WO2007015466A1 - セルラ移動通信システム、セルラ移動通信システムにおける基地局の送信装置と移動局の受信装置およびセルラ移動通信システムの基地局選択制御方法 - Google Patents

セルラ移動通信システム、セルラ移動通信システムにおける基地局の送信装置と移動局の受信装置およびセルラ移動通信システムの基地局選択制御方法 Download PDF

Info

Publication number
WO2007015466A1
WO2007015466A1 PCT/JP2006/315169 JP2006315169W WO2007015466A1 WO 2007015466 A1 WO2007015466 A1 WO 2007015466A1 JP 2006315169 W JP2006315169 W JP 2006315169W WO 2007015466 A1 WO2007015466 A1 WO 2007015466A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
base stations
communication
station
Prior art date
Application number
PCT/JP2006/315169
Other languages
English (en)
French (fr)
Inventor
Katsutoshi Ishikura
Hidenobu Fukumasa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005223373A external-priority patent/JP4305771B2/ja
Priority claimed from JP2005223374A external-priority patent/JP4526459B2/ja
Priority claimed from JP2005223375A external-priority patent/JP4794234B2/ja
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to KR1020107002204A priority Critical patent/KR101113433B1/ko
Priority to EP06782047A priority patent/EP1916783A4/en
Priority to US11/997,544 priority patent/US20100222063A1/en
Publication of WO2007015466A1 publication Critical patent/WO2007015466A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0035Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter evaluation of received explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/009Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location arrangements specific to transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/206Arrangements for detecting or preventing errors in the information received using signal quality detector for modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/692Hybrid techniques using combinations of two or more spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • Cellular mobile communication system base station transmission apparatus and mobile station reception apparatus in cellular mobile communication system, and base station selection control method for cellular mobile communication system
  • the present invention relates to a cellular mobile communication system using a cellular system that performs single frequency repetition, and in particular, cellular mobile communication that increases the speed of communication even in a poor communication state such as large interference. About the system.
  • a cellular mobile communication system is intended to increase the speed of communication even when the communication state is particularly poor such as large interference.
  • the present invention relates to a base station transmitter and a base station receiver.
  • the present invention relates to a base station selection control method for a cellular mobile communication system, and is particularly applicable to a cellular mobile communication system that increases the communication speed even when the communication state is not good, such as large interference!
  • the present invention relates to a base station selection control method.
  • spread OFDM a scheme in which spread technology and code multiplexing technology are combined with OFDM technology and assigned to a plurality of subcarriers or OFDM symbols.
  • FIG. 37 is a block diagram of a transceiver using the OFDM scheme.
  • Fig. 37 (a) is a block diagram of the transmitter
  • Fig. 37 (b) is a block diagram of the receiver.
  • Nf Ns X Nc.
  • Nc is the number of subcarriers
  • Ns is the number of OFDM symbols. In addition to this, it is normal to include pilot symbols for channel estimation, but they are omitted here.
  • Transmission symbols are parallelized for each Nc symbol by a serial Z-parallel converter (hereinafter referred to as “SZP” (Serial / Parallel)) 500. It becomes a subcarrier component and is inverse FFTed by an inverse fast Fourier transform unit (hereinafter referred to as “IFFT (Inverse Fast Fourier Transform)”) 501, and is then converted into a parallel Z-serial conversion unit (hereinafter referred to as “PZS” (ParallelZSerial)). 502 is converted into a time signal sequence.
  • SZP Serial / Parallel
  • IFFT inverse Fast Fourier Transform
  • PZS Parallel Z-serial conversion unit
  • processing unit of IFFT processing is one OFDM symbol.
  • a guard interval (hereinafter referred to as “the guard interval”) is set for each OFDM symbol.
  • FIG. 38 is a diagram for explaining the arrangement relationship between OFDM symbols and GIs.
  • GI is data in which a signal behind the OFDM symbol is inserted before the OFDM symbol. This GI prevents interference due to delayed waves in the wireless communication path.
  • FIG. 39 is a diagram showing an arrangement of transmission symbols in a transmission signal within one frame in OFDM.
  • one frame is composed of Ns OFDM symbols, and the transmission symbols are sequentially arranged in the frequency direction in the OFDM symbol.
  • the “RemoveGI” block 504 cuts out OFDM symbols, that is, FFT processing units under the control of the timing detector 505, and the cut out OFDM symbols are converted into SZP changes.
  • a fast Fourier transform unit hereinafter referred to as “FFT (Fast Fourier Transform)”
  • FFT Fast Fourier Transform
  • PZS conversion is performed by PZS508, and a symbol string in the same order as the symbol arrangement of the transmission frame is obtained.
  • the same transmission symbol is arranged across a plurality of subcarriers or a plurality of OFDM symbols as shown in FIG. 40 in order to perform frequency domain or time domain spreading.
  • the spreading factor in the frequency domain is 4, and the same data symbol is transmitted using four subcarriers.
  • both the frequency domain and time domain spreading factors are 2, and the same data symbol is transmitted using two subcarriers and two OFDM symbols. In these examples, spreading of spreading factor 4 is performed, so the transmission speed of the transmission symbol is reduced to 1Z4.
  • the spread OFDM scheme is a scheme having tolerance against interference at the expense of transmission rate of transmission symbols.
  • FIG. 41 is a block diagram of a spread OFDM transceiver that performs frequency domain spreading.
  • FIG. 41 (a) is a block diagram of the transmitter
  • FIG. 41 (b) is a block diagram of the receiver.
  • the spreading factor of frequency domain spreading is SF.
  • the number of transmission symbols per frame is 1ZSF compared to OFDM.
  • SZP block 500 For each NcZSF symbol, SZP block 500 The parallelized symbols are subjected to frequency domain spreading by frequency domain spreading processing section 600, and become respective subcarrier components. This frequency domain spreading is performed by copying one symbol to SF subcarrier components and multiplying by a spreading code. Further, IFFT 501, PZS conversion 502 is performed to form a time signal sequence. In “AddGI” block 503, a guard interval (hereinafter referred to as “GI”) is added for each OFDM symbol.
  • GI guard interval
  • the configuration is the same except that a spreading processing unit 600 that performs frequency domain spreading is inserted before IFFT 501.
  • the receiver shown in FIG. 41 (b) has the same configuration except that a frequency domain despreading processing unit 601 for despreading the detected carrier component is inserted after FFT507.
  • a frequency domain despreading processing unit 601 for despreading the detected carrier component is inserted after FFT507.
  • FFT507 frequency domain despreading processing unit 601 for despreading the detected carrier component
  • OFDM-based SCS—MC—CD MA see “Non-Patent Document 1” as a fourth-generation cellular mobile communication system and OFDM-based VSF—OFCDM (Variable Spreading Factor—Otnogonal) Frequency and Code Division Multiplexing (see “Non-Patent Document 2”) has been proposed.
  • the control channel and communication channel are allocated to different subcarriers on the frequency axis.
  • the VSF-OFCDM system is a method of multiplexing a communication channel spread in the time domain and a control channel spread in both time and frequency domains using orthogonal codes.
  • data communication can be performed with higher power for a user at a point where attenuation is large, as a means for ensuring resistance to noise and other interference signals and ensuring communication quality.
  • An adaptive modulation and coding scheme has been proposed instead of transmission power control.
  • the above-mentioned adaptive modulation and coding scheme is close to the base station, that is, has a small attenuation! /, And uses a multi-level modulation and a high code rate error correction code for a user at a point. Increase the maximum communication speed for users at locations with high attenuation and high interference such as cell boundaries. Is a method of ensuring communication quality by reducing the communication speed by reducing the modulation multi-level number and code rate.
  • the propagation delay difference to the mobile station is the time GI of the GI described above and the radio wave
  • the base station is arranged and the time T is set so that the distance I multiplied by the propagation speed C does not become larger than the distance D between the base stations.
  • Non-Patent Document 3 discloses SC (Synchronous Coherent) OFDM technology that enables interference mitigation demodulation such as MMSE (Minimum Mean Square Error) diversity demodulation to mitigate mutual interference and improve communication quality.
  • SC Synchronous Coherent OFDM technology that enables interference mitigation demodulation such as MMSE (Minimum Mean Square Error) diversity demodulation to mitigate mutual interference and improve communication quality.
  • MMSE Minimum Mean Square Error
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-158901
  • Non-Patent Document 1 Nagai et al., “A Study on Common Control Channel Synchronization in SCS—MC—CDMA”, 2004 IEICE General Conference B-5-81
  • Non-Patent Document 2 Kishiyama et al., “Outdoor Experiment Results of Adaptive Modulation / Demodulation and Channel Coding in Downlink VSF-OFCDM Broadband Wireless Access”, 2004 IEICE General Conference B— 5— 94
  • Non-Patent Literature 3 Kevin L. Baum, Synchronous Coherent Othogonal Freq uency Division Multiplexing System, Method ⁇ Software and Device VTC '99 pp2222- 2226, 1998
  • the present invention has been proposed to solve the above-mentioned problems.
  • a cellular mobile communication system an increase in the amount of attenuation of a desired signal at a point far from the base station and A cellular mobile communication system that solves the problem that high-speed data communication becomes difficult due to a decrease in communication quality due to an increase in the amount of interference signals, a base station transmitter and a mobile station receiver used in the cellular mobile communication system
  • the present invention employs the configuration described below and has the following features.
  • a cellular mobile communication system is a cellular mobile communication system in which a mobile station can receive radio signals from a plurality of nearby base stations substantially simultaneously, and a predetermined communication data amount can be set at a substantially maximum communication speed.
  • a first communication mode for transmission, and a second communication mode for transmitting communication data obtained by dividing the predetermined communication data amount at a certain ratio by increasing communication quality instead of reducing the communication speed.
  • a base station controller When transmitting to a station, a base station controller that performs radio resource control of the entire system, including how much data amount is allocated to which base station among the plurality of base stations.
  • a first communication mode is a mode in which communication is performed between a transmitter of one base station and a receiver of the mobile station among the plurality of base stations,
  • the communication mode 2 is a mode used when the communication environment condition is not good compared to the communication environment condition using the first communication mode, and is used in the vicinity of the mobile station selected by the base station controller.
  • the mobile station receiver receives the divided communication data transmitted from a plurality of base stations by the base station controller substantially at the same time, and ensures a predetermined communication speed compared to the substantially maximum communication speed. It is the mode which communicates in this way.
  • the transmission of the base station Without dividing the predetermined communication data amount, instead of lowering the communication speed as in the second communication mode, the communication quality is improved, and the plurality of base stations as in the first communication mode.
  • a third communication mode that is a mode for communicating between a transmitter of one base station and a receiver of the mobile station, and the mobile station has a third communication mode. Transmission data is transmitted to a receiver, and the receiver of the mobile station receives transmission data transmitted from the third communication mode.
  • the mobile station includes base station selecting means for automatically selecting a plurality of base stations in the vicinity of the mobile station, and the base station selecting means Measures the reception level of a plurality of base station power signals, selects a predetermined number of base stations based on the measured reception level, and corresponds to the reception level or the reception level described above.
  • a parameter indicating channel quality is transmitted to the base station controller via one or more of the selected base stations.
  • the base station controller includes base station selection means capable of automatically selecting a plurality of base stations near the mobile station, and the base station selection means includes: Receiving selection information including the reception level or a parameter indicating the channel quality corresponding to the reception level from the mobile station via the base station, and selecting the base station based on the selection information. It is characterized by.
  • the base station controller executes the selection of the base station, the communication conditions between the transmitter of the base station and the receiver of the mobile station are good.
  • the communication condition is determined to be good
  • the first communication mode is selected and the first communication mode is selected between the base station and the mobile station.
  • the third communication mode is selected according to the amount of communication traffic in the cell and the communication service quality provided to each mobile station. Then, communication is performed between the selected base station and the mobile station.
  • the cellular mobile communication system is a communication mode for performing high-speed data communication using a broadband signal including an OFDM signal, wherein the second or third communication mode is Wideband signal including spread OFDM signal and high interference resistance signal It is a communication mode for performing communication.
  • a communication mode for performing high-speed data communication using a wideband signal including an OFDM signal having a high modulation multi-level number or a high code rate is a communication mode in which communication is performed using a wideband signal and a high interference resistance signal including an OFDM signal with a low modulation multi-level number or a low coding rate. It is characterized by being.
  • the cellular mobile communication system uses a spread OFDM signal in the second or third communication mode, and separates a plurality of identical data at a constant interval.
  • the interference resistance is further improved.
  • each of the plurality of base stations has an identification number so that the signals of the base stations can be distinguished and simultaneously received.
  • the base stations located in the vicinity of the base station are grouped so that they do not have the same base station identification number, and a plurality of base stations having different base station identification numbers are substantially simultaneously received by the receiver of the mobile station. It is characterized by receiving.
  • a cellular mobile communication system includes a plurality of base stations, a mobile station receiver capable of receiving radio signals of a plurality of nearby base stations substantially simultaneously, and a base station controller.
  • Each of the plurality of base stations includes transmission means for receiving an access request in which the mobile station power is also transmitted, and transmitting the access request to the base station controller, the base station controller comprising: Communication resource determining means is provided for determining which data amount is allocated to which base station among the plurality of base stations receiving the access request.
  • the plurality of base stations grouped so as not to belong to the same group as neighboring base stations have base station identification numbers corresponding to the group. It is characterized by that.
  • the base station transmitter in the cellular mobile communication system is a cellular mobile communication system that receives radio signals from a plurality of base stations in the vicinity of the mobile station substantially simultaneously.
  • a transmission apparatus for the base station in which a pilot channel signal generator for generating a pilot channel signal for performing channel estimation including measurement of a reception level of each base station, and a traffic channel for transmitting traffic data
  • a traffic channel signal generation unit for generating a signal
  • a control channel signal generation unit for generating a control information signal including destination information of the traffic data, the control channel signal generated by the control channel signal generation unit, and Combining means for combining the traffic channel signal generated by the traffic channel generation unit to generate a combined signal; and the pilot channel signal generated by the pilot channel signal generation unit and the Synthesis generated by synthesis means
  • the signal is multiplexed to generate a transmission signal to increase transmission efficiency, and a predetermined amount of communication data is transmitted at a substantially maximum communication speed from one of the plurality of base stations according to the communication environment state.
  • a first communication mode in which the communication quality is increased instead of lowering the communication speed, and the plurality of base stations transmit communication data obtained by dividing the predetermined communication data amount by a certain ratio.
  • the communication quality is increased instead of decreasing the communication speed, and the predetermined communication data amount is not divided as in the first communication mode.
  • the transmission signal is transmitted by switching a third communication mode in which one base station power transmission among the plurality of base stations is performed.
  • each of the plurality of base stations has an identification number so that the signals of the base stations can be distinguished and received simultaneously, and the base stations located in the vicinity of each base station have the same base station identification.
  • the mobile station receivers receive a plurality of base stations that are grouped so as not to have numbers and have different base station identification numbers at substantially the same time.
  • the pilot channel signal generation unit is different from a pilot channel scramble code different for each of the plurality of base stations. And a pilot pattern for distinguishing a base station having the base station identification number.
  • the control channel signal generator is a scramble code common to the plurality of base stations. And the control channel scramble code generated using the orthogonal code corresponding to the base station identification number and the consecutive symbols of the orthogonal code length or more corresponding to the base station identification number have the same value. Means for multiplying control channel symbols, and control channel signals having different base station identification numbers are generated so as to be orthogonal signals.
  • the traffic channel signal generation unit includes a traffic channel scrambling code that is different for each of the plurality of base stations, and the first In the communication mode, the traffic channel symbol value that changes according to the traffic data, or in the second or third communication mode, in order to ensure the communication quality according to the communication environment state, it is continuous or constant. And means for multiplying the traffic channel symbols by which a plurality of symbols arranged at intervals take the same value.
  • the pilot channel signal generator generates a pilot channel signal that is an OFDM signal, and when the time axis component in the frame of the OFDM signal is represented by i and the subcarrier component is represented by j, A scramble code X ⁇ unique to the base station having a station number (1) and a pilot pattern w (n (1)) corresponding to the base station identification number n (l) with the base station assigned to each group.
  • a feature is that a predetermined number of pilot signals are generated so that the channel gain can be accurately estimated and the received power can be accurately measured while shifting the time.
  • the control channel signal generation unit generates a control channel signal that is a spread OFDM signal.
  • the time axis component in the frame of the spread OFDM signal is represented by i and the subcarrier component is represented by j.
  • a scramble code y which is a common code for the control channel
  • a scramble code X (1) specific to the base station to generate a control channel signal, which is a spread OFDM signal, obtained by spreading the control channel symbol c (1), and Is a plurality of fronts having different base station identification numbers.
  • the control channel signal is separated from the base station, and the control information is acquired.
  • the traffic channel generation unit receives a traffic channel signal that is an OFDM signal or a spread OFDM signal, represents a time axis component in the frame of the OFDM signal or the spread OFDM signal, and represents a subcarrier.
  • the traffic channel signal which is an OFDM signal obtained by multiplying the traffic channel data d (1) and the scramble code X (1) specific to the base station.
  • (x (1) X d (1) ) generation in the second or third communication mode, the traffic channel data obtained by dividing the traffic channel data d (1) into a plurality of groups, It is characterized in that it generates a traffic channel signal, which is a spread OFDM signal, that has been frequency spread processed using a base station-specific scramble code X (1) .
  • the transmission apparatus of the base station in the cellular mobile communication system is a scramble code different from the scramble code X (1) unique to the base station.
  • the control unit further generates a control channel data.
  • the control unit inputs base station controller power communication mode information for performing base station selection and communication mode selection processing, and transmits a communication mode switching signal. Generating and controlling the traffic channel signal generation unit.
  • a mobile station receiver in a cellular mobile communication system wherein the mobile station receiver in a cellular mobile communication system receives radio signals from a plurality of base stations near the mobile station substantially simultaneously, Pilot channel signal power generated using a scramble code that varies depending on the base station and a pilot symbol pattern that varies depending on the identification number of the base station.
  • Pilot that performs reception level measurement of the base station and extraction of pilot information including channel estimation
  • a channel signal processing unit a traffic channel signal processing unit that processes the traffic channel signal and generates traffic channel data; a control information signal that includes destination information of the traffic data;
  • a control channel signal processing unit for processing control information for determining whether or not the addressed information is included, and a communication mode switching control signal to be input to the traffic channel signal processing unit, and generating a predetermined number of base stations
  • a general control unit comprising a base station selection means for selecting a predetermined amount of communication data from one of the plurality of base stations at a substantially maximum communication speed according to a communication environment state.
  • the communication quality is increased instead of reducing the communication speed, and the predetermined communication data amount is not divided as in the first communication mode.
  • Plural By switching the third communication mode for transmitting from one base station among the base fabric station, characterized in that so as to transmit the transmission signal.
  • the pilot channel signal processing unit receives the pilot generated by the pilot channel signal generation unit according to claim 3 or 6, and receives a pilot corresponding to the base station identification number. It is characterized in that the channel gain between multiple base stations with different base station identification numbers is estimated by performing channel estimation using the lot pattern.
  • the control channel signal processing unit receives the control channel signal generated by the control channel signal generation unit according to claim 4 or 7, and receives a scramble code common to the plurality of base stations and By performing signal processing using orthogonal codes corresponding to a plurality of base station identification numbers, the control channel signals are separated from the plurality of base stations having different base station identification numbers, and control from the plurality of base stations is performed. It is characterized by acquiring data.
  • the traffic channel signal processing unit receives signals transmitted from a plurality of base stations substantially simultaneously, and performs interference between signals of other base stations transmitted substantially simultaneously. By weighting using the weights to be reduced and demodulating each, it is possible to reproduce each of the traffic channel data transmitted from the plurality of base stations.
  • the traffic channel signal processing unit receives a signal in which a plurality of base station powers are transmitted substantially simultaneously in the second communication mode.
  • the combination of traffic channel data transmitted from each base station is compared with the signal points received by combining the signals of multiple base stations, and the accuracy of each traffic channel data symbol or bit is compared. Is output.
  • the control channel signal processing unit further includes a control channel interference removing unit that generates a control channel signal replica from the control data obtained by the control channel signal processing unit and removes it from the received signal.
  • the output of the control channel interference canceling unit is used as an input.
  • the mobile station receiver in the cellular mobile communication system When the pilot channel signal, which is an OFDM signal, is received and the time axis component in the frame of the spread OFDM signal is represented by i and the subcarrier component is represented by j, A base station obtained by multiplying a scramble code X ⁇ unique to the base station having the base station number (1) by a pilot pattern w corresponding to the base station identification number n (l) with the base station assigned to each group.
  • the estimated value h (1 ', j) of the channel gain of the base station to be estimated is calculated by multiplying the pilot reception signal by the conjugate complex number of the pilot symbol and averaging it over time. .
  • the control channel signal processing unit receives a control channel signal that is a spread OFDM signal
  • the time axis component in the frame of the spread OFDM signal is represented by i
  • the subcarrier component is represented by j.
  • the orthogonal code w (n (1)) corresponding to the base station identification number n (l) is used so that the scramble code y, which is a common code for the control channel, and the base station signal can be received simultaneously.
  • the scramble code x (1) unique to the base station, and the control channel symbol c (1) is spread using the control channel signal, which is a spread OFDM signal, the scramble code y and the orthogonal code w (n (1)) and the scramble code specific to the base station A plurality of fronts having different base station identification numbers by multiplying each conjugate complex number of the node x (1) ]
  • the control channel signal is separated from the base station, and the control channel symbol c (1) is obtained.
  • the traffic channel signal processing unit receives a traffic channel signal that is an OFDM signal or a spread OFDM signal, represents a time axis component in the frame of the OFDM signal or the spread OFDM signal by i, and represents a subcarrier.
  • the traffic channel signal (X) that is an OFDM signal obtained by multiplying the traffic channel symbol d (1) and the scrambling code X (1) unique to the base station in the first communication mode.
  • (1) X d (1) in the second or third communication mode, the traffic channel symbol obtained by dividing the traffic channel symbol d (1) into a plurality of groups is unique to the base station.
  • the Torafi poke channel signal is spread OFDM signal
  • the base-station-specific scrambling code X (1) Multiplying a conjugate, further, in the second or third communication mode performs despreading processing, and performs playback of the Torafi poke channel symbol d (1).
  • the base station selection control method of the cellular mobile communication system includes a plurality of base stations, and a mobile station receiving apparatus capable of receiving radio signals from a plurality of nearby base stations substantially simultaneously,
  • a base station selection control method for a cellular mobile communication system comprising: a base station controller; selecting an appropriate base station from the plurality of base stations; and further, determined under the control of the base station controller.
  • a reception control step of the mobile station receiver when receiving transmission data of the base station power, and the mobile station passes through the base station of one station or multiple stations according to the reception control method.
  • the base station selection step of the base station controller comprising the step of selecting the final base station to be connected according to the traffic amount and communication path quality of each base station , And wherein a call with a.
  • the base station selection step of the base station controller is performed by the mobile station according to the reception control step. Access to the base station controller via multiple base stations A step of selecting a base station to be connected in response to real-time performance, priority, and channel quality.
  • the reception control step of the mobile station reception device starts from the reception signal in which the transmission signals of a plurality of base stations are mixed.
  • a step of measuring a channel state between a plurality of base stations and the mobile station a step of selecting one or a plurality of base stations based on a result of the step of measuring the channel state,
  • Demodulate the control channel signal of the base station to determine whether the traffic information addressed to itself is included. If the traffic information addressed to itself is included, demodulate the traffic channel signal of the base station And traffic And stearyl-up to extract information, characterized by comprising a.
  • the base station selection control method of the cellular mobile communication system according to the present invention is grouped so that it does not belong to the same group as the neighboring base station, and the base station identification number corresponding to the group is assigned.
  • the step of measuring the communication path state measures the reception signal level of each base station having the maximum reception signal level among the base stations having the same identification number. Characterized by steps
  • the base station selection control method of the cellular mobile communication system according to the present invention is grouped so that it does not belong to the same group as the neighboring base station, and the base station identification number corresponding to the group is assigned.
  • the step of measuring the communication path state measures the timing of the reception signal of the base station having the earliest reception timing among the base stations having the same identification number. Characterized by steps
  • the step of selecting one or a plurality of base stations is the highest value among the plurality of received signal levels.
  • the step of selecting the base station of one station or a plurality of stations may include the step of selecting one of the plurality of received signal levels.
  • a plurality of base stations having the maximum received signal level are selected, and a predetermined number of the base stations are selected in descending order of the received signal level among the selected plurality of base stations.
  • the step of selecting the base station of one station or a plurality of stations includes the step of selecting each of the plurality of received signal levels from the plurality of received signal levels.
  • Propagation loss is calculated, threshold Y is set for the calculated minimum value X of propagation loss, propagation loss is smaller than X + Y, and a predetermined number of base stations with propagation loss are selected. It is characterized by.
  • the step of selecting the base station of one station or a plurality of stations includes the step of selecting each base station from the plurality of received signal levels. A propagation loss is calculated, and a propagation loss of a received signal is small among a plurality of the selected base stations, and a predetermined number of the base stations are sequentially selected.
  • the step of selecting one or a plurality of base stations is the earliest of the plurality of reception timings.
  • a threshold Y is provided for the timing time X, and a predetermined number of base stations having a reception timing time earlier than X + Y is selected.
  • the step of selecting the base station of one station or a plurality of stations is a reception timing among the plurality of reception timings. It is characterized by selecting a predetermined number of base stations as soon as possible.
  • the step of selecting the base station of one station or a plurality of stations includes the respective propagation delays from the plurality of reception timings. Calculate the time, set a threshold Y for the minimum propagation delay time X, and select a predetermined number of base stations with a propagation delay time smaller than X + Y. It is characterized by that.
  • the step of selecting the base station of one station or a plurality of stations includes the respective propagation delays from the plurality of reception timings. The time is calculated, and the propagation delay is small! / A predetermined number of base stations are selected in order.
  • the step of transmitting the access request is selected in a step of selecting the base station of one station or a plurality of stations.
  • a step of transmitting an access request to each of the received base stations, and the step of determining whether the traffic information addressed to the own station is included is selected in the step of selecting the base station of one station or a plurality of stations It is characterized by determining whether traffic information addressed to itself is included by demodulating the control channel signals of all base stations and extracting control information.
  • the step of transmitting the access request is selected in the step of selecting the base station of one station or a plurality of stations.
  • a step of transmitting an access request to a base station having the best communication channel state among the received base stations, and a step of determining whether traffic information addressed to the own station is included includes transmitting the access request
  • the base station control channel signal transmitted in the step is demodulated and the control information is extracted to determine which base station's traffic channel contains the traffic information addressed to itself.
  • the step of transmitting the access request is selected in the step of selecting the base station of one station or a plurality of stations.
  • a step of transmitting an access request to a base station having the best communication path state among the received base stations, and determining whether traffic information addressed to the own station is included is the one station or the plurality of stations And determining whether the traffic information addressed to the mobile station is included by demodulating the control channel signals of all the base stations selected in the step of selecting the base station and extracting the control information.
  • the base station selection control method of the cellular mobile communication system further includes a step of receiving a call signal from one or a plurality of base stations in the vicinity of the mobile station. It is characterized by that.
  • the first communication mode in which the predetermined communication data amount is transmitted at the maximum communication speed and the predetermined communication data amount are divided. Then, instead of lowering the communication speed by the divided amount, the transmitter of the base station having the second communication mode for performing transmission with improved communication quality, the first communication mode and the second communication mode, By configuring the mobile station receiver capable of receiving the signal, it is possible to increase the operating rate of the base station and increase the communication speed according to the communication state.
  • transmission is performed by reducing the communication speed without dividing the communication data amount, thereby improving the communication quality.
  • the third communication mode even if the communication environment conditions are not good, it communicates with one base station, so it is possible to effectively use the resources of the base station according to the communication status. is there.
  • high-communication quality keys such as assigning orthogonal sub-carriers with a frequency spaced apart from each other to a plurality of the same data, performing multi-carrier transmission, and improving interference resistance. Can be planned.
  • the first communication mode for transmitting a predetermined amount of communication data at the maximum communication speed instead of dividing the predetermined communication data amount and lowering the communication speed, the communication speed is lowered without dividing the predetermined communication data amount and the second communication mode in which transmission is performed with higher communication quality.
  • the control channel signal generator distinguishes the base station signals so that they can be received almost simultaneously. Then, the control channel signal is generated by multiplying the orthogonal code corresponding to the base station identification number, and the receiver of the mobile station receives the control channel signal from the plurality of base stations having different base station identification numbers. Minutes without much The control information can be acquired.
  • the transmission efficiency is improved by combining the control channel signal and the traffic channel signal and transmitting the resultant, and consequently the It is possible to increase the data communication speed from the transmitting device to the receiving device of the mobile station.
  • orthogonal sub-carriers having frequencies spaced apart from each other by a predetermined interval are assigned to a plurality of identical data.
  • it is possible to achieve high communication quality such as multi-carrier transmission and higher interference resistance.
  • the control channel signal generation unit distinguishes the signals of the base stations and allows them to be received almost simultaneously.
  • a control channel signal is generated by multiplying the orthogonal code corresponding to the identification number, and the receiver of the mobile station receives a plurality of the base station powers having different base station identification numbers without much interference with the control channel signal. It is possible to separate and acquire the control information.
  • the transmission efficiency is improved by combining the control channel signal and the traffic channel signal and transmitting the resultant, and thus the base station It is possible to increase the data communication speed from the transmitter to the receiver of the mobile station.
  • a plurality of identical data are allocated with orthogonal sub-carriers having a frequency spaced apart from each other by a fixed interval, and a multicarrier It is possible to achieve high communication quality such as transmission and higher interference resistance.
  • FIG. 1 is a system conceptual diagram illustrating a basic concept of a cellular mobile communication system according to the present invention.
  • FIG. 2 is a network configuration diagram showing connection of traffic data and control information between the base station controller 14 and each base station.
  • FIG. 3 is a diagram showing an arrangement of base stations in a plurality of cells.
  • FIG. 4 is a diagram for explaining OFDM GI.
  • FIG. 5 is a configuration diagram on the time and frequency axes of each channel signal used in the cellular mobile communication system according to the present invention.
  • FIG. 6 is a block diagram of a base station transmitter.
  • FIG. 7 is a block diagram of a pilot channel signal generation unit 23 in a base station transmitter.
  • FIG. 8 is a block diagram of the control channel signal generation unit 24 in the transmitter of the base station.
  • FIG. 9 is a block diagram of a traffic channel signal generation unit 25 in a base station transmitter.
  • FIG. 10 is a block diagram of a mobile station receiver.
  • FIG. 11 is a block diagram showing a pilot channel signal processing unit corresponding to one base station among pilot channel signal processing units 41 in the receiver of the mobile station.
  • FIG. 12 is a block diagram showing a control channel signal processing unit corresponding to one base station among the control channel signal processing units 42 in the receiver of the mobile station.
  • FIG. 13 is a block diagram showing a traffic channel signal processing unit corresponding to one base station among the traffic channel signal processing units 43 in the receiver of the mobile station.
  • FIG. 14 is a diagram showing a pilot signal component of base station 0 in a table format.
  • FIG. 15 is a diagram showing a pilot signal component of the base station 1 in a table format.
  • FIG. 16 is a diagram showing a pilot signal component of the base station 2 in a table format.
  • FIG. 17 is a diagram showing control channel signal components of base station 0 in a table format.
  • FIG. 18 is a diagram showing control channel signal components of base station 1 in a table format.
  • FIG. 19 is a diagram showing control channel signal components of base station 2 in a table format.
  • FIG. 20 is a diagram showing a traffic channel signal component of base station 0 corresponding to the first communication mode in a tabular form.
  • FIG. 21 is a diagram showing the traffic channel signal components of the base station 1 corresponding to the first communication mode in a tabular form.
  • Traffic channel signal component of base station 2 corresponding to the first communication mode is tabulated It is the figure shown by the type
  • FIG. 23 is a diagram showing, in a tabular form, traffic channel signal components of base station 0 corresponding to the second communication mode.
  • FIG. 24 is a diagram showing the traffic channel signal components of the base station 1 corresponding to the second communication mode in a tabular form.
  • FIG. 25 is a diagram showing the traffic channel signal components of the base station 2 corresponding to the second communication mode in a tabular form.
  • ⁇ 26 This is a flow chart showing the procedure when one base station is selected by the base station selection means of the receiver in mobile station M and the first communication mode is selected by the base station controller.
  • ⁇ 27 This is a flow chart showing the procedure when a plurality of base stations are selected by the base station selection means of the receiver in mobile station M, and the second communication mode is selected by the base station controller.
  • ⁇ 28 This is a flow chart showing the procedure when a plurality of base stations are selected by the base station selection means of the receiver in mobile station M and the third communication mode is selected by the base station controller.
  • the base station candidate of the maximum reception level is selected by the base station selection means of the receiver of the mobile station, and the final base station and the first communication mode are selected by the base station selection means of the base station controller. It is a flowchart which shows the procedure in the case of performing.
  • the base station candidate of the maximum reception level is selected by the base station selection means of the receiver of the mobile station, and the final base station and the second communication mode are selected by the base station selection means of the base station controller. It is a flowchart which shows the procedure in the case of performing.
  • the second communication mode is selected by the base station selection means of the base station controller. It is a flowchart which shows the procedure in the case.
  • ⁇ 32 This is a flowchart showing the procedure when the third communication mode is selected by the base station selection means of the base station controller.
  • FIG. 6 is a flowchart showing a procedure when the final base selection and the first communication mode selection are executed by the base station selection means of the base station controller.
  • the base station candidate of the maximum reception level is selected by the base station selection means of the mobile station receiver, and the final base selection and the second communication mode selection are executed by the base station selection means of the base station controller. It is a flowchart which shows the procedure in the case of.
  • the base station selection means of the mobile station receiver selects the base station candidate of the maximum reception level, and the base station selection means of the base station controller performs the final base selection and the first communication mode selection. It is a flowchart which shows the procedure in the case of.
  • the base station candidate of the maximum reception level is selected by the base station selection means of the mobile station receiver, and the final base selection and the second communication mode selection are executed by the base station selection means of the base station controller. It is a flowchart which shows the procedure in the case of being performed.
  • FIG. 37 is a block diagram of a transceiver using the OFDM scheme.
  • (A) is a block diagram of a transmitter, and
  • (b) is a block diagram of a receiver.
  • FIG. 38 is a diagram for explaining the arrangement relationship between OFDM symbols and GIs.
  • FIG. 39 is a diagram showing an arrangement of transmission symbols in a transmission signal in one frame of the OFDM scheme.
  • FIG. 40 is a diagram showing an arrangement of transmission symbols in a transmission signal in one frame of the spread OFDM scheme.
  • A is a diagram showing that the spreading factor in the frequency domain is 4, and the same data symbol is transmitted on four subcarriers.
  • (b) is a diagram showing that both the frequency domain and time domain spreading factors are 2, and the same data symbol is transmitted with two subcarriers and two OFDM symbols.
  • FIG. 41 is a block diagram of a spread OFDM transceiver that performs frequency domain spreading.
  • (a) is a block diagram of a transmitter
  • (b) is a block diagram of a receiver.
  • Control channel data buffer unit Traffic channel data buffer unit Control unit
  • Traffic channel signal processor Control channel data recovery unit Traffic channel data recovery unit
  • Traffic channel data recovery unit General control unit
  • Control channel symbol despreader 52a Traffic channel symbol despreader
  • FIG. 1 to FIG. 36 are examples of embodiments of a base station transmission apparatus, a mobile station reception apparatus, and a base station selection control method of a cellular mobile communication system in a cellular mobile communication system. Parts denoted by the same reference numerals represent the same thing.
  • FIG. 1 is a system concept diagram illustrating a basic concept of a cellular mobile communication system according to the present invention.
  • each base station is arranged to represent a cellular mobile communication system that communicates with a mobile station.
  • base stations A, B, and C are placed in two cells 10, 11, and 12, respectively.
  • mobile station M moves and a point in boundary region 13 where three cells 10, 11, 12 overlap.
  • E Shows an example of data communication when there is an error.
  • FIG. 2 is a network configuration diagram showing the connection between the base station controller 14, traffic data between base stations, and control information.
  • the base station controller 14 is a device that controls radio resources.
  • the base station controller 14 is connected to the core network 15 connected to the Internet 16 and each base station.
  • the radio channel of any of the plurality of base stations (here, base stations A, B, C) is assigned.
  • it performs radio resource control for the entire system, such as how to allocate which data among the transmission data to each base station.
  • the communication line connected to the base controller 14 is not limited to the Internet 16, and may be a dedicated communication line such as a RAN network.
  • each base station controller 14 force system is present!
  • Each base station controller is connected to multiple base stations.
  • a system configuration in which the functions of the base station controller related to the present invention are provided in each base station is possible. In other words, a configuration in which a plurality of base stations exchange information directly and determine a base station and a communication mode for transmitting to mobile station M is also conceivable.
  • the base station controller 14 transmits all data x, y, z to the base station A and transmits them.
  • the base station A that has received the data collectively transmits the data x, y, z to the mobile station M via a traffic channel described later.
  • This communication mode is called the first communication mode.
  • data transmission of one base station is performed by dividing the data x, y, z into three and assigning the data x, y, z to each base station A, B, C. Reduce the volume to one third.
  • the base station controller 14 transmits data x to the base station A, data y to the base station B, and data z to the base station C, and determines the data allocation amount per base station. Make it smaller.
  • data x, y from three base stations A, B, and C are almost simultaneously , Z, and received at mobile station M almost simultaneously, select a communication meter, etc. so that the communication speed is as equal as possible to the communication speed of the first communication mode. Speed data transmission can be realized.
  • This communication mode is called the second communication mode.
  • the mobile station M when the mobile station M is in a poor communication environment such as the point E and many other mobile stations are communicating at the same time, or a mobile station with a higher priority is If present, mobile station M may not be able to allocate many radio resources. In such a case, for example, the mobile station M communicates only with the base station A and, like the second communication mode, uses a spread OFDM signal that is resistant to interference to increase interference resistance. To improve communication reliability and ensure communication quality. This communication mode is called the third communication mode
  • each communication mode changes in the positional relationship between neighboring base stations and mobile station M, changes in the communication environment state.
  • appropriate communication mode transition that is, mode selection, according to the traffic of each cell and the change in communication quality required for communication with mobile station M and other mobile stations.
  • the mode transition from the first communication mode to the second communication mode or the third communication mode is performed when the currently selected base station A (in the first communication mode, only base station A is selected).
  • the pilot signal (described later) is always detected, and when the communication environment conditions change, the communication mode transition is performed when the received signal level falls below a predetermined level. May be.
  • the interference level is measured together with the received signal level of base station A and the desired signal power to interference power ratio (SIR) is calculated, and the SIR falls below the specified level
  • the communication mode may be changed.
  • the transition to the second communication mode is performed, the currently selected base station A is reviewed again, and the base station selection means of the mobile station M or the base station controller 14 or a combination thereof.
  • the base station ⁇ , ⁇ ⁇ ', C is selected by the combination, and the transition to the third communication mode is performed, it is necessary to review the currently selected base station A and select the base station A'.
  • the base stations ⁇ ', ⁇ ', C ' for example, when the base station selection means of the mobile station ⁇ ⁇ performs selection, as will be described later, from a plurality of base stations always around, A pilot signal is received, and base stations ⁇ ′, ⁇ ′, and C ′ having a predetermined reception power level or higher are selected.
  • the base stations A ′, B ′, and C ′ may be selected in consideration of the information at the stage of selecting the base station A.
  • Control channel data which will be described later, has a smaller amount of data than traffic channels, but at the same time requires high reliability. For this reason, spread OFDM signals that have been spread in the frequency domain or in the time domain (spread in both domains) are used to provide high interference immunity, and to improve the interference.
  • Each base station A, B, C power is transmitted after processing to suppress interference between stations.
  • frequency diversity can be performed by obtaining a plurality of channels by using orthogonal sub-carriers that are separated by a fixed interval. Interference resistance can be made higher.
  • the power of the basic concept for performing parallel transmission which is the second communication mode using the above three base stations A, B, and C.
  • the basic concept is based on parallel transmission.
  • Multiple input multiple output (MIMO) technology that enables transmission and multiple It uses OFDM technology, which is characterized by being path-resistant.
  • the antenna of the transmitting base station is almost at the same position, so the propagation delay difference does not need to be considered in particular compared to the delay due to multipath.
  • the base station power since transmissions from a plurality of base stations are performed almost simultaneously, it is desirable that the base station power also be such that the propagation delay difference to the mobile station does not become larger than GI.
  • a mobile station it is difficult for a mobile station to include a plurality of antennas in order to improve portability.
  • a spread OFDM signal that performs frequency domain spreading is used instead of the OFDM signal.
  • a spread OFDM signal that performs frequency domain spreading is used instead of the OFDM signal.
  • FIG. 3 is a diagram showing the arrangement of base stations in a plurality of cells.
  • FIG. 4 is a diagram for explaining the GI of OFDM.
  • the GI length is leap seconds, and the distance between adjacent base stations is D meters. Also
  • FIG. 5 is a configuration diagram on the time and frequency axes of each channel signal used in the cellular mobile communication system according to the present invention.
  • Each base station (represented by base stations A, B, and C in Fig. 5) is a traffic channel for transmitting data such as voice and image to mobile station M, and destination information of traffic channel data.
  • Each channel signal is transmitted almost simultaneously using a control channel for transmitting control information including, and a pilot channel for performing channel estimation (including measurement of the reception power level of each base station).
  • pilot signals are transmitted from the base stations A, B, and C almost simultaneously, it is necessary to receive the signals separately on the mobile station M side without causing interference. There is. Therefore, a pilot signal for each base station is transmitted using an orthogonal code corresponding to a base station identification number (shown in Equation 1) described later. Also, the control channel signal and the traffic signal are devised so that the mobile station M can easily separate the control channel signal and the traffic signal as described later.
  • the nolot channel is time multiplexed.
  • the pilot signal is transmitted by using another OFDM symbol in time between Np and the time 0 force at the beginning of the frame.
  • control channel signals and traffic channel signals are transmitted after time Np.
  • control channel signal is generated as a spread OFDM signal subjected to frequency domain spreading. After frequency spreading, it is scrambled with a scramble code.
  • This scramble code shall be a common code for the control channel.
  • the traffic channel is scrambled using a different random sequence for each base station, and is non-orthogonal signal multiplexed with the control channel signal.
  • the pilot symbols are scrambled with the same random sequence as the traffic channel.
  • Suppress interference By using a pilot pattern that is orthogonal to the pilot signals of different base station numbers in the time direction, Suppress interference.
  • the pilot signals may be arranged separately before, after or between the force frames arranged at the front end of the frame. Alternatively, only some of the Nc subcarriers may be used. Also for traffic channel signals and control channel signals Even if there is no traffic signal, only the control signal may be transmitted in some cases! /, And by assigning the traffic signal and control signal to different OFDM symbols or different subcarriers, It is also possible to eliminate mutual interference.
  • the pilot channel, control channel, and traffic channel signal configurations are multiplexed with as little interference as possible between base stations, thereby selecting multiple base stations. This makes it possible to easily identify the base station and improve the signal transmission efficiency, and to perform high-speed data transmission between the base station and the mobile station according to the communication environment condition that is the purpose of this system.
  • Basic data structure
  • FIG. 6 is a block diagram of the transmitter of the base station
  • FIG. 10 is a block diagram of the receiver of the mobile terminal (mobile station).
  • the transmitter 17 of the base station receives control information including information for selecting a communication mode from the base station controller 14 (shown in FIG. 1), and receives control channel data.
  • Control unit 20 for generating control signals such as generation and communication mode switching, control channel buffer unit 18 for buffering the generated control channel data, and control channel symbol generation unit 21 for generating control channel symbols
  • a traffic channel buffer unit 19 for inputting and buffering traffic channel data, a traffic channel symbol generating unit 22 for generating traffic channel symbols by inputting traffic channel data, and a pilot channel signal generating unit for generating pilot signals.
  • control channel signal generation unit 24 for generating control signals
  • traffic The traffic channel signal generator 25 that generates the traffic signal, and the control signal generated by the control channel signal generator 24 and the traffic signal generated by the traffic channel signal generator 25 are combined to generate a combined signal.
  • the receiver 39 of the mobile station is transmitted from the transmission unit of the base station.
  • An antenna 40 that receives a control channel signal or a combined signal of a control channel signal and a traffic channel signal or a pilot signal, a pilot channel signal processing unit 41 that generates a pilot symbol from the received pilot signal, and a received control channel
  • a control channel signal processor 42 that extracts control channel symbols from the signal, a control channel symbol power that is extracted, a control channel data recovery unit 44 that extracts control channel data, and a traffic channel symbol extracted from the received traffic channel signal Traffic channel signal processor 43, traffic channel data regenerator 45 for extracting traffic channel data from the extracted traffic channel symbols, and input to the traffic channel signal processor
  • the overall control unit 46 which generates a signal mode switching control signal (control Chiyane Le information), the.
  • the overall control unit 46 further includes base station selection means for measuring the received signal level from a plurality of base stations from the received signal and selecting a base station that makes an access request.
  • control channel information is generated from control information including communication mode selection information in which the base station controller power is also transmitted.
  • the pilot channel signal generation unit of the transmitter is generated by the pilot channel signal generation and channel estimation.
  • the block diagram of FIG. 7 and FIG. 7 of the pilot channel signal processing unit 41 of the receiver will be described with reference to the block diagram 11 of the pilot channel signal processing unit corresponding to one base station.
  • FIG. 7 is a block diagram of the pilot channel signal generation unit 23 in the transmitter of the base station.
  • FIG. 11 is a block diagram showing a nolot channel signal processing section corresponding to one base station in the nolot channel signal processing section 41 in the receiver of the mobile station.
  • Each subcarrier component of the pilot symbol is denoted by p (i, j).
  • i is a time-direction index and takes a value from 0 to Np ⁇ 1.
  • j is an index in the frequency direction and takes a value from 0 to Nc ⁇ 1.
  • an orthogonal code orthogonal to each other between base stations having different base station numbers is copied by a copy unit 30 and multiplied by a pilot scramble code.
  • the arithmetic unit 31 multiplies the orthogonal code by a scramble code unique to the base station and performs frequency spreading.
  • base station identification numbers # 0 to # 3 are used corresponding to FIG. 3, and the number of pilot symbols Np is four.
  • a scramble code specific to the base station 1 is represented by XX ⁇ , X ⁇ ).
  • the base station identification number corresponding to the base station 1 is represented by n (1).
  • the orthogonal code of length 4 corresponding to the base station identification number n (1) is represented by w (n (1)) , w (n (1)) , w (n (1)) , w ( ⁇ ) ).
  • ⁇ ⁇ for example, a part of the Maximal Length Sequence (m sequence) whose period is longer than Nc may be assigned to different base stations. Also, w (n (1)) may assign each orthogonal row of the Hadamard sequence to each base station identification number.
  • Equation 1 does not necessarily need to be composed of the equation shown in Equation 1 and satisfies the relationship of the following equation for base station 1 with a different base station identification number: If so, a different signal may be used.
  • Equation 3 The above h (l, j) is a channel gain in the subcarrier j between the base station 1 and the mobile station.
  • the channel gain is assumed to have little variation in the time direction, and the time direction index is omitted.
  • channel estimation signal generation unit 50 of pilot channel signal processing unit 41 of receiver 39 calculates the complex conjugate of the pilot symbols of the base station as shown in the following equation.
  • the estimated value of the channel gain can be calculated by multiplying and averaging over time. This estimated channel gain is expressed by the following equation.
  • is the sum of the base station components such as the base station whose base station identification number has calculated the channel gain estimate, and That means that.
  • pilot signals of base stations having different base station identification numbers can be eliminated by the orthogonality of pilot symbols.
  • FIG. 8 is a block diagram of the control channel signal generation unit 24 of the transmitter, and control channel signal processing unit 42 of the receiver corresponds to the generation of the control channel symbol.
  • the block signal processing unit will be described with reference to a block diagram 12 shown in FIG.
  • FIG. 8 is a block diagram of the control channel signal generation unit 24 in the transmitter of the base station.
  • FIG. 12 is a block diagram showing a control channel signal processing unit corresponding to one base station among the control channel signal processing units 42 in the receiver of the mobile station.
  • control signal frequency spreading section 32 scrambles the control channel symbol with the following control channel scrambling code.
  • control channel scramble code ⁇ ⁇ is shown below by using the control channel common codes y 1, y 2,..., Y and the aforementioned x (1) , w (n (1)). It becomes like the formula.
  • I 0 is defined for the first OFDM symbol containing.
  • control channel scrambling code ⁇ ⁇ does not necessarily need to be configured by the equation shown in Equation 4, and satisfies the relationship of the following equation for base station 1 having a different base station identification number: Different codes may be used as long as they are different. There is no need to use a fixed pattern in the time direction.
  • control channel signal processing unit 42 control channel symbols are extracted by the control channel signal processing unit corresponding to one base station.
  • control channel symbol despreading unit 51 of the receiver 39 outputs a signal represented by the following equation by multiplying the complex conjugate of the common code y.
  • the received signal mixed with the signals of multiple base stations is four signals with different base station identification numbers as shown in the following formula. Can be converted to
  • control channel symbol c (1) (i, j) of each base station can be extracted by performing despreading by multiplying the channel gain obtained from the pilot signal by a specific scramble code. [0167] An equation indicating the process of extracting the control channel symbol is described below.
  • G is the channel gain after synthesis
  • I is the interference signal component.
  • the estimated channel gain is used as the weight, it is possible to obtain a different weight from the estimated channel gain of GI h (l, j) I 2 .
  • the assumption of Equation 9 is not satisfied, and the interference signal component I may become large. In such a case, interference and noise can be suppressed by using a weight based on the MMSE (Minimum Mean Square Error ) standard.
  • MMSE Minimum Mean Square Error
  • the mobile station receiver 39 receives data included in the traffic channel signal received simultaneously with the control channel signal. Can determine the data power addressed to itself and from which base station the data is transmitted.
  • FIG. 9 is a block diagram of the traffic channel signal generation unit 25 of the transmitter for generating traffic channel signals and generating traffic symbols.
  • the traffic channel signal processing unit 43 of the receiver will be described with reference to a block diagram 13 showing a traffic channel signal processing unit corresponding to one base station.
  • the communication mode is the first communication mode, and only base station A is selected. That is, the switches (SW A, SW B) shown in FIG. 9 are respectively brought down by the control signal from the control unit 20, and the traffic channel symbol is input to the lower traffic channel signal generation unit. Then, one-to-one communication is performed between the base station A and the mobile station M, and the data of the traffic channel is transmitted at the maximum speed. Therefore, Figure 29 (a The OFDM signal is used as it is as shown in FIG. In Fig. 9, the power indicated by SW for switching the communication mode is logical only and does not necessarily mean actual hardware.
  • the traffic channel signal at this time is
  • the traffic channel signal uses the scrambling code XX ⁇ ⁇ (1) unique to the base station 1 by the traffic scrambling code multiplier 34.
  • each subcarrier component dQ ) (i, j) of the OFDM symbol is expressed by the following equation with respect to transmission symbol s (k).
  • the power of using xa ) as the scramble code of the traffic channel is not necessarily the same as the scramble code of the pilot channel, and any pattern different depending on the base station is used. You can use it! /
  • the signals of both channels are independent from each other. Therefore, as shown in the channel configuration diagram shown in FIG. 5, the traffic channel signal and the control channel signal are combined by the combiner 26 and transmitted. This synthesized signal is expressed by the following equation.
  • the switches (SW C, SW D) shown in FIG. 13 are respectively brought down by the control channel information from the general control unit 46, and the traffic channel symbols are input to the lower traffic channel signal processing unit.
  • traffic Chiya Ne Rushinboru reproducing portion 52b of the traffic signal processing unit 43 is simply a unique scrambled code to the base station 1 to the traffic signal XX... ⁇ ⁇ ⁇ ) complex conjugate and complex conjugate of the estimated channel gain
  • base stations A, B, and C transmit different traffic data to the mobile station. That is, Nc symbols in the entire frequency direction are divided into 1Z3 and transmitted by each base station. One base station can transmit one symbol spread to three same symbols.
  • j 0, 1,..., N / 3-3
  • the switches (SW C, SW D) shown in FIG. As shown in the traffic channel symbol despreading unit 52a in FIG. 13, the signal components of three subcarriers separated in frequency by NZ3 times the subcarrier interval are combined and demodulated. Thus, the traffic channel symbol is reproduced. In this way, since the frequency diversity effect can be obtained, the communication quality can be improved by averaging the fluctuations of the subcarrier level.
  • the data transmission speed per station is 1Z3 as described above. By receiving signals from three base stations almost simultaneously, the same transmission as in point D is performed at mobile station M. Speed can be realized.
  • the two channel signals may interfere with each other.
  • the traffic signal may be demodulated after the control channel is first demodulated and the control channel signal component is canceled from the combined signal. As a result, the communication quality of the traffic channel signal can be improved.
  • the third communication mode in which communication is performed between the transmitter of one base station and the mobile terminal described above is executed using the upper block that executes the second communication mode. Since this block only processes 1Z3 of the entire symbol, the processing time of the entire data requires three times the processing time. As a result, the data transmission rate drops to 1Z3.
  • different weights can be obtained as in the case of the force control channel using the complex conjugate of the estimated channel gain as the weight.
  • interference and noise can be suppressed by obtaining a weight based on the MMSE (Minimum Mean Square Error) standard so as to reduce the influence of other base station signals transmitted almost simultaneously.
  • MMSE Minimum Mean Square Error
  • a demodulating method based on MLD Maximum Likelihood Detection
  • MLD Maximum Likelihood Detection
  • the mobile station receiver measures the reception level of each base station, selects a base station candidate according to the quality of the communication channel, and then selects the final base station (resulting in communication). This is an example of the base station selection control method when the mode is also selected).
  • FIG. 26 is a flow chart showing a procedure when one base station is selected by the base station selection means of the receiver in mobile station M and the first communication mode is selected by the base station controller.
  • the pilot channel signal processing unit 41 receives pilot signals of neighboring base stations (step S100). Then, the pilot channel signal processing unit 41 measures the received signal level of each surrounding base station (step S 101).
  • the base station selecting means of the overall control unit 46 selects the base station measured in step S101 from a plurality of base stations having the same base station identification number (# 0 to # 3). Among the received signal levels, a base station having the maximum received signal level is selected for each base station identification number, for example, four base stations are selected (step S102).
  • a base station having a level lower by a predetermined dB or more than the base station having the maximum received signal level is excluded (step S103). Furthermore, if there are more than 3 selected base stations, the minimum reception level is excluded. (Step S104). In the present embodiment (FIG. 26), an example is shown in which the mobile station M is at a point close to the base station A, and only the reception level of the base station A is very large, and only the base station A is selected.
  • step S 105 an access request is transmitted to the selected base station A.
  • information on the selected base station A and data such as communication quality parameters are transmitted to the base station A.
  • the base station A Upon receiving the access request, the base station A transmits an access request from the mobile station M to the base station controller 14, and also transmits information on the selected base station A and communication quality parameters of the above information. (Step S106).
  • the base station controller 14 Upon receiving an access request from the base station A, the base station controller 14 transmits an access permission to the base station A, determines the communication mode as the first communication mode, and transmits control information and Send traffic data (step S107).
  • base station A that has received access permission from the base station controller generates a frame including a composite signal of the control channel signal and the traffic channel signal, and transmits the frame to mobile station A (step S 108). ). Then, the receiver of mobile station M demodulates the control channel signal from selected base station A (step S 109).
  • step SI 10 it is determined whether there is no error in the decoded control channel data using a CRC (Cyclic-Redundancy-Check) code or the like (step SI 10). 110; Yes) determines whether or not the traffic channel signal includes information addressed to the local station based on the received control information (step S 111), and includes information addressed to the local station. If so (step Sill; Yes), the base station A traffic channel is demodulated and decoded (step S112).
  • CRC Cyclic-Redundancy-Check
  • step S110 If there is an error in the received control channel data in step S110 (step S110; No), and if it is found in step S111 that the information addressed to the own station is not included ( In step Sl ll; No), no further processing is performed on the traffic channel signal of base station A! /, (Step S 113).
  • control channel of the reception candidate base station is received, error detection is performed using a CRC code or the like, and if there is no error (step S110; Yes), a replica of the control channel signal is generated and the received signal It is possible to cancel the power and demodulate the traffic channel of the base station signal.
  • a criterion for selecting base stations may be a method of ordering based on the propagation loss of the wireless communication path. Furthermore, in order to use the distance from the base station as a reference, an ordering method based on the received signal timing and propagation delay is also conceivable.
  • the mobile station receiver measures the reception level of each base station, selects base station candidates according to the quality of the communication channel, and then selects a plurality of final base stations. It is an example of a base station selection control method.
  • the difference from the first embodiment is an example of a base station selection control method in which the base station controller determines the final communication mode in accordance with the amount of traffic.
  • FIG. 27 shows a case where a plurality of base station candidates are selected by the receiver base station selection means in the mobile station M, the final base station is determined, and then the second communication mode is determined by the base station controller. It is a flowchart which shows the procedure when is selected.
  • FIG. 28 is a flowchart showing a procedure when a plurality of base stations are selected by the base station selection means of the receiver in mobile station M and the third communication mode is selected by the base station controller. is there. [0206] The operations of the base station controller, the base station, and the mobile station will be described below based on the flowcharts shown in Figs.
  • Step S100 to step S104 are the same processing as the flow shown in FIG. However, in the present embodiment (FIGS. 27 and 28), an example is shown in which the mobile station M is near the boundary between the base stations A and B, and the reception levels of the base stations A and B are almost the same level. Stations A and B will be selected.
  • step S104 when base stations A and B whose reception level difference is within a predetermined range are selected, mobile station M transmits an access request to base stations A and B, and each selects Information and respective communication quality parameters are transmitted (step S200).
  • base station A Upon receiving the access request, base station A transmits an access request from mobile station M to the base station controller, and also transmits the communication quality parameter of base station A (step S201). Similarly, when base station B accepts the access request, it transmits an access request for mobile station M power to the base station controller, and also transmits the communication quality parameter of base station B (step S202).
  • the base station controller that has received the access request for the base stations A and B determines whether or not there is a margin in the traffic volume of each cell of the base stations A and B (step S203). If there is a sufficient amount of traffic (step S203; Yes), the access permission is transmitted to the base stations A and B, and the base station controller sets the communication mode to the second communication mode and performs this communication. Control information and traffic data are transmitted according to the mode (Step S204).
  • the base stations A and B that have accepted the access permission generate frames to the mobile station M and transmit them almost simultaneously (steps S205 and S206).
  • the receiver of mobile station M receives the control channel signals of the selected base stations A and B almost simultaneously and demodulates them (step S207).
  • the receiver of mobile station M determines whether control channel data has been received without error for each of base stations A and B (step S208), and if it has been received without error (step S208; Yes).
  • step S208 If there is an error in reception in step S208 (step S208; No), and if information for the local station is not included in step S209 (step S209; No), traffic The channel signal is not demodulated (step S211), and only the signal of the base station that is found to contain information addressed to itself is processed.
  • step S203 when the determination condition is not satisfied in step S203 (step S203; No), the processing shifts to (A) shown in FIG. With two base stations A and B selected, select either base station A or B with good communication conditions. Here, base station A is selected.
  • the base station controller sets the communication mode to the third communication mode, issues access permission to base station A, and transmits control information and traffic data (step S220).
  • Base station A that has accepted the access permission generates a frame and transmits it to mobile station M (step S221).
  • step S222 It is determined whether the demodulated base station A or B control channel data has been received without error (step S223). If it has been received without error (step S223; Yes), the control channel data is addressed to the local station. (Step S224), and if the information addressed to the local station is included (step S224; Yes), the base station traffic channel is demodulated and decoded. Perform (step S210).
  • step S223 If there is an error in reception in step S223 (step S223; No), or if no information addressed to the local station is included in step S224 (step S224; No), traffic No further processing is performed on the channel signal (step S226).
  • the mobile station receiver measures the reception level of each base station, selects a base station candidate of the maximum reception level, and then selects the final base station by the base station controller.
  • This is an example of the base station selection control method.
  • the base station candidate of the maximum reception level is selected by the base station selection means of the receiver of the mobile station
  • the final base station is selected by the base station selection means of the base station controller
  • Step S100 to step S102 are the same processing as the flow shown in FIG. In this embodiment (FIG. 29), an example is shown in which mobile station M is in the vicinity of base station A, and the reception level of base station A is the maximum level, and base station A is selected (step S301). Mobile station M transmits an access request only to base station A, and transmits reception level information and communication quality parameters of selection candidates A, B, C, and D of the base station selected in step S102 ( Step S302).
  • base station A Upon receiving the access request, base station A transmits an access request from mobile station M to the base station controller, and transmits communication quality parameters of base stations A, B, C, and D (step S303). .
  • the base station selection means of the base station controller that has received the access request from the base station A takes into account the traffic volume margin and communication quality parameters of the selected base stations A, B, C, and D cells. Finally, base station A is selected (step S304). Then, the communication mode is set to the first communication mode, access permission is given to the base station A, and traffic data is transmitted (step S 305).
  • Base station A which has accepted the access permission, generates and transmits a frame to mobile station M (step S306).
  • the receiver of mobile station M receives the control channel signal from selected base station A and demodulates it (step S307). It is determined whether the control channel data of base station A can be received without error (step S308) . If the control channel data can be received without error (step S308; Yes), the control channel data includes information addressed to itself. In step S309, if the information addressed to the own station is included (step S309; Yes), the traffic channel is demodulated and decoded (step S310).
  • step S308 If there is an error in reception in step S308 (step S308; No), In step S209, if the information addressed to the local station is not included (step S309; No), it is found that the information addressed to the local station is included without demodulating the traffic channel signal (step S311). Only base station signals are processed.
  • the mobile station receiver measures the reception level of each base station, selects a base station candidate of the maximum reception level, and then selects the final base station by the base station controller. This is an example of the base station selection control method.
  • the base station candidate of the maximum reception level is selected by the base station selection means in the mobile station receiver, the final base station is selected by the base station selection means of the base station controller. It is a flowchart which shows the procedure in case communication mode selection of this is performed
  • the base station determines the base station from the traffic volume of the selected base station and the communication quality parameter.
  • the base station selection means of the station controller finally selects the base stations A and B.
  • the communication mode is set to the second communication mode, access is granted to the base stations A and B, and traffic data is transmitted to each of them.
  • the subsequent processing is the same as in the second embodiment.
  • the mobile station receiver measures the reception level of each base station, selects base station candidates according to the quality of the communication channel, and then selects a plurality of final base stations.
  • This is an example of a base station selection control method, and the processing contents are almost the same as those in the second embodiment.
  • the base station controller determines whether the data to be transmitted is real-time data (priority data) and determines the final communication mode.
  • FIG. 31 shows a case where a base station selection unit of a mobile station receiver selects a base station candidate and determines a final base station, and then a second communication mode is selected by a base station selection unit of a base station controller. It is a flowchart which shows the procedure when is selected.
  • FIG. 32 is a flowchart showing a procedure when the third communication mode is selected by the base station selection means of the base station controller.
  • the determination process in which the base station controller determines whether or not the data to be transmitted is real-time data (priority data) is step S400 shown in FIG. If it is real-time data in step S400 (step S400; Yes), the process proceeds to the communication mode determination process in step S204. If it is not real data (step S400; No), (B) [ Step 220 in Figure 32 shown here.
  • the mobile station receiver measures the reception level of each base station, selects a base station candidate with the maximum reception level, and then selects the final base station by the base station controller.
  • This is an example of the base station selection control method in this case, and the processing contents are almost the same as those in the third and fourth embodiments.
  • the difference from the third and fourth embodiments is that the base station controller determines whether the data to be transmitted is real-time data (priority data) and determines the base station ( Step S330, Step S340).
  • the base station selection means of the mobile station receiver selects the base station candidate with the maximum reception level, and the base station selection means of the base station controller selects the final base and the first communication mode. It is a flowchart which shows the procedure in the case of performing.
  • a base station candidate of the maximum reception level is selected by the base station selection means of the mobile station receiver, the final base is selected by the base station selection means of the base station controller, and the second communication mode is selected. It is a flowchart which shows the procedure in case selection is performed.
  • the mobile station receiver measures the reception level of each base station, selects a base station candidate with the maximum reception level, and then selects the final base station by the base station controller.
  • This is an example of the base station selection control method in this case, and the processing contents are almost the same as those in the sixth and seventh embodiments. It differs from the sixth and seventh embodiments in the following points.
  • the base station controller determines whether or not the data to be transmitted is real-time data (priority data), determines the final communication mode, and the selected base station generates a frame, Send traffic data to the mobile station.
  • the mobile station requests access to the base station with the best channel condition, demodulates the control channel data of the base station, and demodulates the traffic channel data of the base station with information addressed to the mobile station. (Step S351, Steps S352).
  • the base station candidate of the maximum reception level is selected by the base station selection unit of the receiver of the mobile station, and the final base selection and the first communication mode selection are performed by the base station selection unit of the base station controller. It is a flowchart which shows the procedure in the case of performing.
  • a base station candidate of the maximum reception level is selected by the base station selection unit of the receiver of the mobile station, the final base is selected by the base station selection unit of the base station controller, and the second communication mode is selected. It is a flowchart which shows the procedure in case selection is performed.
  • the above describes a method for issuing a physical channel setting request (access request) from the mobile station side and finally determining a base station to transmit downlink data by the base station controller.
  • a mobile station may access a server on the Internet to download data, or an internet server, for example, may send data to the mobile station.
  • mobile stations belonging to a wireless access network exchange data.
  • This specification describes the uplink physical channel setting method and the call request to the mobile station!
  • the base station controller can access the base station last accessed by the mobile station or a plurality of base stations in the vicinity thereof. It is also possible for the mobile station that has received the call signal to set the wireless communication channel according to the steps after S100 described above.
  • Cellular mobile communication system of the present invention base station transmitting apparatus and mobile station receiving apparatus in cellular mobile communication system, and base station selection control method of cellular mobile communication system Even if the communication environment conditions are not favorable, the operation rate of the base station is improved by improving the communication quality by reducing the communication speed without dividing the communication data volume and providing a communication mode for transmission. In addition, it is possible to increase the communication speed and increase the communication speed, and it can be widely applied to mobile communication systems that require a higher communication speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 セルラ移動通信システムにおいて、基地局から離れた地点で希望信号の減衰量の増加及び干渉信号量の増加によって通信品質の低下を招き、高速データ通信が困難になるという問題点を解決するために、移動局Mは、地点Dのような、電波の減衰が小さい地点では、OFDM信号を用いて、トラフィックチャネルを介してデータx、y、zをまとめて伝送し、最大の通信速度でデータ通信される。一方、移動局Mが地点Dから地点Eに移動した場合、基地局A,B,Cのどの基地局からも遠い位置であるため、データx、y、zを3分割して、耐干渉性の高い拡散OFDM信号等を利用して、干渉性を強くし、3つの基地局A,B,Cからほぼ同時にデータx、y、zを送信して、等価的に高速データ伝送を実現する。  

Description

明 細 書
セルラ移動通信システム、セルラ移動通信システムにおける基地局の送 信装置と移動局の受信装置およびセルラ移動通信システムの基地局選択制御 方法
技術分野
[0001] 本発明は、単一周波数繰り返しを行うセルラ方式によるセルラ移動通信システム〖こ 関し、特に、干渉が大きい等の通信状態が良好でない場合においても、通信の高速 度化を図るセルラ移動通信システムに関する。
[0002] また、セルラ移動通信システムにおける基地局の送信装置及び移動局の受信装置 に関し、特に、干渉が大きい等の通信状態が良好でない場合においても、通信の高 速度化を図るセルラ移動通信システムにおける基地局の送信装置および基地局の 受信装置に関する。
[0003] また、セルラ移動通信システムの基地局選択制御方法に関し、特に、干渉が大き!/、 等の通信状態が良好でない場合においても、通信の高速度化を図るセルラ移動通 信システムに適用する基地局選択制御方法に関する。
背景技術
[0004] 従来、サービスエリアを限られた範囲の領域 (セル)に分割してそれぞれ基地局を 配置しセル内の移動局との通信を行うセルラ方式が携帯電話のための通信システム として用いられてきた。 FDMAZTDMA (Frequency Division Multiple Acce ss/Time Division Multiple Access)技術に基づく第 2世代移動通信システム では、隣接するセルの信号が互いに干渉しないようにセルによって割当てる周波数 を変える方法が用いられている。これに対し、 CDMA (Code Division Multiple Access)技術に基づく第 3世代移動通信システムではスペクトル拡散によって得られ る耐干渉性によって隣接セルでも同一周波数の利用が可能になった。
[0005] 第 4世代の移動通信システムでは、より高速なデータ通信に対する需要が見込まれ ており、移動通信環境で広帯域の信号を用いた高速データ伝送が可能な OFDM ( Orthogonal Frequency Division Multiplexing)技術の禾 lj用が有望視されて いる。しかし、 OFDMは、隣接するセルで同一周波数を用いるシステムに利用する 場合には耐干渉性の低さが問題となるため、 OFDM技術と CDMA技術を組み合わ せて、より高!ヽ耐干渉性を有する通信方式が提案されて!ヽる。
[0006] 上記方式として、拡散 OFDM (Orthogonal Frequency Division Multiplexi ng)および MC— CDMA (Multi— Carrier Code Division Multiple Access) 方式がある。これらは、 OFDM技術をベースにスペクトル拡散と符号多重の考えを取 り込んだものである。
[0007] ここでは、上記のように OFDM技術にスペクトル拡散と符号多重の技術を組み合わ せて、複数のサブキャリアや OFDMシンボルに割当てる方式を拡散 OFDMと呼ぶ。
[0008] 以下、 OFDM方式と拡散 OFDM方式の送受信機の動作について簡単に説明す る。
まず、 OFDM方式の送信機および受信機の動作にっ 、て説明する。
図 37は、 OFDM方式を用いた送受信機のブロック図である。図 37 (a)は、送信機 のブロック図あり、図 37 (b)は、受信機のブロック図である。
[0009] 1フレームの送信データシンボル数を Nf = Ns X Ncとする。
[0010] ここで、 Ncはサブキャリア数、 Nsは OFDMシンボル数である。これ以外にチャネル 推定用のパイロットシンボルが含まれるのが通常であるがここでは省略する。
[0011] 送信シンボルは、シリアル Zパラレル変換部(以下、 「SZP」 (Serial/Parallel)と 呼ぶ) 500により、 Ncシンボルごとに並列化され、並列化された送信シンボルは、そ れぞれのサブキャリア成分となり、逆高速フーリエ変換部(以下、「IFFT(Inverse F ast Fourier Transform)」という) 501により、逆 FFTされ、パラレル Zシリアル変 換部(以下、「PZS」(ParallelZSerial)と呼ぶ) 502によって時間信号列に変換さ れる。
[0012] なお、 IFFT処理(後記する FFT処理も同一)の処理単位が OFDMの 1シンボルと なる。
[0013] 「AddGI」ブロック 503では、 OFDMの 1シンボルごとにガードインターバル(以下、
GIと呼ぶ)が追加される。
[0014] 図 38は、 OFDMシンボルと GIとの配置関係を説明するである。 [0015] GIは、図 38に示す様に、 OFDMシンボルの後方の信号を OFDMシンボルの前に 挿入されるデータである。この GIによって、無線通信路の遅延波による干渉を防ぐこ とがでさる。
[0016] 図 39は、 OFDMにおける 1フレーム内の送信信号における送信シンボルの配置を 示した図である。
[0017] 図 39で示す例では、 1フレームは Ns個の OFDMシンボルからなり、 OFDMシンポ ルの中で送信シンボルは周波数方向に順次並んだ形になって 、る。
[0018] 上記送信信号を受信する受信機では、「RemoveGI」ブロック 504により、タイミング 検出器 505の制御の下、 OFDMシンボルすなわち FFT処理単位の切り出しが行わ れ、切り出された OFDMシンボルは、 SZP変^ ^506により変換された後、高速フ 一リエ変換部(以下、「FFT(Fast Fourier Transform)」と呼ぶ) 507によって、 F FT処理されて各サブキャリア成分が抽出される。その後、 PZS508によって PZS変 換されて、送信フレームのシンボル配列と同じ順序のシンボル列が得られる。
[0019] 次に、拡散 OFDM方式の概念を簡単に説明する。
[0020] 拡散 OFDM方式は、周波数領域、または時間領域の拡散を行うために、図 40に 示すように複数のサブキャリア、または複数の OFDMシンボルにわたって同じ送信シ ンボルを配置する。図 40 (a)では、周波数領域の拡散率が 4であり、 4つのサブキヤリ ァで同じデータシンボルが送信される。図 40 (b)では周波数領域と時間領域の拡散 率が共に 2であり、 2つのサブキャリア、 2つの OFDMシンボルで同じデータシンボル が送信される。これらの例では拡散率 4の拡散が行われることになるため、送信シン ボルの伝送速度は、 1Z4に低下する。
[0021] このように、拡散 OFDM方式は、送信シンボルの伝送速度を犠牲にして、干渉に 対して耐性を有する方式となって 、る。
[0022] 図 41は、周波数領域拡散を行う拡散 OFDM方式の送受信機のブロック図である。
図 41 (a)は、送信機のブロック図であり、図 41 (b)は、受信機のブロック図である。
[0023] 図 41では、周波数領域拡散の拡散率を SFとしている。 1フレームの送信シンボル 数は、 OFDMに比べて 1ZSFになる。
[0024] 図 41 (a)に示す送信機では、 SZPブロック 500によって、 NcZSFシンボルごとに 並列化されたシンボルは、周波数領域拡散処理部 600によって周波数領域拡散が 行われ、それぞれのサブキャリア成分となる。この周波数領域拡散は、 1シンボルを S F個のサブキャリア成分にコピーし、拡散符号を乗算して行われる。さらに、 IFFT50 1、 PZS変換 502されて時間信号列となる。「AddGI」ブロック 503では OFDMシン ボルごとにガードインターバル(以下、「GI」と呼ぶ)が追加される。
[0025] 図 37 (a)に示した OFDM方式の送信機と比較して、周波数領域拡散を行う拡散処 理部 600が IFFT501の前に挿入されている以外は同じ構成となっている。
[0026] 一方、図 41 (b)に示す受信機も、同様に、検出されたキャリア成分を逆拡散処理す る周波数領域逆拡散処理部 601が FFT507の後に挿入されている以外は同じ構成 となっており、最終処理段階の PZS変換器 508を経て、送信フレームのシンボル配 列と同じ順序のシンボル列が得られる。
[0027] 以下、上記説明した移動通信環境で広帯域の信号を用いた高速データ伝送が可 能な OFDM及び拡散 OFDM方式を利用した従来例または現在提案されて!、るセ ルラ移動通信システムにつ 、て説明する。
[0028] 第 4世代のセルラ移動通信システムとして OFDMをベースとする SCS— MC— CD MA方式(「非特許文献 1」参照)や、同じく OFDMをベースとする VSF— OFCDM ( Variable Spreading Factor― Otnogonal Frequency and Code Divisio n Multiplexing)方式(「非特許文献 2」参照)が提案されて 、る。 SCS— MC— CD MA方式は制御チャネルと通信チャネルを周波数軸上の異なるサブキャリアに配置 する。一方、 VSF— OFCDM方式は、時間領域に拡散した通信チャネルと時間 '周 波数両領域に拡散した制御チャネルとを直交符号を用いて多重化する方法である。
[0029] また、第 4世代のセルラ移動通信システムでは、雑音や他の干渉信号への耐性を 得、通信品質を確保する手段として、減衰の大きい地点のユーザに対してより大きな 電力でデータ通信を行う送信電力制御に代って、適応変調符号化方式が提案され ている。
[0030] 上記適応変調符号化方式は、基地局に近 、、すなわち減衰の小さ!/、、地点のユー ザに対しては多値変調と高符号ィ匕率の誤り訂正符号を用いることにより最大通信速 度を高くし、セルの境界など減衰が大きぐまた干渉が大きい地点のユーザに対して は変調多値数と符号ィ匕率を小さくして通信速度を低くすることによって、通信品質を 確保する方法である。
[0031] また、 OFDM方式と MC— CDMA方式とを相互に利用し、それぞれの通信方式に おける欠点を解決する技術力、特許文献 1 (「特開 2004— 158901号公報」)に開示 されている。これは、セルラ移動通信システムにおいて移動端末 基地局間の通信 路状態によって、 OFDM方式を用いるか MC— CDMA方式を用いるかを送信スロッ ト単位で切り替えるというものである。
[0032] さらに、 OFDM方式を利用して、セルラ移動通信システムにおける通信品質を確 保する手段として、移動局までの伝搬遅延差が上記記載した GIの時間 T と電波の
GI
伝搬速度 Cを掛けた距離 Iが基地局間の距離 Dより大きくならないように基地局の配 置又時間 T を設定し、複数の基地局が同期して送信を行うことによって、チャネル
GI
相互間の干渉を緩和し、通信品質を高める MMSE (Minimum Mean Square Error)ダイバーティ復調等の干渉緩和復調を可能とする SC (Synchronous Cohe rent) OFDM方式の技術が非特許文献 3に開示されて 、る。
特許文献 1 :特開 2004— 158901号公報
非特許文献 1:長手他、「SCS— MC— CDMA方式における共通制御チャネル同期 の一検討」、 2004年電子情報通信学会総合大会 B - 5-81
非特許文献 2:岸山他、「下りリンク VSF - OFCDMブロードバンド無線アクセスにお ける適応変復調,チャネル符号化の屋外実験結果」、 2004年電子情報通信学会総 合大会 B— 5— 94
非特干文献 3 : Kevin L. Baum、 Synchronous Coherent Othogonal Freq uency Division Multiplexing System、 Method^ Software and Device VTC ' 99 pp2222- 2226, 1998
発明の開示
発明が解決しょうとする課題
[0033] し力しながら、上述した移動通信環境で広帯域の信号を用いた高速データ伝送が 可能な OFDM及び拡散 OFDM方式を利用した従来例では、いずれも、減衰が大き ぐまた、干渉が大きい地点のユーザに対しては、データの通信速度を犠牲にして、 通信品質の確保を優先するシステムがとられており、最大通信速度を上げられないと いう問題点がある。
[0034] そこで、本発明は、上記課題の解決を図るベぐ提案したものであり、セルラ移動通 信システムにお!/、て、基地局から離れた地点で希望信号の減衰量の増加及び干渉 信号量の増加によって通信品質の低下を招き、高速データ通信が困難になるという 問題点を解決するセルラ移動通信システム、該セルラ移動通信システムに使用する 基地局の送信装置と移動局の受信装置及び該セルラ移動通信システムに適用する 基地局選択制御方法を提供することを目的とする。
課題を解決するための手段
[0035] 本発明は、上記目的を達成するために、以下に記載する構成を採用するとともに、 以下の特徴を備えている。
[0036] 本発明に係るセルラ移動通信システムは、移動局が近傍の複数の基地局から無線 信号を略同時に受信できるセルラ移動通信システムであって、所定の通信データ量 を略最大の通信速度で送信を行う第 1の通信モードと、通信速度を低下させる代わり に通信品質を高めて、前記所定の通信データ量を一定の割合で分割した通信デー タの送信を行う第 2の通信モードとを有する基地局の送信機と、前記第 1の通信モー ドと、前記第 2の通信モードによる送信データを受信できる移動局の受信機と、インタ 一ネットを含むネットワークからの前記送信データを前記移動局に宛てて送信する場 合、前記複数の基地局のうち、どの前記基地局に対して、どの位のデータ量を配分 するかを含むシステム全体の無線リソース制御を行う基地局コントローラと、を備え、 第 1の通信モードは、前記複数の基地局の内、 1つの基地局の送信機と前記移動局 の受信機との間で通信するモードであり、一方、前記第 2の通信モードは、通信環境 条件が前記第 1の通信モードを使用する通信環境条件に比較して、良好でない場合 に使用するモードであり、前記基地局コントローラにより選択された前記移動局近傍 の複数基地局から送信される、該基地局コントローラにより前記分割された通信デー タを前記移動局の受信機が略同時に受信し、前記略最大の通信速度に比較して所 定の通信速度を確保して通信するモードであることを特徴とする。
[0037] また、本発明に係るセルラ移動通信システムにおいて、さらに、前記基地局の送信 機は、前記所定の通信データ量を分割せずに、前記第 2の通信モードと同様に通信 速度を低下させる代わりに通信品質を高めて、第 1の通信モードと同様に、前記複数 の基地局の内、 1つの基地局の送信機と前記移動局の受信機との間で通信するモ ードである第 3の通信モードを有し、該第 3の通信モードにより、前記移動局の受信 機に対して送信データを送信し、前記移動局の受信機は、前記第 3の通信モード〖こ より送信される送信データを受信することを特徴とする。
[0038] また、本発明に係るセルラ移動通信システムにお 、て、前記移動局は、該移動局 近傍の複数の基地局を自動的に選択する基地局選択手段を備え、前記基地局選択 手段は、複数の基地局力ゝらの無線信号の受信レベルをそれぞれ測定し、測定された 前記受信レベルに基づいて、所定数の基地局を選択し、前記受信レベルまたは前 記受信レベルに対応した通信路品質を示すパラメータを選択された基地局の内の 1 つまたは複数の基地局を経由して基地局コントローラに送信することを特徴とする。
[0039] また、本発明に係るセルラ移動通信システムにおいて、前記基地局コントローラは、 該移動局近傍の複数の基地局を自動的に選択できる基地局選択手段を備え、 前記基地局選択手段は、前記受信レベルまたは前記受信レベルに対応した通信 路品質を示すパラメータを含む選択情報を基地局を経由して前記移動局より受信し 、該選択情報に基づ!ヽて基地局の選択を行うことを特徴とする。
[0040] また、本発明に係るセルラ移動通信システムは、前記基地局コントローラは、前記 基地局の選択を実行した後、前記基地局の送信機と前記移動局の受信機間の通信 条件が良好である力否かを判定し、前記通信条件が良好であると判断した場合に、 前記第 1の通信モードを選択して、前記基地局と前記移動局間で前記第 1の通信モ ードで通信を行うようにし、一方、前記通信条件が良好でないと判断し、セル内の通 信トラフィック量や各移動局に提供される通信サービス品質に応じて、前記第 3の通 信モードを選択して、前記選択した基地局と前記移動局間で通信を行うようにしたこ とを特徴とする。
[0041] また、本発明に係るセルラ移動通信システムにお 、て、 OFDM信号を含む広帯域 の信号を用いた高速データ通信を行う通信モードであり、前記第 2又は第 3の通信モ ードは、拡散 OFDM信号を含む、広帯域の信号であり耐干渉性の高い信号により通 信を行う通信モードであることを特徴とする。
[0042] また、本発明に係るセルラ移動通信システムにお 、て、高変調多値数、または高符 号ィ匕率の OFDM信号を含む広帯域の信号を用いた高速データ通信を行う通信モ ードであり、前記第 2又は第 3の通信モードは、低変調多値数、または低符号化率の OFDM信号を含む、広帯域の信号であり耐干渉性の高い信号により通信を行う通 信モードであることを特徴とする。
[0043] また、本発明に係るセルラ移動通信システムは、前記第 2または第 3の通信モード において拡散 OFDM信号を使用する場合に、複数の同一のデータに対してそれぞ れ一定の間隔づっ離れた周波数の直交サブキヤァを割当てて、前記拡散 OFDM信 号を送信し、異なる特性の通信路を経た信号を受けて周波数ダイバーシティ受信を 行うことにより、耐干渉性をより高くすることを特徴とする。
[0044] また、本発明に係るセルラ移動通信システムお 、て、前記複数の基地局は、それぞ れ基地局の信号を区別して同時に受信可能とするため識別番号を有しており、各基 地局の近傍に位置する基地局が同じ前記基地局識別番号を有しないように、グルー プ化されており、前記基地局識別番号の異なる複数の基地局を前記移動局の受信 機が略同時に受信することを特徴とする。
[0045] 本発明に係るセルラ移動通信システムは、複数の基地局と、近傍の複数の基地局 力 無線信号を略同時に受信できる移動局の受信装置と、基地局コントローラと、を 備えるセルラ移動通信システムであって、前記複数の基地局の各々は、前記移動局 力も送信されたアクセス要求を受信して、該アクセス要求を前記基地局コントローラに 送信する送信手段を備え、前記基地局コントローラは、前記アクセス要求を受けた前 記複数の基地局のうち、どの前記基地局に対して、どの位のデータ量を配分するか を決定する通信リソース決定手段を備えることを特徴とする。
[0046] また、本発明に係るセルラ移動通信システムは、近隣の基地局と同一グループに 属さないように、グループ分けされた前記複数の基地局は、該グループに対応する 基地局識別番号を有して 、ることを特徴とする。
[0047] 本発明に係るセルラ移動通信システムにおける前記基地局の送信装置は、移動局 近傍の複数の基地局から無線信号を略同時に受信するセルラ移動通信システムに おける前記基地局の送信装置であって、前記各基地局の受信レベルの測定を含む チャネル推定を行うためのパイロットチャネル信号を生成するパイロットチャネル信号 生成部と、トラフィックデータを送信するためのトラフィックチャネル信号を生成するトラ フィックチャネル信号生成部と、前記トラフィックデータのあて先情報を含む制御情報 信号を生成する制御チャネル信号生成部と、前記制御チャネル信号生成部によって 、生成される前記制御チャネル信号と、前記トラフィックチャネル生成部によって、生 成される前記トラフィックチャネル信号とを合成して合成信号を生成する合成手段と、 を備え、前記パイロットチャネル信号生成部によって生成される前記パイロットチヤネ ル信号と前記合成手段によって生成される合成信号を多重して送信信号を生成し、 伝送効率を高めるとともに、通信環境状態に応じて、前記複数の基地局の内 1つの 基地局から、所定の通信データ量を略最大の通信速度で送信を行う第 1の通信モー ド、通信速度を低下させる代わりに通信品質を高めて、前記複数の基地局から、前 記所定の通信データ量を一定の割合で分割した通信データの送信を行う第 2の通信 モード、又は前記第 2の通信モードと同様に、通信速度を低下させる代わりに通信品 質を高めて、前記第 1の通信モードと同様に前記所定の通信データ量を分割せずに 、前記複数の基地局の内 1つの基地局力 送信を行う第 3の通信モードを切り替える ことにより、前記送信信号を送信するようにしたことを特徴とする。
[0048] また、本発明に係るセルラ移動通信システムにおける基地局の送信装置にお!、て 、前記複数の基地局は、それぞれ基地局の信号を区別して同時に受信可能とするた め識別番号を有しており、各基地局の近傍に位置する基地局が同じ前記基地局識 別番号を有しないように、グループ化されており、前記基地局識別番号の異なる複数 の基地局を前記移動局の受信機が略同時に受信することを特徴とする。
[0049] また、本発明に係るセルラ移動通信システムにおける前記基地局の送信装置にお いて、前記パイロットチャネル信号生成部は、前記複数の基地局の各々に異なるパイ ロットチャネル用スクランブルコードと、異なる前記基地局識別番号を有する基地局を 区別するパイロットパターンと、を乗じる手段を備えることを特徴とする。
[0050] また、本発明に係るセルラ移動通信システムにおける基地局の送信装置にお!、て 、前記制御チャネル信号生成部は、前記複数の基地局に共通のスクランブルコード と前記基地局識別番号に対応した直交コードとを用いて生成される前記制御チヤネ ル用スクランブルコードと、前記基地局識別番号に対応した直交コード長以上の連 続するシンボルが同じ値をとる前記制御チャネルシンボルと、を乗じる手段を備え、 異なる基地局識別番号の制御チャネル信号が直交の関係の信号となるように生成さ れることを特徴とする。
[0051] また、本発明に係るセルラ移動通信システムにおける基地局の送信装置において 、前記トラフィックチャネル信号生成部は、前記複数の基地局の各々に異なるトラフィ ツクチャネル用スクランブルコードと、前記第 1の通信モード時には、トラフィックデー タに対応して変化する前記トラフィックチャネルシンボルの値、又は前記第 2または第 3の通信モード時には、通信環境状態に応じて、通信品質を確保するために、連続 または一定間隔で配置される複数のシンボルが同じ値をとる前記トラフィックチャネル シンボルと、を乗じる手段を備えることを特徴とする。
[0052] また、本発明に係るセルラ移動通信システムにおける基地局の送信装置にお!、て 、前記ノ ィロットチャネル信号生成部は、 OFDM信号であるパイロットチャネル信号 を生成し、前記 OFDM信号のフレーム内の時間軸成分を iで表し、サブキャリア成分 を jで表す場合に、基地局番号(1)を有する前記基地局に固有のスクランブルコード X ωと前記基地局をグループ別に附した前記基地局識別番号 n ( l)に対応するパイ ロットパターン w (n(1))とを時間をずらしながら、乗算し、精度のよいチャネルゲインの 推定及び受信パワーの測定を行えるように所定数のパイロット信号を生成したことを 特徴とする。
[0053] また、本発明に係るセルラ移動通信システムにおける基地局の送信装置にお!、て 、前記制御チャネル信号生成部は、拡散 OFDM信号である制御チャネル信号を生 成するものであり、前記拡散 OFDM信号のフレーム内の時間軸成分を iで表し、サブ キャリア成分を jで表す場合に、制御チャネル用の共通コードであるスクランブルコー ド yと、それぞれ基地局の信号を区別して同時に受信可能とするため基地局識別番 号 n (l)に応じた直交コード w (n(1))と、前記基地局に固有のスクランブルコード X (1)と を用いて、制御チャネルシンボル c(1)を拡散処理した、拡散 OFDM信号である制御 チャネル信号を生成し、移動局の受信機が前記基地局識別番号の異なる複数の前 記基地局から前記制御チャネル信号を分離し、前記制御情報を取得するようにした ことを特徴とする。
[0054] また、本発明に係るセルラ移動通信システムにおける基地局の送信装置にお!、て 、前記トラフィックチャネル生成部は、 OFDM信号または拡散 OFDM信号であるトラ フィックチャネル信号を受信し、前記 OFDM信号または前記拡散 OFDM信号のフレ ーム内の時間軸成分を iで表し、サブキャリア成分を jで表す場合に、前記第 1の通信 モードでは、トラフィックチャネルデータ d(1)と、前記基地局固有のスクランブルコード X (1)と、を乗じて得られる OFDM信号であるトラフィックチャネル信号 (x (1) X d(1))の 生成、前記第 2又は第 3の通信モードでは、前記トラフツクチャネルデータ d(1)を複数 個のグループに分けた前記トラフツクチャネルデータを、前記基地局固有のスクラン ブルコード X (1)を用いて周波数拡散処理された、拡散 OFDM信号であるトラフィック チャネル信号の生成を行うことを特徴とする。
[0055] また、本発明に係るセルラ移動通信システムにおける基地局の送信装置にお!、て 、前記制御チャネル用の共通コードであるスクランブルコード yは、前記基地局固有 のスクランブルコード X (1)とは、異なるスクランブルコードであることを特徴とする。
[0056] また、本発明に係るセルラ移動通信システムにおける基地局の送信装置にお!、て 、さらに、制御チャネルデータを生成する制御部を備え、前記制御部は、基地局の選 択及び通信モードの選択処理を行う基地局コントローラ力 通信モード情報を入力し 、通信モード切替信号を生成し、前記トラフィックチャネル信号生成部を制御すること を特徴とする。
[0057] 本発明に係るセルラ移動通信システムにおける移動局の受信装置において、移動 局近傍の複数の基地局から無線信号を略同時に受信するセルラ移動通信システム における前記移動局の受信装置であって、基地局によって異なるスクランブルコード と前記基地局の識別番号によって異なるパイロットシンボルパターンとを用いて生成 されるパイロットチャネル信号力 前記基地局の受信レベルの測定およびチャネル推 定を含むパイロット情報の抽出を行うパイロットチャネル信号処理部と、トラフイツクチ ャネル信号を処理し、トラフィックチャネルデータを生成するトラフィックチャネル信号 処理部と、前記トラフィックデータのあて先情報を含む制御情報信号を受信し、自局 宛ての情報が含まれているかどうかを判断するための制御情報を処理する制御チヤ ネル信号処理部と、トラフィックチャネル信号処理部に入力する通信モード切替え制 御信号を生成し、所定数の基地局を選択する基地局選択手段を備える統括制御部 と、を備え、通信環境状態に応じて、前記複数の基地局の内 1つの基地局から、所定 の通信データ量を略最大の通信速度で送信を行う第 1の通信モード、通信速度を低 下させる代わりに通信品質を高めて、前記複数の基地局から、前記所定の通信デー タ量を一定の割合で分割した通信データの送信を行う第 2の通信モード、又は前記 第 2の通信モードと同様に、通信速度を低下させる代わりに通信品質を高めて、前記 第 1の通信モードと同様に前記所定の通信データ量を分割せずに、前記複数の基 地局の内 1つの基地局から送信を行う第 3の通信モードを切り替えることにより、前記 送信信号を送信するようにしたことを特徴とする。
[0058] また、本発明に係るセルラ移動通信システムにおける移動局の受信装置にお!/ヽて 、前記ノ ィロットチャネル信号処理部は、請求項 3または請求項 6に記載のパイロット チャネル信号生成部で生成されるパイロットを受信して、前記基地局識別番号に対 応したノ ィロットパターンを用いて通信路推定を行うことにより、異なる基地局識別番 号の複数の基地局との間のチャネルゲインを推定することを特徴とする。
[0059] また、本発明に係るセルラ移動通信システムにおける移動局の受信装置にお!/ヽて 、前記制御チャネル信号処理部は、請求項 4または請求項 7に記載の制御チャネル 信号生成部で生成される制御チャネル信号を受信して、前記複数の基地局に共通 のスクランブルコードおよび複数の基地局識別番号に対応した直交コードを用いて 信号処理を行うことによって、前記基地局識別番号の異なる複数の前記基地局から 前記制御チャネル信号を分離し、複数の前記基地局からの制御データを取得するよ うにしたことを特徴とする。
[0060] また、本発明に係るセルラ移動通信システムにおける移動局の受信装置にお!/ヽて 、前記トラフィックチャネル信号処理部は、前記第 2の通信モードでは複数の基地局 力 略同時に送信される信号を受信して、略同時に送信される他の基地局の信号間 の干渉を削減する重みを用いて重み付け行い、それぞれ復調することによって、前 記複数の基地局から送信されるトラフィックチャネルデータをそれぞれ再生することを 特徴とする。
[0061] また、本発明に係るセルラ移動通信システムにおける移動局の受信装置において 、前記トラフィックチャネル信号処理部は、前記第 2の通信モードでは複数の基地局 力も略同時に送信される信号を受信して、複数の基地局の信号が合成されて受信さ れた信号点に対して、各基地局力 送信されるトラフィックチャネルデータの組み合 わせを比較し各トラフィックチャネルデータシンボルまたはビットの確力 しさを出力す ることを特徴とする。
[0062] また、本発明に係るセルラ移動通信システムにおける移動局の受信装置にお!/ヽて 、さらに、前記制御チャネル信号処理部にて得られた制御データから、制御チャネル 信号レプリカを生成し、受信信号から除去する制御チャネル干渉除去部を備え、前 記トラフィックチャネル信号処理部は、前記制御チャネル干渉除去部の出力を入力と することを特徴とする。
[0063] また、本発明に係るセルラ移動通信システムにおける移動局の受信装置にお!/ヽて 、前記ノ ィロットチャネル信号処理部は、 OFDM信号であるパイロットチャネル信号 を受信し、拡散 OFDM信号のフレーム内の時間軸成分を iで表し、サブキャリア成分 を jで表す場合に、基地局番号(1)を有する前記基地局に固有のスクランブルコード X ωと前記基地局をグループ別に附した前記基地局識別番号 n ( l)に対応するパイ ロットパターン w とを乗算した、基地局のパイロットシンボルの共役複素数をパイ ロット受信信号に乗算し、時間平均することにより、推定すべき基地局 のチャネルゲ インの推定値 h (1' , j)を算出するようにしたことを特徴とする。
[0064] また、本発明に係るセルラ移動通信システムにおける移動局の受信装置にお!/ヽて 、前記制御チャネル信号処理部は、拡散 OFDM信号である制御チャネル信号を受 信し、前記拡散 OFDM信号のフレーム内の時間軸成分を iで表し、サブキャリア成分 を jで表す場合に、制御チャネル用の共通コードであるスクランブルコード yと、それ ぞれ基地局の信号を区別して同時に受信可能とするため基地局識別番号 n (l)に応 じた直交コード w (n(1))と、前記基地局に固有のスクランブルコード x (1)とを、用いて制 御チャネルシンボル c(1)を拡散処理した、拡散 OFDM信号である制御チャネル信号 に、スクランブルコード yと、直交コード w (n(1))と、前記基地局に固有のスクランブルコ ード x (1)のそれぞれの共役複素数を乗じて、前記基地局識別番号の異なる複数の前 ]
記基地局から前記制御チャネル信号を分離し、前記制御チャネルシンボル c(1)を取 得するようにしたことを特徴とする。
[0065] また、本発明に係るセルラ移動通信システムにおける移動局の受信装置にお!/ヽて 、前記トラフィックチャネル信号処理部は、 OFDM信号または拡散 OFDM信号であ るトラフィックチャネル信号を受信し、前記 OFDM信号または前記拡散 OFDM信号 のフレーム内の時間軸成分を iで表し、サブキャリア成分 で表す場合に、前記第 1 の通信モードでは、トラフィックチャネルシンボル d(1)と、前記基地局固有のスクランプ ルコード X (1)と、を乗じて得られる OFDM信号であるトラフィックチャネル信号 (X (1) X d(1))、前記第 2又は第 3の通信モードでは、前記トラフツクチャネルシンボル d(1)を複 数個のグループに分けた前記トラフツクチャネルシンボルを、前記基地局固有のスク ランブルコード X (1)を用いて周波数拡散処理された、拡散 OFDM信号であるトラフィ ツクチャネル信号に、前記基地局固有のスクランブルコード X (1)の複素共役を乗じ、 さらに、前記第 2又は第 3の通信モードにおいては、逆拡散処理を行い、前記トラフィ ツクチャネルシンボル d(1)の再生を行うことを特徴とする。
[0066] また、本発明に係るセルラ移動通信システムの基地局選択制御方法は、複数の基 地局と、近傍の複数の基地局から無線信号を略同時に受信できる移動局の受信装 置と、基地局コントローラと、を備えるセルラ移動通信システムの基地局選択制御方 法であって、前記複数の基地局から適切な基地局を選択し、さらに、前記基地局コン トローラの制御の下に決定された基地局力 の送信データを受信する際の移動局受 信装置の受信制御工程と、前記移動局が、前記受信制御方法に従って 1局または複 数局の基地局を経由して、前記基地局コントローラに対して、アクセス要求した場合 に、各基地局のトラフィック量および通信路品質に応じて、接続する最終の基地局を 選択するステップを有する前記基地局コントローラの基地局選択工程と、を備えたこ とを特徴とする。
[0067] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記基地局コントローラの基地局選択工程は、前記移動局が前記受信制御工程に従 つて 1局または複数局の基地局を経由して、前記基地局コントローラに対してァクセ ス要求した場合に、リアルタイム性、優先度および通信路品質に対応して、接続する 基地局を選択するステップを有することを特徴とする。
[0068] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記移動局受信装置の受信制御工程は、複数の基地局の送信信号が混在した受信 信号から前記複数の基地局と該移動局の間の通信路状態を測定するステップと、前 記通信路状態を測定するステップの結果に基づいて、 1局または複数局の基地局を 選択するステップと、前記選択された基地局のうち、すべての基地局または一部の基 地局に対して、アクセス要求を送信するステップと、前記選択された基地局のうち、す ベての基地局または一部の基地局の制御チャネル信号を復調して自局宛のトラフィ ック情報が含まれるかを判定するステップと、自局宛のトラフィック情報が含まれる場 合に、該基地局のトラフィックチャネル信号を復調してトラフィック情報を抽出するステ ップと、を備えたことを特徴とする。
[0069] また、本発明に係るセルラ移動通信システムの基地局選択制御方法は、近隣の基 地局と同一グループに属さないように、グループ分けされ、該グループに対応する基 地局識別番号を有している前記複数の基地局において、前記通信路状態を測定す るステップが、同一の前記識別番号を有する基地局のうち、それぞれ最大受信信号 レベルを有する基地局の受信信号レベルを測定するステップであることを特徴とする
[0070] また、本発明に係るセルラ移動通信システムの基地局選択制御方法は、近隣の基 地局と同一グループに属さないように、グループ分けされ、該グループに対応する基 地局識別番号を有している前記複数の基地局において、前記通信路状態を測定す るステップが、同一の前記識別番号を有する基地局のうち、それぞれ受信タイミング の最も早い基地局の受信信号のタイミングを測定するステップであることを特徴とする
[0071] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記 1局または複数局の基地局を選択するステップは、前記複数の受信信号レベルの うち最高値を Xとしたとき、 Xに対して所定の閾値 Yを設け、受信信号レベル力 一 Y より大きい受信信号レベルを有する所定数の前記基地局を選択するステップである ことを特徴とする。
[0072] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記 1局または複数局の基地局を選択するステップは、前記複数の受信信号レベルの うち、前記最大受信信号レベルを有する複数の基地局を選択し、選択された複数の 前記基地局のうち受信信号レベルが大きい順に所定数の前記基地局を選択するよう にしたことを特徴とする。
[0073] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記 1局または複数局の基地局を選択するステップは、前記複数の受信信号レベルか らそれぞれの伝播損失を計算し、計算された伝播損失の最小値 Xに対して、閾値 Y を設け、伝搬損失が X+Yより小さ!ヽ伝搬損失を有する所定数の基地局を選択する ようにしたことを特徴とする。
[0074] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記 1局または複数局の基地局を選択するステップは、前記複数の受信信号レベルか らそれぞれの伝播損失を計算し、選択された複数の前記基地局のうち受信信号の伝 搬損失が小さ 、順に所定数の前記基地局を選択するようにしたことを特徴とする。
[0075] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記 1局または複数局の基地局を選択するステップは、前記複数の受信タイミングのう ち最も早いタイミング時刻 Xに対して、閾値 Yを設け、受信タイミング時刻が X+Yより 早い受信タイミング時刻を有する所定数の基地局を選択するようにしたことを特徴と する。
[0076] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記 1局または複数局の基地局を選択するステップは、前記複数の受信タイミングのう ち受信タイミングの早 、方力 所定数の基地局を選択するようにしたことを特徴とする
[0077] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記 1局または複数局の基地局を選択するステップは、前記複数の受信タイミングから それぞれの伝播遅延時間を計算し、最小の伝搬遅延時間 Xに対して、閾値 Yを設け 、伝搬遅延時間が X+Yより小さい伝搬遅延時間を有する所定数の基地局を選択す るようにしたことを特徴とする。
[0078] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記 1局または複数局の基地局を選択するステップは、前記複数の受信タイミングから それぞれの伝播遅延時間を計算し、伝播遅延が小さ!/、順に所定数の基地局を選択 するようにしたことを特徴とする。
[0079] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記アクセス要求を送信するステップは、前記 1局または複数局の基地局を選択するス テツプで選択された基地局の各々にアクセス要求を送信するステップであり、前記自 局宛のトラフィック情報が含まれるかを判定するステップは、前記 1局または複数局の 基地局を選択するステップで選択されたすベての基地局の制御チャネル信号を各々 復調して制御情報を抽出することによって自局宛のトラフィック情報が含まれるかを判 定することを特徴とする。
[0080] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記アクセス要求を送信するステップは、前記 1局または複数局の基地局を選択するス テツプで選択された基地局のうちもっとも通信路状態の良い基地局に対してアクセス 要求を送信するステップであり、前記自局宛のトラフィック情報が含まれるかを判定す るステップは、前記アクセス要求を送信するステップで送信した基地局の制御チヤネ ル信号を復調して制御情報を抽出することによって自局宛のトラフィック情報がどの 基地局のトラフツクチャネルに含まれるかを判定することを特徴とする。
[0081] また、本発明に係るセルラ移動通信システムの基地局選択制御方法にぉ 、て、前 記アクセス要求を送信するステップは、前記 1局または複数局の基地局を選択するス テツプで選択された基地局のうちもっとも通信路状態の良い基地局に対してアクセス 要求を送信するステップであり、前記自局宛のトラフィック情報が含まれるかを判定す るステップは、前記 1局または複数局の基地局を選択するステップで選択されたすベ ての基地局の制御チャネル信号を各々復調して制御情報を抽出することによって自 局宛のトラフィック情報が含まれるかを判定することを特徴とする。
[0082] また、本発明に係るセルラ移動通信システムの基地局選択制御方法は、さらに、移 動局近傍の 1つまたは複数の基地局から呼び出し信号を受信するステップを備える ことを特徴とする。
発明の効果
[0083] 以上説明したように、本発明のセルラ移動通信システムによれば、所定の通信デー タ量を最大の通信速度で送信を行う第 1の通信モードと、前記所定の通信データ量 を分割し、分割分だけ通信速度を低下させる代わりに、通信品質を高めて送信を行う 第 2の通信モードとを有する基地局の送信機と、前記第 1の通信モードと前記第 2の 通信モードとを受信できる移動局の受信機とを構成したことにより、通信状態に応じ て、基地局の稼働率を高めるとともに、通信速度の高速ィ匕を図ることが可能である。
[0084] また、本発明のセルラ移動通信システムによれば、第 2の通信モードと同様に、通 信データ量を分割せずに通信速度を低下させることにより通信品質を高めて、送信 を行う第 3の通信モードを設けることにより、通信環境条件が良好でない場合であつ ても、 1つの基地局と通信するため、通信状態に応じて、基地局のリソースを有効利 用することが可能である。
[0085] また、複数の同一のデータに対してそれぞれ一定の間隔づっ離れた周波数の直 交サブキヤァを割当てて、マルチキャリア伝送を行い、耐干渉性をより高くする等の 高通信品質ィ匕を図ることができる。
[0086] 本発明のセルラ移動通信システムにおける基地局の送信装置および移動局の受 信装置によれば、所定の通信データ量を最大の通信速度で送信を行う第 1の通信モ ードと、前記所定の通信データ量を分割し、通信速度を低下させる代わりに、通信品 質を高めて送信を行う第 2の通信モードと、前記所定の通信データ量を分割せずに 、通信速度を低下させて、通信品質を高めて、 1つの基地局と送信を行う第 3の通信 モードを有し、通信状態に応じて、基地局の稼働率を高めるとともに、基地局の送信 装置力 移動局の受信装置へのデータ通信速度の高速ィ匕を図ることが可能である。
[0087] また、本発明のセルラ移動通信システムにおける基地局の送信装置および移動局 の受信装置によれば、制御チャネル信号生成部によって、それぞれ基地局の信号を 区別してほぼ同時に受信可能とするため、基地局識別番号に応じた直交コードを乗 じて、制御チャネル信号が生成され、移動局の受信機が前記基地局識別番号の異 なる複数の前記基地局から前記制御チャネル信号を、干渉をあまり受けることなく分 離し、前記制御情報を取得することが可能である。
[0088] また、本発明のセルラ移動通信システムにおける基地局の送信装置によれば、制 御チャネル信号とトラフィックチャネル信号を合成して送信することにより、伝送効率 の向上を図り、ひいては基地局の送信装置から移動局の受信装置へのデータ通信 速度を高めることが可能である。
[0089] また、本発明のセルラ移動通信システムにおける基地局の送信装置および移動局 の受信装置によれば、複数の同一のデータに対してそれぞれ一定の間隔づっ離れ た周波数の直交サブキヤァを割当てて、マルチキャリア伝送を行い、耐干渉性をより 高くする等の高通信品質ィ匕を図ることができる。
[0090] また、本発明に係るセルラ移動通信システムの基地局選択制御方法によれば、制 御チャネル信号生成部によって、それぞれ基地局の信号を区別してほぼ同時に受 信可能とするため、基地局識別番号に応じた直交コードを乗じて、制御チャネル信 号が生成され、移動局の受信機が前記基地局識別番号の異なる複数の前記基地局 力 前記制御チャネル信号を、干渉をあまり受けることなく分離し、前記制御情報を 取得することが可能である。
[0091] また、本発明に係るセルラ移動通信システムの基地局選択制御方法によれば、制 御チャネル信号とトラフィックチャネル信号を合成して送信することにより、伝送効率 の向上を図り、ひいては基地局の送信装置から移動局の受信装置へのデータ通信 速度を高めることが可能である。
[0092] また、本発明に係るセルラ移動通信システムの基地局選択制御方法によれば、複 数の同一のデータに対してそれぞれ一定の間隔づっ離れた周波数の直交サブキヤ ァを割当てて、マルチキャリア伝送を行い、耐干渉性をより高くする等の高通信品質 ィ匕を図ることができる。
図面の簡単な説明
[0093] [図 1]本発明に係るセルラ移動通信システムの基本概念を説明するシステム概念図 である。
[図 2]基地局コントローラ 14と各基地局間のトラフィックデータと制御情報の接続を示 すネットワーク構成図である。 [図 3]複数のセルにおける基地局の配置を示す図である。
[図 4]OFDMの GIを説明する図である。
[図 5]本発明に係るセルラ移動通信システムに使用する各チャネル信号の時間及び 周波数軸における構成図である。
[図 6]基地局の送信機のブロック図である。
[図 7]基地局の送信機におけるパイロットチャネル信号生成部 23のブロック図である
[図 8]基地局の送信機における制御チャネル信号生成部 24のブロック図である。
[図 9]基地局の送信機におけるトラフィックチャネル信号生成部 25のブロック図である
[図 10]移動局の受信機のブロック図である。
[図 11]移動局の受信機におけるパイロットチャネル信号処理部 41のうち、 1つの基地 局に対応するノ ィロットチャンネル信号処理部を示すブロック図である。
[図 12]移動局の受信機における制御チャネル信号処理部 42のうち、 1つの基地局に 対応する制御チャンネル信号処理部を示すブロック図である。
[図 13]移動局の受信機におけるトラフィックチャネル信号処理部 43のうち、 1つの基 地局に対応するトラフィックチャンネル信号処理部を示すブロック図である。
圆 14]基地局 0のパイロット信号成分を表形式で示した図である。
圆 15]基地局 1のパイロット信号成分を表形式で示した図である。
圆 16]基地局 2のパイロット信号成分を表形式で示した図である。
[図 17]基地局 0の制御チャネル信号成分を表形式で示した図である。
[図 18]基地局 1の制御チャネル信号成分を表形式で示した図である。
[図 19]基地局 2の制御チャネル信号成分を表形式で示した図である。
圆 20]第 1の通信モードに対応する基地局 0のトラフィックチャネル信号成分を表形 式で示した図である。
圆 21]第 1の通信モードに対応する基地局 1のトラフィックチャネル信号成分を表形 式で示した図である。
圆 22]第 1の通信モードに対応する基地局 2のトラフィックチャネル信号成分を表形 式で示した図である。
圆 23]第 2の通信モードに対応する基地局 0のトラフィックチャネル信号成分を表形 式で示した図である。
圆 24]第 2の通信モードに対応する基地局 1のトラフィックチャネル信号成分を表形 式で示した図である。
圆 25]第 2の通信モードに対応する基地局 2のトラフィックチャネル信号成分を表形 式で示した図である。
圆 26]移動局 Mにおける受信機の基地局選択手段により 1つの基地局を選択し、基 地局コントローラにより第 1の通信モードが選択される場合の手順を示すフローチヤ ートである。
圆 27]移動局 Mにおける受信機の基地局選択手段により複数の基地局を選択し、基 地局コントローラにより第 2の通信モードが選択される場合の手順を示すフローチヤ ートである。
圆 28]移動局 Mにおける受信機の基地局選択手段により複数の基地局を選択し、基 地局コントローラにより第 3の通信モードが選択される場合の手順を示すフローチヤ ートである。
[図 29]移動局の受信機の基地局選択手段により最大受信レベルの基地局候補を選 択し、基地局コントローラの基地局選択手段により、最終基地局の選択、第 1の通信 モード選択が実行される場合の手順を示すフローチャートである。
[図 30]移動局の受信機の基地局選択手段により最大受信レベルの基地局候補を選 択し、基地局コントローラの基地局選択手段により、最終基地局の選択、第 2の通信 モード選択が実行される場合の手順を示すフローチャートである。
圆 31]移動局の受信機の基地局選択手段により基地局候補を選択し、最終的な基 地局を決定した後、基地局コントローラの基地局選択手段により第 2の通信モードが 選択される場合の手順を示すフローチャートである。
圆 32]基地局コントローラの基地局選択手段により第 3の通信モードが選択される場 合の手順を示すフローチャートである。
圆 33]移動局の受信機の基地局選択手段により最大受信レベルの基地局候補を選 択し、基地局コントローラの基地局選択手段により、最終基地選択、第 1の通信モー ド選択が実行される場合の手順を示すフローチャートである。
圆 34]移動局の受信機の基地局選択手段により最大受信レベルの基地局候補を選 択し、基地局コントローラの基地局選択手段により、最終基地選択、第 2の通信モー ド選択が実行される場合の手順を示すフローチャートである。
圆 35]移動局の受信機の基地局選択手段により最大受信レベルの基地局候補を選 択し、基地局コントローラの基地局選択手段により、最終基地選択、第 1の通信モー ド選択が実行される場合の手順を示すフローチャートである。
[図 36]移動局の受信機の基地局選択手段により最大受信レベルの基地局候補を選 択し、基地局コントローラの基地局選択手段により、最終基地選択、第 2の通信モー ド選択が実行される場合の手順を示すフローチャートである。
[図 37]OFDM方式を用いた送受信機のブロック図である。(a)は、送信機のブロック 図あり、(b)は、受信機のブロック図である。
[図 38]OFDMシンボルと GIとの配置関係を説明するである。
[図 39]OFDM方式の 1フレーム内の送信信号における送信シンボルの配置を示した 図である。
[図 40]拡散 OFDM方式の 1フレーム内の送信信号における送信シンボルの配置を 示した図である。 (a)は、周波数領域の拡散率が 4であり、 4つのサブキャリアで同じ データシンボルが送信されることを示す図である。 (b)は周波数領域と時間領域の拡 散率が共に 2であり、 2つのサブキャリア、 2つの OFDMシンボルで同じデータシンポ ルが送信されることを示す図である。
[図 41]周波数領域拡散を行う拡散 OFDM方式の送受信機のブロック図である。 (a) は、送信機のブロック図であり、(b)は、受信機のブロック図である。
符号の説明
10、 11, 12 セル
13 境界領域
14 基地局コントローラ
15 コアネットワーク インターネット
基地局の送信機
制御チャネルデータバッファ部 トラフィックチャネルデータバッファ部 制御部
制御チャネルシンボル生成部 トラフィックチャネルシンボル生成部 パイロットチャネル信号生成部 制御チャネル信号生成部
トラフィックチャネル信号生成部 合成部
切替部
アンテナ
コピー部(copier)
ノ ィロット用スクランブルコード乗算部 制御信号周波数拡散部
トラフィック信号周波数拡散部 トラフィック用スクランブルコード乗算部 移動局の受信機
アンテナ
パイロットチャネル信号処理部 制御チャネル信号処理部
トラフィックチャネル信号処理部 制御チャネルデータ再生部 トラフィックチャネルデータ再生部 統括制御部
チャネル推定信号生成部
制御チャネルシンボル逆拡散部 52a トラフィックチャネルシンボル逆拡散部
52b トラフィックチャネルシンボル再生部
500、 500a, 500b P^^
501、 501a, 501b IFFT
502、 502a, 502b P ^^
503、 503aゝ 503b AddGI
504 RemoveGI
505 タイミング検出器
506、 506a, 506b P^^
507、 507a, 507b FFT
508、 508a, 508b P ^^
600 周波数領域拡散部
601 周波数領域逆拡散部
発明を実施するための最良の形態
[0095] 以下、図面を参照して、セルラ移動通信システム、セルラ移動通信システムにおけ る基地局の送信装置と移動局の受信装置およびセルラ移動通信システムの基地局 選択制御方法の実施形態について詳細に説明する。
[0096] 図 1〜図 36は、セルラ移動通信システムにおける基地局の送信装置と移動局の受 信装置およびセルラ移動通信システムの基地局選択制御方法の実施形態の一例で あって、図中、同一の符号を付した部分は同一物を表すものとする。
[0097] まず、本発明に係るセルラ移動通信システムの基本概念について、図 1から図 5を 用いて、以下に説明する。
[0098] 図 1は、本発明に係るセルラ移動通信システムの基本概念を説明するシステム概念 図である。
[0099] 図 1に示すように、サービスを限られた範囲の領域 (セル)に分割して、それぞれの 基地局を配置し、移動局との通信を行うセルラ移動通信システムにおいて、代表する 3つのセル 10, 11 , 12内に基地局 A, B, Cがそれぞれ配置されている様子を示して いる。 [0100] また、移動局 Mがセル 10 (基地局 A)の近傍地点 Dにあった場合と、移動局 Mが移 動し、 3つのセル 10, 11, 12が重なる境界領域 13内の地点 Eあった場合におけるデ ータ通信の例を示して 、る。
[0101] 図 2は、基地局コントローラ 14と各基地局間トラフィックデータと制御情報の接続を 示すネットワーク構成図である。
[0102] 図 2に示すように、基地局コントローラ 14は、無線リソースの制御を行う装置であり、 例えば、インターネット 16に接続されたコアネットワーク 15及び各基地局とに接続さ れ、インターネット 16からコアネットワーク 15を介して、送信データを移動局 Mに宛て て送信する際に、前記複数の基地局のうち、どの基地局 (ここでは基地局 A, B, C) の無線チャネルの割当てを行う力、また、各基地局に上記送信データのうちのどのデ ータをどのように配分するかなどのシステム全体の無線リソース制御を行う。
[0103] なお、基地コントローラ 14に接続される通信回線は、インターネット 16に限らず、 L ANネットワーク等の専用通信回線であってもよい。
[0104] また、図 1に示すように、本実施形態では、基地局コントローラ 14力 システムに 1つ 存在して!/、る場合を示して 、るが、より規模の大き 、システムでは複数の基地局コン トローラがそれぞれ複数の基地局と接続する形となる。また、本発明に関連する基地 局コントローラの機能は各基地局内に設けるようなシステム構成も可能である。すな わち、複数の基地局が直接情報を交換して、移動局 Mに対して送信を行う基地局や 通信モードを決定するような構成も考えられる。
[0105] ここで、通常、地点 Dのような、電波の減衰が小さぐ高い耐干渉性が要求されない 地点では、基地局 Aと移動局 M間で、例えば、 OFDM信号を用いて(以下、 OFDM 又は拡散 OFDM信号を使用して説明する)、この通信方式での最大の通信速度で、 データ通信が行われる。この場合、基地局コントローラ 14は、データ x、 y、 zの全デー タを基地局 Aに宛てて、伝送する。データ受信した基地局 Aは、後述するトラフィック チャネルを介してデータ x、 y、 zをまとめて移動局 Mに伝送する。この通信のモードを 第 1の通信モードと呼ぶことにする。
[0106] 一方、移動局 Mが地点 D力も地点 Eに移動した場合、この境界領域 13内の地点 E は、基地局 A, B, Cのどの基地局からも遠い位置にあり、電波の減衰や干渉が大き い。従って、移動局 Mは、データの通信速度を高めるためには高い耐干渉性等が要 求される。
[0107] この要求を満たすために、データ x、 y、 zを 3分割して、それぞれの基地局 A, B, C にデータ x、 y、 zを割当てることによって、 1つの基地局のデータ伝送量を 3分の 1に 小さくする。基地局コントローラ 14は、基地局 Aに対してはデータ x、基地局 Bに対し てはデータ y、基地局 Cに対してはデータ zを送信し、一基地局あたりのデータ割り当 て量を小さくする。このデータ伝送量を小さくすることで、例えば、干渉に強い拡散 O FDM信号を利用して、耐干渉性を高くした上で、 3つの基地局 A, B, Cからほぼ同 時にデータ x、 y、 zを送信し、移動局 Mにおいてほぼ同時に受信することで、上記第 1の通信モードの通信速度に対して、できるだけ同等の通信速度となるように、通信 ノ メータ等を選択し、所定の速度のデータ伝送を実現することが可能となる。この 通信モードを第 2の通信モードと呼ぶ。
[0108] さらに、移動局 Mが地点 Eのような通信環境の悪い地点にある場合であって、他に 多くの移動局が同時に通信を行っている場合や、より優先度の高い移動局が存在す る場合には、移動局 Mに多くの無線リソースを割り当てることができない場合がある。 このような場合に、例えば、移動局 Mは、基地局 Aのみと通信を行い、第 2の通信モ ードと同様に、干渉に強い拡散 OFDM信号を利用して、耐干渉性を高くして、通信 の信頼性を上げ、通信の品質を確保する。この通信モードを第 3の通信モードと呼ぶ
[0109] ここで、上記説明した第 1, 2, 3の通信モードを実行する場合において、基地局の 選択方法及び任意の通信モードから他の通信モードへの移行方法につ!、て、簡単 に説明しておく。
[0110] 各通信モードの必要性については、上記に説明した通りであるが、図 1に示したよう に、周辺基地局と移動局 Mとの位置関係の変化や、通信環境状態の変化、あるいは 各セルのトラフィックや移動局 Mおよび他の移動局に対する通信に要求される通信 品質の変化に応じて、適切な通信モードの移行即ち、モード選択を行う必要がある。 例えば、上記第 1の通信モードから第 2の通信モード又は第 3の通信モードへのモー ド移行は、現在選択されている基地局 A (第 1の通信モードでは、基地局 Aのみが選 択されている)のパイロット (後記する)受信信号レベルを常時検出しておき、通信環 境条件の変化に伴って、所定の受信パワーレベル以下となった場合に、通信モード 移行を行うようにしてもよい。あるいは、基地局 Aの受信信号レベルとあわせて干渉レ ベルを測定し、希望信号電力対干渉信号電力比(SIR: Signal to Interference Power Ratio)を計算して、 SIRが所定レベル以下になった場合に、通信モード移 行を行うようにしてもよい。
[0111] 上記第 2の通信モードへの移行を行う場合は、現在選択されて ヽる基地局 Aを再 度見直し、移動局 M又は基地局コントローラ 14の基地局選択手段、又はこれらの組 み合わせによって基地局 Α,, Β' , C,を選択し、第 3の通信モードへの移行の場合も 、現在選択されている基地局 Aを見直し、基地局 A'を選択する必要がある。
[0112] 上記基地局 Α' , Β' , C'を選択する方法として、例えば、移動局 Μの基地局選択 手段が選択を行う場合、後述するように、常時周辺の複数の基地局からのパイロット 信号を受信し、所定の受信パワーレベル以上を有する基地局 Α' , Β' , C'を選択す る。なお、基地局 Aを選択した段階における情報を加味して、基地局 A'、 B'、 C 'を 選択するようにしても良い。
[0113] なお、後述する制御チャネルデータはトラフィックチャネルに比較してデータ量が少 ないが同時に高い信頼性が要求される。そのため、周波数領域拡散、または時間領 域の拡散 (ある!、は両方の領域での拡散)を行った拡散 OFDM信号を利用して、高 ぃ耐干渉性を持たせて、さら〖こ、基地局間の干渉を抑える処理をした上で、各基地 局 A, B, C力 送信される。
[0114] また、第 2および第 3の通信モードにおいては、後述するように、それぞれ一定間隔 づっ離れた直交サブキヤァを利用し、複数のチャネルを得ることで、周波数ダイバー シティを行うことができ、耐干渉性をより高いものにすることができる。
[0115] 次に、上述した本発明に係るセルラ移動通信システムの基本概念について、さらに 詳しく説明する。
[0116] 上記基地局 A, B, Cの 3つの基地局を使用しての第 2の通信モードである並列伝 送を行う基本概念について概略説明した力 この基本概念は、並列伝送によって高 速伝送を可能にする MIMO (Multiple Input Multiple Output)技術とマルチ パスに強いという特徴をもつ OFDMの技術を利用するものである。
[0117] 通常、 MIMOによる並列伝送は、マルチアンテナを用いて行うが、本実施形態で は、複数の基地局力もの並列送信によってマルチインプットを実現している。
[0118] なお、 OFDMでは、 GIの範囲内に遅延波が収まればマルチパスによる符号間干 渉を抑えることができる。
[0119] 通常のマルチアンテナを用いた MIMOによる並列伝送であれば、送信基地局のァ ンテナはほぼ同じ位置にあるので伝搬遅延差はマルチパスによる遅延に比べて特に 考慮する必要はないが、本実施形態の場合は、複数の基地局からの送信をほぼ同 時に行うため、基地局力も移動局までの伝搬遅延差が GIより大きくならないようにす ることが望ましい。
[0120] また、移動局は、携帯性を高めるために複数のアンテナを備えることが困難である。
[0121] そこで、この問題を解決するために、本実施形態では、 OFDM信号の替わりに、周 波数領域拡散を行う拡散 OFDM信号を用いる。すなわち、周波数領域で拡散を行 つた後に周波数の離れたサブキャリアに信号を割当てることにより、伝搬路特性の異 なる複数のチャネルを得ることができる。これによつてマルチアウトプットを実現して ヽ る。
[0122] 図 3は、複数のセルにおける基地局の配置を示す図である。
[0123] それぞれの基地局(基地局の位置を記号「 +」で示して!/、る)に # 0から # 3までの 基地局識別番号を振って 、る。同じ基地局識別番号の基地局は隣接しな 、ように配 置し、移動局は基地局識別番号の異なる基地局の信号を区別して同時に受信する。
[0124] 図 4は OFDMの GIを説明する図である。
[0125] 同時に受信する可能性のある基地局、あるいは大きな干渉を与える可能性のある 基地局の信号が GIを超えて受信されな 、ためには、 D >T X Cであることが望まし
GI
い。ここで、 GI長を Τ 秒とし、隣接する基地局の距離を Dメートルとする。また、 ま
GI
電波の伝搬速度である。
[0126] 次に、上述した本発明に係るセルラ移動通信システムの基本概念に基づく高速並 列伝送を発揮させるためのパイロットチャネル、制御チャネルおよびトラフィックチヤネ ルの信号構成について説明する。 [0127] 図 5は、本発明に係るセルラ移動通信システムに使用する各チャネル信号の時間 及び周波数軸における構成図である。
[0128] 各基地局(図 5では、代表する基地局 A, B, Cとする)は、移動局 Mに音声、画像 等のデータを送信するためのトラフィックチャネル、トラフィックチャネルデータのあて 先情報を含む制御情報等を送信するための制御チャネルおよびチャネル推定 (各基 地局の受信パワーレベルの測定等を含む)を行うためのパイロットチャネルを用いて 、各チャネル信号をほぼ同時に送信する。
[0129] 図 5に示すように、例えば、パイロット信号は、基地局 A, B, Cからほぼ同時に送信 されるため、移動局 M側で、それぞれ干渉を起こすことなく分離して、受信する必要 がある。そのため、各基地局力ものパイロット信号は、後述する(数式 1に示す)基地 局識別番号に対応する直交コードを用いて、送信される。また、制御チャネル信号、 トラフィック信号についても、パイロット信号と同様に、後述するように移動局 Mで容易 に分離できるように工夫がなされて 、る。
[0130] ノ ィロットチャネルは時間多重される。すなわち、図 5に示すように、パイロット信号 は、フレーム先頭の時間 0力も Np間に時間的に別の OFDMシンボルを用いて伝送 される。一方、制御チャネル信号やトラフィックチャネル信号は、時間 Np以降に送信 される。
[0131] 制御チャネル信号は、本実施形態では、周波数領域拡散された拡散 OFDM信号 として生成される。周波数拡散後、スクランブルコードでスクランブルされる。このスク ランブルコードは、制御チャネル用の共通のコードとする。
[0132] トラフィックチャネルは、基地局毎に異なるランダム系列を用いてスクランブルされ、 制御チャネル信号と非直交信号多重される。
[0133] また、パイロットシンボルもトラフィックチャネルと同一のランダム系列でスクランブル される力 異なる基地局番号のパイロット信号とは時間方向で、直交化するようなパイ ロットパターンを用いることによって、基地局間の干渉を抑圧する。
[0134] パイロット信号はフレームの先端に配置されている力 フレームの前後あるいは中 間に分けて配置することも可能である。あるいは、 Ncサブキャリアのうちいくつかのサ ブキャリアだけを用いてもよい。また、トラフィックチャネル信号と制御チャネル信号に つ!、ては、トラフィック信号がな 、場合に制御信号だけが送信される場合があっても かまわな!/、し、トラフィック信号と制御信号を異なる OFDMシンボルや異なるサブキヤ リアに割当てることにより、互 、の干渉をなくすことも可能である。
[0135] 上記に示したように、パイロットチャネル、制御チャネルおよびトラフィックチャネルの 信号構成を基地局間の干渉を可能な限り抑えて多重化する構成としたことにより、複 数個の基地局を選択する場合の基地局の識別を容易にし、かつ、信号の伝送効率 を高めることが可能となり、本システムの目的である通信環境条件に応じて基地局と 移動局間の高速データ伝送を行うための基本のデータ構成となる。
[0136] 次に、上記の各チャネル構成に基づいて、基地局の送信機および移動局の受信 機それぞれの構成および動作についてブロック図を用いながら以下に詳細に説明す る。
[0137] 図 6は、基地局の送信機のブロック図であり、図 10は、携帯端末 (移動局)の受信 機のブロック図である。
[0138] 図 6に示すように、基地局の送信機 17は、基地局コントローラ 14 (図 1に図示)から 通信モードを選択するための情報等を含む制御情報を受けて、制御チャネルデータ の生成、通信モード切替え等の制御信号の生成等を行う制御部 20と、生成された制 御チャネルデータをー且バッファする制御チャンネルバッファ部 18と、制御チャネル シンボルを生成する制御チャネルシンボル生成部 21と、トラフィックチャネルデータを ー且バッファするトラフィックチャネルバッファ部 19と、トラフィックチャネルデータを入 力して、トラフィックチャネルシンボルを生成するトラフィックチャネルシンボル生成部 2 2と、パイロット信号を生成するパイロットチャネル信号生成部 23と、制御信号を生成 する制御チャネル信号生成部 24と、トラフィック信号を生成するトラフィックチャネル 信号生成部 25と、制御チャネル信号生成部 24により生成された制御信号とトラフイツ クチャネル信号生成部 25により生成されたトラフィック信号とを合成して、その合成信 号を生成する合成器 26と、フレーム開始力も発生するパイロット信号が終了した後、 上記合成信号に切り換える切替器 27と、合成信号又はパイロット信号を送信するァ ンテナ 28とを備えて構成される。
[0139] 一方、図 10に示すように、移動局の受信機 39は、基地局の送信部から送信された 制御チャンネル信号又は制御チャネル信号とトラフィックチャネル信号の合成信号又 はパイロット信号を受信するアンテナ 40と、受信されたパイロット信号からパイロットシ ンボルを生成するパイロットチャネル信号処理部 41と、受信された制御チャネル信号 から制御チャネルシンボルを抽出する制御チャネル信号処理部 42と、抽出された制 御チャネルシンボル力 制御チャネルデータを抽出する制御チャネルデータ再生部 44と、受信されたトラフィックチャネル信号からトラフィックチャネルシンボルを抽出す るトラフィックチャネル信号処理部 43と、抽出されたトラフィックチャネルシンボルから トラフィックチャネルデータを抽出するトラフィックチャネルデータ再生部 45と、さらに、 トラフィックチャネル信号処理部に入力する通信モード切替え制御信号 (制御チヤネ ル情報)を生成する統括制御部 46と、を備えて構成されている。統括制御部 46は、 さらに、受信信号から複数基地局からの受信信号レベルを測定し、アクセス要求を行 う基地局を選択する基地局選択手段を備える。
[0140] また、上記制御チャネル情報は、基地局コントローラ力も送信される通信モード選 択情報等を含む制御情報から生成されるものである。
[0141] まず、上記のように構成される基地局の送信機及び移動局の受信機において、パ ィロットチャネル信号の生成およびチャネル推定にっ 、て、送信機のパイロットチヤネ ル信号生成部 23のブロック図である図 7及び受信機のパイロットチャネル信号処理 部 41のうち、 1つの基地局に対応するパイロットチャンネル信号処理部のブロック図 1 1を参照して説明する。
[0142] 図 7は、基地局の送信機におけるノ ィロットチャネル信号生成部 23のブロック図で ある。
[0143] 図 11は、移動局の受信機におけるノ ィロットチャネル信号処理部 41のうち、 1つの 基地局に対応するノ ィロットチャンネル信号処理部を示すブロック図である。
[0144] パイロットシンボルの各サブキャリア成分を p (i, j)で記す。
[0145] ここで、 iは時間方向のインデックスで 0から Np— 1の値をとる。 jは、周波数方向のィ ンデッタスであり、 0から Nc— 1の値をとる。
[0146] 図 7に示すように、パイロット信号の生成には、基地局番号の異なる基地局間で直 交する直交コードをコピー器 30によって、コピーし、パイロット用スクランブルコード乗 算部 31によって、この直交コードと基地局固有のスクランブルコードとを掛け合わし て周波数拡散される。ここでは、図 3に対応して # 0から # 3の基地局識別番号を用 い、パイロットシンボル数 Npを 4とする。
[0147] 以降では、 4つの基地局識別番号を用いることを仮定して実施例の説明を行うが、 より多くの基地局識別番号を用いることも可能であり、本発明の範囲は 4つの基地局 識別番号を用いる場合に限定されるものではない。より多くの基地局識別番号を用 いる場合には、以下に示す数式等の修正が必要になる力 本発明の原理に基づい てこれらの修正を行うことは当業者によれば容易に行うことができる。
[0148] 基地局 1に固有のスクランブルコードを X X · · · , X α)で表す。
0 1 Nc-1
[0149] また、基地局 1に対応する基地局識別番号を n (1)で表す。基地局識別番号 n (1)に 対応する長さ 4の直交コードを w (n(1)), w (n(1)), w (n(1)), w (ηα))で表す。この時、パイ
0 1 2 3
ロットシンボルの成分 ρα) (i, j)は、下記に示す式で表される。
[数 1]
ここで、 χα)は、例えば周期が Ncより長い Maximal Length Sequence (m系列) の一部をそれぞれ異なる基地局に割り当ても良い。また、 w(n(1))はアダマール系列の 直交する各行をそれぞれの基地局識別番号に割当ても良い。
[0150] このような構成で得られた基地局 0, 1, 2のパイロット信号成分はそれぞれ図 14、 1 5、 16のようになる。
[0151] さらに、 p(1) (i, j)は必ずしも数式 1に示される式で構成される必要はなぐ基地局識 別番号の異なる基地局 1と に対して次式の関係を満たすものであれば、異なる信号 を用いても構わない。
[数 2]
Figure imgf000034_0001
複数の基地局 (1=0, 1, , M— 1)力 信号を受信した場合、移動局の受信 機は、以下の式に示す受信信号を受信する。 [数 3]
Figure imgf000035_0001
上記 h(l, j)は、基地局 1と移動局間のサブキャリア jにおけるチャネルゲインである。
[0152] また、上記チャネルゲインは、時間方向の変動は小さいと仮定し、時間方向のイン デッタスは省略している。
[0153] 受信信号 r(i, j)に対して、受信機 39のパイロットチャネル信号処理部 41のチヤネ ル推定信号生成部 50は、下式に示すように基地局のパイロットシンボルの複素共役 を掛けて時間平均することにより、チャネルゲインの推定値を算出することができる。 この推定されたチャネルゲインは、下記に示す式で表される。
„ 1 1
Figure imgf000035_0002
上記式において、 2行目に記載されている式において、∑は、基地局識別番号が チャネルゲイン推定値を算出した 、基地局 と等し 、基地局の成分につ!、ての和を とって 、ることを意味して 、る。
[0154] このように展開することができるのは、基地局識別番号の異なる基地局のパイロット 信号は、パイロットシンボルの直交性により排除することができるためである。
[0155] また、上記 3行目の式は、算出したい基地局の信号成分と、基地局識別番号は同じ であるが基地局番号の異なる基地局の成分に分けて表記したものである。
[0156] 同じ基地局識別番号で異なる基地局に対しては距離が離れており減衰量が大きく なるため、第 2項は小さくなる。さらに、精度の高いチャネルゲインの情報を得るため には、隣接する複数のサブキャリア成分を平均化することも可能である。
[0157] 次に、基地局の送信機及び移動局の受信機において、制御チャネル信号の生成 および制御チャネルシンボルの生成にっ 、て、送信機の制御チャネル信号生成部 2 4のブロック図である図 8及び受信機の制御チャネル信号処理部 42のうち、 1つの基 地局に対応する制御チャンネル信号処理部を示すブロック図 12を参照して説明する
[0158] 図 8は、基地局の送信機における制御チャネル信号生成部 24のブロック図である。
[0159] 図 12は、移動局の受信機における制御チャネル信号処理部 42のうち、 1つの基地 局に対応する制御チャンネル信号処理部を示すブロック図である。
[0160] 図 8に示すように、制御信号周波数拡散部 32は、以下に示す制御チャネル用スク ランブルコードによって、制御チャネルシンボルをスクランブルする。
[0161] 制御チャネル用スクランブルコード ζα)は、制御チャネル用共通コード y , y , · · · , y と、前述の x(1), w(n(1))を用いて、下記に示す式のようになる。
Nc-
[数 5] υ) - yj レ /り ここで、 jmod4は、 jを 4で割った余りを意味し、は Xを越えない最大の整数を意味す る。制御チャネルシンボルは、連続する 4サブキャリアで 1シンボルを送信する。すな わち、スクランブル前の制御チャネルシンボルを c(1) (i, j)で表すと、下記に示す式と なる。
[数 6] c( (/,0) = c( (z,l) = c( ) (/,2) = c(,) (/,3)
c(') ·,4) = c(/) (i,5) = cm (i,6) = c(!) (i,7)
c(n ·,8) = c(n (z,9) = c( (/,10) = c( ·,1 1)
ここで、 j = 0, 1, ••••N - 1, i=0, 1, ••••N 1であり、制御チャネルシンボル c d
を含む最初の OFDMシンボルに対して i = 0と定義している。
[0162] 数式 5に示す制御チャネル用スクランブルコードと数式 6に示す制御チャネルシン ボルと力 生成される制御チャネル信号は下記の式で表される。 [数 7]
Figure imgf000037_0001
このような構成で得られた基地局 0, 1, 2の制御チャネル信号成分はそれぞれ図 1
7、 18、 19のようになる。
[0163] さらに、制御チャネル用スクランブルコード ζα)についても、必ずしも数式 4に示され る式で構成される必要はなぐ基地局識別番号の異なる基地局 1と に対して次式の 関係を満たすものであれば、異なるコードを用いても構わない。時間方向で固定のパ ターンを用いる必要もない。
[数 8]
Figure imgf000037_0002
(但し、 k=0,4,8" .:) 基地局の送信機 19から送信された上記示す制御信号は、移動局の受信機 39によ つて受信され、さらに、図 12に示すように制御チャネル信号処理部 42のうち、 1つの 基地局に対応する制御チャンネル信号処理部によって制御チャネルのシンボルが 抽出される。
[0164] 以下に、制御チャネルシンボルの抽出手順を説明する。
[0165] 移動局の受信機 39が複数の基地局 (1=0, 1, · ' · Μ— 1)力 信号を受信した受 信信号は、下記に示す式で表される。
[数 9]
Figure imgf000037_0003
まず、受信機 39の制御チャネルシンボル逆拡散部 51は、共通コード yの複素共役 を乗ずることによって、下記に示す式で表される信号を出力する。
[数 10] r i ) = r{i ).y]^h{l,j).w ,- y^(i,j) さらに、
[数 11]
Figure imgf000038_0001
であるので、隣接するサブキャリアのチャネルゲインが下記の式に示すように、
[数 12] h(l, j) « Λ(/,ゾ + 1) « h(l,ゾ · + 2) « h(l,ゾ · + 3)
(但し、 1=0,4,8,..:) ほぼ等しいと仮定すると、複数の基地局の信号が混じった受信信号を、下式に示 すように基地局識別番号の異なる 4つの信号に変換することができる。
[数 13]
"("(''》( ) =
- ∑h(l,j)-x^-c^(i,j)
'1"(')="('')
= V ) · xf · c(r) ( , j) + ∑h( , j) · x · c (り , j)
(n
(但し y = 0, 4, 8,...) 但し、 jは 4の倍数である。即ち、基地局識別番号 n(l)に対応する長さ 4の直交コー ド wn(1)を上記数式 8に乗ずることによって、隣接する基地局の制御チャネル信号を分 離して、基地局識別番号の異なる基地局の制御チャネル信号を同時に受信し別々 に抽出することができることを意味して 、る。
さらに、パイロット信号から求めたチャネルゲインと固有のスクランブルコードを掛け て逆拡散を行えば、各基地局の制御チャネルシンボル c(1) (i、 j)を抽出することができ る。 [0167] この制御チャネルシンボルの抽出過程を示す式を以下に記す。
[数 14]
Figure imgf000039_0001
(伹し ゾ = 0, 4, 8, .··) ここで、 Gは合成後のチャネルゲインであり、 Iは干渉信号成分である。上式では、 推定したチャネルゲインを重みに用いたため、 G I h(l、j) I 2となる力 推定したチ ャネルゲインから、異なる重みを求めることも可能である。例えば、通信路の遅延分散 が大きぐ周波数選択性の強い環境では数 9の仮定が成り立たず、干渉信号成分 Iが 大きくなる場合がある。このような場合には MMSE (Minimum Mean Square E rror)基準に基づく重みを用いることにより、干渉と雑音を抑えることができる。
[0168] このように、基地局識別番号の異なる複数の基地局の制御情報を受信することによ り、移動局の受信機 39は、制御チャネル信号と同時に受信したトラフィックチャネル 信号に含まれるデータが自局宛てのデータ力、また、どの基地局から送信されたもの であるかを判断することができる。
[0169] 次に、基地局の送信機及び移動局の受信機において、トラフィックチャネル信号の 生成およびトラフィックシンボルの生成にっ 、て、送信機のトラフィックチャネル信号 生成部 25のブロック図である図 9及び受信機のトラフィックチャネル信号処理部 43の うち、 1つの基地局に対応するトラフィックチャンネル信号処理部を示すブロック図 13 を参照して説明する。
[0170] 移動局 Mが基地局 Aの近傍の地点 Dに位置している場合には、上述したように、通 信モードが第 1の通信モードとなり、基地局 Aのみが選択される。すなわち、図 9に示 すスィッチ(SW A, SW B)が、制御部 20からの制御信号によって、それぞれ下側 に倒れ、トラフィックチャネルシンボルは、下側のトラフィックチャンネル信号生成部に 入力される。そして、基地局 Aと移動局 Mの間で、一対一の通信が行われ、そのトラ フィックチャネルのデータは、最大の速度で伝送される。そのため、従来例の図 29 (a )に示すように OFDM信号がそのまま使用される。なお、図 9では、通信モードの切 替えを SWで示している力 あくまでも、論理的なものであって、必ずしも実際のハー ドウエアを意味するものではな 、。
[0171] このときのトラフィックチャネル信号は、
[数 15]
となる。すなわち、トラフィックチャネル信号は、トラフィック用スクランブルコード乗算 部 34によって、基地局 1に固有のスクラブリングコード X X · · · · χ (1)を用い
0 1 Nc-1
てスクランブルされる。
[0172] また、 OFDMシンボルの各サブキャリア成分 dQ) (i、 j)は、送信シンボル s (k)に対し て、次式のようになる。
[数 16] d l)(i,j) = s(i - Nc + j) j = 0, 1, ••••N - 1, i=0, 1, · ' · ·Ν — 1、1は特定の基地局の番号である。
c d
[0173] このような構成で得られた基地局 0, 1, 2のトラフィックチャネル信号成分はそれぞ れ図 20、 21、 22のようになる。
[0174] また、トラフィックチャネルのスクランブルコードとして、 xa)を用いている力 これは必 ずしもパイロットチャネルのスクランブルコードとおなじものを用いている必要はなく、 基地局によって異なる任意のパターンを用いても構わな!/、。
[0175] ここで、トラフィックチャネル信号に用いるスクランブルコードと制御チャネル用のスク ランブルコードとは異なるようにするため、両チャネルの信号は、互いに独立の信号と なる。従って、図 5に示すチャネル構成図に示すように、トラフィックチャネル信号と制 御チャネル信号は、合成器 26により合成されて送信される。この合成信号は、下記 の式で表される。
[数 17] - xT - d(l)( j) + p~ccH . パ " · ゾ"」 り ( ,ゾ) 受信されたトラフィックチャネル信号と制御チャネル信号とが合成された上記合成信 号は、制御チャネル信号処理部 42およびトラフィックチャネル信号処理部 43によつ て、それぞれ独立に、分離されて各選択された基地局の制御チャネルシンボルおよ びトラフィックチャネルシンボルが再生される。なお、分離された制御チャネル信号か ら制御チャネルシンボルが再生される手順は、上述した通りである。
[0176] 一方、第 1の通信モードにおけるトラフィックシンボルの再生の手順について、以下 に説明する。
[0177] 図 13に示すスィッチ(SW C, SW D)は、統括制御部 46からの制御チャネル情 報によって、それぞれ下側に倒れ、トラフィックチャネルシンボルは、下側のトラフイツ クチヤンネル信号処理部に入力され、トラフィック信号処理部 43のトラフィックチヤネ ルシンボル再生部 52bにおいて、単に、トラフィック信号に基地局 1に固有のスクラン ブルコード X X . . . · χ α)の複素共役および推定チャネルゲインの複素共
0 1 Nc- 1
役を乗じた後、そのまま、 PZS変翻 508bに伝達される。これによつて、トラフィック チャネルシンボルが再生されることになる。
[0178] 次に、移動局 Mが位置 D力 通信環境条件の良好でない地点 E (図 3に示す地点 E)に移動し、上述した第 2の通信モードでの通信が開始された場合におけるトラフィ ツクチャネル信号の生成及び再生とトラフィックチャネルシンボルの生成及び再生に ついて説明する。
[0179] 地点 Eのような環境に移動局 Mがある場合、地点 Eの移動局 Mは、基地局から離れ ているため信号の減衰も大きく干渉信号電力も大きいため地点 Dの場合と同じ様な 信号を同じ強度で送信したのでは地点 Eではうまく受信できない。
[0180] そこで、基地局 A, B, Cはそれぞれ異なるトラフィックデータを移動局に対して送信 する。すなわち、周波数方向の全体で Nc個のシンボルを 1Z3づつに分けられてそ れぞれの基地局によって伝送される。 1つの基地局は、 1つのシンボルを 3つの同じ シンボルに拡散させて伝送することができる。
[0181] これによつて、干渉に強い拡散 OFDM信号を用いることが可能であり、通信品質を 高めることができる。ここで、図 9に示すスィッチ(SW A, SW B)が、制御部 20から の制御信号によって、それぞれ上側に倒れ、トラフィックチャネルシンボルは、上側の トラフィックチャンネル信号生成部 25のトラフィック信号周波数拡散部 33に入力され 、それぞれ 3つのサブキャリアを用いて同じ 3つのデータシンボルが送信される。しか しながら、隣接したサブキャリアを使用せずに、サブキャリア間隔の NcZ3倍ずつ周 波数が離れたサブキャリアを用いて、データシンボルが送信される。これを式で示す と、
[数 18] d0) ( , j) = d(,) (i, Nc /3 + j) = d ,) {i,2Nc /3 + j) = s((i - N 3 + j) + l - Nc - Nd l >) となる。
[0182] ここで、 j = 0, 1, · · · · , N /3—1、 i=0, 1, · · · · , N—1、 1=0, 1, 2である。
c d
[0183] このような構成で得られた基地局 0, 1, 2のトラフィックチャネル信号成分はそれぞ れ図 23、 24、 25のようになる。
[0184] そして、携帯端末の受信機では、図 13に示すスィッチ(SW C, SW D)は、統括 制御部 46からの制御チャネル情報によって、それぞれ上側に倒れ、トラフィックチヤ ネル信号は、上側のトラフィックチャンネル信号処理部に入力され、図 13のトラフイツ クチャネルシンボル逆拡散部 52aに示すように、サブキャリア間隔の N Z3倍ずつ周 波数が離れた 3つのサブキャリアの信号成分が合成され、復調されて、トラフイツクチ ャネルシンボルが再生される。このように、周波数ダイバーシティ効果を得ることがで きるため、サブキャリアのレベルの変動を平均化して通信品質を高めることができる。
[0185] また、 1局あたりのデータ伝送速度は、前述したように 1Z3になる力 3つの基地局 から、ほぼ同時に信号を受信することにより、移動局 Mが地点 Eでも地点 Dと同じ伝 送速度を実現することができる。
[0186] なお、制御チャネル信号とトラフィックチャネル信号は、合成された合成信号により ほぼ同時に送信されてくるため、この 2つのチャネル信号が干渉し合う場合もある。こ の場合、最初に制御チャネルを復調し、この制御チャネル信号成分を合成信号から キャンセルした後に、トラフィック信号を復調するようにしても良い。これにより、トラフィ ツクチャネル信号の通信品質を向上することができる。
[0187] ここで、図 9に示すトラフィックチャネル信号生成部 25および図 13に示すトラフィック 信号処理部 43において、上述した 1つの基地局の送信機と携帯端末とで通信を行う 第 3の通信モードは、第 2の通信モードを実行する上部のブロックを使用して実行さ れる。なお、このブロックは、全体のシンボルのうち 1Z3のみを処理されるため、全体 のデータを処理する時間は、 3倍の処理時間を必要とする。そのため、データの伝送 速度は、 1Z3に低下する。
[0188] 図 13に示すトラフィックチャネルの処理では、推定したチャネルゲインの複素共役 を重みに用いている力 制御チャネルの場合と同様に異なる重みを求めることも可能 である。すなわち、ほぼ同時に送信された他の基地局信号の影響が小さくなるような 重みを MMSE (Minimum Mean Square Error)基準に基づいて求めることで 、干渉と雑音を抑えることができる。
[0189] あるいは、複数の基地局の信号を同時に処理して最も確からしい送信シンボルの 組み合わせをみつける MLD (Maximum Likelihood Detection)に基づく復調 方法や、各基地局力 送信されるトラフィックチャネルシンボルの各ビットの尤度情報 を出力し復号器で軟判定復号を行うことで、より誤りの少な ヽトラフィックチャネルデ ータを得ることがでさる。
[0190] 次に、上述した基地局コントローラ、複数の基地局及び移動局間のデータ通信に おいて、基地局コントローラによる基地局の選択及び通信モード選択を行う基地局選 択ステップ、移動局の受信機による通信すべき基地局の候補の選択及び最終基地 局からのデータの受信制御ステップを含むシステム全体の基地局選択制御方法の 各実施例についてフロー図面を用いて、以下に説明する。
<第 1の実施例の説明 >
本実施例は、移動局の受信機が、各基地局の受信レベルを測定し、通信路の品質 に応じて、基地局の候補を選択した後、最終の基地局の選択 (結果的に通信モード の選択がなされる)も行う場合の基地局選択制御方法の例である。
[0191] 図 26は、移動局 Mにおける受信機の基地局選択手段により 1つの基地局を選択し 、基地局コントローラにより第 1の通信モードが選択される場合の手順を示すフローチ ヤートである。
[0192] 以下に、図 26に示すフローチャートに基づいて、基地局コントローラ、基地局及び 移動局の動作を説明する。
[0193] まず、パイロットチャネル信号処理部 41は、周辺の基地局のパイロット信号を受信 する(ステップ S100)。そして、パイロットチャネル信号処理部 41は、周辺の各基地 局の受信信号レベルを測定する (ステップ S 101)。
[0194] 次に、統括制御部 46の基地局選択手段は、基地局識別番号(# 0〜# 3)が等し い複数の基地局の中から、ステップ S101において、上記測定された基地局の受信 信号レベルの内、最大の受信信号レベルを有する基地局を基地局識別番号ごとに 選択し、例えば、 4つの基地局を選択する (ステップ S102)。
[0195] 次に、最大受信信号レベルの基地局より、所定の dB以上低いレベルの基地局を除 外する (ステップ S 103)。さらに、選択された基地局が 3より多ければ、最小の受信レ ベルを除外する。(ステップ S 104)。本実施例(図 26)では、移動局 Mが基地局 Aに 近い地点にいる例を示しており、基地局 Aの受信レベルのみが非常に大きく基地局 Aのみが選択されることになる。
[0196] 次に、ステップ S 105では、選択された基地局 Aに対してアクセス要求を送信する。
そして、選択された基地局 Aの情報、通信品質パラメータ等のデータを基地局 Aに送 信する。
[0197] アクセス要求を受けた基地局 Aは、基地局コントローラ 14に移動局 Mからのァクセ ス要求を送信するとともに、上記情報の選択された基地局 Aの情報、通信品質パラメ ータを送信する(ステップ S 106)。
[0198] 基地局コントローラ 14は、基地局 Aからのアクセス要求を受け付けると、基地局 Aに 対して、アクセス許可を送信すると共に、通信モードを第 1の通信モードに決定し、制 御情報及びトラフィックデータを送信する (ステップ S 107)。
[0199] 次に、基地局コントローラからのアクセス許可を受けた基地局 Aは、制御チャネル信 号及びトラフィックチャネル信号の合成信号を含むフレーム生成を行 ヽ、移動局 Aに 送信する (ステップ S 108)。そして、移動局 Mの受信機は、選択された基地局 Aから の制御チャネル信号を復調する (ステップ S 109)。
[0200] さらに復号された制御チャネルデータに誤りがな 、かを CRC (Cyclic -Redundan cy— Check)符号等で判定し (ステップ SI 10)、誤りなく受信できた場合 (ステップ S 110 ; Yes)には、トラフィックチャネル信号に自局宛ての情報が含まれているかどうか を受信した制御情報に基づ 、て判断し (ステップ S 111)、自局宛ての情報が含まれ ている場合 (ステップ Si l l ;Yes)、基地局 Aのトラフィックチャネルを復調、復号する (ステップ S 112)処理を行う。
[0201] ステップ S110において、受信した制御チャネルデータに誤りがあった場合 (ステツ プ S 110 ; No)、また、ステップ S111において、自局宛ての情報が含まれていないこ とが判明した場合 (ステップ Sl l l ;No)には、基地局 Aのトラフィックチャネル信号に 対するそれ以降の処理を行わな!/、 (ステップ S 113)。
[0202] ここで、受信候補基地局の制御チャネルを受信し、 CRC符号等で誤り検出を行 、 、誤りが無ければ (ステップ S110 ;Yes)、制御チャネル信号のレプリカを生成して、 受信信号力 キャンセルし、基地局信号のトラフィックチャネルを復調する方法をとつ てもよい。
[0203] また、基地局を選択する基準としては、上記の受信信号レベルによる方法以外にも 、無線通信路の伝搬損失によって順序づけする方法であってもよい。さらに、基地局 との距離を基準にするために、受信信号タイミングや伝搬遅延量によって順序づけ する方法も考えられる。
<第 2の実施例の説明 >
本実施例は、移動局の受信機が、各基地局の受信レベルを測定し、通信路の品質 に応じて、基地局の候補を選択した後、複数の最終基地局の選択を行う場合の基地 局選択制御方法の例である。前記実施例 1と異なる点は、トラフィック量の余裕に応じ て、基地局コントローラが最終的な通信モードを決定する基地局選択制御方法の例 である。
[0204] また、図 27は、移動局 Mにおける受信機の基地局の選択手段により複数の基地局 候補を選択し、最終的な基地局を決定した後、基地局コントローラにより第 2の通信 モードが選択される場合の手順を示すフローチャートである。
[0205] さらに、図 28は、移動局 Mにおける受信機の基地局選択手段により複数の基地局 を選択し、基地局コントローラにより第 3の通信モードが選択される場合の手順を示 すフローチャートである。 [0206] 以下に、図 27、 28に示すフローチャートに基づいて、基地局コントローラ、基地局 及び移動局の動作を説明する。
[0207] ステップ S 100〜ステップ S 104までは、図 26に示したフローと同じ処理であるので 、説明は省略する。ただし、本実施例(図 27, 28)では、移動局 Mが基地局 Aと Bの 境界付近に 、る例を示しており、基地局 A及び Bの受信レベルがほぼ同じレベルで あり、基地局 Aおよび Bが選択されることになる。ステップ S104において、受信レべ ルの差が所定の範囲にある基地局 A, Bが選択されると、移動局 Mは、基地局 A, B に対してアクセス要求を送信するとともに、それぞれが選択された情報およびそれぞ れの通信品質パラメータを送信する (ステップ S200)。
[0208] 基地局 Aは、アクセス要求を受け付けると、基地局コントローラに移動局 Mからのァ クセス要求を送信し、基地局 Aの通信品質パラメータも送信する (ステップ S201)。同 様に、基地局 Bもアクセス要求を受け付けると、基地局コントローラに移動局 M力 の アクセス要求を送信し、基地局 Bの通信品質パラメータも送信する (ステップ S202)。
[0209] 基地局 A, B力 のアクセス要求を受け付けた基地局コントローラは、基地局 A, B の各セルのトラフィック量に余裕があるか等の判定を行う(ステップ S 203)。トラフイツ ク量に余裕がある場合には (ステップ S203 ; Yes)、基地局 A, Bに対して、アクセス 許可を送信するとともに、基地局コントローラは、通信モードを第 2の通信モードとし、 この通信モードに対応して、制御情報、トラフィックデータを送信する (ステップ S204
) o
[0210] アクセス許可を受け付けた基地局 A及び Bは、それぞれ移動局 Mにフレーム生成し 、ほぼ同時に送信する(ステップ S205、ステップ S206)。
[0211] 次に、移動局 Mの受信機は、選択された基地局 A、 B力もの制御チャネル信号をほ ぼ同時に受信し、復調する (ステップ S207)。移動局 Mの受信機は、基地局 A、 Bの それぞれに対して制御チャネルデータが誤りなく受信できたかどうかを判定し (ステツ プ S208)、誤りなく受信できた場合 (ステップ S208 ;Yes)には、制御チャネルデータ に自局宛ての情報が含まれて 、るかの判断を行 、 (ステップ S209)、自局宛ての情 報が含まれている場合 (ステップ S209 ; Yes)、トラフィックチャネルを復調、復号処理 を行う(ステップ S 210)。 [0212] ステップ S208において、受信に誤りがあった場合 (ステップ S208 ;No)、また、ステ ップ S209において、自局宛ての情報が含まれていない場合 (ステップ S209 ; No)に は、トラフィックチャネル信号の復調をせず (ステップ S211)、自局宛ての情報が含ま れることが判明した基地局の信号のみ処理する。
[0213] 次に、ステップ S203において、判定条件が満たさない場合 (ステップ S203 ; No) には、図 28に示す (A)の処理に移行する。 2つの基地局 A, Bが選択された状態で、 どちらか通信条件の良い基地局 A又は Bを選択する。ここでは基地局 Aが選択され たものとする。基地局コントローラは通信モードを第 3の通信モードとし、基地局 Aに 対してアクセス許可を発行し制御情報とトラフィックデータを送信する (ステップ S220
) o
[0214] アクセス許可を受け付けた基地局 Aは、フレーム生成し、移動局 Mに送信する (ス テツプ S221)。
[0215] 移動局 Mはこの時点ではモード 3が選択され基地局 A力 データが送られるという 情報を持っていない。そのため、移動局 Mがアクセス要求を送信した基地局 A、 B両 方の信号を受信するように動作する。移動局 Mの受信機は、基地局 A、 Bの制御チヤ ネル信号をほぼ同時に受信し、復調する (ステップ S222)。復調された基地局 A又は Bの制御チャネルデータが誤りなく受信できたかどうかを判定し (ステップ S223)、誤 りなく受信できた場合 (ステップ S223; Yes)には、制御チャネルデータに自局宛ての 情報が含まれて 、るかの判断を行 、 (ステップ S224)、自局宛ての情報が含まれて いる場合 (ステップ S224 ;Yes)にその基地局のトラフィックチャネルを復調、復号処 理を行う(ステップ S 210)。
[0216] ステップ S223において、受信に誤りがあった場合 (ステップ S223 ;No)、また、ステ ップ S224において、自局宛ての情報が含まれていない場合 (ステップ S224 ; No)に は、トラフィックチャネル信号に対するそれ以降の処理を行わな 、 (ステップ S226)。
[0217] <第 3の実施例の説明 >
本実施例は、移動局の受信機が、各基地局の受信レベルを測定し、最大受信レべ ルの基地局の候補を選択した後、最終基地局の選択を基地局コントローラが行う場 合の基地局選択制御方法の例である。 [0218] また、図 29は、移動局の受信機の基地局選択手段により最大受信レベルの基地 局候補を選択し、基地局コントローラの基地局選択手段により、最終基地局の選択、 第 1の通信モード選択が実行される場合の手順を示すフローチャートである。
[0219] 以下に、図 29に示すフローチャートに基づいて、基地局コントローラ、基地局及び 移動局の動作を説明する。
[0220] ステップ S100〜ステップ S102までは、図 26に示したフローと同じ処理であるので 、説明は省略する。本実施例(図 29)では、移動局 Mが基地局 A付近にいる例を示 しており、基地局 Aの受信レベルが最大レベルであり、基地局 Aが選択されることに なる (ステップ S301)。移動局 Mは、基地局 Aに対してのみアクセス要求を送信する とともに、ステップ S 102で選択された基地局の選択候補 A, B, C, Dの受信レベル 情報および通信品質パラメータを送信する (ステップ S302)。
[0221] 基地局 Aは、アクセス要求を受け付けると、基地局コントローラに移動局 Mからのァ クセス要求を送信し、基地局 A、 B, C, Dの通信品質パラメータを送信する (ステップ S303)。
[0222] 基地局 Aからのアクセス要求を受け付けた基地局コントローラの基地局選択手段は 、選択された基地局 A, B、 C, D各セルのトラフィック量の余裕、通信品質パラメータ を考慮して、最終的に基地局 Aを選択する (ステップ S304)。そして、通信モードを 第 1の通信モードとし、基地局 Aにアクセス許可を与えて、トラフィックデータを送信す る(ステップ S 305)。
[0223] アクセス許可を受け付けた基地局 Aは、それぞれ移動局 Mにフレーム生成し、送信 する(ステップ S 306)。
[0224] 次に、移動局 Mの受信機は、選択された基地局 Aからの制御チャネル信号を受信 し、復調する (ステップ S 307)。基地局 Aの制御チャネルデータが誤りなく受信できた 力どうかを判定し (ステップ S308)、誤りなく受信できた場合 (ステップ S308 ; Yes)に は、制御チャネルデータに自局宛ての情報が含まれて 、るかの判断を行 、 (ステップ S309)、自局宛ての情報が含まれている場合 (ステップ S309 ; Yes)、トラフイツクチ ャネルを復調、復号処理を行う(ステップ S310)。
[0225] ステップ S308において、受信に誤りがあった場合 (ステップ S308 ;No)、また、ステ ップ S209において、自局宛ての情報が含まれていない場合 (ステップ S309 ; No)に は、トラフィックチャネル信号の復調をせず (ステップ S311)、自局宛ての情報が含ま れることが判明した基地局の信号のみ処理する。
[0226] <第 4の実施例の説明 >
本実施例は、移動局の受信機が、各基地局の受信レベルを測定し、最大受信レべ ルの基地局の候補を選択した後、最終基地局の選択を基地局コントローラが行う場 合の基地局選択制御方法の例である。
[0227] また、図 30は、移動局の受信機における基地局の選択手段により最大受信レベル の基地局候補を選択し、基地局コントローラの基地局選択手段により、最終基地局 の選択、第 2の通信モード選択が実行される場合の手順を示すフローチャートである
[0228] 第 3の実施例と異なる点は、移動局が基地局 A, Bの境界付近に存在する場合であ り、ステップ 304において、選択基地局のトラフィック量と、通信品質パラメータから、 基地局コントローラの基地局選択手段は、最終的に基地局 A, Bを選択する。そして 、通信モードを第 2の通信モードとし、基地局 A, Bに対してアクセス許可を行い、そ れぞれに対してトラフィックデータを送信する。これ以降の処理は、第 2の実施例と同 様である。
[0229] <第 5の実施例の説明 >
本実施例は、移動局の受信機が、各基地局の受信レベルを測定し、通信路の品質 に応じて、基地局の候補を選択した後、複数の最終基地局の選択を行う場合の基地 局選択制御方法の例であり、上述の第 2の実施例とほぼ同じ処理内容である。第 2の 実施例と異なる点は、伝送するデータがリアルタイムデータ (優先データ)であるか否 かを、基地局コントローラが判定して、最終的な通信モードを決定する点である。
[0230] 図 31は、移動局の受信機の基地局選択手段により基地局候補を選択し、最終的 な基地局を決定した後、基地局コントローラの基地局選択手段により第 2の通信モー ドが選択される場合の手順を示すフローチャートである。
[0231] また、図 32は、基地局コントローラの基地局の選択手段により第 3の通信モードが 選択される場合の手順を示すフローチャートである。 [0232] 伝送するデータがリアルタイムデータ(優先データ)であるか否かを、基地局コント口 ーラが判定する判断処理が、図 31に示すステップ S400である。ステップ S400にお いて、リアルタイムデータである場合 (ステップ S400 ; Yes)には、ステップ S 204の通 信モード決定処理に移行し、リアルデータでない場合 (ステップ S400 ; No)には、(B )【こ示す図 32のステップ 220【こ移行する。
[0233] <第 6及び 7の実施例の説明 >
本実施例 6、 7は、移動局の受信機が、各基地局の受信レベルを測定し、最大受信 レベルの基地局の候補を選択した後、最終基地局の選択を基地局コントローラが行 う場合の基地局選択制御方法の例であり、上述の第 3, 4の実施例とほぼ同様な処 理内容である。第 3, 4の実施例と異なる点は、基地局コントローラが、伝送するデー タがリアルタイムデータ (優先データ)であるカゝ否かを判定し、基地局の決定を行って いる点である(ステップ S330、ステップ S340)。
[0234] 図 33は、移動局の受信機の基地局選択手段により最大受信レベルの基地局候補 を選択し、基地局コントローラの基地局選択手段により、最終基地選択、第 1の通信 モード選択が実行される場合の手順を示すフローチャートである。
[0235] また、図 34は、移動局の受信機の基地局選択手段により最大受信レベルの基地 局候補を選択し、基地局コントローラの基地局選択手段により、最終基地選択、第 2 の通信モード選択が実行される場合の手順を示すフローチャートである。
[0236] <第 8及び 9の実施例の説明 >
本実施例 8、 9は、移動局の受信機が、各基地局の受信レベルを測定し、最大受信 レベルの基地局の候補を選択した後、最終基地局の選択を基地局コントローラが行 う場合の基地局選択制御方法の例であり、上述の第 6, 7の実施例とほぼ同様な処 理内容である。第 6, 7の実施例とは以下の点で異なる。
[0237] 伝送するデータがリアルタイムデータ(優先データ)であるか否かを、基地局コント口 ーラが判定して、最終的な通信モードを決定し、選択した基地局は、フレーム生成し 、トラフィックデータを移動局に送信する。この場合、移動局は、通信路状態が最も良 い基地局にアクセスを要求し、その基地局の制御チャネルデータを復調して、自局 宛て情報のある基地局のトラフツクチャネルデータを復調する(ステップ S351、ステツ プ S352)。
[0238] 図 35は、移動局の受信機の基地局選択手段により最大受信レベルの基地局候補 を選択し、基地局コントローラの基地局選択手段により、最終基地選択、第 1の通信 モード選択が実行される場合の手順を示すフローチャートである。
[0239] また、図 36は、移動局の受信機の基地局選択手段により最大受信レベルの基地 局候補を選択し、基地局コントローラの基地局選択手段により、最終基地選択、第 2 の通信モード選択が実行される場合の手順を示すフローチャートである。
[0240] 以上説明したように、通信環境状態に応じて、適切な基地局の選択及び通信モー ドの選択を自動的に実行することが可能となる。
[0241] 以上は、移動局側から物理チャネルの設定要求 (アクセス要求)を出して、最終的 には基地局コントローラで下りリンクのデータを送信する基地局を決定する方法につ いて述べた。し力し、アプリケーションのレベルでは移動局からインターネット上のサ ーバにアクセスしてデータをダウンロードする場合もあれば、インターネット上の例え ばメールサーバなど力も移動局にデータ送信を送信する場合もある。無線アクセスネ ットワークに属する移動局同士がデータのやり取りをする場合もある。また、本明細書 には上りリンクの物理チャネル設定方法や、移動局への呼び出し要求について記し て!、な 、が、これらは既存の技術と組み合わせて解決可能である。
[0242] 移動局がインターネット上のサーバや他の移動局から無線ネットワークを経由して 呼び出しを受ける場合、基地局コントローラは移動局が最後にアクセスした基地局あ るいはその周辺の複数の基地局を通して呼び出し信号を送信し、呼び出し信号を受 けた移動局が上記した S100以降のステップに従って無線通信チャネルの設定を行 うことも可能である。
[0243] 尚、本発明に係るセルラ移動通信システムは、上記した実施形態に限定されるもの ではなぐ本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿 論である。
産業上の利用可能性
[0244] 本発明のセルラ移動通信システム、セルラ移動通信システムにおける基地局の送 信装置と移動局の受信装置およびセルラ移動通信システムの基地局選択制御方法 は、通信データ量を分割せずに通信速度を低下させることにより通信品質を高めて、 送信を行う通信モードを設けることにより、通信環境条件が良好でない場合であって も、基地局の稼働率を高めるとともに、通信速度の高速ィ匕を図ることが可能であり、通 信速度の高速ィ匕等が要求される移動通信システムに広く適用できる。

Claims

請求の範囲
[1] 移動局が近傍の複数の基地局力 無線信号を略同時に受信できるセルラ移動通 信システムであって、
所定の通信データ量を略最大の通信速度で送信を行う第 1の通信モードと、通信 速度を低下させる代わりに通信品質を高めて、前記所定の通信データ量を一定の割 合で分割した通信データの送信を行う第 2の通信モードとを有する基地局の送信機 と、
前記第 1の通信モードと、前記第 2の通信モードによる送信データを受信できる移 動局の受信機と、
外部との通信を行う通信手段を備え、該通信手段によって得られた前記送信デー タを前記移動局に宛てて送信する場合、前記複数の基地局のうち、どの前記基地局 に対して、どの位のデータ量を配分するかを含むシステム全体の無線リソース制御を 行う基地局コントローラと、
を備え、
第 1の通信モードは、前記複数の基地局の内、 1つの基地局の送信機と前記移動 局の受信機との間で通信するモードであり、一方、前記第 2の通信モードは、通信環 境条件が前記第 1の通信モードを使用する通信環境条件に比較して、良好でない場 合に使用するモードであり、前記基地局コントローラにより選択された前記移動局近 傍の複数基地局から送信される、該基地局コントローラにより前記分割された通信デ ータを前記移動局の受信機が略同時に受信し、前記略最大の通信速度に比較して 所定の通信速度を確保して通信するモードであることを特徴とするセルラ移動通信シ ステム。
[2] さらに、前記基地局の送信機は、前記所定の通信データ量を分割せずに、前記第 2の通信モードと同様に通信速度を低下させる代わりに通信品質を高めて、第 1の通 信モードと同様に、前記複数の基地局の内、 1つの基地局の送信機と前記移動局の 受信機との間で通信するモードである第 3の通信モードを有し、該第 3の通信モード により、前記移動局の受信機に対して送信データを送信し、
前記移動局の受信機は、前記第 3の通信モードにより送信される送信データを受 信することを特徴とする請求項 1に記載のセルラ移動通信システム。
[3] 前記移動局は、該移動局近傍の複数の基地局を自動的に選択する基地局選択手 段を備え、
前記基地局選択手段は、複数の基地局からの無線信号の受信レベルをそれぞれ 測定し、測定された前記受信レベルに基づいて、所定数の基地局を選択し、前記受 信レベルまたは前記受信レベルに対応した通信路品質を示すパラメータを選択され た基地局の内の 1つまたは複数の基地局を経由して基地局コントローラに送信するこ とを特徴とする請求項 1又は請求項 2に記載のセルラ移動通信システム。
[4] 前記基地局コントローラは、該移動局近傍の複数の基地局を自動的に選択できる 基地局選択手段を備え、
前記基地局選択手段は、前記受信レベルまたは前記受信レベルに対応した通信 路品質を示すパラメータを含む選択情報を基地局を経由して前記移動局より受信し 、該選択情報に基づいて基地局の選択を行うことを特徴とする請求項 3に記載のセ ルラ移動通信システム。
[5] 前記基地局コントローラは、前記基地局の選択を実行した後、前記基地局の送信 機と前記移動局の受信機間の通信条件が良好であるか否かを判定し、前記通信条 件が良好であると判断した場合に、前記第 1の通信モードを選択して、前記基地局と 前記移動局間で前記第 1の通信モードで通信を行うようにし、
一方、前記通信条件が良好でないと判断し、セル内の通信トラフィック量や各移動 局に提供される通信サービス品質に応じて、前記第 3の通信モードを選択して、前記 選択した基地局と前記移動局間で通信を行うようにしたことを特徴とする請求項 3ま たは請求項 4に記載のセルラ移動通信システム。
[6] 前記第 1の通信モードは、 OFDM信号を含む広帯域の信号を用いた高速データ 通信を行う通信モードであり、前記第 2又は第 3の通信モードは、拡散 OFDM信号を 含む、広帯域の信号であり耐干渉性の高い信号により通信を行う通信モードであるこ とを特徴とする請求項 1から請求項 5のいずれか 1項に記載のセルラ移動通信システ ム。
[7] 前記第 1の通信モードは、高変調多値数、または高符号ィ匕率の OFDM信号を含 む広帯域の信号を用いた高速データ通信を行う通信モードであり、前記第 2又は第 3 の通信モードは、低変調多値数、または低符号ィ匕率の OFDM信号を含む、広帯域 の信号であり耐干渉性の高い信号により通信を行う通信モードであることを特徴とす る請求項 1から請求項 5のいずれか 1項に記載のセルラ移動通信システム。
[8] 前記第 2または第 3の通信モードにおいて拡散 OFDM信号を使用する場合に、複 数の同一のデータに対してそれぞれ一定の間隔づっ離れた周波数の直交サブキヤ ァを割当てて、前記拡散 OFDM信号を送信し、異なる特性の通信路を経た信号を 受けて周波数ダイバーシティ受信を行うことにより、耐干渉性をより高くすることを特徴 とする請求項 6に記載のセルラ移動通信システム。
[9] 前記複数の基地局は、それぞれ基地局の信号を区別して同時に受信可能とするた め識別番号を有しており、各基地局の近傍に位置する基地局が同じ前記基地局識 別番号を有しないように、グループ化されており、前記基地局識別番号の異なる複数 の基地局を前記移動局の受信機が略同時に受信することを特徴とする請求項 1から 請求項 8のいずれか 1項に記載のセルラ移動通信システム。
[10] 複数の基地局と、近傍の複数の基地局から無線信号を略同時に受信できる移動局 の受信装置と、基地局コントローラと、を備えるセルラ移動通信システムであって、 前記複数の基地局の各々は、前記移動局力 送信されたアクセス要求を受信して 、該アクセス要求を前記基地局コントローラに送信する送信手段を備え、
前記基地局コントローラは、前記アクセス要求を受けた前記複数の基地局のうち、 どの前記基地局に対して、どの位のデータ量を配分するかを決定する通信リソース 決定手段を備えることを特徴とするセルラ移動通信システム。
[11] 近隣の基地局と同一グループに属さないように、グループ分けされた前記複数の 基地局は、該グループに対応する基地局識別番号を有していることを特徴とする請 求項 10に記載のセルラ移動通信システム。
[12] 移動局近傍の複数の基地局から無線信号を略同時に受信するセルラ移動通信シ ステムにおける前記基地局の送信装置であって、
前記各基地局の受信レベルの測定を含むチャネル推定を行うためのパイロットチヤ ネル信号を生成するパイロットチャネル信号生成部と、 トラフィックデータを送信するためのトラフィックチャネル信号を生成するトラフィック チャネル信号生成部と、
前記トラフィックデータのあて先情報を含む制御情報信号を生成する制御チャネル 信号生成部と、
前記制御チャネル信号生成部によって、生成される前記制御チャネル信号と、前 記トラフィックチャネル生成部によって、生成される前記トラフィックチャネル信号とを 合成して合成信号を生成する合成手段と、を備え、
前記ノ ィロットチャネル信号生成部によって生成される前記パイロットチャネル信号 と前記合成手段によって生成される合成信号を多重して送信信号を生成し、伝送効 率を高めるとともに、
通信環境状態に応じて、前記複数の基地局の内 1つの基地局から、所定の通信デ 一タ量を略最大の通信速度で送信を行う第 1の通信モード、通信速度を低下させる 代わりに通信品質を高めて、前記複数の基地局から、前記所定の通信データ量を一 定の割合で分割した通信データの送信を行う第 2の通信モード、又は前記第 2の通 信モードと同様に、通信速度を低下させる代わりに通信品質を高めて、前記第 1の通 信モードと同様に前記所定の通信データ量を分割せずに、前記複数の基地局の内 1つの基地局から送信を行う第 3の通信モードを切り替えることにより、前記送信信号 を送信するようにしたことを特徴とするセルラ移動通信システムにおける基地局の送 信装置。
[13] 前記複数の基地局は、それぞれ基地局の信号を区別して同時に受信可能とするた め識別番号を有しており、各基地局の近傍に位置する基地局が同じ前記基地局識 別番号を有しないように、グループ化されており、前記基地局識別番号の異なる複数 の基地局を前記移動局の受信機が略同時に受信することを特徴とする請求項 12に 記載のセルラ移動通信システムにおける基地局の送信装置。
[14] 前記パイロットチャネル信号生成部は、
前記複数の基地局の各々に異なるパイロットチャネル用スクランブルコードと、 異なる前記基地局識別番号を有する基地局を区別するパイロットパターンと、を乗 じる手段を備えることを特徴とする請求項 13に記載のセルラ移動通信システムにお ける基地局の送信装置。
[15] 前記制御チャネル信号生成部は、
前記複数の基地局に共通のスクランブルコードと前記基地局識別番号に対応した 直交コードとを用いて生成される前記制御チャネル用スクランブルコードと、
前記基地局識別番号に対応した直交コード長以上の連続するシンボルが同じ値を とる前記制御チャネルシンボルと、
を乗じる手段を備え、
異なる基地局識別番号の制御チャネル信号が直交の関係の信号となるように生成 されることを特徴とする請求項 13または請求項 14に記載のセルラ移動通信システム における基地局の送信装置。
[16] 前記トラフィックチャネル信号生成部は、
前記複数の基地局の各々に異なるトラフィックチャネル用スクランブルコードと、 前記第 1の通信モード時には、トラフィックデータに対応して変化する前記トラフイツ クチャネルシンボルの値、又は前記第 2または第 3の通信モード時には、通信環境状 態に応じて、通信品質を確保するために、連続または一定間隔で配置される複数の シンボルが同じ値をとる前記トラフィックチャネルシンボルと、
を乗じる手段を備えることを特徴とする請求項 12から請求項 15のいずれか 1項に 記載のセルラ移動通信システムにおける基地局の送信装置。
[17] 前記ノ ィロットチャネル信号生成部は、 OFDM信号であるパイロットチャネル信号 を生成し、前記 OFDM信号のフレーム内の時間軸成分を iで表し、サブキャリア成分 を jで表す場合に、基地局番号 (1)を有する前記基地局に固有のスクランブルコード X ωと前記基地局をグループ別に附した前記基地局識別番号 n (l)に対応するパイロッ トパターン w (n(1))とを時間をずらしながら、乗算し、
精度のよ!、チャネルゲインの推定及び受信パワーの測定を行えるように所定数の ノ ィロット信号を生成したことを特徴とする請求項 13に記載のセルラ移動通信システ ムにおける基地局の送信装置。
[18] 前記制御チャネル信号生成部は、拡散 OFDM信号である制御チャネル信号を生 成するものであり、前記拡散 OFDM信号のフレーム内の時間軸成分を iで表し、サブ キャリア成分を jで表す場合に、制御チャネル用の共通コードであるスクランブルコー ド yと、それぞれ基地局の信号を区別して同時に受信可能とするため基地局識別番 号 n (l)に応じた直交コード w (n(1))と、前記基地局に固有のスクランブルコード X (1)とを 用いて、制御チャネルシンボル ca)を拡散処理した、拡散 OFDM信号である制御チ ャネル信号を生成し、
移動局の受信機が前記基地局識別番号の異なる複数の前記基地局から前記制御 チャネル信号を分離し、前記制御情報を取得するようにしたことを特徴とする請求項 13または請求項 17に記載のセルラ移動通信システムにおける基地局の送信装置。
[19] 前記トラフィックチャネル生成部は、 OFDM信号または拡散 OFDM信号であるトラ フィックチャネル信号を受信し、前記 OFDM信号または前記拡散 OFDM信号のフレ ーム内の時間軸成分を iで表し、サブキャリア成分を jで表す場合に、前記第 1の通信 モードでは、トラフィックチャネルデータ d(1)と、前記基地局固有のスクランブルコード X (1)と、を乗じて得られる OFDM信号であるトラフィックチャネル信号 (X (1) X da))の生 成、前記第 2又は第 3の通信モードでは、前記トラフツクチャネルデータ d(1)を複数個 のグループに分けた前記トラフツクチャネルデータを、前記基地局固有のスクランプ ルコード X (1)を用いて周波数拡散処理された、拡散 OFDM信号であるトラフイツクチ ャネル信号の生成を行うことを特徴とする請求項 13、 17、 18のいずれカゝ 1項に記載 のセルラ移動通信システムにおける基地局の送信装置。
[20] 前記制御チャネル用の共通コードであるスクランブルコード yは、前記基地局固有 のスクランブルコード X (1)とは、異なるスクランブルコードであることを特徴とする請求 項 18または請求項 19に記載のセルラ移動通信システムにおける基地局の送信装置
[21] さらに、制御チャネルデータを生成する制御部を備え、
前記制御部は、基地局の選択及び通信モードの選択処理を行う基地局コントロー ラから通信モード情報を入力し、通信モード切替信号を生成し、前記トラフィックチヤ ネル信号生成部を制御することを特徴とする請求項 12から請求項 20のいずれか 1 項に記載のセルラ移動通信システムにおける基地局の送信装置。
[22] 移動局近傍の複数の基地局から無線信号を略同時に受信するセルラ移動通信シ ステムにおける前記移動局の受信装置であって、
基地局によって異なるスクランブルコードと前記基地局の識別番号によって異なる パイロットシンボルパターンとを用いて生成されるノ ィロットチャネル信号力 前記基 地局の受信レベルの測定およびチャネル推定を含むパイロット情報の抽出を行うパ イロットチャネル信号処理部と、
トラフィックチャネル信号を処理し、トラフィックチャネルデータを生成するトラフィック チャネル信号処理部と、
前記トラフィックデータのあて先情報を含む制御情報信号を受信し、自局宛ての情 報が含まれているかどうかを判断するための制御情報を処理する制御チャネル信号 処理部と、
トラフィックチャネル信号処理部に入力する通信モード切替え制御信号を生成し、 所定数の基地局を選択する基地局選択手段を備える統括制御部と、
を備え、
通信環境状態に応じて、前記複数の基地局の内 1つの基地局から、所定の通信デ 一タ量を略最大の通信速度で送信を行う第 1の通信モード、通信速度を低下させる 代わりに通信品質を高めて、前記複数の基地局から、前記所定の通信データ量を一 定の割合で分割した通信データの送信を行う第 2の通信モード、又は前記第 2の通 信モードと同様に、通信速度を低下させる代わりに通信品質を高めて、前記第 1の通 信モードと同様に前記所定の通信データ量を分割せずに、前記複数の基地局の内 1つの基地局から送信を行う第 3の通信モードを切り替えることにより、前記送信信号 を送信するようにしたことを特徴とするセルラ移動通信システムにおける移動局の受 信装置。
[23] 前記ノ ィロットチャネル信号処理部は、請求項 14または請求項 17に記載のパイ口 ットチャネル信号生成部で生成されるパイロットを受信して、前記基地局識別番号に 対応したノ ィロットパターンを用いて通信路推定を行うことにより、異なる基地局識別 番号の複数の基地局との間のチャネルゲインを推定することを特徴とする請求項 22 に記載のセルラ移動通信システムにおける移動局の受信装置。
[24] 前記制御チャネル信号処理部は、請求項 15または請求項 18に記載の制御チヤネ ル信号生成部で生成される制御チャネル信号を受信して、前記複数の基地局に共 通のスクランブルコードおよび複数の基地局識別番号に対応した直交コードを用い て信号処理を行うことによって、前記基地局識別番号の異なる複数の前記基地局か ら前記制御チャネル信号を分離し、複数の前記基地局からの制御データを取得する ようにしたことを特徴とする請求項 22に記載のセルラ移動通信システムにおける移動 局の受信装置。
[25] 前記トラフィックチャネル信号処理部は、前記第 2の通信モードでは複数の基地局 力 略同時に送信される信号を受信して、略同時に送信される他の基地局の信号間 の干渉を削減する重みを用いて重み付け行い、それぞれ復調することによって、前 記複数の基地局から送信されるトラフィックチャネルデータをそれぞれ再生することを 特徴とする請求項 22に記載のセルラ移動通信システムにおける移動局の受信装置
[26] 前記トラフィックチャネル信号処理部は、前記第 2の通信モードでは複数の基地局 力も略同時に送信される信号を受信して、複数の基地局の信号が合成されて受信さ れた信号点に対して、各基地局力 送信されるトラフィックチャネルデータの組み合 わせを比較し各トラフィックチャネルデータシンボルまたはビットの確力 しさを出力す ることを特徴とする請求項 22に記載のセルラ移動通信システムにおける移動局の受 信装置。
[27] さらに、前記制御チャネル信号処理部にて得られた制御データから、制御チャネル 信号レプリカを生成し、受信信号力 除去する制御チャネル干渉除去部を備え、 前記トラフィックチャネル信号処理部は、前記制御チャネル干渉除去部の出力を入 力とすることを特徴とする請求項 22から請求項 26のいずれか 1項の記載のセルラ移 動通信システムにおける移動局の受信装置。
[28] 前記ノ ィロットチャネル信号処理部は、 OFDM信号であるパイロットチャネル信号 を受信し、拡散 OFDM信号のフレーム内の時間軸成分を iで表し、サブキャリア成分 を jで表す場合に、基地局番号 (1)を有する前記基地局に固有のスクランブルコード X ωと前記基地局をグループ別に附した前記基地局識別番号 n (l)に対応するパイロッ トパターン w (ηα))とを乗算した、基地局のパイロットシンボルの共役複素数をパイロット 受信信号に乗算し、時間平均することにより、
推定すべき基地局 1'のチャネルゲインの推定値 h( , j)を算出するようにしたことを 特徴とする請求項 22に記載のセルラ移動通信システムにおける移動局の受信装置
[29] 前記制御チャネル信号処理部は、拡散 OFDM信号である制御チャネル信号を受 信し、前記拡散 OFDM信号のフレーム内の時間軸成分を iで表し、サブキャリア成分 を jで表す場合に、制御チャネル用の共通コードであるスクランブルコード yと、それ ぞれ基地局の信号を区別して同時に受信可能とするため基地局識別番号 n (l)に応 じた直交コード w (n(1))と、前記基地局に固有のスクランブルコード χ α)とを、用いて制 御チャネルシンボル c (1)を拡散処理した、拡散 OFDM信号である制御チャネル信号 に、
スクランブルコード yと、直交コード w (n(1))と、前記基地局に固有のスクランブルコー ド X α)のそれぞれの共役複素数を乗じて、前記基地局識別番号の異なる複数の前記 ]
基地局から前記制御チャネル信号を分離し、前記制御チャネルシンボル cQ)を取得 するようにしたことを特徴とする請求項 22に記載のセルラ移動通信システムにおける 移動局の受信装置。
[30] 前記トラフィックチャネル信号処理部は、 OFDM信号または拡散 OFDM信号であ るトラフィックチャネル信号を受信し、前記 OFDM信号または前記拡散 OFDM信号 のフレーム内の時間軸成分を iで表し、サブキャリア成分 で表す場合に、前記第 1 の通信モードでは、トラフィックチャネルシンボル d(1)と、前記基地局固有のスクランプ ルコード X a)と、を乗じて得られる OFDM信号であるトラフィックチャネル信号 (X (1) X d (1))、前記第 2又は第 3の通信モードでは、前記トラフツクチャネルシンボル da)を複数 個のグループに分けた前記トラフツクチャネルシンボルを、前記基地局固有のスクラ ンブルコード X (1)を用いて周波数拡散処理された、拡散 OFDM信号であるトラフイツ クチャネル信号に、前記基地局固有のスクランブルコード x (1)の複素共役を乗じ、さら に、前記第 2又は第 3の通信モードにおいては、逆拡散処理を行い、前記トラフィック チャネルシンボル d(1)の再生を行うことを特徴とする請求項 22に記載のセルラ移動通 信システムにおける移動局の受信装置。
[31] 複数の基地局と、近傍の複数の基地局から無線信号を略同時に受信できる移動局 の受信装置と、基地局コントローラと、を備えるセルラ移動通信システムの基地局選 択制御方法であって、
前記複数の基地局力 適切な基地局を選択し、さらに、前記基地局コントローラの 制御の下に決定された基地局力 の送信データを受信する際の移動局受信装置の 受信制御工程と、
前記移動局が、前記受信制御工程に従って 1局または複数局の基地局を経由して 、前記基地局コントローラに対して、アクセス要求した場合に、各基地局のトラフィック 量および通信路品質に応じて、接続する最終の基地局を選択するステップを有する 前記基地局コントローラの基地局選択工程と、
を備えたことを特徴とするセルラ移動通信システムの基地局選択制御方法。
[32] 前記基地局コントローラの基地局選択工程は、前記移動局が前記受信制御工程に 従って 1局または複数局の基地局を経由して、前記基地局コントローラに対してァク セス要求した場合に、リアルタイム性、優先度および通信路品質に対応して、接続す る基地局を選択するステップを有することを特徴とする請求項 31に記載のセルラ移 動通信システムの基地局選択制御方法。
[33] 前記移動局受信装置の受信制御工程は、
複数の基地局の送信信号が混在した受信信号から前記複数の基地局と該移動局 の間の通信路状態を測定するステップと、
前記通信路状態を測定するステップの結果に基づいて、 1局または複数局の基地 局を選択するステップと、
前記選択された基地局のうち、すべての基地局または一部の基地局に対して、ァク セス要求を送信するステップと、
前記選択された基地局のうち、すべての基地局または一部の基地局の制御チヤネ ル信号を復調して自局宛のトラフィック情報が含まれるかを判定するステップと、 自局宛のトラフィック情報が含まれる場合に、該基地局のトラフィックチャネル信号を 復調してトラフィック情報を抽出するステップと、
を備えたことを特徴とする請求項 31又は請求項 32に記載のセルラ移動通信システ ムの基地局選択制御方法。
[34] 近隣の基地局と同一グループに属さな!/、ように、グループ分けされ、該グループに 対応する基地局識別番号を有して!/ヽる前記複数の基地局にお!ヽて、
前記通信路状態を測定するステップは、同一の前記識別番号を有する基地局のう ち、それぞれ最大受信信号レベルを有する基地局の受信信号レベルを測定するス テツプであることを特徴とする請求項 33に記載のセルラ移動通信システムの基地局 選択制御方法。
[35] 近隣の基地局と同一グループに属さないように、グループ分けされ、該グループに 対応する基地局識別番号を有して!/ヽる前記複数の基地局にお!ヽて、
前記通信路状態を測定するステップは、同一の前記識別番号を有する基地局のう ち、それぞれ受信タイミングの最も早い基地局の受信信号のタイミングを測定するス テツプであることを特徴とする請求項 33に記載のセルラ移動通信システムの基地局 選択制御方法。
[36] 前記 1局または複数局の基地局を選択するステップは、前記複数の受信信号レべ ルのうち最高値を Xとしたとき、 Xに対して所定の閾値 Yを設け、受信信号レベルが X Yより大きい受信信号レベルを有する所定数の前記基地局を選択するステップで あることを特徴とする請求項 34に記載のセルラ移動通信システムの基地局選択制御 方法。
[37] 前記 1局または複数局の基地局を選択するステップは、前記複数の受信信号レべ ルのうち、前記最大受信信号レベルを有する複数の基地局を選択し、選択された複 数の前記基地局のうち受信信号レベルが大きい順に所定数の前記基地局を選択す るようにしたことを特徴とする請求項 34に記載のセルラ移動通信システムの基地局選 択制御方法。
[38] 前記 1局または複数局の基地局を選択するステップは、前記複数の受信信号レべ ルからそれぞれの伝播損失を計算し、計算された伝播損失の最小値 Xに対して、閾 値 Yを設け、伝搬損失が X+Yより小さ!ヽ伝搬損失を有する所定数の基地局を選択 するようにしたことを特徴とする請求項 34に記載のセルラ移動通信システムの基地局 選択制御方法。
[39] 前記 1局または複数局の基地局を選択するステップは、前記複数の受信信号レべ ルからそれぞれの伝播損失を計算し、選択された複数の前記基地局のうち受信信号 の伝搬損失が小さ ヽ順に所定数の前記基地局を選択するようにしたことを特徴とす る請求項 34に記載のセルラ移動通信システムの基地局選択制御方法。
[40] 前記 1局または複数局の基地局を選択するステップは、前記複数の受信タイミング のうち最も早いタイミング時刻 Xに対して、閾値 Yを設け、受信タイミング時刻が X+Y より早 ヽ受信タイミング時刻を有する所定数の基地局を選択するようにしたことを特徴 とする請求項 35に記載のセルラ移動通信システムの基地局選択制御方法。
[41] 前記 1局または複数局の基地局を選択するステップは、前記複数の受信タイミング のうち受信タイミングの早い方力 所定数の基地局を選択するようにしたことを特徴と する請求項 35に記載のセルラ移動通信システムの基地局選択制御方法。
[42] 前記 1局または複数局の基地局を選択するステップは、前記複数の受信タイミング 力 それぞれの伝播遅延時間を計算し、最小の伝搬遅延時間 Xに対して、閾値 Yを 設け、伝搬遅延時間が X+Yより小さい伝搬遅延時間を有する所定数の基地局を選 択するようにしたことを特徴とする請求項 35に記載のセルラ移動通信システムの基地 局選択制御方法。
[43] 前記 1局または複数局の基地局を選択するステップは、前記複数の受信タイミング 力 それぞれの伝播遅延時間を計算し、伝播遅延が小さ!、順に所定数の基地局を 選択するようにしたことを特徴とする請求項 35に記載のセルラ移動通信システムの基 地局選択制御方法。
[44] 前記アクセス要求を送信するステップは、前記 1局または複数局の基地局を選択す るステップで選択された基地局の各々にアクセス要求を送信するステップであり、 前記自局宛のトラフィック情報が含まれるかを判定するステップは、前記 1局または 複数局の基地局を選択するステップで選択されたすベての基地局の制御チャネル 信号を各々復調して制御情報を抽出することによって自局宛のトラフィック情報が含 まれるかを判定することを特徴とする請求項 33から請求項 43に記載のセルラ移動通 信システムの基地局選択制御方法。
[45] 前記アクセス要求を送信するステップは、前記 1局または複数局の基地局を選択す るステップで選択された基地局のうちもっとも通信路状態の良い基地局に対してァク セス要求を送信するステップであり、
前記自局宛のトラフィック情報が含まれるかを判定するステップは、前記アクセス要 求を送信するステップで送信した基地局の制御チャネル信号を復調して制御情報を 抽出することによって自局宛のトラフィック情報がどの基地局のトラフツクチャネルに 含まれるかを判定することを特徴とする請求項 33から請求項 43に記載のセルラ移動 通信システムの基地局選択制御方法。
[46] 前記アクセス要求を送信するステップは、前記 1局または複数局の基地局を選択す るステップで選択された基地局のうちもっとも通信路状態の良い基地局に対してァク セス要求を送信するステップであり、
前記自局宛のトラフィック情報が含まれるかを判定するステップは、前記 1局または 複数局の基地局を選択するステップで選択されたすベての基地局の制御チャネル 信号を各々復調して制御情報を抽出することによって自局宛のトラフィック情報が含 まれるかを判定することを特徴とする請求項 33から請求項 43に記載のセルラ移動通 信システムの基地局選択制御方法。
[47] さらに、移動局近傍の 1つまたは複数の基地局力 呼び出し信号を受信するステツ プを備えることを特徴とする請求項 33から請求項 46に記載のセルラ移動通信システ ムの基地局選択制御方法。
PCT/JP2006/315169 2005-08-01 2006-07-31 セルラ移動通信システム、セルラ移動通信システムにおける基地局の送信装置と移動局の受信装置およびセルラ移動通信システムの基地局選択制御方法 WO2007015466A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107002204A KR101113433B1 (ko) 2005-08-01 2006-07-31 셀룰러 이동 통신 시스템
EP06782047A EP1916783A4 (en) 2005-08-01 2006-07-31 CELLULAR MOBILE COMMUNICATION SYSTEM, BASIC STATION TRANSMISSION DEVICE AND MOBILE STATION RECEIVING DEVICE IN A CELLULAR MOBILE COMMUNICATION SYSTEM AND BASIC STATION SELECTION CONTROL METHOD IN A CELLULAR MOBILE COMMUNICATION SYSTEM
US11/997,544 US20100222063A1 (en) 2005-08-01 2006-07-31 Cellular mobile communication system, base station transmission device and mobile station reception device in cellular mobile communication system, and base station selection control method in cellular mobile communication system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005223373A JP4305771B2 (ja) 2005-08-01 2005-08-01 セルラ移動通信システムにおける基地局の送信装置及び移動局の受信装置
JP2005223374A JP4526459B2 (ja) 2005-08-01 2005-08-01 セルラ移動通信システムの基地局選択制御方法
JP2005-223374 2005-08-01
JP2005223375A JP4794234B2 (ja) 2005-08-01 2005-08-01 セルラ移動通信システム
JP2005-223373 2005-08-01
JP2005-223375 2005-08-01

Publications (1)

Publication Number Publication Date
WO2007015466A1 true WO2007015466A1 (ja) 2007-02-08

Family

ID=37708746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315169 WO2007015466A1 (ja) 2005-08-01 2006-07-31 セルラ移動通信システム、セルラ移動通信システムにおける基地局の送信装置と移動局の受信装置およびセルラ移動通信システムの基地局選択制御方法

Country Status (5)

Country Link
US (1) US20100222063A1 (ja)
EP (1) EP1916783A4 (ja)
KR (3) KR101113433B1 (ja)
CN (1) CN102209059B (ja)
WO (1) WO2007015466A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034516A2 (en) * 2007-09-10 2009-03-19 Nokia Corporation Changing hardware settings based on data preamble
WO2010125738A1 (ja) * 2009-04-28 2010-11-04 三菱電機株式会社 移動体通信システム
JP2012503346A (ja) * 2008-07-11 2012-02-02 クゥアルコム・インコーポレイテッド セル間干渉除去フレームワーク
JP2012165252A (ja) * 2011-02-08 2012-08-30 Mitsubishi Electric Corp 送信機、受信機および通信システム
US8553749B2 (en) 2007-06-25 2013-10-08 Aker Subsea Limited Signal encoding for frequency division multiplexing on transmission lines
US8867999B2 (en) 2009-01-26 2014-10-21 Qualcomm Incorporated Downlink interference cancellation methods
US9119212B2 (en) 2008-07-11 2015-08-25 Qualcomm Incorporated Inter-cell interference cancellation framework
CN107949044A (zh) * 2017-11-23 2018-04-20 周小凤 自适应基站功率管控系统
WO2022153465A1 (ja) * 2021-01-14 2022-07-21 三菱電機株式会社 通信管理装置、通信管理方法及び通信管理プログラム

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970003B1 (ko) 2007-05-02 2010-07-16 한국전자통신연구원 신호 송신 방법 및 장치
WO2009073744A2 (en) 2007-12-04 2009-06-11 Nextwave Broadband Inc. Intercell interference mitigation
JP4422752B2 (ja) * 2007-12-05 2010-02-24 富士通株式会社 無線ネットワーク制御装置および無線通信システム
JP5056948B2 (ja) * 2008-06-30 2012-10-24 富士通株式会社 無線リソースの割り当て方法、基地局、移動局
CN102197617B (zh) 2008-10-28 2014-07-16 富士通株式会社 使用了协作harq通信方式的无线基站装置、无线终端装置、无线通信系统以及无线通信方法
JP5531767B2 (ja) 2009-07-31 2014-06-25 ソニー株式会社 送信電力制御方法、通信装置及びプログラム
JP5565082B2 (ja) 2009-07-31 2014-08-06 ソニー株式会社 送信電力決定方法、通信装置及びプログラム
JP5429036B2 (ja) 2009-08-06 2014-02-26 ソニー株式会社 通信装置、送信電力制御方法、及びプログラム
CN101951643B (zh) * 2009-09-03 2014-04-23 开曼群岛威睿电通股份有限公司 通信接入程序的方法、装置及系统
US8724610B2 (en) * 2010-01-28 2014-05-13 Alcatel Lucent Interference reduction for wireless networks
CN102823314B (zh) 2010-04-09 2015-09-02 株式会社日立制作所 无线通信系统
GB2484287A (en) * 2010-10-04 2012-04-11 Vodafone Ip Licensing Ltd Selecting base station radio systems for receiving and combining OFDM signals from a mobile station
CN103188183B (zh) * 2011-12-30 2016-08-03 中兴通讯股份有限公司 Lte规划仿真中c-rs干扰噪声比的获取方法和装置
KR102023402B1 (ko) * 2013-02-28 2019-09-23 삼성전자주식회사 통신 시스템에서 인터넷 연결 상태 모니터링 방법 및 장치
CN103269491B (zh) * 2013-04-02 2015-06-17 东南大学 一种基于毫米波高速通信的中继覆盖选择算法
US20160094323A1 (en) * 2013-04-30 2016-03-31 Intellectual Discovery Co., Ltd. Intercell interference control through control signal provided by terminal
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
US9913181B1 (en) * 2015-08-26 2018-03-06 Sprint Spectrum L.P. Reference signal power variation to indicate load information
US10270481B1 (en) * 2015-12-22 2019-04-23 Amazon Technologies, Inc. Wireless communication receiver gain management system
US10374855B2 (en) * 2015-12-28 2019-08-06 Sony Corporation Apparatus and method
US9955295B1 (en) 2017-04-19 2018-04-24 Sprint Spectrum L.P. Use of positioning reference signal configuration as indication of operational state of a cell
US10154413B1 (en) * 2017-10-30 2018-12-11 Gerald P. Ryan Self-masking receive system
KR102647646B1 (ko) * 2019-05-15 2024-03-13 현대자동차주식회사 엣지 컴퓨팅에 기초한 이동체 동작 방법 및 장치
CN110312295B (zh) * 2019-07-29 2021-08-06 北京信成未来科技有限公司 基于分布式滑动窗口计数的无人机蜂窝通信基站选择方法
WO2022019352A1 (ko) * 2020-07-22 2022-01-27 엘지전자 주식회사 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 장치
KR102517442B1 (ko) 2020-08-12 2023-03-31 주식회사 엘지생활건강 눈썹 착색용 조성물

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036964A (ja) * 1999-07-21 2001-02-09 Hitachi Ltd 通信システム及びその通信方法
JP2001036939A (ja) * 1999-07-22 2001-02-09 Nec Corp マルチコードcdma方式によるセルラーシステムおよび通信方法
JP2002112347A (ja) * 2000-09-29 2002-04-12 Toshiba Corp 無線端末装置、無線通信システム
JP2002112302A (ja) * 2000-09-27 2002-04-12 Nec Corp Cdma方式における基地局選択システム及び基地局選択方法
JP2003032725A (ja) * 2001-07-18 2003-01-31 Ntt Docomo Inc 移動通信システムにおける無線基地局選択方法及びシステム並びに無線基地局
JP2005006358A (ja) * 1999-12-24 2005-01-06 Ntt Docomo Inc 移動通信システムにおけるバースト信号の送信方法及び装置並びに情報配信方法及び情報配信制御装置
JP2005039722A (ja) * 2003-07-18 2005-02-10 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978365A (en) * 1998-07-07 1999-11-02 Orbital Sciences Corporation Communications system handoff operation combining turbo coding and soft handoff techniques
JP3449985B2 (ja) * 1998-07-16 2003-09-22 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムのパケットデータ処理システム及び方法
US7149193B2 (en) * 1999-12-15 2006-12-12 Nortel Networks Limited Dynamic, dual-mode wireless network architecture with a split layer 2 protocol
EP1418687B1 (en) * 1999-12-24 2008-03-19 NTT DoCoMo, Inc. Information distributing method and information distribution control device
EP1128592A3 (en) * 2000-02-23 2003-09-17 NTT DoCoMo, Inc. Multi-carrier CDMA and channel estimation
US20020085641A1 (en) * 2000-12-29 2002-07-04 Motorola, Inc Method and system for interference averaging in a wireless communication system
US7042858B1 (en) * 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
US20050213538A1 (en) * 2002-05-31 2005-09-29 Matsushita Electric Industrial Co., Ltd Data distribution device and transmission method
JP2004158901A (ja) * 2002-11-01 2004-06-03 Kddi Corp Ofdm及びmc−cdmaを用いる送信装置、システム及び方法
US8023466B2 (en) * 2004-06-22 2011-09-20 Jianglei Ma Soft handoff in OFDMA system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036964A (ja) * 1999-07-21 2001-02-09 Hitachi Ltd 通信システム及びその通信方法
JP2001036939A (ja) * 1999-07-22 2001-02-09 Nec Corp マルチコードcdma方式によるセルラーシステムおよび通信方法
JP2005006358A (ja) * 1999-12-24 2005-01-06 Ntt Docomo Inc 移動通信システムにおけるバースト信号の送信方法及び装置並びに情報配信方法及び情報配信制御装置
JP2002112302A (ja) * 2000-09-27 2002-04-12 Nec Corp Cdma方式における基地局選択システム及び基地局選択方法
JP2002112347A (ja) * 2000-09-29 2002-04-12 Toshiba Corp 無線端末装置、無線通信システム
JP2003032725A (ja) * 2001-07-18 2003-01-31 Ntt Docomo Inc 移動通信システムにおける無線基地局選択方法及びシステム並びに無線基地局
JP2005039722A (ja) * 2003-07-18 2005-02-10 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1916783A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553749B2 (en) 2007-06-25 2013-10-08 Aker Subsea Limited Signal encoding for frequency division multiplexing on transmission lines
WO2009034516A2 (en) * 2007-09-10 2009-03-19 Nokia Corporation Changing hardware settings based on data preamble
WO2009034516A3 (en) * 2007-09-10 2009-05-22 Nokia Corp Changing hardware settings based on data preamble
US8170420B2 (en) 2007-09-10 2012-05-01 Nokia Corporation Changing hardware settings based on data preamble
CN101803260B (zh) * 2007-09-10 2014-01-22 诺基亚公司 基于数据前导码来改变硬件设置
JP2012503346A (ja) * 2008-07-11 2012-02-02 クゥアルコム・インコーポレイテッド セル間干渉除去フレームワーク
US9119212B2 (en) 2008-07-11 2015-08-25 Qualcomm Incorporated Inter-cell interference cancellation framework
US8630587B2 (en) 2008-07-11 2014-01-14 Qualcomm Incorporated Inter-cell interference cancellation framework
US8639996B2 (en) 2008-07-11 2014-01-28 Qualcomm Incorporated Systems and methods for uplink inter-cell interference cancellation using hybrid automatic repeat request (HARQ) retransmissions
US11039449B2 (en) 2009-01-26 2021-06-15 Qualcomm Incorporated Downlink interference cancellation methods
US10820327B2 (en) 2009-01-26 2020-10-27 Qualcomm Incorporated Downlink interference cancellation methods
US8867999B2 (en) 2009-01-26 2014-10-21 Qualcomm Incorporated Downlink interference cancellation methods
JP2014150555A (ja) * 2009-04-28 2014-08-21 Mitsubishi Electric Corp 移動体通信システム、基地局および移動端末
US9705648B2 (en) 2009-04-28 2017-07-11 Mitsubishi Electric Corporation Mobile communication system
US8953523B2 (en) 2009-04-28 2015-02-10 Mitsubishi Electric Corporation Mobile communication system
JP2015136167A (ja) * 2009-04-28 2015-07-27 三菱電機株式会社 移動体通信システム、基地局および移動端末
JP5079139B2 (ja) * 2009-04-28 2012-11-21 三菱電機株式会社 移動体通信システム、基地局および移動端末
US9438390B2 (en) 2009-04-28 2016-09-06 Mitsubishi Electric Corporation Mobile communication system
JP2017063512A (ja) * 2009-04-28 2017-03-30 三菱電機株式会社 移動体通信システム、基地局および移動端末
JP2012257318A (ja) * 2009-04-28 2012-12-27 Mitsubishi Electric Corp 移動体通信システム
WO2010125738A1 (ja) * 2009-04-28 2010-11-04 三菱電機株式会社 移動体通信システム
US10110356B2 (en) 2009-04-28 2018-10-23 Mitsubishi Electric Corporation Mobile communication system, base station and user equipment
JP2012165252A (ja) * 2011-02-08 2012-08-30 Mitsubishi Electric Corp 送信機、受信機および通信システム
CN107949044B (zh) * 2017-11-23 2018-10-19 广东国动网络通信有限公司 自适应基站功率管控系统
CN107949044A (zh) * 2017-11-23 2018-04-20 周小凤 自适应基站功率管控系统
WO2022153465A1 (ja) * 2021-01-14 2022-07-21 三菱電機株式会社 通信管理装置、通信管理方法及び通信管理プログラム
JP7106011B1 (ja) * 2021-01-14 2022-07-25 三菱電機株式会社 通信管理装置、通信管理方法及び通信管理プログラム

Also Published As

Publication number Publication date
US20100222063A1 (en) 2010-09-02
KR101113433B1 (ko) 2012-03-21
KR20080040755A (ko) 2008-05-08
KR20100025592A (ko) 2010-03-09
KR101014933B1 (ko) 2011-02-15
EP1916783A4 (en) 2013-01-09
CN102209059A (zh) 2011-10-05
EP1916783A1 (en) 2008-04-30
KR101036043B1 (ko) 2011-05-19
CN102209059B (zh) 2014-07-30
KR20100028124A (ko) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2007015466A1 (ja) セルラ移動通信システム、セルラ移動通信システムにおける基地局の送信装置と移動局の受信装置およびセルラ移動通信システムの基地局選択制御方法
JP4794234B2 (ja) セルラ移動通信システム
JP4305771B2 (ja) セルラ移動通信システムにおける基地局の送信装置及び移動局の受信装置
KR100942276B1 (ko) 주파수 도메인 확산에 의한 다중 액세스 하이브리드 ofdm-cdma 시스템
RU2289210C2 (ru) Устройство и способ передачи/приема данных в системе связи, использующей схему множественного доступа
KR100817672B1 (ko) 송신 방법 및 수신 방법과 그들을 이용한 무선 장치
KR101221706B1 (ko) 고속 패킷 데이터 시스템의 순방향 링크에서 다중 입력 다중 출력 기술을 지원하는 송수신 장치 및 방법
JP4907524B2 (ja) マルチキャリア通信における無線通信基地局装置および無線通信方法
JP4526459B2 (ja) セルラ移動通信システムの基地局選択制御方法
US20030012308A1 (en) Adaptive channel estimation for wireless systems
JP4564501B2 (ja) 周波数分割通信システム
JP2007325299A (ja) ある方向にofdmをそして別の方向にdsssを使用する通信システム
JP2003348047A (ja) 無線伝送装置
WO2007049768A1 (ja) 送信機、通信システム及び送信方法
JP2006014372A (ja) 無線通信方法および送信機
WO2006118412A2 (en) An apparaus and method for receiving signals in multi-carrier multiple access systems
JP4590604B2 (ja) 通信装置
KR100685089B1 (ko) 부호 확산을 이용하는 무선 전송에 있어서의 잡음 및 간섭전력을 추정하는 무선 송수신 장치 및 무선 송수신 방법
JP2007005841A (ja) マルチキャリア伝送方法、装置、およびシステム
JP2010193350A (ja) 通信装置及び通信システム
JP4902592B2 (ja) 無線通信システム
JP4473704B2 (ja) マルチアンテナ通信装置および通信相手選択方法
KR20110091394A (ko) 무선 통신 시스템에서 사운딩 신호 송/수신 장치 및 방법
JP2010213333A (ja) マルチキャリア無線通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028340.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11997544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005198

Country of ref document: KR

Ref document number: 2006782047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020107002210

Country of ref document: KR

Ref document number: 1020107002204

Country of ref document: KR