of the three types described above. There is a problem that it becomes one of the mixtures.
  • a method for synthesizing carbon nanofibers by the CVD method will be described.
  • FIG. 8 is a schematic cross-sectional view of a catalyst in a conventional carbon nanofiber synthesis process in which a raw material gas composed of a mixture of carbon monoxide and hydrogen is brought into contact with the catalyst.
  • the catalyst carbon steel, carbon steel, iron-base alloy steel (stainless steel) not containing chromium, nickel-base alloy steel, and the like are used.
  • carbon steel carbon steel, iron-base alloy steel (stainless steel) not containing chromium, nickel-base alloy steel, and the like are used.
  • iron-base alloy steel stainless steel
  • the catalyst base material 81 Prior to the contact with the raw material gas, the catalyst base material 81 is provided with a porous layer 82 of iron tetroxide-triiron (hereinafter abbreviated as magnetite) layer 82 by an oxidation reaction in air. Further, a layer 83 of iron trioxide (hereinafter abbreviated as hematite) is formed on the surface of the magnetite layer 82.
  • magnetite iron tetroxide-triiron
  • hematite iron trioxide
  • carbon monoxide which is a carbon source gas
  • the carbon generated by the decomposition is dissolved in the catalyst surface layer.
  • the dissolution of carbon is also a force that occurs on the surface of the iron fine particles remaining after the decomposition of the hematite layer 83. Since the pores 85 exist in the magnetite layer 82, carbon monoxide or carbon generated by the decomposition thereof is formed through the pores 85. Reaches the interface of the highly active catalyst base material 81, and the carbon monoxide is decomposed here, and the carbon produced by the decomposition dissolves deep inside the catalyst base material 81. When the dissolved carbon reaches supersaturation, it precipitates as crystals, mainly the catalyst base material 81. Crystal growth of the carbon nanofiber reflecting the crystal structure of the material 81 occurs.
  • the carbon nanofiber synthesized in this way has a problem that it becomes a mixture of three crystal structures. That is, as long as conventional catalysts are used, it is difficult to selectively synthesize carbon nanofibers having a specific structure.
  • the incorporated fine particles may cause a functional disorder of the carbon nanofiber, and in that case, a purification process is required to remove the fine particles. There is also. Another problem is that continuous synthesis of carbon nanofibers becomes impossible due to the need to replace the catalyst.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method capable of selectively synthesizing a platelet-type carbon nanofiber with high purity.
  • the method for synthesizing the platelet-type carbon nanofiber of the present invention includes a step of bringing a raw material gas containing a carbon source gas into contact with a catalyst containing at least iron, and the catalyst contains carbon in the interior thereof.
  • a platelet type that includes a layer that suppresses intrusion and changes the partial pressure of the carbon source gas in the raw material gas from a low partial pressure to a high partial pressure in the step of bringing the raw material gas into contact with the catalyst. This is a method for synthesizing carbon nanofibers.
  • the catalyst in the method for synthesizing the platelet-type carbon nanofiber, may be iron-based alloy steel containing chromium.
  • the carbon source in the method for synthesizing the platelet type carbon nanofiber, may be carbon monoxide or alcohol.
  • the platelet-type carbon nanofiber of the present invention is a platelet-type carbon nanofiber synthesized by any of the synthesis methods described above.
  • a high-purity platelet-type carbon nanofiber can be selectively synthesized.
  • the synthesis can be carried out easily without requiring special equipment. Therefore, it is possible to supply a large amount of inexpensive and high-quality platelet-type carbon nanofibers.
  • FIG. 1 is a schematic cross-sectional view showing an example of a device for synthesizing a platelet-type carbon nanofiber in the present invention.
  • FIG. 2A to FIG. 2D are schematic cross-sectional views of a catalyst in the process for synthesizing platelet-type carbon nanofibers in the present invention.
  • FIG. 3 is a scanning electron micrograph of an island-shaped graphite crystal in the present invention.
  • FIG. 4 is a scanning electron microscope photograph of the platelet-type carbon nanofiber obtained in Example 1.
  • FIG. 5 is a scanning electron micrograph of the carbon nanofiber obtained in Comparative Example 1.
  • FIG. 6 is an electron probe microanalyzer analysis image of the catalyst surface layer used in Comparative Example 1.
  • FIG. 7 is a scanning electron micrograph of the carbon nanofibers obtained in Comparative Example 2.
  • FIG. 8A and FIG. 8B are schematic cross-sectional views of a catalyst in a conventional carbon nanofiber synthesis process.
  • the catalyst used in the present invention is a catalyst containing at least iron, and includes a layer that suppresses carbon intrusion into the catalyst.
  • a catalyst for example, there are few on a substrate made of iron-based alloy steel (stainless steel) containing chromium, quartz and silicon with an oxide film. Both of them may include a film formed of a transition metal containing iron, and iron-base alloy steel containing chromium is preferable.
  • the content of chromium in the catalyst is preferably 12 to 21 mol%, and the content of iron subtracts the chromium content. it is preferably a 90 to 100 mole 0/0 in remaining ingredients.
  • a catalyst made of iron-base alloy steel containing chromium has a chromate-containing layer formed on the surface thereof, and is further similar to a conventional catalyst on the layer.
  • a magnetite layer and a hematite layer are sequentially formed. These hematite and magnetite layers are reduced by a very thin hydrogen gas, so that all of the hematite layer and most of the magnetite layer are decomposed, and the remaining magnetite layer or the exposed chromium oxide layer is exposed to the surface. Since the iron fine particles remain, the catalytic activity can be expressed.
  • the chromium oxide layer on the surface has a function of preventing mass transport from the outside, and is in a dissolved state when contacting with the carbon source gas. Carbon can be prevented from entering the inside of the catalyst.
  • the magnetite layer on the chromate oxide layer has an extremely thin thickness compared to the conventional catalyst. Therefore, since the collapse of the catalyst surface layer and the magnetite layer can be suppressed during the growth of the carbon nanofiber crystal, mixing of these collapsed materials into the carbon nanofiber can be suppressed, and high-purity carbon nanofibers are synthesized. be able to.
  • the transition metal containing at least iron is used for the synthesis of carbon nanofibers.
  • the iron content in the film is preferably 80 to: LOO mol%.
  • components other than iron that can be contained in the film include cobalt, nickel, ruthenium, rhodium, platinum, rhenium, osmium, iridium, and platinum.
  • the thickness of the transition metal film containing at least iron is preferably several atomic layers to 20 nm.
  • the method for producing the catalyst is not particularly limited, and a transition metal containing at least iron is sputtered.
  • the film may be formed on the substrate by a conventionally known method such as coating or dip coating.
  • the carbon source gas used in the present invention is not particularly limited as long as it is used in a conventional method for synthesizing carbon nanofibers by CVD.
  • carbon monoxide hereinafter referred to as carbon monoxide
  • CO carbon monoxide
  • alcohol Of these, CO is more preferable.
  • CO is more preferable.
  • alcohol for example, ethanol is preferred!
  • the partial pressure of the carbon source gas in the raw material gas is changed from a low partial pressure to a high partial pressure in the step of bringing the raw material gas into contact with the catalyst.
  • the ratio of the carbon source gas is preferably 1Z10 or less in terms of molar ratio when the source gas is introduced. Thereafter, the partial pressure of the carbon source gas is increased so that the molar ratio of the carbon source gas is 1Z8 or more, preferably 1Z4 or more, and the carbon nanofiber synthesis process is completed.
  • the pressure of the raw material gas in the present invention may be the same pressure as in the case of the synthesis by the conventional CVD method, but 1 to: L00 is preferable.
  • the temperature at the time of carbon nanofiber synthesis may be the same as that by the conventional CVD method, but it is preferable to set it to 500 to 700 ° C! /.
  • High-purity carbon nanofibers synthesized by the synthesis method of the present invention have an impurity concentration of less than 5% when analyzed by thermal analysis (TG—DTA) and analytical electron microscope (FE—SEM—EDX) in an air atmosphere. It can be confirmed that That is, the carbon nanofiber synthesized by the synthesis method of the present invention can have a carbon concentration of 95% or more by mass.
  • Figure 1 shows a schematic cross-sectional view of an example of a reactor used for the synthesis of platelet-type carbon nanofibers.
  • Reactor 1 is made of steel and has a box shape.
  • An inlet pipe 11 for introducing the raw material gas into the reactor 1 is provided at the lower part of the side surface, and an outlet pipe 16 for discharging the gas is provided at the upper surface. Further, the inlet pipe 11 is connected to a high-pressure gas cylinder or a gas generator (not shown) which is a source gas supply source.
  • a catalyst plate 14 for synthesizing carbon nanofibers an injection nozzle 13 for injecting a raw material gas introduced from the inlet pipe 11 onto the surface of the catalyst plate 14, and a catalyst plate 14 are provided.
  • Each heater 15 is provided for heating.
  • the details of the shape of the reactor 1 are not particularly limited as long as they can be accommodated therein.
  • the catalyst plates 14 are suspended in a strip shape so as not to contact each other!
  • the raw material gas is fed from the injection nozzles 13 provided at the lower part of the catalyst plate 14 to the catalyst plate 14. The entire surface is fully covered.
  • the heater 15 is provided so as to sandwich the catalyst plate 14 so that the catalyst plate 14 can be efficiently heated.
  • a check valve 17 is connected to the outlet pipe 16, and the pressure in the reactor 1 is automatically maintained at a predetermined pressure such as atmospheric pressure, and at the same time, air is introduced into the reactor 1 from the outside. It will be possible to suppress the backflow of water.
  • shut-off valve 19 is provided near the bottom of the reactor 1 through a pipe, and the shut-off valve 19 is connected to a vacuum pump 18 so that the pressure in the reactor 1 is reduced, the gas is replaced, or the reactor 1 It is now possible to inspect for leaks.
  • a recovery lid 12 is provided on the bottom surface of the reactor 1, and after the synthesis of the carbon nanofibers, the catalyst plate 14 carbon nanofibers whose surface force has also dropped are opened, and the recovery lid 12 is opened. Can be collected.
  • FIGS. 2A to 2D are schematic sectional views of a catalyst plate (hereinafter abbreviated as catalyst) 14 in the carbon nanofiber synthesis process.
  • hydrogen gas is introduced from the inlet pipe 11 into the reactor 1 at a pressure higher than atmospheric pressure with the shut-off valve 19 closed.
  • the pressure in reactor 1 reaches the specified pressure, Gas is discharged through the check valve 17, and the reactor 1 is filled with hydrogen gas under a predetermined pressure.
  • the vacuum pump 18 is operated with the shut-off valve 19 open, the reactor 1 is evacuated, the shut-off valve 19 is closed, and hydrogen gas is introduced from the inlet pipe 11 to bring the reactor 1 into the reactor 1 It can be filled with hydrogen gas.
  • the outermost hematite layer (not shown) of the catalyst 14 is reduced and removed with hydrogen gas, and the catalyst 14 is activated.
  • the state is shown in Fig. 2A. Since the catalyst 14 contains chromium in the catalyst base material 21, a chromium oxide layer 29 is formed on the surface of the catalyst base material 21, and further on the chromate oxide layer 29, magnetite is formed. Layer 22 is formed. The chromate oxide layer 29 and the magnetite layer 22 are extremely thin compared to the magnetite layer formed on the conventional catalyst.
  • the temperature in the reactor 1 may be the same temperature as in the conventional CVD method, as long as the temperature is raised to a temperature at which carbon nanofibers can be synthesized, but is preferably 500-700 ° C. .
  • the raw material gas is introduced from the inlet pipe 11 while maintaining the inside of the reactor 1 at the above temperature.
  • the source gas for example, a mixed gas of CO gas and hydrogen gas is used, and the ratio of the CO gas to the hydrogen gas in the reactor 1 is set to 1Z10 or less in terms of molar ratio and held at the above temperature for 30 minutes.
  • the Stanski-Krastanov type crystal growth proceeds on the carbon thin film layer 26, and as shown in FIG. 2C, the island-shaped graphite crystals 27 are formed. It is formed.
  • the scanning electron micrograph of the island-shaped graphite crystal 27 is shown in Fig. 3. Show.
  • the partial pressure of the carbon source gas in the reactor 1 is gradually increased. Specifically, the ratio of CO gas to hydrogen gas is increased from 1Z10 or less to 1Z8, preferably 1Z4 in terms of molar ratio.
  • the time for increasing the partial pressure of the carbon source gas is not particularly limited, but it is preferable to increase it quickly.
  • the platelet-type carbon nanofiber 24 is selectively synthesized using the island-shaped graphite crystal 27 as a base point.
  • the reason why the platelet type can be selectively obtained is that the crystal structure of the island-shaped graphite crystal 17 is in place.
  • the platelet-type carbon nanofibers 24 adhering to the catalyst 14 are dropped, and the collection lid 12 is opened and collected.
  • the crystal growth force of the carbon nanofibers does not occur in the catalyst base material 21, and the thickness of the magnetite layer 22 is increased.
  • the catalyst base material 21 and the magnetite layer 22 hardly collapse during the carbon nanofiber crystal growth. Therefore, since these collapsed materials are not mixed in the carbon nanofibers, the obtained platelet-type carbon nanofibers 24 are of high purity.
  • the obtained carbon nanofibers 24 are of high purity, a refining process for removing impurities is unnecessary, and furthermore, the frequency of catalyst replacement can be reduced, so that continuous synthesis of carbon nanofibers is possible. Is possible.
  • iron-base alloy steel (SUS440C) containing chromium was installed as a catalyst, and the pressure in the reactor was set to 1 atm.
  • the inside of the reactor was replaced with hydrogen gas to activate the catalyst.
  • Figure 4 shows a scanning electron micrograph of the resulting platelet-type carbon nanofiber. From Fig. 4, it was confirmed that the platelet-type carbon nanofiber force was obtained with a high selectivity of 90% or more.
  • carbon steel (SS400) was installed as a catalyst in the reactor, and the pressure in the reactor was set to be 1 atm.
  • the temperature was raised to 600 ° C. while introducing nitrogen gas into the reactor, and the supply of nitrogen gas was stopped after the temperature elevation was completed.
  • FIG. 5 shows a scanning electron micrograph of the obtained carbon nanofiber. From Fig. 5, it was confirmed that the ratio of platelet-type carbon nanofibers remained at 20-30%.
  • Figure 6 shows an image of the element distribution in the cross section of the collapsed catalyst surface, analyzed by an electron probe microanalyzer. The right side of Fig. 6 corresponds to the catalyst surface, and the left side corresponds to the inside of the catalyst.
  • Reference numeral 61 denotes a carbon deposition region on the catalyst surface
  • reference numeral 62 denotes a magnetite region on the catalyst surface
  • reference numeral 63 denotes an iron-enriched portion inside the catalyst.
  • carbon is clearly seen at the interface between the magnetite region 62 on the catalyst surface and the region of the iron-enriched portion 63 inside the catalyst, and it can be seen that carbon nanofiber crystal growth occurs in this portion.
  • Fig. 7 shows a scanning electron micrograph of the resulting carbon nanofiber. From Fig. 7, it was confirmed that the proportion of platelet-type carbon nanofibers remained at 20-30%.
  • a high-purity platelet-type carbon nanofiber can be easily and selectively synthesized without requiring special equipment or the like. A large amount of carbon nanofibers can be supplied.
  • the present invention is useful in various industries as a raw material for highly functional materials such as battery electrodes, electron emission source materials, adsorbent materials such as gas molecules and metal fine particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)

Abstract

 プレートレット型カーボンナノファイバの合成法であって、少なくとも鉄を含有する触媒に、炭素源ガスを含有する原料ガスを接触させる工程を有し、前記触媒は、その内部への炭素の侵入を抑制する層を備えたものであり、前記触媒に原料ガスを接触させる工程において、原料ガス中の炭素源ガスの分圧を、低分圧から高分圧へと変化させる、プレートレット型カーボンナノファイバの合成法。

Description

明 細 書
プレートレット型カーボンナノファイバの選択的合成法
技術分野
[0001] 本発明は、気相成長法による高純度プレートレット型カーボンナノファイバの選択 的合成法に関する。
本願は、 2005年 8月 10日に、 日本に出願された特願 2005— 231595号に基づき 優先権を主張し、その内容をここに援用する。
背景技術
[0002] カーボンナノファイバは、様々な分野での利用が期待されている炭素系材料であり 、その結晶構造により主に、プレートレット型、ヘリンボーン型およびチューブラー型 の 3つのタイプのものが知られて!/ヽる。
カーボンナノファイバの電気的性質、光学的性質および機械的性質は、前記構造 により異なり、カーボンナノファイバの用途によっては、いずれかの結晶構造のものを 選択的に合成することが必要となってくる。特に、プレートレット型は、そのサイトであ る平面状結晶の端部が、カーボンナノファイバの表面に最も多く露出しているため、 電子の授受を行う機能を有する電池の電極あるいは電子放出源等の材料として、あ るいは、ガス分子や金属微粒子等の吸着剤の材料等として有望であり、その工業的 な選択的合成法の開発が強く望まれている。
[0003] 一方、従来のカーボンナノファイバの合成法としては、カーボンナノチューブ等の合 成で汎用されている気相成長法 (以下、 CVD法と略記)に準じたものが多用されてい る。
このような方法として、例えば、炭化水素と水素の混合物を銅 ニッケル系触媒に 接触させて合成する方法 (特許文献 1:特開 2002— 83604号公報参照)、炭化水素 と水素の混合物をニッケル系触媒に接触させて合成する方法 (特許文献 2:特開 200 3— 200052号公報参照)、一酸ィ匕炭素と水素の混合物をバルタ鉄系触媒に接触さ せて合成する方法 (特許文献 3:特開 2004— 277998号公報および特許文献 4:特 表 2004 - 534914号公報参照)等が開示されて ヽる。 また、 CVD法以外の方法としては、例えば、ポリ塩ィ匕ビュル等の有機高分子化合 物を熱分解の過程で液状化させ、この液を多孔質材料の孔に浸透あるいは充填さ せて合成する方法 (特許文献 5:特開 2005—47763号公報参照)等が開示されて ヽ る。
発明の開示
発明が解決しょうとする課題
[0004] しかし、特許文献 1〜5に記載の方法では、いずれも、プレートレット型カーボンナノ ファイバのみを選択的に合成することはできず、得られるカーボンナノファイバは、上 記 3つのタイプのいずれかの混合物になってしまうという問題点がある。ここで、本発 明との関連から、 CVD法によるカーボンナノファイバの合成法について説明する。
[0005] 図 8は、一酸化炭素と水素の混合物からなる原料ガスを触媒に接触させる、従来の カーボンナノファイバ合成プロセスにおける、触媒の概略断面図である。触媒として は、炭素鋼、ケィ素鋼、クロムを含まない鉄基合金鋼 (ステンレス鋼)、ニッケル基合金 鋼等が用いられるが、ここでは、炭素鋼を用いた場合について説明する。
[0006] 原料ガス接触前の段階では、触媒母材 81の表面には、空気中における酸化反応 により多孔質層である四酸ィ匕三鉄(以下、マグネタイトと略記)の層 82ができ、さらに マグネタイト層 82の表面に、三酸化-鉄(以下、へマタイトと略記)の層 83ができてい る。
その様子を図 8Aに示す。
[0007] この後、カーボンナノファイバの合成に際し、原料ガスが触媒に接触すると、へマタ イト層 83が原料ガス中の水素ガスによる還元反応で除去される。
続いて、炭素源ガスである一酸ィ匕炭素は、触媒表層より内部拡散しながら分解し、 分解で生じた炭素が触媒表層に溶解する。炭素の溶解は、へマタイト層 83の分解後 に残存する鉄微粒子表面でも起こる力 マグネタイト層 82には気孔 85が存在するた め、この気孔 85を通じて一酸ィ匕炭素あるいはその分解で生じた炭素が活性の高い 触媒母材 81の界面に達し、一酸化炭素はここで分解し、分解で生じた炭素が触媒 母材 81の内部深くにまで溶解する。溶解した炭素が過飽和に達すると、結晶として 析出し、主に触媒母材 81界面力も内部にかけて析出した炭素を基点として、触媒母 材 81の結晶構造を反映したカーボンナノファイバの結晶成長が起こる。
[0008] この時、結晶成長の基点が触媒母材 81の内部にあるため、カーボンナノファイバの 結晶成長に伴い、触媒母材 81の表層およびマグネタイト層 82の一部が崩壊する。そ して、図 8Bに示すように、触媒母材 81とマグネタイト層 82との界面に、カーボンナノ ファイバ層 84が形成されてくる。さらにカーボンナノファイバの合成が進むと、カーボ ンナノファイバ層 84の厚みが増して、触媒表面力もカーボンナノファイバの結晶が伸 張してくる(図示略)。
[0009] し力し、このように合成されたカーボンナノファイバは、 3つの結晶構造のものの混 合物になってしまうという問題点がある。すなわち、従来の触媒を用いる限りは、特定 構造のカーボンナノファイバを選択的に合成することは困難である。
さらに、触媒母材 81の表層およびマグネタイト層 82の崩壊により、これらの一部は 金属片として剥離するが、一部は得られたカーボンナノファイバの内部や先端に微 粒子として取り込まれてしまう。したがって、カーボンナノファイバの用途によっては、 取り込まれた微粒子がカーボンナノファイバの機能障害の原因となることがあり、その 場合には、該微粒子を除去するための精製工程が必要になるという問題点もある。ま た触媒の交換が必要とされるため、カーボンナノファイバの連続合成ができなくなると いう問題点もある。
[0010] 本発明は、上記問題点に鑑みてなされたものであり、プレートレット型のカーボンナ ノファイバを高純度で選択的に合成できる方法を提供することを課題とする。
課題を解決するための手段
[0011] 上記課題を解決するため、
本発明のプレートレット型カーボンナノファイバの合成法は、少なくとも鉄を含有す る触媒に、炭素源ガスを含有する原料ガスを接触させる工程を有し、前記触媒は、そ の内部への炭素の侵入を抑制する層を備えたものであり、前記触媒に原料ガスを接 触させる工程において、原料ガス中の炭素源ガスの分圧を、低分圧から高分圧へと 変化させるプレートレット型カーボンナノファイバの合成法である。
[0012] 上記プレートレット型カーボンナノファイバの合成法では、前記触媒は、クロムを含 有する鉄基合金鋼であってもよ ヽ。 [0013] 上記プレートレット型カーボンナノファイバの合成法では、前記炭素源は、一酸ィ匕 炭素またはアルコールであってもよ 、。
[0014] 本発明のプレートレット型カーボンナノファイバは、上記いずれかのの合成法により 合成されたプレートレット型カーボンナノファイバである。
発明の効果
[0015] 本発明によれば、高純度のプレートレット型カーボンナノファイバを選択的に合成 することができる。また合成に際しては、特殊な設備等を必要とせず、簡便に行うこと ができる。そのため、安価で高品質なプレートレット型カーボンナノファイバを大量に 供給することができる。
図面の簡単な説明
[0016] [図 1]本発明におけるプレートレット型カーボンナノファイバの合成装置の一例を示す 概略断面図である。
[図 2]図 2A—図 2Dは、本発明におけるプレートレット型カーボンナノファイバの合成 プロセスにおける触媒の概略断面図である。
[図 3]本発明における島状グラフアイト結晶の走査電子顕微鏡写真である。
[図 4]実施例 1で得られたプレートレット型カーボンナノファイバの走査電子顕微鏡写 真である。
[図 5]比較例 1で得られたカーボンナノファイバの走査電子顕微鏡写真である。
[図 6]比較例 1で用いた触媒表層の電子プローブマイクロアナライザー分析画像であ る。
[図 7]比較例 2で得られたカーボンナノファイバの走査電子顕微鏡写真である。
[図 8]図 8A及び図 8Bは、従来のカーボンナノファイバの合成プロセスにおける触媒 の概略断面図である。
発明を実施するための最良の形態
[0017] 以下、本発明について詳しく説明する。
本発明で用いる触媒は、少なくとも鉄を含有する触媒であり、その内部への炭素の 侵入を抑制する層を備えたものである。このような触媒として、例えば、クロムを含む 鉄基合金鋼 (ステンレス鋼)、石英および酸化膜付きシリコンからなる基板上に少なく とも鉄を含む遷移金属を成膜したもの等を挙げることができるが、クロムを含む鉄基 合金鋼が好ましい。
[0018] 触媒としてクロムを含む鉄基合金鋼を用いる場合は、該触媒中のクロムの含有量は 、 12〜21モル%であることが好ましぐ鉄の含有量は、クロム含有量を差し引いた残 りの成分中 90〜100モル0 /0であることが好ましい。
[0019] カーボンナノファイバの合成に用いる前の状態では、クロムを含む鉄基合金鋼から なる触媒は、その表面にクロム酸ィ匕物力 なる層が形成され、該層上にさらに従来の 触媒同様、マグネタイト層およびへマタイト層が順次形成された構造となっている。こ れらへマタイト層およびマグネタイト層は非常に薄ぐ水素ガスによる還元反応でへマ タイト層のすべてとマグネタイト層の大半は分解し、残存するマグネタイト層または露 出したクロム酸化物層の表面に鉄微粒子が残存するため、触媒活性を発現させるこ とがでさる。
[0020] クロムを含む鉄基合金鋼からなる触媒においては、その表面のクロム酸化物層が、 外部からの物質輸送を阻止する機能を有しており、炭素源ガス接触時に、溶解した 状態の炭素が触媒内部へ侵入することを抑制できる。また、クロム酸ィ匕物層上のマグ ネタイト層は、その厚みが従来の触媒の場合と比較して極めて薄くなつている。した がって、カーボンナノファイバの結晶成長時において、触媒表層およびマグネタイト 層の崩壊を抑制できるため、これら崩壊物のカーボンナノファイバへの混入が抑制で き、高純度のカーボンナノファイバを合成することができる。
[0021] 触媒として、石英および酸化膜付きシリコンからなる基板上に少なくとも鉄を含む遷 移金属を成膜したものを用いる場合には、少なくとも鉄を含む遷移金属は、カーボン ナノファイバの合成に対して触媒活性を有する必要最低限量を成膜すればよ!ヽ。こ の時の膜中の鉄の含有率は、 80〜: LOOモル%であることが好ましい。また、膜中に 含有することができる鉄以外の成分としては、例えば、コバルト、ニッケル、ルテニウム 、ロジウム、白金、レニウム、オスミウム、イリジウム、プラチナ等を挙げることができる。
[0022] また、少なくとも鉄を含む遷移金属膜の厚みは、数原子層分の厚み〜 20nmとする ことが好ましい。
前記触媒の製造法は特に限定されず、少なくとも鉄を含む遷移金属をスパッタリン グまたはディップコーティング等、従来公知の方法で、基板上に成膜すれば良い。
[0023] 前記触媒の石英および酸ィ匕膜付きシリコンは、炭素と反応し難いため、炭素源ガス 接触時に、溶解した状態の炭素が触媒内部へ侵入することを抑制できる。したがって 、カーボンナノファイバの結晶成長時における、触媒表層の崩壊を抑制できるため、 高純度のカーボンナノファイバを合成することができる。
[0024] 本発明で用いる炭素源ガスとしては、従来の CVD法によるカーボンナノファイバの 合成法で用いられるものであれば、特に限定されないが、例えば、好ましいものとし て、一酸化炭素(以下、 COと略記)およびアルコール等を挙げることができる。なか でも、 COがより好ましい。また、前記アルコールとしては、例えば、エタノールを好ま し!、ちのとして挙げることができる。
[0025] 本発明にお 、ては、原料ガスを触媒に接触させる工程にぉ 、て、原料ガス中の前 記炭素源ガスの分圧を、低分圧から高分圧へと変化させる。
例えば、原料ガスとして、炭素源ガスと水素ガスとの混合ガスを用いる場合、炭素源 ガスの比率は、原料ガス導入時にはモル比で 1Z10以下とすることが好ましい。その 後、炭素源ガスの分圧を高くして、炭素源ガスの比率をモル比で 1Z8以上、好ましく は 1Z4以上として、カーボンナノファイバの合成工程を終了する。
[0026] 本発明における原料ガスの圧力は、従来の CVD法による合成の場合と同じ圧力と すれば良!、が、 1〜: L00気圧とすることが好ま U、。
また、カーボンナノファイバ合成時の温度は、従来の CVD法による場合と同じ温度 とすれば良 、が、 500〜700°Cとすることが好まし!/、。
本発明の合成法で合成された高純度のカーボンナノファイバは、空気雰囲気での 熱分析 (TG— DTA)、および分析電子顕微鏡 (FE— SEM— EDX)による分析で、 不純物濃度が 5%未満であることが確認できる。すなわち、本発明の合成法で合成さ れたカーボンナノファイバは、質量%で 95%以上の炭素濃度を有することができる。
[0027] 以下、本発明のプレートレット型カーボンナノファイバの合成法について、具体的に 説明する。
図 1は、プレートレット型カーボンナノファイバの合成に用いる反応器の一例の概略 断面図を示すものである。 反応器 1は、スチール製であり、箱型の形状をしたものである。その側面下部には 原料ガスを反応器 1内に導入するための入口管 11が設けられ、上面にはガスを排出 するための出口管 16が設けられている。さらに、入口管 11は、原料ガス供給源であ る高圧ガスボンベまたはガス発生装置(図示略)に接続される。
[0028] また、反応器 1内には、カーボンナノファイバの合成を行う触媒プレート 14、入口管 11から導入した原料ガスを触媒プレート 14の表面に噴射するための噴射ノズル 13、 触媒プレート 14を加熱するためのヒーター 15が、それぞれ設けられている。反応器 1 は、これらをその内部に納められるものであれば、その形状の詳細は特に問わない。 触媒プレート 14は、互いに接触しな 、ように間隔をお!/、て短冊状に吊り下げられて おり、触媒プレート 14の下部に設けられている噴射ノズル 13から、原料ガスが触媒プ レート 14の表面全体に十分に行き渡るようになつている。
また、ヒーター 15は、触媒プレート 14を効率よく加熱できるように、触媒プレート 14 を挟み込むように設けられて 、る。
[0029] 一方、出口管 16には、逆止弁 17が連結されており、自動で反応器 1内の圧力を大 気圧等、所定の圧力に維持すると同時に、外部から反応器 1内へ空気が逆流するこ とを抑制できるようになって 、る。
さらに、反応器 1の底部近傍には、配管を介して遮断弁 19が設けられ、遮断弁 19 は真空ポンプ 18に連結されており、反応器 1内の減圧、ガスの置換、あるいは反応 器 1の漏洩検査ができるようになって 、る。
[0030] また、反応器 1の底面には、回収用蓋 12が設けられており、カーボンナノファイバの 合成終了後、触媒プレート 14表面力も落下したカーボンナノファイバを、回収用蓋 1 2を開けて回収できるようになって 、る。
[0031] このような装置を用いた、プレートレット型カーボンナノファイバの合成法について、 炭素源ガスとして CO、触媒としてクロムを含有する鉄基合金鋼を用いた場合を例に 採り、以下説明する。なお、図 2A—図 2Dは、カーボンナノファイバの合成工程にお ける、触媒プレート(以下、触媒と略記) 14の概略断面図である。
まず、遮断弁 19を閉じた状態で、水素ガスを入口管 11から反応器 1内へ大気圧以 上の圧力で導入する。反応器 1内の圧力が所定の圧力に到達すると、反応器 1から 逆止弁 17を介してガスが排出され、反応器 1内は、所定の圧力下で水素ガスで満た される。
あるいは、遮断弁 19を開いた状態で真空ポンプ 18を稼動させ、反応器 1内を真空 状態にした後、遮断弁 19を閉じて、入口管 11より水素ガスを導入することにより反応 器 1内を水素ガスで満たしても良 ヽ。
[0032] すると、触媒 14最外層のへマタイト層(図示略)が水素ガスで還元されて除去され、 触媒 14が活性化される。その状態を示したものが図 2Aである。触媒 14は、その触媒 母材 21中にクロムを含有しているため、触媒母材 21の表面には、クロム酸化物層 29 が形成され、さらにクロム酸ィ匕物層 29上には、マグネタイト層 22が形成されている。ク ロム酸ィ匕物層 29およびマグネタイト層 22は、従来の触媒上に形成されるマグネタイト 層と比べて、その厚さは極めて薄くなつている。
[0033] また、反応器 1内への水素ガスの導入開始とともに、ヒーター 15により、反応器 1内 の昇温を開始する。反応器 1内の温度は、カーボンナノファイバが合成可能な温度ま で昇温すれば良ぐ従来の CVD法による場合と同じ温度とすれば良いが、 500-70 0°Cとすることが好ましい。
[0034] 反応器 1内を前記温度に保ちながら、入口管 11より原料ガスを導入する。原料ガス としては、例えば、 COガスと水素ガスとの混合ガスを用い、反応器 1内の水素ガスに 対する COガスの比率をモル比で 1Z10以下として、前記温度で 30分間保持する。
[0035] 本工程においては、 COガスが触媒 14の表層で分解して溶解した状態の炭素を生 じ、この炭素はクロム酸ィ匕物層 29の表層に到達する。ただし、前記の通り、この炭素 はクロム酸ィ匕物層 29を通過することはできな 、ため、触媒母材 21の内部にまで進入 することはない。そして、クロム酸ィ匕物層 29に到達した炭素は、過飽和に達すると結 晶として析出するが、反応器 1内の COガスの分圧を低く保持していることにより、この 結晶析出は緩やかに進行し、図 2Bに示すように、クロム酸ィ匕物層 29上に、 1〜数原 子の炭素原子 25が積み重なってできた、炭素薄膜層 26が形成される。
[0036] 次いで、さらに前記反応条件を保持することにより、前記炭素薄膜層 26上で、 Stra nski— Krastanov型の結晶成長が進行し、図 2Cに示すように、島状グラフアイト結 晶 27が形成される。なお、島状グラフアイト結晶 27の走査電子顕微鏡写真を図 3に 示す。
[0037] 通常、触媒のような金属母体上で結晶成長を行う場合は、得られる結晶の構造は、 金属母体の結晶構造に影響され易い。しかし本発明においては、触媒母材 21上に 、クロム酸化物層 29を介して炭素薄膜層 26を形成することで、触媒の結晶構造の影 響を排除し、整った結晶構造の島状グラフアイト結晶 27を形成することができる。
[0038] 島状グラフアイト結晶 27が形成されてから、反応器 1内の炭素源ガスの分圧を徐々 に上げていく。具体的には、水素ガスに対する COガスの比率を、モル比で 1Z10以 下から 1Z8まで、好ましくは 1Z4まで上昇させる。炭素源ガスの分圧を上昇させる時 間は特に限定されないが、速やかに上昇させることが好ましい。
本工程により、図 2Dに示すように、前記島状グラフアイト結晶 27を基点として、プレ ートレット型カーボンナノファイバ 24が選択的に合成される。
プレートレット型が選択的に得られる理由は、島状グラフアイト結晶 17の結晶構造 が整っているためである。
[0039] 合成反応終了後、原料ガスの供給および加熱を停止し、入口管 11より反応器 1内 に窒素ガスを導入して、反応器 1内から原料ガスを排気する。
続いて、触媒 14上に付着しているプレートレット型カーボンナノファイバ 24を落下さ せ、回収用蓋 12を開けて、回収する。
[0040] また、本発明においては、触媒 14としてクロムを含有する鉄基合金鋼を用いること で、カーボンナノファイバの結晶成長力 触媒母材 21中では起こらず、また、マグネ タイト層 22の厚みも極めて薄いため、カーボンナノファイバの結晶成長中に、触媒母 材 21およびマグネタイト層 22の崩壊がほとんど起こらない。したがって、これら崩壊 物がカーボンナノファイバ中に混入しないため、得られるプレートレット型カーボンナ ノファイバ 24は高純度のものとなる。
[0041] また、得られるカーボンナノファイバ 24は高純度であるため、不純物を除くための精 製工程が不要であり、さらに、触媒の交換頻度も少なくできるため、カーボンナノファ ィバの連続合成が可能となる。
[0042] 以上、炭素源ガスとして COガスを、触媒としてクロムを含有する鉄基合金鋼を用い た場合について説明した力 炭素源ガスとしてアルコールを、触媒として石英および 酸ィ匕膜付きシリコンカゝらなる基板上に少なくとも鉄を含む遷移金属を成膜したものを 用いた場合にも、同様に、高純度のプレートレット型カーボンナノファイバを選択的に 得ることができる。
実施例
[0043] 以下に具体的実施例を挙げて、本発明についてさらに詳しく説明する。ただし、本 発明は、以下に示す実施例に何ら限定されるものではない。
実施例 1
反応器内に、触媒としてクロムを含有する鉄基合金鋼(SUS440C)を設置し、反応 器内の圧力が 1気圧に保たれるように設定した。まず、反応器内を水素ガスで置換し て触媒を活性ィ匕した。次いで、反応器内を 600°Cまで昇温し、原料ガスである COZ 水素混合ガスを、モル比で coz水素 = lZio以下となるように反応器内へ導入し た。この状態を 30分間保持した後、原料ガスの組成を COZ水素 = 1Z4として CO ガスの比率を上げて ヽき、カーボンナノファイバの合成を行った。
その結果得られたプレートレット型カーボンナノファイバの走査電子顕微鏡写真を 図 4に示す。図 4力ら、プレートレット型カーボンナノファイバ力 90%以上の高い選 択性をもって得られたことが確認された。
[0044] 比較例 1
実施例 1で用いた反応器中で、従来のカーボンナノファイバ合成に適用される触媒 および合成プロセスを用いて、カーボンナノファイバの合成を行った。
すなわち、反応器内に、触媒として炭素鋼 (SS400)を設置し、反応器内の圧力が 1気圧に保たれるように設定した。まず、反応器内に窒素ガスを導入しながら 600°C まで昇温し、昇温終了後窒素ガスの供給を停止した。次いで、原料ガスである COZ 水素混合ガスを、モル比で COZ水素 = 1Z4として反応器内へ導入し、反応器内の 温度を 600°Cに保ったまま、カーボンナノファイバの合成を行った。
その結果、プレートレット型、ヘリンボーン型およびチューブラー型の 3つのタイプが 混在したカーボンナノファイバが得られた。得られたカーボンナノファイバの走査電子 顕微鏡写真を図 5に示す。図 5から、プレートレット型カーボンナノファイバの比率は、 20〜30%にとどまっていることが確認された。 [0045] 合成反応終了後の触媒の状態を観察したところ、触媒表層が著しく崩壊していた。 崩壊した触媒表層の断面における元素分布の様子を、電子プローブマイクロアナラ ィザ一で分析した時の画像を図 6に示す。図 6の右側が触媒表面、左側が触媒内部 に相当する。符号 61は、触媒表面の炭素析出領域、符号 62は、触媒表面のマグネ タイト領域、そして符号 63は、触媒内部の鉄濃縮部をそれぞれ示す。また、炭素は、 触媒表面のマグネタイト領域 62および触媒内部の鉄濃縮部 63の領域間の界面で顕 著に見られ、この部分でカーボンナノファイバの結晶成長が生じて 、ることが判る。
[0046] 比較例 2
実施例 1で用いた反応器中で、実施例 1で用いた触媒と、比較例 1で適用した合成 プロセスにより、カーボンナノファイバの合成を行った。
その結果、プレートレット型、ヘリンボーン型およびチューブラー型の 3つのタイプが 混在したカーボンナノファイバが得られた。得られたカーボンナノファイバの走査電子 顕微鏡写真を図 7に示す。図 7から、プレートレット型カーボンナノファイバの比率は、 20〜30%にとどまっていることが確認された。
[0047] 以上の結果から、プレートレット型カーボンナノファイバを選択的に合成するために は、内部への炭素の侵入を抑制する層を備えた少なくとも鉄を含有する触媒と、原料 ガス中の炭素源ガスの分圧を低分圧から高分圧へと変化させる合成プロセスが必須 であることが確認された。
[0048] また、本発明により、高純度のプレートレット型カーボンナノファイバを、特殊な設備 等を必要とせず、簡便に、選択的に合成することができるため、安価で高品質なプレ ートレット型カーボンナノファイバを大量に供給することができる。
産業上の利用可能性
[0049] 本発明の合成法を用いれば、安価で高品質なプレートレット型カーボンナノフアイ バを大量に供給することができる。そのため本発明は、電池の電極、電子放出源材 料、ガス分子や金属微粒子等の吸着剤材料等、高機能材料の原料として各産業界 において有用なものである。

Claims

請求の範囲
[1] プレートレット型カーボンナノファイバの合成法であって、
少なくとも鉄を含有する触媒に、炭素源ガスを含有する原料ガスを接触させる工程 を有し、
前記触媒は、その内部への炭素の侵入を抑制する層を備えたものであり、 前記触媒に原料ガスを接触させる工程において、原料ガス中の炭素源ガスの分圧 を、低分圧から高分圧へと変化させる、
プレートレット型カーボンナノファイバの合成法。
[2] 前記触媒が、クロムを含有する鉄基合金鋼である、請求項 1に記載のプレートレット 型カーボンナノファイバの合成法。
[3] 前記炭素源が、一酸ィ匕炭素またはアルコールである、請求項 1記載のプレートレツ ト型カーボンナノファイバの合成法。
[4] 前記炭素源が、一酸ィ匕炭素またはアルコールである、請求項 2記載のプレートレツ ト型カーボンナノファイバの合成法。
[5] 請求項 1〜4のいずれか一項に記載の合成法により合成されたプレートレット型力 一ボンナノファイバ。
PCT/JP2006/315225 2005-08-10 2006-08-01 プレートレット型カーボンナノファイバの選択的合成法 WO2007018078A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800277963A CN101233079B (zh) 2005-08-10 2006-08-01 片型碳纳米纤维的选择性合成方法
JP2007529496A JP4762990B2 (ja) 2005-08-10 2006-08-01 プレートレット型カーボンナノファイバの選択的合成法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005231595 2005-08-10
JP2005-231595 2005-08-10

Publications (1)

Publication Number Publication Date
WO2007018078A1 true WO2007018078A1 (ja) 2007-02-15

Family

ID=37727266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315225 WO2007018078A1 (ja) 2005-08-10 2006-08-01 プレートレット型カーボンナノファイバの選択的合成法

Country Status (4)

Country Link
JP (1) JP4762990B2 (ja)
KR (1) KR100959633B1 (ja)
CN (1) CN101233079B (ja)
WO (1) WO2007018078A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146169A3 (en) * 2009-06-18 2011-04-14 Corus Technology Bv A process of direct growth of carbon nanotubes (cnt) and fibers (cnf) on a steel strip
JP2015143169A (ja) * 2013-12-25 2015-08-06 日立造船株式会社 カーボンナノチューブ生成用基板、カーボンナノチューブ生成用基板の製造方法及びカーボンナノチューブ生成用基板の再利用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016110678A (ja) * 2014-12-09 2016-06-20 株式会社東芝 ディップコート用保持治具、及びこれを用いたディップコートシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300631A (ja) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp カーボンナノファイバ及びその製造方法
JP2005150091A (ja) * 2003-10-22 2005-06-09 Jfe Steel Kk カーボンナノファイバを形成しやすい金属板およびナノカーボンエミッタ
JP2005203348A (ja) * 2003-12-18 2005-07-28 Canon Inc 炭素を含むファイバー、炭素を含むファイバーを用いた基板、電子放出素子、該電子放出素子を用いた電子源、該電子源を用いた表示パネル、及び、該表示パネルを用いた情報表示再生装置、並びに、それらの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554813A (zh) * 2003-12-25 2004-12-15 华东理工大学 液相生长碳纤维、纳米碳纤维的方法
CN1585067A (zh) * 2004-06-11 2005-02-23 华东师范大学 一种点阵式纳米碳基薄膜冷阴极的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300631A (ja) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp カーボンナノファイバ及びその製造方法
JP2005150091A (ja) * 2003-10-22 2005-06-09 Jfe Steel Kk カーボンナノファイバを形成しやすい金属板およびナノカーボンエミッタ
JP2005203348A (ja) * 2003-12-18 2005-07-28 Canon Inc 炭素を含むファイバー、炭素を含むファイバーを用いた基板、電子放出素子、該電子放出素子を用いた電子源、該電子源を用いた表示パネル、及び、該表示パネルを用いた情報表示再生装置、並びに、それらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN. X.H. ET AL.: "Preparation, morthology and microstructure of segmented graphite nanofibers", DIAMOND AND RELATED MATERIALS, vol. 10, 2001, pages 2057 - 2062, XP004309731 *
YANG S. ET AL.: "Morphology of zigzag carbon nanofibers prepared by catalytic pyrolysis of acetylene using Fe-group containing alloy catalysts", DIAMOND AND RELATED MATERIALS, vol. 13, 2004, pages 85 - 92, XP004484584 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146169A3 (en) * 2009-06-18 2011-04-14 Corus Technology Bv A process of direct growth of carbon nanotubes (cnt) and fibers (cnf) on a steel strip
JP2012530036A (ja) * 2009-06-18 2012-11-29 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップ 鋼帯上におけるカーボンナノチューブ(cnt)及びファイバー(cnf)の直接低温成長方法
JP2015143169A (ja) * 2013-12-25 2015-08-06 日立造船株式会社 カーボンナノチューブ生成用基板、カーボンナノチューブ生成用基板の製造方法及びカーボンナノチューブ生成用基板の再利用方法

Also Published As

Publication number Publication date
KR20080031051A (ko) 2008-04-07
CN101233079A (zh) 2008-07-30
JP4762990B2 (ja) 2011-08-31
CN101233079B (zh) 2011-03-23
JPWO2007018078A1 (ja) 2009-02-19
KR100959633B1 (ko) 2010-05-27

Similar Documents

Publication Publication Date Title
JP6058075B2 (ja) 窒素ドープされた炭素表面を有する金属−炭素ハイブリッド複合体及びその製造方法
Gong Structure and surface chemistry of gold-based model catalysts
RU2483022C2 (ru) Способ изготовления функционализированной фуллеренами углеродной нанотрубки, композиционный материал, толстая или тонкая пленка, провод и устройство, выполненные с использованием получаемых нанотрубок
US9566567B2 (en) Metal-carbon composite supported catalyst for hydrogen production using co-evaporation and method of preparing the same
US8092778B2 (en) Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
US9187332B2 (en) Graphene sheet, graphene base including the same, and method of preparing the graphene sheet
US10723620B2 (en) Direct graphene growing method
US9175385B2 (en) Method for preparing metal-carbon composite of core-shell structure through simultaneous vaporization and metal-carbon composite of core-shell structure prepared thereby
EP2596851B1 (en) Separation membrane, and apparatus including the separation membrane
EP2838842A1 (en) Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
EP2838841A1 (en) Methods for using metal catalysts in carbon oxide catalytic converters
WO2018023062A1 (en) Solid carbon nanotube forests and methods for producing solid carbon nanotube forests
JP4378350B2 (ja) 気相成長法による二重壁炭素ナノチューブの大量合成方法
WO2007018078A1 (ja) プレートレット型カーボンナノファイバの選択的合成法
Chen et al. The base versus tip growth mode of carbon nanotubes by catalytic hydrocarbon cracking: Review, challenges and opportunities
US20060230927A1 (en) Hydrogen separation
Wang et al. Highly stable Pt–Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde
CN108367278B (zh) 用于化学工艺强化的方法和设备
Huang et al. Nanocrystalline vanadium carbides as highly active catalysts on vanadium foils for high temperature hydrogen separation
KR102012010B1 (ko) 분리막, 이를 포함하는 수소 분리막 및 상기 수소 분리막을 포함하는 수소 분리 장치
US20140112836A1 (en) Separation membrane, hydrogen separation membrane including separation membrane, and device including hydrogen separation membrane
Tyczkowski et al. Cold plasma in the nanotechnology of catalysts
Lopes et al. In situ synthesis of highly stable FeCo alloy encapsulated in carbon from ethanol
CA2596938A1 (en) Catalysts for the large scale production of high purity carbon nanotubes with chemical vapor deposition
JP2014042858A (ja) 水素製造用触媒、その製造方法および水素製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027796.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529496

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782102

Country of ref document: EP

Kind code of ref document: A1